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Higher-order tangents and Fefferman’s
paper on Whitney’s extension problem

By EDWARD BIERSTONE, PIERRE D. MILMAN, and WIESEAW PAWLUCKI*

Abstract

Whitney [W2] proved that a function defined on a closed subset of R
is the restriction of a C™ function if the limiting values of all m* divided
differences form a continuous function. We show that Fefferman’s solution of
Whitney’s problem for R™ [F, Th. 1] is equivalent to a variant of our conjecture
in [BMP2] giving a criterion for C"™ extension in terms of iterated limits of finite
differences.

1. Introduction

Whitney [W2] proved that a function defined on a closed subset of R is the
restriction of a C™ function if the limiting values of all m*™ divided differences
(with supports converging to points) form a continuous function. In [BMP2],
we conjectured that a real-valued function ¢ defined on a closed subset E of
R"™ is the restriction of a C™ function provided that ¢ extends to a function
on a “paratangent bundle” defined using iterated limits of finite-difference
operators. The main purpose of this note is to verify the conjectures of [BMP2]
with the paratangent bundle there replaced by a natural variant; we prove
that these assertions (Theorems 1.7, 1.8 below) are equivalent to Fefferman’s
solution of Whitney’s problem [F, Th. 1]. The “Glaeser refinements” that
Fefferman iterates to give his criterion for ¢ to be C" are dual to “Glaeser
operations” in the sense of [BMP2]. (See Theorem 3.2.)

We will use the notation of [F] wherever possible. Let P denote the
vector space of real m'" degree polynomials on R”, and let P* denote the dual
of P. If FF € C™(R"), let T;"F" denote the Taylor polynomial of F' at y; i.e.,
TP F(2) = Y e °F (y) (@ — )" ol

Using Theorem 1.8, we show (Theorem 1.9) that our geometric para-
tangent bundle coincides with the following analogue of the Zariski tangent
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bundle from algebraic geometry: Consider the ideal Z"(E) C C™(R") of C™
functions vanishing on E. We define the C™ Zariski paratangent bundle 7™ (E)
as

(1.1) T™E) = {(y,§) e ExP*: §(T,)"F)=0, FeI™E)}
[BMP2, §2].

Given F' € C™(R"), define D™ F : E x P* — R by D™ F(y,§) = {(T," F).
Clearly, if y € E, then D" F(y,£) depends only on ¢ := F|E precisely when
(y,€§) € T™(E). Denote D™F|T™(E) by V" : T"(E) — R. If y € E and
§ =6y € P* is the delta function §,(P) := P(y), P € P, then
(1.2) V"o(y, Aoy) = Ap(y), AeR.

Our criterion for C™ extension is based on the question: Does (1.2) determine,
by means of appropriate limits, the value V" ¢(y,§), for all £ € T™(E)(y)?

1.1. Glaeser operation. Let E denote a closed subset of R™.

Definition 1.1. Let V be a finite-dimensional vector space. A linear (resp.,
affine) subbundle of E'x V means a subset I of E x V such that, for all y € E,
the fibre I'(y) :=={v € V' : (y,v) € E} is a linear (resp., affine) subspace of V.

Definition 1.2. Let S = {y1,...,yr} be a finite subset of R™. The space
W™(S) of Whitney C™ functions is the space of sections of S x P. Then
W™(S) is a finite-dimensional vector space. We write elements P of W™ (S)
as P = (Py,...,P), where each P; belongs to the fibre of W™ (S) over y; (and
P; = Pj if y; = y;). The Whitney C™ norm is defined as

0%(Pi — Pj)(y;)]

1.3 Plyym gy = max < max |0%P;(y;)|, max
(1) IPlyags) = max § max [9°Py ), max 70
lo|<m la|<m

There is a projection (“restriction mapping”) C"™(R™) 3 F +— P € W™(S)
given by P = (Py,..., Pg), where each P; is the Taylor polynomial T F".

For each j = 1,...,k, let P* 5 § — §, € W™(S)* denote the dual
to the projection W™(S) > P — P; € P; ie., &, (P) = &(P;j), where P =
(Pp,...,Py).

Given a Banach space B, with norm | - |z, we write | - | 5. for the dual
norm on B*.

Definition 1.3. We fix a positive integer k. Given a linear subbundle
T of E x P*, we define a new linear subbundle g(7") of E x P*: The fibre
9(T)(yo), where yo € E, is defined as the linear span of all elements £ €
P* that are obtained in the following way: There is a sequence of subsets
Si =A{vyit,.. ..y} C E, i =1,2,... and there are elements &;; € T'(y;;), for
i=1,2,... and j =1,...,k, such that:
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(1) Each sequence {y;;} = {y1;,v2j,...} converges to yo;

2| 6,
j=1

< ¢, where c is a constant;
Wmu(si)*

k
j=1

Then T +— ¢(T) is a Glaeser operation in the sense of [BMP2, Def. 3.2];
i.e., T C g(T) and g is local (i.e., if Ty, T are linear subbundles of E x P* and
T1(y) = To(y) for all y in an open subset U of E, then g(T1)(y) = g(T2)(y),
yelU).

Definition 1.4. Let f : T" — R denote a function which is linear on
the fibres of T. Let yg € E. Suppose there exists a linear function f(yo) :
9(T)(yo) — R such that

k
f(yo)(§) = lim > Flip) (&)
j=1
whenever £ = lim; oo 3%, &; in P*, where &; € T(y;;) and S; = {yi1, .. -, Y}
C F satisfy (1) and (2) of Definition 1.3. Then we write f(yo) = g(f)(yo)-

Clearly, g(f)(yo) is unique if it exists. If g(f)(y) exists for all y € E, then we
call g(f) : g(T) — R the Glaeser extension of f.

Remark 1.5. In [BMP2], we defined a different Glaeser operation p(7") by
replacing condition (2) in Definition 1.3 by the condition

(2) Jyij — yir |1 &j.a(yig)| < ¢, for all i, 2 < j <k, |o| < m, where c is a
constant and &, (y) denotes &((x — y)¥/al), £ € P*.

Morevover, for every f : T — R linear on the fibres, we defined a Glaeser
extension p(f) : p(T') — R as above, using the Glaeser operation p instead
of g. Then p(T) C ¢g(T), by [BMP2, Lemma 4.7] and Lemma 2.1 below, and if

g(f) exists, then p(f) = g(f)|p(T).

1.2. Higher-order tangent bundle. We fix a positive integer k. We define
a higher-order tangent bundle (or paratangent bundle) T;"(E) C E x P* as
follows: We begin with the bundle of lines Ty C E x P* defined by

To={(y,A\0y): ye E, Xe R} .
We then define a sequence of linear subbundles of E x P*,
ThcTyC---
by T; = g(T;-1), 1 =1,2,... .
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Let r = dim P. By Glaeser’s lemma [BMP2, Lemma 3.3] (cf. [F, Lemma
2.2]):

(1) T} = Ty, for all I > 2r;
(2) Tb, is a closed linear subbundle 77"(E) of E x P*;

(3) dimT}"(E)(y) is upper-semicontinuous on E.
Now consider ¢ : E — R. We define fy: Tp — R by

fo(y, Ady) = Ao(y) -

Clearly, fo is linear on the fibres of Ty. We inductively define f; : T} — R

by fi = g(fi—1), | = 1,2,..., provided that the Glaeser extension g(f;_1)

exists. If f; exists for all I, then we denote fo, by V}'¢ and we say that
P TIM(E) — R is the Glaeser extension of ¢.

Remark 1.6. The Zariski paratangent bundle 7™(E) (1.1) has fibre
T™E)(y) = (I"I™(E)*, y € E. For any k and y € E, T["(E)(y) C
(T;”I"‘(E))L (by (1) & (3) in Lemma 2.1). Therefore, T;"(E) C T™(E). If ¢
is the restriction of a C"™ function, then ¢ extends to V¢ : T} (E) — R, and
the latter coincides with the resriction of V¢ : 7™(E) — R defined above
(by Lemma 2.1, (1) < (3)).

1.3. Main theorems. For the following results, we use the positive integer
k# depending only on m and n given by Fefferman [F], and we write T™(E) =
T (E), V™o = ViLe.

THEOREM 1.7. Let ¢ : E — R. Then @ is the restriction of a C™ function
if and only if ¢ extends to

V. TT(E) - R.
Moreover, if F € C™(R"™) and F|E = p, then, for ally € E and £ € T™(E)(y),
VTo(y)(§) = (T F).

THEOREM 1.8. Let ¢ : E — R. Suppose that ¢ extends to V™yp :
T™E) — R. Ifyo € E and (V™¢)(yo) = 0, then there exists F € C™(R")
such that F|E = ¢ and Ty} F = 0.

THEOREM 1.9. T™(E) =T"(E).

Theorems 1.7 and 1.8 answer Questions 1 and 2 in [F] using iterated limits
of divided differences: It follows from Theorem 3.2 below that Theorems 1.7
and 1.8 are equivalent (by duality) to [F, Th. 1 (A) and (B)] (respectively).
It is easy to see that Theorem 1.8 implies 1.9 and, conversely, if we assume
Theorem 1.7, Theorem 1.9 implies 1.8.
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Let 7;"(F) denote the paratangent bundle defined as in §1.2 above, using
the Glaeser operation p of Remark 1.5 in place of g. (The term “paratangent
bundle” comes from Glaeser’s use of “paratingent” in [G].) Then

' (E) CT{"(E) CcT™(E) .

In [BMP2], we asked whether Theorems 1.7-1.9 hold using 7;"*(E) (for suit-
able k) in place of T™(E). These questions remain open in general.! (The
assertions hold if 7" (E) = E x P* [BMP2, Proof of Th. 4.20]; e.g., with k = 2
if E has dense interior [loc. cit.]. Already p(Tp) = E x P* with k = dim P for
certain fractal sets E [I].)

Glaeser solved Whitney’s problem for C!' functions [G] (cf. [Br]). His
theorem is equivalent to the assertion that ¢ : E — R is the restriction of a C!
function if and only if ¢ extends to Vip : 71 (E) — R. In particular, [F, Th. 1]
in the C! case, with k% (1,n) = 2, follows from Glaeser’s theorem.

Suppose that F is a compact subanalytic subset of R”. [BMP2, Th. 1.2]
shows that there exists ¢ = gg(m) such that ¢ : E — R is the restriction
of a C™ function provided that ¢ extends to Vi¢ : 74(E) — R. (Note that
74(E) here is denoted 7{(E) in [BMP2]. The loss of differentiability comes
from our use of the composition theorem of [BMP1].) It follows that, if V"¢ :
" (E) — R exists for all m, then ¢ extends to a C* function, provided that
FE is “semicoherent”; moreover, in this case, there is a continuous linear C*
extension operator. Let 7™4(FE), ¢ > m, denote the subbundle of E x P* with
fibre 7™4(E)(y) = (T;”Iq(E))L, y € E. Semicoherence is equivalent to the
condition that, for all m, the increasing sequence of subbundles 7™4(E) of
E x P*, g > m, stabilizes. (See [BM], [BMP2] for these and related matters.)

2. Whitney norm for a finite set

Let L denote a closed cube in R™. Let y € L. Any element of C™(L)*
with support {y} has the form F'— {(T)"F), F' € C™(L), where £ € P*.

Consider S = {yi1,...,yx} C L. The restriction mapping C"™(L) —
W™(S) induces W™(S)* — C™(L)*. By Whitney’s classical extension the-
orem [W1], there is an extension operator £ : W™ (S) — C™(L) such that

calflwmsy < 1EDemwy < calflwms) >

for all f € W™ (S), where the constants c1, ca depend only on m,n and diam L
(cf. [M, Complement 3.5]). Therefore, for all £ € W™ (S)*,

1 1
2.1 — s < e < — QY. -
(2.1) . IElwmisy < 1€lempy- < o [€lw(s)

!(Added in proof.) Counterexamples are given in E. Bierstone, C. Fefferman, P. D. Milman
and W. Pawlucki, Examples concerning Whitney’s C™ extension problem (to appear). An
improved bound k# = 24™% ig given in E. Bierstone and P. D. Milman, C™ norms on finite
sets and C™ extension criteria (Duke Math. J., to appear).
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Given yp € L, we introduce another norm H : Hyo m(g) O W™ (S) (for which
the dual norm will be denoted H . ”yo m(8)" ): Ifyg € S, then we define H . HZ‘J/[O/"I(S) as
|- HWM(S). If yo ¢ S, set S = S Uy and consider W™(S) 3 P +— P € W™(S),

where P = (0,Py,...,P)if P=(Py,...,P;). In this case, we define

HP‘?I//IO/"L(S) = HPHWm(é) :

Let P = (P1,...,P,) € W™(S) and let Py € P. Let (Fy) denote
(Po,...,Py) € W™(S). Assuming that Py = P;ifyo = y; forsome j = 1,...,k,
we see from (1.3) that

|0%(Fs = Pj) ()]

2.2 Py)) — P|* ~

(22) [70) = Pl s) 0Zigek |y; — ysm]
yi#yy
|| <m

(where ~ means that each side is majorized by the other times a constant
depending only on m,n and diam L); so we will regard (2.2) as an equality (cf.
Fefferman’s definition of “Glaeser refinement”, (5) in [F, Intro.]).

LEMMA 2.1. Letyg € L. Foreachi=1,2,..., consider S; = {yi1, ..., Yik}

C L, where limj—.oo yij = Y0, j = 1,..., k. Let & € P*, fori=1,2,... and
j=1,...,k. Then the following conditions are equivalent:

(1) lim; oo Z?zl &iju,, (F) exists, for all '€ C™(L).

(2) (a) lim )& exists in P*; (b) H > iy

is bounded (independently

cm(L)-

of 7).
(3) (a) im Y- &; emists in P*; (b) || 2 &ijiy., | Wn(s,)- 8 bounded.
(4) (a) im Y &; eists in P*; (b) || 2 &ijiy., ?/[(;m(S')* is bounded.

Proof. (1) is equivalent to (2), by the uniform boundedness principle. Let
C™(L,yo) denote {F' € C"™(L): Ty F = 0}, and consider also

(5) (a) lim )" &; exists in P*; (b) | Y &ijy., z(:"’(Lﬂo)* is bounded.
Write & = E?:l ijuiys 1 =1,2,... . It is easy to see that (5) implies {&(F')}

converges to 0 for all F' € C™(L,yp), and that {&;} converges on elements of
C™(L) if and only if lim ) &;; exists in P* and {{;} converges on elements of
C™(L,yo). Therefore, (5) implies (1). By (2.1), (2)(b) is equivalent to (3)(b)
and (2)(b) implies (4)(b). It is clear that (4)(b) implies (5)(b). O
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3. Glaeser operation and Fefferman’s (Glaeser refinement

Let E denote a closed subset of R™. There is a one-to-one correspondence
between linear subbundles I of E x P and linear subbundles T of E x P* given
by T = I+ (i.e., by T(y) = I(y)*, the orthogonal complement of I(y) in the
dual to P, for all y € E), so that T+ = [+ = 1.

Let H denote an affine subbundle of E x P. (By convention, we allow the
empty subset of P as an affine subspace.) If H(y) # 0, for all y € E, then there
is a unique linear subbundle I = Iy of E x P such that, for any y € E and
P e H(y), H(y) = I(y)+P. Then H induces a function f = fg : T = I+ — R,
such that f is linear on the fibres of T" and, for all y € E and P € H(y),

fW&) =8&P), £€T(y).

(f(y) denotes the restriction of f to the fibre T'(y).)
Conversely, given a linear subbundle T" of E xP* and a function f : T'— R

linear on the fibres, there is a uniquely determined affine subbundle H of E x P
such that H(y) # 0 (for all y € E), T = I# and f = fg.

Remark 3.1. If y € E and P € P, then P € H(y) if and only if {(P) =
f(y)(€) for all € € T(y).

Fix a positive integer k. Let H denote an affine subbundle of E x P.
Given y € E, Fefferman defines an affine subspace H(y) of H(y) that he calls
the “Glaeser refinement” ((5) in [F, Intro.]). We will write H(y) = G(H)(y).
Then G(H) C H is an affine subbundle of £ x P.

THEOREM 3.2. Fix a positive integer k. Let T denote o linear subbundle
of EXP* and let f : T — R denote a function that is linear on the fibres of T .
Let I =T+ C E x P, and let H denote the affine subbundle of E x P* such
that I = Ig and f = fg. Let yg € E. Then:

(1) 9(T)(yo) = G(I)(yo)™-

(2) The Glaeser extension g(f)(yo) = g(T)(yo) — R exists if and only if
G(H)(yo) # 0.

(3) If Py € G(H)(yo), then G(H)(yo) = G(I)(yo) + Po.

Proof (1)(a) g(T)w) C G(Dw)" Let & € g(T)() and let
Py € G(I)(yo) C I(yo). It is enough to show that £(Fy) = 0 when £ =
lim; o0 Z§:1 &j, where & € T'(yi;) (i =1,2,... and j =1,...,k) and S; =
{¥i1, -, yir} satisfy the conditions of Definition 1.3. We will show there is a
constant ¢ such that [£(Pp)| < ce, for any € > 0.

Let B(yp, ) denote the ball with centre yy and radius 6. Take § = d(¢)
satisfying the conditions in Fefferman’s definition of G(I)(yo) [F, Intro., (5)].
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There exists i(d) such that, if ¢ > i(d), then S; C B(yo,d), so that there
exists P;; € I(yij), 7 = 1,...,k, as in Fefferman’s definition. In particular,
Ei(Py)=0,7=1,....k i>i(0).

Consider (Py) — P, € W™(S;), i > i(d), where (Py) denotes (F,..., )

and P; = (Py, ..., Py). Then |(Py) P\W,,, (s < & by (2:2). Now,

k
§(Ro) = lim D &;(Ry) = hmZ@J i)
j=1

For all ¢ > i(9),

Setn-n] < [ S

where c is independent of ¢, by Lemma 2.1.

(1)(b) g(T)(yo)* € G(I)(yo): Let Py € g(T)(yo)™ C I(yo). Suppose that
Py ¢ G(I)(yo). Then (according to [F, Intro., (5)]) there exists € > 0 such
that, for all § > 0, there exists S5 = {ys1,---,Ysk} C B(yo,0) N E such that,
for all Ps; € I(ys;), j =1,...,k, it is not true that

Yo

H(PO) - W (S,)

< ce,
Wm,

|0%(Psi — Psj)(ys))| < elysi —yos| ™1,

for || < m, 0 <1i,j <k (where yso = yo and Psg = F).

Let 6 > 0. There exists | = I(6), 1 < [ < k, such that yo # ys; for
precisely [ of the elements ys1,...,ysr (which we can take to be ys1,...,ys.
Let Rs = {ys1,.-.,ysi}- Let I(Rs) denote the linear subspace of W (Rj)
consisting of all P = (Pi,..., P,) such that P; € I(ys;), j = 1,...,1. Take
P; = (Ps1,...,Ps1) € I(Rs) closest to (Py)' = (Po,..., o) (I times) in the
norm || - ‘Wm(R(;)

There exist &; € T(ys;) = I(ys;)=, 7 = 1,...,1, such that, if & :=

Zézlfaj,yéj € W™(Rg)*, then ||&] i’;/m(Ré)* — 1 and
()| = [P W oy = 1P = B

where [(Pp)’] denotes the class of (Fy)’ in the quotient space Wm(R(;)/I(R(;),
and the norm in the middle is the quotient norm from H } W (Rs)"

Let Py = (Pyy, .- - ,P(;k), where P(;] = Fyifj > [, and let (P()) (Po, ..., Ry)
(k times). Then

(3.1) |(Po) = Psllypm gy = [(P0) = Psllypm s,y > &

There exists 6 = d;, ¢ = 1,2,..., such that lim; ., 6; = 0 and {&s,} converges
in P*. By passing to a subsequence if necessary, we can assume there exists [,
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1 <1 <k, such that 1(d;) = [, for all i. Now & := lim; &5, € g(T)(v0), by
the definition of g(7")(yo) (and Lemma 2.1). Since Py € g(T)(yo)*, then

0 = l¢(m)] = lim Zf&,j (R)| = e

1—00

a contradiction.

(2)(a) “If”: Let Py € G(H)(yo). Since G(H)(yo) C H(yo), f(v0)(&) =
E(Py), for all € € T(yo) = I(yo)*. Now, & — &(Py) defines a linear function
9(T)(yo) — R. It is enough to show that, if £ = lim; Z?:l &j as in (1)(a)

above, then
k

{(Py) = }H&Zf(yij)(&j%

J=1

The proof is essentially the same as in (1)(a). Let € > 0. Take 6 = d(¢)
satisfying the conditions in the definition of G(H)(yo). There exists i(0) as
S

in (1)(a). So if i > i(J), then there exists P;; € H(yi;), j = 1,....,k, as in
Fefferman’s definition; in particular, {z]( i) = fyiz)(&j)-
Then, for all i > i(9), |(Py) — B ’ Wn(s,) < €5 80 that

< e,

’(i&iyu) ((Py) — P)
j=1

where c is a constant, by Lemma 2.1. Therefore,

£(Py) = lim Z&]yu ((P)),

i—00

and

k
&) = lim > f(ui)(&)| < s
j=1

(2)(b) “Only if”: Suppose there exists a Glaeser extension g(f)(yo). We
first note that there exists Py € H(yp) such that £(Py) = g(f)(yo0)(&), for all
€€ g(T)(yo) = G(I)*(yo): Extend g(f)(yo) to a linear function A on P*, and
choose Py € P such that A\(§) = &(Fy) for all £ € P*. Since AT (y0) = f(vo),
we have £(Py) = f(yo)(€), € € I(yo)*. Therefore, Py € H(yo) (by Remark
3.1).

Suppose that Py ¢ G(H)(yo). Then there exists ¢ > 0, exactly as in (1)(b)
above, except that here Ps; € H(ys;).

Let § > 0. Take | =(6) and Rs as in (1)(b). Let H(Rs) denote the affine
subspace of W™(R;) consisting of all P = (P, ..., P) such that P; € H(ys;),
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j=1,...,1. We follow (1)(b): Take Py € H(Rs) closest to (Fp)’ in the norm
H . ! %M(Ré). There exist &5 € T(ys;) = I(y(;j)L such that Hf&‘ %“}M(Ré)* =1 and
‘55((P0)/ B Pé)‘ = H [(PO)I o Pé]’ ?/IO/M(RJ)/I(RJ) ’

Let Ps and (Pp) be as in (1)(b). Then (3.1) holds.
Choose 0; as before. Then § = lim; . 5, € 9(T') (o), and lim; o &5, (P5.)
= g(f)(y0)(§), by the definition of g(f)(yo). Therefore,

e < Jim () = P i gy = | fim & (P = )] = 0

a contradiction.

(3) Let Py € G(H)(yo). Then G(H)(yo) = G(I)(yo) + Fo if and only if
the following assertion holds: Let P € P. Then P € G(H)(yo) if and only if
P — Py € G(I)(yo). This assertion follows from the definitions of G(H) and
G(I). O
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