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Whitney’s extension problem for C™
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Abstract

Let f be a real-valued function on a compact set in R"™, and let m be a
positive integer. We show how to decide whether f extends to a C™ function
on R".

Introduction

Continuing from [F2], we answer the following question (“Whitney’s ex-
tension problem”; see [hW2]).

Question 1. Let ¢ be a real-valued function defined on a compact subset
E of R™. How can we tell whether there exists F' € C™(R"™) with F' = ¢ on E?

Here, m > 1 is given, and C"(R"™) denotes the space of real-valued func-
tions on R™ whose derivatives through order m are continuous and bounded
on R™. We fix m,n > 1 throughout this paper. We write R, for the ring of
m-jets of functions at x € R", and we write J,(F') for the m-jet of the function
F at z. As a vector space, R, is identified with P, the vector space of real m'®
degree polynomials on R"; and J,(F) is identified with the Taylor polynomial

> GO°F@)- o).

|8]<m
We answer also the following refinement of Question 1.

Question 2. Let ¢ and E be as in Question 1. Fix £ € E and P € Rj;.
How can we tell whether there exists ' € C™(R") with ' = ¢ on E and
Ji(F) = P?

In particular, we ask which m-jets at & can arise as the jet of a C™ function
vanishing on F. This is equivalent to determining the “Zariski paratangent
space” from Bierstone-Milman-Pawlucki [BMP1].
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A variant of Question 1 replaces C™(R™) by C™“(R"™), the space of C™
functions whose m" derivatives have a given modulus of continuity w. This
variant is well-understood, thanks to Brudnyi and Shvartsman [B], [BS1,2,3,4],
[S1,2,3], and my own papers [F1,2.4]. (See also Zobin [Z1,2] for a related prob-
lem.) In particular, [F2], [F4] broaden the issue, by answering the following.

Question 3. Suppose we are given a modulus of continuity w, an arbitrary
subset E C R™, and functions ¢ : E — R, 0 : E — [0,00). How can we tell
whether there exist F' € C"™“(R"™) and M < oo such that |F(z) — p(z)| <
M - o(x) for all z € E?

Specializing to ¢ = 0, we recover the analogue of Whitney’s problem
for C"™%. A further generalization will play a crucial role in our solution of
Questions 1 and 2. We will need to understand the following.

Question 4. Let w be a modulus of continuity, and let £ be an arbitrary
subset of R™. Suppose that for each x € F we are given an m-jet f(z) € R,
and a convex subset o(x) C R, symmetric about the origin. How can we tell
whether there exist F € C"™¥“(R"™) and M < oo such that J,(F) — f(x) €
M -o(x) for all x € E?

If the convex sets o(x) satisfy a condition which we call “Whitney convex-
ity,” then we can give a complete answer to Question 4, analogous to our earlier
work [F2,4] on Question 3. This will be one of the main steps in our proof.
Here, we announce our result on Question 4, and use it to answer Questions 1
and 2. A detailed proof of our result on Question 4 appears in [F3].

We discuss briefly the previous work on Whitney’s problem. The history of
this problem goes back to three papers of Whitney [h1W1,2,3] in 1934, giving the
classical Whitney extension theorem, and solving Question 1 in one dimension
(i.e., for n = 1). G. Glaeser [G] solved Whitney’s problem for C!(R"™) using
a geometrical object called the “iterated paratangent space.” Glaeser’s paper
influenced all the later work on Whitney’s problem.

Afterwards came the work of Brudnyi and Shvartsman mentioned above.
They conjectured a solution to the analogue of Question 1 for C"“(R™), and
proved their conjecture in the case m = 1. Their work and that of N. Zobin
contain numerous additional results and conjectures related to Question 1.

The next progress on Question 1 was the work of Bierstone-Milman-
Pawtucki [BMP1]. They found an analogue of the iterated paratangent space
relevant to C™(R"™). They conjectured a geometrical solution to Questions 1
and 2 based on their construction, and they found supporting evidence for their
conjecture. (A version of their conjecture holds for subanalytic sets E.) Our
results on Questions 1 and 2 are equivalent to the main conjectures in [BMP1],
with the paratangent space there replaced by a natural variant. This equiv-
alence, and other related results, are proven in Bierstone-Milman-Pawtucki
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[BMP2]. Regarding the conjectures of [BMP1] in their original form, we re-
fer the reader to a forthcoming paper by Bierstone, Fefferman, Milman, and
Pawtucki.

Our solution to Questions 1 and 2 is based on the idea of associating to
each point y € E an affine subspace H(y) C P, with the crucial property:

(1) IfFeC™R") and F =y on E, then J,(F) € H(y) for all y € E.

Here, we make the convention that the empty set is allowed as an affine
subspace of P. Clearly, if H(y) is empty for some y € F, then (1) shows that
@ cannot be extended to a C™ function F'.

If (1) holds for an affine subspace H(y) C P, then we call H(y) a “holding
space” for .

Answering Questions 1 and 2 amounts to computing the smallest possible
holding space for ¢. To carry this out, we will start with a trivial holding space
Hy(y). We will then produce a sequence of affine subspaces:

(2)  Ho(y) 2 Hi(y) 2 Ha(y) 2 ---, for all y € E, with each Hy(y) being
a holding space for ¢. Each Hy arises from the previous space Hy_ 4
by an explicit construction that we call the “Glaeser refinement”, to be
explained below. At stage L = 2dimP + 1, the process stabilizes; we
have

(3) Hy(y) = Hp(y) forall ¢ > L.

The space Hp(y) will turn out to be the smallest possible holding space for ¢.
To start the above process, we just take

(4) Ho(y) = {P€P: Ply) = ¢(y)} forall y € E.

To define the Glaeser refinement, suppose that for each y € E we are given
an affine subspace H(y) C P. We fix a large integer constant k% depending
only on m and n. We write B(y, 0) for the ball in R™ with center y and radius .
For each y € E, we will define a new affine subspace H(y) C P.

Given yg € F and Py € P, we say that Py € ﬁ(yo) if and only if the
following condition holds:

(5) Given € > 0 there exists § > 0 such that, for any y1,...,y# € EN
B(yo,6), there exist Py, ..., P € P, with P; € H(y;) forj =0,1,... k%
and [0%(P; — Pj)(y;)| < elys — y;|™ 1% for |a| <m, 0 <4, j < k.

(Here and throughout, we adopt the convention that |y; — yj\m_“” = 0 in the
degenerate case y; = yj, m = |a.)

Evidently, H(y) is an affine subspace of H(y) for each y € E. We call
H(y) the “Glaeser refinement” of H(y).
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Note that if H(y) is a holding space for all y € E, then so is H(y). This
follows trivially from (5) and Taylor’s theorem.

Thus, we have produced the spaces Hy, Hi, Ha,... in (2), by starting
with (4) and repeatedly passing to the Glaser refinement (5). The crucial
stabilization property (3) follows from an ingenious, simple lemma in [BMP1],
which in turn was adapted from an ingenious, simple lemma in [G]. (We give a
proof in Section 2.) In view of (3), the holding space Hr(y) is its own Glaeser
refinement. We call Hy,(y) the “stable holding space” for ¢, and we denote it
by H.(y).

Note that, if Hy(y) is nonempty, then it has the form fo(y) + I;(y), where
fe(y) € Ry and Iy(y) is an ideal in R,. Moreover, I;(y) is determined by y, E
and ¢, independently of ¢. This follows by an easy induction on ¢, using (4)
and (5). (Again, see Section 2.)

In principle, the stable holding space H,(y) is computable from the func-
tion ¢ and the set E.

Our answer to Questions 1 and 2 is as follows.

THEOREM 1. Let ¢ be a real-valued function defined on a compact subset
E CR™ Fory € E, let H.(y) be the stable holding space for ¢. Then

(A) ¢ extends to a C™ function on R™ if and only if H.(y) is nonempty for
all y € E. Moreover, suppose @ extends to a C™ function on R™. Then

(B) Given yp € E and Py € P, we have Py € H,(yo) if and only if there exists
F e C™R") with F = ¢ on E and Jy,(F') = F.

It is easy to deduce Theorem 1 from the following result.

THEOREM 2. Let E C R"™ be compact. Suppose that, for each y € E, we
are given an affine subspace H(y) C Ry having the form H(y) = f(y) + I(y),
where f(y) € Ry and I(y) is an ideal in R,. Assume that H(y) is its own
Glaeser refinement, for each y € E. Then there exists F' € C™(R™), with
Jy(F) € H(y) for ally € E.

In fact, part (A) of Theorem 1 is immediate from Theorem 2 and the
observation that ¢ cannot extend to a C" function on R™ if H,(y) is empty
for any y. (Note that J,(F) € H,(y) implies Jy(F) € Ho(y) by (2); hence
F(y) = ¢(y) by (4).) Similarly, part (B) of Theorem 1 is immediate from the
following corollary of Theorem 2.

COROLLARY. Let E, H(y) be as in Theorem 2. Given any yo € E and
Py € H(yo), there exists F € C™(R"™) with J,(F) € H(y) for ally € E, and
Jyo (F) = F.
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To prove the corollary, we define H(yo) = {Po} and H(y) = H(y) for
y € E~{yo}. The hypotheses of Theorem 2 hold for H. The corollary follows
at once by application of Theorem 2 to H.

To prove Theorem 2, we formulate a more precise, quantitative result, in
which we control the C™-norm of F'.

THEOREM 3. There exist constants k%, C, depending only on m and n,
for which the following holds:

Let E C R™ be compact. Suppose that for each ©x € E we are given an
m-jet f(x) € Ry and an ideal I(x) in Ry. Assume that the following conditions
are satisfied:

(I)  Given zg € E, Py € f(xo) + I(xg), and € > 0, there exists 6 > 0 such that
for any x1,...,xpx € E N B(xo,0), there exist polynomials Py, ..., Py
€ P, with P; € f(z;) + I(x;) for 0 < i < k%, and [0%(P; — Pj)(z;)| <
elz; — acj]"“‘o‘| for |a| <m, 0 <i,j <k*.

(IT1) Given x1,...,x# € E, there exist polynomials Py,..., P € P, with
P; € f(z;)+I(x;) for1 <i < k#;|0P;(2;)| < 1 for|a| <m, 1 <i<k#;
and [0%(P; = Pj)(a)] < | — a1 for |o| <m, 1 <i,j < k#.

Then there exists F' € C™(R"™), with C™-norm at most C, and with
Jo(F) € f(x)+ I(x) for allx € E.

Theorem 3 easily implies Theorem 2 via the following lemma, proven in
Section 2.

FINITENESS LEMMA. Let E, f(x), I(x) be as in the hypotheses of Theo-
rem 2. Then there exists a finite constant A such that the following holds:

Given x1,...,x € E, there exist polynomials Py,..., P.x € P, with
P; € f(z;) + I(x;) for 1 < i < k% [0%Pi(z;)| < A for |a] <m, 1 <i < k¥,
|0°(P; = Py) ()| < A fag — x|Vl for [a] <m, 1<, < k#.

The finiteness lemma is proven by contradiction, and gives no control over
the constant A. Theorem 2 follows by applying Theorem 3, with f(z)/A in
place of f(x), where A is as in the finiteness lemma. I know of no way to prove
Theorem 2 without going through Theorem 3. Thus, the heart of the matter
is Theorem 3. We set up a bit more notation, and discuss some ideas from the
proof of Theorem 3.

Recall that R, is the ring of m-jets of functions at z. Let R, be the
ring of (m — 1)-jets of functions at x, and let 7, : R, — R, be the natural
projection. For E, f(x), I(z) as in Theorem 3, we define the signature of a
point x € E to be

(6) sig (z) = (dim I(x), dim [ker 7 N I(x)]) ,
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where I(x) and ker m, N I(x) are regarded as vector spaces. For given integers
ki, ko, the set

(7) E(kl,kz) = {J} e FE: sig(a:) = (kl,kz)}

is called a stratum. Note that 0 < ky < k1 < dimP for a nonempty stratum.
Among all nonempty FE(kq, ko) we first take ky as small as possible, and then
take ko as large as possible for the given ky. With kq, ko picked in this manner,
the stratum F/(kq, ko) is called the “lowest stratum” and denoted by E;. Thus,
there is a lowest stratum whenever E is nonempty. Finally, the “number of
strata” in E is simply the number of distinct (ki, k) for which E(k1,ks) is
nonempty.

Our proof of Theorem 3 proceeds by induction on the number of strata.
If the number of strata is zero, then E is empty, and Theorem 3 holds trivially,
with k# =1, C = 1, and F = 0. For the induction step, let A > 1 be a given
integer, and suppose Theorem 3 holds whenever the number of strata is less
than A. We show that Theorem 3 holds also when the number of strata is
equal to A.

Thus, let E, f(x),I(z) be as in the hypotheses of Theorem 3, with the
number of strata equal to A. Let F; be the lowest stratum. It is easy to see
that Fp is compact (Lemma 2.3 below). We partition R . E; into Whitney
cubes {Q,}. Thus, each @, satisfies:

(8) Q; is disjoint from Fj, and
(9)  distance (Q}, F1) < C diameter (Q}) if diameter (Q,) < 1,
where @} is a (closed) cube having the same center and three times the diam-

eter of Q,. We write §, for the diameter of @), and we introduce a “Whitney
partition of unity” {6, }, with

(10) D 6, =1onR"\ By,
(11) supp 6, C @}, and
(12) 16°0,| < C 6,1 for |a| <m .

Our strategy is as follows.
Step 1. Find a function F € C™(R™), with
(13) Jo(F) € f(z)+ I(z) for all z € E) .

Step 2. For each v, apply the induction hypothesis (a rescaled form of
Theorem 3 for fewer than A strata) with ENQ3, f(z) — Jz(F), I(z) in place
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of E, f(z),I(x). Note that E N @} has fewer than A strata, thanks to (8).
Thus, for each v, we obtain a function F,, € C™(R"), with

(14) Jo(F,) € [f(z) — Jo(F)] + I(z) for all z € ENQ%,

and with good control over the derivatives of F,, up to order m.

Step 3. We define
F =T+ ZHVF,, on R".

Using (8)—(14) and our control on the derivatives of the F,, we conclude that
F € C™(R™), and that J,(F) € f(z) + I(z) for all x € E. We will also
control the C™-norm of F. This shows that Theorem 3 holds for E, f(x),
I(x), completing the induction on A and establishing Theorem 3.

To obtain the desired control on the derivatives of the F,, we have to
strengthen (13). For 2 € E, k* > 1, A > 0, we will introduce a convex set
L ¢(x, k%, A) C f(z)+I(z). In place of (13), we will need to make sure that F
satisfies

(15) Jo(F) € Dp(z, k¥, A) C f(z) + I(x) for all z € Ey.

Once F satisfies (15), we can gain enough control over the derivatives of
the F,, to make our strategy work. However, to achieve (15), we must be able
to produce a C™ function whose m-jet belongs to a given convex set at each
point of E. This is how Question 4 above enters our solution of Whitney’s
extension problem.

As in [F2], the constant k7 in Theorems 1,2,3 can be bounded explicitly in
terms of m and n, but new ideas will be needed to obtain the best possible k#.

It would be natural to try to extend our results to answer the following
generalization of Questions 1 and 2.

Question 5. Let E C R™ be a compact set. Suppose that for each x € F
we are given an m-jet f(x) € R, and a Whitney convex set o(z) C Ry. Assume
there is a uniform Whitney constant for all the o(z). (See Section 1.) How
can we tell whether there exist a function F' € C™(R™) and a finite constant
M such that J,(F) € f(x) + Mo(x) for all x € E?

Let C™(E) denote the space of functions on F that extend to C™ functions
on R™. In a forthcoming paper, we will show that there exists a bounded linear
operator T : C™(E) — C™(R") such that Tp|, = ¢ for ¢ € C™(E). (See
[BS1,3], [F1], [G], [hW2].)

It is a pleasure to acknowledge the great influence of Bierstone-Milman-
Pawtucki [BMP1] on this paper, and to thank Bierstone and Milman for valu-
able discussions. It is a pleasure also to thank Gerree Pecht for TEX-ing my
manuscript, expertly as always.
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1. Whitney convexity

Recall that R, denotes the ring of m-jets of functions at . Suppose (2
is a subset of R, and A is a positive real number. We will say that 2 is
“Whitney convex (at ) with Whitney constant A” if the following conditions
are satisfied:

(1) Q is closed, convex, and symmetric about the origin. (That is, P € Q if
and only if —P € Q.)

(2) Let PeQ,Q¢€ R, and d € (0,1] be given.
Assume that
10°P(x)| < 6™l and |0°Q(z)| < 67101, for |a| < m.

Then P - @ € AS), where P - Q denotes the product of P and @ in R,.
The motivation for this definition goes back to the proof of the classical
Whitney extension theorem. There, one studies sums of the form F' = > P, -0,

on R", where the 8, form a partition of unity. In a small neighborhouod of a
given point x, there is a lengthscale § < 1 for which the 6, satisfy |0%6,| < 5= lel
if x € suppf,. If § < 1 then the derivatives of the 0, are large, yet F
has bounded m'™ derivatives provided we have |9%(P, — P,)| < é™ 1l on
supp 6, Nsupp0,. Thus, the estimates in (2) are natural in connection with
Whitney’s extension problem.

We will be studying C"*(R™) for suitable w. A function w : [0,1] —
[0,00) is called a “regular modulus of continuity” if it satisfies the following
conditions:

(3)  w(0)= tErgl+ w(t)=0and w(l) = 1.

(4)  w(t) is increasing on [0, 1].

(5)  w(t)/t is decreasing on (0, 1].

In (4) and (5), we do not demand that w be strictly increasing, or that
w(t)/t be strictly decreasing.

If w is a regular modulus of continuity, then C™“(R™) denotes the space
of all C" functions F' on R™ for which the norm
| F|

Cm,w (Rn) ==

9F(z) — 0P F (2
max { max sup |0°F(z)|, max  sup | (z) ; (@)
IBI<m. peRr Bl=m e w(|z — ')

is finite.
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By adapting the proof of the sharp Whitney theorem from [F24], we
obtain the following result.

THE GENERALIZED SHARP WHITNEY THEOREM. There exists a constant
kgsw, depending only on m and n, for which the following holds: Let w be a
reqular modulus of continuity, and let E C R™ be an arbitrary subset. Suppose
that for each x € E we are given an m-jet f(x) € R, and a subset o(x) C Ry.

Assume that each o(x) is Whitney convex (at x), with a Whitney constant
Ag independent of x. Assume also that, given any subset S C E with cardinality
at most kéésw, there exists a map x — P* from S into P, with

(a)  P¥e f(x) + o(x) for allz € S;

(b)  |0°P*(x)| <1 forallz €S, |a| < m; and

() [0*(P* =P ()| < wllz—yl) - [a—y[™ 1 for allz,y € S, |z —y| <1,
la] < m.

Then there exists F' € C"™“(R"), with || F ||gme@mn< A1, and Jo(F) €
fx)+Ay-o(x) for allz € E. Here, Ay depends only on m,n and the Whitney
constant Ag.

This result is our answer to Question 4 from the introduction. The proof of
the generalized sharp Whitney theorem appears in [F3]. It would be interesting
to gain some understanding of Whitney convex sets.

2. Some elementary verifications

In this section, we sketch the proofs of some elementary assertions from
the introduction.

LEMMA 2.1. Let Ho(y) 2 Hi(y) 2 --- be as in the introduction. If a
given Hy(y) is nonempty, then it can be written as Hy(y) = fo(y)+ Li(y), where
Iy(y) is an ideal in R,. Moreover, Iy(y) is determined by ¢, y, E, independently

of .

Sketch of proof. We can take fy(y) to be any element of Hy(y). The I,(y)
are defined by the following induction.

(1) Io(y) = {PeP: Py) = 0}.
(2) Py € Ip41(yo) if and only if the following holds:

Given ¢ > 0 there exists § > 0 such that, for any y1,...,yp# € ENB(yo,9),
there exist Py, ..., Py € P, with Pj € I,(y;) for j =0,...,k%; and

0%(P; — P)(y;)] < elys — ;™71 for |a] <m0 <i,j < k¥ .
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The only assertion in the lemma that requires any proof is that I;(y) is an
ideal in R,. To check that assertion, we use induction on £. The case £ = 0 is
obvious. For the induction step, fix £ > 0, and suppose each I;(y) is an ideal
in Ry(y € E). Suppose Py € Ig+1(yo)~and Q € P. Let By be the product of Py
and @ in R,,. We must check that Py belongs to Iy41(yo). This follows from
(2), by using Py, ..., Py there, with ]5] defined as the product of P; with @
in Ry,. O

For the next lemma, we adopt the convention that the empty set has
dimension —oco as an affine space.

LEMMA 2.2 (after Lemma 3.3 in [BMP1]). Let Ho(y) 2 Hi(y) 2 ---
be as in the introduction, and let k > 0, x € E be given. If dim Hogyq(x) >
dim P — k, then Hy(x) = Hopi1(x) for all £ > 2k + 1.

Proof. We use induction on k. For k = 0, the lemma asserts that
(3)  if Hi(z) =P, then Hy(z) = P for all £ > 1.
From the definition of the Hy in the introduction, one sees that

(4)  dimHp(x) < liminf Hy(y).

y—x

Hence, if Hi(x) = P, then Hy(y) = P for all y in a neighborhood of x.
Consequently, Hy(y) = P in a neighborhood of z, for all £ > 1, proving (3).

For the induction step, fix & > 0, and assume the lemma holds for that k.
We must show that

(5) if dim Hopq3(z) > dimP — k — 1, then Hy(z) = Hopy3(x) for all £ >
2k 4 3.

If dim Hop41(z) > dim P—k, then (5) holds, since we are assuming Lemma
2.2 for k. Hence, in proving (5), we may assume that dim Hogy1(z) < dim P —
k — 1. Thus,

(6) dimHng(:r) = dimH2k+2(x) = dimH2k+3(£L') =dmP—-k—-1.
Note that

(7)  dim Hog41(y) > dim P —k—1 for all y near enough to x since otherwise
(4) (with £ = 2k + 1) would contradict (6).

We claim that also

(8) Hop12(y) = Hogq1(y) for all y near enough to x.
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In fact, suppose (8) fails; i.e., suppose that
9) dim Hop12(y) < dim Hog41(y) for y arbitrarily near .

Then, since we are assuming Lemma 2.2 for k, we must have dim Hoyy1(y) <
dim P — k for all y as in (9), and therefore

(10) dimH2k+2(y) < dimHQkJrl(y) -1 < dimP — k-2

for y arbitrarily close to z. From (4) and (10), we get dim Hog43(z) < dim P —
k — 2, contradicting (6). Thus, (8) cannot fail.

From (8) we see easily that Hy(y) = Hor11(y) for all £ > 2k + 1, and all
y € E close enough to z. In particular, Hy(x) = Hajys(x) for all £ > 2k + 3.
This completes the inductive step, and proves Lemma 2.2. O

In Lemma 2.2, we set k = dimP. Thus, for L = 2dimP + 1, we have
Hp(x) = Hpy1(z) = Hpqo(x) = ..., provided Hr(x) is nonempty. Of course,
the same conclusion holds trivially when Hp(z) is empty. This proves the
assertions in the introduction, concerning the stabilization of the Hy.

Next, we sketch the proof of the Finiteness Lemma from the introduction.
We proceed by contradiction.

If the Finiteness Lemma, fails, then, for each v = 1,2,3,... we can find
x(ly), .. ,xg;? € E, and a positive constant A®*), such that
(11) AW - o0 as v — o0,

and, for each v,

(12)  There do not exist polynomials P, ..., Py# € P, with
(a) Pyef@))+ 1) for j=1,... K
(b) |8°‘Pj(x§.l'))| < AW for j=1,..., k% and |a| < m; and
(¢) [0°(P = Pp)(a}")| < AWz — & |mlel for [a] < m, 0 <i,j < k#.

Recall that F is compact. Hence, by passing to a subsequence, we may
arrange that, in addition to (11), (12), we have

(13) :I:S-V)—>x§»oo)€Easy—>oo, foreach j=1,..., k" .
The points x(loo), e ,a:,(fio) need not be distinct.
Let 21, ..., z, be an enumeration of the distinct elements of the set {xgoo), e x,iio)

For each A(1 < A < ), let S(A) be the set of all j for which :L'g-oo) = 2. Thus,
if v is large enough, we have the following:

(14) mgy) is close to z) for all j € S(A); and

}.
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(15) |x§y) - xgl,j)\ > ¢ > 0 whenever j € S(A\) and j' € S(N) with X\ # X.

(In (15), we may take ¢ = % )1\1172)1\1/ |zx — zx| > 0.) Here, and for the rest of

the proof of the Finiteness Lemma, we write ¢, C, C’, etc. to denote constants
independent of v.
We now apply the hypothesis that H(y) = f(y) + I(y) (y € E) is its own

Glaeser refinement. We fix A. In the definition of the Glaeser refinement, we
take yo = 2x, Po = f(2\) and € = 1; and, for v large enough, we set y; = xg-y)
for j € S(N), yj = 2 for j ¢ S(\) (1 <j <k¥). Since H(-) is its own Glaeser
refinement, we conclude from (14) that we can find Pj(y) ef ($§V)) +1 (xg.y))
(j € S(\), v large enough), with ]8a13j(y)(m§y))] < \8“Po(xgy))] +1 (la] <m)
and [9%(P") — PM) (@) < |2 — 2 mlel for 4,5 € S(N), Ja] < m.

We carry this out for each A\ = 1,..., . Thus, for large enough v, we
obtain polynomials Pl(y), ceey P,g;;), with the following properties:

(16) P e f(@))+ I(z\) for j=1,... k¥
17) |0 PY (@) < C for o <m, j=1,...,k#;

(18)  10(RY — P < |2 — &Pl for Jaf < m, i, € SO,
1< A< .

Moreover, (15) and (17) show that
ap®) _ p®)y ¥ 1.0 ) m—|a
|0°(F P; )(% )| < C'w; T |
for |a| <m, i€ SA), j€SWN), x#N.
Together with (18), this implies

(19)  [0(PY = P < €l — 2 mlel for [af < m, 1 <, < B

Now let v be large enough that (16), (17), (19) apply, and also large
enough that A®) > max(C,C"), with C,C" as in (17) and (19).

Then (16), (17), (19) together contradict (12). This contradiction com-
pletes the proof of the finiteness lemma. O

LEMMA 2.3. Let E, f, I be as in the hypotheses of Theorem 3. Then the
lowest stratum FEy is compact.

Proof. We keep the notation of the introduction. Let zg € E, and suppose
dim I(xg) = d. Let PO(O), o ,Péd) be the vertices of a nondegenerate affine d-
simplex in f(zo) + I(x0). If we perturb the Po(j) slightly in P, then we obtain
the verticies of a nondegenerate affine d-simplex in P. Moreover, hypothesis
(I) of Theorem 3 shows that, for any x; € E close enough to zp, we may
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find Pl(o), . .,Pl(d) € f(x1) + I(x1) with Pl(j) close to Péj) in P. Therefore,
for any z1 € E close enough to xg, the affine space f(x1) + I(x1) contains a
nondegenerate affine d-simplex; hence dim I(z1) > d. It follows that {x € E':
dim I(x) < d} is a closed set, for any integer d. In particular, the set E of all
x € E with dim I(x) equal to k1 = minyer dim I(y) is closed.

Another application of hypothesis (I) of Theorem 3 shows that x — I(x)
is a continuous map from E to the Grassmannian of ki-planes in P.

Now let ky = max dim (ker my, N I(y)). Then by definition,
yelR

Ei={zecE: dim(kerm, NI(z)) = ky}.

We will show that E; is closed. Suppose z, € E; for v = 1,2,..., and
suppose z, —  in R". Then z € E, and I(x,) — I(z) in the Grassmannian of
ki-planes in P. Passing to a subsequence, we may assume that ker 7, NI (z,)
tends to a limit J in the Grassmannian of ks-planes in P.

We then have J C I(z) and 75|y = 0. Hence, dim (ker 7, N I(x)) > k.
By definition of ks, it follows that dim (ker m, N I(z)) = ko, i.e., z € Eq. Thus,
as claimed, FE; is closed. Since E1 is also a subset of the compact set E, the
proof of the lemma is complete. O

3. Further elementary results

In this section we collect a few standard facts and elementary results that
will be used later. We begin with two lemmas about “clusters”. We write
#(5) for the cardinality of a set S.

LEMMA 3.1. Let S C R™, with 2 < #(S) < k%. Then we may partition
S into subsets S1,S9,..., Sy, with the following properties:

(a)  #(Si) < #(S) for each i.

(b) Ifx e S; andy € S; with i # j, then |x —y| > ¢ - diam (S) with ¢
depending only on k¥ .

LEMMA 3.2. Let S C R™, with #(S) < k¥, and let § > 0 be given. Then
we can partition S into subsets St, ..., Sy, with

(a) diam (S;) <9 for each i, and
(b)  dist (S;,S;) > c-6 fori# j, where ¢ depends only on k¥.
k#*

To prove Lemma 3.2, we note that there are at most (2) distances
|z —y| (z,y € S,z # y); hence, at least one of the intervals I, = (275,24

{=1,2,..., (k;) + 1) contains none of the distances between points of S.
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Fix such an Ip. If 2,9,z € S with |z —y|, |y — 2| < 275, then since |z —z| ¢ I,
we have |z — z| < 27%5. Hence, the relation |z —y| < 27% (z,y € 9) is an
equivalence relation. Taking Si,...,S)s to be the equivalence classes for this
equivalence relation, we easily confirm (a) and (b). This proves Lemma 3.2. OJ

To prove Lemma 3.1, we just apply Lemma 3.2 with § = % diam (5).
Since diam (S;) < 3 diam (S) for each 4, we must have #(S;) < #(S). This
proves Lemma 3.1. O

Next, we prove a linear algebra perturbation lemma.

LEMMA 3.3. Suppose we are given an r-dimensional affine subspace H C
RN and the vertices vy, . . . , v, of a nondegenerate affine r-simplex in H. Then,
for each A > 0, there exists € > 0 for which the following holds:

Let H' C RY be another r-dimensional affine subspace of RY, and let
vy, - v € H' with |v) — v;| < e for each i. Let v = \gvg + A1v1 + -+ - + A\pvy,
with A\ + -+ A\ =1 and |\;| < A for each i.

Suppose v' € H', with |[v' —v| < e. Then we may express v' in the form
vV = M\guy + ANvy A F N, with A+ -+ AL =1 and |\ < 2A for each i.

T

Proof. If ¢ is small enough, then, since |v} —v;| < e, the v} form the vertices

of a nondegenerate affine r-simplex in H’. Since also H' is r-dimensional and
/ !
v e H',

(1) vV = A + -+ Ak, with Aj 4+ AL = 1.

It remains to show that |[A}| < 2A for each i. Let &1, ..., &, be an orthonor-
mal basis for span (v; — vy, ..., v, — vg).

The Ao, ..., A, satisfy the system of linear equations

(2) Moo &) FM(vr-&)+- -+ (v &)= &) i=1,...,7

(3) M+ M+ A =1

Since the v; form the vertices of a nondegenerate r-simplex in an r-
dimensional affine space H, the system of equations (2), (3) has nonzero de-
terminant.

On the other hand, the Xj,..., X, satisfy

(4 Ao &)+ X (v &)+ N (&) = (0 &) i=1

(5) AN+ AL =1,

The matrix elements v -§; and right-hand sides v"-§; in (4), (5) lie within
¢ of the corresponding matrix elements and right-hand sides of (2), (3). Con-
sequently, if [A;| < A, then we can force the A, to be arbitrarily close to the \;
by taking e small enough. In particular, if |\;| < A for each 7, and if ¢ is small
enough, then |A}| < 2A for each i. The proof of Lemma 3.3 is complete. O
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We recall two basic properties of convex sets in RY.

LEMMA 3.4 (Helly’s theorem). Let (Ky)aca be a family of compact con-
vex subsets of RN. If any N + 1 of the Ko have nonempty intersection, then
the whole family has nonempty intersection.

LEMMA 3.5 (Lemma of Fritz John). Let Q@ C RN be compact, convex,
and symmetric about the origin. Suppose also that € has nonempty interior.
Then there exist vectors v, ...,vn € RN, such that

N N
{Z Aivi = |\ < e for all z} cQcC {Z Aivi = N <1 for all z}
1 1

with ¢ > 0 depending only on N.

For proofs of these results, see [rW].
Finally, for future reference, we give the standard Whitney extension the-
orem for finite sets.

LEMMA 3.6. Let S C R™ be a finite set, and suppose that, for each x € S,
we are given an m-jet P* € P. Assume that the P* satisfy

|0“P*(x)| < A for |a] <m, x €S,
and
0%(P* = PY)(y)| < A-|@ —y|" 71 forja| <m,  wyes.

Then there exists F' € C™(R"), with || F ||gmnm < C - A and Jo(F) = P*
forallx € S.
Here, C' depends only on m and n; and 0*P*(x) denotes the o™ derivative

of the polynomial P*, evaluated at x.

See [M], [emS], [hW1] for a proof of Lemma 3.6.

4. Setup for the main induction

As explained in the introduction, we will prove Theorem 3 by induction
on the number of strata. For the rest of the paper, we fix an integer A > 1, and
assume that Theorem 3 holds whenever the number of strata is less than A.
We write kfﬁd to denote the constant called k# in Theorem 3, for the case of
fewer than A strata. Thus kﬁd is determined by m,n.

We must show that Theorem 3 holds for A strata. We let k# be a large
enough integer, determined by m and n, to be fixed later, and let E, f(z),
I(z) be as in the hypotheses of Theorem 3 for our value of k#, assuming that
the number of strata is equal to A.



328 CHARLES FEFFERMAN

We fix A, k%, E, f(x), I(z), and we keep the above assumptions, for the
rest of this paper. From now on, we write ¢, C, C’, etc., to denote constants
depending only on m and n; and we call such constants “controlled.”

5. The basic convex sets

Let E, f,I be as in Section 4. For zg € E, k > 1, A > 0, we define the set
T'f(z0, k, A) to consist of all Py € f(zo) + I(xo) for which the following holds:

(1) Given z1, ...,z € E, there exist polynomials P, ..., P, € P, with
(a) P, € f(a;)+I(x;) for i =0,1,...,k;
(b) [0P;(z;)| < A for o] <m, 0 < i <k; and
(c) 0%(P; — Pj)(z;)| < Alz; — x| 1ol for |a] <m, 0 <i,j < k.

Also, for 2o € E, k > 1, we define the set o(zg,k) to consist of all
Py € I(x0) such that:

(2) Given z1, ...,z € E, there exist polynomials P,..., P, € P, with
(a) P € I(x;) fori=0,1,...,k;
(b) [0“P;(x;)| <1 for |a| <m, 0<i < k; and
(c) 0%(P; — Pj)(z))| < |z; — z;|™7 1ol for |a] <m, 0<i,j <k.

Thus, T'f(zo,k, A) and o(zg, k) are compact, convex subsets of P, and
o(xo, k) is symmetric about the origin. The set o(wzg, k) is determined by
zo,k, E,I(z)(x € E); it is independent of the jets f(z)(z € E). The convex
sets I'f(zo,k, A) and o(z¢, k) will play a fundamental role in our proof of
Theorem 3.

Recall that R, denotes the ring of (m — 1)-jets of functions at x, and that
7z : Ry — R, denotes the natural projection. We identify R, with the vector

space P of (m — 1)t degree polynomials on R". We define

(3) Py, Fy A) = mTy (2, F, A),

(4) o(x, k) =mo(x, k),

(5) Fa) = (), and

(6) I(x)=mI(z) forz € E .

Recall also that Fq denotes the lowest stratum of E. Thus, E; is compact,
and the quantities dim I(x), dim (ker 7, N I(x)) are constant functions of z
on I;. We set

(7) d=dim I(z) for all z € E;, and
(8) d =dim I(z) for all z € Fy .
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Note that if F' € C™(R"), with || F' ||cm@®n)< C and J(F) € f(z) + I(z)
for all z € E, then obviously Jy,(F) € T'f(zo, k%, C’). (To see this, just set
P, = J,,(F),i=0,1,...,k% in definition (1).) This suggests that working to
guarantee (0.15), as explained in the introduction, is a prudent idea.

LEMMA 5.1. Suppose A,A' >0,k >1,2 € E, and P € T¢(z,k, A). Then
P+ A'o(x,k) CTy(x,k, A+ A") C P+ 24+ A)o(x, k).
The proof is immediate from definitions (1) and (2).

LEMMA 5.2. Suppose A >0, g € E, Py € kerm,, N1(xg). Assume that
|0 Py(xo)| < A for |a] <m.
Then Py € C Ao (xg, k) for any k > 1.
To prove Lemma 5.2, we just set Py = Py =--- = P, = 01in (2).

LEMMA 5.3. For any xo € FE and k < k%, the set o(xo,k) is Whitney
convex, with a controlled Whitney constant independent of xg.

Proof. We noted already that o(zg, k) is compact, convex, and symmetric
about the origin. Suppose we are given Py € o(xg,k), Q € Ry,, and 0 < § < 1,
with

(9) 8% Py(a0)] < ™71 and [0°Q(a0)| < 671 for |a] < m. .

We must show that the jet Py - Q belongs to Co(xg, k), where the dot de-

notes multiplication in R,,. Let z1,...,x3 € E be given. Since Py € o(xg, k),
there exist Py, ..., P; € P satisfying (2). Hence, by Whitney’s extension the-
orem for finite sets, there exists

(10) FeC™R"), with || F |lcn@n< Cand Jp,(F) =P, (0<i<k).
Also, (9) shows that we may find § € C™(R"), with
(11) Jeo(0) = Q,10%0] < C671*l on R™, and supp 0 C B(x,d) .

By (9) and (10) we have |0%F (zq)| < 6™~ for |a| < m, and |0*F| < C on
R” for || = m. Consequently, |0%F (x)| < Co™ 1ol for |a| < m, z € B(x,d).
Together with (11), this shows that [0 (8F)| < C6™~1*l on B(xo, ) for |a| <
m. In particular, || 0F [|gmmn)< C, since supp 6 C B(zo, ).

Setting P; = J,.,(0F) = J,.(0) - Jo,(F) = J,,(0) - P; (0 < i < k), with the

dots denoting multiplication in R;,, we have the following remarks.
(a) P e I(x;) for i =0,...,k, since P; € I(x;) and I(x;) C R, is an ideal;

(b)  |0“Pi(z;)| < C for || <m, 0 <i <k, since || OF ||gmgn)< C; and
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(c) 0P — Pj)(x)| < Clay — x| 1ol for |a] < m, 0 < i,5 < k, again
because || OF [|cm@n< C.

Since Py = J,,(0) - Py = Q - Py, remarks (a), (b), (¢) above show that
cQ - Py belongs to o(xg, k) for a small enough controlled constant c¢. Thus,
Q - Py € Co(xo, k). The proof of Lemma 5.3 is complete. O

The next lemma shows in particular that I'f(zo, k, A) is nonempty for
suitable k, A. Let D = dim P.

LEMMA 5.4. Suppose k - (kD +2) < k*. Then, given x1,...,25 € E,
there exist Py, ..., P, € P, with

(b)  |0%Pi(z)| <1 for |a] <m,i=1,...,k; and
() |0%(P = Py)(xj)| < |ai — ™1 for |a] <m, 0 <i,j <k

Proof. Fix z1,...,2; € E. Given a finite set S C E, define ST =
SU{z1,...,75}, and define K(S) to be the set of all (Py,...,P;) € P for
which there exists a map z € St — P* € f(z) + I(z), such that P* = P, for
1 <i<Ek, |0°P*(x)] <1 for |a] <m and z € ST, and |0%(P* — PY)(y)| <
|z — y|™ 1ol for |a| < m, x,y € S*. Each K(S) is a compact, convex subset of
P* which has dimension kD.

We have K(S") C K(S) for S C S’. Also, since E, f, I are assumed to
satisfy hypothesis (IT) of Theorem 3, we know that /C(.S) is nonempty whenever
#(S*) < k7, hence, whenever #(S) < k% — k.

Therefore, if Si,...,Sp,1 € E with #(S;) < k for each i, then
K(S1) N--- N K(S;py1) is nonempty, since it contains K(S1 U --- U Sgp,q),
and #(S1 U~ USppiq) < k- (kD+1) < k¥ — k.

Helly’s theorem now shows that there exists (P,..., P;) belonging to
K(S) for all S C E with #(S) < k

Taking S to be the empty set, we see that the P; satisfy

(12) |0%Pi(x;)| < 1for o] <m, i=1,...,k; and
(13)  10°(P — P)(ay)| < lai— a1 for o] <m, 1<i,j <F.

We will check that P; € I' (x5, k,1) for each i. In fact, given Zo, ..., 75 € E
with g = ;, we take S = {Zo,...,¥;}. Since (Py,..., ;) € K(S5), there exist
polynomials Py, .. P eP, Wlth Py=P; P € f(xj) + I(&;) for j =0,...,k;
0% P;(Z;)| <1 for ]04] <m,j=0,...,k; and \60‘(P Po)(z¢)| < |Zj —a:g]m ol
for |a| <m, 0 < j,¢ < k. Thus,

(14) P, € Ty(wi, k, 1), as claimed.
Our results (12), (13), (14) are the conclusions of Lemma 5.4. O
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The goal of the next several lemmas is to show that, roughly speaking, if
P € T¢(x,k,C), and if 2’ is close to x and P’ € f(a') + I(2) is close to P,
then P’ belongs to I'¢(a/, k,C"), with k somewhat smaller than k, and with C’
somewhat larger than C. More precisely, the next several lemmas will be used
to establish Lemma 5.10 below.

LEMMA 5.5. If d # 0 (see (7)), then o(xg, k) has nonempty interior in
I(xq), for every xo € E and k < k*.

Proof. Since o(xg, k) C I(xg) is convex and symmetric about the origin,
it is enough to prove the following.

(15)  Given g € E and Py € I(xg), there exists A > 0 with APy € o(xq, k).

To show (15), we recall that F, f, I are assumed to satisfy the hypotheses of
Theorem 3. We apply hypothesis (1) with e = 1, to the jets f(zo), f(xo)+Po €
f(xo) + I(xp). Thus, there exists § > 0 for which the following holds.

Given z1,...,7; € E N B(wo,0), there exist Py, P,..., Pl € P and
Py, P/,...,P! € P, with

(16) Py= f(@o);
Pl e f(z;) + I(x;) for i =0,1,...,k;
0°(P = P)(ay)| < i — ;™1 for [a] <m,  0<i,j < ks
(17) Py = f(xo0) + Po;
P! ¢ f(x;) + I(x;) for i =0,1,...,k;
0%(P} = P ) ()| < |wi — ;™1 for [a] <m,  0<i,j<k.

Setting P, = P/ — P! for i = 0,1,...,k (which agrees with the given P,
in (15) when ¢ = 0, thanks to (16), (17)), we find that

(18) P, cI(x;) fori=0,1,...,k; and

(19)  10%(P = Pj)(aj)| < 2y — " for || <m,  0<ij <k
We may assume that § < 1/2, hence |z; — z;| <1 in (19), and therefore
(20) |0%Pj(z;)] <2+ BI&%?((S) |0%Py| for |a| < m, 0<j<k?”.
From (19), (20) and Whitney’s extension theorem for finite sets, we obtain
F € C™(R™), with
(21) | Fllomn <C {24 max_[0"Ryfy)[} = K and

o] <m

Jp,(F)=P; fori=0,1...,k.
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In particular,
(22) Ju,(F) € I(x;) for i =0,1,...,k (by (18)); and
(23) Jao (F)=Fp .
We can achieve (21), (22), (23) for any x1,...,z; € EN B(xo,9).
Now let 6 € C™(R™) be a cutoff function, with
(24) Juo(8) = 1, supp 0 C B(xo,6), 0% < €571 on R™(Ja| < m).
Given any zy,...,z; € E, we define z,...,2, € E by setting =, = x;
if x; € B(xo,0), =, = xo otherwise. Thus, all the z] belong to E N B(zg,?).
Applying (21), (22), (23) with 2 --- 2% in place of z1,...,zf, we obtain F' €
C™(R™), with
(25) | Fllgm@n< K, Joo(F) = Po, Jo, (F) € I(z;) if 2 € B(zo,9).
From (24) and (25), we see that
(26) | OF |[cm@mn < C K6™™, Joy (OF) = Py, and

(27) Ju,(OF) € I(z;) for i = 0,1,...,k.
In fact, (27) follows from (25) for z; € B(xo,d), since I(x;) is an ideal. For
x; ¢ B(zo,0), (27) follows from (24).

Setting P; = J,,(0F) for i = 1,...,k, we obtain the following result, for
our given Py: Given z1,...,z; € E, there exist P,..., P, € P, with P; € I(x;)
fori=0,1,...,k;

0°Py(z;)| < [C'K6™™] for o] <m,i=0,1,...,k; and

0%(P; — Pj)(x;)| < [C'K&™™] |o; — xj|™ 71 for [a| <m, 0<4d,5 <k.
This immediately implies (15), with A = [C”Kd‘m]fl. The proof of Lemma
5.5 is complete. O

LEMMA 5.6. Let A > 0, and suppose 1+ (D + 1)~- k<k. Let z,2' € E,
and let P € Ty(z,k, A). Then there exists P' € T'f(2/, k, A), with

0%(P = P')(2)],|0%(P = P')(a')| < Al — /|1 for |a] <m .
Proof. Given a finite set S C E, define ST = {z,2'} U S, and define K(S)
as the set of all P’ € P for which there exists a map y — PY from ST to P,
with P* = P; P* = P', PY € f(y) + I(y) for all y € S;
|0*PY(y)| < A for |a] <m and y € ST; and
1% (PY — P?)(2)| < Aly — z|™ 1 for |a| < m,y,ze€ ST .
Each IC(S) is a compact, convex subset of P, which has dimension D. If

S C S then K(S') C K(S). If S C E with #(ST) < k + 1, then we see by
using P € I'f(z,k, A) that K(S) is nonempty.
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If S1,...,Sp+1 C E with #(5;) < k for each i, then S = S;U---USpiy
satisfies #(S+) <24 #(S) <2+ (D+1)k < k+1. Hence, K(S) is nonempty,
and KC(S) C K(S;) for each i. Thus K£(S1)N---NK(Sp+1) is nonempty.

Consequently, by Helly’s theorem, there exists P’ belonging to K(S) for
every S C E with #(S) < k. It follows easily that P’ € T'(z,k, A). Also,
taking S = empty set, we learn that

0%(P = P')(x)|,|0°(P — P')(a')| < Alz — /"1 for [a| <m,
since P’ € K(S). The proof of Lemma 5.6 is complete. O

For the next lemma, recall definitions (3)—(8).

LEMMA 5.7. Suppose A > 0 and 1 + (D + 1)k < k < k#. Then, given
x € Ey, there exist €9,09 > 0 such that for any Q € ff(x k,A), any o' €
E\nB(z,80), and any Q' € F(')+ ('), if |0*(Q'~Q)(x)| < 2o for |a] < m—1,
then Q' € (2, k,A"), with A" depending only on A, m,n.

Proof. If @ = 0 then f(2")+ I (') contains only the single point f(z'), and
Lemma 5.7 follows from Lemma 5.6. Suppose d # 0. By Lemma 5.5 and Fritz
John’s Lemma, there exist Py, ..., Py € I(x) with the following properties.

(28) P, € 5(x,k) fori=1,...d,
(29) Any P € 5(x, k) may be written as P = A\{ P{ 4+ - -+ \¢ Pz with |\;| < C
fori=1,...,d.
In particular, Py,. .., P; are linearly independent. In this proof, we write

Ay, Ag, As, -+ for constants determined by A,m,n. If Tj(z,k, A) is empty,
then Lemma 5.7 holds vacuously. Otherwise, fix

(30) Qo € Ty, A) € (&) + I(2)

and define

(31) Qi=Qo+P e fx)+I(x)fori=1,...,d.
In view of (28), (30), (31) and Lemma 5.1, we have

(32) Qi € Tp(z,k,Ay) for i =0,1,...,d .

Also, from (30), (31) and the linear independence of Py, ..., Pz, we see
that

(33) 6:20, cey Qd form the vertices of a nondegenerate affine d-simplex in
f@) + I(x).
Suppose Q € T'f(x,k, A). Then (30) and Lemma 5.1 give Q — Qp €
As5(, k); hence (29) shows that we may write Q Qo = M P+ -+)\g Py with
INi| < Agfori=1,...,d. Thus, Q = {1-X\— - — A\ }Qo+ M Q1+ -+ N\gQa

and we have proven the following result:
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(34) Any Q € T'¢(z,k, A) may be expressed in the form Q = \Qo + -+ +
AiQq, with \g+---+ g =1, and |IAi| < Ay for i =0,1,...,d.

We now apply the linear algebra perturbation Lemma 3.3 to the affine
subspaces H = f(z) + I(z) C P, H = f(z') + I(z') C P, the vectors
Qo,...,Q4 € H, and the constant A, in (34). Thus, we obtain ¢ > 0 for
which the following holds.

(35)  Suppose Q = )\0@0 +--- 4 )\d‘Qd‘ with A\g +--- 4+ Ag =1 and |\;| < Ay
(all 7).

Suppose we are given 2’ € Ey and Q', Q, ..., Q4 € f(z') + I(z'), with
(a) 10%(Q — Qi) (z)| < g for o] <m—1and 0<i<d, and
(b)  [0%(Q" = Q)(@)| < eo for |a] <m — 1.
Then we may express Q' in the form
()  Q=XQ)+  +N;Qf, with \j +---+ N, =1 and |N| < A5 (all 4).
Next, we will show that there exists dp > 0 for which the following holds:
(36)  Given any 2’ € Ey N B(x,dp), there exist
(a) Qp,...,Q4 €Ts(a' k,Ay) C f(a') + I(2), with
(B) 109Q: — Qi)(x)| <egpfor [a] <m—1and 0<i<d.

To see this, fix i(0 < i < d). By (32) and (3), there exists Q; € I's(z, k, A1)
with 7,(Q;) = Q;. Now suppose =’ € E1 N B(z,d), for a small enough dy > 0
to be picked below. Lemma 5.6 gives us Q} € I'y(a’, k, A1), with

37 0*(Ql — Qi) (z)| < Aqlr' — x m—lal < A16m7|a‘ < Aq0g for |a| <m —1,
) 0
provided &g < 1.

We take Q) = m,Q) € Ty(a',k, A1) C f(2') + I(2'). (See (3), (5), (6).)
Thus Q) satisfies (36) ().
For |a| < m, we have

B9 Q)= Y 5 (7)) - @ -a)

1B]1<m—|a
= Z etc. + Z etc.
|B|l<m—1—|al |Bl=m—|a]

—Q + Y 5 (7)) - @)

|Bl=m—|a|



WHITNEY’S EXTENSION PROBLEM FOR C™ 335

Also, since @, € T'y(a',k, A1), we have |9°Q/(z')| < A; for |a| < m. (See (1)
(b).) Hence, (38) implies that

(39) |0°Ql(z) — 0*Ql(z)| < Agdo for |a] < m — 1, provided dp < 1.

Since 9°Q;(x) = 9°Q;(z) for |a| < m — 1, estimates (37) and (39) show
that

(40) |0%(Q) — Q;)(z)] < Azd for |a] < m — 1, provided §p < 1.

We now pick dp < 1 small enough that A7dyp < €. Thus, (40) holds, and
it shows that Q! satisfies (36) (3). The proof of (36) is complete.

We fix £9,80 > 0 as in (35), (36). Now suppose Q € ['f(z,k, A), 2’ €
E1N B(x,0),Q" € f(z') + I(2), and assume that

(41) 9°(Q' - Q)(@)] < e for [a] <m—1.
Then the hypotheses of (35) hold, thanks to (34) and (36). Applying (35), we

may express @ in the form Q' = \,Qf + C+ ApQa, with A + -+ G =1,
M| < As (all 4), and Qf, ..., Q) € Ty(2/, k, A1) as in (36)(c). Equivalently,

d
(42) Q'=Qh+ ) X(Qi—Qp) .

=1

We have Q) — Q) € 2A,5 (', k) by Lemma 5.1, hence

a
(43) > N(Q = Q) € Aso (e k)
i=1
From (42), (43), (36)(c), and another application of Lemma 5.1, we see
that Q' € T'¢(a/, k, Ag). Thus, we have shown that, whenever 2’ € E1NB(z, &),
Q € Ty(x, k, A), Q" € f(a) + I(2'), with [0(Q" — Q)(x)| < &g for || <m —1,
we have Q' € I'f(2/, k, Ag). The proof of Lemma 5.7 is complete. O

Note that we had to restrict to z,2’ € F; in Lemma 5.7, because one of
the crucial hypotheses in the linear algebra perturbation lemma was that the
affine spaces H and H' have the same dimension.

LEMMA 5.8. Suppose A1, Ay >0 and 1+ (D + 1) - k <k < k¥#. Then,
given x© € Ej, there exist €,6 > 0 such that, for any Q € T'p(z,k, A1), any
' € By N B(x,0), and any Q' € f(2') + I(2'), if

(44) 0@ — Q)@)] <& for o] <m—1
and
(45) 0°Q'(x)| < Ag for |a| =m,

then Q" € T'f(a, k, A", with A" determined by Ay, As,m,n.
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Proof. In this proof, we write Ag, A4, As,--- to denote constants deter-
mined by Aj, As,m,n. Given x € Fy, let 9,59 be as in Lemma 5.7 with
A = Ay. Let £,0 > 0 be small enough numbers, to be picked below, depend-
ing only on Ay, As, m,n,e0,80. Suppose Q € T'¢(z,k, A1), 2’ € Ey N B(x,6),
Q' € f(z')+ I(2'), and assume (44) and (45). Since Q € I'f(z, k, A1), we have

(46) |0°Q(x)| < A; for |a] < m. (See (1)(b).)
Hence, (44) and (45) show that
(47) |0°Q" (z)] < As for |a] < m. .
We will take § < 1. Hence (47) implies
(48) 0°Q/(2")| < Aq for |a] < m,
since ' € B(z,0). Set Q = m,Q, Q' = 7Q’. Thus,

(49) Q € Ty(x,k, A1), 2’ € Ex N B(x,8), and Q' € f(a') + I(2’), provided
we take § < dg.

By expanding Q' about z’, we see that

1Y@ =@+ Y =

3 (@°2Q' (") - (x —2')P for |a| <m —1.
|Bl=m—|al

Therefore, (48) implies that
(50)  |0°Q/(2)—0°Q'(z)| < As|z—z'|™ 1ol < Azsm—lel < Agd for |a| < m—1.

Since also 9°Q(x) = 9°Q(z) for |a| < m — 1, we learn from (44) and (50)
that

(51) 10(Q" — Q)(x)| < e+ As6 for |af <m —1.

We now pick ¢ = %60 and § = min{l,dp,e0/(245)}. Thus, the above
arguments are valid for our ¢,; and (51) gives

(52) 10%(Q" — Q) (x)| < gp for |a| <m —1.

In view of (49) and (52), we may apply Lemma 5.7, with A = A;. Thus,
we learn that Q' € (2, k, Ag). That is,

(53) T Q' = 7 Q for some Q € Ty(a',k, Ag) C f(z') + I(2') .
Fix Q as in (53). In particular, we have
(54) 0°Q(a")] < Ag for |a| < m. (See (1)(b).)
From (48), (53), (54), we see that
Q' —Q € kermy N I(2'), with [0%(Q — Q)(')| < A7(|a] < m).
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Together with Lemma 5.2, this shows that
(55) Q' —Q e Ago(a k) .

We now have Q' = Q + (Q' — Q), with Q € Tz, k, Ag) and Q - Q
satisfying (55). Applying Lemma 5.1, we conclude that Q" € T'f(2/,k, Ag),
completing the proof of Lemma 5.8. O

LEMMA 5.9. Suppose Ay, Ay >0, 14+(D+1)-k < ky, 1+ (D+1)-ko < ky,
ki < k¥. Let g € Ey. Then there exists n > 0 for which the following holds:

Suppose ', x" € Ey, with |xg — 2'|, |/ — 2"| <n. Let Q" € Ty(2’, k1, Ay)
and Q" € f(2") + I(2"), with

10%(Q" — Q" (2)| < Agy™ 1l for |a| <m .
Then Q" € T'y(a2", k,A"), with A’ determined by Ay, Ay, m,n.

Proof. In this proof, we write As, A4, As, - -+ for constants determined by
A1, As, m,n. Suppose g, 2’,xz", Q', Q" are as in the hypotheses of Lemma 5.9,
with 7 a small enough positive number, independent of z’,z”,Q’,Q", to be
picked later. Since Q' € T'¢(2/, k1, A1), Lemma 5.6 produces a polynomial

(56) Qo € Tf(z0, ka2, A1) |
with
(57) 10°(Q" — Qo) (x0)| < Atlzo — /)1 for |a| <m. .

For |a| < m, we have also that

1
04(Q" = Q") (wo) =] Y 5 @7 (Q" = Q")) - (wo — 2"
1Bl<m—la|
< ST L gyl g — o)l
B|<m—la] "
<C A,y - nmflal‘

Together with (57), this yields
0%(Q" = Qo) (z0)| < C Agn™ 1
for |a| < m. In particular, we have
(58) 0%(Q" — Qo)(x0)| < Aan for || <m -1,
and

(59) |0%(Q" — Qo) (x0)| < Ay for |a] =m,
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since we may take n < 1. From (56), we see that |0“Qo(zo)| < A for |a| < m.
(See (1)(b).) Hence, (59) shows that

(60) |0°Q" (m0)| < A5 for |a] =m .

We are ready to apply Lemma 5.8, which tells us the following. There
exist €,0 > 0 determined by Ay, As, k, ko, g, such that:

(61) If Qy € Ff(xo,EQ,Al), = i N B(JZ(),(S), Q// S f(x”) + [(CL‘N),
0%(Q" = Qo) (w0)| < ¢ for || <m—1, and [07Q" (z0)| < As for || = m,
then Q" € T'f(z", k, Ag).

Note that, since 2" € Ey and |zg — /|, |2’ — 2”| < n, we have
(62) 2" € B(xo,2n) N E; .
Recall that we assumed that
(63) Q"€ f(a") +1(").

If we now pick n <1 to satisfy A4n < € and 2n < J, then the hypotheses
of (61) hold, thanks to (56), (62), (63), (58), and (60). Hence, (61) shows that
Q" € T'¢(a", k, Ag). The proof of Lemma 5.9 is complete. O

LEMMA 5.10. Suppose A1, Ay > 0, 14(D+1)-k3 < ko, 14(D+1)-kg < ky,
ki < k¥#. Then there exists n > 0 for which the following holds: Suppose
2 2" € By, with |2’ —2"| <n. Let Q' € T4(2', k1, A1) and Q" € f(2")+1(z"),
with [0%(Q" — Q") (z')| < Agn™~ 1ol for |a| < m. Then Q" € T (", ks, A") with
A’ determined by A1, As, m,n.

Proof. We say that an open ball B(y,7) with center y € E; is “useful”
if the following holds: Given o’ € B(y,7) N Ey, 2" € B(z',7) N Ey, Q' €
Py(a!, o, Ar), and Q7 € f(a) + (&), i [9°(Q" — Q)(&)] < Ao 7™l for
la| < m, then Q" € T'y(a”, k3, A’), with A" as in Lemma 5.9 (with k3 in place
of k).

Lemma 5.9 shows that every point of F is the center of a useful ball.
Since FE7 is compact, it is therefore covered by finitely many useful balls
B(yi,m),...,B(yn,nn). We take n = min{n,...,nn}.

Now suppose 2, 2", ', Q" are as in the hypotheses of Lemma 5.10, for the
7 we just picked. Since the balls B(y,,n,) cover Eq, we have 2’ € B(y,,n,)NE1
for some v. For that v, we have also " € B(a/,n,)NE1, since |2'—2"| <n < n,.
In addition, Q" € T's(2/, k1, A1), Q" € f(2") + I(2"), and |0*(Q" — Q) ()] <
Agpmlal < A, nZ‘"O“ for || < m, by hypothesis of Lemma 5.10. Since
B(yy,ny) is useful, it follows that Q" € I'y(2”, ks, A’). The proof of Lemma
5.10 is complete. O
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6. A modulus of continuity

Let E, f, I etc. be as in Section 4. We again write ¢, C, C’, etc., to denote
controlled constants. Our goal in this section is to produce a regular modulus

of continuity w™, and a large enough integer constant k, for which the following
holds:

(1) Given z1,...,zj € E, there exist P, ..., P, € P, with P, € T'y(;, k,C)
C fla)+I(x;) fori=1,...,k; |0°P;(z;)| < Cfor |a| <m,i=1,...,k;
and [0°(P; — P;)(z;)| < Cuwt(|oi — a5]) - 2 — ™ 1ol for Ja] < m,
lz; — x| <1,1<4,5 <k.

(See Lemma 6.6 below.)

Here, T'f(x;, k,C) is the convex set defined in Section 5. Once we have
achieved (1), we can appeal to the Generalized Sharp Whitney theorem to
construct the function F described in the introduction.

The first few lemmas below tell us that, roughly speaking, the small num-
ber ¢ in hypothesis (I) of Theorem 3 may be picked independently of xy and
Py. As before, let D = dim P.

LEMMA 6.1. Suppose 1 + (D + 1)k < k#. Letx € E, P € f(z) + I(z),
e > 0 be given. Then there exists 6 > 0 such that for every x’ € E N B(x,d),
there exists P' € f(2') + I(2'), with

(2) 0%(P = P')(x)| < ele — /|71 for |a| <m,
and satisfying the following condition:

(3)  Given 376737,17~-'7$;5 € EN B(z,d) with x, = 2/, there exist Pé,...,P,—;
€ P, with P = P, and with P! € f(z) + I(x}) fori=0,1,...,k; and
|0%(P] = Pj)(a})] < ela} — |11 for [a] <m, 0<i,j <k

Proof. Recall that F, f, I are assumed to satisfy the hypotheses of The-
orem 3. Let 6 > 0 be as in hypothesis (I) (with z, P in place of zg, Pp),
and let 2/ € E N B(x,d) be given. If 2/ = z, then we may set P’ = P,
and conclusions (2), (3) hold, thanks to hypothesis (I). Suppose =’ # =z.
For any finite set S C E N B(xz,d) containing x and 2/, let K(S) denote
the set of all P’ € f(2') + I(2') such that there exists a map y — PY
from S to P, with P* = P, P* = P', PY € f(y) + I(y) for y € S, and
|0%(PY — P*)(2)| < ely — 2™ 1°l for |a] < m, y,z € S. Each K(S) is a
compact, convex subset of P, which has dimension D. Moreover, suppose
we are given S1,S,...,Sp11 C EN B(x,0), each containing x and 2/, with
#(S;) < k+ 2 for each 5. Then S = S;U---USpy1 C EN B(z,d), with
z,2’ € S, and #(S) < 2+ (D + 1)k < 1+ k#. Hence, hypothesis (I) shows
that there exists a map y — PY defined on S, with P* = P, PY € f(y) + I(y)
for all y € S, and [0%(PY — P?)(z)| < |y — z[™ 1ol for |a| < m, y,z € S.
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We can check trivially that P*" then belongs to KC(S;) for each i. Thus,
K(S1),...,K(Sp+1) have nonempty intersection. Consequently, Helly’s theo-
rem shows that there exists P’ € f(z') + I(z2'), belonging to K(S) whenever
S Cc ENB(z,9), z,2’ € S, #(S) < k+2. One checks easily, from the definition
of K(S), that P’ satisfies properties (2) and (3). The proof of Lemma 6.1 is
complete. O

LEMMA 6.2. Suppose 14 (D + 1)k < k#. Let x € Ey and & > 0 be given.
Then there exists 6 > 0 such that for any o, ...,z € ENB(x, ) with o € Ey,
and for any Py € f(xo) + I(x0), there exist Pi,..., P, € P, with

(4)  Pi€ f(z;)+ I(x;) fori=0,1,...,k; and

() W“U%—fﬁﬂﬁﬁ!Semi—xﬂmﬂﬂ'Uf%£§§MWFM$wa@ﬁa!§7m

0<i,j<k.

Proof. If d =0 (see (5.7)), then there is only one Py € f(z¢) + I(x¢), and
therefore Lemma 6.2 follows from Lemma 6.1. Suppose d # 0. Given y € F,
we define a norm on P by taking || P Hf,: Z (0“P(y))?. We write (P,Q),

laj<m
for the corresponding inner product. Fix x € Ey and € > 0. Let Q1,...,Qq
be an orthonormal basis for I(z) with respect to the norm || - ||,. If P € I(z),
then we may write
P:MQH~~+M@bmmMﬂ§q%mW@@ﬂ (all ).
<m

Also, hypothesis (IT) of Theorem 3 (which is assumed to hold for E, f, I)
shows that there exists

(6) By € fla)+1(z),

with

(7) 0% Py(z)| < 1 for |a| <m .
We set P, = Py + Q, fori =1,...,d. Thus,

(8) Pie f(x)+I(z) fori=0,1,...,d.

With ¢/ < € to be picked below, we apply Lemma 6.1 to each b, Thus,
we obtain ¢’ > 0 for which the following holds: Given 2’ € Ey N B(z,d"), there
exist P; € f(z') + I(2") (0 <i < d) satisfying
9)  [0%(P = B)(w)| <&ja’ — a1 for [a] <m, 0<i<d;and
(10)  Given zg,... o3 € ﬂB(:f,&’) with 29 = 2/, there exist P .. .,PZ-E ep

(0<i<d),withP?=PFi(0<i<d); Pl € flaj)+I(zx;) (0<i<d0<
j < k); and [0%(P] — Pf)(z¢)| < |aj — m/™ 1 (Jo| <m; 0 <i < d;
0<74,¢<k).
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Suppose 2’ € Ey N B(x,d) with § < ¢’ to be picked below. Then we may
pick P; € f(2') + I(2')(0 < i < d) satisfying (9 ) and (10). Note that, since
x,2’ € Fy1, we have dim I(z) = dim I(2") = d. Note also that

(B = Po), (Py — Py))e = 8 for 1 < d,i' < d,

by definition of the 15Z (Here, d;; denotes the Kronecker delta.) In view of
(9), this implies that

(11) (B — Py), (By — Py))y — 63| < Ce' for 1 < i,i’ < d.
If § is small enough, then (11) implies
(12) (P — Py), (Py — Py))er — 04| < C'¢’ for 1 <i,4' <d,

since 2’ € B(z, ).

Note also that (7), (9) give |0“Py(z)| < 1+ &'(Jo| < m), if 6 < 1. Hence,
if § is small enough, we have
(13) 10 Py(z")| < 2 for |a| <m. .

Once ¢’ is determined, we fix § < ¢’ to be small enough that (12) and
(13) hold. We have still not fixed ’. We recall that Py, ..., Py € f(z') + I(a'),
and that dim /(z") = d. Hence, if £’ is small enough, then (12) shows that any
P € I(2') may be expressed in the form

(14) P = (P = Po) + -+ pa(Py — Po) with || < C‘gﬂlgx 07 P(a')] .

Together with (13), this implies the following result.
(15)  Any P’ € f(z') + I(z') may be expressed in the form P’ = \gPy+ - - - +
APy, with A\g+---4+ Xy =1, and |\| < C - (1 + max |0% P’ (")]) for
<m
i=0,...,d. (To prove (15), we just apply (14) to P’ — Py.)

Now suppose we are given P’ € f(z') + I(z'), as well as x,..., 75 €
ENB(z,6) with o = 2/. We express P’ in the form (15), and let P/ (0 <1i <d,
0 <j <k) be asin (10). Now,

(16) Pl =X\P] 4+ Pl cPlor0<j<k.
In particular,
PO = XNgPJ 4 -4+ AgPY = MNPy + - - - + Mg Py (see (10)) = P’ (see (15)).

Also, since Pl-j € f(z;)+I(z;) and Ao+ - ~+Ag = 1, (16) gives P? € f(x;)+I(x;)
for 0 < j < k. Moreover, (10), (15), (16) show that

d
0°(P) = P)(zo)| <Y INil - 10%(P] — Pf)(x0)|
1=0

<C-(1+ max [9°P' (")) - €'|xj — 2ol
18|<m

for |a| <m, 0 <4, ¢ <k.
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If Ce’ <e, then

0%(P? — P*)(x0)| < elaj — xo[™ 711 (14 max [9°P'(a))]) .
|8]<m
We now fix ¢/ > 0 small enough that the above arguments work. This in
turn fixes ¢’ and §. We have now proven the following result.
Let ¢ > 0 and x € Ej;. Then there exists § > 0 such that for any
' € E1NB(z,0), any P’ € f(z')+1(2'), and any zo, ...,z € ENB(z,0) with
xo = 2, there exist P°,..., P* € P, with P’ = P'; PJ € f(x;)+ I(x;) for 0 <
7 < k; and
0%(P7 — P*) ()| < elay —x™ - (14 max [07P'(a")))
[B1<m
for |a| < m, 0 < 4,¢ < k. This statement is obviously equivalent to Lemma 6.2.
O

LEMMA 6.3. Suppose k > 1, 14+ (D +1) -k < k#. Then, given € > 0,
there exists § > 0 such that, for any xog € Ev, any Py € f(xo) + I(z0), and any
x1,...,x5 € EN B(xo,9), there exist Py, ..., P, € P, with

(17) P e f(x;) + I(x;) fori=0,1,....k; and
(18) 0%(P; = Py) ()] < elwy — a7 (1+ max 167 Po (o))

forla|<m,0<id,j<k.

Proof. Let us say that an open ball B(y, d) is “useful” if, for any xo, ...,z
€ EnN B(y,2d) with zy € Ey, and for any Py € f(xg) + I(z0), there exist
Py, ..., P; € P, satisfying (17) and (18). Lemma 6.2 shows that every point of
FE is the center of a useful ball. Since F; is compact, it is covered by finitely
many useful balls B(y,,d,) (v=1,...,N).

We take 6 = min{dy,...,dn}. Suppose we are given xg € Ei, Py €
f(zo) + I(zo0), and z1,...,25 € EN B(xg,d). Then z¢ € B(y,,d,) for some
W, since the B(y,,d,) cover Ei. Consequently, o, 21,...,25 € B(yu,20,), as
d < 6,. Since B(yy, 6,) is useful, there exist P, ..., Py € P satisfying (17) and
(18). Thus, Lemma 6.3 holds. O

COROLLARY. Suppose k% > D + 2. Then, given ¢ > 0, there exists
d > 0 such that, given any xo,x1 € E1 with |xg — x1| < §, and given any
Py € f(xo) + I(xo), there exists Py € f(x1) + I(x1), with

|0%(P1— Po) ()] < 5|-T0—$1\m_|a|‘(1+‘1/6r|15<1x 0% Po(x0)]) for |a| <m,i=0,1.
<m

The corollary is an immediate consequence of the case k = 1 of Lemma
6.3. Exploiting the above corollary, we can now prove the following result.
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LEMMA 6.4. Suppose k% > D + 2. Then there exist a positive number
00 < 1, and a regular modulus of continuity w, for which the following holds:
Giwven z,2' € Ey with |x — 2’| < dp, and given P € f(x) + I(x), there exists
P e f(a') + I(2'), with

|0%(P' — P)(z)] < w(|z —'|) - |z — 2/|™7 1. (1 + max |0°P(x)|) for |a] <m .

|8]<m
Proof. Set ¢, = 27" for v = 0,1,2,.... By the corollary to Lemma 6.3,
we may pick successively &g, 01, 02, ... with the following properties:
(19) o =1.

(20) 0 < dyy1 < 30,

(21) If v > 1, then given x,2’ € F; with |x — 2/| < 4, and given P €
f(z) 4+ I(x), there exists P’ € f(a) + I(z'), with

1
0%(P' = P)(x)] < Sevla’ - g™l (1 4 max 0°P(z)]) for || < m. .

Now define w(t) on [0, 1] by setting
(22) w(0) = 0,w(6y) = ey, w(t) linear on each [6,41,0,], v >0.

It is routine to check that w(t) is a regular modulus of continuity. (In
particular, to see that w(t)/t is decreasing, one checks that w(t)/t = A, + B, /t
on [6y41,0,], with B, > 0 thanks to (20).)

Now suppose z,2’ € Fy, with 0 < |z — 2/| < 01, and suppose P € f(z) +
I(z). Pick v > 1 so that 0,41 < |z — 2’| < d,. Then, by (21), there exists
P’ e f(a') 4+ I(2') with

(23)  |0%(P' — P)(2)| < 3e, |2’ —amlel (1 + ‘Iﬁrllgx |0°P(2)|) for |a] < m.

On the other hand, since d,+1 < |2’ — x|, we have w(|z’ —z|) > w(dy41) =
ev+1 = 3&y. Therefore, (23) gives

(24) 0°(P' = P)(2)| Sw(la’ —a]) - |& — '™
(1+ |Ig‘13x 10°P(x)|) for |a| <m .

The above argument omits the case 2’ = x. However, in that trivial case,
we can just put P’ = P € f(2/)+I(2’). Thus, given z,2’ € F; with |z—2'| < 1,
and given P € f(x)+ I(z), there exists P’ € f(a') + I(2) satisfying (24). The
proof of Lemma 6.4 is complete. O

Now we bring our clustering lemma (Lemma 3.1) into play.
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LEMMA 6.5. Suppose k#* > D + 2, and let w, &y be as in Lemma 6.4.
Then, given any k > 1, there exists a controlled constant C’,—C, for which the
following holds: Let xg € S C Ej, with diam(S) < &y and #(S) < k. Then,
given Py € f(xzo) + I(xg), there exists a map x — P* from S to P, with

(25) P™ = Py ;

(26) P* e f(z)+ I(x) forallx € S;

27) (1+ max 185 P%(z)]) < Cr - (1 + max 0% Py(0)|) for all z € S ;
and

(28)

[0%(P* = P¥)(y)| < Cf, - w(|a — y])
oyl 1+ ax 187 Po(o)]) for o] <m,z,y € 5.

Proof. We use induction on k. If k = 1, then S = {20}, and we may just
set P¥ = Py. Conditions (25)—(28) trivially hold, with C; = 1.

Next, fix k£ > 2, and suppose Lemma 6.5 holds, with a controlled con-
stant CA',—WI, whenever #(S) < k — 1. Let 20, S, Py be as in the hypotheses of
Lemma 6.5, with #(S) = k. Applying Lemma 3.1, we may partition S into
S0y - - -, S, with

(29) #(Sy) <k —1 for each £(0 < ¢ < M), and

(30) dist(Sg, Ser) > cj - diam(S) for £ # ¢ .

Without loss of generality, we may suppose that xg € Sp, and that each
Sy is nonempty. For each ¢ = 1,..., M, fix an zy € Sy. Note that, for 1 <
¢ < M, we have |z; — zo| < diam(S) < dp. Hence, by Lemma 6.4, there exist
polynomials Pi,..., Py € P, with

(31) Py e f(ze) + I(xy) for £=1,..., M (and of course also for ¢ = 0), and

(32) |0%(Pr = Po)(x0)| < wl|ae — aol) - | — wo|™ 1! (1 + max |07 Po(0)1)

for |a| <m, 1 < €< M. Set

(33) d = diam(S) .
From Lemma 6.4 we have

(34) §<dp<1,
hence (32) yields

(35) 0°(Pr = Po)(wo)| <w(8) - 51

(14 lg‘lgx 188 Py(x0)]), for |a] <m,1<£< M.
<m
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This in turn implies that

|0%Py(z0)] < C - (1+ |rﬁr‘13x 8% Py(0)|) for |a| <m ,1 <0< M.

Since |zy — x| < 0 <1 by (33) and (34), it follows that

(36) (1 + max |9°Py(z)]) < C"- (1 + max |9°Py(xo)|) for £=1,..., M .
|8]<m |8]<m
Now, for each £(0 < ¢ < M), we apply our induction hypothesis (Lemma
6.5 for #(S) < k — 1), with 2, Sy in place of xg, S. Note that the induction
hypothesis applies, thanks to (29). Thus on each Sy, we obtain a map z +—
P* € P, with

(37) P* =P,
(38) P e f(x)+ I(z) for z € Sy,
(39) (1+ max 0°P*(z))) < Cr_y - (1+ max 10%Py(20)|) for z € Sy,
and
(40)
0%(P* = PY)(y)| < Cg_y - w(lz —yl) - & =y 71 (1 + max [0° Py(x)])

|B|<m

for |a| <m, x,y € S.

Since Sy, S1,...,Sy form a partition of S, the above maps x — P* may
be combined into a single map x — P¥, defined on S. From (37) and (38), we
have

(41) P* = Py, and
(42) P e f(x)+I(x) forall z € S .
From (36) and (39), we obtain the estimate

(43) (1 + max 0°P"(x)|) < C'Ch_y - (1 + max 8% Py(x0)]) for z € S .
Also, (36) and (40) show that
(44)

0%(P" — PY)(y)] < C'Cr_y - (1 + max 10° Po(0)|) - w(lz = yl) - & — y[™ 1

whenever = and y belong to the same .Sj.
Suppose instead that x € Sy and y € Sy, with ¢/ # ¢. From (36) and (40),
we have

(45)

|0%(P* = Py)(2)| < C'Cry - wlla — ) - |2 — g1 (14 max 107 Po (o)1)

<C'Cry - w(0) - 6™l (14 max 10 Po(0))
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and

(46)

0%(PY = Pr) ()| < C'Cr_y - wlly — zo]) - |y — we ™1 (14 max |0° Py (o))
<C'Cr_y - w()em Tl (14 max 188 Py(x0)]) for o] <m .

Since |z —y|, |zo — y| < d by (33), estimates (45) and (35) (for £ and ¢') imply
(47) |0°(P" — P)(y)| <C" - Cpy - w(8) - 6™l (1 4 max 107 Po(x0)]) and

(18) 107 (Py = PO (w)] £ C"w(8) -6 (14 max [0 Fy(ao)), for Ja] <m

Summing (46), (47), (48), we find that
(49) [0%(P" = PY)(y)| < |C"" - Gy + C"

w ()™l (1 + max |88 Py(x0)]) for o] < m .
|8]<m
Moreover, since x € Sy and y € Sy with ¢ # ¢/, (30) gives |z — y| > ¢z - 6.
Since w is a regular modulus of continuity, it follows that w(|x—y|) > w(cg-d) >
¢ - w(0). Putting these remarks into (49), we conclude that

(50)  [0°(PT = P)(y)| <C [Croy +1] -wllz — )
fo =yl (14 max 07 PoCo) )

for |a| < m, provided x and y do not both belong to the same 5.

In view of (41)-(44) and (50), we see that Lemma 6.5 holds for #(S) = k,
with a suitable controlled constant C’,; This completes the induction step, and
with it the proof of Lemma 6.5. O

LEMMA 6.6. Suppose
(51) (k1D +2) -k <k?, 14+ D+1)-ky<ki, 14+D+1)-ks<ky.

Then there exists a reqular modulus of continuity w™, for which the following
holds. Given S C Ey with #(S) < ks, there exists a map x — P* from S
into P, with

(52) P* € T¢(x, ks, C) for each x € S ;
(53) |0“P*(z)| < C for each x € S, o] <m; and
(54) 0%(P* = PY)(y)] < Cw™ (Jo —yl) - |& — y[™ 1

forx,y e S)lx—y| <1, ]a|<m.
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Proof. Let w,dp be as in Lemma 6.4, let §; be a small positive number to
be picked later, and define
(55) wht) =wt)/w() if0<t<d; wh(t)=1if65 <t<1.
This makes sense for
(56) <1,

and one checks trivially that w™ is a regular modulus of continuity.
Suppose S C Ey, with #(5) < k3. By the clustering Lemma 3.2, we may
partition .S into subsets Sy, ..., S, with

(57) diam(Sp) < 0y for £ =1,...,L; and
(58) dist(Sp, Sp) > cdy for £ £ 0,1 <, V' < L.
We may assume that each Sy is nonempty. We pick some
(59) ye € Sy foreach £ =1,..., L,

and we define

(60) Srep ={y1,-..,yr} CS C By .

From (60), we have #(Syep) < #(S5) < k3 < k1 (see (51)), hence Lemma 5.4
gives us polynomials P, ..., P;, € P with the following properties.

(61) PgErf(yg,]gl,l)gf(yg)—i-f(yg) for 1 SKSL
(62) |0%Py(ye)| <1 for |a| <m,1<{< L.
(63)  [0%(Pr — Pr)(ye)| < lye — yo |71 for o] <m, 1< €,0 < L.

For fixed £, we have y, € Sy C E1 with #(Sy) < k3 and diam(S;) < ;. If
we make sure that

(64) 51 < 50 )

then Lemma 6.5 applies, with k3 in place of k.

Note that the constant called OE in Lemma 6.5 is controlled, since ks < k#,
and k% depends only on m and n. Hence, we obtain a map x — P%, from S,
into P, with the following properties.

(65) Pv=p,.
(66) P? e f(x)+I(x) forallz € Sy .
(67) |0“P*(x)] < C - (1 + max |8 Py(ye)|) for = € Sy, |a| <m .
(68) |0%(P* = P*)(a")| < Cuw(|a — )
dz — /™l L (1 + max |9PP,
|z — | ( gfﬁﬁ! e(ye)])

for |a| < m, z, 2’ € Sy.
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Putting (62) into (67) and (68), we find that
(69) |0 P*(x)| < Cy for x € Sy, |a| < m; and
(70)
16%(P* — P™)(2")| < Crw(|z — 2']) - |z — 2|1 for || < m,z,2" € S, .
Next, fix & € Sy. We prepare to apply Lemma 5.10, with A1 =1, A3 =1,
=y =z, Q = P,Q" = P*. We check that the hypotheses of that
lemma hold here. In fact, (51) tells us that ki, ko, k3 are as in Lemma 5.10.

Also, yp,z € Sy C S C Ey, hence |yp — Z| < diam(Sy) < é; < n, provided we
take

(71) o1<m,

with 7 as in Lemma 5.10 for Ay = Ay = 1, and for our ki, ko, k3. Also,
Py € T¢(ye, k1,1) (see (61)), and P® € f(z)+I(Z) (see (66)). Finally, (70) and
(65) show that

[0%(PT = Po)(ye)| < Cro(81) - [2 = e ™1 < |2 — g1
for |a| < m, provided ¢; is so small that
(72> Clw<51) <1.

We now pick 61 > 0 to satisfy (56), (64), (71), (72). Thus, as claimed,
the hypotheses of Lemma 5.10 hold here. Applying that lemma, we learn that
P? € T'4(Z, k3, C). Thus,

(73) P* € Ty(z,ks,C) for all z € Sy .

We recall that S is partitioned into Si,...,Sr, and that we have defined
a map ¢ — P* from each Sy into P. We may therefore combine these maps on
the Sy into a single map x — P* defined on all of S. We will check that this
map satisfies the conclusions of Lemma 6.6. In fact, (73) shows that

(74) P* € Ty(z,ks,C) forallz € S,
and (69) shows that
(75) |0 P*(x)| < C for |a| <m,z €S .

To complete the proof of Lemma 6.6, it remains to prove (54). If  and y
belong to the same Sy, then we have |z —y| < diam(Sy) < d1; hence w(|z—y|) <
wt(Jz —y|) (see (55) and (57)), and therefore (54) follows from (70).

On the other hand, suppose = € Sy,y € Sy with £ # ¢'. Then (58) gives
|z —y| > cd1, and therefore w™ (|z —y|) > wt(ed1) > cw™(d1) = ¢, by virtue of
(55) and the fact that w™ is a regular modulus of continuity. Thus, to prove
Lemma 6.6, it is enough to show that

(76) |0%(P* — P¥)(y)| < Clz —y[™ 71 for |a| < m,z € S,y € Sy, b £ 1.
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Fixing = € Sp,y € Sy, £ # ¢, we have
(77) |$*yg| S(Sla |y7yé’| S(Sla |l‘*y| 2051 ;
thanks to (57), (58), (59). Also,

(78)
0°(P” = P)(@)], |0°(PY = Pu)(y)] < €67 < C'la =y 1ol for [a] < m,

by (70) and (77). These estimates imply
(79) [0°(P" = P)(y)l, 10°(PY = Pu)(y)| < C"|z —y|"~1* for |a| <m .

Since also |y, — yer| < Clx — y| by (77), we obtain from (63) the estimates

(80) 0%(Py — Pr)(yer)
< Clxz —y| by (77); hence (80) implies

< Clz —y|™ 1 for |a| <m .

We have |y — yp
(81) |0%(Py = Po)(y)| < C'e —y|™ 1 for |a <m.

The desired estimate (76) is immediate from (79) and (81), and the proof of
Lemma 6.6 is complete. O

7. Picking the constant k%

From the Generalized Sharp Whitney theorem and the setup for the main
induction, we recall the constants kgsw and kﬁd. (See Sections 1 and 4.)
These constants have already been picked, and they depend only on m and n.

We now fix constants ki, ko, k3, k7, depending only on m and n, so that
the following conditions are satisfied.

(1) ks> k% +5.

(2) ks> kfigw +5 -

(3) ko>1+(D+1)-ks.
(4) Ey>1+(D+1) k.
(5) k# > (k1D +2) - ki .

8. Constructing the auxiliary function

As before, we suppose E, f, I, etc. are as in Section 4; and we write
¢, C,C’", etc. to denote controlled constants. Our goal in this section is to
carry out Step 1 of the proof of Theorem 3, as explained in the introduction.

Comparing estimates (51) in Section 6 with our choice of ki, ko, k3, k7 in
Section 7, we see that Lemma 6.6 applies to F, f,I. Let w' be the regular
modulus of continuity given by Lemma 6.6.
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Thus, given S C F; with #(S) < ks, there exists a map = — P? from S
to P, with

(1) P* € T'y(x,ks,C) for each x € S ;
(2) |0 P*(x)| < C for |a| < m,z € S; and
(3) [0%(P" — P¥)(y)| < Cw™ (Jz — yl)
| —y|m_|0‘| for |a| <m,z,y e S|z —y|<1.

In particular, taking S = {z} for x € E;, we obtain from (1) that
I'¢(z, k3, C) is nonempty for every x € E;. Pick

(4) g(x) € Ty(x, ks, C) for each x € Ej .

Then Lemma 5.1 shows that T'y(x,k3,C) C g(z) + C'o(x,ks) for x € Ej.
Hence, (1), (2), (3) imply the following.

(5)  Given S C Ey with #(S) < ks, there exists a map x — P® from S into
P, with
(a) P* € g(x) + C'o(x,k3) for x € S;
(b) |0“P*(z)| < C' for |a| < m,x € S;
(©) [0°(P* = P1)(y)| < Clw*(Jz = y)) - | — y|" ¥l for o < m, zy € S,
|z —y| < 1.
Also, Lemma 5.3 tells us that

(6) For each z € Ej, the set o(x,k3) is Whitney convex, with Whitney
constant C”'.

Recall from Section 7 that k3 > kgsw- Hence, (5) and (6) show that the
hypotheses of the Generalized Sharp Whitney theorem are satisfied, with our
present wt, By, g(x)/C’, o(z,ks3), C", in place of w, E, f(x),o(x), Ag. Hence,
the Generalized Sharp Whitney theorem produces a function F € C™«" (R™),
with

(7) | F Hcm,w(Rn)S C", and

(8) Jo(F) € g(x) + C"o(x,k3) for all z € ) .
In particular, (7) implies

(9) | E lln@ny< C",

and (4), (8) and Lemma 5.1 yield

(10) Jo(F) € T4z, k3, C) for all x € By .

Thus, we have proven the following result, completing Step 1 from the intro-
duction.
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LEMMA 8.1. There exists F € C™(R™), with | F |
Jo(F) € Ty(z,k3,C) for allx € Ey.

cneny< C, and

9. Rescaling the induction hypothesis

Recall that we are assuming that Theorem 3 holds when the number of
strata is less than A. After an obvious rescaling, we obtain the following result.

LEMMA 9.1 (Rescaled Induction Hypothesis). Let 6 >0, and let E C
R™ be compact. Suppose that for each x € E we are given an m-jet f(z) € Ry
and an ideal I(x) C R,. Assume that the following conditions are satisfied.

(I)  Given zy € E, Py € f(xo) + I(xg), and € > 0, there exists 6 > 0
such that for any x1,... Ty € E N B(xo,0), there exist polynomials

Py,..., B € P, with P € f(x;) + I(x;) for 0 <i < kﬁd; and
0%(Ps = Py) ()| < ela — ;™7 for Ja] <m,0<i,j <k, .

(II)  Given x, ... yLyx € E, there exist polynomials Py, ..., Pkﬁd € P, with
P€ f(x;) + I(x;) for 1 < i < kﬁd; 0% P;(x;)| < 6™ lel for |a| < m,
1< < ks and [0(Ps = Py) ()| < Joi = a1 for o] < m, 1<,
J < K-

Assume also that E has fewer than A strata. Then there exists F' € C™(R"),

with [9°F| < C6™=lel on R™ for |a| < m, and J.(F) € f(z) + I(x) for all

zekb.

Lemma 9.1 will be used to carry out Step 2 of the plan described in the
introduction.

10. The Whitney decomposition

In this section, we introduce the Whitney cubes mentioned in the intro-
duction, and carry out Step 2 of the plan given in the introduction for proving
Theorem 3.

We first partition R” into a grid of cubes {Q%} of diameter 1. Next,
we repeatedly subdivide the QU into dyadic subcubes, in Calderén-Zygmund
fashion. Once we have reached a given subcube @ of one of the QY, we decide
whether to retain @ or to subdivide it, according to Whitney’s rule:

If Q* N E; is empty, then we retain (). Otherwise, we subdivide @ into
2" congruent subcubes @1, ...,Q92-, and continue. Here, @Q* denotes a closed
cube in R™, with the same center as ), and with three times the diameter of
Q. Recall that 1 C R" is compact. Thus R™ ~\ E; is partitioned into cubes
{Q.}, with the following properties, where we set
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(1) 9, = diam(Q@,) < 1:
(2) R~ E=JQu

(3)  QpNEjis empty;
(4) If 6, < 1, then there exists x(()y) € Ey with dist(x(()u), Qv) < Cy;

€ € m v ty €rse t i
5]/ < C(S( .

As in the proof of the standard Whitney extension theorem (see [M], [em$],
[hW1]), these geometrical properties of the @, allow us to construct a partition
of unity {6, }, with the following properties.

(6) 1=) 6, nR"\ Ey .
(7) supp 6, C Q; .
(8) 1626, < Co;1el on R”, for || <m +1.

9) Any given point of R” \ F; has an open neighborhood that meets at
most C' of the supports of the ,,.

Let F € C™(R") be as in Lemma 8.1. Thus,
(10) | F |lem@n< C, and
(11) Jo(F) € Ty(z, k3, C) C f(x) + I(z) for all z € Ey .

Thanks to (10), the function F satisfies (12) and (13) below. (Recall that
E is compact.)

(12)  Given € > 0, there exists § > 0 for Whic}} the follgwing holds. Suppose
x9 € B and 21,... 25, € B(x,0). Set P, = J,,(F) for i =0,1,...,ks.
Then

0%(P; — Pj)(z;)] < elzi — x;/™ 1% for || <m,0<1i,j <ks.
(13)  Suppose zo, ...,z € R". Set P, = Jw(ﬁ‘) fori=0,1,...,ks. Then
0%(P; — Py)(x5)| < Clag — a;[™ 71 for |a] <m,0<i,j <ks.
From (10), (11) and Lemma 6.3, we have

(14)  Given € > 0, there exists § > 0 for which the following holds. Suppose
ro € By and 1, ..., 2, € ENB(x0,5). Then there exist Py, P, ..., Py,
€ P, with
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(a) Po=Ju(F);
(b) P, € f(x;) + I(z;) for i = 0,1,...,ks; and
(c) [0°(Ps — Py)(a;)| < elary — aj|™ 1o for |a| <m, 0 <id,j < ks.
Also, from (11) and the definition of I'f(z, k3, C), we have

(15)  Suppose zo € Fy and x1,...,75, € E. Then there exist Py, P1, ..., P,
€ P, with

(2)  Po = Ju(F);
(b) B Ef(xl)—i—I(a;,) fOI‘Z‘IO,l,...,/;Jg;
(c) [0%(Ps = Py)(a;)| < Clai — ;™11 for Ja] <m, 0. <d,j < ks.

From (12) and (14), we deduce (16) below, by taking as our polynomials
P; — P; with P; as in (14), and with P; as in (12).

(16)  Given € > 0, there exists § > 0 for which the following holds. Suppose
ro € By and x1,...,25, € ENB(x0,0). Then there exist Py, P, ..., Py,
€ P, with

(a) Po=0;

(b)  Pye [f(x;) — Jo,(F)] + I(z;) for i =0,1,..., ks; and

(©) 10°(P: = Py)(wy)] < elo — 3! for Ja] < m, 0 < 4,5 < .
Similarly, from (13) and (15), we obtain

(17)  Suppose zg € Fy and x1,...,75, € E. Then there exist Py, Py, ..., P,
€ P, with

(b) P € [f(x) — Jo, (F)] 4+ I(2;) for i = 0,1,..., ks; and
() [0°(P; = Py)(xj)| < Clai — |1 for o <m, 0 <4, 5 < k.

Now suppose @, is one of our Whitney cubes, with diameter §, < 1.
Taking $6V) as in (4), and applying (17), we learn the following.
(18)  Suppose z1,...,7, € ENQ;. Then there exist Py,..., Py € P, with

(a) P € [f(z) — Ju,(F)] + I(z;) fori =1,... ks;

(b) 0°Pi(z:)| < OO0 for [a| <m, i=1,...,ks; and
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(¢) [0%(P; — Pj)(z;)| < Clai — /™1l for |af <m, 1< 4,5 < ks.

Here, we take g = a:éy) in (17). Estimate (18)(b) follows from (17)(a)
and (17)(c) with ¢ = 0, by virtue of (4). Similarly, (16) and (4) imply:

(19)  Given € > 0, there exists § > 0 for which the following holds. Suppose
r1,..., 25, € ENQL, with §, < §. Then there exist Pp,..., P, € P,
with

(a) P € [f(x) — Jo, (F)] 4+ I(2;) fori=1,. .., ks;
(b) |0°Pi(:)| < eom 1 for |a| <m, i=1,...,ks; and
(c) 0P — Py ()| < elars — a1 for |a| <m, 0 <i,j < ks.

From (18) and (19), it is easy to produce a function A(t), mapping (0, 1]
to the positive reals, for which the following results hold.

(20) 0 < A(t) < C for all t € (0,1].
(21)  lim A(t) =0.

(22)  Suppose , < 1, and suppose 71, ...,z € ENQ;. Then there exist
Pi,..., P, €P, with

(b) 8 Pi(z:)| < A(6,) -6, for i =1,.... ks, Ja| < m; and
() [0°(P = Py) ()| < A(S,) - i =y =10l for o <m, 1<, 5 < k.

Moreover, because E, f, I are assumed to satisfy hypothesis (I) of Theo-
rem 3, we obtain the following result, thanks to (12).

(23)  Givenzg € E, Py € [f(x0)—Ju, (F)]+I(xg), and & > 0, there exists § > 0
such that, for any @1, ..., 75, € ENB(zo,0) there exist P, ..., P, € P,
such that

(a) Pi € [f(x) — Jo, (F)] 4+ I(2;) for i = 0,1,... ks; and
(b) [0%(P; = Pj)(x)] < el — a1 for Ja| <m, 0 <i,j < ks.

For any Whitney cube @, with diameter §, < 1, we may now apply the
Rescaled Induction Hypothesis (Lemma 9.1), with

(24) 4, ENQ;, [f(x) — Jx(ﬁ’)]/A((Sy), I(z) in place of 6, E, f(z),I(z) in
Lemma 9.1.
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Note that the hypotheses of Lemma 9.1 hold for the data (24). In fact,
hypotheses (I) and (II) of that lemma are immediate from (22) and (23), since
ks > kold (See Section 7.) The number of strata for I(z) on E'NQ} is strictly
less than A, since the number of strata in E is precisely A, and Q} does not
intersect the lowest stratum E;. (See (3).) Finally, ENQ);, is compact, since we
took @}, to be a closed cube. Thus, as claimed, the hypotheses of Lemma 9.1
hold for the data (24).

Applying Lemma 9.1, we now learn the following, for any Whitney cube
@), with diameter §, < 1:

(25)  There exists a function F,, € C™(R™), with
(a) |0°F,| < CA(S,) 601 on R, for |a| < m; and
(b)  Ju(F,) € [f(z) — Jo(F)] + I(z) for all z € EN Q.

We can also show that in effect (25) holds when the Whitney cube @,
has diameter 6, = 1. In fact, we may simply apply our induction hypothesis
(Theorem 3 with fewer than A strata), with £ N Q}, f(x), I(z) in place of
E, f(x),I(x). One checks trivially that the hypotheses of Theorem 3 hold for
En@;, f(z),I(x), since they are assumed to hold for E, f(z),I(x). Again,
ENQ); has fewer than A strata because )}, does not meet the lowest stratum E.
Applying the inductive hypothesis, we obtain a function F, € C™(R"), with
|0°F,| < C on R", for la < m; and J,(F,) € f(x) +I(z) for all z € EN Q5.

Setting F, = F, — F, and recalling (10), we see that F}, € C"™(R"), with
(26) |0“F,| < C on R", for |a] < m; and
(27) Jo(E)) € [f(z) — Jo(F)] + I(z) for all 2 € ENQ;,

Replacing A(t) by AT (t) = A(t)+t, we preserve (20), (21), (25). Moreover,

the analogue of (25), with A(¢) replaced by AT (), holds also for 6, = 1, thanks

0 (26), (27) and the obvious estimate AT (1) > 1. Thus, we have proven the
following result.

LEMMA 10.1. There exist functions F, € C™(R"™) and A : (0,1] —
(0,00), for which the following hold:

) Jo(F) € [f(x) — Jo(F)] + I(z) for all z € ENQ, and for all v;
) |09F,| < CA(S,) -6 ol on R, for |a| < m and for all v;
c) 0<A(t) <C forallte (0,1]; and

d) Jlim A(t)=0.

(a
(b
(
(

This completes Step 2 of the plan of the proof of Theorem 3, as outlined
in the introduction.
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11. Proof of the main result

In this section, we carry out Step 3 of the plan given in the introduction,
and complete the proof of Theorem 3. Since we have already reduced Theorems
1 and 2 to Theorem 3, this will establish those results as well.

We let E, f(x),I(z), E1, A\ be as in Section 4. We retain the Whitney
cubes @, and the cutoff functions 6, from Section 10. Finally, we let F} and
A(t) be as in Lemma 10.1.

For § > 0, we define

(1) FPla) =" 0,(
0,>6
From (10.3), (10.7), (10.9), we see that any = € F; has an open neighbor-
hood (depending on ¢§) that meets none of the supports of the 6, with §, > 0;
while any x € R™ ~ E7 has an open neighborhood that meets at most C' of
the supports of the 6,. Together with (10.8) and Lemma 10.1, this shows that
each F% belongs to C™(R™), and that

(2) Jx( FPy=0 for all z € El, and
(3) FPh= 3" Jy( F,) forall z € R" < E .

5u,>6
supp 6, Sz

On the right side of (3), there are only finitely many summands, and the dot
denotes multiplication in R.

Since supp 6, C Q;, and I(x) is an ideal in R, for z € E, Lemma 10.1(a)
shows that

Jo(0,) - Jo(F,) € Jo(6,) - [f(z) — Jo(F)] + I(z) for z € ENsupph,, .
Hence, (3) implies
@) LEPHhel > J( (z) — Jo(F)] + I(z) forz € EN E .

5u,>6
supp 6, Sz

Fix x € R® \ E;. Then x belongs to only finitely many of supports

of the 0,, say, suppf,,,...,suppb,,. If 0 < § < min{d,,,...,0,,}, then

Z Jz(0,) = Z Jz(0,) =1, thanks to (10.6). Therefore, (4) shows
oy >4 supp 6,2z

supp 6,2z

that
(5) Jo(FPY € [f(@) — Jo(F)] + I(z) for x € E~ E1,6 < §(z) ,

where & (x) is a small enough positive number depending on z.
Next, we estimate the C"-norm of FI®. From Lemma 10.1(b),(c) and
(10.8), we obtain

6) |0%(0,F,)| < CA(6,) - 67 lol < ¢’6mlel < ¢ on R™ for |a] < m .
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Since also each x € R™ belongs to at most C' of the supports of the 6, it
follows from (1) and (6) that

(7) | FP || g gy < C” for all § >0 .

Similarly, if 0 < 6, < 2, then we can estimate FI% — Fl%] Tn fact, for
o] <m and z € R™, (1) and (6) show that

0°F (@) —a*F (@) =] ) 0%(6.F) ()]

61 <6y <49
supp 6, Dz

< ) CA@G,) - o7l < O sup{A(0) : 6 < 6y},

since x € supp 6, for at most C distinct v. In view of Lemma 10.1(d), it follows
that lim || FIO — plo] |¢m@ny= 0. Consequently, FU converges in C™
+

1,02—0
norm to a function FI% € C™(R"), as § — 04. In particular, J,(FI¥) —
Jo(FI%) as § — 0+, for each z. Hence, (2), (5), (7) show that

(8) Jo(FOY =0 for all z € By |
9) Jo(FO) e [f(x) — Jo(F)] + I(x) for all z € E~ Ey , and
(10) | FO flgmgan < C

Although we will not use the fact, the reader may readily verify that F0 =
ZGVF,, on R™. Thus, the results in this section agree with the description of

Step 3 of the plan of our proof, given in the introduction.
Next, we recall from Section 10 that F' € C™(R"™), with

(11) Jo(F) € f(z) + I(x) for all z € Ey, and
(12) | F llgm@n< C .

Finally, we set
(13) F=F 4 Feccm™Rr).

From (8) and (11), we have J,(F) € f(z)+ I(x) for all x € Ey; and from
(9), we have J,(F) € f(x) + I(x) for all z € E \ E;. Thus,

(14) Jo(f) € f(x)+ I(x) for all z € E .
From (10) and (12) we have
(15) | Fllgm@n< C".

Thus, we have exhibited a C™-function F satisfying (14) and (15). However,
the existence of such an F' is precisely the conclusion of Theorem 3. Thus,
Theorem 3 holds for E, f(x),I(x).

This completes our induction on the number of strata, and proves Theo-
rem 3. O
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