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Higher-order tangents and Fefferman’s
paper on Whitney’s extension problem

By Edward Bierstone, Pierre D. Milman, and Wies�law Paw�lucki*

Abstract

Whitney [W2] proved that a function defined on a closed subset of R
is the restriction of a Cm function if the limiting values of all mth divided
differences form a continuous function. We show that Fefferman’s solution of
Whitney’s problem for Rn [F, Th. 1] is equivalent to a variant of our conjecture
in [BMP2] giving a criterion for Cm extension in terms of iterated limits of finite
differences.

1. Introduction

Whitney [W2] proved that a function defined on a closed subset of R is the
restriction of a Cm function if the limiting values of all mth divided differences
(with supports converging to points) form a continuous function. In [BMP2],
we conjectured that a real-valued function ϕ defined on a closed subset E of
Rn is the restriction of a Cm function provided that ϕ extends to a function
on a “paratangent bundle” defined using iterated limits of finite-difference
operators. The main purpose of this note is to verify the conjectures of [BMP2]
with the paratangent bundle there replaced by a natural variant; we prove
that these assertions (Theorems 1.7, 1.8 below) are equivalent to Fefferman’s
solution of Whitney’s problem [F, Th. 1]. The “Glaeser refinements” that
Fefferman iterates to give his criterion for ϕ to be Cm are dual to “Glaeser
operations” in the sense of [BMP2]. (See Theorem 3.2.)

We will use the notation of [F] wherever possible. Let P denote the
vector space of real mth degree polynomials on Rn, and let P∗ denote the dual
of P. If F ∈ Cm(Rn), let Tm

y F denote the Taylor polynomial of F at y; i.e.,
Tm

y F (x) =
∑

α≤m ∂αF (y)(x − y)α/α!.
Using Theorem 1.8, we show (Theorem 1.9) that our geometric para-

tangent bundle coincides with the following analogue of the Zariski tangent

*Research partially supported by the following grants: E.B. – NSERC OGP0009070,
P.M. – NSERC OGP0008949, W.P. – KBN 5 PO3A 005 21.



362 EDWARD BIERSTONE, PIERRE D. MILMAN, AND WIES�LAW PAW�LUCKI

bundle from algebraic geometry: Consider the ideal Im(E) ⊂ Cm(Rn) of Cm

functions vanishing on E. We define the Cm Zariski paratangent bundle T m(E)
as

T m(E) = {(y, ξ) ∈ E × P∗ : ξ(Tm
y F ) = 0, F ∈ Im(E)}(1.1)

[BMP2, §2].
Given F ∈ Cm(Rn), define DmF : E × P∗ → R by DmF (y, ξ) = ξ(Tm

y F ).
Clearly, if y ∈ E, then DmF (y, ξ) depends only on ϕ := F |E precisely when
(y, ξ) ∈ T m(E). Denote DmF |T m(E) by ∇mϕ : T m(E) → R. If y ∈ E and
ξ = δy ∈ P∗ is the delta function δy(P ) := P (y), P ∈ P, then

∇mϕ(y, λδy) = λϕ(y), λ ∈ R .(1.2)

Our criterion for Cm extension is based on the question: Does (1.2) determine,
by means of appropriate limits, the value ∇mϕ(y, ξ), for all ξ ∈ T m(E)(y)?

1.1. Glaeser operation. Let E denote a closed subset of Rn.

Definition 1.1. Let V be a finite-dimensional vector space. A linear (resp.,
affine) subbundle of E ×V means a subset Γ of E ×V such that, for all y ∈ E,
the fibre Γ(y) := {v ∈ V : (y, v) ∈ E} is a linear (resp., affine) subspace of V .

Definition 1.2. Let S = {y1, . . . , yk} be a finite subset of Rn. The space
Wm(S) of Whitney Cm functions is the space of sections of S × P. Then
Wm(S) is a finite-dimensional vector space. We write elements P of Wm(S)
as P = (P1, . . . , Pk), where each Pj belongs to the fibre of Wm(S) over yj (and
Pi = Pj if yi = yj). The Whitney Cm norm is defined as

||P ||W m(S) = max

 max
1≤j≤k
|α|≤m

|∂αPj(yj)|, max
yi �=yj

|α|≤m

|∂α(Pi − Pj)(yj)|
|yi − yj |m−|α|

 .(1.3)

There is a projection (“restriction mapping”) Cm(Rn) � F �→ P ∈ Wm(S)
given by P = (P1, . . . , Pk), where each Pj is the Taylor polynomial Tm

yj
F .

For each j = 1, . . . , k, let P∗ � ξ �→ ξyj
∈ Wm(S)∗ denote the dual

to the projection Wm(S) � P �→ Pj ∈ P; i.e., ξyj
(P ) = ξ(Pj), where P =

(P1, . . . , Pk).
Given a Banach space B, with norm || · ||B, we write || · ||B∗ for the dual

norm on B∗.

Definition 1.3. We fix a positive integer k. Given a linear subbundle
T of E × P∗, we define a new linear subbundle g(T ) of E × P∗: The fibre
g(T )(y0), where y0 ∈ E, is defined as the linear span of all elements ξ ∈
P∗ that are obtained in the following way: There is a sequence of subsets
Si = {yi1, . . . , yik} ⊂ E, i = 1, 2, . . . and there are elements ξij ∈ T (yij), for
i = 1, 2, . . . and j = 1, . . . , k, such that:
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(1) Each sequence {yij} = {y1j , y2j , . . . } converges to y0;

(2)
∣∣∣∣∣∣ k∑

j=1

ξij,yij

∣∣∣∣∣∣
W m(Si)∗

≤ c, where c is a constant;

(3) ξ = lim
i→∞

k∑
j=1

ξij in P∗.

Then T �→ g(T ) is a Glaeser operation in the sense of [BMP2, Def. 3.2];
i.e., T ⊂ g(T ) and g is local (i.e., if T1, T2 are linear subbundles of E ×P∗ and
T1(y) = T2(y) for all y in an open subset U of E, then g(T1)(y) = g(T2)(y),
y ∈ U).

Definition 1.4. Let f : T → R denote a function which is linear on
the fibres of T . Let y0 ∈ E. Suppose there exists a linear function f̃(y0) :
g(T )(y0) → R such that

f̃(y0)(ξ) = lim
i→∞

k∑
j=1

f(yij)(ξij)

whenever ξ = limi→∞
∑k

j=1 ξij in P∗, where ξij ∈ T (yij) and Si = {yi1, . . . , yik}
⊂ E satisfy (1) and (2) of Definition 1.3. Then we write f̃(y0) = g(f)(y0).
Clearly, g(f)(y0) is unique if it exists. If g(f)(y) exists for all y ∈ E, then we
call g(f) : g(T ) → R the Glaeser extension of f .

Remark 1.5. In [BMP2], we defined a different Glaeser operation ρ(T ) by
replacing condition (2) in Definition 1.3 by the condition

(2′) |yij − yi1|m−|α||ξij,α(yij)| ≤ c, for all i, 2 ≤ j ≤ k, |α| ≤ m, where c is a
constant and ξα(y) denotes ξ((x − y)α/α!), ξ ∈ P∗.

Morevover, for every f : T → R linear on the fibres, we defined a Glaeser
extension ρ(f) : ρ(T ) → R as above, using the Glaeser operation ρ instead
of g. Then ρ(T ) ⊂ g(T ), by [BMP2, Lemma 4.7] and Lemma 2.1 below, and if
g(f) exists, then ρ(f) = g(f)|ρ(T ).

1.2. Higher-order tangent bundle. We fix a positive integer k. We define
a higher-order tangent bundle (or paratangent bundle) Tm

k (E) ⊂ E × P∗ as
follows: We begin with the bundle of lines T0 ⊂ E × P∗ defined by

T0 = {(y, λδy) : y ∈ E, λ ∈ R} .

We then define a sequence of linear subbundles of E × P∗,

T0 ⊂ T1 ⊂ · · · ,

by Tl = g(Tl−1), l = 1, 2, . . . .
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Let r = dimP. By Glaeser’s lemma [BMP2, Lemma 3.3] (cf. [F, Lemma
2.2]):

(1) Tl = T2r, for all l ≥ 2r;

(2) T2r is a closed linear subbundle Tm
k (E) of E × P∗;

(3) dimTm
k (E)(y) is upper-semicontinuous on E.

Now consider ϕ : E → R. We define f0 : T0 → R by

f0(y, λδy) = λϕ(y) .

Clearly, f0 is linear on the fibres of T0. We inductively define fl : Tl → R
by fl = g(fl−1), l = 1, 2, . . . , provided that the Glaeser extension g(fl−1)
exists. If fl exists for all l, then we denote f2r by ∇m

k ϕ and we say that
∇m

k ϕ : Tm
k (E) → R is the Glaeser extension of ϕ.

Remark 1.6. The Zariski paratangent bundle T m(E) (1.1) has fibre
T m(E)(y) = (Tm

y Im(E))⊥, y ∈ E. For any k and y ∈ E, Tm
k (E)(y) ⊂

(Tm
y Im(E))⊥ (by (1) ⇔ (3) in Lemma 2.1). Therefore, Tm

k (E) ⊂ T m(E). If ϕ

is the restriction of a Cm function, then ϕ extends to ∇m
k ϕ : Tm

k (E) → R, and
the latter coincides with the resriction of ∇mϕ : T m(E) → R defined above
(by Lemma 2.1, (1) ⇔ (3)).

1.3. Main theorems. For the following results, we use the positive integer
k# depending only on m and n given by Fefferman [F], and we write Tm(E) =
Tm

k#(E), ∇mϕ = ∇m
k#ϕ.

Theorem 1.7. Let ϕ : E → R. Then ϕ is the restriction of a Cm function
if and only if ϕ extends to

∇mϕ : Tm(E) → R .

Moreover, if F ∈ Cm(Rn) and F |E = ϕ, then, for all y ∈ E and ξ ∈ Tm(E)(y),
∇mϕ(y)(ξ) = ξ(Tm

y F ).

Theorem 1.8. Let ϕ : E → R. Suppose that ϕ extends to ∇mϕ :
Tm(E) → R. If y0 ∈ E and (∇mϕ)(y0) = 0, then there exists F ∈ Cm(Rn)
such that F |E = ϕ and Tm

y0
F = 0.

Theorem 1.9. Tm(E) = T m(E).

Theorems 1.7 and 1.8 answer Questions 1 and 2 in [F] using iterated limits
of divided differences: It follows from Theorem 3.2 below that Theorems 1.7
and 1.8 are equivalent (by duality) to [F, Th. 1 (A) and (B)] (respectively).
It is easy to see that Theorem 1.8 implies 1.9 and, conversely, if we assume
Theorem 1.7, Theorem 1.9 implies 1.8.
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Let τm
k (E) denote the paratangent bundle defined as in §1.2 above, using

the Glaeser operation ρ of Remark 1.5 in place of g. (The term “paratangent
bundle” comes from Glaeser’s use of “paratingent” in [G].) Then

τm
k (E) ⊂ Tm

k (E) ⊂ T m(E) .

In [BMP2], we asked whether Theorems 1.7-1.9 hold using τm
k (E) (for suit-

able k) in place of Tm(E). These questions remain open in general.1 (The
assertions hold if τm

k (E) = E ×P∗ [BMP2, Proof of Th. 4.20]; e.g., with k = 2
if E has dense interior [loc. cit.]. Already ρ(T0) = E × P∗ with k = dimP for
certain fractal sets E [I].)

Glaeser solved Whitney’s problem for C1 functions [G] (cf. [Br]). His
theorem is equivalent to the assertion that ϕ : E → R is the restriction of a C1

function if and only if ϕ extends to ∇1ϕ : τ1
2 (E) → R. In particular, [F, Th. 1]

in the C1 case, with k#(1, n) = 2, follows from Glaeser’s theorem.
Suppose that E is a compact subanalytic subset of Rn. [BMP2, Th. 1.2]

shows that there exists q = qE(m) such that ϕ : E → R is the restriction
of a Cm function provided that ϕ extends to ∇qϕ : τ q

2 (E) → R. (Note that
τ q
2 (E) here is denoted τ q

1 (E) in [BMP2]. The loss of differentiability comes
from our use of the composition theorem of [BMP1].) It follows that, if ∇mϕ :
τm
2 (E) → R exists for all m, then ϕ extends to a C∞ function, provided that

E is “semicoherent”; moreover, in this case, there is a continuous linear C∞

extension operator. Let T m,q(E), q ≥ m, denote the subbundle of E×P∗ with
fibre T m,q(E)(y) = (Tm

y Iq(E))⊥, y ∈ E. Semicoherence is equivalent to the
condition that, for all m, the increasing sequence of subbundles T m,q(E) of
E × P∗, q ≥ m, stabilizes. (See [BM], [BMP2] for these and related matters.)

2. Whitney norm for a finite set

Let L denote a closed cube in Rn. Let y ∈ L. Any element of Cm(L)∗

with support {y} has the form F �→ ξ(Tm
y F ), F ∈ Cm(L), where ξ ∈ P∗.

Consider S = {y1, . . . , yk} ⊂ L. The restriction mapping Cm(L) →
Wm(S) induces Wm(S)∗ ↪→ Cm(L)∗. By Whitney’s classical extension the-
orem [W1], there is an extension operator E : Wm(S) → Cm(L) such that

c1||f ||W m(S) ≤ ||E(f)||Cm(L) ≤ c2||f ||W m(S) ,

for all f ∈ Wm(S), where the constants c1, c2 depend only on m, n and diamL

(cf. [M, Complement 3.5]). Therefore, for all ξ ∈ Wm(S)∗,
1
c2
||ξ||W m(S)∗ ≤ ||ξ||Cm(L)∗ ≤ 1

c1
||ξ||W m(S)∗ .(2.1)

1(Added in proof.) Counterexamples are given in E. Bierstone, C. Fefferman, P. D. Milman
and W. Paw�lucki, Examples concerning Whitney’s Cm extension problem (to appear). An
improved bound k# = 2dimP is given in E. Bierstone and P. D. Milman, Cm norms on finite
sets and Cm extension criteria (Duke Math. J., to appear).
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Given y0 ∈ L, we introduce another norm
∣∣∣∣ · ∣∣∣∣y0

W m(S)
on Wm(S) (for which

the dual norm will be denoted
∣∣∣∣·∣∣∣∣y0

W m(S)∗
): If y0 ∈ S, then we define

∣∣∣∣·∣∣∣∣y0

W m(S)
as∣∣∣∣ · ∣∣∣∣

W m(S)
. If y0 /∈ S, set S̃ = S ∪ y0 and consider Wm(S) � P �→ P̃ ∈ Wm(S̃),

where P̃ = (0, P1, . . . , Pk) if P = (P1, . . . , Pk). In this case, we define∣∣∣∣P ∣∣∣∣y0

W m(S)
:=

∣∣∣∣P̃ ∣∣∣∣
W m(S̃)

.

Let P = (P1, . . . , Pk) ∈ Wm(S) and let P0 ∈ P. Let (P0) denote
(P0, . . . , P0) ∈ Wm(S). Assuming that P0 = Pj if y0 = yj for some j = 1, . . . , k,
we see from (1.3) that

∣∣∣∣(P0) − P
∣∣∣∣y0

W m(S)
≈ max

0≤i,j≤k
yi �=yj

|α|≤m

|∂α(Pi − Pj)(yj)|
|yi − yj |m−|α|(2.2)

(where ≈ means that each side is majorized by the other times a constant
depending only on m, n and diamL); so we will regard (2.2) as an equality (cf.
Fefferman’s definition of “Glaeser refinement”, (5) in [F, Intro.]).

Lemma 2.1. Let y0 ∈ L. For each i = 1, 2, . . . , consider Si = {yi1, . . . , yik}
⊂ L, where limi→∞ yij = y0, j = 1, . . . , k. Let ξij ∈ P∗, for i = 1, 2, . . . and
j = 1, . . . , k. Then the following conditions are equivalent :

(1) limi→∞
∑k

j=1 ξij,yij
(F ) exists, for all F ∈ Cm(L).

(2) (a) lim
∑

ξij exists in P∗; (b)
∣∣∣∣ ∑

ξij,yij

∣∣∣∣
Cm(L)∗

is bounded (independently
of i).

(3) (a) lim
∑

ξij exists in P∗; (b)
∣∣∣∣ ∑

ξij,yij

∣∣∣∣
W m(Si)∗

is bounded.

(4) (a) lim
∑

ξij exists in P∗; (b)
∣∣∣∣ ∑

ξij,yij

∣∣∣∣y0

W m(Si)∗
is bounded.

Proof. (1) is equivalent to (2), by the uniform boundedness principle. Let
Cm(L, y0) denote {F ∈ Cm(L) : Tm

y0
F = 0}, and consider also

(5) (a) lim
∑

ξij exists in P∗; (b)
∣∣∣∣ ∑

ξij,yij

∣∣∣∣y0

Cm(L,y0)∗
is bounded.

Write ξi =
∑k

j=1 ξij,yij
, i = 1, 2, . . . . It is easy to see that (5) implies {ξi(F )}

converges to 0 for all F ∈ Cm(L, y0), and that {ξi} converges on elements of
Cm(L) if and only if lim

∑
ξij exists in P∗ and {ξi} converges on elements of

Cm(L, y0). Therefore, (5) implies (1). By (2.1), (2)(b) is equivalent to (3)(b)
and (2)(b) implies (4)(b). It is clear that (4)(b) implies (5)(b).
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3. Glaeser operation and Fefferman’s Glaeser refinement

Let E denote a closed subset of Rn. There is a one-to-one correspondence
between linear subbundles I of E×P and linear subbundles T of E×P∗ given
by T = I⊥ (i.e., by T (y) = I(y)⊥, the orthogonal complement of I(y) in the
dual to P, for all y ∈ E), so that T⊥ = I⊥⊥ = I.

Let H denote an affine subbundle of E ×P. (By convention, we allow the
empty subset of P as an affine subspace.) If H(y) �= ∅, for all y ∈ E, then there
is a unique linear subbundle I = IH of E × P such that, for any y ∈ E and
P ∈ H(y), H(y) = I(y)+P . Then H induces a function f = fH : T = I⊥ → R,
such that f is linear on the fibres of T and, for all y ∈ E and P ∈ H(y),

f(y)(ξ) = ξ(P ) , ξ ∈ T (y) .

(f(y) denotes the restriction of f to the fibre T (y).)
Conversely, given a linear subbundle T of E×P∗ and a function f : T → R

linear on the fibres, there is a uniquely determined affine subbundle H of E×P
such that H(y) �= ∅ (for all y ∈ E), T = I⊥H and f = fH .

Remark 3.1. If y ∈ E and P ∈ P, then P ∈ H(y) if and only if ξ(P ) =
f(y)(ξ) for all ξ ∈ T (y).

Fix a positive integer k. Let H denote an affine subbundle of E × P.
Given y ∈ E, Fefferman defines an affine subspace H̃(y) of H(y) that he calls
the “Glaeser refinement” ((5) in [F, Intro.]). We will write H̃(y) = G(H)(y).
Then G(H) ⊂ H is an affine subbundle of E × P.

Theorem 3.2. Fix a positive integer k. Let T denote a linear subbundle
of E×P∗ and let f : T → R denote a function that is linear on the fibres of T .
Let I = T⊥ ⊂ E × P, and let H denote the affine subbundle of E × P∗ such
that I = IH and f = fH . Let y0 ∈ E. Then:

(1) g(T )(y0) = G(I)(y0)⊥.

(2) The Glaeser extension g(f)(y0) : g(T )(y0) → R exists if and only if
G(H)(y0) �= ∅.

(3) If P0 ∈ G(H)(y0), then G(H)(y0) = G(I)(y0) + P0.

Proof. (1)(a) g(T )(y0) ⊂ G(I)(y0)⊥: Let ξ ∈ g(T )(y0) and let
P0 ∈ G(I)(y0) ⊂ I(y0). It is enough to show that ξ(P0) = 0 when ξ =

limi→∞
∑k

j=1 ξij , where ξij ∈ T (yij) (i = 1, 2, . . . and j = 1, . . . , k) and Si =
{yi1, . . . , yik} satisfy the conditions of Definition 1.3. We will show there is a
constant c such that |ξ(P0)| ≤ cε, for any ε > 0.

Let B(y0, δ) denote the ball with centre y0 and radius δ. Take δ = δ(ε)
satisfying the conditions in Fefferman’s definition of G(I)(y0) [F, Intro., (5)].
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There exists i(δ) such that, if i ≥ i(δ), then Si ⊂ B(y0, δ), so that there
exists Pij ∈ I(yij), j = 1, . . . , k, as in Fefferman’s definition. In particular,
ξij(Pij) = 0, j = 1, . . . , k, i ≥ i(δ).

Consider (P0) − Pi ∈ Wm(Si), i ≥ i(δ), where (P0) denotes (P0, . . . , P0)
and Pi = (Pi1, . . . , Pik). Then

∣∣∣∣(P0) − Pi

∣∣∣∣y0

W m(Si)
≤ ε, by (2.2). Now,

ξ(P0) = lim
i→∞

k∑
j=1

ξij(P0) = lim
i→∞

k∑
j=1

ξij(P0 − Pij) .

For all i ≥ i(δ),

∣∣∣ k∑
j=1

ξij(P0 − Pij)
∣∣∣ ≤

∣∣∣∣∣∣ k∑
j=1

ξij,yij

∣∣∣∣∣∣y0

W m(Si)∗
·
∣∣∣∣∣∣(P0) − Pi

∣∣∣∣∣∣y0

W m(Si)
≤ cε ,

where c is independent of ε, by Lemma 2.1.

(1)(b) g(T )(y0)⊥ ⊂ G(I)(y0): Let P0 ∈ g(T )(y0)⊥ ⊂ I(y0). Suppose that
P0 /∈ G(I)(y0). Then (according to [F, Intro., (5)]) there exists ε > 0 such
that, for all δ > 0, there exists Sδ = {yδ1, . . . , yδk} ⊂ B(y0, δ) ∩ E such that,
for all Pδj ∈ I(yδj), j = 1, . . . , k, it is not true that

|∂α(Pδi − Pδj)(yδj)| ≤ ε|yδi − yδj |m−|α| ,

for |α| ≤ m, 0 ≤ i, j ≤ k (where yδ0 = y0 and Pδ0 = P0).
Let δ > 0. There exists l = l(δ), 1 ≤ l ≤ k, such that y0 �= yδj for

precisely l of the elements yδ1, . . . , yδk (which we can take to be yδ1, . . . , yδl.
Let Rδ = {yδ1, . . . , yδl}. Let I(Rδ) denote the linear subspace of Wm(Rδ)
consisting of all P = (P1, . . . , Pl) such that Pj ∈ I(yδj), j = 1, . . . , l. Take
P ′

δ = (Pδ1, . . . , Pδl) ∈ I(Rδ) closest to (P0)′ = (P0, . . . , P0) (l times) in the
norm

∣∣∣∣ · ∣∣∣∣y0

W m(Rδ)
.

There exist ξδj ∈ T (yδj) = I(yδj)⊥, j = 1, . . . , l, such that, if ξδ :=∑l
j=1 ξδj,yδj

∈ Wm(Rδ)∗, then
∣∣∣∣ξδ

∣∣∣∣y0

W m(Rδ)∗
= 1 and∣∣ξδ((P0)′)

∣∣ =
∣∣∣∣[(P0)′]

∣∣∣∣y0

W m(Rδ)/I(Rδ)
=

∣∣∣∣(P0)′ − P ′
δ

∣∣∣∣y0

W m(Rδ)
,

where [(P0)′] denotes the class of (P0)′ in the quotient space Wm(Rδ)/I(Rδ),
and the norm in the middle is the quotient norm from

∣∣∣∣ · ∣∣∣∣y0

W m(Rδ)
.

Let Pδ = (Pδ1, . . . , Pδk), where Pδj = P0 if j > l, and let (P0) = (P0, . . . , P0)
(k times). Then∣∣∣∣(P0)′ − P ′

δ

∣∣∣∣y0

W m(Rδ)
=

∣∣∣∣(P0) − Pδ

∣∣∣∣y0

W m(Sδ)
> ε.(3.1)

There exists δ = δi, i = 1, 2, . . . , such that limi→∞ δi = 0 and {ξδi
} converges

in P∗. By passing to a subsequence if necessary, we can assume there exists l,
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1 ≤ l ≤ k, such that l(δi) = l, for all i. Now ξ := limi→∞ ξδi
∈ g(T )(y0), by

the definition of g(T )(y0) (and Lemma 2.1). Since P0 ∈ g(T )(y0)⊥, then

0 = |ξ(P0)| = lim
i→∞

∣∣∣ l∑
j=1

ξδi,j(P0)
∣∣∣ ≥ ε ;

a contradiction.

(2)(a) “If”: Let P0 ∈ G(H)(y0). Since G(H)(y0) ⊂ H(y0), f(y0)(ξ) =
ξ(P0), for all ξ ∈ T (y0) = I(y0)⊥. Now, ξ �→ ξ(P0) defines a linear function
g(T )(y0) → R. It is enough to show that, if ξ = limi→∞

∑k
j=1 ξij as in (1)(a)

above, then

ξ(P0) = lim
i→∞

k∑
j=1

f(yij)(ξij) .

The proof is essentially the same as in (1)(a). Let ε > 0. Take δ = δ(ε)
satisfying the conditions in the definition of G(H)(y0). There exists i(δ) as
in (1)(a). So if i ≥ i(δ), then there exists Pij ∈ H(yij), j = 1, . . . , k, as in
Fefferman’s definition; in particular, ξij(Pij) = f(yij)(ξij).

Then, for all i ≥ i(δ),
∣∣∣∣(P0) − Pi

∣∣∣∣y0

W m(Si)
≤ ε, so that

∣∣∣( k∑
j=1

ξij,yij

)
((P0) − Pi)

∣∣∣ ≤ cε ,

where c is a constant, by Lemma 2.1. Therefore,

ξ(P0) = lim
i→∞

 k∑
j=1

ξij,yij

 ((P0)),

and ∣∣∣ξ(P0) − lim
i→∞

k∑
j=1

f(yij)(ξij)
∣∣∣ ≤ cε .

(2)(b) “Only if”: Suppose there exists a Glaeser extension g(f)(y0). We
first note that there exists P0 ∈ H(y0) such that ξ(P0) = g(f)(y0)(ξ), for all
ξ ∈ g(T )(y0) = G(I)⊥(y0): Extend g(f)(y0) to a linear function λ on P∗, and
choose P0 ∈ P such that λ(ξ) = ξ(P0) for all ξ ∈ P∗. Since λ|T (y0) = f(y0),
we have ξ(P0) = f(y0)(ξ), ξ ∈ I(y0)⊥. Therefore, P0 ∈ H(y0) (by Remark
3.1).

Suppose that P0 /∈ G(H)(y0). Then there exists ε > 0, exactly as in (1)(b)
above, except that here Pδj ∈ H(yδj).

Let δ > 0. Take l = l(δ) and Rδ as in (1)(b). Let H(Rδ) denote the affine
subspace of Wm(Rδ) consisting of all P = (P1, . . . , Pl) such that Pj ∈ H(yδj),
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j = 1, . . . , l. We follow (1)(b): Take P ′
δ ∈ H(Rδ) closest to (P0)′ in the norm∣∣∣∣ · ∣∣∣∣y0

W m(Rδ)
. There exist ξδj ∈ T (yδj) = I(yδj)⊥ such that

∣∣∣∣ξδ

∣∣∣∣y0

W m(Rδ)∗
= 1 and∣∣ξδ((P0)′ − P ′

δ)
∣∣ =

∣∣∣∣[(P0)′ − P ′
δ]

∣∣∣∣y0

W m(Rδ)/I(Rδ)
.

Let Pδ and (P0) be as in (1)(b). Then (3.1) holds.
Choose δi as before. Then ξ = limi→∞ ξδi

∈ g(T )(y0), and limi→∞ ξδi
(P ′

δi
)

= g(f)(y0)(ξ), by the definition of g(f)(y0). Therefore,

ε ≤ lim
i→∞

∣∣∣∣(P0)′ − P ′
δi

∣∣∣∣y0

W m(Rδ)∗
=

∣∣ lim
i→∞

ξδi
((P0)′ − P ′

δi
)
∣∣ = 0 ;

a contradiction.

(3) Let P0 ∈ G(H)(y0). Then G(H)(y0) = G(I)(y0) + P0 if and only if
the following assertion holds: Let P ∈ P. Then P ∈ G(H)(y0) if and only if
P − P0 ∈ G(I)(y0). This assertion follows from the definitions of G(H) and
G(I).
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