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Higher genus Gromov-Witten invariants as

genus zero invariants of symmetric products

By Kevin Costello

Abstract

I prove a formula expressing the descendent genus g Gromov-Witten in-
variants of a projective variety X in terms of genus 0 invariants of its symmetric
product stack Sg+1(X). When X is a point, the latter are structure constants
of the symmetric group, and we obtain a new way of calculating the Gromov-
Witten invariants of a point.

1. Introduction

Let X be a smooth projective variety. The genus 0 Gromov-Witten invari-
ants of X satisfy relations which imply that they can be completely encoded
in the structure of a Frobenius manifold on the cohomology H∗(X, C). In
this paper I prove a formula which expresses the descendent genus g Gromov-
Witten invariants of a smooth projective variety X in terms of the descendent
genus 0 invariants of the symmetric product stack Sg+1X. The latter are en-
coded in a Frobenius manifold structure on the orbifold cohomology group
H∗

orb(S
g+1(X), C). This implies that the Gromov-Witten invariants of X at

all genera are described by a sequence of Frobenius manifold structures on the
homogeneous components of the Fock space

F = Sym∗ (H∗(X, C) ⊗C tC[t]) = ⊕d≥0H
∗
orb(S

d(X), C).

Standard properties of genus 0 invariants, such as associativity, when applied
to the symmetric product stacks SdX, yield implicit relations among higher-
genus Gromov-Witten invariants of X.

When X = ∗ is a point, the symmetric product is the classifying stack
BSd of the symmetric group. The Frobenius manifold associated to the genus
0 invariants of BSd is in fact a Frobenius algebra, which is the center of the
group algebra of the symmetric group, C[Sd]Sd . Our result therefore gives a
new way of expressing the integrals of tautological classes on Mg,n in terms of
structure constants of C[Sd].
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More generally, the associativity constraints, together with some other
simple properties, are sufficient to determine the small quantum cohomology
of the symmetric product stack SdX in terms of the small quantum cohomology
of X. The construction of Lehn-Sorger [26] (see also Fantechi-Göttsche [15]),
which calculates the orbifold cohomology of SdX in terms of the ordinary
cohomology of X, applies verbatim to calculate the small quantum cohomology
of SdX in terms of that of X. In general, the large quantum cohomology of
SdX is not determined by that of X.

Let me sketch the geometric relation between Gromov-Witten invariants
of X and SdX. Stacks of stable maps to the symmetric product stack SdX

are identified with stacks of certain correspondences C ← C′ → X, where C
and C′ are twisted balanced nodal curves, and C′ → C is étale of degree d.
We introduce stacks Mη(X), parametrizing such correspondences with certain
markings on C′ and C, where g(C) = 0. 1 Here η is some label remembering
the genera of C′ and C, the stack structure at the marked points, the homology
class of the map C′ → X, and so forth. There is a finite group G acting
without fixed points on Mη(X), by reordering marked points of C′, such that
Mη(X)/G is a stack of stable maps from genus 0 curves to SdX. This implies
that integrals on Mη(X) are Gromov-Witten invariants of SdX.

There is a map p : Mη(X) → Mg,r,β(X), for some g, r and β ∈ H2(X),
defined by taking the coarse moduli space C ′ of C′, with its natural map
C ′ → X, and forgetting some marked points. We show that p is finite of
degree k ∈ Q×, in the virtual sense. By this we mean

p∗[Mη(X)]virt = k[Mg,r(X)]virt(1.0.1)

We then express the pull back p∗ψi of the tautological ψ classes on Mg,r(X),
in terms of ψ classes and boundary divisors of Mv′→v(X). The boundary
cycles of Mη(X) are again products of similar stacks of étale correspondences.
Further, there is a commutative diagram of evaluation maps

Mη(X) ��

��

Xr

Mg,r(X).

������������

This allows us to translate integrals on Mg,r(X) of ψ classes, and coho-
mology classes pulled back from Xr, into sums of products of similar integrals
on M0,n(SmX) for varying m and n.

The most technically difficult part of this procedure is proving the push-
forward formula (1.0.1). We do this by working in a “universal” setting, where
all the moduli stacks are smooth; and deduce it for arbitrary X by base change,

1We identify the genus of a twisted curve with that of its coarse moduli space.
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in the virtual sense, by the stack Mg,β(X) of curves in X with no markings.
We need to introduce moduli stacks of curves with markings in a semigroup.
Let A be a semigroup with indecomposable zero; for each a ∈ A we define a
moduli stack Mg,n,a of all (possibly unstable) connected nodal curves of genus
g, with n marked points, and certain A-valued marking on the irreducible
components. These curves must satisfy some stability conditions; for example
when a = 0, but not otherwise, Mg,n,0 = Mg,n is the usual Deligne-Mumford
moduli stack of stable curves. In general, Mg,n,a is smooth, proper, locally
of finite type, but nonseparated. The advantage of these moduli stacks over
the more familiar stacks Mg,n of all nodal curves, is that there are (proper,
separated) contraction maps Mg,n,a → Mg,n−1,a, which identify Mg,n,a with
the universal curve over Mg,n−1,a. This is not the case for Mg,n.

Let C(X) be the cone of effective 1-cycles on X modulo numerical equiva-
lence. For each β ∈ C(X) we have the associated smooth moduli stacks Mg,n,β,
and the stacks of stable maps Mg,n,β(X). Now,

Mg,n,β(X) = Mg,n,β ×Mg,β
Mg,β(X).

More generally, for any connected modular graph γ with labellings in C(X),
so that γ defines a stratum of Mg,n,β(X),

Mγ(X) = Mγ ×Mg,β
Mg,β(X).

Further, these fibre products are compatible with virtual fundamental classes.
That is, the system of stacks of stable maps to X, together with their natural
morphisms and virtual classes, is pulled back, via the map Mg,β(X) → Mg,β,
from the stacks Mg,n,a with their natural morphisms.

We can extend this observation to stacks of étale correspondences to X:

Mη(X) = Mη ×Mg,β
Mg,β(X)

where Mη is some stack of étale maps of curves C′ → C. This fibre product is
also compatible with virtual fundamental classes.

Since all of these fibre products are in the virtual sense, they behave quite
like flat base changes for the purposes of intersection theory. We show that to
prove the map Mη(X) → Mg,r,β(X) is finite in the virtual sense as in formula
(1.0.1), it is sufficient to show that Mη → Mg,r,β is actually finite. With the
correct choices of η, this is not difficult.

1.1. Relation to previous work. Intersection numbers on moduli stacks of
curves. The Gromov-Witten theory of a point has been known since
Kontsevich’s proof [21] of Witten’s conjecture [33]. There are two parts to
Kontsevich’s proof. Firstly, he reduces the geometric problem to a combina-
torial problem, using a topological cell decomposition of the moduli stack of
curves to derive formulae for integrals of tautological classes. Then he derives
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a matrix integral formula for these expressions, and uses this to prove Witten’s
conjecture.

The results of this paper, applied to a point, give a new way to do the first
part of this procedure; that is we find a combinatorial expression for integrals
of tautological classes on the moduli stack. The techniques are purely algebro-
geometric, and thus have a very different flavour from Kontsevich’s topological
model.

More recently, another proof of the Kontsevich-Witten theorem has ap-
peared. A combinatorial expression for intersection numbers on the moduli
stack of curves in terms of Hurwitz numbers was announced by Ekedahl, Lando,
Shapiro and Vainshtein in [13] and proved in [14]. Another proof of this for-
mula was obtained by Graber and Vakil [18], building on a special case proved
by Fantechi and Pandharipande [16]. This result was used by Okounkov and
Pandharipande [29] to give another proof of the Kontsevich-Witten theorem.

The geometric part of this proof relies on spaces of ramified covers of P1

to relate intersection numbers on Mg,n to Hurwitz numbers. Spaces of covers
of genus 0 curves also play a central role in this work. However, the compact-
ifications we use are different, as are the methods for obtaining formulae for
integrals on Mg,n. For example, in [18], Graber and Vakil calculate certain
Gromov-Witten invariants of P1 in two different ways: firstly, using virtual
localization, and secondly, by using a “branching map” to configuration spaces
of points on P1. Equating these yields the desired formula. On the other
hand,the techniques used here can be viewed, in the case of a point, as firstly
constructing a correspondence M0,n ← Mη → Mg,m, which is finite over both
M0,n and Mg,m, and then calculating the pullbacks of tautological classes from
Mg,m. The expressions we end up with are different from those obtained by
the authors cited above.

The results presented here work for arbitrary target space, and not just a
point; it does not seem to be clear how to generalize the results of [13], [14],
[16], [18], [21] to arbitrary target X.

Orbifold Gromov-Witten theory. Gromov-Witten invariants for orb-
ifolds were defined by Chen and Ruan [7], [8], [9] in symplectic topology and
Abramovich, Graber, Vistoli [3], [2] in algebraic geometry. Chen and Ruan’s
work introduced the orbifold cohomology groups H∗

orb, as the ordinary coho-
mology of the space of twisted sectors of an orbifold. In orbifold Gromov-
Witten theory the orbifold cohomology group H∗

orb plays the same role as the
ordinary cohomology group plays in standard Gromov-Witten theory. In par-
ticular, orbifold quantum cohomology (g = 0 orbifold Gromov-Witten theory)
gives H∗

orb the structure of a Frobenius manifold.
In this paper the algebraic approach to orbifold Gromov-Witten theory

developed by Abramovich, Graber and Vistoli [2] is used. Their construction is
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based on the foundational work of Abramovich and Vistoli [3], who introduced
stable maps to Deligne-Mumford stacks, and proved that there are reasonable
stacks parametrizing these stable maps. Stacks of stable maps to the classifying
stack BG of a finite group G play an important role in this work. These stacks
were studied by Abramovich, Corti and Vistoli [1], where they are related to
more classical spaces of admissible covers.

The Gromov-Witten theory of the classifying stack BG of a finite group G

was studied by Jarvis and Kimura [20]. In a recent preprint, Jarvis, Kaufmann
and Kimura [19] study the algebraic structure defined by G-equivariant quan-
tum cohomology for a finite group G. The reader should refer to these works
for more details on the structure of the genus 0 Gromov-Witten invariants of
BSn and of SnX. Note, however, that the notation for tautological classes,
etc., used here, differs from their notation by constants.

1.2. Plan of the paper. We define some of the basic moduli stacks we
need in Section 2. These are certain stacks of nodal curves with markings
in a semigroup; we show they are smooth Artin algebraic stacks and describe
certain maps between them, as well as tautological classes. Section 3 is devoted
to setting up various categories of labelled graphs, together with functors which
associate to a graph a certain moduli stack of curves. In Section 4 we calculate
how tautological classes and cycles pull back under morphisms of moduli stacks,
coming from morphisms of graphs. These pull backs are expressed as sums over
graphs, weighted by tautological classes.

Section 5 contains the main technical theorem, which says roughly that a
map of finite degree remains of finite degree in the virtual sense, after a virtual
base change. We use Behrend-Fantechi’s virtual fundamental class technology,
and this result follows from an analysis of their “relative intrinsic normal cone
stacks”. In Section 6, we construct, for each g, r, β, a label η for a moduli stack
of étale covers Mη, with a finite map Mη → Mg,r,β .

In Section 7, we base change by Mg,β(X), to get stacks of stable maps and
étale correspondences to X. In Section 8, we put these results together to give
a formula for all descendent Gromov-Witten invariants of X in terms of genus
0 invariants of symmetric products SdX. Finally, in Section 9, I illustrate the
general result by calculating some low-genus Gromov-Witten invariants of a
point.

1.3. Future work. The results presented here provide implicit constraints
on the Gromov-Witten invariants of an arbitrary variety, coming from asso-
ciativity properties of quantum cohomology of symmetric products. It would
be interesting to see what relation these constraints have with the conjectural
Virasoro constraints, first proposed by Eguchi, Hori and Xiong [12]. A first step
in this direction would be to use the results of this paper to give a new proof
of Witten’s conjecture. I imagine this is far from easy; in the two proofs of
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the Kontsevich-Witten theorem of which I am aware, even once the geometric
work has been done, significant insight is required to prove the theorem.

In another direction, I think that one can prove a reconstruction theo-
rem, analogous to the first reconstruction theorem of Kontsevich and Manin
[22], which would imply that for certain Fano manifolds X, the quantum coho-
mology of SdX is determined by the quantum cohomology of X. This would
imply that all Gromov-Witten invariants of X are determined by the genus 0
invariants. It’s not clear in what generality one can make such a statement:
we need KX � 0, which implies many genus 0 invariants of SdX vanish for
dimension reasons.

Note that such a statement has a close relationship with certain corollaries
of the Virasoro conjecture. Dubrovin and Zhang [10], [11] have shown that the
Virasoro conjecture implies that when X has semisimple quantum cohomology,
all higher genus Gromov-Witten invariants of X are determined by the genus
0 invariants. Conjecturally, many Fano manifolds have semisimple quantum
cohomology.

I hope to return to these points in a future paper.
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Grojnowski for his support, both mathematical and moral, during my time at
Cambridge. I would like to thank Alessio Corti, Ezra Getzler, Tim Perutz,
Richard Thomas, Burt Totaro, Hsian-Hua Tseng, and especially Constantin
Teleman and Ravi Vakil for their interest in this work, and for very helpful
conversations and correspondence. A version of this paper has been accepted
as my Ph.D. thesis at Cambridge University. I have been financially supported
by the EPSRC, the Cambridge European Trust, and the Cecil King Memorial
Foundation.

1.5. Notation. We work always over a field k, algebraically closed and of
characteristic zero. Stacks are in the sense of Laumon and Moret-Bailly [27].
In particular, a stack is not required to have an atlas, an algebraic stack must
admit a smooth atlas, and a Deligne-Mumford stack must admit an étale atlas.
I will sometimes use the phrase Artin stack as a synonym for algebraic stack.

Later we will define various categories of graphs. Here is a summary of
some notation needed for these:

Υu Labels (g, I, a) for smooth connected curves,
of genus g with marked point set I and class
a ∈ A in the semigroup.

Υt Labels (g, I, m, a) for smooth connected
twisted curves, of genus g, with marked point
set I, stack structure at the marked points
given by m : I → Z>0, and class a ∈ A in the
semigroup .
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exp(Υu)
exp(Υt)

Labels for disconnected smooth marked
curves, and disconnected smooth marked
twisted curves, respectively.

Υc Labels for étale covers C′ → C of smooth
twisted curves, with C connected.

s : Υc → exp(Υt) Source map, which associates to a label for
C′ → C the label for C′.

t : Υc → Υt Target map, which associates to a label for
C′ → C the label for C.

Γu Graphs built from vertices Υu, which label
nodal connected curves.

Γt Graphs built from vertices Υt, which label
twisted nodal curves.

Γc A certain type of map of graphs in Γt, which
labels étale covers C′ → C of twisted nodal
curves.

r : Υt → Υu

r : Γt → Γu
Associates to a label for a twisted curve C the
label for its coarse moduli space C.

s, t : Γc → Γt Source and target maps, which associate to a
label for an étale cover C′ → C the labels for
C′, C respectively.

2. Moduli stacks

Let g ∈ Z≥0 and let I be a finite set. Let Mg,I be the stack of all nodal
curves of genus g with I marked smooth points. Mg,I is a smooth algebraic
stack; it is nonseparated, and locally but not globally of finite type.

Let g ∈ Z≥0, let I be a finite set and let m : I → Z>0 be a function. Let
Mg,I,m be the moduli stack of all twisted (balanced) curves of genus g, with
marked points labelled by I and the degree of twisting at the marked points
given by m. Explicitly, Mg,I,m is the category of commutative diagrams

C ��

���������������� C

��
U × I �� U ×

∐
i∈I Bµm(i)

��
��

��

U

where:

• U is a scheme of finite type.

• C is a proper separated flat DM stack over U , étale locally a nodal curve
over U .
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• The map C → C exhibits C as the coarse moduli space of C, and C is
connected of genus g.

• U ×
∐

Bµm(i) ↪→ C is an embedding of a disjoint union of trivial µm(i)-
gerbes into C, and U × I → U ×

∐
Bµm(i) are sections of these gerbes.

• C → C is an isomorphism away from the nodes and marked points of C.

• Étale locally near a node of C, C → U looks like

(Spec A[u, v]/(uv − t))/µr → Spec A

where t ∈ A, and the group of r-th roots of unity µr acts on
A[u, v]/(uv − t) by u → lu, v → l−1v, where l ∈ µr.

This definition is due to Abramovich and Vistoli; for more details see [3]. Note
that we use trivialized gerbes, where they use possibly nontrivial gerbes. Our
stack is simply the fiber product of all the universal gerbes lying over their
version.

Proposition 2.0.1. Mg,I,m is a smooth stack.

By smooth I mean in the sense of the formal criterion for smoothness over
the base Spec k. I expect that Mg,I,m is algebraic, although I do not know a
reference for this. Presumably, one could prove this using the techniques of
Abramovich and Vistoli [3]. However, we do not really need any properties of
Mg,I,m; for us it is essentially a placeholder.

There is a map Mg,I,m → Mg,I which associates to a twisted curve its
coarse moduli space.

We need variants of these definitions, which depend on a semigroup. Let
A be a commutative semigroup, with unit 0 ∈ A, such that

• A has indecomposable zero: a + a′ = 0 implies a = a′ = 0.

• A has finite decomposition: for every a ∈ A, the set {(a1, a2) ∈ A × A |
a1 + a2 = a} is finite.

For example, A = 0, or A is the cone C(X) of curves in a projective variety X

up to numerical equivalence, or A = {0, 1} where 1 + 1 = 1.
Fix any such A. Let (g, I, a) be a triple where g ∈ Z≥0, I is a finite set, and

a ∈ A. We say (g, I, a) is stable, if either a �= 0 or a = 0 and 2g − 2 + #I > 0.
For any such triple (g, I, a) we define the stack Mg,I,a ¿ over Mg,I . Roughly,
Mg,I,a parametrizes curves C with I marked smooth points, together with a
labelling of each irreducible component of C by an element of A. The sum
over irreducible components of the associated elements of A must be a, and a
certain stability condition must be satisfied. The simplest formal definition is
inductive.
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(1) If (g, I, a) is unstable, then Mg,I,a is empty.

(2) Suppose (g, I, a) is stable. Then an object of Mg,I,a is

• An object of Mg,I , that is, a flat family C → U , of nodal curves
over a scheme U , together with I smooth marked points U×I → C.

• Let Cgen → U be the complement of the nodes and marked points
of C. The additional data we require is a constructible function
f : Cgen → A. f must be locally constant on the geometric fibres of
Cgen → U .

(3) If U0 ⊂ U is the open subscheme parametrizing nonsingular curves C0 →
U0, then f : C0gen → A must be constant with value a.

(4) We require that f satisfies a gluing condition along the boundary of Mg,I .
Precisely, suppose we have a decomposition g = g′ + g′′ and I = I ′

∐
I ′′,

a map V → U , and a factorization of the map V → Mg,I into

V → Mg′,I′ ∐{s′} × Mg′′,I′′ ∐{s′′} → Mg,I

where the second map is obtained by gluing the marked points s′, s′′.
Let C ′

V → V and C ′′
V → V be the associated families of curves. We

require that the pulled-back constructible functions f ′ : C ′
V gen → A and

f ′′ : C ′′
V gen → A define a morphism

V →
∐

a=a′+a′′

Mg′,I′ ∐{s′},a′ × Mg′′,I′′ ∐{s′′},a′′ .

(5) In a similar way, suppose we have a map V → U , and a factorization of
the map V → Mg,I into

V → Mg−1,I
∐{s,s′} → Mg,I .

Then, the family of genus g − 1 curves CV → V , together with the
pulled-back constructible function f : CV gen → A, must define a map

V → Mg−1,I
∐{s,s′},a.

Proposition 2.0.2. The map Mg,I,a → Mg,I is étale, and relatively a
scheme of finite type. Therefore Mg,I,a is a smooth algebraic stack.

Define Mg,I,m,a = Mg,I,m ×Mg,I
Mg,I,a. The stack Mg,I,m,a is smooth.

2.1. Contraction maps. The main advantage of Mg,I,a over Mg,I is the
existence of contraction maps πi : Mg,I,a → Mg,I\i,a for each i ∈ I. Given a
curve C ∈ Mg,I,a with marked points Pj , j ∈ I, πi(C) is obtained from C by
removing Pi, and contracting the irreducible component of C containing Pi to
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a point if it is unstable. Unstable components are components of genus 0 with
marking 0 ∈ A and containing < 3 nodes or marked points, and components
of genus 1 with no nodes or marked points. To construct the map πi, we need

Proposition 2.1.1. There is an isomorphism Cg,I\i,a ∼= Mg,I,a where
Cg,I,\i,a is the universal curve over Mg,I\i,a.

Proof. Just as in [24, Def. 2.3], there is a map Cg,n−1 → Mg,n. This lifts
to a map Cg,n−1,a → Mg,n,a, by labelling any irreducible component which is
contracted in the map Cg,n−1,a → Mg,n−1,a by 0 ∈ A. As in [4, Lemma 7], the
formal criterion for étaleness shows that Cg,n−1,a → Mg,n,a is étale. To show
it is an isomorphism, it is enough to show this on the level of k-points, which
is easy.

2.2. Maps to symmetric products. Let X be a scheme. Let SdX =
[Xd/Sd] be the symmetric product stack of X.

Lemma 2.2.1. The stack whose groupoid of U points, for U a scheme,
has objects diagrams

U ← U ′ → X

where U ′ → U is proper, separated, surjective, and étale of degree d and has
morphisms, isomorphisms U ′ → U ′ such that the diagram

U ′

���
��

��
��

�

����
��

��
�

��

U X

U ′

����������

		�������

commutes, is equivalent to the stack SdX.

Proof. By definition, to give a map U → SdX is to give a right, étale
locally trivial, principal Sd-bundle P → U , together with an Sd-equivariant
map P → Xd. Given such, let U ′ = P ×Sd {1, . . . , d}. Then U ′ → U is étale of
degree d. One can recover P from U ′ as the sheaf on the small étale site of U ,

P = Isoet(U ′, U × {1, . . . , d}).
Observe that P is an étale locally trivial principal Sd bundle. This is because
the map U ′ → U is étale locally isomorphic to U×{1 . . . d} - proper, separated,
surjective, étale maps of degree d are precisely the maps with this property.
Then,

Hom(P, Xd)Sd = Hom(P × {1, . . . , d}, X)Sd

= Hom(P ×Sd {1, . . . , d}, X) = Hom(U ′, X).
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Corollary 2.2.2. Let V be a DM stack. The 2-groupoid Hom(V, SdX)
is equivalent to the 2-groupoid of diagrams V ← V ′ → X, with V ′ → V

proper, separated surjective, and étale of degree d. Further, the 2-groupoid
HomRep(V, SdX) of representable maps V → SdX is equivalent to the
2-groupoid of such diagrams V ← V ′ → X, where the inertia groups of V

act faithfully on the fibres of V ′ → V .

Proof. We prove the statement about representability. V → SdX is
representable if and only if the principal Sd-bundle, P → V , is an algebraic
space. This is equivalent to saying that the inertia groups of V act faithfully
on the fibres of V ′ → V .

2.3. Stacks of étale covers. We need some notation to shorten the cumber-
some g, I, m, a labels. Let Υt(A) be the groupoid of quadruples
ν = (g(ν),T(ν), m, a(ν)) where g(ν) ∈ Z≥0, T(ν) is a finite set, m : T(ν) →
Z>0 is a function, and a(ν) ∈ A. We impose the stability condition as
before: if a(ν) = 0, then 2g(ν) − 2 + #T(ν) > 0. The morphisms are
isomorphisms preserving all the structure. Let Υu(A) be the groupoid of
triples v = (g(v),T(v), a(v)) satisfying the stability condition. There is a
map r : Υt(A) → Υu(A) sending (g, I, m, a) → (g, I, a). For ν ∈ Υt we have
the moduli stack Mν ; similarly for v ∈ Υu we have Mv. There is a map
r : Mν → Mr(ν) which associates to a twisted curve its coarse moduli space.

We also want labels for moduli stacks of disconnected curves. We define
a groupoid exp(Υt). An object α ∈ exp(Υt), is a finite set V(α), and a map
V(α) → Ob Υt. A morphism α → α′ in exp(Υt), is an isomorphism φ : V(α) ∼=
V(α′) of finite sets, together with an isomorphism v ∼= φ(v) of the associated
element of Υt, for each v ∈ V(α). Define exp(Υu) in a similar way. Given
α ∈ exp(Υt), let

T(α) =
∐

v∈V(α)

T(v).

The groupoid exp(Υt) labels possibly disconnected nodal curves. Let

Mα =
∏

v∈V(α)

Mv.

Next, we want to define labels for étale maps of twisted curves, C′ → C.
C′ may be disconnected. A covering η, consists of

(1) An element s(η) ∈ exp(Υt), the source, and an element t(η) ∈ Υt, the
target.

(2) These must satisfy ∑
v∈V(s(η))

a(v) = a(t(η)) ∈ A.



572 KEVIN COSTELLO

(3) A map of finite sets, p : T(s(η)) → T(t(η)).

(4) For each t′ ∈ T(s(η)), we require that m(t′) divides m(p(t′)). Let d(t′) =
m(p(t′))/m(t′).

(5) We require that for each t ∈ T(t(η)),

m(t) = lcm{d(t′) | p(t′) = t}

where lcm stands for lowest common multiple.

(6) A function d : V(s(η)) → Z≥1, the degree.

(7) For each t ∈ T(t(η)), and each v ∈ V(s(η)),∑
t′∈T(v)
p(t′)=t

d(t′) = d(v).

We define d(η) =
∑

v∈V(s(η)) d(v).

(8) The Riemann-Hurwitz formula holds: for each v ∈ V(s(η)),

2(g(s(η)v) − 1) = 2d(v)(g(t(η)) − 1) +
∑

t′∈T(v)

(d(t′) − 1).

Let Υc be the groupoid of all coverings η, with the obvious isomorphisms.
There are source and target functors,

s : Υc → exp(Υt),

t : Υc → Υt.

We will often write α � ν to mean a covering η with s(η) = α and t(η) = ν.
Associated to a covering η ∈ Υc, we define a stack Mη of étale covers

f : C′ → C. Mη is the category whose objects are

• An object of Mt(η), with associated family of twisted nodal curves C → U ,
sections T(t(η)) → C and constructible function f : Cgen → U , where C

is the coarse moduli space of C.

• An object of Ms(η), with associated family of possibly disconnected
twisted nodal curves C′ → U , sections T(s(η)) → C′ and constructible
function f ′ : C ′

gen → U , where C ′ is the coarse moduli space of C.

• An étale map p : C′ → C.

These must satisfy:
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• The diagram

T(s(η)) × U ��

��

C′

��
T(t(η)) × U �� C

must be Cartesian over U . This implies, in particular, that the marked
points of C′ are precisely those lying over marked points of C.

• Let p∗f ′ be the constructible function on Cgen given by pushing forward
f ′; we require that p∗f ′ = f .

• The map C → BSd associated to the étale map C′ → C must be repre-
sentable.

Proposition 2.3.1. The map Mη → Mt(η) is étale; therefore, Mη is
smooth. Further, Mη is algebraic.

Before proving this, we need a lemma.

Lemma 2.3.2. Let G be a finite group. The stack

Mg,I,m(BG) def= HomRepMg,I,m
(Cg,I,m, BG × Mg,I,m)

of representable maps C → BG from curves C ∈ Mg,I,m is algebraic.

Sketch of proof. A representable map from a twisted nodal curve C to BG

is the same as a principal G bundle P → C, whose total space is an ordinary
nodal curve. This is the same, just as in [1, Th. 4.3.2], as a nodal curve P , with
a G-action, such that the map P → P/G to the scheme quotient is generically
a principal G-bundle; the G action must also have some compatibility at the
nodes. We recover C as [P/G], the stack quotient.

The stack of nodal curves P is algebraic. Further, the stack of nodal
curves with a G action is algebraic, because a G action on a curve P can be
identified with its graph in P ×P ×G. It follows that Mg,I,m(BG) is algebraic.

Proof of Proposition 2.3.1. The deformations of an étale cover C′ → C are
the same as deformations of the base, as in [1]; therefore the map Mη → Mt(η)

is étale.
Consider the map Mη → Mg(t(η)),T(t(η)),m(BSd). This map is relatively a

scheme; it follows that Mη is algebraic.

The fact that Mη is algebraic implies that its image in Mt(η), which is an
open substack, is also algebraic.
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Let us look at coverings C′ → C ∈ Mη locally. Given a tail t ∈ T(t(η)), in
an étale neighbourhood of the twisted marked point t → C, C′ → C looks like(

Spec
(
⊕t′∈p−1(t) ⊕d(t′)

i=1 k[xt′,i]
)
→ Spec k[y]

)
/µm(t).

As before, d(t′) = m(t)/m(t′). The algebra map which induces this map of
schemes is of course y →

∑
xt′,i. The µm(t) action sends y → ly, for l ∈ µm(t);

and xt′,i → lxt′,i+1mod d(t′). This action is faithful, which is equivalent to
representability of the associated map C → BSd, because m(t) is the lowest
common multiple of d(t′) for t′ ∈ p−1(t). The stabilizer of xt′,i is µm(t′) ⊂ µm(t).
There is a similar picture near the nodes, except k[x] is replaced by k[u, v]/uv.

2.4. Stacks of stable maps. Let X be a smooth projective variety. We will
let our semigroup A, be the cone of effective 1-cycles on X, up to numerical
(or homological) equivalence. For each v = (g, I, β) ∈ Υu, we have the stack
Mv(X) of Kontsevich stable maps in X. There is a map

Mv(X) → Mv

which associates to a stable map C → X with marked points, the curve C,
with its marked points, and the constructible function Cgen → C(X) given
by taking the homology class of an irreducible component. In a similar way,
for each α ∈ exp(Υu), labelling disconnected curves, we have a moduli stack
Mα(X) with a map Mα(X) → Mα.

Lemma 2.4.1.

Mg,n,β(X) = Mg,n,β ×Mg,n−1,β
Mg,n−1,β(X).

Proof. It was shown in [6] that Mg,n,β(X) is the universal curve over
Mg,n−1,β(X), which is pulled back from Mg,n−1,β . But we have shown that
Mg,n,β is the universal curve over Mg,n−1,β.

More generally,

Mg,n,β(X) = Mg,n,β ×Mg,β
Mg,β(X)

so that all stacks of marked stable maps to X, arise by base change with the
stack of unmarked stable maps Mg,β(X).

Let V be a proper projective Deligne-Mumford stack. Abramovich and
Vistoli [3] defined the stack of stable maps to V : this is the stack of repre-
sentable maps f : C → V from twisted nodal curves with marked points to V ,
such that Aut(f) is finite. We are only interested in the case V = SdX, the
symmetric product stack of a smooth projective variety X. Take our semi-
group to be C(X) as above. For each ν = (g, I, m, β) ∈ Υt, let Mν(SdX) be
the stack of stable maps from curves C ∈ Mg,I,m, such that if C ← C′ → X is
the associated correspondence, then C′ → X has class β ∈ C(X).
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For each covering η ∈ Υc, define

Mη(X) = Mη ×Ms(η) Ms(η).

Let Aut(η | t(η)) be the group of automorphisms of η which act trivially on
t(η).

Lemma 2.4.2. There is a natural isomorphism∐
η, t(η)=v

Mη(X)/ Aut(η | t(η)) ∼= Mv(SdX).

2.5. Tautological line bundles. Let ν ∈ Υu or Υt. For each t ∈ T(ν),
there is a section σt : Mν → Cν of the universal curve. Define Lt = Ω1

σt
to be

the relative cotangent bundle which is the tautological line bundle. If µ ∈ Υt,
so that r(µ) ∈ Υu, we have a map Mµ → Mr(µ). For each t ∈ T(µ) = T(r(µ)),

we have r∗Lt = L
⊗m(t)
t .

For η ∈ Υc, for each t ∈ T(s(η)) (or t ∈ T(t(η))) there is a tautological
line bundle Lt, pulled back from Ms(η) (respectively Mt(η)). If p(t′) = t under
the projection T(s(η)) → T(t(η)), then Lt′

∼= Lt.
Let ψt = c1(Lt) on any of the three types of moduli stacks.

2.6. Automorphisms and deformations of twisted nodal curves. Let
v ∈ Υt, let C ∈ Mv and let C ∈ Mr(v) be the coarse moduli space of C. We
want to describe Aut(C | C), the group of automorphisms of C which are trivial
on the coarse moduli space C. This group splits as a product of contributions
from each twisted node and twisted marked point of C: a twisted node or
marked point with inertia group µr contributes µr.

The fibre of Mv → Mr(v) over a curve C ∈ Mr(v) can similarly be described
as a product of local contributions from the nodes and marked points of C.
For each tail t ∈ T(v) = T(r(v)), we have a factor of Bµm(t). For each node
of C, we have a factor of

∐
k∈Z>0

Bµk. For more details, see [1].
For v ∈ Υt, let T1(v) ⊂ T(v) be the set of tails with multiplicity m(t) = 1.

For C ∈ Mv and t ∈ T1(v), the marked point Pt ∈ C is untwisted. The
first-order deformations of C are given by

Ext1(Ω1
C(

∑
t∈T1(v)

Pt),OC).

The deformation theory is unobstructed. We can identify this space with

H0

ωC ⊗ Ω1
C(

∑
t∈T1(v)

Pt)

∨

where ωC is the dualizing line bundle.
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Let C ∈ Mr(v) be the coarse moduli space of C. We have a map π : C → C.
In [3], it is shown that π∗ is an exact functor, and so

H0

ωC ⊗ Ω1
C

 ∑
t∈T1(v)

Pt

 = H0

π∗

ωC ⊗ Ω1
C

 ∑
t∈T1(v)

Pt

 .

The space of first order deformations of C is similarly given by

H0

ωC ⊗ Ω1
C(

∑
t∈T(r(v))

Pt)

∨

.

Observe that we have a pole at all tails, not just those with multiplicity one.
Clearly

π∗

ωC ⊗ Ω1
C

 ∑
t∈T1(v)

Pt

 = ωC ⊗ Ω1
C

 ∑
t∈T(r(v))

Pt


away from the nodes and marked points of C. In fact, this equality extends
also to the marked points. At the nodes, however, this is no longer true. The
map Mv → Mr(v) is ramified along the divisor of singular curves. The degree
of ramification along the divisor in Mv corresponding to a node with inertia
group µk is k − 1 (i.e. a function vanishing to degree 1 on the divisor in Mr(v)

vanishes to degree k along the divisor in Mv when it is pulled back). One can
see this by looking at the local picture, as in [1, §3].

Let η ∈ Υc and let C′ → C ∈ Mη be an étale cover of twisted balanced
curves. Let C ′ → C be the corresponding ramified covering of the coarse
moduli spaces of C′ and C. We are interested in Aut(C′ → C | C ′ → C), the
automorphisms which are trivial on the coarse moduli space. As before, this
splits as a product with a contribution from each twisted node and twisted
marking. Each t ∈ T(t(η)) – that is each marking of C – contributes µm(t).
However, in this case the contribution from the nodes is trivial. This follows
from the fact that the map C → BSd is representable. The marked points of
C′ do not contribute anything extra.

We have seen already what the deformations of C′ → C are: they are the
same as deformations of C; that is, the map Mη → Mt(η) is étale.

3. Graphs

We define categories of graphs, which label various flavours of nodal curve,
as well as étale covers of twisted nodal curves. We introduce three categories:
Γu, which contains labels for untwisted nodal curves; Γt, which has labels
for twisted nodal curves; and Γc, which has labels for pairs of twisted nodal
curves C′, C, with an étale map C′ → C. These categories depend on a semi-
group A, which we will usually not mention. The morphisms in these categories
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correspond to degenerating curves, or dually to contracting graphs. There are
functors, denoted M, from each of these categories to the category of stacks,
which take a label to the moduli stack of all curves with that label; as well as
functors

Γc
s,t

⇒ Γt r→ Γu

where s and t stand for source and target, and take the labels for a pair C′ → C
to the labels for C′ or C respectively. Also, r takes the labels for C to the labels
for its coarse moduli space C. These functors get translated into morphisms
of stacks after we apply the moduli stack functor M; that is, there are maps
of stacks s : Mσ → Ms(σ), and similarly for t and r.

Now we define these categories. Let Γt be the category whose objects are
objects η of exp(Υt), together with an order-two isomorphism σ : T(η) ∼= T(η),
commuting with the multiplicity map m : T(η) → Z≥1. Define the objects of
Γu in a similar fashion, using Υu instead of Υt and omitting references to m.
There are forgetful maps F : Γt → exp(Υt), and F : Γu → exp(Υu). For γ ∈ Γt

(or γ ∈ Γu), the set of vertices of γ, written V(γ), is the set of vertices V(F(γ))
of the underlying element of exp(Υt). The set of half-edges of γ is the set
H(γ) = T(F(γ)). The set of edges of γ, E(γ), is the set of free Z/2 orbits on
H(γ). The set of tails of γ, T(γ), is the set of σ-fixed points on H(γ). We can
fit the structure of a graph γ ∈ Γt into the diagram

Z>0 H(γ) �σ
m





��
Z≥0 V(γ)g



 a �� A.

Given γ ∈ Γt or Γu, let Mγ =
∏

v∈V(γ) Mv. For every half-edge h ∈ H(γ),
there is a tautological line bundle Lh. For every edge e ∈ E(γ) corresponding
to the σ-orbit (h1, h2) let Le = Lh1 ⊗ Lh2 .

3.1. Contractions. Now we want to define the morphisms in the categories
Γt and Γu, called contractions. In terms of the cell complex C(γ) associated to
a graph γ, a contraction γ′ → γ is a surjective continuous map C(γ′) → C(γ)
which is an isomorphism away from the vertices of C(γ), and possibly maps
some edges of C(γ′) to vertices of C(γ). It is better to describe contractions
more formally. Let γ, γ′ ∈ Γt. A contraction γ′ → γ is a surjective map of sets
f : H(γ′)

∐
V(γ′) → H(γ)

∐
V(γ), such that

• V(γ′) ⊂ f−1(V(γ)).
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• The diagram

H(γ′)
∐

V(γ′)
f ��

σ
∐

1
��

H(γ)
∐

V(γ)

σ
∐

1

��
H(γ′)

∐
V(γ′)

f ��

��

H(γ)
∐

V(γ)

��
V(γ′)

f �� V(γ)

commutes, where σ is the involution on H(γ′) or H(γ), and H(γ)
∐

V(γ)
→ V(γ) comes from the map H(γ) → V(γ) assigning to a half-edge the
vertex it is attached to.

• f induces an isomorphism H(γ′) ⊃ f−1(H(γ)) ∼= H(γ), commuting with
the multiplicity functions.

• We require that f not contract any tails to vertices, so that T(γ′) =
H(γ′)σ ⊂ f−1(H(γ)). This implies that f induces an isomorphism T(γ′) ∼=
T(γ).

• For each v ∈ V(γ), we can define a graph γ′
v ∈ Γt, with vertices f−1(v)∩

V(γ′), edges f−1(v) ∩ E(γ′), and tails f−1(H(v))
∐

(f−1(v) ∩ T(γ′)). We
require that γ′

v be connected of genus g(γ′
v) = g(v).

We define contractions of graphs γ, γ′ ∈ Γu in the same fashion, leaving out
references to the multiplicity function.

Let E(f) ⊂ E(γ′) be the set of edges contracted by f . Given any subset
I ⊂ E(γ′) there is a unique contraction f : γ′ → γ with E(f) = I. One can
think of E(f) as being the kernel of f .

Contractions correspond to degenerating curves by adding more nodes. If
we have a contraction f : γ′ → γ, we can identify Mγ′ =

∏
v∈V(γ) Mγ′

v
. There

are maps Mγ′
v
→ Mv, which induces a map

f∗ : Mγ′ → Mγ .

The map f∗ has cotangent complex on Mγ′ ,

f∗Ω1
Mγ

→ Ω1
Mγ′ .

We can compute the cohomology of this complex in terms of tautological line
bundles on M(γ′).

Ker
(
f∗Ω1

Mγ
→ Ω1

Mγ′

)
= ⊕i∈E(f)Li

CoKer
(
f∗Ω1

Mγ
→ Ω1

Mγ′

)
= 0.



HIGHER GENUS GROMOV-WITTEN INVARIANTS 579

3.2. Coverings. We define labels for étale maps C′ → C of twisted nodal
curves. A covering γ′ � γ is a map of sets p : V(γ′) → V(γ), and for each
v ∈ V(γ), a covering p−1(v) → v. Here we consider p−1(v) as an object of
exp(Υt). We require that the associated map H(γ′) → H(γ) is equivariant
with respect to the involution, takes tails to tails, and edges to edges.

Given a covering p : γ′ � γ, for v ∈ V(γ), let γ′
v = p−1(v) ∈ exp(Υt) be

the vertices lying over v. We define a stack Mγ′�γ of coverings, by

Mγ′�γ =
∏

v∈V(γ)

Mγ′
v�v.

As usual there are maps Mγ′�γ → Mγ , which are étale, and Mγ′�γ → Mγ′ .
If we also have a contraction γ → η, there are a unique covering η′ � η and a
contraction γ′ → γ such that the diagram

γ′ ��

����

η′

����
γ �� η

commutes.
Let Γc be the category whose objects are coverings γ′ � γ with γ′, γ ∈ Γt

and whose morphisms are diagrams as above. There are source and target
functors s, t : Γc → Γt. There is a functor Γc → stacks, sending a covering
ρ = s(ρ) � t(ρ) to Mρ, and an arrow ρ → φ to the associated map of stacks
Mρ → Mφ.

Let ρ, φ ∈ Γc and suppose we have a morphism f : ρ → φ. There is
an induced morphism t(ρ) → t(φ): let E(f) ⊂ E(t(ρ)) be the set of edges
contracted. There is a map Mρ → Mφ, which are étale over its image. The
relative cotangent bundle is Ω1

f∗
= ⊕i∈E(f)Li. The diagram

Mρ ��

��

Mφ

��
Mt(ρ) �� Mt(φ)

commutes, and the vertical maps are étale.

4. Pull backs of tautological classes

We want to do intersection theory on our moduli stacks, later with vir-
tual fundamental classes. We will work both with Artin algebraic stacks and
with Deligne-Mumford stacks. For DM stacks, we will use the theory A∗ of
Vistoli [32], with Q-coefficients. For Artin stacks, Kresch has defined in [25]
intersection theory, as has Toen in [31]. However, all we ever need to do with
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Artin stacks is intersect regularly embedded smooth divisors with regularly
embedded smooth closed substacks, and also take first Chern classes of line
bundles. No particularly sophisticated technology is required – what we need
is basically the same as that used by Behrend in [4] to define Gromov-Witten
classes.

We want to intersect cycles corresponding to graphs. If we have a map
f : ρ′ → ρ in one of our categories of graphs Γc,Γt,Γu , we have an associated
map f∗ : Mρ′ → Mρ. Let Mf ↪→ Mρ be the closed substack of Mρ which is
supported on the image of f . Note that Mf is smooth, and the map Mf ↪→
Mρ is a closed regular embedding. The map Mρ′ → Mf is étale, in general
nonrepresentable, of degree ‖f‖, where:

(1) If f : ρ′ → ρ is a morphism in Γu, then

‖f‖ = # Aut(ρ′ → ρ | ρ)

is the number of automorphisms of ρ′ commuting with the map ρ′ → ρ.

(2) If f : ρ′ → ρ is a morphism in Γt, then

‖f‖ =
# Aut(ρ′ → ρ | ρ)∏

i∈E(f) m(i)

where E(f) ⊂ E(ρ′) is the set of edges contracted.

(3) If f : ρ′ → ρ is a morphism in Γc, then

‖f‖ =
# Aut(ρ′ → ρ | ρ)∏

i∈E(f) m(i)2

where E(f) ⊂ E(t(ρ′)) is the set of edges contracted.

Let e ∈ E(f). Observe that the line bundle Le on Mρ′ descends to a line bundle
Le on Mf . Let ψe = c1(Le) ∈ A1Mf . The conormal bundle to the embedding
Mf ↪→ Mρ is ⊕e∈E(f)Le.

Let A be one of the categories Γc,Γt,Γu. Suppose we have a diagram

ρ′′

g

��
ρ′

f �� ρ

in A. We want to calculate f∗[Mg] ∈ A∗Mρ′ . For simplicity we will assume
that Mg ↪→ Mρ is a divisor, or equivalently #E(g) = 1. This the only case we
will need.

Lemma 4.0.1. f∗[Mg] can be expressed as a sum with a term for each
map h : ρ′ → ρ′′ such that g ◦ h = f . Each such term is weighted by −ψe,



HIGHER GENUS GROMOV-WITTEN INVARIANTS 581

where e is the unique element of E(f) \ E(h). There is also a term [Mh] for
each isomorphism class of commutative diagrams

η k ��

h
��

ρ′′

g

��
ρ′

f
�� ρ

where #E(h) = 1 and E(h) �⊂ E(k).

The factor −ψe is the first Chern class of the normal bundle. Now
we calculate pull backs under the maps of stacks induced by the functor
r : Γt → Γu.

Lemma 4.0.2. Let γ ∈ Γt, and suppose f : α → r(γ) is a morphism in Γu,
with #E(f) = 1. Let r : Mγ → Mr(γ) be the canonical map

r∗[Mf ] =
∑

g:γ′→γ

m(e)[Mg]

where the sum is over g : γ′ → γ such that r(g) = f , and e ∈ E(g) is the
unique element.

The factors m(e) come from the fact that the map Mγ → Mr(γ) has
ramification along the boundary divisors of Mr(γ).

Next we calculate pullbacks under s. Let ρ ∈ Γc, and let f : γ → s(ρ) be
a morphism in Γt, where again #E(f) = 1. There is a map s : Mρ → Ms(ρ).

Lemma 4.0.3. s∗[Mf ] ∈ A∗Mρ can be expressed as a sum over isomor-
phism classes of pairs of maps g : ρ′ → ρ in Γc, and h : s(ρ′) → γ in Γt, such
that f ◦ h = s(g), and #E(g) = 1:

s∗[Mf ] =
∑
g,h

[Mg].

Observe that since t : Mη → Mt(η) is étale, it is easy to calculate pull backs
under t.

4.1. Pull backs of ψ-classes. So far we have seen how to pull back
divisors corresponding to graphs. Next, we want to pull back Chern classes of
tautological line bundles.

Under a morphism f : γ′ → γ in any of our categories Γc,Γt,Γu, for any
half-edge h ∈ H(γ) there is a unique half-edge h′ ∈ H(γ′) with f(h′) = h.
Then, f∗ψh = ψh′ .

For the functors s, t : Γc → Γt, for any η ∈ Γc and half-edge h ∈ H(s(η)),
by definition s∗ψh = ψh; and similarly for t. Also, if hs ∈ H(s(η)) lies above
ht ∈ H(t(η)), then ψhs

= ψht
.
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For the functor r : Γt → Γu: if γ ∈ Γt, then H(γ) = H(r(γ)). If h ∈ H(γ),
then r∗ψh = m(h)ψh.

There is another case which is not so trivial. Let η ∈ Υc. Let I � T(s(η))
be such that after removing the tails in I, s(η) remains stable. This always
happens if g(s(η)) > 0 or if a(s(η)) ∈ A is nonzero. Let v ∈ Υu be obtained
from r(s(η)) by removing the tails in I. There is a map π : Mr(s(η)) → Mv.
We are interested in calculating the pullbacks of tautological ψ classes in Mv,
under the morphisms in the diagram

Mη
s �� Ms(η)

r �� Mr(s(η))
π �� Mv.

To do this we need to introduce yet more notation.
Let t ∈ T(v) be any tail. Let γ ∈ Γu with a contraction γ → r(s(η)).

Now, I ⊂ T(γ) and t ∈ T(γ) \ I. For e ∈ E(γ), let γe be the graph obtained
by contracting all edges except e. We define S(e, t, I) ∈ {0, 1} to be 1, if and
only if t is in a vertex of γe that is contracted after forgetting the tails I. This
happens if and only if γe looks like

where v1, v2 are the vertices of γe, the genus g(v1) = 0, and the class a(v1) =
0 ∈ A. Define S(e, t, I) = 0 otherwise. Observe that for each e ∈ E(γ), there
is at most one t ∈ T(v) ↪→ T(γ) such that S(e, t, I) = 1.

Lemma 4.1.1. For each t ∈ T(v),

π∗ψt = ψt −
∑

f :γ→r(s(η))

[Mf ]S(e, t, I)

where the sum is over f : γ → r(s(η)) with #E(γ) = #E(f) = 1, and e ∈ E(γ)
is the unique edge.

Proof. This is a rephrasing of a standard result.

Corollary 4.1.2. For each t ∈ T(v),

r∗π∗ψt = m(t)ψt −
∑

f :γ→s(η)

[Mf ]m(e)S(e, t, I)

where the sum is over f : γ → s(η) with #E(γ) = #E(f) = 1, and e ∈ E(γ) is
the unique edge.
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Corollary 4.1.3. For each t ∈ T(v),

s∗r∗π∗ψt = m(t)ψt −
∑

f :γ→η

[Mf ]
∑

e∈E(s(γ))

m(e)S(e, t, I)

where the sum is over f : γ → η with #E(t(γ)) = #E(f) = 1.

For each tail t ∈ T(v), let zt be a formal parameter. For each map γ → η

in Γc, and for each edge e ∈ T(t(η)) or tail t ∈ T(t(η)), define formal parameters
we and wt. We impose the relations between z and w parameters:

• For t ∈ T(t(η)), wt =
∑

t′∈p−1(t)∩T(v) m(t′)zt′ where the sum is over tails
of T(v) ↪→ T(s(η)) lying over t.

• For e ∈ E(t(γ)), we =
∑

e′∈p−1(e)

∑
t∈T(v) m(e′)S(e′, t, I)zt.

Proposition 4.1.4. With this notation,

s∗r∗π∗e
∑

t∈T(v) ztψt =
∑

f :γ→η

i∗

[Mf ]e
∑

t∈T(t(γ)) wtψt

∏
e∈E(t(γ))

1 − eweψe

ψe


(4.1.1)

where the sum is over isomorphism classes of maps f : γ → η, and i : Mf ↪→
Mη is the inclusion.

Proof. When all variables z, w are zero, both sides are evidently equal.
Now apply the operator d

dzt
to both sides; it suffices to show that d

dzt
acts by

intersection with s∗r∗π∗ψt on the right-hand side. This follows from Corollary
4.1.3, and Lemma 4.0.1.

4.2. Pullbacks from Deligne-Mumford space. Let v ∈ Υu, be such that
g(v) = 0 and #T(v) ≥ 3. There is a map

π : Mv → M0,T(v)

where M0,T(v) is the usual Deligne-Mumford stack of genus 0 stable curves.
This map is flat; this follows from the analogous result in [4]. Suppose #T(v) ≥
4. For each distinct i, j, k, l ∈ T(v), there is a map

M0,T(v) → M0,{i,j,k,l}.

In the usual way, by pulling back two rationally equivalent divisors on M0,{i,j,k,l}
∼= P1, we get the associativity equation on Mv:∑

fij|jk:γ→v

[Mfij|kl
] =

∑
fik|jl:γ→v

[Mfik|jl
]

where the left-hand side, is the sum over graphs γ → v, such that #E(γ) = 1,
and the tails i, j and k, l are on separate vertices of γ; and similarly for the
right-hand side.
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For each vertex ν ∈ Υt, with g(ν) = 0 and #T(ν) ≥ 4, pulling this relation
back from the map Mν → Mr(ν), we get the associativity relations on Mν :∑

fij|jk:γ→v

[Mfij|kl
]m(e) =

∑
fik|jl:γ→v

[Mfik|jl
]m(e)

where, as before, the graphs γij|kl have one edge, e, and the tails i, j and k, l

are in different vertices of γ.
For v ∈ Υu with g(v) = 0 and #T(v) ≥ 3 as before, and for each distinct

i, j, k ∈ T(v) consider the map p : M0,T(v) → M0,{i,j,k}. Because this is a
point, ψi = 0 on M0,{i,j,k}. It follows that, on Mv, we have the equation

ψi =
∑

fi|kl:γ→v

[Mfi|kl
]

where the sum is over graphs fi|kl : γ → v, such that #E(v) = 1, and the tails
i and {k, l} are on different vertices.

Now let ν ∈ Υt, be such that g(η) = 0 and #T(η) ≥ 3. Pulling back this
relation from Mr(ν) to Mν , gives us, for each i, j, k ∈ T(ν),

m(i)ψi =
∑

fi|kl:γ→v

[Mfi|kl
]m(e)

where the sum is over maps fi,|kl : γ → v where e ∈ E(γ) is the unique edge,
and the tails i and {k, l} are on different vertices of γ.

Finally, observe that for each η ∈ Γc with t(η) having only one vertex, we
can pull these relations back via the étale map Mη → Mt(η) in an obvious way.

5. Virtual fundamental classes

I will use the Behrend-Fantechi [5] construction of virtual fundamental
classes.

Let F be a Deligne-Mumford stack, V an Artin stack, and suppose there is
a map F → V . A perfect relative obstruction theory [5] is a two-term complex
of vector bundles E = E−1 → E0 on F , together with a map

E → L∗
F/V

in the derived category D(F ) to the relative cotangent complex L∗
F/V , which

is an isomorphism on H0 and surjective on H−1.
Associated to a perfect relative obstruction theory, Behrend and Fantechi

in [5] associate a cone C ↪→ (E−1)∨, and define the virtual fundamental class

[F, E] ∈ A∗F, [F, E] = s∗[C]

where s : F ↪→ E is the zero section. Here s∗ is the Gysin map, which is defined
to be the inverse of the pull-back isomorphism π∗ : A∗F → A∗E. Behrend-
Fantechi show that [F, E] only depends on the quasi-isomorphism class of E.
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Let me recall some of the details of their construction. The relative in-
trinsic normal cone of a map F → V , CF/V , is a cone stack over F , with the

property that if locally we factor F → V into F
i

↪→ M
p→ V , where i : F ↪→ M

is a closed embedding and p : M → V is smooth, then, CF/V is the quotient
stack

CF/V = [CF/M/i∗TM/V ].

Here CF/M is the usual normal cone, which is acted on by the additive group
scheme i∗TM/V .

Suppose we have a perfect relative obstruction theory E → L∗
F/V . Let

E1 = E−1∨ and E0 = E0∨. One can show that there is a closed embedding
CF/V ↪→ [E1/E0], where [E1/E0] is the quotient stack. Form the Cartesian
diagram

C ��

��

E1

��
CF/V �� [E1/E0]

where the vertical arrows are smooth, the horizontal arrows are closed embed-
dings, and C → F is a usual cone, in particular a scheme over F . We then
define

[F, E] = s∗[C]

where s : F ↪→ E1 is the zero section.
Let X ′, X be pure dimensional schemes of the same dimension, with X

irreducible, and let f : X ′ → X be a map between them. We say f is of
degree d, if f∗OX′ is of rank d over the generic point of X. If X is not
irreducible, we say f is of pure degree d if it is of degree d for every irreducible
component of X. This property is local in the smooth topology of X. That is,
if U → X is a surjective smooth map, and U ′ = X ′ ×X U , then U ′ → U is of
pure degree d if and only if X ′ → X is. Further, this property is local in the
étale topology of X ′, in the following sense. For each irreducible component Xi

of X, pick an étale cover
∐

j Uij → X ′
i, where Uij are connected and Uij → X ′

i

is of degree eij . Then,

deg(X ′
i/Xi) =

∑
j

deg(Uij/Xi)
eij

.

Let V ′, V be Artin stacks of the same pure dimension, and let V ′ → V be
a map of relative Deligne-Mumford type. This means that for every scheme
U → V , U ×V V ′ → U is a Deligne-Mumford stack. We say V ′ → V is of pure
degree d, if for some smooth surjective map U → V from a scheme, for each
irreducible component Ui of U , for some étale atlas

∐
j U ′

ij → U ′
i = V ′ ×V Ui,

with U ′
ij → U ′

i of degree eij , d =
∑

j deg(U ′
ij/Ui)/eij .
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This property does not depend on the choices of smooth and étale atlases,
because for schemes it is local in the smooth and étale topologies, as above.
In particular, if V ′, V are DM stacks, then this definition, using the smooth
topology for V , agrees with the definition using the étale topology for V .

Theorem 5.0.1. Suppose there is a Cartesian diagram

F2
f ��

p2

��

F1

p1

��
V2 g

�� V1,

(5.0.1)

such that:

• Fi are Deligne-Mumford stacks.

• Vi are Artin stacks of the same pure dimension.

• g is a morphism of relative Deligne-Mumford type, and of pure degree d

for some d ∈ Q≥0.

• f is proper.

• F1 → V1 has perfect relative obstruction theory E1, inducing a perfect
relative obstruction theory E2 = f∗E1 on F2 → V2.

Then

f∗[F2, E2] = d[F1, E1].

Proof. Let CFi/Vi
be the relative intrinsic normal cone stack. First, we

reduce the problem to proving that CF2/V2
→ CF1/V1

is of pure degree d (observe
that CFi/Vi

are of the same pure dimension). When E1 = E−1
1 → E0

1 , let E1,1 =
E−1

1
∨ and E1,0 = E0

1
∨. Recall that we have a closed embedding CF1/V1

↪→
[E1,1/E1,0], where this is the stack quotient. Let C1 = CF1/V1

×[E1,1/E1,0] E1,1.
Now, C1 is an ordinary cone, so that C1 → F1 is a scheme, and there is a
closed embedding C1 ↪→ E1,1. In a similar way define C2 ↪→ E2,1. The map
C1 → CF1/V1

is smooth and surjective, and C2 = CF2/V2
×CF1/V1

C1. Now,
CF2/V2

→ CF1/V1
, being of pure degree d, is equivalent to C2 → C1 being of

pure degree d. Form the diagram

C2
��

��

C1

��
E2,1

f ′
��

p2

��

E1,1

p1

��
F2

f �� F1.
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By definition, p∗i [Fi, Ei] = [Ci] in A∗Ei,1. To show f∗[F2, E2] = d[F1, E1] is
equivalent to showing f ′

∗[C2] = d[C1], for which it is enough to show that
C2 → C1 is of pure degree d.

To do this we work locally, and reduce to the case of schemes. We pick
a local chart U1 → V1, where U1 is an irreducible scheme, and U1 → V1 is
smooth. Pick an étale map of degree n, U2 → U1×V1 V2, where U2 is a scheme,
and an étale map from a scheme X1 → F1. By possibly passing to smaller
charts, we can pick a factorization of the map X1 → U1 into X1 ↪→ M1 → U1,
where M1 is a scheme, X1 ↪→ M1 is a closed embedding, and M1 → U1 is
smooth. Without loss of generality, we can assume that U2, X1 and M1 are
irreducible. We have a diagram

X2
fX ��

i2
��

X1

i1
��

M2
fM ��

p2

��

M1

p1

��
U2

fU �� U1,

where U2 → U1 and M2 → M1 are of degree dn. It is sufficient to show that
CX2/U2

→ CX1/U1
is of pure degree dn. Also, CXi/Ui

= [CXi/Mi
/i∗i TMi/Ui

],
where CXi/Mi

is the usual normal cone. Since f∗
MTM1 = TM2 , it is sufficient to

show that the map CX2/M2
→ CX1/M1

is of pure degree dn, and we now have
the case of closed embeddings of schemes.

Now, we prove it in this case using the flat deformation to the normal
cone, as in [17], and the fact that the degree is constant in a flat family of
maps. Let Zi be the blowup of Mi × P1 along Xi × {∞}. Let M ′

i be the
blowup of Mi along Xi. There is a commutative diagram

Z2
g ��

f2 ���
��

��
��

� Z1

f1

��
P1.

The maps fi : Zi → P1 are flat, and f−1
i (∞) = P(Ci ⊕ 1) + M ′

i , as Cartier
divisors, with multiplicity. Clearly Z2 → Z1 is of pure degree dn, as is M ′

2 →
M ′

1. It follows that the map P(C2⊕1) → P(C1⊕1) is of pure degree dn. There
are open embeddings Ci ↪→ P(Ci⊕1), which implies C2 → C1 is of pure degree
dn as desired.
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6. Finite degree theorem

Let v ∈ Υu. We want to construct η ∈ Υc, together with a set of tails
A ⊂ T(s(η)), such that:

• s(η) has just one vertex,

• v is obtained from r(s(η)) by removing the tails A,

• g(t(η)) = 0,

• dimMη = dimMv and the map Mη → Mv is of degree d ∈ Q>0.

The idea is quite simple: if C ∈ Mv is a generic genus g(v) curve with some
marked points Pi, and D =

∑
λiPi is a positive divisor of degree g + 1, there

is a unique (up to isomorphism) map f : C → P1 with f−1(∞) = D. If
everything is generic this map is simply ramified. There is a unique étale map
of twisted curves C → C̃, such that the map C̃ → BSg+1 is representable, which
yields the ramified map f : C → P1 after taking coarse moduli spaces. We let
η be the combinatorial data which labels this étale map C → C̃, together with
the marked points. There is a map Mη → Mv, which is generically finite.

Let us construct η more formally. We assume that g(v) > 0 and T(v) �= ∅.
Pick a partition T(v) = I

∐
J into subsets, and a multiplicity function d : I →

Z>0, with
∑

i∈I d(i) = g + 1. We define the covering η = s(η) � t(η), by

• s(η), t(η) have just one vertex,

• g(t(η)) = 0 and g(s(η)) = g,

• a(s(η)) = a(t(η)) = a(v) ∈ A.

• For k ∈ Z>0 let [k] be the finite set {1, . . . , k}. Then define,

T(t(η)) = J
∐

{∞}
∐

[k]

where

k
def= #I + 3g − 1.

• The degree of η is g + 1.

• The tails of s(η) are

T(s(η)) = (J × [g + 1])
∐

I
∐

([g] × [k]).

• The map T(s(η)) → T(t(η)) sends I → ∞, and is the natural product
map on the other factors,

J × [g + 1] → J, [g] × [k] → [k].
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• We define the multiplicity function m on T(t(η)) where m(∞) is the
lowest common multiple of d(i) for i ∈ I, m(j) = 1 for j ∈ J and
m(r) = 2 for r ∈ [k].

• We define the multiplicity function on s(η) where m(i) = m(∞)/d(i) for
i ∈ I, m(r, j) = 1 for (r, j) ∈ [g + 1]× J , and on [g]× [k] m is defined by

m(1, s) = 1, m(r, s) = 2 if r > 1.

This implies that for (r, s) ∈ [g] × [k],

d(1, s) = 2, d(r, s) = 1 if r > 1.

The Riemann-Hurwitz formula becomes

2g − 2 = −2(g + 1) + g + 1 − #I + k

which is true by our choice of k. The formulae for the dimensions of Mη and
Mv are

dimMη = k + #J − 2, dimMv = 3g − 3 + #I + #J

which are equal.
The map Mη → Mv, comes from forgetting the tails

(J × [g])
∐

([g] × [k]) ↪→ (J × [g + 1])
∐

([g] × [k])
∐

I = T(s(η)).

Lemma 6.0.1. The map Mη → Mv is of degree

k!(g!)#J((g − 1)!)k

2km(∞)
.

Proof. Let C ∈ Mv be generic, and define a divisor D =
∑

i∈I d(i)i ⊂ C.
Now, deg D = g + 1 and D > 0. For a generic curve with generic marked
points C, I claim that there is a unique up to isomorphism map f : C → P1

with f−1(∞) = D, and further f is simply ramified.
Let D′ be a divisor on C with 0 ≤ D′ < D. Let I ′ ⊂ I be the set of

points which occur with nonzero multiplicity in D′. Firstly, we would like to
show that the locus of smooth curves C which admit a map f : C → P1 with
f−1(∞) = D′ is of positive codimension in Mv. Any such curve C ∈ Mv, with
its marked points, is determined up to finite ambiguity by the branch points
in P1 of the map f : C → P1, up to C � C∗-action, and by the marked points
J

∐
(I \ I ′) ⊂ C. It follows from the Riemann-Hurwitz formula that f has

strictly less than 3g− 1+#I ′ branch points. The C � C∗-action on P1 reduces
the dimension of the space of possible branch points by 2; so we find that the
moduli space of smooth curves C with marked points, which admit such a map
f : C → P1, is of dimension strictly less than 3g − 3 + #J + #I. That is, it is
of positive codimension in Mv.
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This implies that for a generic curve C, for all 0 ≤ D′ < D,
dimH0(C,OC(D′)) = 1. Riemann-Roch tells us that dimH0(C,OC(D)) ≥ 2.
Take D′ to be of degree g. We must have H1(C,OC(D′)) = 0, which im-
plies H1(C,OC(D)) = 0 and dimH0(C,OC(D)) = 2. This last fact implies
that there is precisely one map f : C → P1, up to isomorphism, such that
f−1(∞) = D. I claim that if C is generic, this map is simply ramified. One
can see this by observing, using the Riemann-Hurwitz formula as before, that
the locus of smooth curves C ∈ Mv which admit a map f : C → P1 with
f−1(∞) = D and nonsimple ramification is of positive codimension.

The degree of our map Mη → Mv can now be calculated from different
ways of ordering tails of η, and automorphisms of twisted curves in Mη over
their coarse moduli space.

7. Stable curves in X

Let X be a smooth projective variety. Let C(X) be the cone of effective
one-cycles in X modulo numerical equivalence. C(X) is a semigroup with
indecomposable zero and finite decomposition. We define our categories of
graphs and vertices using C(X).

For every γ ∈ Γu, we have [4] the moduli stack Mγ(X) of stable maps to X

of type γ where Mγ(X) is a separated, proper Deligne-Mumford stack of finite
type. There is a map Mγ(X) → Mγ , with a perfect relative obstruction theory
(Rπ∗f∗TX)∨, where π : C → Mγ(X) is the universal curve and f : C → X the
universal map. The target Mγ for this perfect relative obstruction theory is
slightly different from the version used in Behrend’s construction [4], because of
the labellings by elements of the semigroup A. The virtual fundamental classes,
however, are the same. This follows from the fact that the map Mg,n,a → Mg,n

is étale.
Suppose we have a map γ′ → γ in Γu. Then there is a fibre square,

Mγ′(X) ��

p′

��

Mγ(X)

p

��
Mγ′ �� Mγ .

Further, the perfect relative obstruction theory of p′ is pulled back from that
of p.

If γ′ is obtained from γ by adding on some tails, then we have a fibre
square exactly as above, and again the perfect relative obstruction theory of
p′ : Mγ′(X) → Mγ′ is pulled back from that of p : Mγ(X) → Mγ .
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If γ′ is obtained by cutting an edge of γ, then Mγ′ = Mγ and we have a
fibre square,

Mγ(X) ��

��

Mγ′

��
X × Mγ

	 �� X × X × Mγ′ .

The perfect relative obstruction theories of Mγ′(X) and Mγ(X) over Mγ′ =
Mγ are compatible with this Cartesian diagram, in the sense of [5, §7].

Let η ∈ Γc. Define Mη(X) by the Cartesian square

Mη(X)
(r◦s)X��

��

Mr(s(η))

��
Mη

r◦s �� Mr(s(η)).

This is the stack of diagrams C ← C′ → X, where C′ → C is a map from Mη

and, if C ′ is the coarse moduli space of C′, the map C ′ → X is a stable map
from Mr(s(η))(X). Give Mη(X) → Mη the perfect relative obstruction theory
pulled back from that for Mr(s(η))(X) → Mr(s(η)).

If η′ → η is a map in Γc, then we have a fibre square

Mη′(X) ��

p′

��

Mη(X)

p

��
Mη′ �� Mη

and the perfect relative obstruction theory for p′ is pulled back from that for p.
Let η ∈ Γc and let e ∈ E(t(η)). Let I ⊂ E(s(η)) be the set of edges

lying over e. Let η′ ∈ Γc be obtained from η by cutting the edges e, I. Then,
Mη′ = Mη, and we have a Cartesian diagram

Mη
��

��

Mη′

��
Mη × XI 	 �� Mη′ × (X2)I

which is compatible with perfect relative obstruction theories over Mη = Mη′ .
Observe that since Mη → Mt(η) is étale, Mη(X) has a perfect relative

obstruction theory over Mt(η) also.

7.1. Stable maps to symmetric products. We have described stacks of
stable maps to a smooth projective variety X. We also have stacks of stable
maps to a smooth DM stack V , as defined by Abramovich and Vistoli in [3].
We are interested in these when V = SdX. We need something to play the
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role of the cone of curves in X, that is, to hold homology classes of curves.
We simply use again C(X), the semigroup of effective one cycles on X up to
numerical equivalence. For γ ∈ Γt(C(X)) = Γt, let Mγ(SdX) be the stack
of stable representable maps from curves in Mγ to SdX, in a way compatible
with the C(X)-markings on the curve.

Lemma 7.1.1. For a covering γ′ � γ, let Aut(γ′ | γ) be the group of
automorphisms γ′, commuting with the covering γ′ � γ. Then,

Mγ(SdX) =
∐

γ′�γ

Mγ′�γ(X)/ Aut(γ′ | γ)

where the union is over all γ′ � γ of degree d. Further, this identification is
compatible with perfect relative obstruction theories over Mγ.

Proof. The isomorphism at the level of stacks follows from Section 2.2. We
need to prove compatibility of perfect relative obstruction theories. Suppose
we have a representable stable map f : C → SdX, corresponding to a diagram
C p′

← C′ f ′

→ X, and equivalently to a principal Sd bundle p : P → C, where P

is an algebraic space, and an Sd-equivariant map g : P → Xd. The perfect
relative obstruction theory for stable maps to SdX, is given by H∗(C, f∗TSdX).
But,

f∗TSdX = pSd
∗ g∗TXd = p′∗f

′∗TX.

Observe p′∗ and pSd∗ are exact. Let g′ : C ′ → X be the map from the coarse
moduli space of C′ to X, and let m : C′ → C ′ be the canonical map. Observe
that m∗ is exact, and f ′ = g′ ◦ m : C′ → X. Now,

H∗(C, f∗TSdX) = H∗(C′, f
′∗TX)

= H∗(C′, m∗g
′∗TX)

= H∗(C ′, g
′∗TX)

as desired.

There are evaluation maps Mγ′�γ(X) → XT(γ′). These come from the
evaluation maps

Mγ(SdX) → twisted sectors of SdX

which are used to define quantum cohomology of SdX. The stack of twisted
sectors Ṽ of a DM stack V is the stack of cyclic gerbes in V [2], [7],[31],

Ṽ =
∐
k≥1

HomRep(Bµk, V ).

We can identify S̃dX with a disjoint union
∐

σ∈Sd∗
((Xd)σ)/C(σ), where the

disjoint union is over conjugacy classes in Sd, σ is a representative of each



HIGHER GENUS GROMOV-WITTEN INVARIANTS 593

conjugacy class, (Xd)σ is the σ-fixed points and C(σ) is the centralizer of σ.
There is a commutative diagram of evaluation maps

Mγ′�γ(X) ev ��

��

XT(γ′)

��

Mγ(SdX) ev �� (S̃dX)T(γ).

Further, the tautological ψ-classes on Mγ(SdX) are pulled back to ψ

classes on Mγ′�γ(X). Thus one can identify integrals of the form∫
[Mγ′�γ ]virt

∏
t∈T(γ)

ψkt

t

∏
t′∈T(γ′)

ev∗t′ht′

where ht′ ∈ H∗(X), with Gromov-Witten invariants of SdX.

8. From genus g invariants of X to genus 0 invariants of SdX

Let v ∈ Υu, so that v labels a stack of stable maps to X. Assume g(v) > 0
and #T(v) > 0. We will use the notation of Section 6. There we constructed
η ∈ Υc, such that v is obtained by removing some tails of r(s(η)), and g(t(η))
= 0. The associated map

Mη → Mv

was shown to be of degree

n
def=

k!(g!)#J((g − 1)!)k

2km(∞)
.

Form the fibre square

Mη(X)
q ��

��

Mv(X)

��
Mη �� Mv.

Lemma 8.0.2. The map q : Mη(X) → Mv(X), is of degree n, in the
virtual sense,

q∗[Mη(X)]virt = n[Mv(X)]virt.

Proof. We apply Theorem 5.0.1. Observe that Mη → Mv is relatively
of Deligne-Mumford type and generically finite of degree n, Mη and Mv are
algebraic stacks, and that Mη(X) → Mv(X) is proper.
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We have seen in Section 4 how to express the pulled-back tautological
classes p∗ψt, and their products, for t ∈ T(v), in terms of tautological classes
pushed forward under contractions ρ → η in Γc. Let us combine this result
with the previous one to calculate Gromov-Witten invariants of X in terms of
integrals over Mρ(X), which are genus 0 invariants of SdX.

We have a commutative diagram

XT(η)
π �� XT(v)

Mη(X)
q ��

evη

��

cη

��

Mv(X)

evv

��

cv

��
Mη

p �� Mv.

(8.0.1)

The integrals we want to calculate are∫
[Mv(X)]virt

c∗ve
∑

t∈T(v) ztψtev∗vα

where α ∈ H∗XT(v).
Let us recall some of the notation of Section 4.1. For each map f : ρ → η

in Γc, we defined

‖f‖ =
# Aut(ρ → η | η)∏

e∈E(t(ρ)) m(e)2

where Aut(ρ → η | η) is the group of automorphisms of ρ commuting with the
contraction ρ → η, or equivalently (in this special case) fixing all tails.

Let I⊂T(s(η)) be the set of tails we forget to obtain v. For each f : ρ→η,
each edge e ∈ E(s(ρ)), and each tail t ∈ v, we defined S(e, t, I) ∈ {0, 1} as
follows. Let s(ρ)e be obtained from contracting all edges other than e. If the
vertex of s(ρ)e containing t becomes unstable after forgetting the tails I, we
set S(e, t, I) = 1; otherwise S(e, t, I) = 0.

For each tail t ∈ T(v), define a formal variable zt, and for each edge
e ∈ E(t(ρ)), define a variable we, with the relations

we =
∑

e′∈p−1(e)⊂E(s(ρ))

m(e′)S(e′, t, I)zt.

Using this notation, we have
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Theorem 8.0.3 (Main theorem).

(8.0.2)
∫

[Mv(X)]virt

c∗ve
∑

t∈T(v) ztψtev∗vα

=
∑

f :ρ→η

1
n‖f‖

∫
[Mρ(X)]virt

c∗ρ

e
∑

t∈T(t(ρ)) wtψt

∏
e∈E(t(ρ))

1 − eweψe

ψe

 ev∗ρπ
∗α.

The left-hand side is the general form for descendent genus g invariants of X.
The right-hand side is an expression in the genus 0 invariants of the symmetric
product stack Sg+1X.

Proof. Firstly, the projection formula shows that∫
[Mv(X)]virt

c∗ve
∑

t∈T(v) ztψtev∗vα = 1
n

∫
[Mη(X)]virt

q∗c∗ve
∑

t∈T(v) ztψtq∗ev∗vα.

The formula 4.1.1 shows that

q∗c∗ve
∑

t∈T(v) ztψt = c∗η

 ∑
f :ρ→η

e
∑

t∈T(t(ρ)) wtψt

∏
e∈E(t(ρ))

1 − eweψe

ψe
c∗η[Mf ]

 .

Now, for each term in the sum, Mρ → Mf is étale of degree ‖f‖. The standard
compatibility of virtual fundamental classes shows that

c∗η[Mf ] = 1
‖f‖f∗[Mρ(X)]

where f∗ : Mρ(X) → Mη(X) is the canonical map. This implies the result.

9. Examples

9.1. Generalities. I will calculate some examples in the case where X is
a point. We will work with the semigroup A = 0. For each η ∈ Υc, we have
the associated moduli stack Mη, with a map

p : Mη → Mg(t(η)),T(t(η)).

The stack Mg(t(η)),T(t(η)) is the usual Deligne-Mumford stack of stable curves.
It follows from the results of [1] that Mη is closely related to the normalization
of a stack of admissible covers.

In this section, we will always assume g(t(η)) = 0, and that #T(t(η)) = n.
Further, we pick an ordering on the set T(t(η)), and so obtain an isomorphism

T(t(η)) ∼= [n] = {1, . . . , n}.
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The map p is now a map Mη → M0,n; we want to calculate its degree.
For each vertex v ∈ V(s(η)), and tail t′ ∈ T(s(η)), recall we have numbers
d(v), d(t′) ∈ Z≥1. Let i ∈ [n] ∼= T(t(η)). Then, the set

{d(t′) | t′ ∈ p−1(i) ⊂ T(s(η)), t′ is attached to v}
defines a partition of d(v), and so a conjugacy class Ci,v ⊂ Sd(v). Let

χ(v) = {σi ∈ Sd(v) for i = 1 . . . n | σi ∈ Ci,v,
n∏

i=1

σi = 1,

#([d(v)]/ 〈σ1, . . . , σn〉) = 1}.
The last condition means that the group 〈σ1, . . . , σn〉 acts transitively on the
set [d(v)] = {1, . . . , d(v)}.

Let Aut(η | t(η),V(s(η))) be the group of automorphisms of η acting
trivially on t(η) and the set of vertices V(s(η)).

Proposition 9.1.1. The map Mη → M0,n is of degree

# Aut(η | t(η),V(s(η)))∏n
i=1 m(i)

∏
v∈V(s(η))

χ(v)
d(v)!

.

Recall that for each i ∈ [n],

p∗ψi = m(i)ψi.

Let ki ∈ Z≥0, for i = 1 . . . n. We have∫
Mη

n∏
i=1

ψki

i =
# Aut(η | t(η),V(s(η)))∏n

i=1 m(i)ki+1

∏
v∈V(s(η))

χ(v)
d(v)!

∫
M0,n

n∏
i=1

ψki

i(9.1.1)

which allows us, at least in principle, to calculate the integrals on the left-hand
side.

9.2. Calculations. The first example we will compute is

Example 9.2.1. ∫
M1,1

ψ1 = 1/24.

We define η by
• s(η) has just one vertex; g(s(η)) = 1 and g(t(η)) = 0.
• The tails are

T(s(η)) = {X1, X2, X3, X4}, d(Xi) = 2, m(Xi) = 1,

T(t(η)) = {x1, x2, x3, x4}, m(xi) = 2.

• The map T(s(η)) → T(t(η)) sends Xi �→ xi.
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Forgetting the marked points X2, X3, X4 gives us a map

π : Mη → M1,1.

Now we apply the main theorem. Note that the only graph f : ρ → η that arises
with nonzero coefficient on the right-hand side of (8.0.2) is ρ = η. Therefore∫

M1,1

ψ1 = 3−1 · 23

∫
Mη

ψ1.

Next, we apply formula (9.1.1). In this case, χ(v) = 1 for the unique vertex
v ∈ V(s(η)), and # Aut(η | t(η),V(s(η))) = 1, so we find that∫

Mη

ψ1 = 2−6

∫
M0,4

ψ1 = 2−6.

Combining these formulae yields∫
M1,1

ψ1 = 1/24.

Next we calculate

Example 9.2.2. ∫
M2,1

ψ4 = 1/1152 = 2−73−2.

One can see this is correct by applying the Kontsevich-Witten theorem. We
define η ∈ Υc in this case by

• s(η) has just one vertex, with g(s(η)) = 2 and g(t(η)) = 0.

• We define the sets of tails by

T(s(η)) = {X1, X2, Y2, X3, Y3, . . . , X7, Y7},
T(t(η)) = {x1, x2, x3, . . . , x7}

with the map T(s(η)) → T(t(η)), sending Xi �→ xi and Yj �→ xj .

• The multiplicities of these tails are defined by

d(X1) = 3, d(Xi) = 2 if i ≥ 2,

m(Xi) = 1 for all i,

d(Yi) = 1, m(Yi) = 2,

m(x1) = 3, m(xi) = 2 if i ≥ 2.

Forgetting the marked points Xi, Yi for all i ≥ 2, gives a map

π : Mη → M2,1.

Now we apply the main formula (8.0.2). In this case, we find that there are
nontrivial graphs f : ρ → η appearing on the right-hand side. For each i =
2 . . . 7 define a graph ρi ∈ Γc with a map fi : ρi → η, as follows.
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• s(ρi) has 3 vertices, V1, V2, W2, and t(ρi) has two vertices v1, v2. The
map V(s(ρi)) → V(t(ρi)) sends Vi → vi and W2 → v2.

• The genera of the vertices are given by

g(vi) = 0, g(V1) = g(W2) = 0, g(V2) = 2.

• There are an edge e joining v1 and v2, an edge E joining V1 and V2, and
an edge F joining V1 and W2. The multiplicities of these edges are given
by

m(e) = 2, m(E) = 1, m(F ) = 2,

d(E) = 2, d(F ) = 1.

• The sets of tails of the vertices are given by

T(V1) = {X1, Xi, Yi}, T(V2) = {Xj | j �= 1, i}, T(W2) = {Yj | j �= i},
T(v1) = {x1, xi}, T(v2) = {xi | i �= 1, i}.

Observe that after contracting the edge F , X1 is on a genus 0 vertex that
becomes unstable after removing the other marked points. This implies fi :
ρi → η occurs with nonzero coefficient in the expansion in the main formula
(8.0.2). In fact, ρi are the only nontrivial graphs which occur. We have 1

‖fi‖
= 4. Note also that on Mρi

, ψ1 = 0 because the marked point x1 is on a genus
0 curve with two marked points and one edge. Applying the main formula, we
see ∫

M2,1

ψ4 =
26 · 3

6!

(∫
Mη

ψ4
1 − 4

7∑
i=2

∫
Mρi

ψ3
e

)
.

Next, we apply formula (9.1.1) to calculate
∫
Mη

ψ4
1. One can calculate

easily that

#{σ1, σ2, . . . , σ7 ∈ S3 | σ1 is a 3-cycle,

σi are transpositions for i ≥ 2,
∏

σj = 1} = 35 · 2.

Further, # Aut(η | t(η),V(s(η))) = 1, so that∫
Mη

ψ4
1 = 2−6 · 3−1

∫
M0,7

ψ4
1 = 2−6 · 3−1.

Now we calculate
∫
Mρi

ψ3
e . As in subsection 3.2, Mρi

splits as a product of
contributions from the vertices of t(ρi). Let p : V(s(ρi)) → V(t(ρi)) be the
natural map. For each v ∈ V(t(ρi)), let p−1(v) � v ∈ Υc be the natural
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covering, whose tails consist of tails and germs of edges in ρi at the vertices
v, p−1(v). We have

Mρi
=

∏
v∈V(t(ρi))

Mp−1(v)�v.

This implies that integrals split in a similar way. There are two vertices v1, v2

on t(ρi). We have p−1(v1) = V1 and p−1(v2) = {V2, W2}. Further,

dimMp−1(v1)�v1
= 0.

Denote by e the germ of the edge at v2, which we consider as a tail. We have∫
Mρi

ψ3
e =

(∫
Mp−1(v1)�v1

1

)
×

(∫
Mp−1(v2)�v2

ψ3
e

)
.

An easy application of formula (9.1.1) now shows that∫
Mp−1(v1)�v1

1 = 3−1 · 2−2

∫
Mp−1(v2)�v2

ψ3
e = 2−10.

Finally, we see that∫
M2,1

ψ4 =
26 · 3

6!
(
2−6 · 3−1 − 24 · 2−12 · 3−1

)
= 2−7 · 3−2

as desired.
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