Higher-order tangents and Fefferman's paper on Whitney's extension problem

By Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki*

Abstract

Whitney [W2] proved that a function defined on a closed subset of \mathbb{R} is the restriction of a \mathcal{C}^m function if the limiting values of all m^{th} divided differences form a continuous function. We show that Fefferman's solution of Whitney's problem for \mathbb{R}^n [F, Th. 1] is equivalent to a variant of our conjecture in [BMP2] giving a criterion for \mathcal{C}^m extension in terms of iterated limits of finite differences.

1. Introduction

Whitney [W2] proved that a function defined on a closed subset of \mathbb{R} is the restriction of a \mathcal{C}^m function if the limiting values of all m^{th} divided differences (with supports converging to points) form a continuous function. In [BMP2], we conjectured that a real-valued function φ defined on a closed subset E of \mathbb{R}^n is the restriction of a \mathcal{C}^m function provided that φ extends to a function on a "paratangent bundle" defined using iterated limits of finite-difference operators. The main purpose of this note is to verify the conjectures of [BMP2] with the paratangent bundle there replaced by a natural variant; we prove that these assertions (Theorems 1.7, 1.8 below) are equivalent to Fefferman's solution of Whitney's problem [F, Th. 1]. The "Glaeser refinements" that Fefferman iterates to give his criterion for φ to be \mathcal{C}^m are dual to "Glaeser operations" in the sense of [BMP2]. (See Theorem 3.2.)

We will use the notation of [F] wherever possible. Let \mathcal{P} denote the vector space of real m^{th} degree polynomials on \mathbb{R}^n , and let \mathcal{P}^* denote the dual of \mathcal{P} . If $F \in \mathcal{C}^m(\mathbb{R}^n)$, let $T_y^m F$ denote the Taylor polynomial of F at y; i.e., $T_y^m F(x) = \sum_{\alpha < m} \partial^{\alpha} F(y) (x - y)^{\alpha} / \alpha!$.

Using Theorem 1.8, we show (Theorem 1.9) that our geometric paratangent bundle coincides with the following analogue of the Zariski tangent

^{*}Research partially supported by the following grants: E.B. – NSERC OGP0009070, P.M. – NSERC OGP0008949, W.P. – KBN 5 PO3A 005 21.

bundle from algebraic geometry: Consider the ideal $\mathcal{I}^m(E) \subset \mathcal{C}^m(\mathbb{R}^n)$ of \mathcal{C}^m functions vanishing on E. We define the \mathcal{C}^m Zariski paratangent bundle $\mathcal{T}^m(E)$ as

(1.1)
$$\mathcal{T}^{m}(E) = \{(y,\xi) \in E \times \mathcal{P}^{*}: \xi(T_{y}^{m}F) = 0, F \in \mathcal{I}^{m}(E)\}$$

[BMP2, §2].

Given $F \in \mathcal{C}^m(\mathbb{R}^n)$, define $D^m F : E \times \mathcal{P}^* \to \mathbb{R}$ by $D^m F(y,\xi) = \xi(T_y^m F)$. Clearly, if $y \in E$, then $D^m F(y,\xi)$ depends only on $\varphi := F|E$ precisely when $(y,\xi) \in \mathcal{T}^m(E)$. Denote $D^m F|\mathcal{T}^m(E)$ by $\nabla^m \varphi : \mathcal{T}^m(E) \to \mathbb{R}$. If $y \in E$ and $\xi = \delta_y \in \mathcal{P}^*$ is the *delta function* $\delta_y(P) := P(y), P \in \mathcal{P}$, then

(1.2)
$$\nabla^m \varphi(y, \lambda \delta_y) = \lambda \varphi(y), \quad \lambda \in \mathbb{R}$$

Our criterion for \mathcal{C}^m extension is based on the question: Does (1.2) determine, by means of appropriate limits, the value $\nabla^m \varphi(y,\xi)$, for all $\xi \in \mathcal{T}^m(E)(y)$?

1.1. Glasser operation. Let E denote a closed subset of \mathbb{R}^n .

Definition 1.1. Let V be a finite-dimensional vector space. A linear (resp., affine) subbundle of $E \times V$ means a subset Γ of $E \times V$ such that, for all $y \in E$, the fibre $\Gamma(y) := \{v \in V : (y, v) \in E\}$ is a linear (resp., affine) subspace of V.

Definition 1.2. Let $S = \{y_1, \ldots, y_k\}$ be a finite subset of \mathbb{R}^n . The space $W^m(S)$ of Whitney \mathcal{C}^m functions is the space of sections of $S \times \mathcal{P}$. Then $W^m(S)$ is a finite-dimensional vector space. We write elements P of $W^m(S)$ as $P = (P_1, \ldots, P_k)$, where each P_j belongs to the fibre of $W^m(S)$ over y_j (and $P_i = P_j$ if $y_i = y_j$). The Whitney \mathcal{C}^m norm is defined as

(1.3)
$$||P||_{W^m(S)} = \max \left\{ \max_{\substack{1 \le j \le k \\ |\alpha| \le m}} |\partial^{\alpha} P_j(y_j)|, \max_{\substack{y_i \ne y_j \\ |\alpha| \le m}} \frac{|\partial^{\alpha} (P_i - P_j)(y_j)|}{|y_i - y_j|^{m - |\alpha|}} \right\}.$$

There is a projection ("restriction mapping") $\mathcal{C}^m(\mathbb{R}^n) \ni F \mapsto P \in W^m(S)$ given by $P = (P_1, \ldots, P_k)$, where each P_j is the Taylor polynomial $T_{y_j}^m F$.

For each j = 1, ..., k, let $\mathcal{P}^* \ni \xi \mapsto \xi_{y_j} \in W^m(S)^*$ denote the dual to the projection $W^m(S) \ni P \mapsto P_j \in \mathcal{P}$; i.e., $\xi_{y_j}(P) = \xi(P_j)$, where $P = (P_1, ..., P_k)$.

Given a Banach space B, with norm $\|\cdot\|_B$, we write $\|\cdot\|_{B^*}$ for the dual norm on B^* .

Definition 1.3. We fix a positive integer k. Given a linear subbundle T of $E \times \mathcal{P}^*$, we define a new linear subbundle g(T) of $E \times \mathcal{P}^*$: The fibre $g(T)(y_0)$, where $y_0 \in E$, is defined as the linear span of all elements $\xi \in \mathcal{P}^*$ that are obtained in the following way: There is a sequence of subsets $S_i = \{y_{i1}, \ldots, y_{ik}\} \subset E, i = 1, 2, \ldots$ and there are elements $\xi_{ij} \in T(y_{ij})$, for $i = 1, 2, \ldots$ and $j = 1, \ldots, k$, such that:

(1) Each sequence
$$\{y_{ij}\} = \{y_{1j}, y_{2j}, \dots\}$$
 converges to
(2) $\left\|\sum_{j=1}^{k} \xi_{ij,y_{ij}}\right\|_{W^m(S_i)^*} \leq c$, where c is a constant;
(3) $\xi = \lim_{i \to \infty} \sum_{j=1}^{k} \xi_{ij}$ in \mathcal{P}^* .

Then $T \mapsto g(T)$ is a *Glaeser operation* in the sense of [BMP2, Def. 3.2]; i.e., $\overline{T} \subset g(T)$ and g is *local* (i.e., if T_1, T_2 are linear subbundles of $E \times \mathcal{P}^*$ and $T_1(y) = T_2(y)$ for all y in an open subset U of E, then $g(T_1)(y) = g(T_2)(y)$, $y \in U$).

Definition 1.4. Let $f : T \to \mathbb{R}$ denote a function which is linear on the fibres of T. Let $y_0 \in E$. Suppose there exists a linear function $\tilde{f}(y_0) :$ $g(T)(y_0) \to \mathbb{R}$ such that

$$\tilde{f}(y_0)(\xi) = \lim_{i \to \infty} \sum_{j=1}^k f(y_{ij})(\xi_{ij})$$

whenever $\xi = \lim_{i \to \infty} \sum_{j=1}^{k} \xi_{ij}$ in \mathcal{P}^* , where $\xi_{ij} \in T(y_{ij})$ and $S_i = \{y_{i1}, \ldots, y_{ik}\}$ $\subset E$ satisfy (1) and (2) of Definition 1.3. Then we write $\tilde{f}(y_0) = g(f)(y_0)$. Clearly, $g(f)(y_0)$ is unique if it exists. If g(f)(y) exists for all $y \in E$, then we call $g(f) : g(T) \to \mathbb{R}$ the *Glaeser extension* of f.

Remark 1.5. In [BMP2], we defined a different Glasser operation $\rho(T)$ by replacing condition (2) in Definition 1.3 by the condition

(2') $|y_{ij} - y_{i1}|^{m-|\alpha|} |\xi_{ij,\alpha}(y_{ij})| \le c$, for all $i, 2 \le j \le k, |\alpha| \le m$, where c is a constant and $\xi_{\alpha}(y)$ denotes $\xi((x-y)^{\alpha}/\alpha!), \xi \in \mathcal{P}^*$.

Moreover, for every $f : T \to \mathbb{R}$ linear on the fibres, we defined a Glaeser extension $\rho(f) : \rho(T) \to \mathbb{R}$ as above, using the Glaeser operation ρ instead of g. Then $\rho(T) \subset g(T)$, by [BMP2, Lemma 4.7] and Lemma 2.1 below, and if g(f) exists, then $\rho(f) = g(f)|\rho(T)$.

1.2. Higher-order tangent bundle. We fix a positive integer k. We define a higher-order tangent bundle (or paratangent bundle) $T_k^m(E) \subset E \times \mathcal{P}^*$ as follows: We begin with the bundle of lines $T_0 \subset E \times \mathcal{P}^*$ defined by

$$T_0 = \{ (y, \lambda \delta_y) : y \in E, \lambda \in \mathbb{R} \} .$$

We then define a sequence of linear subbundles of $E \times \mathcal{P}^*$,

$$T_0 \subset T_1 \subset \cdots$$

by $T_l = g(T_{l-1}), l = 1, 2, \dots$.

 $y_0;$

Let $r = \dim \mathcal{P}$. By Glaeser's lemma [BMP2, Lemma 3.3] (cf. [F, Lemma 2.2]):

- (1) $T_l = T_{2r}$, for all $l \ge 2r$;
- (2) T_{2r} is a closed linear subbundle $T_k^m(E)$ of $E \times \mathcal{P}^*$;
- (3) dim $T_k^m(E)(y)$ is upper-semicontinuous on E.

Now consider $\varphi: E \to \mathbb{R}$. We define $f_0: T_0 \to \mathbb{R}$ by

$$f_0(y,\lambda\delta_y)=\lambdaarphi(y)$$
 .

Clearly, f_0 is linear on the fibres of T_0 . We inductively define $f_l : T_l \to \mathbb{R}$ by $f_l = g(f_{l-1}), l = 1, 2, \ldots$, provided that the Glaeser extension $g(f_{l-1})$ exists. If f_l exists for all l, then we denote f_{2r} by $\nabla_k^m \varphi$ and we say that $\nabla_k^m \varphi : T_k^m(E) \to \mathbb{R}$ is the *Glaeser extension* of φ .

Remark 1.6. The Zariski paratangent bundle $\mathcal{T}^m(E)$ (1.1) has fibre $\mathcal{T}^m(E)(y) = (T_y^m \mathcal{I}^m(E))^{\perp}, y \in E$. For any k and $y \in E, T_k^m(E)(y) \subset (T_y^m \mathcal{I}^m(E))^{\perp}$ (by (1) \Leftrightarrow (3) in Lemma 2.1). Therefore, $T_k^m(E) \subset \mathcal{T}^m(E)$. If φ is the restriction of a \mathcal{C}^m function, then φ extends to $\nabla_k^m \varphi : T_k^m(E) \to \mathbb{R}$, and the latter coincides with the restriction of $\nabla^m \varphi : \mathcal{T}^m(E) \to \mathbb{R}$ defined above (by Lemma 2.1, (1) \Leftrightarrow (3)).

1.3. Main theorems. For the following results, we use the positive integer $k^{\#}$ depending only on m and n given by Fefferman [F], and we write $T^m(E) = T^m_{k^{\#}}(E), \nabla^m \varphi = \nabla^m_{k^{\#}} \varphi$.

THEOREM 1.7. Let $\varphi : E \to \mathbb{R}$. Then φ is the restriction of a \mathcal{C}^m function if and only if φ extends to

$$\nabla^m \varphi: T^m(E) \to \mathbb{R}$$
.

Moreover, if $F \in \mathcal{C}^m(\mathbb{R}^n)$ and $F|E = \varphi$, then, for all $y \in E$ and $\xi \in T^m(E)(y)$, $\nabla^m \varphi(y)(\xi) = \xi(T_y^m F).$

THEOREM 1.8. Let $\varphi : E \to \mathbb{R}$. Suppose that φ extends to $\nabla^m \varphi$: $T^m(E) \to \mathbb{R}$. If $y_0 \in E$ and $(\nabla^m \varphi)(y_0) = 0$, then there exists $F \in \mathcal{C}^m(\mathbb{R}^n)$ such that $F|E = \varphi$ and $T_{y_0}^m F = 0$.

THEOREM 1.9. $T^m(E) = T^m(E)$.

Theorems 1.7 and 1.8 answer Questions 1 and 2 in [F] using iterated limits of divided differences: It follows from Theorem 3.2 below that Theorems 1.7 and 1.8 are equivalent (by duality) to [F, Th. 1 (A) and (B)] (respectively). It is easy to see that Theorem 1.8 implies 1.9 and, conversely, if we assume Theorem 1.7, Theorem 1.9 implies 1.8.

Let $\tau_k^m(E)$ denote the paratangent bundle defined as in §1.2 above, using the Glaeser operation ρ of Remark 1.5 in place of g. (The term "paratangent bundle" comes from Glaeser's use of "paratingent" in [G].) Then

$$\tau_k^m(E) \subset T_k^m(E) \subset \mathcal{T}^m(E)$$

In [BMP2], we asked whether Theorems 1.7-1.9 hold using $\tau_k^m(E)$ (for suitable k) in place of $T^m(E)$. These questions remain open in general.¹ (The assertions hold if $\tau_k^m(E) = E \times \mathcal{P}^*$ [BMP2, Proof of Th. 4.20]; e.g., with k = 2 if E has dense interior [loc. cit.]. Already $\rho(T_0) = E \times \mathcal{P}^*$ with $k = \dim \mathcal{P}$ for certain fractal sets E [I].)

Glaeser solved Whitney's problem for \mathcal{C}^1 functions [G] (cf. [Br]). His theorem is equivalent to the assertion that $\varphi : E \to \mathbb{R}$ is the restriction of a \mathcal{C}^1 function if and only if φ extends to $\nabla^1 \varphi : \tau_2^1(E) \to \mathbb{R}$. In particular, [F, Th. 1] in the \mathcal{C}^1 case, with $k^{\#}(1, n) = 2$, follows from Glaeser's theorem.

Suppose that E is a compact subanalytic subset of \mathbb{R}^n . [BMP2, Th. 1.2] shows that there exists $q = q_E(m)$ such that $\varphi : E \to \mathbb{R}$ is the restriction of a \mathcal{C}^m function provided that φ extends to $\nabla^q \varphi : \tau_2^q(E) \to \mathbb{R}$. (Note that $\tau_2^q(E)$ here is denoted $\tau_1^q(E)$ in [BMP2]. The loss of differentiability comes from our use of the composition theorem of [BMP1].) It follows that, if $\nabla^m \varphi :$ $\tau_2^m(E) \to \mathbb{R}$ exists for all m, then φ extends to a \mathcal{C}^∞ function, provided that E is "semicoherent"; moreover, in this case, there is a continuous linear \mathcal{C}^∞ extension operator. Let $\mathcal{T}^{m,q}(E), q \ge m$, denote the subbundle of $E \times \mathcal{P}^*$ with fibre $\mathcal{T}^{m,q}(E)(y) = (T_y^m \mathcal{I}^q(E))^{\perp}, y \in E$. Semicoherence is equivalent to the condition that, for all m, the increasing sequence of subbundles $\mathcal{T}^{m,q}(E)$ of $E \times \mathcal{P}^*, q \ge m$, stabilizes. (See [BM], [BMP2] for these and related matters.)

2. Whitney norm for a finite set

Let L denote a closed cube in \mathbb{R}^n . Let $y \in L$. Any element of $\mathcal{C}^m(L)^*$ with support $\{y\}$ has the form $F \mapsto \xi(T_y^m F), F \in \mathcal{C}^m(L)$, where $\xi \in \mathcal{P}^*$.

Consider $S = \{y_1, \ldots, y_k\} \subset L$. The restriction mapping $\mathcal{C}^m(L) \to W^m(S)$ induces $W^m(S)^* \hookrightarrow \mathcal{C}^m(L)^*$. By Whitney's classical extension theorem [W1], there is an extension operator $\mathcal{E}: W^m(S) \to \mathcal{C}^m(L)$ such that

$$c_1 \|f\|_{W^m(S)} \leq \|\mathcal{E}(f)\|_{\mathcal{C}^m(L)} \leq c_2 \|f\|_{W^m(S)},$$

for all $f \in W^m(S)$, where the constants c_1, c_2 depend only on m, n and diam L (cf. [M, Complement 3.5]). Therefore, for all $\xi \in W^m(S)^*$,

(2.1)
$$\frac{1}{c_2} \|\xi\|_{W^m(S)^*} \leq \|\xi\|_{\mathcal{C}^m(L)^*} \leq \frac{1}{c_1} \|\xi\|_{W^m(S)^*}$$

¹(Added in proof.) Counterexamples are given in E. Bierstone, C. Fefferman, P. D. Milman and W. Pawłucki, Examples concerning Whitney's \mathcal{C}^m extension problem (to appear). An improved bound $k^{\#} = 2^{\dim \mathcal{P}}$ is given in E. Bierstone and P. D. Milman, \mathcal{C}^m norms on finite sets and \mathcal{C}^m extension criteria (*Duke Math. J.*, to appear).

Given $y_0 \in L$, we introduce another norm $\|\cdot\|_{W^m(S)}^{y_0}$ on $W^m(S)$ (for which the dual norm will be denoted $\|\cdot\|_{W^m(S)^*}^{y_0}$): If $y_0 \in S$, then we define $\|\cdot\|_{W^m(S)}^{y_0}$ as $\|\cdot\|_{W^m(S)}$. If $y_0 \notin S$, set $\tilde{S} = S \cup y_0$ and consider $W^m(S) \ni P \mapsto \tilde{P} \in W^m(\tilde{S})$, where $\tilde{P} = (0, P_1, \ldots, P_k)$ if $P = (P_1, \ldots, P_k)$. In this case, we define

$$|P||_{W^m(S)}^{y_0} := ||\tilde{P}||_{W^m(\tilde{S})}.$$

Let $P = (P_1, \ldots, P_k) \in W^m(S)$ and let $P_0 \in \mathcal{P}$. Let (P_0) denote $(P_0, \ldots, P_0) \in W^m(S)$. Assuming that $P_0 = P_j$ if $y_0 = y_j$ for some $j = 1, \ldots, k$, we see from (1.3) that

(2.2)
$$\|(P_0) - P\|_{W^m(S)}^{y_0} \approx \max_{\substack{0 \le i, j \le k \\ y_i \neq y_j \\ |\alpha| \le m}} \frac{|\partial^{\alpha} (P_i - P_j)(y_j)|}{|y_i - y_j|^{m - |\alpha|}}$$

(where \approx means that each side is majorized by the other times a constant depending only on m, n and diam L); so we will regard (2.2) as an equality (cf. Fefferman's definition of "Glaeser refinement", (5) in [F, Intro.]).

LEMMA 2.1. Let $y_0 \in L$. For each $i = 1, 2, ..., consider S_i = \{y_{i1}, ..., y_{ik}\}$ $\subset L$, where $\lim_{i\to\infty} y_{ij} = y_0, j = 1, ..., k$. Let $\xi_{ij} \in \mathcal{P}^*$, for i = 1, 2, ... and j = 1, ..., k. Then the following conditions are equivalent:

- (1) $\lim_{i\to\infty}\sum_{j=1}^k \xi_{ij,y_{ij}}(F)$ exists, for all $F \in \mathcal{C}^m(L)$.
- (2) (a) $\lim \sum \xi_{ij}$ exists in \mathcal{P}^* ; (b) $\|\sum \xi_{ij,y_{ij}}\|_{\mathcal{C}^m(L)^*}$ is bounded (independently of i).
- (3) (a) $\lim \sum \xi_{ij}$ exists in \mathcal{P}^* ; (b) $\|\sum \xi_{ij,y_{ij}}\|_{W^m(S_i)^*}$ is bounded.
- (4) (a) $\lim \sum \xi_{ij}$ exists in \mathcal{P}^* ; (b) $\|\sum \xi_{ij,y_{ij}}\|_{W^m(S_i)^*}^{y_0}$ is bounded.

Proof. (1) is equivalent to (2), by the uniform boundedness principle. Let $\mathcal{C}^m(L, y_0)$ denote $\{F \in \mathcal{C}^m(L) : T_{y_0}^m F = 0\}$, and consider also

(5) (a) $\lim \sum \xi_{ij}$ exists in \mathcal{P}^* ; (b) $\|\sum \xi_{ij,y_{ij}}\|_{\mathcal{C}^m(L,y_0)^*}^{y_0}$ is bounded.

Write $\xi_i = \sum_{j=1}^k \xi_{ij,y_{ij}}$, i = 1, 2, ... It is easy to see that (5) implies $\{\xi_i(F)\}$ converges to 0 for all $F \in \mathcal{C}^m(L, y_0)$, and that $\{\xi_i\}$ converges on elements of $\mathcal{C}^m(L)$ if and only if $\lim \sum \xi_{ij}$ exists in \mathcal{P}^* and $\{\xi_i\}$ converges on elements of $\mathcal{C}^m(L, y_0)$. Therefore, (5) implies (1). By (2.1), (2)(b) is equivalent to (3)(b) and (2)(b) implies (4)(b). It is clear that (4)(b) implies (5)(b).

3. Glaeser operation and Fefferman's Glaeser refinement

Let E denote a closed subset of \mathbb{R}^n . There is a one-to-one correspondence between linear subbundles I of $E \times \mathcal{P}$ and linear subbundles T of $E \times \mathcal{P}^*$ given by $T = I^{\perp}$ (i.e., by $T(y) = I(y)^{\perp}$, the orthogonal complement of I(y) in the dual to \mathcal{P} , for all $y \in E$), so that $T^{\perp} = I^{\perp \perp} = I$.

Let H denote an affine subbundle of $E \times \mathcal{P}$. (By convention, we allow the empty subset of \mathcal{P} as an affine subspace.) If $H(y) \neq \emptyset$, for all $y \in E$, then there is a unique linear subbundle $I = I_H$ of $E \times \mathcal{P}$ such that, for any $y \in E$ and $P \in H(y), H(y) = I(y) + P$. Then H induces a function $f = f_H : T = I^{\perp} \to \mathbb{R}$, such that f is linear on the fibres of T and, for all $y \in E$ and $P \in H(y)$,

$$f(y)(\xi) = \xi(P) , \quad \xi \in T(y) .$$

(f(y) denotes the restriction of f to the fibre T(y).)

Conversely, given a linear subbundle T of $E \times \mathcal{P}^*$ and a function $f: T \to \mathbb{R}$ linear on the fibres, there is a uniquely determined affine subbundle H of $E \times \mathcal{P}$ such that $H(y) \neq \emptyset$ (for all $y \in E$), $T = I_H^{\perp}$ and $f = f_H$.

Remark 3.1. If $y \in E$ and $P \in \mathcal{P}$, then $P \in H(y)$ if and only if $\xi(P) = f(y)(\xi)$ for all $\xi \in T(y)$.

Fix a positive integer k. Let H denote an affine subbundle of $E \times \mathcal{P}$. Given $y \in E$, Fefferman defines an affine subspace $\tilde{H}(y)$ of H(y) that he calls the "Glaeser refinement" ((5) in [F, Intro.]). We will write $\tilde{H}(y) = G(H)(y)$. Then $G(H) \subset H$ is an affine subbundle of $E \times \mathcal{P}$.

THEOREM 3.2. Fix a positive integer k. Let T denote a linear subbundle of $E \times \mathcal{P}^*$ and let $f: T \to \mathbb{R}$ denote a function that is linear on the fibres of T. Let $I = T^{\perp} \subset E \times \mathcal{P}$, and let H denote the affine subbundle of $E \times \mathcal{P}^*$ such that $I = I_H$ and $f = f_H$. Let $y_0 \in E$. Then:

- (1) $g(T)(y_0) = G(I)(y_0)^{\perp}$.
- (2) The Glaeser extension $g(f)(y_0) : g(T)(y_0) \to \mathbb{R}$ exists if and only if $G(H)(y_0) \neq \emptyset$.
- (3) If $P_0 \in G(H)(y_0)$, then $G(H)(y_0) = G(I)(y_0) + P_0$.

Proof. (1)(a) $g(T)(y_0) \subset G(I)(y_0)^{\perp}$: Let $\xi \in g(T)(y_0)$ and let $P_0 \in G(I)(y_0) \subset I(y_0)$. It is enough to show that $\xi(P_0) = 0$ when $\xi = \lim_{i\to\infty} \sum_{j=1}^k \xi_{ij}$, where $\xi_{ij} \in T(y_{ij})$ (i = 1, 2, ..., and j = 1, ..., k) and $S_i = \{y_{i1}, \ldots, y_{ik}\}$ satisfy the conditions of Definition 1.3. We will show there is a constant c such that $|\xi(P_0)| \leq c\varepsilon$, for any $\varepsilon > 0$.

Let $B(y_0, \delta)$ denote the ball with centre y_0 and radius δ . Take $\delta = \delta(\varepsilon)$ satisfying the conditions in Fefferman's definition of $G(I)(y_0)$ [F, Intro., (5)].

There exists $i(\delta)$ such that, if $i \geq i(\delta)$, then $S_i \subset B(y_0, \delta)$, so that there exists $P_{ij} \in I(y_{ij}), j = 1, \ldots, k$, as in Fefferman's definition. In particular, $\xi_{ij}(P_{ij}) = 0, j = 1, \ldots, k, i \geq i(\delta)$.

Consider $(P_0) - P_i \in W^m(S_i), i \ge i(\delta)$, where (P_0) denotes $(P_0, ..., P_0)$ and $P_i = (P_{i1}, ..., P_{ik})$. Then $||(P_0) - P_i||_{W^m(S_i)}^{y_0} \le \varepsilon$, by (2.2). Now,

$$\xi(P_0) = \lim_{i \to \infty} \sum_{j=1}^k \xi_{ij}(P_0) = \lim_{i \to \infty} \sum_{j=1}^k \xi_{ij}(P_0 - P_{ij}) .$$

For all $i \geq i(\delta)$,

$$\left|\sum_{j=1}^{k} \xi_{ij}(P_0 - P_{ij})\right| \leq \left\|\sum_{j=1}^{k} \xi_{ij,y_{ij}}\right\|_{W^m(S_i)^*}^{y_0} \cdot \left\|(P_0) - P_i\right\|_{W^m(S_i)}^{y_0} \leq c\varepsilon ,$$

where c is independent of ε , by Lemma 2.1.

(1)(b) $g(T)(y_0)^{\perp} \subset G(I)(y_0)$: Let $P_0 \in g(T)(y_0)^{\perp} \subset I(y_0)$. Suppose that $P_0 \notin G(I)(y_0)$. Then (according to [F, Intro., (5)]) there exists $\varepsilon > 0$ such that, for all $\delta > 0$, there exists $S_{\delta} = \{y_{\delta 1}, \ldots, y_{\delta k}\} \subset B(y_0, \delta) \cap E$ such that, for all $P_{\delta j} \in I(y_{\delta j}), j = 1, \ldots, k$, it is not true that

$$|\partial^{\alpha}(P_{\delta i} - P_{\delta j})(y_{\delta j})| \leq \varepsilon |y_{\delta i} - y_{\delta j}|^{m-|\alpha|} ,$$

for $|\alpha| \leq m$, $0 \leq i, j \leq k$ (where $y_{\delta 0} = y_0$ and $P_{\delta 0} = P_0$).

Let $\delta > 0$. There exists $l = l(\delta)$, $1 \leq l \leq k$, such that $y_0 \neq y_{\delta j}$ for precisely l of the elements $y_{\delta 1}, \ldots, y_{\delta k}$ (which we can take to be $y_{\delta 1}, \ldots, y_{\delta l}$. Let $R_{\delta} = \{y_{\delta 1}, \ldots, y_{\delta l}\}$. Let $I(R_{\delta})$ denote the linear subspace of $W^m(R_{\delta})$ consisting of all $P = (P_1, \ldots, P_l)$ such that $P_j \in I(y_{\delta j}), j = 1, \ldots, l$. Take $P'_{\delta} = (P_{\delta 1}, \ldots, P_{\delta l}) \in I(R_{\delta})$ closest to $(P_0)' = (P_0, \ldots, P_0)$ (l times) in the norm $\|\cdot\|_{W^m(R_{\delta})}^{y_0}$.

There exist $\xi_{\delta j} \in T(y_{\delta j}) = I(y_{\delta j})^{\perp}$, $j = 1, \ldots, l$, such that, if $\xi_{\delta} := \sum_{j=1}^{l} \xi_{\delta j, y_{\delta j}} \in W^m(R_{\delta})^*$, then $\|\xi_{\delta}\|_{W^m(R_{\delta})^*}^{y_0} = 1$ and

$$\left|\xi_{\delta}((P_{0})')\right| = \left\| [(P_{0})'] \right\|_{W^{m}(R_{\delta})/I(R_{\delta})}^{y_{0}} = \left\| (P_{0})' - P_{\delta}' \right\|_{W^{m}(R_{\delta})}^{y_{0}} + C_{\delta}^{y_{0}} + C_$$

where $[(P_0)']$ denotes the class of $(P_0)'$ in the quotient space $W^m(R_\delta)/I(R_\delta)$, and the norm in the middle is the quotient norm from $\|\cdot\|_{W^m(R_\delta)}^{y_0}$.

Let $P_{\delta} = (P_{\delta 1}, \dots, P_{\delta k})$, where $P_{\delta j} = P_0$ if j > l, and let $(P_0) = (P_0, \dots, P_0)$ (k times). Then

(3.1)
$$\|(P_0)' - P_{\delta}'\|_{W^m(R_{\delta})}^{y_0} = \|(P_0) - P_{\delta}\|_{W^m(S_{\delta})}^{y_0} > \varepsilon.$$

There exists $\delta = \delta_i$, i = 1, 2, ..., such that $\lim_{i \to \infty} \delta_i = 0$ and $\{\xi_{\delta_i}\}$ converges in \mathcal{P}^* . By passing to a subsequence if necessary, we can assume there exists l,

 $1 \leq l \leq k$, such that $l(\delta_i) = l$, for all *i*. Now $\xi := \lim_{i \to \infty} \xi_{\delta_i} \in g(T)(y_0)$, by the definition of $g(T)(y_0)$ (and Lemma 2.1). Since $P_0 \in g(T)(y_0)^{\perp}$, then

$$0 = |\xi(P_0)| = \lim_{i \to \infty} \left| \sum_{j=1}^{l} \xi_{\delta_i, j}(P_0) \right| \geq \varepsilon ;$$

a contradiction.

(2)(a) "If": Let $P_0 \in G(H)(y_0)$. Since $G(H)(y_0) \subset H(y_0)$, $f(y_0)(\xi) = \xi(P_0)$, for all $\xi \in T(y_0) = I(y_0)^{\perp}$. Now, $\xi \mapsto \xi(P_0)$ defines a linear function $g(T)(y_0) \to \mathbb{R}$. It is enough to show that, if $\xi = \lim_{i\to\infty} \sum_{j=1}^k \xi_{ij}$ as in (1)(a) above, then

$$\xi(P_0) = \lim_{i \to \infty} \sum_{j=1}^k f(y_{ij})(\xi_{ij}) .$$

The proof is essentially the same as in (1)(a). Let $\varepsilon > 0$. Take $\delta = \delta(\varepsilon)$ satisfying the conditions in the definition of $G(H)(y_0)$. There exists $i(\delta)$ as in (1)(a). So if $i \ge i(\delta)$, then there exists $P_{ij} \in H(y_{ij}), j = 1, \ldots, k$, as in Fefferman's definition; in particular, $\xi_{ij}(P_{ij}) = f(y_{ij})(\xi_{ij})$.

Then, for all $i \ge i(\delta)$, $||(P_0) - P_i||_{W^m(S_i)}^{y_0} \le \varepsilon$, so that

$$\left| \left(\sum_{j=1}^k \xi_{ij,y_{ij}} \right) \left((P_0) - P_i \right) \right| \leq c\varepsilon ,$$

where c is a constant, by Lemma 2.1. Therefore,

$$\xi(P_0) = \lim_{i \to \infty} \left(\sum_{j=1}^k \xi_{ij,y_{ij}} \right) ((P_0)),$$

and

$$\left|\xi(P_0) - \lim_{i \to \infty} \sum_{j=1}^k f(y_{ij})(\xi_{ij})\right| \leq c\varepsilon$$

(2)(b) "Only if": Suppose there exists a Glaeser extension $g(f)(y_0)$. We first note that there exists $P_0 \in H(y_0)$ such that $\xi(P_0) = g(f)(y_0)(\xi)$, for all $\xi \in g(T)(y_0) = G(I)^{\perp}(y_0)$: Extend $g(f)(y_0)$ to a linear function λ on \mathcal{P}^* , and choose $P_0 \in \mathcal{P}$ such that $\lambda(\xi) = \xi(P_0)$ for all $\xi \in \mathcal{P}^*$. Since $\lambda | T(y_0) = f(y_0)$, we have $\xi(P_0) = f(y_0)(\xi), \ \xi \in I(y_0)^{\perp}$. Therefore, $P_0 \in H(y_0)$ (by Remark 3.1).

Suppose that $P_0 \notin G(H)(y_0)$. Then there exists $\varepsilon > 0$, exactly as in (1)(b) above, except that here $P_{\delta j} \in H(y_{\delta j})$.

Let $\delta > 0$. Take $l = l(\delta)$ and R_{δ} as in (1)(b). Let $H(R_{\delta})$ denote the affine subspace of $W^m(R_{\delta})$ consisting of all $P = (P_1, \ldots, P_l)$ such that $P_j \in H(y_{\delta j})$, $j = 1, \ldots, l$. We follow (1)(b): Take $P'_{\delta} \in H(R_{\delta})$ closest to $(P_0)'$ in the norm $\|\cdot\|_{W^m(R_{\delta})}^{y_0}$. There exist $\xi_{\delta j} \in T(y_{\delta j}) = I(y_{\delta j})^{\perp}$ such that $\|\xi_{\delta}\|_{W^m(R_{\delta})^*}^{y_0} = 1$ and

$$\left|\xi_{\delta}((P_{0})' - P_{\delta}')\right| = \left\| \left[(P_{0})' - P_{\delta}' \right] \right\|_{W^{m}(R_{\delta})/I(R_{\delta})}^{y_{0}}$$

Let P_{δ} and (P_0) be as in (1)(b). Then (3.1) holds.

Choose δ_i as before. Then $\xi = \lim_{i \to \infty} \xi_{\delta_i} \in g(T)(y_0)$, and $\lim_{i \to \infty} \xi_{\delta_i}(P'_{\delta_i}) = g(f)(y_0)(\xi)$, by the definition of $g(f)(y_0)$. Therefore,

$$\varepsilon \leq \lim_{i \to \infty} \left\| (P_0)' - P'_{\delta_i} \right\|_{W^m(R_{\delta})^*}^{y_0} = \left| \lim_{i \to \infty} \xi_{\delta_i} ((P_0)' - P'_{\delta_i}) \right| = 0 ;$$

a contradiction.

(3) Let $P_0 \in G(H)(y_0)$. Then $G(H)(y_0) = G(I)(y_0) + P_0$ if and only if the following assertion holds: Let $P \in \mathcal{P}$. Then $P \in G(H)(y_0)$ if and only if $P - P_0 \in G(I)(y_0)$. This assertion follows from the definitions of G(H) and G(I).

UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA (E.B. AND P.M.) *E-mail addresses*: bierston@math.toronto.edu milman@math.toronto.edu

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, KRAKÓW, POLAND *E-mail address*: Wieslaw.Pawlucki@im.uj.edu.pl

References

- [BM] E. BIERSTONE and P. D. MILMAN, Geometric and differential properties of subanalytic sets, Ann. of Math. 147 (1998), 731–785.
- [BMP1] E. BIERSTONE, P. D. MILMAN, and W. PAWŁUCKI, Composite differentiable functions, Duke Math. J. 83 (1996), 607–620.
- [BMP2] _____, Differentiable functions defined in closed sets, A problem of Whitney, *Invent.* Math. **151** (2003), 329–352.
- [Br] S. BROMBERG, An extension theorem in the class C^1 , Bol. Soc. Mat. Mexicana 27 (1982), 35–44.
- [F] C. FEFFERMAN, Whitney's extension problem for C^m , Ann. of Math. 164 (2006), 313–359.
- [G] G. GLAESER, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124.
- S. IZUMI, Restrictions of smooth functions to a closed subset, Ann. Inst. Fourier (Grenoble) 54 (2004), 1811–1826.
- [M] B. MALGRANGE, *Ideals of Differentiable Functions*, Oxford Univ. Press, London, 1966.
- [W1] H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.
- [W2] _____, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369–387.

(Received April 23, 2004)