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A geometric Littlewood-Richardson rule

By Ravi Vakil*

Abstract

We describe a geometric Littlewood-Richardson rule, interpreted as de-

forming the intersection of two Schubert varieties into the union of Schubert

varieties. There are no restrictions on the base field, and all multiplicities aris-

ing are 1; this is important for applications. This rule should be seen as a

generalization of Pieri’s rule to arbitrary Schubert classes, by way of explicit

homotopies. It has straightforward bijections to other Littlewood-Richardson

rules, such as tableaux, and Knutson and Tao’s puzzles. This gives the first

geometric proof and interpretation of the Littlewood-Richardson rule. Geo-

metric consequences are described here and in [V2], [KV1], [KV2], [V3]. For

example, the rule also has an interpretation in K-theory, suggested by Buch,

which gives an extension of puzzles to K-theory.
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1. Introduction

A Littlewood-Richardson rule is a combinatorial interpretation of the

Littlewood-Richardson numbers. These numbers have a variety of interpre-

*Partially supported by NSF Grant DMS-0228011, an AMS Centennial Fellowship, and
an Alfred P. Sloan Research Fellowship.



372 RAVI VAKIL

tations, most often in terms of symmetric functions, representation theory,

and geometry. In each case they appear as structure coefficients of rings. For

example, in the ring of symmetric functions they are the structure coefficients

with respect to the basis of Schur polynomials.

In geometry, Littlewood-Richardson numbers are structure coefficients of

the cohomology ring of the Grassmannian with respect to the basis of Schu-

bert cycles (see §1.4; Schubert cycles generate the cohomology groups of the

Grassmannian). Given the fundamental role of the Grassmannian in geome-

try, and the fact that many of the applications and variations of Littlewood-

Richardson numbers are geometric in origin, it is important to have a good

understanding of the geometry underlying these numbers. Our goal here is to

prove a geometric version of the Littlewood-Richardson rule, and to present

applications, and connections to both past and future work.

The Geometric Littlewood-Richardson rule can be interpreted as deform-

ing the intersection of two Schubert varieties (with respect to transverse flags

M· and F·) so that it breaks into Schubert varieties. It is important for appli-

cations that there be no restrictions on the base field, and that all multiplicities

arising are 1. The geometry of the degenerations are encoded in combinatorial

objects called checkergames; solutions to “Schubert problems” are enumerated

by checkergame tournaments.

Checkergames have straightforward bijections to other Littlewood-

Richardson rules, such as tableaux (Theorem 3.2) and puzzles [KTW], [KT]

(Appendix A). Algebro-geometric consequences are described in [V2]. The

rule should extend to equivariant K-theory [KV2], and suggests a conjectural

geometric Littlewood-Richardson rule for the equivariant K-theory of the flag

variety [V3].

Degeneration methods are of course a classical technique. See [Kl2] for

a historical discussion. Sottile suggests that [P] is an early example, proving

Pieri’s formula using such methods; see also Hodge’s proof [H]. More recent

work by Sottile provided inspiration for this work.

1.1. Remarks on positive characteristic. The rule we describe works

over arbitrary base fields. The only characteristic-dependent statements in the

paper are invocations of the Kleiman-Bertini theorem [Kl1, §1.2]. The appli-

cation of the Kleiman-Bertini theorem that we use is the following. Over an

algebraically closed field of characteristic 0, if X and Y are two subvarieties

of G(k, n), and σ is a general element of GL(n), then X intersects σY trans-

versely. Kleiman gives a counterexample to this in positive characteristic [Kl1].

Kleiman-Bertini is not used for the proof of the main theorem (Theorem 2.13).

All invocations here may be replaced by a characteristic-free generic smooth-

ness theorem [V2, Th. 1.6] proved using the Geometric Littlewood-Richardson

rule.
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Section Notation
introduced
1.2; 1.4; 1.5 Cl, K, k < n, Fl(a1, . . . , as, n), 〈·〉; Reck,n−k; Moving flag M·,

Fixed flag F·

2.1; 2.2 checker configuration, dominate, ≺; •, X•

2.3 specialization order, •init, •final, •next, descending checker (r, c),
rising checker, critical row r, critical diagonal

2.5–2.8 happy, ◦•, ◦, universal two-flag Schubert varieties X◦• and X◦•,

two-flag Schubert varieties Y◦• and Y ◦•, ◦A,B, mid-sort ◦
2.9; 2.10 D ⊂ ClG(k,n)×(X•∪X•next )

X◦•; phase 1, swap, stay, blocker,

phase 2, ◦stay, ◦swap

2.16; 2.18 checkergame; Schubert problem, checkergame tournament
4 quilt Q, dim, quadrilateral, southwest and northeast borders,

Bott-Samelson variety BS(Q) = {Vm : m ∈ Q},
stratum BS(Q)S , Q◦, 0

5.1 π, DQ ⊂ ClBS(Q◦)×(X•∪X•next )
X◦•

5.4; 5.6 label, content; a, a′, a′′, d
5.7–5.9 Wa, W••next , W•next ⊂ P(Fc/Vinf(a,a′′))

∗ → T
5.9 b, b′, western and eastern good quadrilaterals, DS

Table 1: Important notation and terminology

1.2. Summary of notation and conventions. If X ⊂ Y , let ClY X denote

the closure in Y of X. Span is denoted by 〈·〉. Fix a base field K (of any

characteristic, not necessarily algebraically closed), and nonnegative integers

k ≤ n. We work in G(k, n), the Grassmannian of dimension k subspaces of

Kn. Let Fl(a1, . . . , as, n) be the partial flag variety parametrizing {Va1
⊂ · · · ⊂

Vas
⊂ Vn = Kn}. Our conventions follow those of [F], but we have attempted

to keep this article self-contained. Table 1 is a summary of important notation

introduced.

1.3. Acknowledgments. The author is grateful to A. Buch and A. Knut-

son for patiently explaining the combinatorial, geometric, and representation-

theoretic ideas behind this problem, and for comments on earlier versions. The

author also thanks S. Billey, L. Chen, W. Fulton, and F. Sottile, and especially

H. Kley, D. Davis, and I. Coskun for comments on the manuscript.

1.4. The geometric description of Littlewood-Richardson coefficients. (For

more details and background, see [F].) Given a flag F· = {F0 ⊂ F1 ⊂ · · · ⊂ Fn}
in Kn, and a k-plane V , define the rank table to be the data dimV ∩ Fj

(0 ≤ j ≤ n). An example for n = 5, k = 2 is:

j 0 1 2 3 4 5

dimV ∩ Fj 0 0 1 1 1 2

If α is a rank table, then the locally closed subvariety of G(k, n) consisting

of those k-planes with that rank table is denoted Ωα(F·), and is called the
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Schubert cell corresponding to α (with respect to the flag F·). The bottom row

of the rank table is a sequence of integers starting with 0 and ending with k,

and increasing by 0 or 1 at each step; each such rank table is achieved by some

V . These data may be summarized conveniently in two other ways. First,

they are equivalent to the data of a size k subset of {1, . . . , n}, consisting of

those integers where the rank jumps by 1 (those j for which dimV ∩ Fj >

dimV ∩ Fj−1, sometimes called “jumping numbers”). The set corresponding

to the example above is {2, 5}. Second, they are usually represented by a

partition that is a subset of a k × (n − k) rectangle, as follows. (Denote such

partitions by Reck,n−k for convenience.) Consider a path from the northeast

corner to the southwest corner of such a rectangle consisting of n segments

(each the side of a unit square in the rectangle). On the j th step we move

south if j is a jumping number, and west if not. The partition is the collection

of squares northwest of the path, usually read as m = λ1 +λ2 + · · ·+λk, where

λj is the number of boxes in row j; m is usually written as |λ|. The (algebraic)

codimension of Ωα(F·) is |λ|. The example above corresponds to the partition

2 = 2 + 0, as can be seen in Figure 1.

k = 2

n − k = 3

⇐⇒ {2, 5}⇐⇒
5

4 3 2

1

Figure 1: The bijection between Reck,n−k and size k subsets of {1, . . . , n}.

The Schubert classes [Ωα] (as α runs over Reck,n−k) are a Z-basis of

A∗(G(k, n), Z), or (via Poincaré duality) A∗(G(k, n), Z); we will sloppily con-

sider these as classes in homology or cohomology depending on the context.

(We use Chow groups and rings A∗ and A∗, but the complex-minded reader

is welcome to use H2∗ and H2∗ instead.) Of course there is no dependence on

F·. Hence

[Ωα] ∪ [Ωβ] =
∑

γ∈Reck,n−k

cγ
αβ[Ωγ ]

for some integers cγ
αβ ; these are the Littlewood-Richardson numbers. The Chow

(or cohomology) ring structure may thus be recovered from the Littlewood-

Richardson numbers.

1.5. A key example of the rule. It is straightforward to verify (and we will

do so) that if M· and F· are transverse flags, then Ωα(M·) intersects Ωβ(F·)

transversely, so that [Ωα] ∪ [Ωβ] = [Ωα(M·) ∩ Ωβ(F·)]. We will deform M·

(the “Moving flag”) through a series of one-parameter degenerations. In each

degeneration, M· will become less and less transverse to the “Fixed flag” F·,

until at the end of the last degeneration they will be identical. We start with

the cycle [Ωα(M·)∩Ωβ(F·)], and as M· moves, we follow what happens to the
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cycle. At each stage the cycle will either stay irreducible, or will break into two

pieces, each appearing with multiplicity 1. If it breaks into two components,

we continue the degenerations with one of the components, saving the other for

later. At the end of the process, the final cycle will be visibly a Schubert variety

(with respect to the flag M· = F·). We then go back and continue the process

with the pieces left behind. Thus the process produces a binary tree, where

the bifurcations correspond to when a component breaks into two; the root is

the initial cycle at the start of the process, and the leaves are the resulting

Schubert varieties. The Littlewood-Richardson coefficient cγ
αβ is the number

of leaves of type γ, which will be interpreted combinatorially as checkergames

(§2.16). The deformation of M· will be independent of the choice of α and β.

Before stating the rule, we give an example. Let n = 4 and k = 2,

i.e. we consider the Grassmannian G(2, 4) = G(1, 3) of projective lines in P3.

(We use the projective description in order to better draw pictures.) Let

α = β = 2 = {2, 4}, so Ωα and Ωβ both correspond to the set of lines in

P3 meeting a fixed line. Thus we seek to deform the locus of lines meeting two

(skew) fixed lines into a union of Schubert varieties.

The degenerations of M· are depicted in Figure 2. (The checker pictures

will be described in Section 2. They provide a convenient description of the

geometry in higher dimensions, when we can’t easily draw pictures.) In the

first degeneration, only the moving plane PM3 moves, and all other PMi (and

all PFj) stay fixed. In that pencil of planes, there is one special position,

corresponding to when the moving plane contains the fixed flag’s point PF1.

Next, the moving line PM2 moves (and all other spaces are fixed), to the

unique “special” position, when it contains the fixed flag’s point PF1. Then

the moving plane PM3 moves again, to the position where it contains the fixed

flag’s line PF2. Then the moving point PM1 moves (until it is the same as the

fixed point), and then the moving line PM2 moves (until it is the same as the

fixed line), and finally the moving plane PM3 moves (until it is the same as

the fixed plane, and both flags are the same).

In Figure 3 we will see how this sequence of deformations “resolves” (or

deforms) the intersection Ωα(M·)∩Ωβ(F·) into the union of Schubert varieties.

(We reiterate that this sequence of deformations will “resolve” any intersec-

tion in G(k, 3) in this way, and the analogous sequence in Pn will resolve any

intersection in G(k, n).)

To begin with, Ωα(M·)∩Ωβ(F·) ⊂ G(1, 3) is the locus of lines meeting the

two lines PM2 and PF2, as depicted in the first panel of Figure 3. After the

first degeneration, in which the moving plane moves, the cycle in question has

not changed (the second panel). After the second degeneration, the moving

line and the fixed line meet, and there are now two irreducible two-dimensional

loci in G(1, 3) of lines meeting both the moving and fixed line. The first case

consists of those lines meeting the intersection point PM2 ∩ PF2 = PF1 (the
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point line plane

4123 1423 1243

12 23 34

M·

4321

F·

plane

34

line plane

4312 4132

23 34

1234

Figure 2: The specialization order for n = 4, visualized in terms of flags in P3.

The checker configurations will be defined in Section 2.2.

third panel in the top row). The second case consists of those lines contained

in the plane spanned by PM2 and PF2 (the first panel in the second row).

After the next degeneration in this second case, this condition can be restated

as the locus of lines contained in the moving plane PM3 (the second panel

of the second row), and it is this description that we follow thereafter. The

remaining pictures should be clear. At the end of both cases, we see Schubert

varieties.



A GEOMETRIC LITTLEWOOD-RICHARDSON RULE 377

input: ×

output: {2, 3} = output: {1, 4} =

**

*

†

(α = β = {2, 4})

†

Figure 3: A motivating example of the rule (compare to Figure 2). Checker

configurations * and ** are discussed in Caution 2.20, and the degenerations

labeled † are discussed in Sections 2.11 and 3.1.

In the first case we have the locus of lines through a fixed point (corre-

sponding to partition 2 = 2 + 0, or {1, 4}; see the panel in the lower right). In

the second case we have the locus of lines contained in the fixed plane (corre-

sponding to partition 2 = 1 + 1, or the subset {2, 3}; see the second-last panel

in the final row). Thus we see that

c
(2)
(1),(1) = c

(1,1)
(1),(1) = 1.
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We now abstract from this example the essential features that will allow us

to generalize this method, and make it rigorous. We will see that the analogous

sequence of
(n
2

)

degenerations in Kn will similarly resolve any intersection

Ωα(M·) ∩ Ωβ(F·) in any G(k, n). The explicit description of how it does so is

the Geometric Littlewood-Richardson rule.

1. Defining the relevant varieties. Given two flags M· and F· in given

relative position (i.e. partway through the degeneration), we define varieties

(called closed two-flag Schubert varieties, §2.5) in the Grassmannian G(k, n) =

{V ⊂ Kn} that are the closure of the locus with fixed numerical data dimV ∩
Mi ∩Fj. In the case where M· and F· are transverse, we verify that Ωα(M·)∩
Ωβ(F·) is such a variety.

2. The degeneration, inductively. We degenerate M· in the specified

manner. Each component of the degeneration is parametrized by P1; over

A1 = P1 −{∞}, M· meets F· in the same way (i.e. the rank table dimMi ∩Fj

is constant), and over one point their relative position “jumps”. Hence any

closed two-flag Schubert variety induces a family over A1 (in G(k, n) × A1).

We take the closure in G(k, n)×P1. We show that the fiber over ∞ consists of

one or two components, each appearing with multiplicity 1, and each a closed

two-flag Schubert variety (so we may continue inductively).

3. Concluding. After the last degeneration, the two flags M· and F· are

equal. Then the two-flag Schubert varieties are by definition Schubert varieties

with respect to this flag.

The key step is the italicized sentence in Step 2, and this is where the main

difficulty lies. In fact, we have not proved this step for all two-flag Schubert

varieties; but we can do it with all two-flag Schubert varieties inductively

produced by this process. (These are the two-flag Schubert varieties that are

mid-sort, see Definition 2.8.) A proof avoiding this technical step, but assuming

the usual Littlewood-Richardson rule and requiring some tedious combinatorial

work, is outlined in Section 2.19.

2. The statement of the rule

2.1. Preliminary definitions. Geometric data will be conveniently sum-

marized by the data of checkers on an n × n board. The rows and columns

of the board will be numbered in “matrix” style: (r, c) will denote the square

in row r (counting from the top) and column c (counting from the left), e.g.

see Figure 4. A set of checkers on the board will be called a configuration

of checkers. We say a square (i1, j1) dominates another square (i2, j2) if it is

weakly southeast of (i2, j2), i.e. if i1 ≥ i2 and j1 ≥ j2. Domination induces a

partial order ≺ on the plane.

2.2. Double Schubert cells, and black checkers. Suppose {vij} is an

achievable rank table dimMi ∩ Fj where M· and F· are two flags in Kn.
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These data will be conveniently summarized by the data of n black checkers

on the n × n board, no two in the same row or column, as follows. There is

a unique way of placing black checkers so that the entry dimMi ∩Fj is given

by the number of black checkers dominated by square (i, j). (To obtain the

inverse map we proceed through the columns from left to right and place a

checker in the first box in each column where the number of checkers that box

dominates is less than the number written in the box. The checker positions

are analogs of the “jumping numbers” of 1.4.) An example of the bijection is

given in Figure 4. Each square on the board corresponds to a vector space,

whose dimension is the number of black checkers dominated by that square.

This vector space is the span of the vector spaces corresponding to the black

checkers it dominates. The vector spaces of the right column (resp. bottom

row) correspond to the Moving flag (resp. Fixed flag).

3

42

2

1

11

⇐⇒

1 3

0 21

0

000M1

M2

M3

M4

F1 F2 F3 F4

dimM2 ∩F4

Figure 4: The relative positions of two flags, given by a rank table, and by a

configuration of black checkers.

A configuration of black checkers will often be denoted •. If • is such a

checker configuration, define X• to be the corresponding locally closed subva-

riety of Fl(n) × Fl(n) (where the first factor parametrizes M· and the second

factor parametrizes F·). The variety X• is smooth, and its codimension in

Fl(n) × Fl(n) is the number of pairs of distinct black checkers a and b such

that a ≺ b. (This is a straightforward exercise; it also follows quickly from §4.)
This sort of construction is common in the literature.

The X• are sometimes called “double Schubert cells”. They are the GL(n)-

orbits of Fl(n)×Fl(n), and the fibers over either factor are Schubert cells of the

flag variety. They stratify Fl(n)×Fl(n). The fiber of the projection X• → Fl(n)

given by ([M·], [F·]) 7→ [F·] is the Schubert cell Ωσ(•), where the permutation

σ(•) sends r to c if there is a black checker at (r, c). (Schubert cells are

usually indexed by permutations [F, §10.2]. Caution: some authors use other

bijections to permutations than those of [F].) For example, the permutation

corresponding to Figure 4 is 4231; for more examples, see Figure 2.

2.3. The specialization order (in the weak Bruhat order), and movement

of black checkers. We now define a specialization order of such data, a

particular sequence, starting with the transverse case •init (corresponding to
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the longest word w0 in Sn) and ending with •final (the identity permutation in

Sn), corresponding to the case when the two flags are identical. If • is one of

the configurations in the specialization order, then •next will denote the next

configuration in the specialization order.

The intermediate checker configurations correspond to partial factoriza-

tions from the left of w0:

w0 = en−1 · · · e2e1 · · · en−1en−2en−3 en−1en−2 en−1.

(Note that this word neither begins nor ends with the corresponding word for

n − 1, making a naive inductive proof of the rule impossible.) For example,

Figure 2 shows the six moves of the black checkers for n = 4, along with the

corresponding permutations:

w0 = e3e2e1e3e2e3, e3e2e1e3e2, e3e2e1e3, e3e2e1, e3e2, e3, e.

In the language of computer science, the specialization order may be inter-

preted as a bubble-sort of the black checkers.

Figure 5 shows a typical checker configuration in the specialization order.

Each move involves moving one checker one row down (call this the descending

checker), and another checker one row up (call this the rising checker), as

shown in the figure. The notions of critical row and critical diagonal will be

useful later; see Figure 5 for a definition. Hereafter let r be the row of the

descending checker, and c the column.

rising checker
critical diagonal

descending checker (r, c)

critical row r

Figure 5: The critical row and the critical diagonal

2.4. An important description of X• and X•next
for • in the specialization

order. Here is a convenient description of X• and X•next
. Define

P = {M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Kn,

Fc ⊂ Fc+1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Kn,

M· is transverse to the partial flag Fc ⊂ · · · ⊂ Fn}

⊂Fl(n) × Fl(c, . . . , n).

Over P consider the projective bundle PF∗
c = {(p ∈ P,Fc−1 ⊂ Fc)} of hyper-

planes in Fc. Then X• is isomorphic to the locus

{Fc−1 : Fc−1 ⊃ Mr−1 ∩ Fc, Fc−1 + Mr ∩ Fc};
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to recover F1, . . . , Fc−2, for r+ c−n ≤ j ≤ c−2, take Fj = Mn−c+j+1∩Fc−1,

and for j ≤ r + c− n− 1 take Fj = Mn−c+j ∩Fc−1. (Figure 6 may be helpful

for understanding the geometry.) More concise (but less enlightening) is the

description of F0, . . . , Fc−1 by the equality of sets

{F0, . . . ,Fc−1} = {M0 ∩ Fc−1,M1 ∩ Fc−1, . . . Mn ∩ Fc−1} ⊂ PF∗
c.

Similarly, X•next
is isomorphic to

{Fc−1 : Fc−1 ⊃ Mr ∩Fc, Fc−1 + Mr+1 ∩ Fc} ⊂ PF∗
c .

Mr ∩ Fc

Fr+c−n = Mr+1 ∩ Fc−1

F1 = Mn−c+1 ∩ Fc−1

Fr+c−n−1 = Mr−1 ∩ Fc−1

.

.

.

M1.
.
.

Mn−c

Mn−c+1.
.
.

Mr

Mr−1

Mr+1

Fc−1 Mn = Fn

Fc

Fc+1

Figure 6: A convenient description of a double Schubert cell in the special-

ization order in terms of transverse {Fc, . . . ,Fn} and M·, and Fc−1 in given

position with respect to M·. Some squares of the checkerboard are labeled

with their corresponding vector space.

2.5. Two-flag Schubert varieties, and white checkers. Suppose {vij},
{wij} are achievable rank tables dimMi ∩Fj and dimV ∩Mi ∩Fj where M·

and F· are two flags in Kn and V is a k-plane. These data may be summarized

conveniently by a configuration of n black checkers and k white checkers on an

n × n checkerboard as follows. The meaning of the black checkers is the same

as above; they encode the relative position of the two flags. There is a unique

way to place the k white checkers on the board such that dimV ∩Mi ∩ Fj is

the number of white checkers in squares dominated by (i, j). See Figure 3 for

examples. It is straightforward to check that (i) no two white checkers are in

the same row or column, and (ii) each white checker must be placed so that

there is a black checker weakly to its north (i.e. either in the same square, or in

a square above it), and a black checker weakly to its west. We say that white

checkers satisfying (ii) are happy. Such a configuration of black and white

checkers will often be denoted ◦•; a configuration of white checkers will often

be denoted ◦.
If ◦• is a configuration of black and white checkers, let X◦• be the cor-

responding locally closed subvariety of G(k, n) × Fl(n) × Fl(n); call this an

open universal two-flag Schubert variety. Call X ◦• := ClG(k,n)×X•
X◦• a closed
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universal two-flag Schubert variety. (Notational caution: X ◦• is not closed in

G(k, n) × Fl(n) × Fl(n).)

If M· and F· are two flags whose relative position is given by •, let the open

two-flag Schubert variety Y◦• = Y◦•(M·,F·) ⊂ G(k, n) be the set of k-planes

whose position relative to the flags is given by ◦•; define the closed two-flag

Schubert variety Y ◦• to be ClG(k,n) Y◦•.

Note that (i) X◦• → X• is a Y◦•-fibration; (ii) X◦• → X• is a Y ◦•-fibration,

and is a projective morphism; (iii) G(k, n) is the disjoint union of the Y◦• (for

fixed M·, F·); (iv) G(k, n) × Fl(n) × Fl(n) is the disjoint union of the X◦•.

Caution: the disjoint unions of (iii) and (iv) are not in general stratifications;

see Caution 2.20(a) for a counterexample to (iv).

The proof of the following lemma is straightforward by constructing Y◦•

as an open subset of a tower of projective bundles (one for each white checker)

and hence is omitted.

2.6. Lemma. The variety Y◦• is irreducible and smooth; its dimension is

the sum over all white checkers w of the number of black checkers w dominates

minus the number of white checkers w dominates (including itself ).

Suppose that A = {a1, . . . , ak} and B = {b1, . . . , bk} are two subsets of

{1, . . . , n}, where a1 < · · · < ak and b1 < · · · < bk. Denote by ◦A,B the con-

figuration of k white checkers in the squares (a1, bk), (a2, bk−1), . . . , (ak, b1).

(Informally, the white checkers are arranged from southwest to northeast, such

that they appear in the rows corresponding to A and the columns correspond-

ing to B. No white checker dominates another.)

2.7. Proposition (initial position of white checkers). Suppose M· and F·

are two transverse flags (i.e. with relative position given by •init). Then (the

scheme-theoretic intersection) ΩA(M·)∩ΩB(F·) is the closed two-flag Schubert

variety Y ◦A,B•init
.

In the literature, these intersections are known as Richardson varieties [R];

see [KL] for more discussion and references. They are also called skew Schubert

varieties by Stanley [St].

In particular, if (and only if) any of these white checkers are not happy

(or equivalently if ai + bk+1−i ≤ n for some i), then the intersection is empty.

For example, this happens if n = 2 and A = B = {1}, corresponding to the

intersection of two distinct points in P1.

Proof. Assume first that the characteristic is 0. By the Kleiman-Bertini

theorem (§1.1), ΩA(M·)∩ΩB(F·) is reduced from the expected dimension. The

generic point of any of its components lies in Y◦•init
for some configuration ◦

of white checkers, where the first coordinates of the white checkers of ◦ are

given by the set A and the second coordinates are given by the set B. A short
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calculation using Lemma 2.6 yields dimY◦•init
≤ dimY◦A,B•init

, with equality

holding if and only if ◦ = ◦A,B . (Reason: the sum over all white checkers w

in ◦ of the number of black checkers w dominates is
∑

a∈A a +
∑

b∈B b − kn,

which is independent of ◦, so that dimY◦•init
is maximized when no white

checker dominates another, which is the definition of ◦A,B .) Then it can be

checked directly that dimY◦A,B•init
= dimΩA ∩ ΩB . As Y◦A,B•init

is irreducible,

the result in characteristic 0 follows.

In positive characteristic, the same argument shows that the cycle ΩA(M·)∩
ΩB(F·) is some positive multiple of the the cycle Y ◦A,B•init

. It is an easy ex-

ercise to show that the intersection is transverse, i.e. that this multiple is 1.

It will be easier still to conclude the proof combinatorially; we will do this —

and finish the proof — in Section 2.18.

We will need to consider a particular subset of the possible ◦•, which we

define now.

2.8. Definition. Suppose ◦• is a configuration of black and white checkers

such that • is in the specialization order, and the descending checker is in

column c. Suppose the white checkers are at (r1, c1), . . . , (rk, ck) with c1 <

· · · < ck. If (ri, . . . , rk) is decreasing when ci ≥ c, then we say that ◦• is

mid-sort. For example, the white checkers of Figure 7 are mid-sort. As the

black checkers in columns up to c − 1 are arranged diagonally, the “happy”

condition implies that (r1, . . . , rj) is increasing when cj < c, as may be seen

in Figure 7. Any initial configuration is clearly mid-sort. Other examples of

mid-sort highlighting the overall shape of the white checkers’ placement are

given in Figures 18 and 19, Section 5.

2.9. The degenerations. Suppose now that ◦• is mid-sort. Consider the

diagram:

(1) X◦• := ClG(k,n)×X•
X◦•

��

� � open
// ClG(k,n)×(X•∪X•next )

X◦•

��

D?
_Cartieroo

��

X•
� � open

// X• ∪ X•next
X•next

.? _
Cartieroo

The Cartier divisor D on ClG(k,n)×(X•∪X•next )
X◦• is defined by pullback; both

squares in (1) are fibered squares. The vertical morphisms are projective, and

the vertical morphism on the left is a Y ◦•-fibration. We will identify the irre-

ducible components of D as certain X ◦′•next
, each appearing with multiplicity 1.

2.10. Description of the movement of the white checkers. The movement

of the white checkers takes place in two phases. Phase 1 depends on the

answers to two questions: Where (if anywhere) is the white checker in the

critical row? Where (if anywhere) is the highest white checker in the critical



384 RAVI VAKIL

diagonally here

white checkers
arranged:

anti-diagonally here

Figure 7: An example of mid-sort checkers

White checker in critical row?

yes, in descending yes, elsewhere no

checker’s square

Top white yes, in rising swap swap stay†

checker checker’s square

in yes, swap swap if no blocker stay

critical elsewhere or stay

diagonal? no stay stay stay

Table 2: Phase 1 of the white checker moves (see Figure 8 for a pictorial

description)

diagonal? Based on the answers to these questions, these two white checkers

either swap rows (i.e. move from (r1, c1) and (r2, c2) to (r2, c1) and (r1, c2)),

or they stay where they are, according to Table 2. (The pictorial examples of

Figure 8 may be helpful.) The central entry of the table is the only time when

there is a possibility for choice: the pair of white checkers can stay, or if there

are no white checkers in the rectangle between them they can swap. Call white

checkers in this rectangle blockers. Figure 9 gives an example of a blocker.

After phase 1, at most one white checker is unhappy. Phase 2 is a “clean-

up” phase: if a white checker is not happy, then move it either left or up so

that it becomes happy. This is always possible, in a unique way. Afterwards,

no two white checkers will be in the same row or column.

The resulting configuration is dubbed ◦stay•next or ◦swap•next (depending

on which option we chose in phase 1).

(A more concise — but less useful — description of the white checker

moves, not requiring Table 2 or the notion of blockers, is as follows. In phase 1,

we always consider the stay option, and we always consider the swap option

if the critical row and the critical diagonal both contain white checkers. After

phase 1, there are up to two unhappy white checkers. We “clean up” following
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or

no

no

White checker in critical row?

elsewhere

checker’s square

moves:

phase 1:

phase 2:

Legend:

yes, in descending

yes, in
rising
checker’s
square

yes,

Top white
checker in
critical
diagonal?

black checker

white checker

white checker

yes, elsewhere

†

Figure 8: Examples of the entries of Table 2 (case † is discussed in §3.1)

white checker in critical row
blocker

top white checker in critical diagonal

Figure 9: Example of a blocker

phase 2 as before, making all white checkers happy. Then we have one or two

possible configurations. If one of the configurations has two white checkers in

the same row or column, we discard it. If one of the configurations ◦′•next

has dimension less than desired — i.e. dimX◦′•next
< dimD = dimX◦• − 1, or

equivalently dimY◦′•next
< dimY◦•, see Lemma 2.6 — we discard it.)

The geometric meaning of each case in Table 2 is straightforward; we have

already seen seven of the cases in Figure 3. For example, in the bottom-right

case of Table 2/Figure 8, the k-plane V continues to meet flags M· and F·

in the same way, although they are in more special position (as in the first

degeneration of Figure 3). In the top-right case of Table 2/Figure 8, V meets

F· in the same way, and is forced to meet M· in a more special way (see the

degenerations marked † in Figure 3). The reader is encouraged to compare

more degenerations of Figure 3 to Table 2/Figure 8 to develop a sense of the

geometry behind the checker moves.

2.11. The cases where there is no white checker in the critical row r

(the third column of Table 2) are essentially trivial; in this case the moving

subspace Mr imposes no condition on the k-plane (see Figure 3 for numerous

examples). This will be made precise in Section 5.2. Even the case where

a checker moves (the top right entry in Figure 8), there is no correspond-
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ing change in the position of the k-plane (see the degenerations marked † in

Figure 3 for examples).

The following may be shown by a straightforward induction.

2.12. Lemma. If ◦• is mid-sort, then ◦stay•next and ◦swap•next (if they

exist) are mid-sort.

We now state the main result of this paper, which will be proved in Sec-

tion 5. (A different proof, assuming the combinatorial Littlewood-Richardson

rule, is outlined in Section 2.19.)

2.13. Theorem (Geometric Littlewood-Richardson rule).

D = X◦stay•next
, X◦swap•next

, or X◦stay•next
∪ X◦swap•next

.

Note. Throughout this paper, the meaning of or in such a context will

always be depending on which checker movements are possible according to

Table 2.

2.14. Interpretation of the rule in terms of deforming cycles in the Grass-

mannian. From Theorem 2.13 we obtain the deformation description given

in Section 1.5, as follows. Given a point p of Fl(n) (parametrizing M·) in the

dense open Schubert cell (with respect to a fixed reference flag F·), there is

a chain of
(n
2

)

P1’s in Fl(n), starting at p and ending with the “most degen-

erate” point of Fl(n) (corresponding to M· = F·). This chain corresponds to

the specialization order; each P1 is a fiber of the fibration of the appropriate

X• ∪ X•next
→ X•next

. All but one point of the fiber lies in X•. The remaining

point ∞ (where the P1 meets the next component of the degeneration) lies

on a stratum X•next
of dimension one lower. If the move corresponds to the

descending checker in critical row r dropping one row, then all components of

the flags F· and M· except Mr are held fixed (as shown in Figure 2).

Given such a P1 ↪→ X•∪X•next
in the degeneration, we obtain the following

by pullback from (1) (introducing temporary notation Y◦• and DY):

(2) Y◦•

��

� � open
// ClG(k,n)×P1 Y◦•

��

DY
? _

Cartieroo

��

A1 � � open
// P1 {∞}.? _

Cartieroo

Again, the vertical morphisms are projective and the vertical morphism on the

left is a Y ◦•-fibration.

By applying base change from (1) to (2) to Theorem 2.13, we obtain:

2.15. Theorem (Geometric Littlewood-Richardson rule, degeneration

version).

DY = Y ◦stay•next
, Y ◦swap•next

, or Y ◦stay•next
∪ Y ◦swap•next

.
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(The notation Y◦• and DY will not be used hereafter.)

We use this theorem to compute the class (in H∗(G(k, n))) of the inter-

section of two Schubert cycles as follows. By the Kleiman-Bertini theorem

(§1.1), or the Grassmannian Kleiman-Bertini theorem [V2, Th. 1.6] in positive

characteristic, this is the class of the intersection of two Schubert varieties with

respect to two general (transverse) flags, which by Proposition 2.7 is [Y ◦A,B•init
].

We use Theorem 2.15 repeatedly to break the cycle inductively into pieces. We

conclude by noting that each Y ◦•final
is a Schubert variety; the corresponding

subset of {1, . . . , n} is precisely the set of black checkers sharing a square with

a white checker (as in Figure 3).

2.16. Littlewood-Richardson coefficients count checkergames. A check-

ergame with input α and β and output γ is defined to be a sequence of moves

◦α,β•init, . . . , ◦γ•final, as described by the Littlewood-Richardson rule (i.e. the

position after ◦• is ◦stay•next or ◦swap•next).

2.17. Corollary. The Littlewood-Richardson coefficient cγ
αβ is the

number of checkergames with input α and β and output γ.

2.18. Enumerative problems and checkergame tournaments. Suppose

[Ωα1
], . . . , [Ωα`

] are Schubert classes on G(k, n) of total codimension

dimG(k, n). Then the degree of their intersection — the solution to an enu-

merative problem by the Kleiman-Bertini theorem (§1.1), or the Grassmannian

Kleiman-Bertini theorem [V2, Theorem 1.6] in positive characteristic) — can

clearly be inductively computed using the Geometric Littlewood-Richardson

rule. (Such an enumerative problem is called a Schubert problem.) Hence Schu-

bert problems can be solved by counting checkergame tournaments of ` − 1

games, where the input to the first game is α1 and α2, and for i > 1 the input

to the ith game is αi+1 and the output of the previous game. (The outcome of

each checkergame tournament will always be the same — the class of a point.)

Conclusion of proof of Proposition 2.7 in positive characteristic. We will

show that the multiplicity with which Y ◦A,B•init
appears in ΩA(M·)∩ΩB(F·) is

1. We will not use the Grassmannian Kleiman-Bertini Theorem [V2, Th. 1.6]

as its proof relies on Proposition 2.7.

Choose C = {c1, . . . , ck} such that dim[ΩA]∪ [ΩB ]∪ [ΩC ] = 0 (where ∪ is

the cup product in cohomology) and deg[ΩA]∪[ΩB ]∪[ΩC ] > 0. In characteristic

0, the above discussion shows that deg[ΩA] ∪ [ΩB ] ∪ [ΩC ] is the number of

checkergame tournaments with inputs A, B, C. In positive characteristic,

the above discussion shows that if the multiplicity is greater than one, then

deg[ΩA]∪[ΩB]∪[ΩC ] is strictly less than the same number of checkergames. But

deg[ΩA]∪ [ΩB]∪ [ΩC ] is independent of characteristic, yielding a contradiction.
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2.19. A second proof of the rule (Theorem 2.13), assuming the combi-

natorial Littlewood-Richardson rule. We now outline a second proof of the

Geometric Littlewood-Richardson rule that bypasses almost all of Sections 4

and 5. Proposition 5.15 shows that X◦stay•next
and/or X◦swap•next

are contained

in D with multiplicity 1. (It may be rewritten without the language of Bott-

Samelson varieties.) We seek to show that there are no other components.

The semigroup consisting of effective classes in H ∗(G(k, n), Z) is generated by

the Schubert classes; this semigroup induces a partial order on H ∗(G(k, n), Z).

Let dγ
αβ be the number of checkergames with input α and β, and output γ.

Then at each stage of the degeneration, [D]− [X ◦stay•next
], [D]− [X◦swap•next

], or

[D] − [X◦stay•next
]− [X◦swap•next

] (depending on the case) is effective, and hence

[Ωα] ∪ [Ωβ ] −
∑

γ

dγ
αβ [Ωγ ] ≥ 0

with equality holding if and only if the Geometric Littlewood-Richardson rule

Theorem 2.13 is true at every stage in the degeneration. But by the combina-

torial Littlewood-Richardson rule,

[Ωα] ∪ [Ωβ] =
∑

γ

cγ
αβ [Ωγ ].

Theorem 3.2 gives a bijection between checkergames and tableaux. The

proof uses the bijection between checkergames and puzzles of Appendix A. This

in turn was proved by giving an injection from checkergames to puzzles, and

using the Geometric Littlewood-Richardson rule to show bijectivity. However,

as described there, it is possible to show bijectivity directly (by an omitted

tedious combinatorial argument). Thus cγ
α,β = dγ

α,β, and so Theorem 2.13 is

true for every ◦• that arises in the course of a checkergame.

Finally, one may show by induction on • that every ◦• (with ◦ mid-sort)

does arise in the course of a checkergame: It is clearly true for mid-sort ◦•init.

Given a mid-sort ◦′•next, one may easily verify using Figure 8 that there is

some ◦• such that ◦′•next = ◦stay•next or ◦swap•next.

2.20. Cautions. (a) The specialization order may not be replaced by

an arbitrary path through the weak Bruhat order. For example, if ◦• is as

shown on the left of Figure 10, then X◦• parametrizes: distinct points p1 and

p2 in P3; lines `1 and `2 through p1 such that `1, `2, and p2 span P3; and

a point q ∈ `1 − p1. Then the line corresponding to the white checkers (a

point of G(1, 3)) is 〈q, p2〉. The degeneration shown in Figure 10 (• → •′, say)

corresponds to letting p2 tend to p1, and remembering the line `3 of approach.

Then the divisor on ClG(k,n)×(X•∪X•′) X◦• corresponding to X•′ parametrizes

lines through p1 contained in 〈`1, `3〉. This is not of the form X◦′•′ for any ◦′.
(b) Unlike the variety X• = ClFl(n)×Fl(n) X•, the variety X◦• cannot be

defined numerically; i.e. in general, X ◦• will be only one irreducible component
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p1

`3

`2

`1

F4F3F2F1

M1

M2

M3

M4

p2

p1

q

`2

`1

?

=⇒

F1 F4F3F2

M1

M2

M3

M4

Figure 10: The dangers of straying from the specialization order

of

X
′
◦• := {(V,M·,F·) ∈ G(k, n) × X• ⊂ G(k, n) × Fl(n) × Fl(n) :

dimV ∩Mi ∩ Fj ≥ γi,j
◦ }

where γi,j
◦ is the number of white checkers dominated by (i, j). For example,

in Figure 3, if ◦• is the configuration marked “*” and ◦′• is the configuration

marked “**”, then X
′
◦• = X◦• ∪ X◦′•.

3. First applications: Littlewood-Richardson rules

In this section, we discuss bijections between checkers, the classical

Littlewood-Richardson rule involving tableaux, and puzzles. We extend the

checker and puzzle rules to K-theory, proving a conjecture of Buch. We con-

clude with open questions. We assume familiarity with the following Littlewood-

Richardson rules: tableaux [F], puzzles [KTW], [KT], and Buch’s set-valued

tableaux [B1].

3.1. Checkers, puzzles, tableaux. We now give a bijection between

tableaux and checkergames. We use the tableaux description of [F, Cor. 5.1.2].

More precisely, given three partitions α, β, γ, construct a skew partition δ from

α and β, with α in the upper right and β in the lower left. Then cγ
αβ is the

number of Littlewood-Richardson skew tableaux [F, p. 63] on δ with content γ.

In any such tableau on δ, the ith row of α must consist only of i’s. Thus γ can

be recovered from the induced tableaux on β: γi is αi plus the number of i’s

in the tableaux on β.

The bijection to such tableaux (on β) is as follows. Whenever there is a

move described by a † in Figure 8 (see also Table 2), where the “rising” white

checker is the rth white checker (counting by row) and the cth (counting by

column), place an r in row c of the tableau.

The geometric interpretation of the bijection is simple. In each step of the

degeneration, some intersection Mr ∩ Fc jumps in dimension. If in this step

the k-plane V changes its intersection with M· (or equivalently, V ∩Mr jumps

in dimension), then we place the final value of dimV ∩Mr in row dimV ∩Fc
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of the tableau (in the rightmost square still empty). In other words, given a

sequence of degenerations, we can read off the tableau, and each tableau gives

instructions as to how to degenerate.

For example, in Figure 3, the left-most output corresponds to the tableau

2 , and the right-most output corresponds to the tableau 1 . The moves where

the tableaux are filled are marked with †. (In the left case, at the crucial move,

the rising white checker is the second white checker counting by row and the

first white checker counting by column, so a “2” is placed in the first row of

the diagram.)

3.2. Theorem (bijection from checkergames to tableaux). The con-

struction above gives a bijection from checkergames to tableaux.

Proof. A bijection between checkergames and puzzles is given in Ap-

pendix A. Combining this with Tao’s “proof-without-words” of a bijection

between puzzles and tableaux (given in Figure 11) yields the desired bijection

between checkergames and tableaux. I am grateful to Tao for telling me his

bijection.
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Figure 11: Tao’s “proof without words” of the bijection between puzzles and

tableaux (1-triangles are depicted as black, regions of 0-rectangles are grey,

and regions of rhombi are white)
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(−1)×

Figure 12: Buch’s “sub-swap” case for the K-theory geometric Littlewood-

Richardson rule (cf. Figure 8)

(There is undoubtedly a simpler direct proof, given the elegance of this

map, and the inelegance of the bijection from checkergames to puzzles.)

Hence checkergames give the first geometric interpretation of tableaux and

puzzles; indeed there is a bijection between tableaux/puzzles and solutions of

the corresponding three-flag Schubert problem, once branch paths are chosen

[V2, §2.10], [SVV].

Note that to each puzzle, there are three possible checkergames, depending

on the orientation of the puzzle. These correspond to three degenerations of

three general flags. A. Knutson points out that it would be interesting to relate

these three degenerations.

3.3. K-theory : checkers, puzzles, tableaux. Buch [B2] has conjectured

that checkergame analysis can be extended to K-theory or the Grothendieck

ring (see [B1] for background on the K-theory of the Grassmannian). Precisely,

the rules for checker moves are identical, except there is a new term in the

middle square of Table 2 (the case where there is a choice of moves), of one

lower dimension, with a minus sign. As with the swap case, this term is

included only if there is no blocker. If the two white checkers in question are

at (r1, c1) and (r2, c2), with r1 > r2 and c1 < c2, then they move to (r2, c1)

and (r1 − 1, c2) (see Figure 12). Call this a sub-swap, and denote the resulting

configuration ◦sub•next. By Lemma 2.6, dimY ◦sub•next
= dimY ◦• − 1.

3.4. Theorem (K-theory Geometric Littlewood-Richardson rule). Buch’s

sub-swap rule describes multiplication in the Grothendieck ring of G(k, n).

Sketch of Proof. We give a bijection from K-theory checkergames to

Buch’s “set-valued tableaux” (certain tableaux whose entries are sets of in-

tegers, [B1]), generalizing the bijection of Theorem 3.2. To each checker is

attached a set of integers, called its “memory”. At the start of the algorithm,

every checker’s memory is empty. Each time there is a sub-swap, where a

checker rises from being the rth white checker to being the (r−1)st (counting by

row), that checker adds to its memory the number r. (Informally, the checker

remembers that it had once been the rth checker counting by row.) Whenever

there is a move described by a † in Figure 8, where the white checker is the
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rth counting by row and the cth counting by column, in row c of the tableau

place the set consisting of r and the contents of its memory (all remembered

earlier rows). (Place the set in the rightmost square still empty.) Then erase

the memory of that white checker. The reader may verify that in Figure 3, the

result is an additional set-valued tableau, with a single cell containing the set

{1, 2}.
The proof that this is a bijection is omitted.

This result suggests that Buch’s rule reflects a geometrically stronger fact,

extending the Geometric Littlewood-Richardson rule (Theorem 2.13).

3.5. Conjecture (K-theory Geometric Littlewood-Richardson rule, ge-

ometric form, with A. Buch).

(a) In the Grothendieck ring,

[X◦•] = [X◦stay•next
], [X◦swap•next

], or [X◦stay•next
]+[X◦swap•next

]−[X◦sub•next
].

(b) Scheme-theoretically, D = X◦stay•next
, X◦swap•next

, or X◦stay•next
∪X◦swap•next

.

In the latter case, the scheme-theoretic intersection X ◦stay•next
∩X◦swap•next

is a translate of X◦sub•next
.

Part (a) clearly follows from part (b).

Knutson has speculated that the total space of each degeneration is Cohen-

Macaulay; this would imply the conjecture.

The K-theory Geometric Littlewood-Richardson rule 3.4 can be extended

to puzzles.

3.6. Theorem (K-theory Puzzle Littlewood-Richardson rule). The K-

theory Littlewood-Richardson coefficient corresponding to subsets α, β, γ is the

number of puzzles with sides given by α, β, γ completed with the pieces shown

in Figure 13. There is a factor of −1 for each K-theory piece in the puzzle.

0

0 0 1 1

1

1 0

10

1

0 1

0

0 1

K

Figure 13: The K-theory puzzle pieces

The first three pieces of Figure 13 are the usual puzzle pieces of [KTW],

[KT]; they may be rotated. The fourth K-theory piece is new; it may not be

rotated. Tao had earlier, independently, discovered this piece.
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Theorem 3.6 may be proved via the K-theory Geometric Littlewood-

Richardson rule 3.4 (and extending Appendix A), or by generalizing Tao’s

proof of Figure 11. Both proofs are omitted.

As an immediate consequence, by the cyclic symmetry of K-theory puz-

zles:

3.7. Corollary (triality of K-theory Littlewood-Richardson coefficients).

If K-theory Littlewood-Richardson coefficients are denoted C ·
··,

Cγ∨

αβ = Cα∨

βγ = Cβ∨

γα .

This is immediate in cohomology, but not obvious in the Grothendieck

ring. The following direct proof is due to Buch (cf. [B1, p. 30]).

Proof. Let ρ : G(k, n) → pt be the map to a point. Define a pairing

on K0(X) by (a, b) := ρ∗(a · b). This pairing is perfect, but (unlike for coho-

mology) the Schubert structure sheaf basis is not dual to itself. However, if t

denotes the top exterior power of the tautological subbundle on G(k, n), then

the dual basis to the structure sheaf basis is {tOY : Y is a Schubert variety}.
More precisely, the structure sheaf for a partition λ = (λ1, . . . , λk) is dual to t

times the structure sheaf for λ∨. (For more details, see [B1, §8]; this property is

special for Grassmannians.) Hence ρ∗(tOαOβOγ) = Cγ∨

αβ = Cα∨

βγ = Cβ∨

γα .

3.8. Questions. One motivation for the Geometric Littlewood-Richardson

rule is that it should generalize well to other important geometric situations

(as it has to K-theory). We briefly describe some potential applications; some

are work in progress.

(a) Knutson and the author have extended these ideas to give a geometric

Littlewood-Richardson rule in equivariant K-theory (most conveniently de-

scribed by puzzles), which is not yet proved [KV2]. As a special case, equiv-

ariant Littlewood-Richardson coefficients may be understood geometrically;

equivariant puzzles [KT] may be translated to checkers, and partially com-

pleted equivariant puzzles may be given a geometric interpretation.

(b) These methods may apply to other groups where Littlewood-

Richardson rules are not known. For example, for the symplectic (type C)

Grassmannian, there are only rules known in the Lagrangian and Pieri cases.

L. Mihalcea has made progress in finding a geometric Littlewood-Richardson

rule in the Lagrangian case, and has suggested that a similar algorithm should

exist in general.

(c) The specialization order (and the philosophy of this paper) leads to

a precise conjecture about the existence of a Littlewood-Richardson rule for

the (type A) flag variety, and indeed for the equivariant K-theory of the flag
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variety. This conjecture will be given and discussed in [V3]. The conjecture

unfortunately does not seem to easily yield a combinatorial rule, i.e. an explicit

combinatorially described set whose cardinality is the desired coefficient. How-

ever, (i) in any given case, the conjecture may be checked in cohomology, and

the combinatorial object described, using methods from [BV]; (ii) the conjec-

ture is true in cohomology for n ≤ 5; (iii) the conjecture is true in K-theory for

Grassmannian classes by Theorem 3.4; and (iv) the conjecture should be true

in equivariant K-theory for Grassmannian classes by [KV2]. Note that under-

standing the combinatorics underlying the geometry in the case of cohomology

will give an answer to the important open question of finding a Littlewood-

Richardson rule for Schubert polynomials (see for example [Mac], [Man], [BJS],

[BB] and [F, p. 172]).

(d) An intermediate stage between the Grassmannian and the full flag

manifold is the two-step partial flag manifold Fl(k, l, n). This case has appli-

cations to Grassmannians of other groups, and to the quantum cohomology of

the Grassmannian [BKT]. Buch, Kresch, and Tamvakis have suggested that

Knutson’s proposed partial flag rule (which Knutson showed fails for flags in

general) holds for two-step flags, and have verified this up to n = 16 [BKT,

§2.3]. A geometric explanation for Knutson’s rule (as yet unproved) will be

given in [KV1].

(e) The quantum cohomology of the Grassmannian can be translated into

classical questions about the enumerative geometry of surfaces. One may hope

that degeneration methods introduced here and in [V1] will apply. This per-

spective is being pursued (with different motivation) by I. Coskun (for rational

scrolls) [Co]. I. Ciocan-Fontanine has suggested a different approach (to the

three-point invariants) using Quot schemes, [C-F]: one degenerates two of the

three points together, and then uses the Geometric Littlewood-Richardson rule.

(f) D. Eisenbud and J. Harris [EH] describe a particular (irreducible, one-

parameter) path in the flag variety, whose general point is in the large open

Schubert cell, and whose special point is the smallest stratum: consider the

osculating flag M· to a point p on a rational normal curve, as p tends to a

reference point q with osculating flag F·. Eisenbud has asked if the special-

ization order is some sort of limit (a “polygonalization”) of such a path. This

would provide an irreducible path that breaks intersections of Schubert cells

into Schubert varieties. (Of course, the limit cycles could not have multiplicity

1 in general.) Eisenbud and Harris’ proof of the Pieri formula is evidence that

this could be true.

Sottile has a precise conjecture generalizing Eisenbud and Harris’ approach

to all flag manifolds [S3, §5]. He has generalized this further: one replaces the

rational normal curve by the curve etηXu(F·), where η is a principal nilpotent

in the Lie algebra of the appropriate algebraic group, and the limit is then



A GEOMETRIC LITTLEWOOD-RICHARDSON RULE 395

limt→0 etηXu(F·)∩Xw, where Xw is given by the flag fixed by limt→0 etη , [S4].

Eisenbud’s question in this context then involves polygonalizing or degenerat-

ing this path.

(g) If the specialization order is indeed a polygonalization of the path cor-

responding to the osculating flag, then the Geometric Littlewood-Richardson

rule would imply that the Shapiro-Shapiro conjecture is “asymptotically true”

(via [V2, Proposition 1.4]). Currently the conjecture is known only for G(2, n)

[EG]. Could the Geometric Littlewood-Richardson rule yield a proof in some

cases for general G(k, n)?

4. Bott-Samelson varieties

4.1. Definition: Quilts and their Bott-Samelson varieties. We will asso-

ciate a variety to the following data (Q,dim, n); n is the integer fixed through-

out the paper.

(1) Q is a finite subset of the plane, with the partial order ≺ given by domi-

nation (defined in §2.1). We require Q to have a maximum element and

a minimum element. (We visualize the plane so that downwards corre-

sponds to increasing the first coordinate and rightwards corresponds to

increasing the second coordinate, in keeping with the labeling convention

for tables.)

(2) dim : Q → {0, 1, 2, . . . , n} is an order-preserving map, denoted dimen-

sion.

(3) If [a,b] is a covering relation in Q (i.e. minimal interval: a ≺ b, and there

is no c ∈ Q such that a ≺ c ≺ b), then we require that dima = dimb−1.

(4) If straight edges are drawn corresponding to the covering relations, then

we require the interior of the graph to be a union of quadrilaterals, with

4 elements of Q as vertices, and 4 edges of Q as boundary. (Figure 14

shows two ways in which this condition can be violated. Note that the

closure of the interior need not be the entire graph; see Figure 19(b),

§5.6.)

We call this object a quilt, and abuse notation by denoting it by Q and leaving

dim implicit. For example, the quilt of Figure 15 has ten elements and five

quadrilaterals.

Note that the poset Q must be a lattice; i.e. any two elements x, y have

a unique minimal element dominating both (denoted sup(x,y)), and a unique

maximal element dominated by both (denoted inf(x,y)). An element of Q at

(i, j) is said to be on the southwest border (resp. northeast border) if there are

no other elements (i′, j′) of Q such that i′ > i and j′ < j (resp. i′ < i and
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Figure 14: Two planar posets (elements are grey dots). Neither is a quilt, as

they both violate condition (4).

3

4

1 2

5

configuration •

northeast bordersouthwest border

0

quilt Q•

Figure 15: The northeast and southwest borders of a quilt generated by a black

checker configuration; description of a Bott-Samelson variety as a tower of five

P1-bundles over Fl(4)

j′ > j); see Figure 15. Thus every element on the boundary is on the southwest

border or the northeast border. The maximum and minimum elements are on

both.

Define the Bott-Samelson variety BS(Q) associated to a quilt Q to be the

variety parametrizing a (dim s)-plane Vs in Kn for each s ∈ Q, with Vs ⊂ Vt

for s ≺ t. It is a closed subvariety of
∏

s∈Q G(dim s, n). Elements s of Q will be

written in bold-faced font, and corresponding vector spaces will be denoted Vs.

4.2. Lemma. The Bott-Samelson variety BS(Q) is smooth.

Proof. The variety parametrizing the subspaces corresponding to the

southwest border of the graph is a partial flag variety and hence smooth.

The Bott-Samelson variety BS(Q) can be expressed as a tower of P1-bundles

over the partial flag variety by inductively adding the data of Vs for s ∈ S

corresponding to “new” (northeast) vertices of quadrilaterals.

For example, Figure 15 illustrates that one particular Bott-Samelson vari-

ety is a tower of five P1-bundles over Fl(4); the correspondence of the

P1-bundles with quadrilaterals is illustrated by the numbered arrows.
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4.3. Strata of Bott-Samelson varieties BS(Q)S. Any set S of quadrilat-

erals of a quilt determines a stratum of the Bott-Samelson variety. The closed

stratum corresponds to requiring the spaces corresponding to the northeast

and southwest vertices of each quadrilateral in S to be the same. The open

stratum corresponds also to require the spaces of the northeast and southwest

vertices of each quadrilateral not in S to be distinct. Denote the open stratum

by BS(Q)S , so that the dense open stratum is BS(Q)∅. By the construction in

the proof of Lemma 4.2, (i) the open strata give a stratification, (ii) the closed

strata are smooth, and (iii) codimBS(Q) BS(Q)S = |S|. We depict a stratum by

placing an “=” in the quadrilaterals of S, indicating the pairs of spaces that

are required to be equal.

4.4. Example: quilts generated by a set of checkers. Given a checker

configuration, define the associated quilt as follows. Include the squares of the

table where there is a checker above (or possibly in the same square), and a

checker to the left (or in the same square); include also a “zero element” 0

above and to the left of the checkers. For s ∈ Q, let dim s be the number of

checkers s dominates, so that dim0 = 0, and dim s is the edge-distance from s

to 0.

As a warm-up example, if • is a configuration of black checkers, let Q•

be the associated quilt (as in Figure 15). Then the definition of happy in

Section 2.5 can be rephrased as: a white checker w is happy if w ∈ Q•. The

southwest border of Q• corresponds to F·, and the northeast border corre-

sponds to M·; BS(Q•) is a tower of P1-bundles over Fl(n) = {F·}, and the

fiber is a Bott-Samelson resolution of the corresponding Schubert variety. The

morphism BS(Q•) → X• is a resolution of singularities of the double Schu-

bert variety; e.g., Figure 15 describes a Bott-Samelson resolution of the double

Schubert variety corresponding to 1324. This morphism restricts to an isomor-

phism of the dense open stratum BS(Q•)∅ of BS(Q•) with X•.

If ◦ is a configuration of white checkers, let Q◦ be the associated quilt.

The structure of Q◦ for mid-sort ◦ will be central to the proof. See Figures 18

and 19 for important examples that we will refer to repeatedly.

5. Proof of the Geometric Littlewood-Richardson rule

(Theorem 2.13)

5.1. Strategy of proof. The strategy is as follows. Instead of considering

the divisor D on the closure of X◦• in G(k, n)× (X• ∪ X•next
), we consider the

corresponding divisor DQ on the closure of X◦• in BS(Q◦)× (X• ∪ X•next
); see

(3) below. Here the bottom two rows are diagram (1). The vertical morphisms

from the top row to the middle row (denoted π) are projective. The top row
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is obtained from the bottom row by fibered product.

(3) ClBS(Q◦)×X•
X◦•

��

� � open
// ClBS(Q◦)×(X•∪X•next )

X◦•

π

��

DQ
? _

Cartieroo

��

X◦• := ClG(k,n)×X•
X◦•

��

� � open
// ClG(k,n)×(X•∪X•next )

X◦•

��

D?
_Cartieroo

��

X•
� � open

// X• ∪ X•next
X•next

? _
Cartieroo

(i) In Section 5.2, we show that the result holds in the “trivial case” where

there are no white checkers in the critical row. We assume thereafter

that the critical row is nonempty.

(ii) We describe ClBS(Q◦)×(X•∪X•next )
X◦• more explicitly, giving it a modu-

lar interpretation rather than merely describing it as a closure (Theo-

rem 5.8). (As a byproduct, we show ClBS(Q◦)×(X•∪X•next )
X◦• is Cohen-

Macaulay.)

(iii) We identify the irreducible components {DS} of DQ (Theorem 5.10).

(Steps (ii) and (iii) are the crux of the proof.)

(iv) We show that all but one or two DS are contracted by π (Proposi-

tion 5.13), so that their image is not a divisor on ClG(k,n)×(X•∪X•next )
X◦•.

We do this by exhibiting a one-parameter family through a general point

of such a DS contracted by π.

(v) In Proposition 5.15, we show that in the one or two remaining cases the

multiplicity of DQ along DS is 1.

(vi) Finally, these one or two DS map birationally to (i.e. map with degree

1 to) X◦stay•next
or X◦swap•next

(Proposition 5.16), ensuring that the mul-

tiplicity with which X◦stay•next
or X◦swap•next

appears in D is indeed 1.
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5.2. Proof of the rule in the case where there is no white checker in the

critical row. As pointed out in Section 2.11, this case is geometrically straight-

forward. Let X ′
◦• be the projection of X◦• to

G(k, n) × Fl(1, . . . , r − 1, r + 1, . . . , n) × Fl(n)

“forgetting” Mr. Then X◦• is the P1-bundle over X ′
◦• corresponding to choos-

ing Mr freely, and X◦stay•next
is the section given by the Cartier divisor DQ =

{Mr : Mr ∩ Fc ⊂ Fc−1} (see §2.4). Hence DQ = X◦stay•next
, and we have

completed the proof in the case where there is no white checker in the critical

row.

5.3. For the rest of Section 5, we assume that there is a white checker in

the critical row. We will need two preparatory lemmas.

Suppose we are given 1 ≤ a1 < a2 < · · · < ak ≤ n (with the convention

a0 = 0, ak+1 = ∞), and integers j and R such that aj ≤ R < aj+1. Consider

the closed subvariety

(4) T ′ ⊂ Fl(1, . . . , k, n) × Fl(n) = {((Vi)i≤k,M·)}

defined by Vi ⊂ Mai
. Then we may construct T ′ as a tower of projective bun-

dles over Fl(1, . . . , k, n) by inductively choosing Mn−1, . . . , M1 with Mj a hy-

perplane in Mj+1 containing Vmaxai≤j i. Let B be a variety, B → Fl(1, . . . , k, n)

a morphism, and T ′′ the pullback of T ′ to B (i.e. T ′′ := B ×Fl(1,...,k,n) T ′).

5.4. Lemma. For any δ, if Q is an irreducible subvariety of T ′′ where

dimVδ ∩MR = j + `2, then codimT ′′ Q ≥ `2. Equality holds only if

(i) `2 = 0, or

(ii) `2 = 1, aj < R, aj+1 = R + 1, and Vj+1 ⊂ MR for all points of Q.

Proof. It suffices to prove the result for δ = k, and B
∼
→ Fl(1, . . . , k, n)

(i.e. T ′′ = T ). We follow the spirit of the construction of double Schubert cells

(§ 2.2). We stratify Fl(1, . . . , k, n)×Fl(n) by the numerical data dimVi2 ∩Mi1

(1 ≤ i2 ≤ k). The strata correspond to checkerboards with k columns and n

rows, with k checkers, no two in the same row or column, such that dimVi2∩Mi1

is the number of checkers dominated by (i1, i2). See Figure 16 for an example.

By building the stratum as an open subset of a tower of projective bundles

over Fl(n), we observe that the dimension of this stratum is

dimFl(n) +
∑

checker c at (i1, i2)

(i1 − #{checkers dominated by c}) .

Then T ′ corresponds to configurations where there are at least i checkers in the

first ai rows, and the dense open stratum of T ′ corresponds to the configuration

{(ai, i) : 1 ≤ i ≤ k}, so that in particular there are j checkers in the first R
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a1 = 1

a2 = aj = 3

R = 4

a3 = aj+1 = 5

j = 2

Figure 16: n × k checker configuration in proof of Lemma 5.4 (n = 5, k = 3)

rows. A dense open set of Q lies in some stratum where there are at least j+`2

checkers in the first R rows. We are reduced to the following combinatorial

question (left to the reader): suppose k checkers are placed so that there are

i checkers in the first ai rows (1 ≤ i ≤ k) and there are j + `2 checkers in the

first R rows. Then the sum of the rows in which the checkers appear is at most
∑

ai − `2, and inequality is strict unless (i) or (ii) holds. (Informally, at least

`2 checkers must be in a higher — i.e. lower-numbered — row than they would

be for the general point of T ′, and if neither (i) nor (ii) holds, one checker must

be at least two rows higher. See Figure 16 for an example of case (ii).)

Suppose we are given a vector space Z ⊂ Kn and an element (Vm)m∈Q◦

of BS(Q◦), and each element m of Q◦ is labeled with label(m) := dimVm ∩Z.

If (Vm) ∈ BS(Q◦)S then mark the quadrilaterals of S with “=”. To each

quadrilateral of Q◦ we attach a content of

label(mne) + label(msw) − label(mnw) − label(mse)

where mne, msw, mnw, mse are the northeast, southwest, northwest, south-

east vertices of the quadrilateral respectively. The total content of a region

of quadrilaterals is a linear combination of the labels of all vertices which ap-

pear. By inspection of all possible labeled quadrilaterals (Figure 17), every

quadrilateral with positive content is marked with “=”.

5.5. Lemma. Suppose there is a locally closed subvariety

U ⊂ Fl(1, . . . , k, n) × G(R,n) = {((Vj),MR)}

where the rank data (Vj ∩ MR)1≤j≤k are constant, and (Vj)1≤j≤k corresponds

to the northeast border of some given Q◦. Define P via the pullback diagram

P

��

� � // BS(Q◦)S × G(R,n)

��

U
� � // Fl(1, . . . , k, n) × G(R,n)



A GEOMETRIC LITTLEWOOD-RICHARDSON RULE 401

m + 1

m
m

m + 1
m + 1

m

m

m + 1
m

m

m

m

m

m

m

m

m
m + 1

m + 1
m + 2

m
m + 1

m + 1
m + 1

m
m

m
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m + 1

m + 2
m + 1

content 1content 0content −1

∗

Figure 17: Possible labeled quadrilaterals, where c is labeled with dimVc ∩ Z

for some fixed vector space Z. Quadrilateral ∗ arises in Lemma 5.5.

where BS(Q◦)S is a given open stratum of BS(Q◦) (and elements of S are

marked with “=”). Let ((Vm)m∈Q◦
,MR) be a general point of P . Label m with

dimVm ∩MR.

(a) Then no quadrilaterals of type ∗ in Figure 17 appear.

(b) Assume furthermore that no negative-content quadrilaterals appear, and

all quadrilaterals marked “=” have positive content.

(i) If the northern two vertices of a quadrilateral are labeled m, then

the southern two vertices are also labeled m, and the quadrilateral

is not marked “=”.

(ii) If the western two vertices of a quadrilateral are labeled m, then the

eastern two edges are labeled the same (both m or m + 1), and the

quadrilateral is not marked “=”.

Proof. (a) By the proof of Lemma 4.2 (with the role of southwest border

now played by the northeast border), P → U is a tower of P1-bundles cor-

responding to the quadrilaterals of BS(Q◦) not in S. Suppose for a general

point of P we had a quadrilateral of type ∗, with vertices mnw, mne, msw,

mse. Consider the P1-bundle associated to this quadrilateral, corresponding

to letting Vmsw
be any subspace (of dimension dimmsw) containing Vmnw

and

contained in Vmse
; as dimVmne

∩ MR = m, for general Vmsw
in the pencil

dimVmsw
∩ MR ≤ m as well, so the label on msw for a general point of the

stratum cannot be m + 1, yielding a contradiction.

(b) follows from (a) by inspection of Figure 17.
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5.6. Modular description of ClBS(Q◦)×(X•∪X•next )
X◦•. We describe a

closed subscheme of BS(Q◦) × (X• ∪ X•next
) and show it is

ClBS(Q◦)×(X•∪X•next )
X◦•

(Theorem 5.8). The subscheme will be constructed as an intersection of two

subvarieties of an open subset of a tower of projective bundles over BS(Q◦).

We are working harder than necessary to prove the Geometric Littlewood-

Richardson rule; it would suffice to show that ClBS(Q◦)×(X•∪X•next )
X◦• is con-

tained in this intersection (see the preprint version of this paper). However, we

expect that the Cohen-Macaulayness of this variety (shown en route) will be

important in understanding the K-theory of the Grassmannian (see Knutson’s

remark after Conjecture 3.5, and [KV2]). In any case, ideas from the proof of

Theorem 5.8 will be used later in Theorem 5.10.

Let m(Mi) (1 ≤ i ≤ n) be the maximum element m of Q◦ such that

m ≺ (i, n), i.e. the maximum element of Q◦ in the rows up to i. Thus Vm(Mi)

is the largest vector space of BS(Q◦) required to be contained in Mi. Define

m(Fj) similarly, to be the maximum element m ∈ Q◦ with m ≺ (n, j), so that

Vm(Fj) is the largest vector space of BS(Q◦) required to be contained in Fj.

We name important elements of Q◦ (see Figures 18 and 19).

• Let a = m(Fc−1), the lowest (or equivalently, rightmost) white checker

appearing in the first c − 1 columns (or 0 if there are none).

• Let a′ = m(Mr) and a′′ = m(Mr−1).

• Let d be the white checker in the critical row (if there is one).

Then the reader should quickly check that: (i) inf(a,a′′) is the maximal element

in columns up to c − 1 and rows up to r − 1. (ii) inf(a,a′′) = inf(a,a′). (iii)

The critical diagonal contains no white checkers if and only if a is in row less

than r, i.e. a = inf(a,a′′) (Figure 19(a)). (iv) There are no white checkers

directly north of the critical row (at (i, j) with i < r and j > c) if and only if

a′′ is in a column less than c, i.e. a′′ = inf(a,a′′) (Figure 19(b)).

5.7. Construct an open subvariety T of a tower of projective bundles over

BS(Q◦)

T ⊂ BS(Q◦) × Fl(n) × Fl(c, . . . , n) = {Vm : m ∈ Q◦} × {M·} × {F≥c}

as follows.

Step A. First, for i = n − 1, n − 2, . . . , 1, inductively choose Mi in Mi+1

containing Vm(Mi).

Step B. Then, for j = n−1, . . . , c, inductively choose Fj in Fj+1 containing

Vm(Fj), satisfying the open condition that Fj be transverse to the flag M·.
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critical row a
′

a
′′

inf(a, a′′)

d

a

0

sup(a, a′)

Figure 18: An example of Q◦ for mid-sort ◦. The internal diagonal edges

of the region inf(a,a′′)a′′ sup(a,a′)a are thickened.

a
′ = d

a
′′ = inf(a, a′′)

a

critical row

0

(b) no white checkers directly above the critical row
a
′ = sup(a, a′)

(a) no white checkers in critical diagonal

critical row a
′

d

0

a = inf(a, a′′)
a
′′

critical diagonal

Figure 19: Two more examples of Q◦ for mid-sort ◦

Over T we have inclusions of vector bundles Vinf(a,a′′) ⊂ Va ⊂ Vm(Fc) ⊂ Fc.

Consider the projective bundle over T

P(Fc/Vinf(a,a′′))
∗ = {(t ∈ T,Fc−1)}

parametrizing hyperplanes Fc−1 in Fc containing Vinf(a,a′′). Define two smooth

subvarieties of P(Fc/Vinf(a,a′′))
∗:

Wa := {(t ∈ T,Fc−1) : Va ⊂ Fc−1}

W••next
:= {(t ∈ T,Fc−1) : Mr−1 ∩Fc ⊂ Fc−1, Mr+1 ∩ Fc * Fc−1}.

Then Wa is a closed subvariety and W••next
is a locally closed subvariety. There

is a natural closed immersion W••next
↪→ BS(Q◦)×(X•∪X•next

); cf. Section 2.4.
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The codimension in P(Fc/Vinf(a,a′′))
∗ of every irreducible component of

W••next
∩ Wa is bounded above by the “expected codimension”

(5)

expcod(W••next
∩ Wa) := codimP(Fc/Vinf(a,a′′))∗ W••next

+ codimP(Fc/Vinf(a,a′′))∗ Wa

=
(

dimMr−1 ∩ Fc − dim inf(a,a′′)
)

+
(

dimVa − dim inf(a,a′′)
)

and W••next
∩ Wa is a local complete intersection if equality holds.

5.8. Theorem (modular description of ClBS(Q◦)×(X•∪X•next )
X◦•). We

have a (scheme-theoretic) equality

W••next
∩ Wa = ClBS(Q◦)×(X•∪X•next )

X◦•,

and the variety is a local complete intersection and hence Cohen-Macaulay.

Note that X◦• ⊂ W••next
and X◦• ⊂ Wa, so that the inclusion

ClBS(Q◦)×(X•∪X•next )
X◦• ⊂ W••next

∩ Wa

is clear.

If there is no white checker in the critical row, the theorem may be false,

which is why that case was dealt with earlier in Section 5.2. But even in that

case: (i) the proof below shows that the intersection has the expected dimen-

sion. There may be other components, however; Caution 2.20(b) gives such an

example. (ii) ClBS(Q◦)×(X•∪X•next )
X◦• is still Cohen-Macaulay: by Section 5.2,

ClBS(Q◦)×(X•∪X•next )
X◦• is a P1-bundle over ClBS(Q◦)×X•next

X◦stay•next
, and so

it suffices to show the latter variety is Cohen-Macaulay. Hence by induction

(by the Geometric Littlewood-Richardson rule) it suffices to show the result

when ◦• has a white checker in the critical row (Theorem 5.8), or to show that

ClBS(Q◦)×X•final
X◦•final

is Cohen-Macaulay (but this is the smooth variety T ′ of

(4)).

Proof. Fix an irreducible component Z of W••next
∩ Wa, necessarily of

codimension at most expcod(W••next
∩ Wa). We will show that (a) there is

only one possibility for Z, and codimP(Fc/Vinf(a,a′′))∗ Z = expcod(W••next
∩Wa).

(b) We then observe that Z is generically reduced, and the general point

of Z lies in X◦•. Hence Z is a local complete intersection, thus Cohen-

Macaulay, and thus has no nontrivial associated points. Now, Z = ClZ X◦• =

ClBS(Q◦)×(X•∪X•next )
X◦•, and we are done.

(a) Z is unique, and codimP(Fc/Vinf(a,a′′))∗ Z = expcod(W••next
∩ Wa). We

consider three cases, depending on whether inf(a,a′′) = a, or inf(a,a′′) 6= a,a′′,

or inf(a,a′′) = a′′. (These cases correspond to Figures 19(a), 18, and 19(b)

respectively. The first and third cases may hold simultaneously.) The first case

inf(a,a′′) = a is straightforward: Wa is codimension 0, and so Z = W••next
.
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We next deal with the second case. (The reader may wish to refer repeat-

edly to Figure 18.) We will construct a dense open subscheme of Z following

Steps A and B (§5.7). Let ZBS(Q◦) (resp. ZStep A, ZStep B) be the image of Z

in BS(Q◦) (resp. BS(Q◦) × {M·}, T ⊂ BS(Q◦) × {M·} × {F≥c}).

Let `1 = codimBS(Q◦) ZBS(Q◦). Note that ZBS(Q◦) is contained in some

closed stratum of codimension at most `1, which corresponds to a set S of at

most `1 quadrilaterals of Q◦. If |S| = `1, then ZBS(Q◦) is this stratum BS(Q◦)S .

We next consider M· (following Step A). Let `4 be the codimension of

ZStep A in the fibration

{(V·,M·) : (V·) ∈ ZBS(Q◦), Vm(Mi) ⊂ Mi} → ZBS(Q◦).

Suppose that for a general point in Z,

dimVsup(a,a′) ∩Mr−1 − dimVa′′ = `2.

By Lemma 5.4 (taking R = r−1, j = dima′′, δ = dimsup(a,a′), B = ZBS(Q◦),

and B → Fl(1, . . . , k, n) the map giving the spaces of the northeast border of

BS(Q◦)), we have that `4 ≥ `2.

Let `5 be the codimension of ZStep B in the fibration

{(V·,M·,F≥c) : (V·,M·) ∈ ZStep A, Vm(Fj) ⊂ Fj for j ≥ c} → ZStep A.

Then codimT ZStep B = `1 + `4 + `5.

For a general point {(V·,M·,F≥c)} of ZStep B, the choice of Fc−1 in Fc

containing Va and Mr−1 ∩ Fc is of codimension (in P(Fc/Vinf(a,a′′))
∗)

dim

〈

Va

Vinf(a,a′′)
,
Mr−1 ∩ Fc

Vinf(a,a′′)

〉

=dimVa + dimMr−1 ∩ Fc − dimVa ∩Mr−1 ∩ Fc − dimVinf(a,a′′)

=dima + dimMr−1 ∩ Fc − dimVa ∩Mr−1 − dim inf(a,a′′)

= expcod(W••next
∩ Wa) + dim inf(a,a′′) − dimVa ∩Mr−1

from (5). Let `3 = dimVa ∩Mr−1 − dim inf(a,a′′) (nonnegative as Vinf(a,a′′) ⊂

Va ∩ Mr−1). Thus this step contributes a (negative) codimension of −`3

compared to the expected codimension. Let `6 be the codimension of Z in

{(V·,M·,F≥c−1) : (V·,M·,F≥c) ∈ ZStep B, 〈Va,Mr−1 ∩ Fc〉 ⊂ Fc−1}.

Summing the boxed codimensional contributions, we have

(6) codimZ − expcod(W••next
∩ Wa) = `1 + `4 + `5 − `3 + `6 ≥ `1 + `2 − `3.

At (5) we observed that the left side is nonpositive.

We now show that the right side of (6) is nonnegative. Label vertex m

of Q◦ with the value dimVm ∩ Mr−1 for a general point of Z. For example,

Vinf(a,a′′) is labeled dim inf(a,a′′), and Va′′ is labeled dima′′. We consider the
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region inf(a,a′′)a′′ sup(a,a′)a of vertices dominating inf(a,a′′) and dominated

by sup(a,a′). The total content of the quadrilaterals in this region is a linear

combination of the labels of the vertices. The net contribution of a vertex m ∈
Q◦ is the number of quadrilaterals in region inf(a,a′′)a′′ sup(a,a′)a of which

it is the northeast or southwest corner, minus the number of which it is the

northwest or southeast corner (all multiplied by the label dimVm∩Mr−1 of m).

Hence the only vertices with a nonzero net contribution are the following. (The

reader may wish to consult Figure 18.)

• Each diagonal edge (i.e. nonhorizontal and nonvertical edge, see Fig-

ure 18) internal to region inf(a,a′′)a′′ sup(a,a′)a contributes the label

of its larger vertex minus the label of its smaller vertex, a nonnegative

contribution.

• In addition, a and a′′ contribute their labels, and inf(a,a′′) and sup(a,a′)

contribute the negative of their labels.

Thus the total content of region inf(a,a′′)a′′ sup(a,a′)a is

(internal diag. contribution) + dimVa ∩Mr−1 + dimVa′′ ∩Mr−1(7)

−dimVinf(a,a′′) ∩Mr−1 − dimVsup(a,a′′) ∩Mr−1

≥ (dimVa′′ − dimVsup(a,a′) ∩Mr−1) + (dimVa ∩Mr−1 − dimVinf(a,a′′))

= −`2 + `3.

However, the content is bounded above by `1 with equality only if no negative-

content quadrilaterals appear: from Figure 17 each content 1 quadrilateral

gives an element of our set S of quadrilaterals, and |S| ≤ `1. Thus `1 + `2 − `3

≥ 0 and so we must have `1 + `2 − `3 = 0, and equality must hold in all

inequalities above. In particular, `5 = `6 = 0, `4 = `2; from equality in

Lemma 5.4, `2 = 0 or 1 (and if `2 = 1 then Va′ ⊂ Mr−1); ZBS(Q◦) = BS(Q◦)S ;

and no quadrilaterals with negative content appear.

By equality in (7), any internal diagonal edge must have the same labels on

both vertices. Now inf(a,a′′)d is an internal diagonal edge (see Figure 18), so

both vertices must be labeled the same (dim inf(a,a′′)). By Lemma 5.5(b)(ii),

if the western two vertices of a quadrilateral have the same label, then the

eastern two vertices have the same label (possibly different from the western

vertices). Repeated application of this observation to the quadrilaterals in the

region inf(a,a′′)a′′a′d (inductively from left to right) yields that the labels on

a′′ and a′ are the same. Thus,

dimVa′ ∩Mr−1 = dimVa′′ ∩Mr−1 = dimVa′′ < dimVa′ ,

so that Va′ * Mr−1, and so (from the last sentence of the previous paragraph)

`2 = 0.
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By Lemma 5.5(b)(i), any quadrilateral whose northern two vertices are

labeled m must have all four vertices labeled m. By repeated application of

this observation to the region south of edge inf(a,a′′)d (inductively from top

to bottom), all vertices in this region (and in particular, a) must be labeled

dim inf(a,a′′) as well (see Figure 18). Thus `1 = 0, and hence `3 = 0 from

`1 + `2 − `3 = 0.

We have completed part (a) in the case where inf(a,a′′) 6= a,a′′ by de-

scribing an open subscheme of Z explicitly as an open subscheme of a tower of

projective bundles over BS(Q◦)∅, and showing that it has the expected codi-

mension.

The third case a′′ = inf(a,a′′) is similar. (The reader may wish to refer

repeatedly to Figure 19(b).) The previous argument applies verbatim until (6)

to yield

0 ≥ codimZ − expcod(W••next
∩ Wa) ≥ `1 + `2 − `3.

We show the right side is nonnegative by again labeling vertex m of Q◦ with

dimVm ∩Mr−1. As Va′′ is a hyperplane in Va′ ,

dimVa′ ∩Mr−1 − dimVa′′ ∩Mr−1 = 0 or 1.

Call this value ε.

This time we consider the region a′′a′ sup(a,a′)a. Summing the content of

the region we obtain ε + `3 − `2 plus a nonnegative contribution from internal

diagonal edges; this is again bounded above by `1. Then 0 ≥ `1 + `2 − `3 gives

ε = 0, and equality holds in all previous inequalities. In particular, Lemma 5.4

(taking R = r − 1 and B = BS(Q◦)) implies `2 = 0 or 1, and `2 = 1 only if

ε = 1; but we have established ε = 0, and so `2 = 0. Also, a′′ and a′ have the

same label dima′′ (again as ε = 0); so by repeated use of Lemma 5.5(b)(i), all

vertices south of edge a′′a′ have label dima′′ as well. In particular, both a and

sup(a,a′) have this label, and so `1 = `3 = 0. We have completed part (a) in

the third case where inf(a,a′′) = a′′.

(b) Rest of proof. In each of the three cases, there is one possibility for Z,

and we have described the construction of an open subscheme explicitly: take

the open stratum BS(Q◦)∅, and take all M· so that Mi ⊃ Vm(Mi); then take

all Fn−1, . . . , Fc transverse to M· so that Fj ⊃ Vm(Fj); then take the open

subset where Va ∩ Mr−1 ∩ Fc = Vinf(a,a′′); then take all Fc−1 containing both

Mr−1 ∩ Fc and Va but not containing Mr+1 ∩ Fc. By construction, Z is

generically reduced, and also by construction the general point of Z lies in X◦•.

5.9. We will identify the components of DQ, in terms of strata on BS(Q◦).

Define the western good quadrilaterals of Q◦ to be those quadrilaterals with

eastern two vertices dominating d, and the western two dominated by a. Let

the eastern good quadrilaterals be those quadrilaterals whose vertices all dom-
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inate d, to the east of a western good quadrilateral. Let b (resp. b′) be the

bottom left (resp. right) corner of the region of good quadrilaterals. See Fig-

ure 20 for an explanatory picture, and note that the good quadrilaterals are

arranged in a grid. If there is a blocker, there are no western good quadrilat-

erals and hence no eastern good quadrilaterals (see Figure 21). In this case let

b = inf(a,a′) and b′ = a′, so that in all cases the region of good quadrilaterals

is inf(a,a′)a′b′b (possibly empty).

Following Section 2.4, define

W•next
:= {Fc−1 : Mr ∩ Fc ⊂ Fc−1, Mr+1 ∩ Fc * Fc−1} ⊂ P(Fc/Vinf(a,a′′))

∗,

a divisor on the smooth variety W••next
. The divisor DQ is the pullback of

X•next
⊂ X• ∪ X•next

, from which DQ = W•next
∩ Wa ⊂ W••next

∩ Wa (cf. §2.4).

= eastern good quadrilaterals

= western good quadrilaterals

a′′

a′

b′
=

=

=

sup(a, a′)

inf(a,a′)

b

b′′

a

0

d

Figure 20: Good quadrilaterals. Three are marked with “=” so that none

is weakly southeast of another (Theorem 5.10). Both b′′ and the set E of

thickened edges arise in the proof of Theorem 5.10.

b′ = a′

a′′

0

a

b = inf(a,a′)

d

Figure 21: If there is a blocker, there are no good quadrilaterals

Suppose S is a set of good quadrilaterals, with none weakly southeast

(i.e. south or east or southeast) of another. Such a set is shown (marked with

“=”) in Figure 20. Define a subvariety DS of W•next
∩Wa as follows. Over the

stratum BS(Q◦)S , choose M· and F≥c following Steps A and B. Over the open
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set of the resulting variety where Va ∩ Mr is constant, let Fc−1 be the set of

hyperplanes of Fc containing both Va and Mr ∩Fc. Let DS be the closure (in

W•next
∩ Wa) of this locus.

5.10. Theorem. The irreducible components of DQ are a subset of the

DS described above.

Proof. We parallel the proof of Theorem 5.8; the roles of r − 1 and a′′

are here played by r and a′. The case inf(a,a′) = a is again immediate:

W•next
∩ Wa = W•next

= D∅. (In this case there are no good quadrilaterals.)

We assume inf(a,a′) 6= a for the rest of the proof.

Let Z be an irreducible component of DQ, so that

codimP(Fc/Vinf(a,a′′))∗ Z = codimP(Fc/Vinf(a,a′′))∗ W••next
∩ Wa + 1.

Let ZBS(Q◦) (resp. ZStep A, ZStep B) be the image of Z in BS(Q◦) (resp. BS(Q◦)×
{M·}, T ⊂ BS(Q◦) × {M·} × {F≥c}).

Let `1 = codimBS(Q◦) ZBS(Q◦), and let S be the set of (at most `1) quadri-

laterals corresponding to the smallest stratum of BS(Q◦) in which ZBS(Q◦)

is contained. Let `4 be the codimension of ZStep A in {(V·,M·) : (V·) ∈
ZBS(Q◦), Vm(Mi) ⊂ Mi}, and suppose that for a general point in Z,

dimVsup(a,a′) ∩Mr − dimVa′ = `2.

By Lemma 5.4 (with R = r, j = dima′, and B = ZBS(Q◦)), `4 ≥ `2. If equality

holds then `2 = 0 (as case (ii) of Lemma 5.4 cannot occur; αj = R, as we

have a white checker in the critical row r = R). Let `5 be the codimension

of ZStep B in {(V·,M·,F≥c) : (V·,M·) ∈ ZStep A, Vm(Fj) ⊂ Fj for j ≥ c}, so

that as before, codimT ZStep B = `1 + `4 + `5. For a general point of ZStep B =

{(V·,M·,F≥c)}, the choice of Fc−1 in Fc containing Va and Mr ∩ Fc is of

codimension (in P(Fc/Vinf(a,a′′))
∗)

dim

〈

Va

Vinf(a,a′′)
,
Mr ∩Fc

Vinf(a,a′′)

〉

=dimVa + dimMr ∩Fc − dimVa ∩Mr ∩ Fc − dimVinf(a,a′′)

=dima + (r + c − n) − dimVa ∩Mr − dim inf(a,a′′)

= codimP(Fc/Vinf(a,a′′))∗(W••next
∩ Wa) + 1 + dim inf(a,a′′) − dimVa ∩Mr.

When `3 = dimVa∩Mr−dim inf(a,a′′) ≥ 0 this step contributes a codimension

of 1 − `3 compared to codim(W••next
∩Wa). Let `6 be the codimension of Z

in

{(V·,M·,F≥c−1) : (V·,M·,F≥c) ∈ ZStep B, 〈Va,Mr−1 ∩ Fc〉 ⊂ Fc−1}.

Summing the boxed contributions, we have

1 = codimZ−codim(W••next
∩Wa) = 1+`1 +`4 +`5−`3 +`6 ≥ 1+`1 +`2−`3.
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We again show that `1 +`2−`3 is nonnegative. Label vertex m of Q◦ with

dimVm ∩ Mr. We compute the content of the region inf(a,a′)a′ sup(a,a′)a.

As before, each internal diagonal edge contributes the label of its larger vertex

minus the label of its smaller vertex, a nonnegative contribution. Also, a and

a′ contribute their labels, and inf(a,a′) and sup(a,a′) contribute the negative

of their labels. Thus the total content of region inf(a,a′)a′′ sup(a,a′)a is

(internal diag. contribution) + dimVa ∩Mr + dimVa′ ∩Mr(8)

−dimVinf(a,a′) ∩Mr − dimVsup(a,a′) ∩Mr

≥ (dimVa′ − dimVsup(a,a′) ∩Mr) + (dimVa ∩Mr − dimVinf(a,a′))

=−`2 + `3.

But the content is again bounded above by `1 (see Figure 17), so that `1 + `2−
`3 ≥ 0; hence `1 + `2 − `3 = 0, and equality must hold in all inequalities above.

In particular, `5 = `6 = `2 = `4 = 0; `1 = `3 (not necessarily zero!); ZBS(Q◦) is

the stratum corresponding to S; and all quadrilaterals have content 0 except

for `1 quadrilaterals with content 1 in region inf(a,a′)a′ sup(a,a′)a.

If b = a, then region inf(a,a′)a′′ sup(a,a′)a is precisely the region of good

quadrilaterals; proceed to 5.11. Otherwise, let b′′ ∈ Q◦ be the other end of the

northernmost diagonal edge emanating southeast from b (see Figure 20). By

the equality in (8), b and b′′ have the same label. By repeated application of

Lemma 5.5(b)(i) to the region below edge bb′′, all vertices below b and b′′ have

the same label too. In particular, the labels of b and a are the same. Let E be

the set of edges due south of b′′, union the edge bb′′, shown in Figure 20. The

region directly to the east of E consists of a grid of quadrilaterals, as it contains

no white checkers (see Figure 20). By repeated application of Lemma 5.5(b)(ii)

to this region, any two vertices east of E in the same column have the same

label. Hence the labels of b′ and sup(a,a′) are the same. Thus the content of

the region of good quadrilaterals inf(a,a′)a′b′b is the same as the content of

the region inf(a,a′)a′ sup(a,a′)a considered earlier, which is `1. Thus the `1

positive-content quadrilaterals S are a subset of the good quadrilaterals.

5.11. We conclude by showing that no element of S is weakly southeast of

another. Fix a positive-content quadrilateral. Then its northeast, southeast,

and southwest vertices have the same label. Thus by repeated application

of Lemma 5.5(b)(i), all vertices south of its southern edge are labeled the

same, and there are no positive-content quadrilaterals (elements of S) south

of this edge. Let E ′ be the union of edges due south of the northeast vertex of

our positive-content quadrilateral. Repeated applications of Lemma 5.5(b)(ii)

imply that any two vertices east of E ′ in the same column have the same label,

and there are no positive content quadrilaterals here either.

A little more work shows that all such DS are components of DQ: given

any set S of good quadrilaterals, none weakly southeast of another, show that
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`1 = `3 by explicitly describing the labels dimVm ∩ Mr for all m ∈ BS(Q◦).

As ClBS(Q◦)×(X•∪X•next )
X◦• is Cohen-Macaulay and DQ is an effective Cartier

divisor, DQ has no nonmaximal associated points, and so DQ is the scheme-

theoretic union of the DS . We will not need these facts, so we omit the details.

5.12. Contraction of all but one or two divisors by π. The divisors D∅ and

D{northwest good quad.} correspond to the stay and swap options respectively of

the Geometric Littlewood-Richardson rule. We next show that all but possibly

D∅ and D{northwest good quad.} are contracted by π. Part (a) of the following

proposition shows that all other DS are contracted by π, and (b) shows that

D∅ is contracted by π when predicted (the three entries of Table 2 where there

is no “stay” option).

5.13. Proposition. (a) If S 6= ∅, {northwest good quad.}, then DS is

contracted by π.

(b) If S = ∅ and

(i) the white checker in the critical diagonal is in the rising black checker ’s

square (recall the assumption that there is a white checker in the critical

row), or

(ii) the white checker in the critical row is in the descending checker ’s square,

and there is a checker in the critical diagonal,

then DS is contracted by π.

Proof. (a) The construction of an open subset of DS involves starting with

BS(Q◦)S and constructing M· and F· using the spaces corresponding to the

northeast border of BS(Q◦), and those elements of the southwest border dom-

inating a. Given a general point ((Vm)m∈Q◦
,M·,F·) of DS , we will produce a

one-parameter family (V ′
m)m∈Q◦

through (Vm)m∈Q◦
in the stratum BS(Q◦)S ,

fixing those Vm on the border. The corresponding family {((V ′
m)m∈Q◦

,M·,F·)}
is contained in DS , as the inclusions Vm(Mi) ⊂ Mi and Vm(Fj) ⊂ Fj are pre-

served. Also, the k-plane Vmax(Q◦) is fixed, so the corresponding locus in DS

is contracted by π, proving the result.

Choose a quadrilateral stuv in S. Name the elements of Q◦ as in Fig-

ure 5.22(a); gm is the white checker in the column of s, and fm−1 is the

next white checker to the west. Note that gm has only one edge pointing

northwest, and two pointing southeast. The desired family corresponds to let-

ting V ′
m ≡ Vm for m 6= s,g1, . . . ,gm, and letting V ′

s vary in an open set of

P(Vv/Ve) ∼= P1, such that V ′
gi

:= V ′
s ∩ Vhi

has dimension dimgi (1 ≤ i ≤ m).

Note that Vfi
is contained in V ′

gi
, as V ′

gi
= V ′

s ∩ Vhi
contains Ve ∩ Vhi

= Vfi
by

construction.

(Note how this argument fails if S = {northwest good quad.}, so stuv is

the northwest good quadrilateral. Then s = inf(a,a′′) = gm. If inf(a,a′′) 6= a′′,
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gm−1

...

f1

e

v

gm

g1

hm

hm−1

h1

fm−1

t

uvarying spaces

f1 · · · fm = a′′

g1

h1 · · · hm

inf(a,a′)

d

t s

gm = a′

row < r

critical row r

varying spaces

s

fm

(a) (b)

...

Figure 22

as in Figure 18, then s = inf(a,a′′) has a third southeastern edge, pointing due

east. If inf(a,a′′) = a′′, as in Figure 19(b), then s = inf(a,a′′) is on the

northeast border, so Vs was required to be fixed.)

(b) (i) Name the elements of Q◦ as in Figure 22(b); here the white checker

in the rising black checker’s square is t. Given a general point

((Vm)m∈Q◦
,M·,F·)

of DS , we will produce a one-parameter family (V ′
m)m∈Q◦

in BS(Q◦) through

(Vm)m∈Q◦
preserving all spaces in BS(Q◦) on the northeast and southeast

borders except V ′
a′ . We will verify that V ′

a′ ⊂ Mr for every point in the family.

Then as in (a) the corresponding family (V ′
m,M·,F·) is contained in DS and

is contracted by π, proving the desired result.

The family corresponds to letting V ′
m = Vm for m 6= d,g1, . . . ,gm, and

letting V ′
d vary in an open set of P(Vs/Vinf(a,a′)) ∼= P1, such that V ′

gi
:= 〈V ′

d, Vfi
〉

has dimension dimgi (1 ≤ i ≤ m). Note that Vt ⊂ Mr+1 ∩Fc−1 = Mr ∩Fc−1

(as Mr+1∩Fc ⊃ Mr∩Fc−1, and they are the same dimension by the definition

of •next) and V ′
d ⊂ Vs = 〈Vd, Vt〉 ⊂ Mr, so V ′

a′ = Vfm
+Vd ⊂ Mr as well. (Note

where the hypothesis that t was on row r + 1 was used: Vt ⊂ Mr+1.)

Case (ii) is essentially identical (with roles of rows and columns exchanged)

and hence omitted.

5.14. Multiplicity 1. We have shown that at most one or two of the DS

are not contracted by π, and these correspond to the divisors predicted by the

Geometric Littlewood-Richardson rule. We now show that such DS appear

with multiplicity 1 in the Cartier divisor DQ.

5.15. Proposition. (a) The multiplicity of the Cartier divisor DQ along

the Weil divisor D∅ is 1.
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(b) If there are good quadrilaterals, the multiplicity of DQ along

D{northwest good quad.} is 1.

Proof. (a) Consider the open subset T ′ of T that lies in the preimage of the

dense open stratum BS(Q◦)∅, and where Va∩Mr = Vinf(a,a′′). By construction,

W•next
∩Wa restricted to this locus is reduced, so the Cartier divisor W•next

∩Wa

on W••next
∩ Wa has multiplicity 1 along the corresponding Weil divisor D∅.

(b) We give a test family F through a general point (V·,M·,F·) of

ClBS(Q◦)×(X•∪X•next )
X◦• meeting DQ along D{northwest good quad.} with multi-

plicity 1. Label the elements of Q◦ as in Figure 22(b). For example, t is the

highest white checker in the critical diagonal; let r ′ be the row of t. The family

F = {(V ′
· ,M

′
·,F

′
·)} is given by:

• V ′
m = Vm for m 6= d, g1, . . . , gm = a′.

• Choose et ∈ Vt and ed ∈ Vd so that et is a generator of Vt/Vinf(a,a′) and

ed is a generator of Vd/Vinf(a,a′). Let V ′
d = 〈Vinf(a,a′), µet + νed〉 (where

[µ; ν] varies in P1), so that V ′
d varies in the pencil P(Vs/Vinf(a,a′)); take

V ′
gi

= 〈Vfi
, V ′

d〉.

• M′
i = Mi except for r ≤ i < r′.

• Let M′
r = 〈Mr−1, V

′
d〉 = 〈Mr−1, µet + νed〉. Let M′

i (r < i < r′) vary

freely (subject to Mr ⊂ Mr+1 ⊂ · · · ⊂ Mr′).

• F′
i = Fi for i ≥ c.

• Let F′
c−1 vary freely in P(Fc/〈Va,Mr−1∩Fc〉)

∗, and take F′
j := Mij

∩F′
c−1

for j < c − 1 as described in Section 2.4.

Then (V·,M·,F·) ∈ F (take µ = 0 and M′
i = Mi), so F * DQ. Also,

when ν = 0, V ′
d = V ′

t , so (V ′
· ) ∈ BS(Q◦){northwest good quad.}, so F meets

D{northwest good quad.} at ν = 0. We will see that DQ contains the divisor

ν = 0 with multiplicity 1, proving the result. Keep in mind that F′
c−1 ⊃

〈Va,Mr−1 ∩ Fc〉 for all points of F . The divisor DQ on F is given (scheme-

theoretically) by

(9) 〈Va,Mr ∩ Fc〉 ⊂ F′
c−1 ⇐⇒ Mr ∩ Fc ⊂ F′

c−1 (as Va ⊂ F′
c−1).

As 〈Mr−1,Fc〉 = Kn, we may choose a projection σ : Kn → Fc vanishing on

Mr−1/〈Mr−1,Fc〉, so that (Id− σ)(Kn) ⊂ Mr−1. Then from (9), DQ is given

by

〈Mr−1, µet+νed〉∩Fc ⊂ F′
c−1 ⇐⇒ 〈Mr−1, σ(µet+νed)〉∩Fc ⊂ F′

c−1.
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As σ(µet + νed) ∈ Fc, this is equivalent to

µσ(et) + νσ(ed) ∈ F′
c−1

⇐⇒ µet + νσ(ed) ∈ F′
c−1 (as t is in column ≤ c, so that et ∈ Fc,

hence σ(et) = et)

⇐⇒ νσ(ed) ∈ F′
c−1 (as t ≺ a, so et ∈ Va; and Va ⊂ F′

c−1).

This condition is not satisfied by all elements of F (as F * DQ as stated

earlier), and so σ(ed) /∈ 〈Va,Mr−1 ∩Fc〉. Thus the restriction of DQ to F has

two components, each with multiplicity 1. One component is the hyperplane

section {F′
c−1 : σ(ed) ∈ F′

c−1} of P(Fc/〈Va,Mr−1∩Fc〉)
∗; we have again verified

that the multiplicity of DQ along D∅ is 1 (in the special case where there is

a northwest good quadrilateral). The fiber for ν = 0 is also a component,

appearing with multiplicity 1, as desired.

We have two loose ends to tie up to conclude the proof of the Geometric

Littlewood-Richardson rule:

(i) π(D∅) = X◦stay•next
and/or π(D{northwest good quad.}) = X◦swap•next

.

(ii) Furthermore X◦stay•next
appears with multiplicity 1 in

ClG(k,n)×(X•∪X•next )
X◦•

if D∅ appears with multiplicity 1 in ClBS(Q◦)×(X•∪X•next )
X◦•, and simi-

larly for X◦swap•next
and D{northwest good quad.}.

Both are a consequence of the next result ((ii) since π is birational).

5.16. Proposition. The morphism π induces birational maps from (a)

D∅ to X◦stay•next
and (b) D{northwest good quad.} to X◦swap•next

.

Proof. (a) The inverse rational map X ◦stay•next
99K D∅ is given by the

morphism X◦stay•next
→ BS(Q◦) ×X•next

: by definition X◦stay•next
parametrizes

flags M· and F· in •next-position, as well as a k-plane V and vector spaces

V ∩Mi ∩Fj, which correspond to elements of Q◦ (and dimV ∩Mi ∩Fj equals

the dimension of the corresponding element of Q◦) .

(b) The inverse rational map X◦swap•next
99K D{northwest good quad.} is simi-

larly given by the morphism X◦swap•next
→ BS(Q◦)×X•next

, by way of the locally

closed immersion BS(Q◦swap
)∅ ∼= BS(Q◦){northwest good quad.} ↪→ BS(Q◦).

Stanford University, Stanford CA

E-mail address: vakil@math.stanford.edu

References

[BB] N. Bergeron and S. Billey, RC-graphs and Schubert polynomials, Experiment. Math.
2 (1993), 257–269.



A GEOMETRIC LITTLEWOOD-RICHARDSON RULE 415

[BJS] S. Billey, W. Jockusch, and R. Stanley, Some combinatorial properties of Schubert
polynomials, J. Algebraic Combin. 2 (1993), 345–374.

[BV] S. Billey and R. Vakil, Intersections of Schubert varieties in Gln/B and other per-
mutation array schemes, preprint, 2005, math.AG/0502468.

[B1] A. S. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta
Math. 189 (2002), 37–78.

[B2] ———, personal communication.

[BKT] A. S. Buch, A. Kresch, and H. Tamvakis, Gromov-Witten invariants on Grassmanni-
ans, J. Amer. Math. Soc. 16 (2003), 901–915.

[C-F] I. Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke
Math. J . 98 (1999), 485–524.

[Co] I. Coskun, Degenerations of surface scrolls and the Gromov-Witten invariants of
Grassmannians, submitted for publication.

[EG] A. Eremenko and A. Gabrielov, Rational functions with real critical points and the
B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. 155

(2002), 105–129.

[EH] D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves,
Invent. Math. 74 (1983), 371–418.

[F] W. Fulton, Young Tableau with Applications to Representation Theory and Geome-
try, Cambridge Univ. Press, New York, 1997.

[H] W. V. D. Hodge, The intersection formulae for a Grassmannian variety, J. London
Math. Soc. 17 (1942), 48–64.

[Kl1] S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974),
287–297.

[Kl2] ———, Problem 15: Rigorous foundation of Schubert’s enumerative calculus, Math-
ematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math. 28
(1976), 445–482.

[KT] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians,
Duke Math. J . 119 (2003), 221–260.

[KTW] A. Knutson, T. Tao, and C. Woodward, The honeycomb model of GLn(C) tensor
products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer.
Math. Soc. 17 (2004), 19–48.

[KV1] A. Knutson and R. Vakil, A geometric Littlewood-Richardson rule for the two-step
flag manifold and the quantum cohomology of the Grassmannian, work in progress.

[KV2] ———, The equivariant K-theory of the Grassmannian, work in progress.

[KL] V. Kreiman and V. Lakshmibai, Richardson varieties in the Grassmannian, preprint,
2002, math.AG/0203278.

[Mac] I. G. Macdonald, Notes on Schubert Polynomials, Publ. LaCIM, Univ. du Québec à
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Appendix A. The bijection between checkergames and puzzles

(with A. Knutson)

We assume familiarity with puzzles [KT], [KTW]. Fix k and n. We fill in

a puzzle with given inputs, one row of triangles at a time, from left to right.

Row m consists of those triangles between the mth edges from the top on the

sides of the triangle.

The placement of vertical rhombi may cause parts of subsequent rows to

be filled; call these teeth. The mth row of the puzzle corresponds to the part of

the checkergame where the black checker in the mth column is descending. The

possible choices for filling in puzzle pieces correspond to the possible choices

of next moves in the checkergame; this will give the bijection.

We now describe an injection from checkergames to puzzles; to each

checkergame we will associate a different puzzle. As both count Littlewood-

Richardson coefficients, this injection must be a bijection. Alternatively, to

show that this is a bijection, one can instead show that there are no puz-

zles not accounted for here. For example, one can show easily that there are

no puzzles if the checkergame predicts there shouldn’t be (i.e. if the sets are

a1 < · · · < ak and b1 < · · · < bk, and if ai + bk+1−i ≤ n for some i), by focusing

on a certain parallelogram-shaped region of the puzzle. More generally, one

may show combinatorially that if a partially filled in puzzle does not corre-

spond to a valid checkergame-in-progress, then there is no way to complete it.

This argument is lengthy and combinatorially tedious, and hence omitted.
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A.1. Bijection of starting positions. Place the partition α corresponding

to the moving flag on the left side of the puzzle, and the partition β corre-

sponding to the fixed flag on the right side of the puzzle. Fill in the top row

of the puzzle in the only way possible. (As remarked earlier, the translation

to checkers will give an immediate criterion for there to be no puzzles.)

A.2. The translation part-way through the checkergame. At each stage,

the partially complete puzzle will look like Figure 23. Any of a, b, and c may

be zero. In the checkergame, a, b, and c correspond to the numbers shown in

Figure 24. The rows of the white checkers in the game are given by the edges

of Figure 25 — a “1” indicates that there is a white checker in that row. The

columns are given by the edges of Figure 26. As the white checkers are mid-

sort, it turns out that this specifies their position completely. See Figure 27

for a more explicit description.

c

b

a

0 1

10

tooth
to fill in next

tooth

Figure 23: The puzzle in the process of being filled

b

a

c

Figure 24: The corresponding point in the checkergame

critical row

1

1

row n

row 1

Figure 25: The rows of the white checkers
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column 1

0

0

column n
column of descending checker

Figure 26: The columns of the white checkers

c

1

r

no teeth

1 1

1

r

c

r

c

critical diagonal

critical row

0

0

1

r

c

teeth, and/or 0 here

Figure 27: How to locate the white checker given the partially completed puzzle

(r is the row and c is the column; see Figures 25 and 26 to interpret them as

numbers)

We now go through the various cases of how to fill in the next part of

the puzzle, and verify that they correspond to the possible next moves of the

checkergames. Each case is depicted in Figure 28, along with the portion of

Table 2 that it corresponds to (in checkers). The reader should verify that all

possible puzzle piece placements, and all possible checker moves, are accounted

for in the bijection.

Case 1. There is no white checker in the critical row, or in the next row.

Then make one move in the checkergame.

Case 2. There is no white checker in the critical row, and there is a white

checker in the next row, not on the rising black checker.



A GEOMETRIC LITTLEWOOD-RICHARDSON RULE 419

0

0
0

0

1

1

stay:1

0 0· · · 1 · · ·

0

1

0 0· · · 1 · · ·

1
1111

1 0 0· · ·

or swap:

tooth or right side

0

8

0

1
0

0· · ·

5
1

1
0

0

0· · ·

0
· · ·

0 0· · ·

0

0

1

0
0

1

3

1

0 0 0 0
1

0

1
2

0

0 0

0

0
001

Puzzle Before Puzzle After Checker movement Part of Table 1Case

1 1

no teeth α · · · ω

1 1
1

1 · · ·α

0

1
0

0· · ·

1

1

1 · · ·

0 1

1

1

1

1

4

right side

(same)6

tooth or right side

7

ω

Figure 28: How to place the next piece in the puzzle



420 RAVI VAKIL

Case 3. There is no white checker in the critical row, and there is a white

checker on the rising black checker.

Case 4. There is a white checker in the descending checker’s square. In

this case, we finish the row of the puzzle, and make a series of checker moves

to move the descending checker to the bottom row.

Case 5. There is a white checker in the critical row but not in the de-

scending checker’s square, and there are no white checkers in any lower row.

We finish the row of the puzzle, and make a series of checker moves to move

the descending checker to the bottom row.

Case 6. There is a white checker in the critical row, and there is another

white checker in a lower row, but in a higher row than any white checkers on

the critical diagonal (e.g. a blocker if there is a white checker on the critical

diagonal). We finish the part of the row of the puzzle up to the corresponding

tooth, and make a series of checker moves to move the descending checker to

the blocker’s row.

Case 7. There is a white checker in the critical row but not in the descend-

ing checker’s square, and there is a white checker in the rising checker’s square.

Then we place two puzzle pieces and make one checker move, as shown.

Case 8. There is a white checker in the critical row, but not on the

descending checker; there is a white checker in the critical diagonal, but not

on the rising checker; and there is no blocker. Then there are two cases. If the

white checkers “stay”, then then we make one checker move, and place two

pieces. If the white checkers “swap”, then we fill in the part of the puzzle up

to the “1” in the region marked a in Figure 23, and make a series of checker

moves to move the descending checker to the row of the lower white checker in

question.

Appendix B. Combinatorial summary of the rule

For the convenience of combinatorialists, we summarize the checker de-

scription of the Geometric Littlewood-Richardson rule here, without reference

to any geometry. In this context, the rule will necessarily appear somewhat

byzantine. Fix positive integers k < n. Fix two partitions α, β ∈ Reck,n−k

(where Reck,n−k are those partitions that are contained in a k× (n−k) rectan-

gle). We consider α and β as size k subsets of {1, . . . , n} via the usual bijection

(Figure 1, §1.4). Then a checkergame with inputs α and β is defined as fol-

lows. We have an n×n board, and n black checkers and k white checkers. We

start by placing the n black checkers along the antidiagonal (in configuration

•init, §2.3), and the k white checkers in configuration ◦α,β (Proposition 2.7).

If the white checkers are not happy (§2.5), then we stop; there are no check-

ergames with inputs α and β. Otherwise, we perform
(

n
2

)

moves. The moves of

the black checkers are predetermined, and are given by the specialization order
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(§2.3). For each move, there will be either one or two choices for how the white

checkers may move (§2.10); after every move they will still be happy. At the

end of the checkergame, the black checkers will be lined up along the diagonal

(in configuration •final), and the white checkers (in order to be happy) will be

on a subset of the black checkers. The resulting size k subset of {1, . . . , n} is

called the output of the checkergame.

Let Ik,n be the ideal in the ring of symmetric functions Λ (in countably

many variables) generated by the Schur functions {sλ}λ/∈Reck,n−k
. Then Λ/Ik,n

is isomorphic to the cohomology ring of the Grassmannian G(k, n).

B.1. Theorem (Geometric Littlewood-Richardson rule, combinatorial

version).

(i) sαsβ ≡
∑

checkergames G

soutput(G) (mod Ik,n)

where the sum is over all checkergames with input α and β, and output(G)

is the output of checkergame G.

(ii) Hence if γ ∈ Reck,n−k, then the integer cγ
αβ is the number of check-

ergames starting with configuration ◦α,β•init and ending with configura-

tion ◦γ•final.

For example, Figure 3 computes s2
(1) = s(2) + s(1,1). Figure 29 computes

c
(3,2,1)
(2,1),(2,1) = 2 when k = 3, n = 6. (In this case, there are four games with

inputs α = β = (2, 1); two of them have output (3, 2, 1).)

Theorem B.1 follows immediately from Theorem 2.15, or more explicitly

from Corollary 2.17.

B.2. Remarks. (a) Like Pieri’s formula and Monk’s formula, this rule

most naturally gives all terms in the product at once (part (i)), but the indi-

vidual coefficients may be easily extracted (part (ii)).

(b) A derivation of Pieri’s formula from the Geometric Littlewood-Richardson

rule is left as an exercise for the reader. Note that Pieri’s original proof [P]

was also by degeneration methods.

(c) Some properties of Littlewood-Richardson coefficients clearly follow

from the Geometric Littlewood-Richardson rule, while others do not. For

example, it is not clear why cγ
αβ = cγ

βα. However, it can be combinatorially

shown (e.g. via the link to puzzles, Appendix A) that (i) the rule is independent

of the choice of n and k (i.e. the computation of cγ
αβ is independent of any n

and k such that γ ∈ Reck,n−k), and (ii) the “triality” cγ
αβ = cα∨

βγ∨ for α, β, γ ∈
Reck,n−k holds.
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A = B = {2, 4, 6}

swap

steps omitted

swapswap

{2, 3, 4} {1, 3, 5} {1, 3, 5} {1, 2, 6}

output:

input:

steps omitted

Figure 29: Computing c
(3,2,1)
(2,1),(2,1) = 2 using k = 3, n = 6; some intermediate

steps are omitted
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