Higher-order tangents and Fefferman's paper on Whitney's extension problem

By Edward Bierstone, Pierre D. Milman, and Wieseaw PawŁucki*

Abstract

Whitney [W2] proved that a function defined on a closed subset of \mathbb{R} is the restriction of a \mathcal{C}^{m} function if the limiting values of all $m^{\text {th }}$ divided differences form a continuous function. We show that Fefferman's solution of Whitney's problem for $\mathbb{R}^{n}[\mathrm{~F}, \mathrm{Th} .1]$ is equivalent to a variant of our conjecture in [BMP2] giving a criterion for \mathcal{C}^{m} extension in terms of iterated limits of finite differences.

1. Introduction

Whitney [W2] proved that a function defined on a closed subset of \mathbb{R} is the restriction of a \mathcal{C}^{m} function if the limiting values of all $m^{\text {th }}$ divided differences (with supports converging to points) form a continuous function. In [BMP2], we conjectured that a real-valued function φ defined on a closed subset E of \mathbb{R}^{n} is the restriction of a \mathcal{C}^{m} function provided that φ extends to a function on a "paratangent bundle" defined using iterated limits of finite-difference operators. The main purpose of this note is to verify the conjectures of [BMP2] with the paratangent bundle there replaced by a natural variant; we prove that these assertions (Theorems 1.7, 1.8 below) are equivalent to Fefferman's solution of Whitney's problem [F, Th. 1]. The "Glaeser refinements" that Fefferman iterates to give his criterion for φ to be \mathcal{C}^{m} are dual to "Glaeser operations" in the sense of [BMP2]. (See Theorem 3.2.)

We will use the notation of $[\mathrm{F}]$ wherever possible. Let \mathcal{P} denote the vector space of real $m^{\text {th }}$ degree polynomials on \mathbb{R}^{n}, and let \mathcal{P}^{*} denote the dual of \mathcal{P}. If $F \in \mathcal{C}^{m}\left(\mathbb{R}^{n}\right)$, let $T_{y}^{m} F$ denote the Taylor polynomial of F at y; i.e., $T_{y}^{m} F(x)=\sum_{\alpha \leq m} \partial^{\alpha} F(y)(x-y)^{\alpha} / \alpha!$.

Using Theorem 1.8, we show (Theorem 1.9) that our geometric paratangent bundle coincides with the following analogue of the Zariski tangent

[^0]bundle from algebraic geometry: Consider the ideal $\mathcal{I}^{m}(E) \subset \mathcal{C}^{m}\left(\mathbb{R}^{n}\right)$ of \mathcal{C}^{m} functions vanishing on E. We define the \mathcal{C}^{m} Zariski paratangent bundle $\mathcal{T}^{m}(E)$ as
\[

$$
\begin{equation*}
\mathcal{T}^{m}(E)=\left\{(y, \xi) \in E \times \mathcal{P}^{*}: \xi\left(T_{y}^{m} F\right)=0, F \in \mathcal{I}^{m}(E)\right\} \tag{1.1}
\end{equation*}
$$

\]

[BMP2, §2].
Given $F \in \mathcal{C}^{m}\left(\mathbb{R}^{n}\right)$, define $D^{m} F: E \times \mathcal{P}^{*} \rightarrow \mathbb{R}$ by $D^{m} F(y, \xi)=\xi\left(T_{y}^{m} F\right)$. Clearly, if $y \in E$, then $D^{m} F(y, \xi)$ depends only on $\varphi:=F \mid E$ precisely when $(y, \xi) \in \mathcal{T}^{m}(E)$. Denote $D^{m} F \mid \mathcal{T}^{m}(E)$ by $\nabla^{m} \varphi: \mathcal{T}^{m}(E) \rightarrow \mathbb{R}$. If $y \in E$ and $\xi=\delta_{y} \in \mathcal{P}^{*}$ is the delta function $\delta_{y}(P):=P(y), P \in \mathcal{P}$, then

$$
\begin{equation*}
\nabla^{m} \varphi\left(y, \lambda \delta_{y}\right)=\lambda \varphi(y), \quad \lambda \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

Our criterion for \mathcal{C}^{m} extension is based on the question: Does (1.2) determine, by means of appropriate limits, the value $\nabla^{m} \varphi(y, \xi)$, for all $\xi \in \mathcal{T}^{m}(E)(y)$?
1.1. Glaeser operation. Let E denote a closed subset of \mathbb{R}^{n}.

Definition 1.1. Let V be a finite-dimensional vector space. A linear (resp., affine) subbundle of $E \times V$ means a subset Γ of $E \times V$ such that, for all $y \in E$, the fibre $\Gamma(y):=\{v \in V:(y, v) \in E\}$ is a linear (resp., affine) subspace of V.

Definition 1.2. Let $S=\left\{y_{1}, \ldots, y_{k}\right\}$ be a finite subset of \mathbb{R}^{n}. The space $W^{m}(S)$ of Whitney \mathcal{C}^{m} functions is the space of sections of $S \times \mathcal{P}$. Then $W^{m}(S)$ is a finite-dimensional vector space. We write elements P of $W^{m}(S)$ as $P=\left(P_{1}, \ldots, P_{k}\right)$, where each P_{j} belongs to the fibre of $W^{m}(S)$ over y_{j} (and $P_{i}=P_{j}$ if $y_{i}=y_{j}$). The Whitney \mathcal{C}^{m} norm is defined as

$$
\begin{equation*}
\|P\|_{W^{m}(S)}=\max \left\{\max _{\substack{1 \leq j \leq k \\|\alpha| \leq m}}\left|\partial^{\alpha} P_{j}\left(y_{j}\right)\right|, \max _{\substack{y_{i} \neq y_{j} \\|\alpha| \leq m}} \frac{\left|\partial^{\alpha}\left(P_{i}-P_{j}\right)\left(y_{j}\right)\right|}{\left|y_{i}-y_{j}\right|^{m-|\alpha|}}\right\} \tag{1.3}
\end{equation*}
$$

There is a projection ("restriction mapping") $\mathcal{C}^{m}\left(\mathbb{R}^{n}\right) \ni F \mapsto P \in W^{m}(S)$ given by $P=\left(P_{1}, \ldots, P_{k}\right)$, where each P_{j} is the Taylor polynomial $T_{y_{j}}^{m} F$.

For each $j=1, \ldots, k$, let $\mathcal{P}^{*} \ni \xi \mapsto \xi_{y_{j}} \in W^{m}(S)^{*}$ denote the dual to the projection $W^{m}(S) \ni P \mapsto P_{j} \in \mathcal{P}$; i.e., $\xi_{y_{j}}(P)=\xi\left(P_{j}\right)$, where $P=$ $\left(P_{1}, \ldots, P_{k}\right)$.

Given a Banach space B, with norm $\|\cdot\|_{B}$, we write $\|\cdot\|_{B^{*}}$ for the dual norm on B^{*}.

Definition 1.3. We fix a positive integer k. Given a linear subbundle T of $E \times \mathcal{P}^{*}$, we define a new linear subbundle $g(T)$ of $E \times \mathcal{P}^{*}$: The fibre $g(T)\left(y_{0}\right)$, where $y_{0} \in E$, is defined as the linear span of all elements $\xi \in$ \mathcal{P}^{*} that are obtained in the following way: There is a sequence of subsets $S_{i}=\left\{y_{i 1}, \ldots, y_{i k}\right\} \subset E, i=1,2, \ldots$ and there are elements $\xi_{i j} \in T\left(y_{i j}\right)$, for $i=1,2, \ldots$ and $j=1, \ldots, k$, such that:
(1) Each sequence $\left\{y_{i j}\right\}=\left\{y_{1 j}, y_{2 j}, \ldots\right\}$ converges to y_{0};
(2) $\left\|\sum_{j=1}^{k} \xi_{i j, y_{i j}}\right\|_{W^{m}\left(S_{i}\right)^{*}} \leq c$, where c is a constant;
(3) $\xi=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}$ in \mathcal{P}^{*}.

Then $T \mapsto g(T)$ is a Glaeser operation in the sense of [BMP2, Def. 3.2]; i.e., $\bar{T} \subset g(T)$ and g is local (i.e., if T_{1}, T_{2} are linear subbundles of $E \times \mathcal{P}^{*}$ and $T_{1}(y)=T_{2}(y)$ for all y in an open subset U of E, then $g\left(T_{1}\right)(y)=g\left(T_{2}\right)(y)$, $y \in U)$.

Definition 1.4. Let $f: T \rightarrow \mathbb{R}$ denote a function which is linear on the fibres of T. Let $y_{0} \in E$. Suppose there exists a linear function $\tilde{f}\left(y_{0}\right)$: $g(T)\left(y_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\tilde{f}\left(y_{0}\right)(\xi)=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} f\left(y_{i j}\right)\left(\xi_{i j}\right)
$$

whenever $\xi=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}$ in \mathcal{P}^{*}, where $\xi_{i j} \in T\left(y_{i j}\right)$ and $S_{i}=\left\{y_{i 1}, \ldots, y_{i k}\right\}$ $\subset E$ satisfy (1) and (2) of Definition 1.3. Then we write $\tilde{f}\left(y_{0}\right)=g(f)\left(y_{0}\right)$. Clearly, $g(f)\left(y_{0}\right)$ is unique if it exists. If $g(f)(y)$ exists for all $y \in E$, then we call $g(f): g(T) \rightarrow \mathbb{R}$ the Glaeser extension of f.

Remark 1.5. In [BMP2], we defined a different Glaeser operation $\rho(T)$ by replacing condition (2) in Definition 1.3 by the condition
(2') $\left|y_{i j}-y_{i 1}\right|^{m-|\alpha|}\left|\xi_{i j, \alpha}\left(y_{i j}\right)\right| \leq c$, for all $i, 2 \leq j \leq k,|\alpha| \leq m$, where c is a constant and $\xi_{\alpha}(y)$ denotes $\xi\left((x-y)^{\alpha} / \alpha!\right), \xi \in \mathcal{P}^{*}$.

Morevover, for every $f: T \rightarrow \mathbb{R}$ linear on the fibres, we defined a Glaeser extension $\rho(f): \rho(T) \rightarrow \mathbb{R}$ as above, using the Glaeser operation ρ instead of g. Then $\rho(T) \subset g(T)$, by [BMP2, Lemma 4.7] and Lemma 2.1 below, and if $g(f)$ exists, then $\rho(f)=g(f) \mid \rho(T)$.
1.2. Higher-order tangent bundle. We fix a positive integer k. We define a higher-order tangent bundle (or paratangent bundle) $T_{k}^{m}(E) \subset E \times \mathcal{P}^{*}$ as follows: We begin with the bundle of lines $T_{0} \subset E \times \mathcal{P}^{*}$ defined by

$$
T_{0}=\left\{\left(y, \lambda \delta_{y}\right): y \in E, \lambda \in \mathbb{R}\right\}
$$

We then define a sequence of linear subbundles of $E \times \mathcal{P}^{*}$,

$$
T_{0} \subset T_{1} \subset \cdots,
$$

by $T_{l}=g\left(T_{l-1}\right), l=1,2, \ldots$.

Let $r=\operatorname{dim} \mathcal{P}$. By Glaeser's lemma [BMP2, Lemma 3.3] (cf. [F, Lemma 2.2]):
(1) $T_{l}=T_{2 r}$, for all $l \geq 2 r$;
(2) $T_{2 r}$ is a closed linear subbundle $T_{k}^{m}(E)$ of $E \times \mathcal{P}^{*}$;
(3) $\operatorname{dim} T_{k}^{m}(E)(y)$ is upper-semicontinuous on E.

Now consider $\varphi: E \rightarrow \mathbb{R}$. We define $f_{0}: T_{0} \rightarrow \mathbb{R}$ by

$$
f_{0}\left(y, \lambda \delta_{y}\right)=\lambda \varphi(y) .
$$

Clearly, f_{0} is linear on the fibres of T_{0}. We inductively define $f_{l}: T_{l} \rightarrow \mathbb{R}$ by $f_{l}=g\left(f_{l-1}\right), l=1,2, \ldots$, provided that the Glaeser extension $g\left(f_{l-1}\right)$ exists. If f_{l} exists for all l, then we denote $f_{2 r}$ by $\nabla_{k}^{m} \varphi$ and we say that $\nabla_{k}^{m} \varphi: T_{k}^{m}(E) \rightarrow \mathbb{R}$ is the Glaeser extension of φ.

Remark 1.6. The Zariski paratangent bundle $\mathcal{T}^{m}(E)$ (1.1) has fibre $\mathcal{T}^{m}(E)(y)=\left(T_{y}^{m} \mathcal{I}^{m}(E)\right)^{\perp}, y \in E$. For any k and $y \in E, T_{k}^{m}(E)(y) \subset$ $\left(T_{y}^{m} \mathcal{I}^{m}(E)\right)^{\perp}\left(\right.$ by $(1) \Leftrightarrow(3)$ in Lemma 2.1). Therefore, $T_{k}^{m}(E) \subset \mathcal{T}^{m}(E)$. If φ is the restriction of a \mathcal{C}^{m} function, then φ extends to $\nabla_{k}^{m} \varphi: T_{k}^{m}(E) \rightarrow \mathbb{R}$, and the latter coincides with the resriction of $\nabla^{m} \varphi: \mathcal{T}^{m}(E) \rightarrow \mathbb{R}$ defined above (by Lemma 2.1, (1) $\Leftrightarrow(3)$).
1.3. Main theorems. For the following results, we use the positive integer $k^{\#}$ depending only on m and n given by Fefferman [F], and we write $T^{m}(E)=$ $T_{k^{\#}}^{m}(E), \nabla^{m} \varphi=\nabla_{k^{\#}}^{m} \varphi$.

Theorem 1.7. Let $\varphi: E \rightarrow \mathbb{R}$. Then φ is the restriction of a \mathcal{C}^{m} function if and only if φ extends to

$$
\nabla^{m} \varphi: T^{m}(E) \rightarrow \mathbb{R}
$$

Moreover, if $F \in \mathcal{C}^{m}\left(\mathbb{R}^{n}\right)$ and $F \mid E=\varphi$, then, for all $y \in E$ and $\xi \in T^{m}(E)(y)$, $\nabla^{m} \varphi(y)(\xi)=\xi\left(T_{y}^{m} F\right)$.

Theorem 1.8. Let $\varphi: E \rightarrow \mathbb{R}$. Suppose that φ extends to $\nabla^{m} \varphi$: $T^{m}(E) \rightarrow \mathbb{R}$. If $y_{0} \in E$ and $\left(\nabla^{m} \varphi\right)\left(y_{0}\right)=0$, then there exists $F \in \mathcal{C}^{m}\left(\mathbb{R}^{n}\right)$ such that $F \mid E=\varphi$ and $T_{y_{0}}^{m} F=0$.

Theorem 1.9. $T^{m}(E)=\mathcal{T}^{m}(E)$.
Theorems 1.7 and 1.8 answer Questions 1 and 2 in [F] using iterated limits of divided differences: It follows from Theorem 3.2 below that Theorems 1.7 and 1.8 are equivalent (by duality) to [F, Th. 1 (A) and (B)] (respectively). It is easy to see that Theorem 1.8 implies 1.9 and, conversely, if we assume Theorem 1.7, Theorem 1.9 implies 1.8.

Let $\tau_{k}^{m}(E)$ denote the paratangent bundle defined as in $\S 1.2$ above, using the Glaeser operation ρ of Remark 1.5 in place of g. (The term "paratangent bundle" comes from Glaeser's use of "paratingent" in [G].) Then

$$
\tau_{k}^{m}(E) \subset T_{k}^{m}(E) \subset \mathcal{T}^{m}(E)
$$

In [BMP2], we asked whether Theorems 1.7-1.9 hold using $\tau_{k}^{m}(E)$ (for suitable k) in place of $T^{m}(E)$. These questions remain open in general. ${ }^{1}$ (The assertions hold if $\tau_{k}^{m}(E)=E \times \mathcal{P}^{*}$ [BMP2, Proof of Th. 4.20]; e.g., with $k=2$ if E has dense interior [loc. cit.]. Already $\rho\left(T_{0}\right)=E \times \mathcal{P}^{*}$ with $k=\operatorname{dim} \mathcal{P}$ for certain fractal sets $E[\mathrm{I}]$.)

Glaeser solved Whitney's problem for \mathcal{C}^{1} functions [G] (cf. [Br]). His theorem is equivalent to the assertion that $\varphi: E \rightarrow \mathbb{R}$ is the restriction of a \mathcal{C}^{1} function if and only if φ extends to $\nabla^{1} \varphi: \tau_{2}^{1}(E) \rightarrow \mathbb{R}$. In particular, [$\left.\mathrm{F}, \mathrm{Th} .1\right]$ in the \mathcal{C}^{1} case, with $k^{\#}(1, n)=2$, follows from Glaeser's theorem.

Suppose that E is a compact subanalytic subset of \mathbb{R}^{n}. [BMP2, Th. 1.2] shows that there exists $q=q_{E}(m)$ such that $\varphi: E \rightarrow \mathbb{R}$ is the restriction of a \mathcal{C}^{m} function provided that φ extends to $\nabla^{q} \varphi: \tau_{2}^{q}(E) \rightarrow \mathbb{R}$. (Note that $\tau_{2}^{q}(E)$ here is denoted $\tau_{1}^{q}(E)$ in [BMP2]. The loss of differentiability comes from our use of the composition theorem of [BMP1].) It follows that, if $\nabla^{m} \varphi$: $\tau_{2}^{m}(E) \rightarrow \mathbb{R}$ exists for all m, then φ extends to a \mathcal{C}^{∞} function, provided that E is "semicoherent"; moreover, in this case, there is a continuous linear \mathcal{C}^{∞} extension operator. Let $\mathcal{T}^{m, q}(E), q \geq m$, denote the subbundle of $E \times \mathcal{P}^{*}$ with fibre $\mathcal{T}^{m, q}(E)(y)=\left(T_{y}^{m} \mathcal{I}^{q}(E)\right)^{\perp}, y \in E$. Semicoherence is equivalent to the condition that, for all m, the increasing sequence of subbundles $\mathcal{T}^{m, q}(E)$ of $E \times \mathcal{P}^{*}, q \geq m$, stabilizes. (See [BM], [BMP2] for these and related matters.)

2. Whitney norm for a finite set

Let L denote a closed cube in \mathbb{R}^{n}. Let $y \in L$. Any element of $\mathcal{C}^{m}(L)^{*}$ with support $\{y\}$ has the form $F \mapsto \xi\left(T_{y}^{m} F\right), F \in \mathcal{C}^{m}(L)$, where $\xi \in \mathcal{P}^{*}$.

Consider $S=\left\{y_{1}, \ldots, y_{k}\right\} \subset L$. The restriction mapping $\mathcal{C}^{m}(L) \rightarrow$ $W^{m}(S)$ induces $W^{m}(S)^{*} \hookrightarrow \mathcal{C}^{m}(L)^{*}$. By Whitney's classical extension theorem [W1], there is an extension operator $\mathcal{E}: W^{m}(S) \rightarrow \mathcal{C}^{m}(L)$ such that

$$
c_{1}\|f\|_{W^{m}(S)} \leq\|\mathcal{E}(f)\|_{\mathcal{C}^{m}(L)} \leq c_{2}\|f\|_{W^{m}(S)}
$$

for all $f \in W^{m}(S)$, where the constants c_{1}, c_{2} depend only on m, n and $\operatorname{diam} L$ (cf. [M, Complement 3.5]). Therefore, for all $\xi \in W^{m}(S)^{*}$,

$$
\begin{equation*}
\frac{1}{c_{2}}\|\xi\|_{W^{m}(S)^{*}} \leq\|\xi\|_{\mathcal{C}^{m}(L)^{*}} \leq \frac{1}{c_{1}}\|\xi\|_{W^{m}(S)^{*}} \tag{2.1}
\end{equation*}
$$

[^1]Given $y_{0} \in L$, we introduce another norm $\|\cdot\|_{W^{m}(S)}^{y_{0}}$ on $W^{m}(S)$ (for which the dual norm will be denoted $\|\cdot\|_{W^{m}(S)^{*}}^{y_{0}}$: If $y_{0} \in S$, then we define $\|\cdot\|_{W^{m}(S)}^{y_{0}}$ as $\|\cdot\|_{W^{m}(S)}$. If $y_{0} \notin S$, set $\tilde{S}=S \cup y_{0}$ and consider $W^{m}(S) \ni P \mapsto \tilde{P} \in W^{m}(\tilde{S})$, where $\tilde{P}=\left(0, P_{1}, \ldots, P_{k}\right)$ if $P=\left(P_{1}, \ldots, P_{k}\right)$. In this case, we define

$$
\|P\|_{W^{m}(S)}^{y_{0}}:=\|\tilde{P}\|_{W^{m}(\tilde{S})} .
$$

Let $P=\left(P_{1}, \ldots, P_{k}\right) \in W^{m}(S)$ and let $P_{0} \in \mathcal{P}$. Let $\left(P_{0}\right)$ denote $\left(P_{0}, \ldots, P_{0}\right) \in W^{m}(S)$. Assuming that $P_{0}=P_{j}$ if $y_{0}=y_{j}$ for some $j=1, \ldots, k$, we see from (1.3) that

$$
\begin{equation*}
\left\|\left(P_{0}\right)-P\right\|_{W^{m}(S)}^{y_{0}} \approx \max _{\substack{0 \leq i, j \leq k \\ y_{i} \neq y_{j} \\|\alpha| \leq m}} \frac{\left|\partial^{\alpha}\left(P_{i}-P_{j}\right)\left(y_{j}\right)\right|}{\left|y_{i}-y_{j}\right|^{m-|\alpha|}} \tag{2.2}
\end{equation*}
$$

(where \approx means that each side is majorized by the other times a constant depending only on m, n and diam L); so we will regard (2.2) as an equality (cf. Fefferman's definition of "Glaeser refinement", (5) in [F, Intro.]).

Lemma 2.1. Let $y_{0} \in L$. For each $i=1,2, \ldots$, consider $S_{i}=\left\{y_{i 1}, \ldots, y_{i k}\right\}$ $\subset L$, where $\lim _{i \rightarrow \infty} y_{i j}=y_{0}, j=1, \ldots, k$. Let $\xi_{i j} \in \mathcal{P}^{*}$, for $i=1,2, \ldots$ and $j=1, \ldots, k$. Then the following conditions are equivalent:
(1) $\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j, y_{i j}}(F)$ exists, for all $F \in \mathcal{C}^{m}(L)$.
(2) (a) $\lim \sum \xi_{i j}$ exists in \mathcal{P}^{*}; (b) $\left\|\sum \xi_{i j, y_{i j}}\right\|_{\mathcal{C}^{m}(L) *}$ is bounded (independently of i).
(3) (a) $\lim \sum \xi_{i j}$ exists in \mathcal{P}^{*}; (b) $\left\|\sum \xi_{i j, y_{i j}}\right\|_{W^{m}\left(S_{i}\right)^{*}}$ is bounded.
(4) (a) $\lim \sum \xi_{i j}$ exists in \mathcal{P}^{*}; (b) $\left\|\sum \xi_{i j, y_{i j}}\right\|_{W^{m}\left(S_{i}\right)^{*}}^{y_{0}}$ is bounded.

Proof. (1) is equivalent to (2), by the uniform boundedness principle. Let $\mathcal{C}^{m}\left(L, y_{0}\right)$ denote $\left\{F \in \mathcal{C}^{m}(L): T_{y_{0}}^{m} F=0\right\}$, and consider also
(5) (a) $\lim \sum \xi_{i j}$ exists in \mathcal{P}^{*}; (b) $\left\|\sum \xi_{i j, y_{i j}}\right\|_{\mathcal{C}^{m}\left(L, y_{0}\right)^{*}}^{y_{0}}$ is bounded.

Write $\xi_{i}=\sum_{j=1}^{k} \xi_{i j, y_{i j}}, i=1,2, \ldots$. It is easy to see that (5) implies $\left\{\xi_{i}(F)\right\}$ converges to 0 for all $F \in \mathcal{C}^{m}\left(L, y_{0}\right)$, and that $\left\{\xi_{i}\right\}$ converges on elements of $\mathcal{C}^{m}(L)$ if and only if $\lim \sum \xi_{i j}$ exists in \mathcal{P}^{*} and $\left\{\xi_{i}\right\}$ converges on elements of $\mathcal{C}^{m}\left(L, y_{0}\right)$. Therefore, (5) implies (1). By (2.1), (2)(b) is equivalent to (3)(b) and (2)(b) implies (4)(b). It is clear that (4)(b) implies (5)(b).

3. Glaeser operation and Fefferman's Glaeser refinement

Let E denote a closed subset of \mathbb{R}^{n}. There is a one-to-one correspondence between linear subbundles I of $E \times \mathcal{P}$ and linear subbundles T of $E \times \mathcal{P}^{*}$ given by $T=I^{\perp}$ (i.e., by $T(y)=I(y)^{\perp}$, the orthogonal complement of $I(y)$ in the dual to \mathcal{P}, for all $y \in E$), so that $T^{\perp}=I^{\perp \perp}=I$.

Let H denote an affine subbundle of $E \times \mathcal{P}$. (By convention, we allow the empty subset of \mathcal{P} as an affine subspace.) If $H(y) \neq \emptyset$, for all $y \in E$, then there is a unique linear subbundle $I=I_{H}$ of $E \times \mathcal{P}$ such that, for any $y \in E$ and $P \in H(y), H(y)=I(y)+P$. Then H induces a function $f=f_{H}: T=I^{\perp} \rightarrow \mathbb{R}$, such that f is linear on the fibres of T and, for all $y \in E$ and $P \in H(y)$,

$$
f(y)(\xi)=\xi(P), \quad \xi \in T(y) .
$$

($f(y)$ denotes the restriction of f to the fibre $T(y)$.)
Conversely, given a linear subbundle T of $E \times \mathcal{P}^{*}$ and a function $f: T \rightarrow \mathbb{R}$ linear on the fibres, there is a uniquely determined affine subbundle H of $E \times \mathcal{P}$ such that $H(y) \neq \emptyset$ (for all $y \in E$), $T=I_{H}^{\perp}$ and $f=f_{H}$.

Remark 3.1. If $y \in E$ and $P \in \mathcal{P}$, then $P \in H(y)$ if and only if $\xi(P)=$ $f(y)(\xi)$ for all $\xi \in T(y)$.

Fix a positive integer k. Let H denote an affine subbundle of $E \times \mathcal{P}$. Given $y \in E$, Fefferman defines an affine subspace $\tilde{H}(y)$ of $H(y)$ that he calls the "Glaeser refinement" ((5) in [F, Intro.]). We will write $\tilde{H}(y)=G(H)(y)$. Then $G(H) \subset H$ is an affine subbundle of $E \times \mathcal{P}$.

Theorem 3.2. Fix a positive integer k. Let T denote a linear subbundle of $E \times \mathcal{P}^{*}$ and let $f: T \rightarrow \mathbb{R}$ denote a function that is linear on the fibres of T. Let $I=T^{\perp} \subset E \times \mathcal{P}$, and let H denote the affine subbundle of $E \times \mathcal{P}^{*}$ such that $I=I_{H}$ and $f=f_{H}$. Let $y_{0} \in E$. Then:
(1) $g(T)\left(y_{0}\right)=G(I)\left(y_{0}\right)^{\perp}$.
(2) The Glaeser extension $g(f)\left(y_{0}\right): g(T)\left(y_{0}\right) \rightarrow \mathbb{R}$ exists if and only if $G(H)\left(y_{0}\right) \neq \emptyset$.
(3) If $P_{0} \in G(H)\left(y_{0}\right)$, then $G(H)\left(y_{0}\right)=G(I)\left(y_{0}\right)+P_{0}$.

Proof. (1)(a) $g(T)\left(y_{0}\right) \subset G(I)\left(y_{0}\right)^{\perp}$ Let $\xi \in g(T)\left(y_{0}\right)$ and let $P_{0} \in G(I)\left(y_{0}\right) \subset I\left(y_{0}\right)$. It is enough to show that $\xi\left(P_{0}\right)=0$ when $\xi=$ $\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}$, where $\xi_{i j} \in T\left(y_{i j}\right)(i=1,2, \ldots$ and $j=1, \ldots, k)$ and $S_{i}=$ $\left\{y_{i 1}, \ldots, y_{i k}\right\}$ satisfy the conditions of Definition 1.3. We will show there is a constant c such that $\left|\xi\left(P_{0}\right)\right| \leq c \varepsilon$, for any $\varepsilon>0$.

Let $B\left(y_{0}, \delta\right)$ denote the ball with centre y_{0} and radius δ. Take $\delta=\delta(\varepsilon)$ satisfying the conditions in Fefferman's definition of $G(I)\left(y_{0}\right)$ [F, Intro., (5)].

There exists $i(\delta)$ such that, if $i \geq i(\delta)$, then $S_{i} \subset B\left(y_{0}, \delta\right)$, so that there exists $P_{i j} \in I\left(y_{i j}\right), j=1, \ldots, k$, as in Fefferman's definition. In particular, $\xi_{i j}\left(P_{i j}\right)=0, j=1, \ldots, k, i \geq i(\delta)$.

Consider $\left(P_{0}\right)-P_{i} \in W^{m}\left(S_{i}\right), i \geq i(\delta)$, where $\left(P_{0}\right)$ denotes $\left(P_{0}, \ldots, P_{0}\right)$ and $P_{i}=\left(P_{i 1}, \ldots, P_{i k}\right)$. Then $\left\|\left(P_{0}\right)-P_{i}\right\|_{W^{m}\left(S_{i}\right)}^{y_{0}} \leq \varepsilon$, by (2.2). Now,

$$
\xi\left(P_{0}\right)=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}\left(P_{0}\right)=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}\left(P_{0}-P_{i j}\right)
$$

For all $i \geq i(\delta)$,

$$
\left|\sum_{j=1}^{k} \xi_{i j}\left(P_{0}-P_{i j}\right)\right| \leq\left\|\sum_{j=1}^{k} \xi_{i j, y_{i j}}\right\|_{W^{m}\left(S_{i}\right)^{*}}^{y_{0}} \cdot\left\|\left(P_{0}\right)-P_{i}\right\|_{W^{m}\left(S_{i}\right)}^{y_{0}} \leq c \varepsilon
$$

where c is independent of ε, by Lemma 2.1.
(1)(b) $g(T)\left(y_{0}\right)^{\perp} \subset G(I)\left(y_{0}\right):$ Let $P_{0} \in g(T)\left(y_{0}\right)^{\perp} \subset I\left(y_{0}\right)$. Suppose that $P_{0} \notin G(I)\left(y_{0}\right)$. Then (according to [F, Intro., (5)]) there exists $\varepsilon>0$ such that, for all $\delta>0$, there exists $S_{\delta}=\left\{y_{\delta 1}, \ldots, y_{\delta k}\right\} \subset B\left(y_{0}, \delta\right) \cap E$ such that, for all $P_{\delta j} \in I\left(y_{\delta j}\right), j=1, \ldots, k$, it is not true that

$$
\left|\partial^{\alpha}\left(P_{\delta i}-P_{\delta j}\right)\left(y_{\delta j}\right)\right| \leq \varepsilon\left|y_{\delta i}-y_{\delta j}\right|^{m-|\alpha|}
$$

for $|\alpha| \leq m, 0 \leq i, j \leq k$ (where $y_{\delta 0}=y_{0}$ and $P_{\delta 0}=P_{0}$).
Let $\delta>0$. There exists $l=l(\delta), 1 \leq l \leq k$, such that $y_{0} \neq y_{\delta j}$ for precisely l of the elements $y_{\delta 1}, \ldots, y_{\delta k}$ (which we can take to be $y_{\delta 1}, \ldots, y_{\delta l}$. Let $R_{\delta}=\left\{y_{\delta 1}, \ldots, y_{\delta l}\right\}$. Let $I\left(R_{\delta}\right)$ denote the linear subspace of $W^{m}\left(R_{\delta}\right)$ consisting of all $P=\left(P_{1}, \ldots, P_{l}\right)$ such that $P_{j} \in I\left(y_{\delta j}\right), j=1, \ldots, l$. Take $P_{\delta}^{\prime}=\left(P_{\delta 1}, \ldots, P_{\delta l}\right) \in I\left(R_{\delta}\right)$ closest to $\left(P_{0}\right)^{\prime}=\left(P_{0}, \ldots, P_{0}\right)(l$ times $)$ in the norm $\|\cdot\|_{W^{m}\left(R_{\delta}\right)}^{y_{0}}$.

There exist $\xi_{\delta j} \in T\left(y_{\delta j}\right)=I\left(y_{\delta j}\right)^{\perp}, j=1, \ldots, l$, such that, if $\xi_{\delta}:=$ $\sum_{j=1}^{l} \xi_{\delta j, y_{\delta j}} \in W^{m}\left(R_{\delta}\right)^{*}$, then $\left\|\xi_{\delta}\right\|_{W^{m}\left(R_{\delta}\right)^{*}}^{y_{0}}=1$ and

$$
\left|\xi_{\delta}\left(\left(P_{0}\right)^{\prime}\right)\right|=\left\|\left[\left(P_{0}\right)^{\prime}\right]\right\|_{W^{m}\left(R_{\delta}\right) / I\left(R_{\delta}\right)}^{y_{0}}=\left\|\left(P_{0}\right)^{\prime}-P_{\delta}^{\prime}\right\|_{W^{m}\left(R_{\delta}\right)}^{y_{0}}
$$

where $\left[\left(P_{0}\right)^{\prime}\right]$ denotes the class of $\left(P_{0}\right)^{\prime}$ in the quotient space $W^{m}\left(R_{\delta}\right) / I\left(R_{\delta}\right)$, and the norm in the middle is the quotient norm from $\|\cdot\|_{W^{m}\left(R_{\delta}\right)}^{y_{0}}$.

Let $P_{\delta}=\left(P_{\delta 1}, \ldots, P_{\delta k}\right)$, where $P_{\delta j}=P_{0}$ if $j>l$, and let $\left(P_{0}\right)=\left(P_{0}, \ldots, P_{0}\right)$ (k times). Then

$$
\begin{equation*}
\left\|\left(P_{0}\right)^{\prime}-P_{\delta}^{\prime}\right\|_{W^{m}\left(R_{\delta}\right)}^{y_{0}}=\left\|\left(P_{0}\right)-P_{\delta}\right\|_{W^{m}\left(S_{\delta}\right)}^{y_{0}}>\varepsilon . \tag{3.1}
\end{equation*}
$$

There exists $\delta=\delta_{i}, i=1,2, \ldots$, such that $\lim _{i \rightarrow \infty} \delta_{i}=0$ and $\left\{\xi_{\delta_{i}}\right\}$ converges in \mathcal{P}^{*}. By passing to a subsequence if necessary, we can assume there exists l,
$1 \leq l \leq k$, such that $l\left(\delta_{i}\right)=l$, for all i. Now $\xi:=\lim _{i \rightarrow \infty} \xi_{\delta_{i}} \in g(T)\left(y_{0}\right)$, by the definition of $g(T)\left(y_{0}\right)$ (and Lemma 2.1). Since $P_{0} \in g(T)\left(y_{0}\right)^{\perp}$, then

$$
0=\left|\xi\left(P_{0}\right)\right|=\lim _{i \rightarrow \infty}\left|\sum_{j=1}^{l} \xi_{\delta_{i}, j}\left(P_{0}\right)\right| \geq \varepsilon ;
$$

a contradiction.
(2)(a) "If": Let $P_{0} \in G(H)\left(y_{0}\right)$. Since $G(H)\left(y_{0}\right) \subset H\left(y_{0}\right), f\left(y_{0}\right)(\xi)=$ $\xi\left(P_{0}\right)$, for all $\xi \in T\left(y_{0}\right)=I\left(y_{0}\right)^{\perp}$. Now, $\xi \mapsto \xi\left(P_{0}\right)$ defines a linear function $g(T)\left(y_{0}\right) \rightarrow \mathbb{R}$. It is enough to show that, if $\xi=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi_{i j}$ as in (1)(a) above, then

$$
\xi\left(P_{0}\right)=\lim _{i \rightarrow \infty} \sum_{j=1}^{k} f\left(y_{i j}\right)\left(\xi_{i j}\right)
$$

The proof is essentially the same as in (1)(a). Let $\varepsilon>0$. Take $\delta=\delta(\varepsilon)$ satisfying the conditions in the definition of $G(H)\left(y_{0}\right)$. There exists $i(\delta)$ as in (1)(a). So if $i \geq i(\delta)$, then there exists $P_{i j} \in H\left(y_{i j}\right), j=1, \ldots, k$, as in Fefferman's definition; in particular, $\xi_{i j}\left(P_{i j}\right)=f\left(y_{i j}\right)\left(\xi_{i j}\right)$.

Then, for all $i \geq i(\delta),\left\|\left(P_{0}\right)-P_{i}\right\|_{W^{m}\left(S_{i}\right)}^{y_{0}} \leq \varepsilon$, so that

$$
\left|\left(\sum_{j=1}^{k} \xi_{i j, y_{i j}}\right)\left(\left(P_{0}\right)-P_{i}\right)\right| \leq c \varepsilon
$$

where c is a constant, by Lemma 2.1. Therefore,

$$
\xi\left(P_{0}\right)=\lim _{i \rightarrow \infty}\left(\sum_{j=1}^{k} \xi_{i j, y_{i j}}\right)\left(\left(P_{0}\right)\right)
$$

and

$$
\left|\xi\left(P_{0}\right)-\lim _{i \rightarrow \infty} \sum_{j=1}^{k} f\left(y_{i j}\right)\left(\xi_{i j}\right)\right| \leq c \varepsilon
$$

(2)(b) "Only if": Suppose there exists a Glaeser extension $g(f)\left(y_{0}\right)$. We first note that there exists $P_{0} \in H\left(y_{0}\right)$ such that $\xi\left(P_{0}\right)=g(f)\left(y_{0}\right)(\xi)$, for all $\xi \in g(T)\left(y_{0}\right)=G(I)^{\perp}\left(y_{0}\right)$: Extend $g(f)\left(y_{0}\right)$ to a linear function λ on \mathcal{P}^{*}, and choose $P_{0} \in \mathcal{P}$ such that $\lambda(\xi)=\xi\left(P_{0}\right)$ for all $\xi \in \mathcal{P}^{*}$. Since $\lambda \mid T\left(y_{0}\right)=f\left(y_{0}\right)$, we have $\xi\left(P_{0}\right)=f\left(y_{0}\right)(\xi), \xi \in I\left(y_{0}\right)^{\perp}$. Therefore, $P_{0} \in H\left(y_{0}\right)$ (by Remark 3.1).

Suppose that $P_{0} \notin G(H)\left(y_{0}\right)$. Then there exists $\varepsilon>0$, exactly as in (1)(b) above, except that here $P_{\delta j} \in H\left(y_{\delta j}\right)$.

Let $\delta>0$. Take $l=l(\delta)$ and R_{δ} as in (1)(b). Let $H\left(R_{\delta}\right)$ denote the affine subspace of $W^{m}\left(R_{\delta}\right)$ consisting of all $P=\left(P_{1}, \ldots, P_{l}\right)$ such that $P_{j} \in H\left(y_{\delta j}\right)$,
$j=1, \ldots, l$. We follow $(1)(\mathrm{b})$: Take $P_{\delta}^{\prime} \in H\left(R_{\delta}\right)$ closest to $\left(P_{0}\right)^{\prime}$ in the norm $\|\cdot\|_{W^{m}\left(R_{\delta}\right)}^{y_{0}}$. There exist $\xi_{\delta j} \in T\left(y_{\delta j}\right)=I\left(y_{\delta j}\right)^{\perp}$ such that $\left\|\xi_{\delta}\right\|_{W^{m}\left(R_{\delta}\right)^{*}}^{y_{0}}=1$ and

$$
\left|\xi_{\delta}\left(\left(P_{0}\right)^{\prime}-P_{\delta}^{\prime}\right)\right|=\left\|\left[\left(P_{0}\right)^{\prime}-P_{\delta}^{\prime}\right]\right\|_{W^{m}\left(R_{\delta}\right) / I\left(R_{\delta}\right)}^{y_{0}}
$$

Let P_{δ} and $\left(P_{0}\right)$ be as in (1)(b). Then (3.1) holds.
Choose δ_{i} as before. Then $\xi=\lim _{i \rightarrow \infty} \xi_{\delta_{i}} \in g(T)\left(y_{0}\right)$, and $\lim _{i \rightarrow \infty} \xi_{\delta_{i}}\left(P_{\delta_{i}}^{\prime}\right)$ $=g(f)\left(y_{0}\right)(\xi)$, by the definition of $g(f)\left(y_{0}\right)$. Therefore,

$$
\varepsilon \leq \lim _{i \rightarrow \infty}\left\|\left(P_{0}\right)^{\prime}-P_{\delta_{i}}^{\prime}\right\|_{W^{m}\left(R_{\delta}\right)^{*}}^{y_{0}}=\left|\lim _{i \rightarrow \infty} \xi_{\delta_{i}}\left(\left(P_{0}\right)^{\prime}-P_{\delta_{i}}^{\prime}\right)\right|=0
$$

a contradiction.
(3) Let $P_{0} \in G(H)\left(y_{0}\right)$. Then $G(H)\left(y_{0}\right)=G(I)\left(y_{0}\right)+P_{0}$ if and only if the following assertion holds: Let $P \in \mathcal{P}$. Then $P \in G(H)\left(y_{0}\right)$ if and only if $P-P_{0} \in G(I)\left(y_{0}\right)$. This assertion follows from the definitions of $G(H)$ and $G(I)$.

University of Toronto, Toronto, Ontario, Canada (E.B. and P.M.)
E-mail addresses: bierston@math.toronto.edu milman@math.toronto.edu
Institute of Mathematics, Jagiellonian University, Kraków, Poland
E-mail address: Wieslaw.Pawlucki@im.uj.edu.pl

References

[BM] E. Bierstone and P. D. Milman, Geometric and differential properties of subanalytic sets, Ann. of Math. 147 (1998), 731-785.
[BMP1] E. Bierstone, P. D. Milman, and W. Pawlucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620.
[BMP2] , Differentiable functions defined in closed sets, A problem of Whitney, Invent. Math. 151 (2003), 329-352.
[Br] S. Bromberg, An extension theorem in the class \mathcal{C}^{1}, Bol. Soc. Mat. Mexicana 27 (1982), 35-44.
[F] C. Fefferman, Whitney's extension problem for \mathcal{C}^{m}, Ann. of Math. 164 (2006), 313-359.
[G] G. Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1-124.
[I] S. Izumi, Restrictions of smooth functions to a closed subset, Ann. Inst. Fourier (Grenoble) 54 (2004), 1811-1826.
[M] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, London, 1966.
[W1] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
[W2] , Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369-387.
(Received April 23, 2004)

[^0]: *Research partially supported by the following grants: E.B. - NSERC OGP0009070, P.M. - NSERC OGP0008949, W.P. - KBN 5 PO3A 00521.

[^1]: ${ }^{1}$ (Added in proof.) Counterexamples are given in E. Bierstone, C. Fefferman, P. D. Milman and W. Pawłucki, Examples concerning Whitney's \mathcal{C}^{m} extension problem (to appear). An improved bound $k^{\#}=2^{\operatorname{dim} \mathcal{P}}$ is given in E. Bierstone and P. D. Milman, \mathcal{C}^{m} norms on finite sets and \mathcal{C}^{m} extension criteria (Duke Math. J., to appear).

