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Isometric actions of simple Lie groups
on pseudoRiemannian manifolds

By Raul Quiroga-Barranco*

Abstract

Let M be a connected compact pseudoRiemannian manifold acted upon
topologically transitively and isometrically by a connected noncompact simple
Lie group G. If m0, n0 are the dimensions of the maximal lightlike subspaces
tangent to M and G, respectively, where G carries any bi-invariant metric, then
we have n0 ≤ m0. We study G-actions that satisfy the condition n0 = m0.
With no rank restrictions on G, we prove that M has a finite covering M̂

to which the G-action lifts so that M̂ is G-equivariantly diffeomorphic to an
action on a double coset K\L/Γ, as considered in Zimmer’s program, with G

normal in L (Theorem A). If G has finite center and rankR(G) ≥ 2, then we
prove that we can choose M̂ for which L is semisimple and Γ is an irreducible
lattice (Theorem B). We also prove that our condition n0 = m0 completely
characterizes, up to a finite covering, such double coset G-actions (Theorem C).
This describes a large family of double coset G-actions and provides a partial
positive answer to the conjecture proposed in Zimmer’s program.

1. Introduction

In this work, G will denote a connected noncompact simple Lie group
and M a connected smooth manifold, which is assumed to be compact unless
otherwise stated. Moreover, we will assume that G acts smoothly, faithfully
and preserving a finite measure on M . We will assume that these conditions
are satisfied unless stated otherwise. There are several known examples of
such actions that also preserve some geometric structure and all of them are
essentially of an algebraic nature (see [Zim3] and [FK]). Some of such examples
are constructed from homomorphisms G ↪→ L into Lie groups L that admit
a (cocompact) lattice Γ. For such setup, the G-action is then the one by
left translations on K\L/Γ, where K is some compact subgroup of CL(G).
Moreover, if L is semisimple and Γ is irreducible, then the G-action is ergodic.
This family of examples is a fundamental part in the questions involved in
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studying and classifying G-actions. In his program to study such actions,
Robert Zimmer has proposed the problem of determining to what extent a
general G-action on M as above is (or at least can be obtained from) an
algebraic action, which includes the examples K\L/Γ as above (see [Zim3]).

Our goal is to make a contribution to Zimmer’s program within the context
of pseudoRiemannian geometry. Hence, from now on, we consider M furnished
with a smooth pseudoRiemannian metric and assume that G acts by isometries
of the metric. Note that G also preserves the pseudoRiemannian volume on M ,
which is finite since M is compact.

One of the first things we want to emphasize is the fact that G itself can
be naturally considered as a pseudoRiemannian manifold. In fact, G admits
bi-invariant pseudoRiemannian metrics and all of them can be described in
terms of the Killing form (see [Her1] and [BN]). So it is natural to inquire
about the relationship of the pseudoRiemannian invariants of both G and M .
The simplest one to consider is the signature, which from now on we will
denote with (m1, m2) and (n1, n2) for M and G, respectively, where we have
chosen some bi-invariant pseudoRiemannian metric on G. Our notation is such
that the first number corresponds to the dimension of the maximal timelike
tangent subspaces and the second number to the dimension of the maximal
spacelike tangent subspaces. We will also denote m0 = min(m1, m2) and n0 =
min(n1, n2), which are the dimensions of maximal lightlike tangent subspaces
for M and G, respectively. We observe that the signature (n1, n2) depends on
the choice of the metric on G. However, as it was remarked by Gromov in
[Gro], if (n1, n2) corresponds to the metric given by the Killing form, then any
other bi-invariant pseudoRiemannian metric on G has signature given by either
(n1, n2) or (n2, n1). In particular, n0 does not depend on the choice of the bi-
invariant metric on G, so it only depends on G itself. For these numbers, it is
easy to check the following inequality. A proof is given later on in Lemma 3.2.

Lemma 1.1. For G and M as before, we have n0 ≤ m0.

The goal of this paper is to obtain a complete description, in algebraic
terms, of the manifolds M and the G-actions that occur when the equality
n0 = m0 is satisfied. We will prove the following result. We refer to [Zim6] for
the definition of engagement.

Theorem A. Let G be a connected noncompact simple Lie group. If G

acts faithfully and topologically transitively on a compact manifold M preserv-
ing a pseudoRiemannian metric such that n0 = m0, then the G-action on M

is ergodic and engaging, and there exist :

(1) a finite covering M̂ → M ,

(2) a connected Lie group L that contains G as a factor,

(3) a cocompact discrete subgroup Γ of L and a compact subgroup K of CL(G),
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for which the G-action on M lifts to M̂ so that M̂ is G-equivariantly diffeo-
morphic to K\L/Γ. Furthermore, there is an ergodic and engaging G-invariant
finite smooth measure on L/Γ.

In other words, if the (pseudoRiemannian) geometries of G and M are
closely related, in the sense of satisfying n0 = m0, then, up to a finite covering,
the G-action is given by the algebraic examples considered in Zimmer’s pro-
gram. This result does not require any conditions on the center or real rank
of G.

On the other hand, it is of great interest to determine the structure of
the Lie group L that appears in Theorem A. For example, one might expect
to able to prove that L is semisimple and Γ is an irreducible lattice. By
imposing some restrictions on the group G, in the following result we prove
that such conclusions can be obtained. In this work we adopt the definition
of irreducible lattice found in [Mor], which applies for connected semisimple
Lie groups with finite center, even if such groups admit compact factors. We
also recall that a semisimple Lie group L is called isotypic if its Lie algebra l

satisfies l ⊗ C = d ⊕ · · · ⊕ d for some complex simple Lie algebra d.

Theorem B. Let G be a connected noncompact simple Lie group with
finite center and rankR(G) ≥ 2. If G acts faithfully and topologically transi-
tively on a compact manifold M preserving a pseudoRiemannian metric such
that n0 = m0, then there exist :

(1) a finite covering M̂ → M ,

(2) a connected isotypic semisimple Lie group L with finite center that con-
tains G as a factor,

(3) a cocompact irreducible lattice Γ of L and a compact subgroup K of
CL(G),

for which the G-action on M lifts to M̂ so that M̂ is G-equivariantly diffeo-
morphic to K\L/Γ. Hence, up to fibrations with compact fibers, M is G-equi-
variantly diffeomorphic to K\L/Γ and L/Γ.

To better understand these results, one can look at the geometric features
of the known algebraic actions of simple Lie groups. This is important for two
reasons. To verify that there actually exist examples of topologically transitive
actions that satisfy our condition n0 = m0, and to understand to what extent
Theorems A and B describe such examples.

First recall that every semisimple Lie group with finite center admits co-
compact lattices. However, not every such group admits an irreducible cocom-
pact lattice, which is a condition generally needed to provide ergodic actions.
In the work of [Joh] one can find a complete characterization of the semisimple



944 RAUL QUIROGA-BARRANCO

groups with finite center and without compact factors that admit irreducible
lattices. Also, in [Mor], one can find conditions for the existence of irreducible
lattices on semisimple Lie groups with finite center that may admit compact
factors. Based on the results in [Joh] and [Mor] we state the following propo-
sition that provides a variety of examples of ergodic pseudoRiemannian metric
preserving actions for which n0 = m0. Its proof is an easy consequence of [Joh]
and [Mor], and the remarks that follow the statement.

Proposition 1.2. Suppose that G has finite center and rankR(G) ≥ 2.
Let L be a semisimple Lie group with finite center that contains G as a normal
subgroup. If L is isotypic, then L admits a cocompact irreducible lattice. Hence,
for any choices of a cocompact irreducible lattice Γ in L and a compact subgroup
K of CL(G), G acts ergodically, and hence topologically transitively, on K\L/Γ
preserving a pseudoRiemannian metric for which n0 = m0.

For the existence of the metric, we observe that there is an isogeny between
L and G×H for some connected semisimple group H. On a product G×H, we
have K ⊂ HZ(G) and we can build the metric from the Killing form of g and
a Riemannian metric on H which is K-invariant on the left and H-invariant
on the right. For general L a similar idea can be applied.

Hence, Proposition 1.2 ensures that topological transitivity and the con-
dition n0 = m0, assumed by Theorems A and B, are satisfied by a large and
important family of examples, those built out of isotypic semisimple Lie groups
containing G as a normal subgroup.

A natural problem is to determine to what extent topological transitivity
and the condition n0 = m0 characterize the examples given in Proposition 1.2.
We obtain such a characterization in the following result.

Theorem C. Let G be a connected noncompact simple Lie group with
finite center and rankR(G) ≥ 2. Assume that G acts faithfully on a compact
manifold X. Then the following conditions are equivalent.

(1) There is a finite covering X̂ → X for which the G-action on X lifts to
a topologically transitive G-action on X̂ that preserves a pseudoRieman-
nian metric satisfying n0 = m0.

(2) There is a connected isotypic semisimple Lie group L with finite center
that contains G as a factor, a cocompact irreducible lattice Γ of L and a
compact subgroup K of CL(G) such that K\L/Γ is a finite covering of
X with G-equivariant covering map.

In words, up to finite covering maps, for topologically transitive G-actions
on compact manifolds, to preserve a pseudoRiemannian metric with n0 = m0

is a condition that characterizes those algebraic actions considered in Zimmer’s
program corresponding to the double cosets K\L/Γ described in (2).
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In the theorems stated above we are assuming the pseudoRiemannian
manifold acted upon by G to be compact. However, it is possible to extend
our arguments to finite volume manifolds if we consider complete pseudoRie-
mannian structures. In Section 8 we present the corresponding generalizations
of Theorems A, B, and C that can be thus obtained.

With the results discussed so far, we completely describe (up to finite
coverings) the isometric actions of noncompact simple Lie groups that satisfy
our geometric condition n0 = m0. Moreover, we have actually shown that
the collection of manifolds defined by such condition is (up to finite coverings)
a very specific and important family of the examples considered in Zimmer’s
program: those given by groups containing G as a normal subgroup.

Given the previous remarks, we can say that we have fully described and
classified a distinguished family of G-actions. Nevertheless, it is still of interest
to conclude (from our classification) results that allow us to better understand
the topological and geometric restrictions satisfied by the family of G-actions
under consideration. This also allows us to make a comparison with results ob-
tained in other works (see, for example, [FK], [LZ2], [SpZi], [Zim8] and [Zim3]).
With this respect, in the theorems below, and under our standing condition
n0 = m0, we find improvements and/or variations of important results con-
cerning volume preserving G-actions. Based on this, we propose the problem
of extending such theorems to volume preserving G-actions more general than
those considered here.

In the remaining of this section, we will assume that G is a connected non-
compact simple Lie group acting smoothly, faithfully and topologically transi-
tively on a manifold M and preserving a pseudoRiemannian metric such that
n0 = m0. We also assume that either M is compact or its metric is complete
with finite volume. The results stated below basically follow from Theorems
A, B and C (and their extensions to finite volume complete manifolds); the
corresponding proofs can be found in Section 8.

The next result is similar in spirit to Theorem A in [SpZi], but requires
no rank restriction on G.

Theorem 1.3. If the G-action is not transitive, then M has a finite cov-
ering space M1 that admits a Riemannian metric whose universal covering
splits isometrically. In particular, for such metric, M1 has some zeros for its
sectional curvature.

Observe that any algebraic G-action of the form K\L/Γ, as in Zimmer’s
program, is easily seen to satisfy the conclusion of Theorem 1.3 by just requir-
ing L to have at least two noncompact factors. Hence, one may propose the
problem of finding a condition, either geometric or dynamical, that character-
izes the conclusion of Theorem 1.3 or an analogous property.
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The following result can be considered as an improved version of Gromov’s
representation theorem. In this case we require a rank restriction.

Theorem 1.4. Suppose G has finite center and rankR(G) ≥ 2. Then
there exist a finite index subgroup Λ of π1(M) and a linear representation
ρ : Λ → Gl(p, R) such that the Zariski closure ρ(Λ)

Z
is a semisimple Lie group

with finite center in which ρ(Λ) is a lattice and that contains a closed subgroup
locally isomorphic to G. Moreover, if M is not compact, then ρ(Λ)

Z
has no

compact factors.

Again, we observe that all algebraic G-actions in Zimmer’s program, i.e.
of the form K\L/Γ described before, are easily seen to satisfy the conclusions
of Theorem 1.4. Actually, our proof depends on the fact that our condition
n0 = m0 ensures that such a double coset appears. Still we may propose the
problem of finding other conditions that can be used to prove this more general
Gromov’s representation theorem. Such a result, in a more general case, would
provide a natural semisimple Lie group in which to embed G to prove that a
given G-action is of the type considered in Zimmer’s program.

Zimmer has proved in [Zim8] that when rankR(G) ≥ 2 any analytic en-
gaging G-action on a manifold X preserving a unimodular rigid geometric
structure has a fully entropic virtual arithmetic quotient (see [LZ1], [LZ2] and
[Zim8] for the definitions and precise statements). The following result, with
our standing assumption n0 = m0, has a much stronger conclusion than that of
the main result in [Zim8]. Note that a sufficiently strong generalization of the
next theorem for general finite volume preserving actions would mean a com-
plete solution to Zimmer’s program for finite measure preserving G-actions,
even at the level of the smooth category.

Theorem 1.5. Suppose G and M satisfy the hypotheses of either Theo-
rem B or Theorem B′ (see §8). Then the G-action on M has finite entropy.
Moreover, there is a manifold M̂ acted upon by G and G-equivariant finite
covering maps M̂ → A(M) and M̂ → M , where A(M) is some realization of
the maximal virtual arithmetic quotient of M .

The organization of the article is as follows. The proof of Theorem A relies
on studying the pseudoRiemannian geometry of G and M . In that sense, the
fundamental tools for the proof of Theorem A are developed in Sections 3 and 4.
In Section 5 the proof of Theorem A is completed based on the results proved
up to that point and a study of a transverse Riemannian structure associated
to the G-orbits. The proofs of Theorems B and C (§§6 and 7) are based on
Theorem A, but also rely on the results of [StZi] and [Zim5]. In Section 8 we
show how to extend Theorems A, B and C to finite volume manifolds if we
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assume completeness of the pseudoRiemannian structure involved. Section 8
also contains the complete proofs of Theorems 1.3, 1.4 and 1.5.

I would like to thank Jesús Álvarez-López, Alberto Candel and Dave
Morris for useful comments that allowed to simplify the exposition of this
work.

2. Some preliminaries on homogeneous spaces

We will need the following easy to prove result.

Lemma 2.1. Let H be a Lie group acting smoothly and transitively on a
connected manifold X. If for some x0 ∈ X the isotropy group Hx0 has finitely
many components, then H has finitely many components as well.

Proof. Let Hx0 = K0 ∪ · · · ∪ Kr be the component decomposition of Hx0 .
Choose an element ki ∈ Ki, for every i = 0, . . . , r.

For any given h ∈ H, let ĥ ∈ H0 be such that h(x0) = ĥ(x0) (see [Hel]).
Hence, ĥ−1h ∈ Hx0 , so there exists i0 such that ĥ−1h ∈ Ki0 . If γ is a continuous
path from ki0 to ĥ−1h, then ĥγ is a continuous path from ĥki0 to h. This shows
that H = H0k0 ∪ . . . H0kr.

As an immediate consequence we obtain the following.

Corollary 2.2. If X is a connected homogeneous Riemannian manifold,
then the group of isometries Iso(X) has finitely many components. Moreover,
the same property holds for any closed subgroup of Iso(X) that acts transitively
on X.

The following result is a well known easy consequence of Singer’s Theorem
(see [Sin]). Nevertheless, we state it here for reference and briefly explain its
proof, from the results of [Sin], for the sake of completeness.

Theorem 2.3 (Singer). Let X be a smooth simply connected complete
Riemannian manifold. If the pseudogroup of local isometries has a dense orbit,
then X is a homogeneous Riemannian manifold.

Proof. By the main theorem in [Sin], we need to show that X is in-
finitesimally homogeneous as considered in [Sin]. The latter is defined by the
existence of an isometry A : TxX → TyX, for any two given points x, y ∈ X,
so that A transforms the curvature and its covariant derivatives (up to a fixed
order) at x into those at y. Under our assumptions, this condition is satisfied
only on a dense subset S of X. However, for an arbitrary y ∈ X, we can
choose x ∈ S, a sequence (xn)n ⊂ S that converges to y and a sequence of
maps An : TxX → Txn

X that satisfy the infinitesimal homogeneity condition.
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By introducing local coordinates at x and y, we can consider that (for n large
enough) the sequence (An)n lies in a compact group and thus has a subse-
quence that converges to some map A : TxX → TyX. By the continuity of the
identities that define infinitesimal homogeneity in [Sin], it is easy to show that
A satisfies such identities. This proves infinitesimal homogeneity of X, and so
X is homogeneous.

3. Isometric splitting of a covering of M

We start by describing some geometric properties of the G-orbits on M

when the condition n0 = m0 is satisfied.

Proposition 3.1. Suppose G acts topologically transitively on M pre-
serving its pseudoRiemannian metric and satisfying n0 = m0. Then G acts
everywhere locally freely with nondegenerate orbits. Moreover, the metric in-
duced by M on the G-orbits is given by a bi-invariant pseudoRiemannian met-
ric on G that does not depend on the G-orbit.

Proof. Everywhere local freeness follows from topological transitivity by
the results in [Sz].

Observe that the condition for G-orbits to be nondegenerate is an open
condition, i.e. there exist a G-invariant open subset U of M so that the G-orbit
of every point in U is nondegenerate.

On the other hand, given local freeness, it is well known that for TO the
tangent bundle to the G-orbits, the following map is a G-equivariant smooth
trivialization of TO:

ϕ : M × g→TO
(x, X) 	→X∗

x

where X∗ is the vector field on M whose one parameter group of diffeo-
morphisms is exp(tX), and the G-action on M × g is given by g(x, X) =
(gx,Ad(g)(X)). Then, by restricting the metric on M to TO and using the
above trivialization, we obtain the smooth map:

ψ : M → g∗ ⊗ g∗

x 	→Bx

where Bx(X, Y ) = hx(X∗
x, Y ∗

x ), for h the metric on M . This map is clearly
G-equivariant. Hence, since the G-action is tame on g∗ ⊗ g∗, such map is
essentially constant on the support of almost every ergodic component of M .
Hence, if S is the support of one such ergodic component of M , then there is
an Ad(G)-invariant bilinear form BS on g so that, by the previous discussion,
the metric on TO|S ∼= S × g induced by M is almost everywhere given by BS
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on each fiber. Also, the Ad(G)-invariance of BS implies that its kernel is an
ideal of g. If such kernel is g, then TO|S is lightlike which implies dim g ≤ m0.
But this contradicts the condition n0 = m0 since n0 < dim g. Hence, being
g simple, it follows that BS is nondegenerate, and so almost every G-orbit
contained in S is nondegenerate. Since this holds for almost every ergodic
component, it follows that almost every G-orbit in M is nondegenerate. In
particular, the set U defined above is conull and so nonempty.

Moreover, the above shows that the image under ψ of a conull, and hence
dense, subset of M lies in the set of Ad(G)-invariant elements of g∗⊗g∗. Since
the latter set is closed, it follows that ψ(M) lies in it. In particular, on every
G-orbit the metric induced from that of M is given by an Ad(G)-invariant
symmetric bilinear form on g.

By topological transitivity, there is a G-orbit O0 which is dense and so it
must intersect U . Since U is G-invariant it follows that O0 is contained in U .
Let B0 be the nondegenerate bilinear form on g so that under the map ψ the
metric of M restricted to O0 is given by B0. Hence ψ(O0) = B0 and so the
density of O0 together with the continuity of ψ imply that ψ is the constant
map given by B0. We conclude that all G-orbits are nondegenerate as well as
the last claim in the statement.

The arguments in Proposition 3.1 allows us to prove the following result
which is a generalization of Lemma 1.1.

Lemma 3.2. Let G be a connected noncompact simple Lie group acting
by isometries on a finite volume pseudoRiemannian manifold X. Denote with
(n1, n2) and (m1, m2) the signatures of G and X, respectively, where G carries
a bi-invariant pseudoRiemannian metric. If we denote n0 = min(n1, n2) and
m0 = min(m1, m2), then n0 ≤ m0.

Proof. With this setup we have local freeness on an open subset U of X

by the results in [Zim4]. As in the proof of Proposition 3.1, we consider the
map:

U → g∗ ⊗ g∗

x 	→Bx

which, from the arguments in such proof, is constant on the ergodic components
in U for the G-action. On any such ergodic component, the metric along the
G-orbits comes from an Ad(G)-invariant bilinear form B0 on g. As before, the
kernel of B0 is an ideal. If the kernel is all of g, then B0 = 0 and the G-orbits
are lightlike which implies that n0 < dim g ≤ m0. If the kernel is trivial, then
B0 is nondegenerate and the G-orbits are nondegenerate submanifolds of X.
But this implies n0 ≤ m0 as well, since n0 does not depend on the bi-invariant
metric on G.
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In the rest of this work we will denote with TO the tangent bundle to
the orbits. From Proposition 3.1 it follows that TM = TO ⊕ TO⊥, when the
G-action is topologically transitive and n0 = m0.

We will need the following result which provides large local isotropy groups.
Its proof relies heavily on the arguments in [CQ] (see also [Gro]). Similar re-
sults appear in [Zim7] and [Fe], but in such works analyticity and compactness
of the manifold acted upon is assumed.

Proposition 3.3. Let G be a connected noncompact simple Lie group
and X a smooth finite volume pseudoRiemannian manifold. Suppose that G

acts smoothly on X by isometries. Then there is a dense subset S of X so that,
for every x ∈ S, there exist an open neighborhood Ux of x and a Lie algebra
g(x) of Killing vector fields defined on Ux satisfying :

(1) Zx = 0, for every Z ∈ g(x),

(2) the local one-parameter subgroups of g(x) preserve the G-orbits,

(3) g(x) and g are isomorphic Lie algebras, and

(4) for the isomorphism in (3), the canonical vector space isomorphism
TxGx ∼= g is also an isomorphism of g-modules.

Proof. Without using analyticity, the arguments in Lemma 9.1 in [CQ]
provide a conull set S0 so that for every x ∈ S0 one has a Lie algebra of
infinitesimal Killing vector fields of order k that satisfy the above conclusions
up to order k. Moreover, this is achieved for every k sufficiently large. Further
on, in Theorem 9.2 in [CQ], such infinitesimal vector fields are extended to local
ones by using analyticity. This extension ultimately depends on Proposition 6.6
in [CQ]. The latter result is based on the arguments in Nomizu [Nom].

In [Nom] a notion of regular point for X is introduced, which satisfy two
key properties. The set of regular points is an open dense subset U of X and
at regular points every infinitesimal Killing field of large enough order can be
extended locally. The first property is found in [Nom] and the second one is
proved in [CQ], both just using smoothness.

From these remarks we find that the set S = U∩S0 satisfies the conclusions
without the need to assume analyticity, as one does in the statements of [CQ].
Also, S is obviously dense since U is open dense, S0 is conull and the measure
considered (the pseudoRiemannian volume) is smooth. Finally, we observe that
even though the results in [Nom] are stated for Riemannian metrics, those that
we use here extend with the same proof to pseudoRiemannian manifolds. A
remark of this sort was already made in [CQ].

We now prove integrability of the normal bundle to the orbits.
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Proposition 3.4. Suppose G acts topologically transitively on M pre-
serving its pseudoRiemannian metric and satisfying n0 = m0. Then TO⊥ is
integrable.

Proof. Let ω : TM → g be the g-valued 1-form on M given by TM =
TO ⊕ TO⊥ → TO ∼= M × g → g, where the two arrows are the natural
projections. Define the curvature of ω by the 2-form Ω = dω|TO⊥∧TO⊥ . As
remarked in [Gro] (see also [Her2]) it is easy to prove that TO⊥ is integrable
if and only if Ω = 0.

Choose S and g(x) as in Proposition 3.3. Hence, the local one-parameter
subgroups of g(x) preserve TO⊥

x for every x ∈ S. From this, and the isomor-
phism g(x) ∼= g described in the proof of Proposition 3.3, it is easy to show
that the linear map Ωx : TO⊥

x ∧ TO⊥
x → g is a g-module homomorphism, for

every x ∈ S. This fact is contained in the proof of Proposition 3.9 in [Her2].
On the other hand, Proposition 3.1 and the condition n0 = m0 imply that

TO⊥ is either Riemannian or antiRiemannian. Since the elements of g(x) are
Killing fields, it follows that g(x) can be linearly represented on TO⊥

x ∧ TO⊥
x

so that the elements of g(x) define derivations of a definite inner product.
This provides a homomorphism of g(x) into the Lie algebra of an orthogonal
group. Since g(x) is simple noncompact, such homomorphism is trivial and it
follows that the g(x)-module TO⊥

x ∧ TO⊥
x is trivial. Hence no g(x)-irreducible

subspace of TO⊥
x ∧ TO⊥

x can be isomorphic to g as a g-module. By Schur’s
Lemma we conclude that Ωx = 0, for every x ∈ S. Hence, Ω = 0 on all of M

and TO⊥ is integrable.

The following result is fundamental to obtain an isometric splitting.

Lemma 3.5. With the conditions of Proposition 3.4, the leaves of the fo-
liation defined by TO⊥ are complete for the metric induced by M .

Proof. As observed in the proof of Proposition 3.4, the bundle TO⊥ is
either Riemannian or antiRiemannian. Hence, the foliation by G-orbits on M

carries a Riemannian or antiRiemannian structure obtained from TO⊥. By
the basic properties of Riemannian foliations, the compactness of M implies
that geodesic completeness is satisfied for geodesics orthogonal to the G-orbits
(see [Mol]). This clearly implies the completeness for leaves of the foliation
given by TO⊥.

The next proposition provides a first description of the properties of M .
It is similar in spirit to the main results in [Her2].

Proposition 3.6. Suppose G acts topologically transitively on M pre-
serving its pseudoRiemannian metric and satisfying n0 = m0. Choose a leaf
N of the foliation defined by TO⊥. Fix on G the bi-invariant pseudoRie-
mannian metric that induces on the G-orbits the metric inherited by M and
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consider N as a pseudoRiemannian manifold with the metric inherited by M

as well. Then the map G × N → M , obtained by restricting the G-action
to N , is a G-equivariant isometric covering map. In particular, this induces a
G-equivariant isometric covering map G × Ñ → M , where Ñ is the universal
covering space of N .

Proof. By our choices of metrics, the G-invariance of the metric on M

and the previous results, it is easy to conclude that the map G × N → M as
above is a local isometry. On the other hand, the Levi-Civita connection on
G is bi-invariant and, by the problems in Chapter II of [Hel], its geodesics are
translates of one-parameter subgroups. In particular, G is complete. Hence, by
Lemma 3.5, G×N is a complete pseudoRiemannian manifold. Then, Corollary
29 in page 202 in [O’N] implies that the restricted action map G × N → M is
an isometric covering map. The rest of the claims follow easily from this fact.

As an immediate consequence we obtain the following result. The proof
uses Proposition 4.5. We note that Section 4 is actually independent from this
section and the rest of this work.

Corollary 3.7. Let G, M and N be as in the hypotheses of Proposi-
tion 3.6. Then there is a discrete subgroup Γ0 of Iso(G × Ñ) of deck transfor-
mations for G× Ñ → M such that (G× Ñ)/Γ0 → M is a G-equivariant finite
covering.

Our next goal is to prove that, by passing to a finite covering, Γ0 can be
replaced by a discrete subgroup of a group that contains G as a subgroup as
well. In order to do that, we will study the isometry group of G with some
bi-invariant pseudoRiemannian metric.

4. Geometry of bi-invariant metrics on G

Let G be a connected noncompact simple Lie group G as before. We
will investigate some useful properties about the geometry of a bi-invariant
pseudoRiemannian metric on G. Note that any such metric is analytic and by
[Her1] can be described in terms of the Killing form (see also [BN]); however,
we will not use such fact. In this section, we fix an arbitrary bi-invariant
pseudoRiemannian metric on G and denote with Iso(G) the corresponding
group of isometries. Also we denote L(G)R(G) = {Lg ◦ Rh|g, h ∈ G}, the
group generated by left and right translations, which is clearly a connected
subgroup of Iso(G).

We will use some basic properties of pseudoRiemannian symmetric spaces,
which are known to be a natural generalization of Riemannian symmetric
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spaces. For the definitions and basic properties of the objects involved we
will refer to [CP]. Moreover, we will use in our proofs some of the results
found in this reference.

From [CP], we recall that, in a pseudoRiemannian symmetric space X,
a transvection is an isometry of the form sx ◦ sy, where sx is the involutive
isometry that has x as an isolated fixed point. The group T generated by
transvections is called the transvection group of X. This group is (clearly)
invariant under the conjugation by so, any fixed involutive isometry. With
this setup, the pseudoRiemannian symmetric triple associated to X is given
by (Lie(T ), σ, B), where B is a suitable bilinear form on Lie(T ) and σ is the
differential at e ∈ T of the conjugation by some involution so. We refer to
[CP] for a more precise description of this object. Here, we need to show the
following features of the geometry of G associated with these notions.

Proposition 4.1. G is a pseudoRiemannian symmetric space whose as-
sociated pseudoRiemannian symmetric triple can be chosen to be of the form
(g × g, σ, B), where σ(X, Y ) = (Y, X).

Proof. Since the differential of the inversion map g 	→ g−1 at any point
can be written as the composition of the differentials of a left and a right
translations (see [Hel]), it follows that the bi-invariant metric on G is also
invariant under the inversion map. Hence, for every x ∈ G, the map sx defined
by sx(g) = xg−1x is an isometry of G and it is easily seen to be involutive with
x as an isolated fixed point. Hence, G is pseudoRiemannian symmetric.

Let T be the transvection group of G. One can easily check that sx ◦ sy =
Lxy−1 ◦Ry−1x, and so T is a subgroup of L(G)R(G). On the other hand, since
G is simple and connected we have [G, G] = G. Hence, for every z ∈ G,
there exist x, y ∈ G such that z = [x, y]. From this it is easy to prove that
Lz = se ◦ syx ◦ sx ◦ sy−1 ∈ T . This with a similar formula for right translations
show that T = L(G)R(G). Furthermore, if we define a G × G-action on G by
(g, h)x = gxh−1, then the map (g, h) 	→ Lg ◦Rh−1 defines a local isomorphism
G×G → L(G)R(G) = T , which implies Lie(T ) ∼= g×g as Lie algebras. Finally,
a straightforward computation proves that using conjugation by se, the map
σ on g × g has the required expression.

As a consequence we obtain the following result. We recall that a con-
nected pseudoRiemannian manifold is called weakly irreducible if the tangent
space at some (and hence at every) point has no nonsingular proper subspaces
invariant by the holonomy group at the point.

Proposition 4.2. For any bi-invariant pseudoRiemannian metric on G,
the universal covering space G̃ is weakly irreducible.
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Proof. Consider the representation ρ of the Lie algebra f = {(X, X)|X
∈ g} (isomorphic to g) in the space p = {(Y,−Y )|Y ∈ g} given by the expres-
sion:

ρ(X, X)(Y,−Y ) = ([X, Y ],−[X, Y ]).

This clearly turns p into an f-module isomorphic to the g-module given by
the adjoint representation of g. Since g is simple, p is then an irreducible
f-module. Then the conclusion follows from the description of the pseudo-
Riemannian symmetric triple associated to G in our Proposition 4.1 and from
Proposition 4.4 in page 18 in [CP].

With the previous result at hand we obtain the next statement.

Proposition 4.3. Let N be a connected complete Riemannian (or an-
tiRiemannian) manifold. Then any isometry of the pseudoRiemannian product
G × N preserves the factors, in other words, Iso(G × N) = Iso(G) × Iso(N).

Proof. Let G̃× Ñ be the universal covering of G×N . Let Ñ = N0 ×· · ·×
Nk be the de Rham decomposition of Ñ as Riemannian (or antiRiemannian)
manifold. By the de Rham-Wu decomposition theorem for pseudoRiemannian
manifolds (see [Wu] and [CP]) and by Proposition 4.2, it follows that G̃ × Ñ

has a de Rham decomposition and it is given by G̃×N0× . . . Nk. Furthermore,
it is known that such decomposition is unique up to order. In particular,
every isometry of G̃ × N0 × . . . Nk permutes the factors, but since each Ni is
Riemannian (or antiRiemannian) and G̃ is not, then every isometry of G̃ × Ñ

preserves these two factors.
Now let f ∈ Iso(G × N) and lift it to an isometry f̃ of G̃ × Ñ . By the

previous arguments, f̃ preserves the product, i.e. if we write f̃ = (f̃1, f̃2),
then f̃1 does not depend on Ñ and f̃2 does not depend on G̃. From this, it is
easy to see that there exist isometries f1 ∈ Iso(G) and f2 ∈ Iso(N) such that
f = (f1, f2), thus showing the result.

We now proceed to obtain a fairly precise description of Iso(G). First we
prove the following result.

Lemma 4.4. Denote by Iso(G)e the isotropy subgroup at e ∈ G. Then the
homomorphism:

ϕ : Iso(G)e →Gl(g)

h 	→ dhe

is an isomorphism onto a closed subgroup of Gl(g).

Proof. By the arguments from Lemma 11.2 in page 62 in [Hel] the map is
injective. Now let L(1)(G) be the linear frame bundle of G endowed with the
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parallelism given by the Levi-Civita connection on G. Consider the standard
fiber of L(1)(G) given by Gl(g). Then the proof of Theorem 3.2 in page 15 in
[Ko] shows that the map:

ψ : Iso(G)→L(1)(G)

h 	→ dhe

realizes Iso(G) as a closed submanifold that defines the topology for which
Iso(G) turns out to be a transformation Lie group. Then the result follows by
observing that the image of ϕ is just the intersection of the image of ψ with
the fiber of L(1)(G) at e, which is Gl(g).

The next result turns out to be fundamental in our proof of Theorem A.

Proposition 4.5. Iso(G) has finitely many components and Iso(G)0 =
L(G)R(G). Also, (Iso(G)e)0 is isomorphic to Ad(G) with respect to the map
ϕ from Lemma 4.4.

Proof. By Problem A.6.ii in page 148 in [Hel] and since Iso(G)e preserves
the (unique) bi-invariant connection we have that ϕ(Iso(G)e) ⊂ Aut(g), where
Aut(g) is the group of Lie algebra automorphisms of g. Also, we clearly have
Ad(G) ⊂ ϕ(Iso(G)e), because Lg ◦ Rg−1 is an isometry. Since g is simple we
know that Ad(G) = Aut(g)0, from which we conclude ϕ(Iso(G)e)0 = Ad(G),
and the last claim follows.

Since Aut(g) is algebraic, it has finitely many components. Hence, the
previous inclusions imply that Iso(G)e has finitely many components and, by
Lemma 2.1, the group Iso(G) satisfies such property as well.

On the other hand, G being homogeneous under Iso(G) it is also homo-
geneous under Iso(G)0 (see [Hel]). Hence, we observe that G has the following
two expressions as a homogeneous pseudoRiemannian manifold:

G = Iso(G)0/(Iso(G)0 ∩ Iso(G)e)

= L(G)R(G)/G∆,

where G∆ = {Lg ◦Rg−1 |g ∈ G}. This together with the following easy to prove
identities:

dim(Iso(G)0 ∩ Iso(G)e) = dim((Iso(G)e)0) = dim(Ad(G)) = dim(G∆),

show that the inclusion L(G)R(G) ⊂ Iso(G)0 is a homomorphic inclusion
of connected Lie groups of the same dimension. This implies Iso(G)0 =
L(G)R(G).

By Propositions 4.3, 4.5 and Corollary 2.2 we obtain the following.
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Proposition 4.6. Let N be a connected homogeneous Riemannian mani-
fold. Then Iso(G × N) has finitely many connected components and
Iso(G × N)0 = Iso(G)0 × Iso(N)0 = L(G)R(G) × Iso(N)0.

5. Proof of Theorem A

Throughout this section, we assume that G and M satisfy the hypotheses
of Theorem A. Let N be a leaf of the foliation defined by TO⊥, as described
in Section 3, and Ñ its universal covering space. We will prove that Ñ is
homogeneous. First observe that, by hypothesis, there is a dense G-orbit.
By Proposition 3.6, we have GN = M , and so we can assume that for some
x0 ∈ N , the G-orbit of x0 is dense in M .

Let y be any given point in N and V an open neighborhood of y in N

with the leaf topology. Since the complementary distributions TO and TO⊥

(as defined in §3) are integrable, we can find a connected neighborhood U

of y in M and a diffeomorphism f = (f1, f2) : U → Rk × Rl that maps the
pair of foliations for the distributions TO|U and TO⊥|U diffeomorphically onto
the foliations of Rk+l defined by the factors Rk and Rl (see Example 2.10 in
page 12 in [Ko]). By shrinking either U or V , if necessary, we can assume that
V is a plaque for the foliated chart that f defines for the foliation given by
TO⊥. Then V is a transversal for the foliation by G-orbits that intersects every
plaque (for the foliation by G-orbits) in U . Let x be a point in the G-orbit of
x0 lying in U , and P the plaque of the foliation by G-orbits that contains x.
If we choose z ∈ P ∩ V , since the plaque P is contained in the G-orbit of x0

(because x ∈ P ), then there exist g ∈ G such that z = gx0. But the G-action
preserves TO⊥, and so the restriction of g to N defines an isometry of N that
maps x0 into z.

The previous arguments show that the isometry group of N has a dense
orbit in N . By lifting isometries of N to Ñ and using deck transformations,
it is easy to prove that the isometry group of Ñ has a dense orbit as well.
Since Ñ is either Riemannian or antiRiemannian (see the proof of Proposi-
tion 3.4), we conclude from Lemma 3.5 and Theorem 2.3 that Ñ is a homoge-
neous pseudoRiemannian manifold. Let H be the identity component of the
group of isometries of Ñ . Then there is a compact subgroup K of H such that
Ñ = K\H.

Let Γ0 be a discrete subgroup Iso(G × Ñ) as given by Corollary 3.7. By
Proposition 4.6, the group Iso(G × Ñ) has finitely many components and its
identity component is L(G)R(G) × Iso(N)0 = L(G)R(G) × H. If we define
Γ = Γ0 ∩ (L(G)R(G) × H), then Γ is a normal finite index subgroup of Γ0,
which provides a normal finite covering M̂ = (G × Ñ)/Γ = (G × K\H)/Γ
of M . Now, let γ ∈ Γ be given. Then, by the lifting property, we can find a
diffeomorphism γ̃ such that the following diagram commutes.
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G̃ × Ñ
γ̃ ��

��

G̃ × Ñ

��

G × Ñ
γ ��

����
��

��
��

� G × Ñ

����
��

��
��

�

M̂

where the vertical arrows are given by the universal covering map of G×Ñ and
the arrows into M̂ are given by the covering map G × Ñ → M̂ . In particular,
γ̃ is a covering transformation for the universal covering map G̃ × Ñ → M̂ ,
and so it is also a covering transformation for the universal covering map
G̃ × Ñ → M . By Proposition 3.6, the G-action on M lifts to a G-action on
G× Ñ and to a G̃-action on G̃× Ñ both by the expression g(g1, x) = (gg1, x).
On the other hand, the latter lifted action commutes with the action of π1(M)
and in particular it commutes with γ̃. Then we observe that, in the square
of the commutative diagram above, the top horizontal arrow and the vertical
arrows are G̃-equivariant and so the map γ is G-equivariant. On the other
hand, we can write γ = (Lg1 ◦ Rg2 , h), since it lies in L(G)R(G) × H. Then,
the G-equivariance of γ and the above expression for the G-action on G × Ñ

yields:

(g1gg2, xh) = (g(e, x))(Lg1 ◦ Rg2 , h) = g((e, x)(Lg1 ◦ Rg2 , h)) = (gg1g2, xh)

for every g ∈ G and x ∈ Ñ , which implies g1 ∈ Z(G). Hence, Lg1 = Rg1 and
then γ ∈ R(G) × H.

The previous arguments show that Γ is a discrete subgroup of R(G)×H ∼=
G × H acting on the right on G × Ñ = G × K\H and commuting with the
(natural) G-action on the latter space. In particular, Γ is a discrete cocompact
subgroup of G × H. Since the Γ-action is on the right and the G-action is on
the left, they both commute and the G-action lifts to M̂ .

If we now take L = G × H, M̂ , Γ and K as above, then the condi-
tions required in (1), (2) and (3) are satisfied, as well as the fact that M̂ is
G-equivariantly diffeomorphic to K\L/Γ. Hence, to complete the proof of The-
orem A, it remains to show that the G-actions on M and on L/Γ are ergodic
and engaging. We will prove this by showing that we can replace H, Γ and M̂

by suitable choices so that the properties proved so far still hold and the re-
quired ergodicity and engagement conditions are now satisfied. To achieve this,
we will study the properties of the Riemannian (or antiRiemannian) foliation
by G-orbits on M .

We will use the following result about Riemannian and Lie foliations.

Lemma 5.1. Let X be a compact manifold with a smooth foliation F car-
rying either a transverse Lie structure or a transverse Riemannian structure.
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Then the foliation F has a dense leaf if and only if it is ergodic. Further-
more, if F has a dense leaf, then the induced foliation on any connected finite
covering of X has a dense leaf as well and so it is ergodic.

Proof. In both cases, the foliation carries a transverse holonomy invariant
finite volume and so ergodicity is easily seen to imply the existence of a dense
leaf.

For the converse, let us first assume that F carries a transverse Lie struc-
ture. Let F be a connected Lie group that models the transverse Lie structure,
so that there exist a developing map and a holonomy representation given by:

D : X̂ →F

ρ : π1(X)→F

We refer to [Mol], [Ton] and [Zim5] for the definition of such objects.
Then it is easily seen that the existence of a dense leaf is equivalent to

the density of ρ(π1(X)) in F . By Lemma 2.2.13 in [Zim2] such density is
equivalent to the ergodicity of the ρ(π1(X))-action on F by left translations.
Finally, the latter ergodicity is equivalent to the ergodicity of the foliation F
(see for example [FHM] or [Zim5]).

We still consider X endowed with a transverse Lie structure and now we
suppose that X has a dense leaf. Let Y → X be a connected finite covering
map. If we choose a dense leaf O in X, then, for the induced foliation on Y , the
inverse image of O in Y is a finite union of leaves O1, . . . ,Or. We clearly have
that O1 ∪ · · · ∪ Or is dense in Y , i.e. we can write Y = O1 ∪ · · · ∪ Or. On the
other hand, since Y is compact, the transverse Lie structure on Y is complete
and by the structure theorems for transversely parallelizable foliations (see
[Mol]) it follows that the closures of leaves define a partition of Y . Since Y is
connected, from the previous expression of Y it follows that Y = Oi, for some
i, and so Y has a dense leaf. Moreover, from what we have proved so far it
follows that the foliation in Y is ergodic.

We now consider the case where X carries a transverse Riemannian struc-
ture. Then, by the results in [Mol], there is a foliated fiber bundle π : P → X

where P is compact and carries a transverse Lie structure. Moreover, if X has
a dense leaf it is easy to see from the results in [Mol] (see page 153 therein)
that we can choose a foliated reduction to assume that P has a dense leaf. In
particular, from the above, the foliation on P is ergodic. Hence, if the foliation
F in X is not ergodic, then there exist a leaf saturated measurable subset A of
X which is neither null nor conull. From this, it is easily seen that π−1(A) is
a measurable leaf saturated subset of P which is neither null nor conull. This
contradiction proves that F is ergodic.
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Finally, the last claim for transverse Riemannian structures is proved with
the same argument used for Lie foliations using the corresponding properties
for Riemannian foliations.

As an immediate consequence of Lemma 5.1, the G-action on M is ergodic
and engaging.

We now state the following result. Its proof follows easily from the defi-
nitions, and the (easy) fact that there is an isomorphism

π1((G × H)/Γ)/π1(G × H) ∼= Γ
(see [Hu] or [KN]).

Lemma 5.2. Let G, H and Γ be given as above. Let D : G × H → H be
the natural projection. Define ρ : π1((G × H)/Γ) → H as the composition of
the maps:

π1((G × H)/Γ) → π1((G × H)/Γ)/π1(G × H) ∼= Γ → H

where the last arrow is the restriction of D to Γ. Then D is a developing map
with holonomy representation ρ for the Lie foliation on (G × H)/Γ given by
the local factor H.

We observe that G preserves the (finite) pseudoRiemannian volume on M

and so it preserves a finite smooth measure on K\L/Γ. Since K is compact,
it is easy to check that there is a G-invariant finite smooth measure on L/Γ.
Moreover, from the proof of Lemma 5.1, it is easy to see that the G-action on
L/Γ is ergodic (with respect to the latter G-invariant measure) if and only if
Im(ρ) is dense in H. If such density holds with our current choices of groups,
then by Lemma 5.1 the G-action on L/Γ is ergodic and engaging.

On the other hand, if Im(ρ) is not dense in H, we will show that we can
replace H by a smaller connected closed subgroup H1 and Γ by a normal finite
index subgroup Γ1 for which the conclusions of Theorem A proved up to this
point still hold and such that the corresponding holonomy representation has
dense image in H1.

Lemma 5.3. Let PT be the orthogonal transverse frame bundle of the
Riemannian (or antiRiemannian) foliation on M̂ . Then the G-action lifts
to PT and there is a G-equivariant map ϕ : (G × H)/Γ → PT for which the
diagram:

(G × H)/Γ
ϕ ��

������������
PT

����
��

��
��

M̂

is commutative and realizes (G × H)/Γ as an embedded K-reduction of PT .
Here we recall that Ñ = K\H.
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Proof. Since M̂ = (G × Ñ)/Γ, it is a simple matter to prove that the
transverse frame bundle over M̂ associated to the foliation by G-orbits is given
by (G × L(1)(Ñ))/Γ, where L(1)(Ñ) is the linear frame bundle of Ñ . Note
that in our notation the group of diffeomorphisms on both N and Ñ has been
chosen to act on the right and so L(1)(Ñ), and its reductions, have left actions
for their structure groups.

From the previous description, the G-action on M̂ lifts to the transverse
frame bundle of the foliation on M̂ by G-orbits. Hence, since G preserves the
Riemannian (or antiRiemannian) structure on the foliation, then the G-action
preserves PT . The latter action is thus the lift of the G-action on M̂ .

Let o = Ke ∈ K\H and consider Gl(ToÑ) as the structure group of
L(1)(Ñ). Define the map:

ϕ̃ : G × H →G × L(1)(Ñ)

(g, h) 	→ (g, dho)

Such map is clearly equivariant with respect to both G and Γ. On the other
hand, the restriction of ϕ̃ to {e} × K clearly realizes K as a closed subgroup
of O(ToÑ). Also, since H acts by isometries on Ñ , it induces a G-equivariant
map ϕ : (G × H)/Γ → PT .

On the other hand, the natural projection (G×H)/Γ → (G×Ñ)/Γ = M̂ is
clearly surjective, because Ñ = K\H, and its fibers are K-orbits diffeomorphic
to K since H acts effectively on Ñ . It follows that, with respect to ϕ, the
manifold (G × H)/Γ is a K-reduction of PT .

Now let H, Γ and ρ be as before, where the latter is the holonomy map
from Lemma 5.2. Recall that we are assuming that Im(ρ) is a proper subgroup
of H. First we observe that by the definition of ρ, the group Γ is a subgroup of
G× Im(ρ). Hence, we clearly have that (G× Im(ρ))/Γ is a closed G-invariant
subset of (G×H)/Γ. In particular, (G× Im(ρ))/Γ is a union of closures of G-
orbits. By the structure of the closures of leaves of a Riemannian foliation (see
Theorem 5.1 in page 155 in [Mol]), we know that the closure of any G-orbit in
PT is mapped onto the closure of some G-orbit in M̂ . Since we proved that the
G-action on M is engaging, we also know that in M̂ every G-orbit is dense, in
other words, M̂ is a single leaf closure. Hence, any G-invariant closed subset in
(G×H)/Γ maps onto M̂ under the projection (G×H)/Γ → (G×K\H)/Γ = M̂ .
Since (G× Im(ρ))/Γ is G-invariant and closed, it is mapped onto M̂ under the
latter natural projection.

Lemma 5.4. With the above setup, Im(ρ) is a closed subgroup of Iso(Ñ)
that acts transitively on Ñ . In particular, if H1 is the identity component of
Im(ρ), then H1 acts transitively on Ñ .

Proof. Let o = Ke ∈ K\H = Ñ . Choose an arbitrary y ∈ Ñ . Then by the
previous discussion, there exist (g, h) ∈ G×Im(ρ) and (γ1, γ2) ∈ Γ ⊂ G×Im(ρ)
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such that:

(e, y) = (g, Kh)(γ1, γ2) = (gγ1, Khγ2) = (gγ1, ohγ2)

and so y = ohγ2, where hγ2 ∈ Im(ρ). Hence, Im(ρ) acts transitively on Ñ and,
by connectedness of Ñ , so does H1.

By Lemma 5.4 and Corollary 2.2, it follows that H1 is a normal finite index
subgroup of Im(ρ). Hence, the group Γ1 = (G×H1)∩Γ is a normal finite index
subgroup of Γ. Let K1 be the stabilizer in H1 of the point o = Ke ∈ K\H = Ñ .
If we define the manifold M̂1 = (G × K1\H1)/Γ1, then, from the previous
constructions, the natural projection map:

(G × K1\H1)/Γ1 → (G × K\H)/Γ = (G × Ñ)/Γ = M̂

defines a finite normal covering of M̂ and so M̂1 is a finite covering of M .
We claim that if we choose M̂1 for (1), L = G × H1 for (2) and Γ1 ⊂ L

and K1 ⊂ CL(G) for (3), then the conclusions of Theorem A are satisfied. In
fact, the only point that remains to be proved is that the G-action on L/Γ1 is
ergodic and engaging.

To show this last requirement, we first observe that Lemma 5.2 still holds
with our new choices. In other words, the developing map D1 : G × H1 → H1

and the holonomy representation ρ1 : π1((G×H1)/Γ1) → H1 of the transverse
Lie structure for the foliation by G-orbits on (G × H1)/Γ1 are the restrictions
to G×H1 and π1((G×H1)/Γ1), respectively, of the maps D and ρ as they are
defined in Lemma 5.2.

On the other hand, from the proof of Lemma 5.1, to conclude ergodicity
and engagement of the G-action on L/Γ1 it is enough to show that Im(ρ1) =
H1. From the expressions of ρ and ρ1 in Lemma 5.2, if we denote with pr :
G × H → H the natural projection, then Im(ρ) = pr(Γ) and Im(ρ1) = pr(Γ1).
So we want to prove that pr(Γ1) = H1.

Let h ∈ H1 be given. Since H1 ⊂ Im(ρ) = pr(Γ), there exist a sequence
(γn)n ⊂ Γ such that (pr(γn))n converges to h. But H1 is open in Im(ρ),
because it is its identity component. Hence, after dropping finitely many terms
from the sequence, we can assume that (pr(γn))n ⊂ H1. This implies that
(γn)n ⊂ G × H1 and so (γn)n ⊂ (G × H1) ∩ Γ = Γ1. Hence, we obtain
Im(ρ1) = H1, thus completing the proof of Theorem A.

6. Proof of Theorem B

To prove Theorem B, we assume that G and M satisfy its hypotheses.
Hence, we can choose M̂ , L = G × H, Γ and K as in the conclusions of
Theorem A. First observe that we can assume that H �= e, since otherwise the
conclusions of Theorem B are trivially satisfied. In particular, we will assume
that the G-action on M is not transitive.
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We state the following result. We refer to [Zim1] for the notion of com-
patible transverse measure.

Lemma 6.1. Every nontransitive locally free ergodic action that preserves
a compatible finite smooth measure transverse to the orbits is properly ergodic.

Proof. The orbits define a foliation each of whose leaves intersect a foliated
chart in a countable number of plaques. Hence, on a foliated chart every leaf
intersects a transversal on a countable and thus null set, since such transversals
have positive dimension. In particular, every orbit is null and so the action is
properly ergodic.

By Lemma 6.1 the G-action on M is properly ergodic. Then, the hypothe-
ses of the main result in [StZi] are satisfied and such result implies that the
G-action on M is essentially free. Now we conclude from this the following.

Lemma 6.2. The G-action on M̂ is essentially free and the G-action on
L/Γ is free.

Proof. Since the G-action on M̂ is obtained as the lift of the G-action on
M with respect to the covering map M̂ → M , it follows that every G-orbit in
M̂ is a covering of a G-orbit in M . On the other hand, since the G-action on M̂

is locally free, every G-orbit on M̂ is a quotient of G by a discrete subgroup.
If we consider such setup for a G-orbit O in M with trivial stabilizers and
denote with Ô a G-orbit in M̂ that lifts O we obtain a commutative diagram
of covering maps as follows:

G ��

f

��������������� Ô

��
O

where f is a diffeomorphism.
Such diagram induces a corresponding commutative diagram of funda-

mental groups given by:

π1(G) ��

f∗

�������������� π1(Ô)

��
π1(O)

which can hold only if π1(Ô) = π1(O), since f∗ is an isomorphism and the
vertical arrow is an inclusion. Then the covering Ô → O is trivial, which
implies that the arrow G → Ô above is a diffeomorphism and so the G-orbit
Ô has trivial stabilizers.
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Hence we have proved that every G-orbit in M with trivial stabilizers
lifts to M̂ to G-orbits with trivial stabilizers, and so the G-action on M̂ is
essentially free.

A similar argument proves that the G-action on L/Γ is essentially free.
For this we use the fact that, as found in the proof of Theorem A, L/Γ is a
G-invariant reduction of the orthonormal frame bundle transverse to the foli-
ation by G-orbits, so that the G-orbits in L/Γ are coverings of their projections
onto M̂ , on which we just proved essential freeness. Then we observe that for
any given l1, l2 ∈ L, the stabilizers in G of the Γ-classes of such points satisfy
Gl2Γ = l2l

−1
1 Gl1Γl1l

−1
2 . Hence essential freeness of the G-action on L/Γ implies

freeness for such action.

Let K0 be a maximal compact subgroup of G. By Lemma 6.2 the
K0-action on L/Γ is free and so K0\L/Γ is a compact connected manifold.
Moreover, the G-orbits in L/Γ induce a foliation in K0\L/Γ that carries a
leafwise Riemannian metric so that each leaf is isometric to the simply con-
nected Riemannian symmetric space K0\G. The simply connectedness of each
leaf in K0\L/Γ follows from Lemma 6.2. Also, by Theorem A, the G-action
on L/Γ is topologically transitive. From this, it is easy to check that the foli-
ation in K0\L/Γ, by Riemannian symmetric spaces, has a dense leaf. Finally,
since L = G × H, the foliation on K0\L/Γ carries a transverse Lie structure
modelled on H.

The previous discussion shows that the hypotheses in Theorem A in [Zim5]
are satisfied and such result implies that H is semisimple, and so L = G × H

is semisimple as well.
In what follows, for every connected semisimple Lie group F we denote

with F is the minimal connected closed normal subgroup of F such that F/F is

is compact. Then we clearly have G ⊂ Lis.
On the other hand, by the proof of Theorem A, Γ projects densely into

H by the natural projection L = G×H → H, which implies that GΓ is dense
in L. Hence, LisΓ is dense in L as well. By Corollary 5.17 in [Rag] it follows
that ΓZ(L) is discrete (see also Lemma 6.1 in page 329 in [Mar]). Hence,
ΓZ(H) is discrete as well and, since it contains Γ, it is also a lattice. This
clearly implies that Γ has finite index in ΓZ(H). But it is easy to prove that
there is a bijection:

(ΓZ(H))/Γ ∼= Z(H)/(Γ ∩ Z(H))

and so Γ ∩ Z(H) has finite index in Z(H).
Now denote Z = Γ ∩ Z(H), and observe that there is an equivariant

diffeomorphism:
L/Z

Γ/Z
∼= L/Γ
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as well as isomorphisms:

KZ/Z ∼= K/(K ∩ Z) ∼= K

where the latter follows from K ∩Γ = e, which is a consequence of the freeness
of the K-action on L/Γ.

Hence, if we replace L = G×H, H, Γ and K with L/Z = G×H/Z, H/Z,
Γ/Z and KZ/Z, then the corresponding M̂ for the new choices is given by the
double coset (KZ/Z)\(L/Z)/(Γ/Z), which is easily seen to be G-equivariantly
diffeomorphic to our original choice K\L/Γ. Moreover, it is also clear that all
the properties proved so far still hold. Also, since we modded out by Z, which
has finite index in Z(H), it follows that for our new choices the group L has
finite center.

To complete to proof of Theorem B we will show that, for the above
choices, Γ is irreducible and L is isotypic. To achieve this, we state the following
general result.

Lemma 6.3. Let F be a connected semisimple Lie group with finite cen-
ter and Λ a lattice in F such that F isΛ is dense in F . Then the following
conditions are equivalent.

(a) For every closed connected noncompact normal subgroup N of F , the
group NΛ is dense in F .

(b) For every closed connected noncompact normal proper subgroups F ′, F ′′

of F that satisfy F = F ′F ′′ with F ′∩F ′′ finite, the group (Λ∩F ′)(Λ∩F ′′)
has infinite index in Λ.

Proof. This result is essentially contained in Chapter V of [Rag] although
it is not explicitly stated. The proof is obtained from the results in [Rag] as
follows.

When F = F is, the equivalence is part of Corollary 5.21 in [Rag] and the
definition of irreducible lattice in this reference. The proof of such corollary
ultimately depends on Theorem 5.5 in [Rag].

We then observe that our condition on Λ implies that it satisfies property
(SS) (see [Rag] for the definition) and so the hypotheses of Theorem 5.26 in
[Rag] are satisfied. In our case, it is easy to see that, if we apply the arguments
that prove Corollary 5.21 in [Rag] using Theorem 5.26 in [Rag] instead of
Theorem 5.5 in [Rag], we conclude the equivalence between (a) and (b).

The previous lemma shows that the definition of irreducible lattice in a
connected semisimple Lie group with finite center (that may admit compact
factors) as found in [Mor], which is given by condition (a), is equivalent to
condition (b). We now use this to prove that our lattice Γ is irreducible in L,
with irreducibility as defined in [Mor] to be able to apply results therein.
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First recall that both GΓ and LisΓ are dense in L. By Lemma 6.3, if Γ is
not irreducible, then there exist closed connected noncompact normal proper
subgroups L′, L′′ of L that satisfy L = L′L′′ with L′ ∩ L′′ finite and such
that the group (Γ ∩ L′)(Γ ∩ L′′) has finite index in Γ. It follows easily that
G(Γ∩L′)(Γ∩L′′) is dense in L as well. Since G is a simple factor of L, it is either
contained in L′ or in L′′. If G ⊂ L′, then we have G(Γ∩L′)(Γ∩L′′) ⊂ L′(Γ∩L′′),
where the latter is a closed proper subgroup of L, which yields a contradiction.
An analogous contradiction is obtained if G ⊂ L′′ and so Γ is irreducible.

Finally, since L admits an irreducible lattice and is not isogenous to either
SO(1, n)×C or SU(1, n)×C, for any nontrivial connected compact group C, it
follows from Problem 6.8 in [Mor] that L is isotypic. This concludes the proof
of Theorem B.

7. Proof of Theorem C

The implication (2)⇒(1) is trivial by considering a pseudoRiemannian
metric on K\L/Γ as in Proposition 1.2.

Conversely, if we assume (1), then we can apply Theorem B to conclude
that X̂ has a finite covering of the form K\L/Γ to which the G-action lifts.
But then K\L/Γ is a finite covering of X and (2) holds.

8. Further results and consequences

A careful examination of the proofs in the previous sections show that
our assumption of compactness for M in Theorem A is used only to ensure
completeness of the Riemannian or antiRiemannian structure transverse to the
G-orbits. Hence, the same proof allows to obtain the following result.

Theorem A′. Let G be a connected noncompact simple Lie group. If
G acts faithfully and topologically transitively on a (not necessarily compact)
manifold M preserving a finite volume complete pseudoRiemannian metric
such that n0 = m0, then the G-action on M is ergodic and engaging, and
there exist :

(1) a finite covering M̂ → M ,

(2) a connected Lie group L that contains G as a factor,

(3) a discrete subgroup Γ of L and a compact subgroup K of CL(G),

for which the G-action on M lifts to M̂ so that M̂ is G-equivariantly diffeo-
morphic to K\L/Γ. Furthermore, there is an ergodic and engaging G-invariant
finite smooth measure on L/Γ.
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On the other hand, the proof of our Theorem B makes use of Theorem A
in [Zim5]. The latter requires compactness only to ensure the existence of a
G-invariant finite smooth measure on a suitable manifold (see Proposition 2.5
in [Zim5]). Besides that, no further use of the compactness condition is made in
[Zim5]. For our setup, to have a corresponding version of Theorem A in [Zim5]
for finite volume manifolds, we need to ensure that the G-action on L/Γ has
an invariant finite smooth measure, which is a conclusion in our Theorem A′.
The proof of Theorem B also applies Molino’s work on Riemannian and Lie
foliations, which are usually stated for compact manifolds. However, if we as-
sume completeness of the manifold M , then the orthonormal transverse frame
bundle that appears in our arguments is transversely complete and Molino’s
work still applies. Hence, the same arguments used to prove Theorem B allows
to obtain the following result.

Theorem B′. Let G be a connected noncompact simple Lie group with
finite center and rankR(G) ≥ 2. If G acts faithfully and topologically transi-
tively on a noncompact manifold M preserving a finite volume complete pseudo-
Riemannian metric such that n0 = m0, then there exist :

(1) a finite covering M̂ → M ,

(2) a connected isotypic semisimple Lie group L without compact factors and
with finite center that contains G as a factor,

(3) an irreducible lattice Γ of L and a compact subgroup K of CL(G),

for which the G-action on M lifts to M̂ so that M̂ is G-equivariantly diffeo-
morphic to K\L/Γ. Hence, up to fibrations with compact fibers, M is
G-equivariantly diffeomorphic to K\L/Γ and L/Γ.

The additional property for L in (2), its lack of compact factors, follows
from the following facts. Being irreducible, the lattice Γ is arithmetic in L

since the latter has finite center and is not isogenous to either SO(1, n)×C or
SU(1, n) × C for a compact group C. On the other hand, arithmetic lattices
which are not cocompact can only occur in semisimple Lie groups without
compact factors. Such claims follow from Theorem 6.21 and Corollary 6.55 in
[Mor].

From the above we obtain the following result.

Theorem C′. Let G be a connected noncompact simple Lie group with
finite center and rankR(G) ≥ 2. Assume that G acts faithfully on a noncompact
manifold X. Then the following conditions are equivalent.

(1) There is a finite covering X̂ → X for which the G-action on X lifts to
a topologically transitive G-action on X̂ that preserves a finite volume
complete pseudoRiemannian metric such that n0 = m0.
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(2) There is a connected isotypic semisimple Lie group L without compact
factors and with finite center that contains G as a factor, an irreducible
lattice Γ of L and a compact subgroup K of CL(G) such that K\L/Γ is
a finite covering of X with G-equivariant covering map.

We end this section with detailed proofs of Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3. We present the arguments for compact M , but
the proof is similar for M complete with finite volume. By Corollary 3.7, M

has a finite covering of the form (G × Ñ)/Γ0. Furthermore, from the proof of
Theorem A it follows that the group Γ0 has a finite index subgroup Γ1 contained
in R(G) × Iso(Ñ). In particular, M1 = (G × Ñ)/Γ1 is a finite covering space
of M . Hence it is enough to define a metric on M1 from one on G × Ñ which
is the direct product of a right invariant metric on G and the metric on Ñ .

Proof of Theorem 1.4. Let M̂ and Γ be as in the conclusions of Theorems
B or B′. By (2) and (3) in Theorems B and B′, Γ admits a linear represen-
tation with the required properties. Then the result is a consequence of the
following facts: 1) π1(M̂) has finite index in π1(M), and 2) there is a surjective
homomorphism π1(M̂) → Γ.

Proof of Theorem 1.5. Choose M̂ = K\L/Γ a finite covering of M as
provided by Theorems B or B′. By general results, it follows that the G-action
on M has finite entropy even if M is not compact (see [LZ1] and [Zim2]).

On the other hand, if we project L, K and Γ using the adjoint represen-
tation, then it is easy to obtain an arithmetic G-space (as defined in [LZ1]),
say K ′\L′/Γ′, which admits a G-equivariant covering of M̂ . Then the result
is a consequence of the following two facts: 1) for our setup, A(K ′\L′/Γ′) =
K ′\L′/Γ′, 2) if Y1 → Y2 is a G-equivariant covering map with both G-actions
ergodic and with finite entropy, then A(Y1) = A(Y2). Both facts follow easily
from the results and definitions in [LZ1].
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