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Whitney’s extension problem for Cm

By Charles Fefferman*
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Abstract

Let f be a real-valued function on a compact set in Rn, and let m be a
positive integer. We show how to decide whether f extends to a Cm function
on Rn.

Introduction

Continuing from [F2], we answer the following question (“Whitney’s ex-
tension problem”; see [hW2]).

Question 1. Let ϕ be a real-valued function defined on a compact subset
E of Rn. How can we tell whether there exists F ∈ Cm(Rn) with F = ϕ on E?

Here, m ≥ 1 is given, and Cm(Rn) denotes the space of real-valued func-
tions on Rn whose derivatives through order m are continuous and bounded
on Rn. We fix m, n ≥ 1 throughout this paper. We write Rx for the ring of
m-jets of functions at x ∈ Rn, and we write Jx(F ) for the m-jet of the function
F at x. As a vector space, Rx is identified with P, the vector space of real mth

degree polynomials on Rn; and Jx(F ) is identified with the Taylor polynomial∑
|β|≤m

1
β!

(∂βF (x)) · (y − x)β.

We answer also the following refinement of Question 1.

Question 2. Let ϕ and E be as in Question 1. Fix x̃ ∈ E and P ∈ Rx̃.
How can we tell whether there exists F ∈ Cm(Rn) with F = ϕ on E and
Jx̃(F ) = P?

In particular, we ask which m-jets at x̃ can arise as the jet of a Cm function
vanishing on E. This is equivalent to determining the “Zariski paratangent
space” from Bierstone-Milman-Paw�lucki [BMP1].
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A variant of Question 1 replaces Cm(Rn) by Cm,ω(Rn), the space of Cm

functions whose mth derivatives have a given modulus of continuity ω. This
variant is well-understood, thanks to Brudnyi and Shvartsman [B], [BS1,2,3,4],
[S1,2,3], and my own papers [F1,2,4]. (See also Zobin [Z1,2] for a related prob-
lem.) In particular, [F2], [F4] broaden the issue, by answering the following.

Question 3. Suppose we are given a modulus of continuity ω, an arbitrary
subset E ⊂ Rn, and functions ϕ : E → R, σ : E → [0,∞). How can we tell
whether there exist F ∈ Cm,ω(Rn) and M < ∞ such that |F (x) − ϕ(x)| ≤
M · σ(x) for all x ∈ E?

Specializing to σ = 0, we recover the analogue of Whitney’s problem
for Cm,ω. A further generalization will play a crucial role in our solution of
Questions 1 and 2. We will need to understand the following.

Question 4. Let ω be a modulus of continuity, and let E be an arbitrary
subset of Rn. Suppose that for each x ∈ E we are given an m-jet f(x) ∈ Rx

and a convex subset σ(x) ⊂ Rx, symmetric about the origin. How can we tell
whether there exist F ∈ Cm,ω(Rn) and M < ∞ such that Jx(F ) − f(x) ∈
M · σ(x) for all x ∈ E?

If the convex sets σ(x) satisfy a condition which we call “Whitney convex-
ity,” then we can give a complete answer to Question 4, analogous to our earlier
work [F2,4] on Question 3. This will be one of the main steps in our proof.
Here, we announce our result on Question 4, and use it to answer Questions 1
and 2. A detailed proof of our result on Question 4 appears in [F3].

We discuss briefly the previous work on Whitney’s problem. The history of
this problem goes back to three papers of Whitney [hW1,2,3] in 1934, giving the
classical Whitney extension theorem, and solving Question 1 in one dimension
(i.e., for n = 1). G. Glaeser [G] solved Whitney’s problem for C1(Rn) using
a geometrical object called the “iterated paratangent space.” Glaeser’s paper
influenced all the later work on Whitney’s problem.

Afterwards came the work of Brudnyi and Shvartsman mentioned above.
They conjectured a solution to the analogue of Question 1 for Cm,ω(Rn), and
proved their conjecture in the case m = 1. Their work and that of N. Zobin
contain numerous additional results and conjectures related to Question 1.

The next progress on Question 1 was the work of Bierstone-Milman-
Paw�lucki [BMP1]. They found an analogue of the iterated paratangent space
relevant to Cm(Rn). They conjectured a geometrical solution to Questions 1
and 2 based on their construction, and they found supporting evidence for their
conjecture. (A version of their conjecture holds for subanalytic sets E.) Our
results on Questions 1 and 2 are equivalent to the main conjectures in [BMP1],
with the paratangent space there replaced by a natural variant. This equiv-
alence, and other related results, are proven in Bierstone-Milman-Paw�lucki



WHITNEY’S EXTENSION PROBLEM FOR Cm 315

[BMP2]. Regarding the conjectures of [BMP1] in their original form, we re-
fer the reader to a forthcoming paper by Bierstone, Fefferman, Milman, and
Paw�lucki.

Our solution to Questions 1 and 2 is based on the idea of associating to
each point y ∈ E an affine subspace H(y) ⊂ P, with the crucial property:

(1) If F ∈ Cm(Rn) and F = ϕ on E, then Jy(F ) ∈ H(y) for all y ∈ E.

Here, we make the convention that the empty set is allowed as an affine
subspace of P. Clearly, if H(y) is empty for some y ∈ E, then (1) shows that
ϕ cannot be extended to a Cm function F .

If (1) holds for an affine subspace H(y) ⊆ P, then we call H(y) a “holding
space” for ϕ.

Answering Questions 1 and 2 amounts to computing the smallest possible
holding space for ϕ. To carry this out, we will start with a trivial holding space
H0(y). We will then produce a sequence of affine subspaces:

(2) H0(y) ⊇ H1(y) ⊇ H2(y) ⊇ · · · , for all y ∈ E, with each H�(y) being
a holding space for ϕ. Each H� arises from the previous space H�−1

by an explicit construction that we call the “Glaeser refinement”, to be
explained below. At stage L = 2 dimP + 1, the process stabilizes; we
have

H�(y) = HL(y) for all � ≥ L .(3)

The space HL(y) will turn out to be the smallest possible holding space for ϕ.
To start the above process, we just take

H0(y) = {P ∈ P : P (y) = ϕ(y)} for all y ∈ E .(4)

To define the Glaeser refinement, suppose that for each y ∈ E we are given
an affine subspace H(y) ⊆ P. We fix a large integer constant k# depending
only on m and n. We write B(y, δ) for the ball in Rn with center y and radius δ.
For each y ∈ E, we will define a new affine subspace H̃(y) ⊆ P.

Given y0 ∈ E and P0 ∈ P, we say that P0 ∈ H̃(y0) if and only if the
following condition holds:

(5) Given ε > 0 there exists δ > 0 such that, for any y1, . . . , yk# ∈ E ∩
B(y0, δ), there exist P1, . . . , Pk# ∈ P, with Pj ∈ H(yj) for j = 0, 1, . . . , k#

and |∂α(Pi − Pj)(yj)| ≤ ε|yi − yj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k#.

(Here and throughout, we adopt the convention that |yi − yj |m−|α| = 0 in the
degenerate case yi = yj , m = |α|.)

Evidently, H̃(y) is an affine subspace of H(y) for each y ∈ E. We call
H̃(y) the “Glaeser refinement” of H(y).
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Note that if H(y) is a holding space for all y ∈ E, then so is H̃(y). This
follows trivially from (5) and Taylor’s theorem.

Thus, we have produced the spaces H0, H1, H2, . . . in (2), by starting
with (4) and repeatedly passing to the Glaser refinement (5). The crucial
stabilization property (3) follows from an ingenious, simple lemma in [BMP1],
which in turn was adapted from an ingenious, simple lemma in [G]. (We give a
proof in Section 2.) In view of (3), the holding space HL(y) is its own Glaeser
refinement. We call HL(y) the “stable holding space” for ϕ, and we denote it
by H∗(y).

Note that, if H�(y) is nonempty, then it has the form f�(y) + I�(y), where
f�(y) ∈ Ry and I�(y) is an ideal in Ry. Moreover, I�(y) is determined by y, E

and �, independently of ϕ. This follows by an easy induction on �, using (4)
and (5). (Again, see Section 2.)

In principle, the stable holding space H∗(y) is computable from the func-
tion ϕ and the set E.

Our answer to Questions 1 and 2 is as follows.

Theorem 1. Let ϕ be a real-valued function defined on a compact subset
E ⊂ Rn. For y ∈ E, let H∗(y) be the stable holding space for ϕ. Then

(A) ϕ extends to a Cm function on Rn if and only if H∗(y) is nonempty for
all y ∈ E. Moreover, suppose ϕ extends to a Cm function on Rn. Then

(B) Given y0 ∈ E and P0 ∈ P, we have P0 ∈ H∗(y0) if and only if there exists
F ∈ Cm(Rn) with F = ϕ on E and Jy0(F ) = P0.

It is easy to deduce Theorem 1 from the following result.

Theorem 2. Let E ⊂ Rn be compact. Suppose that, for each y ∈ E, we
are given an affine subspace H(y) ⊆ Ry having the form H(y) = f(y) + I(y),
where f(y) ∈ Ry and I(y) is an ideal in Ry. Assume that H(y) is its own
Glaeser refinement, for each y ∈ E. Then there exists F ∈ Cm(Rn), with
Jy(F ) ∈ H(y) for all y ∈ E.

In fact, part (A) of Theorem 1 is immediate from Theorem 2 and the
observation that ϕ cannot extend to a Cm function on Rn if H∗(y) is empty
for any y. (Note that Jy(F ) ∈ H∗(y) implies Jy(F ) ∈ H0(y) by (2); hence
F (y) = ϕ(y) by (4).) Similarly, part (B) of Theorem 1 is immediate from the
following corollary of Theorem 2.

Corollary. Let E, H(y) be as in Theorem 2. Given any y0 ∈ E and
P0 ∈ H(y0), there exists F ∈ Cm(Rn) with Jy(F ) ∈ H(y) for all y ∈ E, and
Jy0(F ) = P0.
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To prove the corollary, we define Ĥ(y0) = {P0} and Ĥ(y) = H(y) for
y ∈ E � {y0}. The hypotheses of Theorem 2 hold for Ĥ. The corollary follows
at once by application of Theorem 2 to Ĥ.

To prove Theorem 2, we formulate a more precise, quantitative result, in
which we control the Cm-norm of F .

Theorem 3. There exist constants k#, C, depending only on m and n,
for which the following holds:

Let E ⊂ Rn be compact. Suppose that for each x ∈ E we are given an
m-jet f(x) ∈ Rx and an ideal I(x) in Rx. Assume that the following conditions
are satisfied :

(I) Given x0 ∈ E, P0 ∈ f(x0) + I(x0), and ε > 0, there exists δ > 0 such that
for any x1, . . . , xk# ∈ E ∩ B(x0, δ), there exist polynomials P1, . . . , Pk#

∈ P, with Pi ∈ f(xi) + I(xi) for 0 ≤ i ≤ k#, and |∂α(Pi − Pj)(xj)| ≤
ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k#.

(II) Given x1, . . . , xk# ∈ E, there exist polynomials P1, . . . , Pk# ∈ P, with
Pi ∈ f(xi)+I(xi) for 1 ≤ i ≤ k#; |∂αPi(xi)| ≤ 1 for |α| ≤ m, 1 ≤ i ≤ k#;
and |∂α(Pi − Pj)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k#.

Then there exists F ∈ Cm(Rn), with Cm-norm at most C, and with
Jx(F ) ∈ f(x) + I(x) for all x ∈ E.

Theorem 3 easily implies Theorem 2 via the following lemma, proven in
Section 2.

Finiteness Lemma. Let E, f(x), I(x) be as in the hypotheses of Theo-
rem 2. Then there exists a finite constant A such that the following holds:

Given x1, . . . , xk# ∈ E, there exist polynomials P1, . . . , Pk# ∈ P, with
Pi ∈ f(xi) + I(xi) for 1 ≤ i ≤ k#; |∂αPi(xi)| ≤ A for |α| ≤ m, 1 ≤ i ≤ k#;
|∂α(Pi − Pj)(xj)| ≤ A |xi − xj |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k#.

The finiteness lemma is proven by contradiction, and gives no control over
the constant A. Theorem 2 follows by applying Theorem 3, with f(x)/A in
place of f(x), where A is as in the finiteness lemma. I know of no way to prove
Theorem 2 without going through Theorem 3. Thus, the heart of the matter
is Theorem 3. We set up a bit more notation, and discuss some ideas from the
proof of Theorem 3.

Recall that Rx is the ring of m-jets of functions at x. Let R̄x be the
ring of (m − 1)-jets of functions at x, and let πx : Rx → R̄x be the natural
projection. For E, f(x), I(x) as in Theorem 3, we define the signature of a
point x ∈ E to be

sig (x) = (dim I(x),dim [kerπx ∩ I(x)]) ,(6)
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where I(x) and kerπx ∩ I(x) are regarded as vector spaces. For given integers
k1, k2, the set

E(k1, k2) = {x ∈ E : sig(x) = (k1, k2)}(7)

is called a stratum. Note that 0 ≤ k2 ≤ k1 ≤ dimP for a nonempty stratum.
Among all nonempty E(k1, k2) we first take k1 as small as possible, and then
take k2 as large as possible for the given k1. With k1, k2 picked in this manner,
the stratum E(k1, k2) is called the “lowest stratum” and denoted by E1. Thus,
there is a lowest stratum whenever E is nonempty. Finally, the “number of
strata” in E is simply the number of distinct (k1, k2) for which E(k1, k2) is
nonempty.

Our proof of Theorem 3 proceeds by induction on the number of strata.
If the number of strata is zero, then E is empty, and Theorem 3 holds trivially,
with k# = 1, C = 1, and F ≡ 0. For the induction step, let ∧ ≥ 1 be a given
integer, and suppose Theorem 3 holds whenever the number of strata is less
than ∧. We show that Theorem 3 holds also when the number of strata is
equal to ∧.

Thus, let E, f(x), I(x) be as in the hypotheses of Theorem 3, with the
number of strata equal to ∧. Let E1 be the lowest stratum. It is easy to see
that E1 is compact (Lemma 2.3 below). We partition Rn � E1 into Whitney
cubes {Qν}. Thus, each Qν satisfies:

(8) Q∗
ν is disjoint from E1, and

(9) distance (Q∗
ν , E1) < C diameter (Q∗

ν) if diameter (Qν) < 1,

where Q∗
ν is a (closed) cube having the same center and three times the diam-

eter of Qν . We write δν for the diameter of Qν , and we introduce a “Whitney
partition of unity” {θν}, with∑

ν

θν = 1 on Rn � E1,(10)

supp θν ⊂ Q∗
ν , and(11)

|∂αθν | ≤ C δ−|α|
ν for |α| ≤ m .(12)

Our strategy is as follows.

Step 1. Find a function F̃ ∈ Cm(Rn), with

Jx(F̃ ) ∈ f(x) + I(x) for all x ∈ E1 .(13)

Step 2. For each ν, apply the induction hypothesis (a rescaled form of
Theorem 3 for fewer than ∧ strata) with E ∩ Q∗

ν , f(x) − Jx(F̃ ), I(x) in place
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of E, f(x), I(x). Note that E ∩ Q∗
ν has fewer than ∧ strata, thanks to (8).

Thus, for each ν, we obtain a function Fν ∈ Cm(Rn), with

(14) Jx(Fν) ∈ [f(x) − Jx(F̃ )] + I(x) for all x ∈ E ∩ Q∗
ν ,

and with good control over the derivatives of Fν up to order m.

Step 3. We define

F = F̃ +
∑

ν

θν Fν on Rn .

Using (8)–(14) and our control on the derivatives of the Fν , we conclude that
F ∈ Cm(Rn), and that Jx(F ) ∈ f(x) + I(x) for all x ∈ E. We will also
control the Cm-norm of F . This shows that Theorem 3 holds for E, f(x),
I(x), completing the induction on ∧ and establishing Theorem 3.

To obtain the desired control on the derivatives of the Fν , we have to
strengthen (13). For x ∈ E, k# ≥ 1, A > 0, we will introduce a convex set
Γf (x, k#, A) ⊂ f(x) + I(x). In place of (13), we will need to make sure that F̃

satisfies

(15) Jx(F̃ ) ∈ Γf (x, k#, A) ⊂ f(x) + I(x) for all x ∈ E1.

Once F̃ satisfies (15), we can gain enough control over the derivatives of
the Fν to make our strategy work. However, to achieve (15), we must be able
to produce a Cm function whose m-jet belongs to a given convex set at each
point of E. This is how Question 4 above enters our solution of Whitney’s
extension problem.

As in [F2], the constant k# in Theorems 1,2,3 can be bounded explicitly in
terms of m and n, but new ideas will be needed to obtain the best possible k#.

It would be natural to try to extend our results to answer the following
generalization of Questions 1 and 2.

Question 5. Let E ⊂ Rn be a compact set. Suppose that for each x ∈ E

we are given an m-jet f(x) ∈ Rx and a Whitney convex set σ(x) ⊂ Rx. Assume
there is a uniform Whitney constant for all the σ(x). (See Section 1.) How
can we tell whether there exist a function F ∈ Cm(Rn) and a finite constant
M such that Jx(F ) ∈ f(x) + Mσ(x) for all x ∈ E?

Let Cm(E) denote the space of functions on E that extend to Cm functions
on Rn. In a forthcoming paper, we will show that there exists a bounded linear
operator T : Cm(E) → Cm(Rn) such that Tϕ

∣∣
E

= ϕ for ϕ ∈ Cm(E). (See
[BS1,3], [F1], [G], [hW2].)

It is a pleasure to acknowledge the great influence of Bierstone-Milman-
Paw�lucki [BMP1] on this paper, and to thank Bierstone and Milman for valu-
able discussions. It is a pleasure also to thank Gerree Pecht for TEX-ing my
manuscript, expertly as always.
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1. Whitney convexity

Recall that Rx denotes the ring of m-jets of functions at x. Suppose Ω
is a subset of Rx and A is a positive real number. We will say that Ω is
“Whitney convex (at x) with Whitney constant A” if the following conditions
are satisfied:

(1) Ω is closed, convex, and symmetric about the origin. (That is, P ∈ Ω if
and only if −P ∈ Ω.)

(2) Let P ∈ Ω, Q ∈ Rx and δ ∈ (0, 1] be given.

Assume that

|∂αP (x)| ≤ δm−|α| and |∂αQ(x)| ≤ δ−|α| , for |α| ≤ m .

Then P · Q ∈ AΩ, where P · Q denotes the product of P and Q in Rx.
The motivation for this definition goes back to the proof of the classical

Whitney extension theorem. There, one studies sums of the form F =
∑
ν

Pν ·θν

on Rn, where the θν form a partition of unity. In a small neighborhood of a
given point x, there is a lengthscale δ ≤ 1 for which the θν satisfy |∂αθν | ≤ δ−|α|

if x ∈ supp θν . If δ � 1 then the derivatives of the θν are large, yet F

has bounded mth derivatives provided we have |∂α(Pµ − Pν)| ≤ δm−|α| on
supp θµ ∩ supp θν . Thus, the estimates in (2) are natural in connection with
Whitney’s extension problem.

We will be studying Cm,ω(Rn) for suitable ω. A function ω : [0, 1] →
[0,∞) is called a “regular modulus of continuity” if it satisfies the following
conditions:

(3) ω(0) = lim
t→0+

ω(t) = 0 and ω(1) = 1.

(4) ω(t) is increasing on [0, 1].

(5) ω(t)/t is decreasing on (0, 1].

In (4) and (5), we do not demand that ω be strictly increasing, or that
ω(t)/t be strictly decreasing.

If ω is a regular modulus of continuity, then Cm,ω(Rn) denotes the space
of all Cm functions F on Rn for which the norm
‖ F ‖Cm,ω(Rn) =

max

 max
|β|≤m

sup
x∈Rn

|∂βF (x)| , max
|β|=m

sup
x,x′∈Rn

0<|x−x′|≤1

|∂βF (x) − ∂βF (x′)|
ω(|x − x′|)


is finite.
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By adapting the proof of the sharp Whitney theorem from [F2,4], we
obtain the following result.

The generalized sharp Whitney theorem. There exists a constant
k#

GSW, depending only on m and n, for which the following holds: Let ω be a
regular modulus of continuity, and let E ⊂ Rn be an arbitrary subset. Suppose
that for each x ∈ E we are given an m-jet f(x) ∈ Rx and a subset σ(x) ⊂ Rx.

Assume that each σ(x) is Whitney convex (at x), with a Whitney constant
A0 independent of x. Assume also that, given any subset S ⊂ E with cardinality
at most k#

GSW, there exists a map x �→ P x from S into P, with

(a) P x ∈ f(x) + σ(x) for all x ∈ S;

(b) |∂αP x(x)| ≤ 1 for all x ∈ S, |α| ≤ m; and

(c) |∂α(P x −P y)(y)| ≤ ω(|x−y|) · |x−y|m−|α| for all x, y ∈ S, |x−y| ≤ 1,
|α| ≤ m.

Then there exists F ∈ Cm,ω(Rn), with ‖ F ‖Cm,ω(Rn)≤ A1, and Jx(F ) ∈
f(x)+A1 ·σ(x) for all x ∈ E. Here, A1 depends only on m, n and the Whitney
constant A0.

This result is our answer to Question 4 from the introduction. The proof of
the generalized sharp Whitney theorem appears in [F3]. It would be interesting
to gain some understanding of Whitney convex sets.

2. Some elementary verifications

In this section, we sketch the proofs of some elementary assertions from
the introduction.

Lemma 2.1. Let H0(y) ⊇ H1(y) ⊇ · · · be as in the introduction. If a
given H�(y) is nonempty, then it can be written as H�(y) = f�(y)+I�(y), where
I�(y) is an ideal in Ry. Moreover, I�(y) is determined by �, y, E, independently
of ϕ.

Sketch of proof. We can take f�(y) to be any element of H�(y). The I�(y)
are defined by the following induction.

(1) I0(y) = {P ∈ P : P (y) = 0}.

(2) P0 ∈ I�+1(y0) if and only if the following holds:

Given ε > 0 there exists δ > 0 such that, for any y1, . . . , yk# ∈ E∩B(y0, δ),
there exist P1, . . . , Pk# ∈ P, with Pj ∈ I�(yj) for j = 0, . . . , k#; and

|∂α(Pi − Pj)(yj)| ≤ ε|yi − yj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k# .
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The only assertion in the lemma that requires any proof is that I�(y) is an
ideal in Ry. To check that assertion, we use induction on �. The case � = 0 is
obvious. For the induction step, fix � ≥ 0, and suppose each I�(y) is an ideal
in Ry(y ∈ E). Suppose P0 ∈ I�+1(y0) and Q ∈ P. Let P̃0 be the product of P0

and Q in Ry0 . We must check that P̃0 belongs to I�+1(y0). This follows from
(2), by using P̃1, . . . , P̃k# there, with P̃j defined as the product of Pj with Q

in Ryj
.

For the next lemma, we adopt the convention that the empty set has
dimension −∞ as an affine space.

Lemma 2.2 (after Lemma 3.3 in [BMP1]). Let H0(y) ⊇ H1(y) ⊇ · · ·
be as in the introduction, and let k ≥ 0, x ∈ E be given. If dimH2k+1(x) ≥
dimP − k, then H�(x) = H2k+1(x) for all � ≥ 2k + 1.

Proof. We use induction on k. For k = 0, the lemma asserts that

(3) if H1(x) = P, then H�(x) = P for all � ≥ 1.

From the definition of the H� in the introduction, one sees that

(4) dim H�+1(x) ≤ lim inf
y→x

H�(y).

Hence, if H1(x) = P, then H0(y) = P for all y in a neighborhood of x.
Consequently, H�(y) = P in a neighborhood of x, for all � ≥ 1, proving (3).

For the induction step, fix k ≥ 0, and assume the lemma holds for that k.
We must show that

(5) if dimH2k+3(x) ≥ dimP − k − 1, then H�(x) = H2k+3(x) for all � ≥
2k + 3.

If dimH2k+1(x) ≥ dimP−k, then (5) holds, since we are assuming Lemma
2.2 for k. Hence, in proving (5), we may assume that dimH2k+1(x) ≤ dimP−
k − 1. Thus,

(6) dimH2k+1(x) = dimH2k+2(x) = dimH2k+3(x) = dimP − k − 1.

Note that

(7) dimH2k+1(y) ≥ dimP−k−1 for all y near enough to x since otherwise
(4) (with � = 2k + 1) would contradict (6).

We claim that also

(8) H2k+2(y) = H2k+1(y) for all y near enough to x.



WHITNEY’S EXTENSION PROBLEM FOR Cm 323

In fact, suppose (8) fails; i.e., suppose that

dimH2k+2(y) < dimH2k+1(y) for y arbitrarily near x.(9)

Then, since we are assuming Lemma 2.2 for k, we must have dim H2k+1(y) <

dimP − k for all y as in (9), and therefore

dimH2k+2(y) ≤ dimH2k+1(y) − 1 ≤ dimP − k − 2(10)

for y arbitrarily close to x. From (4) and (10), we get dimH2k+3(x) ≤ dimP−
k − 2, contradicting (6). Thus, (8) cannot fail.

From (8) we see easily that H�(y) = H2k+1(y) for all � ≥ 2k + 1, and all
y ∈ E close enough to x. In particular, H�(x) = H2k+3(x) for all � ≥ 2k + 3.
This completes the inductive step, and proves Lemma 2.2.

In Lemma 2.2, we set k = dimP. Thus, for L = 2dimP + 1, we have
HL(x) = HL+1(x) = HL+2(x) = . . . , provided HL(x) is nonempty. Of course,
the same conclusion holds trivially when HL(x) is empty. This proves the
assertions in the introduction, concerning the stabilization of the H�.

Next, we sketch the proof of the Finiteness Lemma from the introduction.
We proceed by contradiction.

If the Finiteness Lemma fails, then, for each ν = 1, 2, 3, . . . we can find
x

(ν)
1 , . . . , x

(ν)
k# ∈ E, and a positive constant A(ν), such that

A(ν) → ∞ as ν → ∞ ,(11)

and, for each ν,

(12) There do not exist polynomials P1, . . . , Pk# ∈ P, with

(a) Pj ∈ f(x(ν)
j ) + I(x(ν)

j ) for j = 1, . . . , k#;

(b) |∂αPj(x
(ν)
j )| ≤ A(ν) for j = 1, . . . , k# and |α| ≤ m; and

(c) |∂α(Pi − Pj)(x
(ν)
j )| ≤ A(ν)|x(ν)

i − x
(ν)
j |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k#.

Recall that E is compact. Hence, by passing to a subsequence, we may
arrange that, in addition to (11), (12), we have

x
(ν)
j → x

(∞)
j ∈ E as ν → ∞, for each j = 1, . . . , k# .(13)

The points x
(∞)
1 , . . . , x

(∞)
k# need not be distinct.

Let z1, . . . , zµ be an enumeration of the distinct elements of the set {x(∞)
1 , . . . , x

(∞)
k# }.

For each λ(1 ≤ λ ≤ µ), let S(λ) be the set of all j for which x
(∞)
j = zλ. Thus,

if ν is large enough, we have the following:

(14) x
(ν)
j is close to zλ for all j ∈ S(λ); and
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(15) |x(ν)
j − x

(ν)
j′ | > c > 0 whenever j ∈ S(λ) and j′ ∈ S(λ′) with λ �= λ′.

(In (15), we may take c = 1
2 min

λ�=λ′
|zλ − zλ′ | > 0.) Here, and for the rest of

the proof of the Finiteness Lemma, we write c, C, C ′, etc. to denote constants
independent of ν.

We now apply the hypothesis that H(y) = f(y) + I(y) (y ∈ E) is its own
Glaeser refinement. We fix λ. In the definition of the Glaeser refinement, we
take y0 = zλ, P0 = f(zλ) and ε = 1; and, for ν large enough, we set yj = x

(ν)
j

for j ∈ S(λ), yj = zλ for j /∈ S(λ) (1 ≤ j ≤ k#). Since H(·) is its own Glaeser
refinement, we conclude from (14) that we can find P

(ν)
j ∈ f(x(ν)

j ) + I(x(ν)
j )

(j ∈ S(λ), ν large enough), with |∂αP
(ν)
j (x(ν)

j )| ≤ |∂αP0(x
(ν)
j )| + 1 (|α| ≤ m)

and |∂α(P (ν)
i − P

(ν)
j )(x(ν)

j )| ≤ |x(ν)
i − x

(ν)
j |m−|α| for i, j ∈ S(λ), |α| ≤ m.

We carry this out for each λ = 1, . . . , µ. Thus, for large enough ν, we
obtain polynomials P

(ν)
1 , . . . , P

(ν)
k# , with the following properties:

(16) P
(ν)
j ∈ f(x(ν)

j ) + I(x(ν)
j ) for j = 1, . . . , k#;

(17) |∂αP
(ν)
j (x(ν)

j )| ≤ C for |α| ≤ m, j = 1, . . . , k#;

(18) |∂α(P (ν)
i − P

(ν)
j )(x(ν)

j )| ≤ |x(ν)
i − x

(ν)
j |m−|α| for |α| ≤ m, i, j ∈ S(λ),

1 ≤ λ ≤ µ.

Moreover, (15) and (17) show that

|∂α(P (ν)
i − P

(ν)
j )(x(ν)

j )| ≤ C ′|x(ν)
i − x

(ν)
j |m−|α|

for |α| ≤ m, i ∈ S(λ), j ∈ S(λ′), λ �= λ′.
Together with (18), this implies

(19) |∂α(P (ν)
i −P

(ν)
j )(x(ν)

j )| ≤ C ′′|x(ν)
i −x

(ν)
j |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k#.

Now let ν be large enough that (16), (17), (19) apply, and also large
enough that A(ν) > max(C, C ′′), with C, C ′′ as in (17) and (19).

Then (16), (17), (19) together contradict (12). This contradiction com-
pletes the proof of the finiteness lemma.

Lemma 2.3. Let E, f, I be as in the hypotheses of Theorem 3. Then the
lowest stratum E1 is compact.

Proof. We keep the notation of the introduction. Let x0 ∈ E, and suppose
dim I(x0) = d. Let P

(0)
0 , . . . , P

(d)
0 be the vertices of a nondegenerate affine d-

simplex in f(x0) + I(x0). If we perturb the P
(j)
0 slightly in P, then we obtain

the verticies of a nondegenerate affine d-simplex in P. Moreover, hypothesis
(I) of Theorem 3 shows that, for any x1 ∈ E close enough to x0, we may
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find P
(0)
1 , . . . , P

(d)
1 ∈ f(x1) + I(x1) with P

(j)
1 close to P

(j)
0 in P. Therefore,

for any x1 ∈ E close enough to x0, the affine space f(x1) + I(x1) contains a
nondegenerate affine d-simplex; hence dim I(x1) ≥ d. It follows that {x ∈ E :
dim I(x) < d} is a closed set, for any integer d. In particular, the set Ẽ of all
x ∈ E with dim I(x) equal to k1 = miny∈E dim I(y) is closed.

Another application of hypothesis (I) of Theorem 3 shows that x �→ I(x)
is a continuous map from Ẽ to the Grassmannian of k1-planes in P.

Now let k2 = max
y∈Ẽ

dim (ker πy ∩ I(y)). Then by definition,

E1 = {x ∈ Ẽ : dim (kerπx ∩ I(x)) = k2} .

We will show that E1 is closed. Suppose xν ∈ E1 for ν = 1, 2, . . . , and
suppose xν → x in Rn. Then x ∈ Ẽ, and I(xν) → I(x) in the Grassmannian of
k1-planes in P. Passing to a subsequence, we may assume that ker πxν

∩ I(xν)
tends to a limit J in the Grassmannian of k2-planes in P.

We then have J ⊂ I(x) and πx|J = 0. Hence, dim (ker πx ∩ I(x)) ≥ k2.
By definition of k2, it follows that dim (ker πx∩ I(x)) = k2, i.e., x ∈ E1. Thus,
as claimed, E1 is closed. Since E1 is also a subset of the compact set E, the
proof of the lemma is complete.

3. Further elementary results

In this section we collect a few standard facts and elementary results that
will be used later. We begin with two lemmas about “clusters”. We write
#(S) for the cardinality of a set S.

Lemma 3.1. Let S ⊂ Rn, with 2 ≤ #(S) ≤ k#. Then we may partition
S into subsets S1, S2, . . . , SM , with the following properties:

(a) #(Si) < #(S) for each i.

(b) If x ∈ Si and y ∈ Sj with i �= j, then |x − y| > c · diam (S) with c

depending only on k#.

Lemma 3.2. Let S ⊂ Rn, with #(S) ≤ k#, and let δ > 0 be given. Then
we can partition S into subsets S1, . . . , SM , with

(a) diam (Si) ≤ δ for each i, and

(b) dist (Si, Sj) ≥ c · δ for i �= j, where c depends only on k#.

To prove Lemma 3.2, we note that there are at most
(
k#

2

)
distances

|x − y| (x, y ∈ S, x �= y); hence, at least one of the intervals I� = (2−�δ, 21−�δ](
� = 1, 2, . . . ,

(
k#

2

)
+ 1

)
contains none of the distances between points of S.
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Fix such an I�. If x, y, z ∈ S with |x−y|, |y−z| ≤ 2−�δ, then since |x−z| /∈ I�,
we have |x − z| ≤ 2−�δ. Hence, the relation |x − y| ≤ 2−�δ (x, y ∈ S) is an
equivalence relation. Taking S1, . . . , SM to be the equivalence classes for this
equivalence relation, we easily confirm (a) and (b). This proves Lemma 3.2.

To prove Lemma 3.1, we just apply Lemma 3.2 with δ = 1
2 diam (S).

Since diam (Si) ≤ 1
2 diam (S) for each i, we must have #(Si) < #(S). This

proves Lemma 3.1.

Next, we prove a linear algebra perturbation lemma.

Lemma 3.3. Suppose we are given an r-dimensional affine subspace H ⊆
RN , and the vertices v0, . . . , vr of a nondegenerate affine r-simplex in H. Then,
for each A > 0, there exists ε > 0 for which the following holds:

Let H ′ ⊆ RN be another r-dimensional affine subspace of RN , and let
v′0, · · · , v′r ∈ H ′, with |v′i − vi| ≤ ε for each i. Let v = λ0v0 + λ1v1 + · · ·+ λrvr,
with λ1 + · · · + λr = 1 and |λi| ≤ A for each i.

Suppose v′ ∈ H ′, with |v′ − v| ≤ ε. Then we may express v′ in the form
v′ = λ′

0v
′
0 + λ′

1v
′
1 + · · ·+ λ′

rv
′
r, with λ′

0 + · · ·+ λ′
r = 1 and |λi| ≤ 2A for each i.

Proof. If ε is small enough, then, since |v′i−vi| ≤ ε, the v′i form the vertices
of a nondegenerate affine r-simplex in H ′. Since also H ′ is r-dimensional and
v′ ∈ H ′,

(1) v′ = λ′
0v

′
0 + · · · + λ′

rv
′
r, with λ′

0 + · · · + λ′
r = 1.

It remains to show that |λ′
i| ≤ 2A for each i. Let ξ1, . . . , ξr be an orthonor-

mal basis for span (v1 − v0, . . . , vr − v0).
The λ0, . . . , λr satisfy the system of linear equations

(2) λ0(v0 · ξi) + λ1(v1 · ξi) + · · · + λr(vr · ξi) = (v · ξi) i = 1, . . . , r,

(3) λ0 + λ1 + · · · + λr = 1.

Since the vi form the vertices of a nondegenerate r-simplex in an r-
dimensional affine space H, the system of equations (2), (3) has nonzero de-
terminant.

On the other hand, the λ′
0, . . . , λ

′
r satisfy

(4) λ′
0(v

′
0 · ξi) + λ′

1(v
′
1 · ξi) + · · · + λ′

r(v
′
r · ξi) = (v′ · ξi) i = 1, . . . , r,

(5) λ′
0 + · · · + λ′

r = 1.

The matrix elements v′j · ξi and right-hand sides v′ · ξi in (4), (5) lie within
ε of the corresponding matrix elements and right-hand sides of (2), (3). Con-
sequently, if |λi| ≤ A, then we can force the λ′

i to be arbitrarily close to the λi

by taking ε small enough. In particular, if |λi| ≤ A for each i, and if ε is small
enough, then |λ′

i| ≤ 2A for each i. The proof of Lemma 3.3 is complete.
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We recall two basic properties of convex sets in RN .

Lemma 3.4 (Helly’s theorem). Let (Kα)α∈A be a family of compact con-
vex subsets of RN . If any N + 1 of the Kα have nonempty intersection, then
the whole family has nonempty intersection.

Lemma 3.5 (Lemma of Fritz John). Let Ω ⊂ RN be compact, convex,
and symmetric about the origin. Suppose also that Ω has nonempty interior.
Then there exist vectors v1, . . . , vN ∈ RN , such that{

N∑
1

λivi : |λi| ≤ c for all i

}
⊆ Ω ⊆

{
N∑
1

λivi : |λi| ≤ 1 for all i

}
with c > 0 depending only on N .

For proofs of these results, see [rW].
Finally, for future reference, we give the standard Whitney extension the-

orem for finite sets.

Lemma 3.6. Let S ⊂ Rn be a finite set, and suppose that, for each x ∈ S,
we are given an m-jet P x ∈ P. Assume that the P x satisfy

|∂αP x(x)| ≤ A for |α| ≤ m, x ∈ S;

and

|∂α(P x − P y)(y)| ≤ A · |x − y|m−|α| for |α| ≤ m, x, y ∈ S.

Then there exists F ∈ Cm(Rn), with ‖ F ‖Cm(Rn) ≤ C · A and Jx(F ) = P x

for all x ∈ S.
Here, C depends only on m and n; and ∂αP x(x) denotes the αth derivative

of the polynomial P x, evaluated at x.

See [M], [emS], [hW1] for a proof of Lemma 3.6.

4. Setup for the main induction

As explained in the introduction, we will prove Theorem 3 by induction
on the number of strata. For the rest of the paper, we fix an integer ∧ ≥ 1, and
assume that Theorem 3 holds whenever the number of strata is less than ∧.
We write k#

old to denote the constant called k# in Theorem 3, for the case of
fewer than ∧ strata. Thus k#

old is determined by m, n.
We must show that Theorem 3 holds for ∧ strata. We let k# be a large

enough integer, determined by m and n, to be fixed later, and let E, f(x),
I(x) be as in the hypotheses of Theorem 3 for our value of k#, assuming that
the number of strata is equal to ∧.
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We fix ∧, k#, E, f(x), I(x), and we keep the above assumptions, for the
rest of this paper. From now on, we write c, C, C ′, etc., to denote constants
depending only on m and n; and we call such constants “controlled.”

5. The basic convex sets

Let E, f, I be as in Section 4. For x0 ∈ E, k̄ ≥ 1, A > 0, we define the set
Γf (x0, k̄, A) to consist of all P0 ∈ f(x0) + I(x0) for which the following holds:

(1) Given x1, . . . , xk̄ ∈ E, there exist polynomials P1, . . . , Pk̄ ∈ P, with

(a) Pi ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄;

(b) |∂αPi(xi)| ≤ A for |α| ≤ m, 0 ≤ i ≤ k̄; and

(c) |∂α(Pi − Pj)(xj)| ≤ A|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄.

Also, for x0 ∈ E, k̄ ≥ 1, we define the set σ(x0, k̄) to consist of all
P0 ∈ I(x0) such that:

(2) Given x1, . . . , xk̄ ∈ E, there exist polynomials P1, . . . , Pk̄ ∈ P, with

(a) Pi ∈ I(xi) for i = 0, 1, . . . , k̄;

(b) |∂αPi(xi)| ≤ 1 for |α| ≤ m, 0 ≤ i ≤ k̄; and

(c) |∂α(Pi − Pj)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄.

Thus, Γf (x0, k̄, A) and σ(x0, k̄) are compact, convex subsets of P, and
σ(x0, k̄) is symmetric about the origin. The set σ(x0, k̄) is determined by
x0, k̄, E, I(x)(x ∈ E); it is independent of the jets f(x)(x ∈ E). The convex
sets Γf (x0, k̄, A) and σ(x0, k̄) will play a fundamental rôle in our proof of
Theorem 3.

Recall that R̄x denotes the ring of (m−1)-jets of functions at x, and that
πx : Rx → R̄x denotes the natural projection. We identify R̄x with the vector
space P̄ of (m − 1)rst degree polynomials on Rn. We define

Γ̄f (x, k̄, A) =πxΓf (x, k̄, A),(3)

σ̄(x, k̄) =πxσ(x, k̄),(4)

f̄(x) =πxf(x), and(5)

Ī(x) =πxI(x) for x ∈ E .(6)

Recall also that E1 denotes the lowest stratum of E. Thus, E1 is compact,
and the quantities dim I(x), dim (ker πx ∩ I(x)) are constant functions of x

on I1. We set

d = dim I(x) for all x ∈ E1, and(7)

d̄ = dim Ī(x) for all x ∈ E1 .(8)
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Note that if F ∈ Cm(Rn), with ‖ F ‖Cm(Rn)≤ C and Jx(F ) ∈ f(x) + I(x)
for all x ∈ E, then obviously Jx0(F ) ∈ Γf (x0, k

#, C ′). (To see this, just set
Pi = Jxi

(F ), i = 0, 1, . . . , k# in definition (1).) This suggests that working to
guarantee (0.15), as explained in the introduction, is a prudent idea.

Lemma 5.1. Suppose A, A′ > 0, k̄ ≥ 1, x ∈ E, and P ∈ Γf (x, k̄, A). Then

P + A′σ(x, k̄) ⊆ Γf (x, k̄, A + A′) ⊆ P + (2A + A′)σ(x, k̄).

The proof is immediate from definitions (1) and (2).

Lemma 5.2. Suppose A > 0, x0 ∈ E, P0 ∈ kerπx0 ∩ I(x0). Assume that

|∂αP0(x0)| ≤ A for |α| ≤ m .

Then P0 ∈ C Aσ(x0, k̄) for any k̄ ≥ 1.

To prove Lemma 5.2, we just set P1 = P2 = · · · = Pk̄ = 0 in (2).

Lemma 5.3. For any x0 ∈ E and k̄ ≤ k#, the set σ(x0, k̄) is Whitney
convex, with a controlled Whitney constant independent of x0.

Proof. We noted already that σ(x0, k̄) is compact, convex, and symmetric
about the origin. Suppose we are given P0 ∈ σ(x0, k̄), Q ∈ Rx0 , and 0 < δ ≤ 1,
with

(9) |∂αP0(x0)| ≤ δm−|α| and |∂αQ(x0)| ≤ δ−|α| for |α| ≤ m .

We must show that the jet P0 ·Q belongs to Cσ(x0, k̄), where the dot de-
notes multiplication in Rx0 . Let x1, . . . , xk̄ ∈ E be given. Since P0 ∈ σ(x0, k̄),
there exist P1, . . . , Pk̄ ∈ P satisfying (2). Hence, by Whitney’s extension the-
orem for finite sets, there exists

(10) F ∈ Cm(Rn), with ‖ F ‖Cm(Rn)≤ C and Jxi
(F ) = Pi (0 ≤ i ≤ k̄) .

Also, (9) shows that we may find θ ∈ Cm(Rn), with

(11) Jx0(θ) = Q, |∂αθ| ≤ Cδ−|α| on Rn, and supp θ ⊂ B(x0, δ) .

By (9) and (10) we have |∂αF (x0)| ≤ δm−|α| for |α| ≤ m, and |∂αF | ≤ C on
Rn for |α| = m. Consequently, |∂αF (x)| ≤ Cδm−|α| for |α| ≤ m, x ∈ B(x0, δ).
Together with (11), this shows that |∂α(θF )| ≤ Cδm−|α| ·

on B(x0, δ) for |α| ≤
m. In particular, ‖ θF ‖Cm(Rn)≤ C, since supp θ ⊂ B(x0, δ).

Setting P̂i = Jxi
(θF ) = Jxi

(θ) · Jxi
(F ) = Jxi

(θ) · Pi (0 ≤ i ≤ k̄), with the
dots denoting multiplication in Rxi

, we have the following remarks.

(a) P̂i ∈ I(xi) for i = 0, . . . , k̄, since Pi ∈ I(xi) and I(xi) ⊂ Rxi
is an ideal;

(b) |∂αP̂i(xi)| ≤ C for |α| ≤ m, 0 ≤ i ≤ k̄, since ‖ θF ‖Cm(Rn)≤ C; and
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(c) |∂α(P̂i − P̂j)(xi)| ≤ C|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄, again
because ‖ θF ‖Cm(Rn)≤ C.

Since P̂0 = Jx0(θ) · P0 = Q · P0, remarks (a), (b), (c) above show that
cQ · P0 belongs to σ(x0, k̄) for a small enough controlled constant c. Thus,
Q · P0 ∈ Cσ(x0, k̄). The proof of Lemma 5.3 is complete.

The next lemma shows in particular that Γf (x0, k̄, A) is nonempty for
suitable k̄, A. Let D = dim P.

Lemma 5.4. Suppose k̄ · (k̄D + 2) ≤ k#. Then, given x1, . . . , xk̄ ∈ E,
there exist P1, . . . , Pk̄ ∈ P, with

(a) Pi ∈ Γf (xi, k̄, 1) ⊆ f(xi) + I(xi) for i = 1, . . . , k̄;

(b) |∂αPi(xi)| ≤ 1 for |α| ≤ m, i = 1, . . . , k̄; and

(c) |∂α(Pi − Pj)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄.

Proof. Fix x1, . . . , xk̄ ∈ E. Given a finite set S ⊂ E, define S+ =
S ∪ {x1, . . . , xk̄}, and define K(S) to be the set of all (P1, . . . , Pk̄) ∈ P k̄ for
which there exists a map x ∈ S+ �→ P x ∈ f(x) + I(x), such that P xi = Pi for
1 ≤ i ≤ k̄, |∂αP x(x)| ≤ 1 for |α| ≤ m and x ∈ S+, and |∂α(P x − P y)(y)| ≤
|x− y|m−|α| for |α| ≤ m, x, y ∈ S+. Each K(S) is a compact, convex subset of
P k̄, which has dimension k̄D.

We have K(S′) ⊆ K(S) for S ⊆ S′. Also, since E, f, I are assumed to
satisfy hypothesis (II) of Theorem 3, we know that K(S) is nonempty whenever
#(S+) ≤ k#, hence, whenever #(S) ≤ k# − k̄.

Therefore, if S1, . . . , Sk̄D+1 ⊆ E with #(Si) ≤ k̄ for each i, then
K(S1) ∩ · · · ∩ K(Sk̄D+1) is nonempty, since it contains K(S1 ∪ · · · ∪ Sk̄D+1),
and #(S1 ∪ · · · ∪ Sk̄D+1) ≤ k̄ · (k̄D + 1) ≤ k# − k̄.

Helly’s theorem now shows that there exists (P1, . . . , Pk̄) belonging to
K(S) for all S ⊆ E with #(S) ≤ k̄.

Taking S to be the empty set, we see that the Pi satisfy

|∂αPi(xi)| ≤ 1 for |α| ≤ m, i = 1, . . . , k̄; and(12)

|∂α(Pi − Pj)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k̄.(13)

We will check that Pi ∈ Γf (xi, k̄, 1) for each i. In fact, given x̃0, . . . , x̃k̄ ∈ E

with x̃0 = xi, we take S = {x̃0, . . . , x̃k̄}. Since (P1, . . . , Pk̄) ∈ K(S), there exist
polynomials P̃0, . . . , P̃k̄ ∈ P, with P̃0 = Pi; P̃j ∈ f(x̃j) + I(x̃j) for j = 0, . . . , k̄;
|∂αP̃j(x̃j)| ≤ 1 for |α| ≤ m, j = 0, . . . , k̄; and |∂α(P̃j − P̃�)(x̃�)| ≤ |x̃j − x̃�|m−|α|

for |α| ≤ m, 0 ≤ j, � ≤ k̄. Thus,

(14) Pi ∈ Γf (xi, k̄, 1), as claimed.

Our results (12), (13), (14) are the conclusions of Lemma 5.4.
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The goal of the next several lemmas is to show that, roughly speaking, if
P ∈ Γf (x, k̄, C), and if x′ is close to x and P ′ ∈ f(x′) + I(x′) is close to P ,
then P ′ belongs to Γf (x′, k̃, C ′), with k̃ somewhat smaller than k̄, and with C ′

somewhat larger than C. More precisely, the next several lemmas will be used
to establish Lemma 5.10 below.

Lemma 5.5. If d �= 0 (see (7)), then σ(x0, k̄) has nonempty interior in
I(x0), for every x0 ∈ E and k̄ ≤ k#.

Proof. Since σ(x0, k̄) ⊆ I(x0) is convex and symmetric about the origin,
it is enough to prove the following.

(15) Given x0 ∈ E and P0 ∈ I(x0), there exists λ > 0 with λP0 ∈ σ(x0, k̄).

To show (15), we recall that E, f, I are assumed to satisfy the hypotheses of
Theorem 3. We apply hypothesis (I) with ε = 1, to the jets f(x0), f(x0)+P0 ∈
f(x0) + I(x0). Thus, there exists δ > 0 for which the following holds.

Given x1, . . . , xk̄ ∈ E ∩ B(x0, δ), there exist P ′
0, P

′
1, . . . , P

′
k̄

∈ P and
P ′′

0 , P ′′
1 , . . . , P ′′

k̄
∈ P, with

P ′
0 = f(x0);(16)

P ′
i ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄;

|∂α(P ′
i − P ′

j)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄;

P ′′
0 = f(x0) + P0;(17)

P ′′
i ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄;

|∂α(P ′′
i − P ′′

j )(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄ .

Setting Pi = P ′′
i − P ′

i for i = 0, 1, . . . , k̄ (which agrees with the given P0

in (15) when i = 0, thanks to (16), (17)), we find that

Pi ∈ I(xi) for i = 0, 1, . . . , k̄; and(18)

|∂α(Pi − Pj)(xj)| ≤ 2|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k# .(19)

We may assume that δ < 1/2, hence |xi − xj | ≤ 1 in (19), and therefore

|∂αPj(xj)| ≤ 2 + max
B(x0,δ)

|∂αP0| for |α| ≤ m, 0 ≤ j ≤ k# .(20)

From (19), (20) and Whitney’s extension theorem for finite sets, we obtain
F ∈ Cm(Rn), with

‖ F ‖Cm(Rn) ≤C · {2 + max
y∈B(x0,δ)

|α|≤m

|∂αP0(y)|} ≡ K and(21)

Jxi
(F ) =Pi for i = 0, 1 . . . , k̄ .
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In particular,

Jxi
(F ) ∈ I(xi) for i = 0, 1, . . . , k̄ (by (18)); and(22)

Jx0(F ) =P0 .(23)

We can achieve (21), (22), (23) for any x1, . . . , xk̄ ∈ E ∩ B(x0, δ).
Now let θ ∈ Cm(Rn) be a cutoff function, with

Jx0(θ) = 1, supp θ ⊂ B(x0, δ), |∂αθ| ≤ Cδ−|α| on Rn(|α| ≤ m).(24)

Given any x1, . . . , xk̄ ∈ E, we define x′
1, . . . , x

′
k̄
∈ E by setting x′

i = xi

if xi ∈ B(x0, δ), x′
i = x0 otherwise. Thus, all the x′

i belong to E ∩ B(x0, δ).
Applying (21), (22), (23) with x′

1 · · ·x′
k̄

in place of x1, . . . , xk̄, we obtain F ∈
Cm(Rn), with

‖ F ‖Cm(Rn)≤ K, Jx0(F ) = P0, Jxi
(F ) ∈ I(xi) if xi ∈ B(x0, δ).(25)

From (24) and (25), we see that

‖ θF ‖Cm(Rn)≤ C Kδ−m, Jx0(θF ) = P0, and(26)

Jxi
(θF ) ∈ I(xi) for i = 0, 1, . . . , k̄ .(27)

In fact, (27) follows from (25) for xi ∈ B(x0, δ), since I(xi) is an ideal. For
xi /∈ B(x0, δ), (27) follows from (24).

Setting Pi = Jxi
(θF ) for i = 1, . . . , k̄, we obtain the following result, for

our given P0: Given x1, . . . , xk̄ ∈ E, there exist P1, . . . , Pk̄ ∈ P, with Pi ∈ I(xi)
for i = 0, 1, . . . , k̄;

|∂αPi(xi)| ≤
[
C ′Kδ−m

]
for |α| ≤ m, i = 0, 1, . . . , k̄ ; and

|∂α(Pi − Pj)(xj)| ≤
[
C ′Kδ−m

]
|xi − xj |m−|α| for |α| ≤ m , 0 ≤ i, j ≤ k̄ .

This immediately implies (15), with λ = [C ′Kδ−m]−1. The proof of Lemma
5.5 is complete.

Lemma 5.6. Let A > 0, and suppose 1 + (D + 1) · k̃ ≤ k̄. Let x, x′ ∈ E,
and let P ∈ Γf (x, k̄, A). Then there exists P ′ ∈ Γf (x′, k̃, A), with

|∂α(P − P ′)(x)|, |∂α(P − P ′)(x′) | ≤ A|x − x′|m−|α| for |α| ≤ m .

Proof. Given a finite set S ⊆ E, define S+ = {x, x′} ∪ S, and define K(S)
as the set of all P ′ ∈ P for which there exists a map y �→ P y from S+ to P,
with P x = P ; P x′

= P ′, P y ∈ f(y) + I(y) for all y ∈ S+;

|∂αP y(y)| ≤A for |α| ≤ m and y ∈ S+; and

|∂α(P y − P z)(z)| ≤A|y − z|m−|α| for |α| ≤ m, y, z ∈ S+ .

Each K(S) is a compact, convex subset of P, which has dimension D. If
S ⊆ S′ then K(S′) ⊆ K(S). If S ⊆ E with #(S+) ≤ k̄ + 1, then we see by
using P ∈ Γf (x, k̄, A) that K(S) is nonempty.
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If S1, . . . , SD+1 ⊆ E with #(Si) ≤ k̃ for each i, then S = S1 ∪ · · · ∪ SD+1

satisfies #(S+) ≤ 2+#(S) ≤ 2+ (D +1)k̃ ≤ k̄ +1. Hence, K(S) is nonempty,
and K(S) ⊆ K(Si) for each i. Thus K(S1) ∩ · · · ∩ K(SD+1) is nonempty.

Consequently, by Helly’s theorem, there exists P ′ belonging to K(S) for
every S ⊆ E with #(S) ≤ k̃. It follows easily that P ′ ∈ Γf (x′, k̃, A). Also,
taking S = empty set, we learn that

|∂α(P − P ′)(x)|, |∂α(P − P ′)(x′)| ≤ A|x − x′|m−|α| for |α| ≤ m ,

since P ′ ∈ K(S). The proof of Lemma 5.6 is complete.

For the next lemma, recall definitions (3)–(8).

Lemma 5.7. Suppose A > 0 and 1 + (D + 1)k̃ ≤ k̄ ≤ k#. Then, given
x ∈ E1, there exist ε0, δ0 > 0 such that for any Q̄ ∈ Γ̄f (x, k̄, A), any x′ ∈
E1∩B(x, δ0), and any Q̄′ ∈ f̄(x′)+Ī(x′), if |∂α(Q̄′−Q̄)(x)| ≤ ε0 for |α| ≤ m−1,
then Q̄′ ∈ Γ̄f (x′, k̃, A′), with A′ depending only on A, m, n.

Proof. If d̄ = 0 then f̄(x′)+ Ī(x′) contains only the single point f̄(x′), and
Lemma 5.7 follows from Lemma 5.6. Suppose d̄ �= 0. By Lemma 5.5 and Fritz
John’s Lemma, there exist P̄1, . . . , P̄d̄ ∈ Ī(x) with the following properties.

P̄i ∈ σ̄(x, k̄) for i = 1, . . . d̄ ,(28)

(29) Any P̄ ∈ σ̄(x, k̄) may be written as P̄ = λ1P̄1+ · · ·+λd̄ P̄d̄ with |λi| ≤ C

for i = 1, . . . , d̄ .

In particular, P̄1, . . . , P̄d̄ are linearly independent. In this proof, we write
A1, A2, A3, · · · for constants determined by A, m, n. If Γ̄f (x, k̄, A) is empty,
then Lemma 5.7 holds vacuously. Otherwise, fix

Q̄0 ∈ Γ̄f (x, k̄, A) ⊆ f̄(x) + Ī(x) ,(30)

and define

Q̄i = Q̄0 + P̄i ∈ f̄(x) + Ī(x) for i = 1, . . . , d̄ .(31)

In view of (28), (30), (31) and Lemma 5.1, we have

Q̄i ∈ Γ̄f (x, k̄, A1) for i = 0, 1, . . . , d̄ .(32)

Also, from (30), (31) and the linear independence of P̄1, . . . , P̄d̄ , we see
that

(33) Q̄0, . . . , Q̄d̄ form the vertices of a nondegenerate affine d̄ -simplex in
f̄(x) + Ī(x).

Suppose Q̄ ∈ Γ̄f (x, k̄, A). Then (30) and Lemma 5.1 give Q̄ − Q̄0 ∈
A2σ̄(x, k̄); hence (29) shows that we may write Q̄−Q̄0 = λ1P̄1+· · ·+λd̄ P̄d̄ with
|λi| ≤ A3 for i = 1, . . . , d̄ . Thus, Q̄ = {1−λ1− · · · − λd̄ }Q̄0+λ1Q̄1+· · ·+ λd̄ Q̄d̄

and we have proven the following result:
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(34) Any Q̄ ∈ Γ̄f (x, k̄, A) may be expressed in the form Q̄ = λ0Q̄0 + · · · +
λd̄ Q̄d̄ , with λ0 + · · · + λd̄ = 1, and |λi| ≤ A4 for i = 0, 1, . . . , d̄ .

We now apply the linear algebra perturbation Lemma 3.3 to the affine
subspaces H = f̄(x) + Ī(x) ⊆ P̄, H ′ = f̄(x′) + Ī(x′) ⊆ P̄, the vectors
Q̄0, . . . , Q̄d̄ ∈ H, and the constant A4 in (34). Thus, we obtain ε0 > 0 for
which the following holds.

(35) Suppose Q̄ = λ0Q̄0 + · · · + λd̄ Q̄d̄ with λ0 + · · · + λd̄ = 1 and |λi| ≤ A4

(all i).

Suppose we are given x′ ∈ E1 and Q̄′, Q̄′
0, . . . , Q̄

′
d̄ ∈ f̄(x′) + Ī(x′), with

(a) |∂α(Q̄′
i − Q̄i)(x)| ≤ ε0 for |α| ≤ m − 1 and 0 ≤ i ≤ d̄ , and

(b) |∂α(Q̄′ − Q̄)(x)| ≤ ε0 for |α| ≤ m − 1.

Then we may express Q̄′ in the form

(c) Q̄′ = λ′
0Q̄

′
0 + · · · + λ′

d̄ Q̄′
d̄ , with λ′

0 + · · · + λ′
d̄ = 1 and |λ′

i| ≤ A5 (all i).

Next, we will show that there exists δ0 > 0 for which the following holds:

(36) Given any x′ ∈ E1 ∩ B(x, δ0), there exist

(α) Q̄′
0, . . . , Q̄

′
d̄ ∈ Γ̄f (x′, k̃, A1) ⊆ f̄(x′) + Ī(x′), with

(β) |∂α(Q̄′
i − Q̄i)(x)| ≤ ε0 for |α| ≤ m − 1 and 0 ≤ i ≤ d̄ .

To see this, fix i(0 ≤ i ≤ d̄ ). By (32) and (3), there exists Qi ∈ Γf (x, k̄, A1)
with πx(Qi) = Q̄i. Now suppose x′ ∈ E1 ∩ B(x, δ0), for a small enough δ0 > 0
to be picked below. Lemma 5.6 gives us Q′

i ∈ Γf (x′, k̃, A1), with

(37) |∂α(Q′
i − Qi)(x)| ≤ A1|x′ − x|m−|α| ≤ A1δ

m−|α|
0 ≤ A1δ0 for |α| ≤ m − 1,

provided δ0 ≤ 1.

We take Q̄′
i = πx′Q′

i ∈ Γ̄f (x′, k̃, A1) ⊆ f̄(x′) + Ī(x′). (See (3), (5), (6).)
Thus Q̄′

i satisfies (36) (α).
For |α| ≤ m, we have

∂αQ′
i(x) =

∑
|β|≤m−|α|

1
β!

(
∂β+α Q′

i(x
′)
)
· (x − x′)β(38)

=
∑

|β|≤m−1−|α|
etc. +

∑
|β|=m−|α|

etc.

= ∂αQ̄′
i(x) +

∑
|β|=m−|α|

1
β!

(
∂β+α Q′

i(x
′)
)
· (x − x′)β .
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Also, since Q′
i ∈ Γf (x′, k̃, A1), we have |∂αQ′

i(x
′)| ≤ A1 for |α| ≤ m. (See (1)

(b).) Hence, (38) implies that

|∂αQ̄′
i(x) − ∂αQ′

i(x)| ≤ A6δ0 for |α| ≤ m − 1, provided δ0 ≤ 1 .(39)

Since ∂αQ̄i(x) = ∂αQi(x) for |α| ≤ m − 1, estimates (37) and (39) show
that

|∂α(Q̄′
i − Q̄i)(x)| ≤ A7δ0 for |α| ≤ m − 1, provided δ0 ≤ 1 .(40)

We now pick δ0 ≤ 1 small enough that A7δ0 ≤ ε0. Thus, (40) holds, and
it shows that Q̄′

i satisfies (36) (β). The proof of (36) is complete.
We fix ε0, δ0 > 0 as in (35), (36). Now suppose Q̄ ∈ Γ̄f (x, k̄, A), x′ ∈

E1 ∩ B(x, δ0), Q̄′ ∈ f̄(x′) + Ī(x′), and assume that

|∂α(Q̄′ − Q̄)(x)| ≤ ε0 for |α| ≤ m − 1 .(41)

Then the hypotheses of (35) hold, thanks to (34) and (36). Applying (35), we
may express Q̄′ in the form Q̄′ = λ′

0Q̄
′
0 + · · · + λ′

d̄ Q̄d̄ , with λ′
0 + · · · + λ′

d̄ = 1,
|λ′

i| ≤ A5 (all i), and Q̄′
0, . . . , Q̄

′
d̄ ∈ Γ̄f (x′, k̃, A1) as in (36)(α). Equivalently,

Q̄′ = Q̄′
0 +

d̄∑
i=1

λ′
i(Q̄

′
i − Q̄′

0) .(42)

We have Q̄′
i − Q̄′

0 ∈ 2A1σ̄(x′, k̃) by Lemma 5.1, hence

d̄∑
i=1

λ′
i(Q̄

′
i − Q̄′

0) ∈ A8σ̄(x′, k̃) .(43)

From (42), (43), (36)(α), and another application of Lemma 5.1, we see
that Q̄′ ∈ Γ̄f (x′, k̃, A9). Thus, we have shown that, whenever x′ ∈ E1∩B(x, δ0),
Q̄ ∈ Γ̄f (x, k̄, A), Q̄′ ∈ f̄(x′) + Ī(x′), with |∂α(Q̄′ − Q̄)(x)| ≤ ε0 for |α| ≤ m− 1,
we have Q̄′ ∈ Γ̄f (x′, k̃, A9). The proof of Lemma 5.7 is complete.

Note that we had to restrict to x, x′ ∈ E1 in Lemma 5.7, because one of
the crucial hypotheses in the linear algebra perturbation lemma was that the
affine spaces H and H ′ have the same dimension.

Lemma 5.8. Suppose A1, A2 > 0 and 1 + (D + 1) · k̃ ≤ k̄ ≤ k#. Then,
given x ∈ E1, there exist ε, δ > 0 such that, for any Q ∈ Γf (x, k̄, A1), any
x′ ∈ E1 ∩ B(x, δ), and any Q′ ∈ f(x′) + I(x′), if

|∂α(Q′ − Q)(x)| ≤ ε for |α| ≤ m − 1(44)

and

|∂αQ′(x)| ≤ A2 for |α| = m ,(45)

then Q′ ∈ Γf (x′, k̃, A′), with A′ determined by A1, A2, m, n.



336 CHARLES FEFFERMAN

Proof. In this proof, we write A3, A4, A5, · · · to denote constants deter-
mined by A1, A2, m, n. Given x ∈ E1, let ε0, δ0 be as in Lemma 5.7 with
A = A1. Let ε, δ > 0 be small enough numbers, to be picked below, depend-
ing only on A1, A2, m, n, ε0, δ0. Suppose Q ∈ Γf (x, k̄, A1), x′ ∈ E1 ∩ B(x, δ),
Q′ ∈ f(x′) + I(x′), and assume (44) and (45). Since Q ∈ Γf (x, k̄, A1), we have

|∂αQ(x)| ≤ A1 for |α| ≤ m. (See (1)(b).)(46)

Hence, (44) and (45) show that

|∂αQ′(x)| ≤ A3 for |α| ≤ m .(47)

We will take δ ≤ 1. Hence (47) implies

|∂αQ′(x′)| ≤ A4 for |α| ≤ m ,(48)

since x′ ∈ B(x, δ). Set Q̄ = πxQ, Q̄′ = πx′Q′. Thus,

(49) Q̄ ∈ Γ̄f (x, k̄, A1), x′ ∈ E1 ∩ B(x, δ0), and Q̄′ ∈ f̄(x′) + Ī(x′), provided
we take δ ≤ δ0.

By expanding Q′ about x′, we see that

∂αQ′(x) = ∂αQ̄′(x) +
∑

|β|=m−|α|

1
β!

(∂β+αQ′(x′)) · (x − x′)β for |α| ≤ m − 1 .

Therefore, (48) implies that

(50) |∂αQ̄′(x)−∂αQ′(x)| ≤ A5|x−x′|m−|α| ≤ A5δ
m−|α| ≤ A5δ for |α| ≤ m−1.

Since also ∂αQ̄(x) = ∂αQ(x) for |α| ≤ m− 1, we learn from (44) and (50)
that

|∂α(Q̄′ − Q̄)(x)| ≤ ε + A5δ for |α| ≤ m − 1 .(51)

We now pick ε = 1
2ε0 and δ = min{1, δ0, ε0/(2A5)}. Thus, the above

arguments are valid for our ε, δ; and (51) gives

|∂α(Q̄′ − Q̄)(x)| ≤ ε0 for |α| ≤ m − 1 .(52)

In view of (49) and (52), we may apply Lemma 5.7, with A = A1. Thus,
we learn that Q̄′ ∈ Γ̄f (x′, k̃, A6). That is,

πx′Q′ = πx′Q̃ for some Q̃ ∈ Γf (x′, k̃, A6) ⊆ f(x′) + I(x′) .(53)

Fix Q̃ as in (53). In particular, we have

|∂αQ̃(x′)| ≤ A6 for |α| ≤ m. (See (1)(b).)(54)

From (48), (53), (54), we see that

Q′ − Q̃ ∈ ker πx′ ∩ I(x′) , with |∂α(Q′ − Q̃)(x′)| ≤ A7(|α| ≤ m) .
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Together with Lemma 5.2, this shows that

Q′ − Q̃ ∈ A8σ(x′, k̃) .(55)

We now have Q′ = Q̃ + (Q′ − Q̃), with Q̃ ∈ Γf (x′, k̃, A6) and Q′ − Q̃

satisfying (55). Applying Lemma 5.1, we conclude that Q′ ∈ Γf (x′, k̃, A9),
completing the proof of Lemma 5.8.

Lemma 5.9. Suppose A1, A2 > 0, 1+(D+1) · k̃ ≤ k̄2, 1+(D+1) · k̄2 ≤ k̄1,
k̄1 ≤ k#. Let x0 ∈ E1. Then there exists η > 0 for which the following holds:

Suppose x′, x′′ ∈ E1, with |x0 − x′|, |x′ − x′′| < η. Let Q′ ∈ Γf (x′, k̄1, A1)
and Q′′ ∈ f(x′′) + I(x′′), with

|∂α(Q′′ − Q′)(x′)| ≤ A2 ηm−|α| for |α| ≤ m .

Then Q′′ ∈ Γf (x′′, k̃, A′), with A′ determined by A1, A2, m, n.

Proof. In this proof, we write A3, A4, A5, · · · for constants determined by
A1, A2, m, n. Suppose x0, x

′, x′′, Q′, Q′′ are as in the hypotheses of Lemma 5.9,
with η a small enough positive number, independent of x′, x′′, Q′, Q′′, to be
picked later. Since Q′ ∈ Γf (x′, k̄1, A1), Lemma 5.6 produces a polynomial

Q0 ∈ Γf (x0, k̄2, A1) ,(56)

with

|∂α(Q′ − Q0)(x0)| ≤ A1|x0 − x′|m−|α| for |α| ≤ m .(57)

For |α| ≤ m, we have also that

|∂α(Q′′ − Q′)(x0)|= |
∑

|β|≤m−|α|

1
β!

(∂β+α(Q′′ − Q′)(x′)) · (x0 − x′)β|

≤
∑

|β|≤m−|α|

1
β!

A2 ηm−|β|−|α| |x0 − x′||β|

≤C A2 · ηm−|α| .

Together with (57), this yields

|∂α(Q′′ − Q0)(x0)| ≤ C A3η
m−|α|

for |α| ≤ m. In particular, we have

|∂α(Q′′ − Q0)(x0)| ≤ A4η for |α| ≤ m − 1 ,(58)

and

|∂α(Q′′ − Q0)(x0)| ≤ A4 for |α| = m ,(59)
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since we may take η ≤ 1. From (56), we see that |∂αQ0(x0)| ≤ A1 for |α| ≤ m.
(See (1)(b).) Hence, (59) shows that

|∂αQ′′(x0)| ≤ A5 for |α| = m .(60)

We are ready to apply Lemma 5.8, which tells us the following. There
exist ε, δ > 0 determined by A1, A5, k̃, k̄2, x0, such that:

(61) If Q0 ∈ Γf (x0, k̄2, A1), x′′ ∈ E1 ∩ B(x0, δ), Q′′ ∈ f(x′′) + I(x′′),
|∂α(Q′′−Q0)(x0)| ≤ ε for |α| ≤ m−1, and |∂αQ′′(x0)| ≤ A5 for |α| = m,
then Q′′ ∈ Γf (x′′, k̃, A6).

Note that, since x′′ ∈ E1 and |x0 − x′|, |x′ − x′′| < η, we have

x′′ ∈ B(x0, 2η) ∩ E1 .(62)

Recall that we assumed that

Q′′ ∈ f(x′′) + I(x′′) .(63)

If we now pick η ≤ 1 to satisfy A4η < ε and 2η < δ, then the hypotheses
of (61) hold, thanks to (56), (62), (63), (58), and (60). Hence, (61) shows that
Q′′ ∈ Γf (x′′, k̃, A6). The proof of Lemma 5.9 is complete.

Lemma 5.10. Suppose A1, A2 > 0, 1+(D+1)·k̄3 ≤ k̄2, 1+(D+1)·k̄2 ≤ k̄1,
k̄1 ≤ k#. Then there exists η > 0 for which the following holds: Suppose
x′, x′′ ∈ E1, with |x′−x′′| < η. Let Q′ ∈ Γf (x′, k̄1, A1) and Q′′ ∈ f(x′′)+I(x′′),
with |∂α(Q′′−Q′)(x′)| ≤ A2 ηm−|α| for |α| ≤ m. Then Q′′ ∈ Γf (x′′, k̄3, A

′) with
A′ determined by A1, A2, m, n.

Proof. We say that an open ball B(y, η̄) with center y ∈ E1 is “useful”
if the following holds: Given x′ ∈ B(y, η̄) ∩ E1, x′′ ∈ B(x′, η̄) ∩ E1, Q′ ∈
Γf (x′, k̄1, A1), and Q′′ ∈ f(x′′) + I(x′′), if |∂α(Q′′ − Q′)(x′)| ≤ A2 η̄ m−|α| for
|α| ≤ m, then Q′′ ∈ Γf (x′′, k̄3, A

′), with A′ as in Lemma 5.9 (with k̄3 in place
of k̃).

Lemma 5.9 shows that every point of E1 is the center of a useful ball.
Since E1 is compact, it is therefore covered by finitely many useful balls
B(y1, η1), . . . , B(yN , ηN ). We take η = min{η1, . . . , ηN}.

Now suppose x′, x′′, Q′, Q′′ are as in the hypotheses of Lemma 5.10, for the
η we just picked. Since the balls B(yν , ην) cover E1, we have x′ ∈ B(yν , ην)∩E1

for some ν. For that ν, we have also x′′ ∈ B(x′, ην)∩E1, since |x′−x′′| < η ≤ ην .
In addition, Q′ ∈ Γf (x′, k̄1, A1), Q′′ ∈ f(x′′) + I(x′′), and |∂α(Q′′ − Q′)(x′)| ≤
A2 ηm−|α| ≤ A2 η

m−|α|
ν for |α| ≤ m, by hypothesis of Lemma 5.10. Since

B(yν , ην) is useful, it follows that Q′′ ∈ Γf (x′′, k̄3, A
′). The proof of Lemma

5.10 is complete.
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6. A modulus of continuity

Let E, f, I etc. be as in Section 4. We again write c, C, C ′, etc., to denote
controlled constants. Our goal in this section is to produce a regular modulus
of continuity ω+, and a large enough integer constant k̄, for which the following
holds:

(1) Given x1, . . . , xk̄ ∈ E1, there exist P1, . . . , Pk̄ ∈ P, with Pi ∈ Γf (xi, k̄, C)
⊆ f(xi)+I(xi) for i = 1, . . . , k̄; |∂αPi(xi)| ≤ C for |α| ≤ m, i = 1, . . . , k̄;
and |∂α(Pi − Pj)(xj)| ≤ Cω+(|xi − xj |) · |xi − xj |m−|α| for |α| ≤ m,
|xi − xj | ≤ 1, 1 ≤ i, j ≤ k̄.

(See Lemma 6.6 below.)
Here, Γf (xi, k̄, C) is the convex set defined in Section 5. Once we have

achieved (1), we can appeal to the Generalized Sharp Whitney theorem to
construct the function F̃ described in the introduction.

The first few lemmas below tell us that, roughly speaking, the small num-
ber δ in hypothesis (I) of Theorem 3 may be picked independently of x0 and
P0. As before, let D = dimP.

Lemma 6.1. Suppose 1 + (D + 1)k̄ ≤ k#. Let x ∈ E, P ∈ f(x) + I(x),
ε > 0 be given. Then there exists δ > 0 such that for every x′ ∈ E ∩ B(x, δ),
there exists P ′ ∈ f(x′) + I(x′), with

|∂α(P − P ′)(x)| ≤ ε|x − x′|m−|α| for |α| ≤ m ,(2)

and satisfying the following condition:

(3) Given x′
0, x

′
1, . . . , x

′
k̄
∈ E ∩ B(x, δ) with x′

0 = x′, there exist P ′
0, . . . , P

′
k̄

∈ P, with P ′
0 = P ′, and with P ′

i ∈ f(x′
i) + I(x′

i) for i = 0, 1, . . . , k̄; and
|∂α(P ′

i − P ′
j)(x

′
j)| ≤ ε|x′

i − x′
j |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄.

Proof. Recall that E, f, I are assumed to satisfy the hypotheses of The-
orem 3. Let δ > 0 be as in hypothesis (I) (with x, P in place of x0, P0),
and let x′ ∈ E ∩ B(x, δ) be given. If x′ = x, then we may set P ′ = P ,
and conclusions (2), (3) hold, thanks to hypothesis (I). Suppose x′ �= x.
For any finite set S ⊂ E ∩ B(x, δ) containing x and x′, let K(S) denote
the set of all P ′ ∈ f(x′) + I(x′) such that there exists a map y �→ P y

from S to P, with P x = P , P x′
= P ′, P y ∈ f(y) + I(y) for y ∈ S, and

|∂α(P y − P z)(z)| ≤ ε|y − z|m−|α| for |α| ≤ m, y, z ∈ S. Each K(S) is a
compact, convex subset of P, which has dimension D. Moreover, suppose
we are given S1, S2, . . . , SD+1 ⊂ E ∩ B(x, δ), each containing x and x′, with
#(Si) ≤ k̄ + 2 for each i. Then S = S1 ∪ · · · ∪ SD+1 ⊂ E ∩ B(x, δ), with
x, x′ ∈ S, and #(S) ≤ 2 + (D + 1)k̄ ≤ 1 + k#. Hence, hypothesis (I) shows
that there exists a map y �→ P y defined on S, with P x = P , P y ∈ f(y) + I(y)
for all y ∈ S, and |∂α(P y − P z)(z)| ≤ ε|y − z|m−|α| for |α| ≤ m, y, z ∈ S.
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We can check trivially that P x′
then belongs to K(Si) for each i. Thus,

K(S1), . . . ,K(SD+1) have nonempty intersection. Consequently, Helly’s theo-
rem shows that there exists P ′ ∈ f(x′) + I(x′), belonging to K(S) whenever
S ⊂ E∩B(x, δ), x, x′ ∈ S, #(S) ≤ k̄+2. One checks easily, from the definition
of K(S), that P ′ satisfies properties (2) and (3). The proof of Lemma 6.1 is
complete.

Lemma 6.2. Suppose 1 + (D + 1)k̄ ≤ k#. Let x ∈ E1 and ε > 0 be given.
Then there exists δ > 0 such that for any x0, . . . , xk̄ ∈ E∩B(x, δ) with x0 ∈ E1,
and for any P0 ∈ f(x0) + I(x0), there exist P1, . . . , Pk̄ ∈ P, with

(4) Pi ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄; and

(5) |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m,

0 ≤ i, j ≤ k̄.

Proof. If d = 0 (see (5.7)), then there is only one P0 ∈ f(x0) + I(x0), and
therefore Lemma 6.2 follows from Lemma 6.1. Suppose d �= 0. Given y ∈ E,
we define a norm on P by taking ‖ P ‖2

y=
∑

|α|≤m

(∂αP (y))2. We write 〈P, Q〉y

for the corresponding inner product. Fix x ∈ E1 and ε > 0. Let Q1, . . . , Qd

be an orthonormal basis for I(x) with respect to the norm ‖ · ‖x. If P ∈ I(x),
then we may write

P = λ1Q1 + · · · + λdQd, with |λi| ≤ C max
|β|≤m

|∂βP (x)| (all i).

Also, hypothesis (II) of Theorem 3 (which is assumed to hold for E, f, I)
shows that there exists

P̂0 ∈ f(x) + I(x) ,(6)

with

|∂αP̂0(x)| ≤ 1 for |α| ≤ m .(7)

We set P̂i = P̂0 + Qi for i = 1, . . . , d. Thus,

P̂i ∈ f(x) + I(x) for i = 0, 1, . . . , d .(8)

With ε′ < ε to be picked below, we apply Lemma 6.1 to each P̂i. Thus,
we obtain δ′ > 0 for which the following holds: Given x′ ∈ E1 ∩B(x, δ′), there
exist P̃i ∈ f(x′) + I(x′) (0 ≤ i ≤ d) satisfying

|∂α(P̃i − P̂i)(x)| ≤ ε′|x′ − x|m−|α| for |α| ≤ m, 0 ≤ i ≤ d ; and(9)

(10) Given x0, . . . xk̄ ∈ ∩B(x, δ′) with x0 = x′, there exist P 0
i , . . . , P k̄

i ∈ P
(0 ≤ i ≤ d), with P 0

i = P̃i(0 ≤ i ≤ d); P j
i ∈ f(xj)+I(xj) (0 ≤ i ≤ d, 0 ≤

j ≤ k̄); and |∂α(P j
i − P �

i )(x�)| ≤ ε′|xj − x�|m−|α| (|α| ≤ m; 0 ≤ i ≤ d;
0 ≤ j, � ≤ k̄).
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Suppose x′ ∈ E1 ∩ B(x, δ) with δ < δ′ to be picked below. Then we may
pick P̃i ∈ f(x′) + I(x′)(0 ≤ i ≤ d) satisfying ( 9 ) and (10). Note that, since
x, x′ ∈ E1, we have dim I(x) = dim I(x′) = d. Note also that

〈(P̂i − P̂0), (P̂i′ − P̂0)〉x = δii′ for 1 ≤ i, i′ ≤ d ,

by definition of the P̂i. (Here, δii′ denotes the Kronecker delta.) In view of
(9), this implies that

|〈(P̃i − P̃0), (P̃i′ − P̃0)〉x − δii′ | ≤ Cε′ for 1 ≤ i, i′ ≤ d .(11)

If δ is small enough, then (11) implies

|〈(P̃i − P̃0), (P̃i′ − P̃0)〉x′ − δii′ | ≤ C ′ε′ for 1 ≤ i, i′ ≤ d ,(12)

since x′ ∈ B(x, δ).
Note also that (7), (9) give |∂αP̃0(x)| ≤ 1 + ε′(|α| ≤ m), if δ ≤ 1. Hence,

if δ is small enough, we have

|∂αP̃0(x′)| ≤ 2 for |α| ≤ m .(13)

Once ε′ is determined, we fix δ < δ′ to be small enough that (12) and
(13) hold. We have still not fixed ε′. We recall that P̃0, . . . , P̃d ∈ f(x′) + I(x′),
and that dim I(x′) = d. Hence, if ε′ is small enough, then (12) shows that any
P ∈ I(x′) may be expressed in the form

P = µ1(P̃1 − P̃0) + · · · + µd(P̃d − P̃0) with |µi| ≤ C max
|β|≤m

|∂βP (x′)| .(14)

Together with (13), this implies the following result.

(15) Any P ′ ∈ f(x′) + I(x′) may be expressed in the form P ′ = λ0P̃0 + · · ·+
λdP̃d, with λ0 + · · · + λd = 1, and |λi| ≤ C · (1 + max

|β|≤m
|∂βP ′(x′)|) for

i = 0, . . . , d. (To prove (15), we just apply (14) to P ′ − P̃0.)

Now suppose we are given P ′ ∈ f(x′) + I(x′), as well as x0, . . . , xk̄ ∈
E∩B(x, δ) with x0 = x′. We express P ′ in the form (15), and let P j

i (0 ≤ i ≤ d,
0 ≤ j ≤ k̄) be as in (10). Now,

P j = λ0P
j
0 + · · · + λdP

j
d ∈ P for 0 ≤ j ≤ k̄ .(16)

In particular,

P 0 = λ0P
0
0 + · · · + λdP

0
d = λ0P̃0 + · · · + λdP̃d (see (10)) = P ′ (see (15)).

Also, since P j
i ∈ f(xj)+I(xj) and λ0+· · ·+λd = 1, (16) gives P j ∈ f(xj)+I(xj)

for 0 ≤ j ≤ k̄. Moreover, (10), (15), (16) show that

|∂α(P j − P �)(x�)| ≤
d∑

i=0

|λi| · |∂α(P j
i − P �

i )(x�)|

≤C · (1 + max
|β|≤m

|∂βP ′(x′)|) · ε′|xj − x�|m−|α|

for |α| ≤ m, 0 ≤ j, � ≤ k̄.
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If Cε′ ≤ ε, then

|∂α(P j − P �)(x�)| ≤ ε|xj − x�|m−|α| · (1 + max
|β|≤m

| ∂βP ′(x′)|) .

We now fix ε′ > 0 small enough that the above arguments work. This in
turn fixes δ′ and δ. We have now proven the following result.

Let ε > 0 and x ∈ E1. Then there exists δ > 0 such that for any
x′ ∈ E1∩B(x, δ), any P ′ ∈ f(x′)+I(x′), and any x0, . . . , xk̄ ∈ E∩B(x, δ) with
x0 = x′, there exist P 0, . . . , P k̄ ∈ P, with P 0 = P ′; P j ∈ f(xj) + I(xj) for 0 ≤
j ≤ k̄; and

|∂α(P j − P �)(x�)| ≤ ε|xj − x�|m−|α| · (1 + max
|β|≤m

|∂βP ′(x′)|)

for |α| ≤ m, 0 ≤ j, � ≤ k̄. This statement is obviously equivalent to Lemma 6.2.

Lemma 6.3. Suppose k̄ ≥ 1, 1 + (D + 1) · k̄ ≤ k#. Then, given ε > 0,
there exists δ > 0 such that, for any x0 ∈ E1, any P0 ∈ f(x0) + I(x0), and any
x1, . . . , xk̄ ∈ E ∩ B(x0, δ), there exist P1, . . . , Pk̄ ∈ P, with

Pi ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄ ; and(17)

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)(18)

for |α| ≤ m, 0 ≤ i, j ≤ k̄ .

Proof. Let us say that an open ball B(y, δ) is “useful” if, for any x0, . . . , xk̄

∈ E ∩ B(y, 2δ) with x0 ∈ E1, and for any P0 ∈ f(x0) + I(x0), there exist
P1, . . . , Pk̄ ∈ P, satisfying (17) and (18). Lemma 6.2 shows that every point of
E1 is the center of a useful ball. Since E1 is compact, it is covered by finitely
many useful balls B(yν , δν) (ν = 1, . . . , N).

We take δ = min{δ1, . . . , δN}. Suppose we are given x0 ∈ E1, P0 ∈
f(x0) + I(x0), and x1, . . . , xk̄ ∈ E ∩ B(x0, δ). Then x0 ∈ B(yµ, δµ) for some
µ, since the B(yν , δν) cover E1. Consequently, x0, x1, . . . , xk̄ ∈ B(yµ, 2δµ), as
δ ≤ δµ. Since B(yµ, δµ) is useful, there exist P1, . . . , Pk̄ ∈ P satisfying (17) and
(18). Thus, Lemma 6.3 holds.

Corollary. Suppose k# ≥ D + 2. Then, given ε > 0, there exists
δ > 0 such that, given any x0, x1 ∈ E1 with |x0 − x1| < δ, and given any
P0 ∈ f(x0) + I(x0), there exists P1 ∈ f(x1) + I(x1), with

|∂α(P1−P0)(xi)| ≤ ε|x0−x1|m−|α| ·(1+ max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m, i = 0, 1 .

The corollary is an immediate consequence of the case k̄ = 1 of Lemma
6.3. Exploiting the above corollary, we can now prove the following result.
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Lemma 6.4. Suppose k# ≥ D + 2. Then there exist a positive number
δ0 < 1, and a regular modulus of continuity ω, for which the following holds:
Given x, x′ ∈ E1 with |x − x′| ≤ δ0, and given P ∈ f(x) + I(x), there exists
P ′ ∈ f(x′) + I(x′), with

|∂α(P ′ − P )(x)| ≤ ω(|x− x′|) · |x− x′|m−|α| · (1 + max
|β|≤m

|∂βP (x)|) for |α| ≤ m .

Proof. Set εν = 2−ν for ν = 0, 1, 2, . . . . By the corollary to Lemma 6.3,
we may pick successively δ0, δ1, δ2, . . . with the following properties:

(19) δ0 = 1.

(20) 0 < δν+1 < 1
2δν .

(21) If ν ≥ 1, then given x, x′ ∈ E1 with |x − x′| ≤ δν , and given P ∈
f(x) + I(x), there exists P ′ ∈ f(x′) + I(x′), with

|∂α(P ′ − P )(x)| ≤ 1
2
εν |x′ − x|m−|α| · (1 + max

|β|≤m
|∂βP (x)|) for |α| ≤ m .

Now define ω(t) on [0, 1] by setting

ω(0) = 0, ω(δν) = εν , ω(t) linear on each [δν+1, δν ], ν ≥ 0 .(22)

It is routine to check that ω(t) is a regular modulus of continuity. (In
particular, to see that ω(t)/t is decreasing, one checks that ω(t)/t = Aν +Bν/t

on [δν+1, δν ], with Bν > 0 thanks to (20).)
Now suppose x, x′ ∈ E1, with 0 < |x − x′| ≤ δ1, and suppose P ∈ f(x) +

I(x). Pick ν ≥ 1 so that δν+1 < |x − x′| ≤ δν . Then, by (21), there exists
P ′ ∈ f(x′) + I(x′) with

(23) |∂α(P ′ − P )(x)| ≤ 1
2εν |x′ − x|m−|α| · (1 + max

|β|≤m
|∂βP (x)|) for |α| ≤ m.

On the other hand, since δν+1 < |x′−x|, we have ω(|x′−x|) ≥ ω(δν+1) =
εν+1 = 1

2εν . Therefore, (23) gives

|∂α(P ′ − P )(x)| ≤ω(|x′ − x|) · |x − x′|m−|α|(24)

·(1 + max
|β|≤m

|∂βP (x)|) for |α| ≤ m .

The above argument omits the case x′ = x. However, in that trivial case,
we can just put P ′ = P ∈ f(x′)+I(x′). Thus, given x, x′ ∈ E1 with |x−x′| ≤ δ1,
and given P ∈ f(x) + I(x), there exists P ′ ∈ f(x′) + I(x′) satisfying (24). The
proof of Lemma 6.4 is complete.

Now we bring our clustering lemma (Lemma 3.1) into play.
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Lemma 6.5. Suppose k# ≥ D + 2, and let ω, δ0 be as in Lemma 6.4.
Then, given any k̄ ≥ 1, there exists a controlled constant Ĉk̄, for which the
following holds: Let x0 ∈ S ⊆ E1, with diam(S) ≤ δ0 and #(S) ≤ k̄. Then,
given P0 ∈ f(x0) + I(x0), there exists a map x �→ P x from S to P, with

P x0 = P0 ;(25)

P x ∈ f(x) + I(x) for all x ∈ S ;(26)

(1 + max
|β|≤m

|∂βP x(x)|) ≤ Ĉk̄ · (1 + max
|β|≤m

|∂βP0(x0)|) for all x ∈ S ;(27)

and

(28)

|∂α(P x − P y)(y)| ≤ Ĉk̄ · ω(|x − y|)
·|x − y|m−|α|(1 + max

|β|≤m
|∂βP0(x0)|) for |α| ≤ m, x, y ∈ S .

Proof. We use induction on k̄. If k̄ = 1, then S = {x0}, and we may just
set P x0 = P0. Conditions (25)–(28) trivially hold, with Ĉ1 = 1.

Next, fix k̄ ≥ 2, and suppose Lemma 6.5 holds, with a controlled con-
stant Ĉk̄−1, whenever #(S) ≤ k̄ − 1. Let x0, S, P0 be as in the hypotheses of
Lemma 6.5, with #(S) = k̄. Applying Lemma 3.1, we may partition S into
S0, . . . , SM , with

#(S�) ≤ k̄ − 1 for each �(0 ≤ � ≤ M) , and(29)

dist(S�, S�′) > ck̄ · diam(S) for � �= �′ .(30)

Without loss of generality, we may suppose that x0 ∈ S0, and that each
S� is nonempty. For each � = 1, . . . , M , fix an x� ∈ S�. Note that, for 1 ≤
� ≤ M , we have |x� − x0| ≤ diam(S) ≤ δ0. Hence, by Lemma 6.4, there exist
polynomials P1, . . . , PM ∈ P, with

P� ∈ f(x�) + I(x�) for � = 1, . . . , M (and of course also for � = 0), and(31)

|∂α(P� − P0)(x0)| ≤ ω(|x� − x0|) · |x� − x0|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)(32)

for |α| ≤ m, 1 ≤ � ≤ M . Set

δ = diam(S) .(33)

From Lemma 6.4 we have

δ ≤ δ0 < 1 ,(34)

hence (32) yields

|∂α(P� − P0)(x0)| ≤ω(δ) · δm−|α|(35)

·(1 + max
|β|≤m

|∂βP0(x0)|), for |α| ≤ m, 1 ≤ � ≤ M .
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This in turn implies that

|∂αP�(x0)| ≤ C · (1 + max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m , 1 ≤ � ≤ M .

Since |x� − x0| ≤ δ ≤ 1 by (33) and (34), it follows that

(1 + max
|β|≤m

|∂βP�(x�)|) ≤ C ′ · (1 + max
|β|≤m

|∂βP0(x0)|) for � = 1, . . . , M .(36)

Now, for each �(0 ≤ � ≤ M), we apply our induction hypothesis (Lemma
6.5 for #(S) ≤ k̄ − 1), with x�, S� in place of x0, S. Note that the induction
hypothesis applies, thanks to (29). Thus on each S�, we obtain a map x �→
P x ∈ P, with

P x� = P� ,(37)

P x ∈ f(x) + I(x) for x ∈ S� ,(38)

(1 + max
|β|≤m

|∂βP x(x)|) ≤ Ĉk̄−1 · (1 + max
|β|≤m

|∂βP�(x�)|) for x ∈ S� ,(39)

and

|∂α(P x − P y)(y)| ≤ Ĉk̄−1 · ω(|x − y|) · |x − y|m−|α| · (1 + max
|β|≤m

|∂βP�(x�)|)
(40)

for |α| ≤ m, x, y ∈ S�.
Since S0, S1, . . . , SM form a partition of S, the above maps x �→ P x may

be combined into a single map x �→ P x, defined on S. From (37) and (38), we
have

P x0 = P0, and(41)

P x ∈ f(x) + I(x) for all x ∈ S .(42)

From (36) and (39), we obtain the estimate

(1 + max
|β|≤m

|∂βP x(x)|) ≤ C ′Ĉk̄−1 · (1 + max
|β|≤m

|∂βP0(x0)|) for x ∈ S .(43)

Also, (36) and (40) show that

|∂α(P x − P y)(y)| ≤ C ′Ĉk̄−1 · (1 + max
|β|≤m

|∂βP0(x0)|) · ω(|x − y|) · |x − y|m−|α|
(44)

whenever x and y belong to the same S�.
Suppose instead that x ∈ S� and y ∈ S�′ , with �′ �= �. From (36) and (40),

we have

(45)

|∂α(P x − P�)(x)| ≤C ′Ĉk̄−1 · ω(|x − x�|) · |x − x�|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)

≤C ′Ĉk̄−1 · ω(δ) · δm−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)
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and

(46)

|∂α(P y − P�′)(y)| ≤C ′Ĉk̄−1 · ω(|y − x�′ |) · |y − x�′ |m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)

≤C ′Ĉk̄−1 · ω(δ)δm−|α| · (1 + max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m .

Since |x− y|, |x0 − y| ≤ δ by (33), estimates (45) and (35) (for � and �′) imply

|∂α(P x − P�)(y)| ≤C ′′ · Ĉk̄−1 · ω(δ) · δm−|α| · (1 + max
|β|≤m

|∂βP0(x0)|) and(47)

|∂α(P�′ − P�)(y)| ≤C ′′ω(δ) · δm−|α| · (1 + max
|β|≤m

|∂βP0(x0)|), for |α| ≤ m .(48)

Summing (46), (47), (48), we find that

|∂α(P x − P y)(y)| ≤
[
C ′′′ · Ĉk̄−1 + C ′′′

]
(49)

·ω(δ)δm−|α| · (1 + max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m .

Moreover, since x ∈ S� and y ∈ S�′ with � �= �′, (30) gives |x − y| ≥ ck̄ · δ.
Since ω is a regular modulus of continuity, it follows that ω(|x−y|) ≥ ω(ck̄ ·δ) ≥
ck̄ · ω(δ). Putting these remarks into (49), we conclude that

|∂α(P x − P y)(y)| ≤ C̃
[
Ĉk̄−1 + 1

]
· ω(|x − y|)(50)

·|x − y|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)

for |α| ≤ m, provided x and y do not both belong to the same S�.
In view of (41)–(44) and (50), we see that Lemma 6.5 holds for #(S) = k̄,

with a suitable controlled constant Ĉk̄. This completes the induction step, and
with it the proof of Lemma 6.5.

Lemma 6.6. Suppose

(k̄1D + 2) · k̄1 ≤ k#, 1 + (D + 1) · k̄2 ≤ k̄1, 1 + (D + 1) · k̄3 ≤ k̄2 .(51)

Then there exists a regular modulus of continuity ω+, for which the following
holds. Given S ⊂ E1 with #(S) ≤ k̄3, there exists a map x �→ P x from S

into P, with

P x ∈ Γf (x, k̄3, C) for each x ∈ S ;(52)

|∂αP x(x)| ≤ C for each x ∈ S, |α| ≤ m ; and(53)

|∂α(P x − P y)(y)| ≤ Cω+(|x − y|) · |x − y|m−|α|(54)

for x, y ∈ S, |x − y| ≤ 1, |α| ≤ m .
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Proof. Let ω, δ0 be as in Lemma 6.4, let δ1 be a small positive number to
be picked later, and define

ω+(t) = ω(t)/ω(δ1) if 0 ≤ t ≤ δ1; ω+(t) = 1 if δ1 ≤ t ≤ 1 .(55)

This makes sense for

δ1 < 1 ,(56)

and one checks trivially that ω+ is a regular modulus of continuity.
Suppose S ⊂ E1, with #(S) ≤ k̄3. By the clustering Lemma 3.2, we may

partition S into subsets S1, . . . , SL, with

diam(S�) ≤ δ1 for � = 1, . . . , L ; and(57)

dist(S�, S�′) > cδ1 for � �= �′, 1 ≤, �′ ≤ L .(58)

We may assume that each S� is nonempty. We pick some

y� ∈ S� for each � = 1, . . . , L ,(59)

and we define

Srep = {y1, . . . , yL} ⊆ S ⊆ E1 .(60)

From (60), we have #(Srep) ≤ #(S) ≤ k̄3 ≤ k̄1 (see (51)), hence Lemma 5.4
gives us polynomials P1, . . . , PL ∈ P with the following properties.

P� ∈ Γf (y�, k̄1, 1)⊆ f(y�) + I(y�) for 1 ≤ � ≤ L .(61)

|∂αP�(y�)| ≤ 1 for |α| ≤ m, 1 ≤ � ≤ L .(62)

|∂α(P� − P�′)(y�′)| ≤ |y� − y�′ |m−|α| for |α| ≤ m, 1 ≤ �, �′ ≤ L .(63)

For fixed �, we have y� ∈ S� ⊆ E1 with #(S�) ≤ k̄3 and diam(S�) ≤ δ1. If
we make sure that

δ1 < δ0 ,(64)

then Lemma 6.5 applies, with k̄3 in place of k̄.
Note that the constant called Ĉk̄ in Lemma 6.5 is controlled, since k̄3 ≤ k#,

and k# depends only on m and n. Hence, we obtain a map x �→ P x, from S�

into P, with the following properties.

P y� = P� .(65)

P x ∈ f(x) + I(x) for all x ∈ S� .(66)

|∂αP x(x)| ≤ C · (1 + max
|β|≤m

|∂βP�(y�)|) for x ∈ S�, |α| ≤ m .(67)

|∂α(P x − P x′
)(x′)| ≤Cω(|x − x′|)(68)

·|x − x′|m−|α| · (1 + max
|β|≤m

|∂βP�(y�)|)

for |α| ≤ m, x, x′ ∈ S�.
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Putting (62) into (67) and (68), we find that

|∂αP x(x)| ≤ C1 for x ∈ S�, |α| ≤ m; and(69)

|∂α(P x − P x′
)(x′)| ≤ C1ω(|x − x′|) · |x − x′|m−|α| for |α| ≤ m, x, x′ ∈ S� .

(70)

Next, fix x̄ ∈ S�. We prepare to apply Lemma 5.10, with A1 = 1, A2 = 1,
x′ = y�, x

′′ = x̄, Q′ = P�, Q
′′ = P x̄. We check that the hypotheses of that

lemma hold here. In fact, (51) tells us that k̄1, k̄2, k̄3 are as in Lemma 5.10.
Also, y�, x̄ ∈ S� ⊆ S ⊆ E1, hence |y� − x̄| ≤ diam(S�) ≤ δ1 < η, provided we
take

δ1 < η ,(71)

with η as in Lemma 5.10 for A1 = A2 = 1, and for our k̄1, k̄2, k̄3. Also,
P� ∈ Γf (y�, k̄1, 1) (see (61)), and P x̄ ∈ f(x̄)+ I(x̄) (see (66)). Finally, (70) and
(65) show that

|∂α(P x̄ − P�)(y�)| ≤ C1ω(δ1) · |x̄ − y�|m−|α| ≤ |x̄ − y�|m−|α|

for |α| ≤ m, provided δ1 is so small that

C1ω(δ1) ≤ 1 .(72)

We now pick δ1 > 0 to satisfy (56), (64), (71), (72). Thus, as claimed,
the hypotheses of Lemma 5.10 hold here. Applying that lemma, we learn that
P x̄ ∈ Γf (x̄, k̄3, C). Thus,

P x ∈ Γf (x, k̄3, C) for all x ∈ S� .(73)

We recall that S is partitioned into S1, . . . , SL, and that we have defined
a map x �→ P x from each S� into P. We may therefore combine these maps on
the S� into a single map x �→ P x defined on all of S. We will check that this
map satisfies the conclusions of Lemma 6.6. In fact, (73) shows that

P x ∈ Γf (x, k̄3, C) for all x ∈ S ,(74)

and (69) shows that

|∂αP x(x)| ≤ C for |α| ≤ m, x ∈ S .(75)

To complete the proof of Lemma 6.6, it remains to prove (54). If x and y

belong to the same S�, then we have |x−y| ≤ diam(S�) ≤ δ1; hence ω(|x−y|) ≤
ω+(|x − y|) (see (55) and (57)), and therefore (54) follows from (70).

On the other hand, suppose x ∈ S�, y ∈ S�′ with � �= �′. Then (58) gives
|x− y| ≥ cδ1, and therefore ω+(|x− y|) ≥ ω+(cδ1) ≥ cω+(δ1) = c, by virtue of
(55) and the fact that ω+ is a regular modulus of continuity. Thus, to prove
Lemma 6.6, it is enough to show that

|∂α(P x − P y)(y)| ≤ C|x − y|m−|α| for |α| ≤ m, x ∈ S�, y ∈ S�′ , � �= �′ .(76)
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Fixing x ∈ S�, y ∈ S�′ , � �= �′, we have

|x − y�| ≤ δ1, |y − y�′ | ≤ δ1, |x − y| ≥ cδ1 ,(77)

thanks to (57), (58), (59). Also,

|∂α(P x − P�)(x)|, |∂α(P y − P�′)(y)| ≤ Cδ
m−|α|
1 ≤ C ′|x − y|m−|α| for |α| ≤ m ,

(78)

by (70) and (77). These estimates imply

|∂α(P x − P�)(y)|, |∂α(P y − P�′)(y)| ≤ C ′′|x − y|m−|α| for |α| ≤ m .(79)

Since also |y� − y�′ | ≤ C|x− y| by (77), we obtain from (63) the estimates

|∂α(P� − P�′)(y�′)| ≤ C|x − y|m−|α| for |α| ≤ m .(80)

We have |y − y�′ | ≤ C|x − y| by (77); hence (80) implies

|∂α(P� − P�′)(y)| ≤ C ′|x − y|m−|α| for |α| ≤ m .(81)

The desired estimate (76) is immediate from (79) and (81), and the proof of
Lemma 6.6 is complete.

7. Picking the constant k#

From the Generalized Sharp Whitney theorem and the setup for the main
induction, we recall the constants k#

GSW and k#
old. (See Sections 1 and 4.)

These constants have already been picked, and they depend only on m and n.
We now fix constants k̄1, k̄2, k̄3, k

#, depending only on m and n, so that
the following conditions are satisfied.

k̄3 ≥ k#
old + 5 .(1)

k̄3 ≥ k#
GSW + 5 .(2)

k̄2 ≥ 1 + (D + 1) · k̄3 .(3)

k̄1 ≥ 1 + (D + 1) · k̄2 .(4)

k# ≥ (k̄1D + 2) · k̄1 .(5)

8. Constructing the auxiliary function

As before, we suppose E, f, I, etc. are as in Section 4; and we write
c, C, C ′, etc. to denote controlled constants. Our goal in this section is to
carry out Step 1 of the proof of Theorem 3, as explained in the introduction.

Comparing estimates (51) in Section 6 with our choice of k̄1, k̄2, k̄3, k
# in

Section 7, we see that Lemma 6.6 applies to E, f, I. Let ω+ be the regular
modulus of continuity given by Lemma 6.6.
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Thus, given S ⊂ E1 with #(S) ≤ k̄3, there exists a map x �→ P x from S

to P, with

P x ∈ Γf (x, k̄3, C) for each x ∈ S ;(1)

|∂αP x(x)| ≤ C for |α| ≤ m, x ∈ S; and(2)

|∂α(P x − P y)(y)| ≤Cω+(|x − y|)(3)

·|x − y|m−|α| for |α| ≤ m, x, y ∈ S, |x − y| ≤ 1 .

In particular, taking S = {x} for x ∈ E1, we obtain from (1) that
Γf (x, k̄3, C) is nonempty for every x ∈ E1. Pick

g(x) ∈ Γf (x, k̄3, C) for each x ∈ E1 .(4)

Then Lemma 5.1 shows that Γf (x, k̄3, C) ⊆ g(x) + C ′σ(x, k̄3) for x ∈ E1.
Hence, (1), (2), (3) imply the following.

(5) Given S ⊂ E1 with #(S) ≤ k̄3, there exists a map x �→ P x from S into
P, with

(a) P x ∈ g(x) + C ′σ(x, k̄3) for x ∈ S;

(b) |∂αP x(x)| ≤ C ′ for |α| ≤ m, x ∈ S;

(c) |∂α(P x − P y)(y)| ≤ C ′ω+(|x − y|) · |x − y|m−|α| for |α| ≤ m, x, y ∈ S,
|x − y| ≤ 1.

Also, Lemma 5.3 tells us that

(6) For each x ∈ E1, the set σ(x, k̄3) is Whitney convex, with Whitney
constant C ′′.

Recall from Section 7 that k̄3 ≥ k#
GSW. Hence, (5) and (6) show that the

hypotheses of the Generalized Sharp Whitney theorem are satisfied, with our
present ω+, E1, g(x)/C ′, σ(x, k̄3), C ′′, in place of ω, E, f(x), σ(x), A0. Hence,
the Generalized Sharp Whitney theorem produces a function F̃ ∈ Cm,ω+

(Rn),
with

‖ F̃ ‖Cm,ω+ (Rn)≤ C ′′′, and(7)

Jx(F̃ ) ∈ g(x) + C ′′′σ(x, k̄3) for all x ∈ E1 .(8)

In particular, (7) implies

‖ F̃ ‖Cm(Rn)≤ C ′′′ ,(9)

and (4), (8) and Lemma 5.1 yield

Jx(F̃ ) ∈ Γf (x, k̄3, C̃) for all x ∈ E1 .(10)

Thus, we have proven the following result, completing Step 1 from the intro-
duction.
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Lemma 8.1. There exists F̃ ∈ Cm(Rn), with ‖ F̃ ‖Cm(Rn)≤ C, and
Jx(F̃ ) ∈ Γf (x, k̄3, C) for all x ∈ E1.

9. Rescaling the induction hypothesis

Recall that we are assuming that Theorem 3 holds when the number of
strata is less than ∧. After an obvious rescaling, we obtain the following result.

Lemma 9.1 (Rescaled Induction Hypothesis). Let δ̃ > 0, and let E ⊆
Rn be compact. Suppose that for each x ∈ E we are given an m-jet f(x) ∈ Rx

and an ideal I(x) ⊂ Rx. Assume that the following conditions are satisfied.

(I) Given x0 ∈ E, P0 ∈ f(x0) + I(x0), and ε > 0, there exists δ > 0
such that for any x1, . . . , xk#

old
∈ E ∩ B(x0, δ), there exist polynomials

P1, . . . , Pk#
old

∈ P, with Pi ∈ f(xi) + I(xi) for 0 ≤ i ≤ k#
old; and

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k#
old .

(II) Given x1, . . . , xk#
old

∈ E, there exist polynomials P1, . . . , Pk#
old

∈ P, with

Pi ∈ f(xi) + I(xi) for 1 ≤ i ≤ k#
old; |∂αPi(xi)| ≤ δ̃m−|α| for |α| ≤ m,

1 ≤ i ≤ k#
old; and |∂α(Pi − Pj)(xj)| ≤ |xi − xj |m−|α| for |α| ≤ m, 1 ≤ i,

j ≤ k#
old.

Assume also that E has fewer than ∧ strata. Then there exists F ∈ Cm(Rn),
with |∂αF | ≤ Cδ̃m−|α| on Rn for |α| ≤ m, and Jx(F ) ∈ f(x) + I(x) for all
x ∈ E.

Lemma 9.1 will be used to carry out Step 2 of the plan described in the
introduction.

10. The Whitney decomposition

In this section, we introduce the Whitney cubes mentioned in the intro-
duction, and carry out Step 2 of the plan given in the introduction for proving
Theorem 3.

We first partition Rn into a grid of cubes {Q0
ν} of diameter 1. Next,

we repeatedly subdivide the Q0
ν into dyadic subcubes, in Calderón-Zygmund

fashion. Once we have reached a given subcube Q of one of the Q0
ν , we decide

whether to retain Q or to subdivide it, according to Whitney’s rule:
If Q∗ ∩ E1 is empty, then we retain Q. Otherwise, we subdivide Q into

2n congruent subcubes Q1, . . . , Q2n , and continue. Here, Q∗ denotes a closed
cube in Rn, with the same center as Q, and with three times the diameter of
Q. Recall that E1 ⊆ Rn is compact. Thus Rn � E1 is partitioned into cubes
{Qν}, with the following properties, where we set
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(1) δν = diam(Qν) ≤ 1:

(2) Rn � E1 =
⋃
ν

Qν ;

(3) Q∗
ν ∩ E1 is empty;

(4) If δν < 1, then there exists x
(ν)
0 ∈ E1 with dist(x(ν)

0 , Qν) < Cδν ;

(5) If the closures of Qµ and Qν have nonempty intersection, then cδµ <

δν < Cδµ.

As in the proof of the standard Whitney extension theorem (see [M], [emS],
[hW1]), these geometrical properties of the Qν allow us to construct a partition
of unity {θν}, with the following properties.

1 =
∑

ν

θν on Rn � E1 .(6)

supp θν ⊂ Q∗
ν .(7)

|∂αθν | ≤ Cδ−|α|
ν on Rn, for |α| ≤ m + 1 .(8)

(9) Any given point of Rn � E1 has an open neighborhood that meets at
most C of the supports of the θν .

Let F̃ ∈ Cm(Rn) be as in Lemma 8.1. Thus,

‖ F̃ ‖Cm(Rn)≤ C, and(10)

Jx(F̃ ) ∈ Γf (x, k̄3, C) ⊆ f(x) + I(x) for all x ∈ E1 .(11)

Thanks to (10), the function F̃ satisfies (12) and (13) below. (Recall that
E is compact.)

(12) Given ε > 0, there exists δ > 0 for which the following holds. Suppose
x0 ∈ E and x1, . . . , xk̄3

∈ B(x0, δ). Set P̃i = Jxi
(F̃ ) for i = 0, 1, . . . , k̄3.

Then

|∂α(P̃i − P̃j)(xj)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3 .

(13) Suppose x0, . . . , xk̄3
∈ Rn. Set P̃i = Jxi

(F̃ ) for i = 0, 1, . . . , k̄3. Then

|∂α(P̃i − P̃j)(xj)| ≤ C|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3 .

From (10), (11) and Lemma 6.3, we have

(14) Given ε > 0, there exists δ > 0 for which the following holds. Suppose
x0 ∈ E1 and x1, . . . , xk̄3

∈ E ∩B(x0, δ). Then there exist P0, P1, . . . , Pk̄3

∈ P, with
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(a) P0 = Jx0(F̃ );

(b) Pi ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄3; and

(c) |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

Also, from (11) and the definition of Γf (x, k̄3, C), we have

(15) Suppose x0 ∈ E1 and x1, . . . , xk̄3
∈ E. Then there exist P0, P1, . . . , Pk̄3

∈ P, with

(a) P0 = Jx0(F̃ );

(b) Pi ∈ f(xi) + I(xi) for i = 0, 1, . . . , k̄3;

(c) |∂α(Pi − Pj)(xj)| ≤ C|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

From (12) and (14), we deduce (16) below, by taking as our polynomials
Pi − P̃i with Pi as in (14), and with P̃i as in (12).

(16) Given ε > 0, there exists δ > 0 for which the following holds. Suppose
x0 ∈ E1 and x1, . . . , xk̄3

∈ E∩B(x0, δ). Then there exist P0, P1, . . . , Pk̄3

∈ P, with

(a) P0 = 0;

(b) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 0, 1, . . . , k̄3; and

(c) |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

Similarly, from (13) and (15), we obtain

(17) Suppose x0 ∈ E1 and x1, . . . , xk̄3
∈ E. Then there exist P0, P1, . . . , Pk̄3

∈ P, with

(a) P0 = 0;

(b) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 0, 1, . . . , k̄3; and

(c) |∂α(Pi − Pj)(xj)| ≤ C|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

Now suppose Qν is one of our Whitney cubes, with diameter δν < 1.
Taking x

(ν)
0 as in (4), and applying (17), we learn the following.

(18) Suppose x1, . . . , xk̄3
∈ E ∩ Q∗

ν . Then there exist P1, . . . , Pk̄3
∈ P, with

(a) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 1, . . . , k̄3;

(b) |∂αPi(xi)| ≤ Cδ
m−|α|
ν for |α| ≤ m, i = 1, . . . , k̄3; and
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(c) |∂α(Pi − Pj)(xj)| ≤ C|xi − xj |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k̄3.

Here, we take x0 = x
(ν)
0 in (17). Estimate (18)(b) follows from (17)(a)

and (17)(c) with i = 0, by virtue of (4). Similarly, (16) and (4) imply:

(19) Given ε > 0, there exists δ > 0 for which the following holds. Suppose
x1, . . . , xk̄3

∈ E ∩ Q∗
ν , with δν < δ. Then there exist P1, . . . , Pk̄3

∈ P,
with

(a) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 1, . . . , k̄3;

(b) |∂αPi(xi)| ≤ εδ
m−|α|
ν for |α| ≤ m, i = 1, . . . , k̄3; and

(c) |∂α(Pi − Pj)(xi)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

From (18) and (19), it is easy to produce a function A(t), mapping (0, 1]
to the positive reals, for which the following results hold.

(20) 0 < A(t) ≤ C for all t ∈ (0, 1].

(21) lim
t→0

A(t) = 0.

(22) Suppose δν < 1, and suppose x1, . . . , xk̄3
∈ E ∩ Q∗

ν . Then there exist
P1, . . . , Pk̄3

∈ P, with

(a) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 1, . . . , k̄3;

(b) |∂αPi(xi)| ≤ A(δν) · δm−|α|
ν for i = 1, . . . , k̄3, |α| ≤ m; and

(c) |∂α(Pi − Pj)(xj)| ≤ A(δν) · |xi − xj |m−|α| for |α| ≤ m, 1 ≤ i, j ≤ k̄3.

Moreover, because E, f, I are assumed to satisfy hypothesis (I) of Theo-
rem 3, we obtain the following result, thanks to (12).

(23) Given x0 ∈ E, P0 ∈ [f(x0)−Jx0(F̃ )]+I(x0), and ε > 0, there exists δ > 0
such that, for any x1, . . . , xk̄3

∈ E∩B(x0, δ) there exist P1, . . . , Pk̄3
∈ P,

such that

(a) Pi ∈ [f(xi) − Jxi
(F̃ )] + I(xi) for i = 0, 1, . . . , k̄3; and

(b) |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄3.

For any Whitney cube Qν with diameter δν < 1, we may now apply the
Rescaled Induction Hypothesis (Lemma 9.1), with

(24) δν , E ∩ Q∗
ν , [f(x) − Jx(F̃ )]

/
A(δν), I(x) in place of δ̃, E, f(x), I(x) in

Lemma 9.1.
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Note that the hypotheses of Lemma 9.1 hold for the data (24). In fact,
hypotheses (I) and (II) of that lemma are immediate from (22) and (23), since
k̄3 ≥ k#

old. (See Section 7.) The number of strata for I(x) on E ∩Q∗
ν is strictly

less than ∧, since the number of strata in E is precisely ∧, and Q∗
ν does not

intersect the lowest stratum E1. (See (3).) Finally, E∩Q∗
ν is compact, since we

took Q∗
ν to be a closed cube. Thus, as claimed, the hypotheses of Lemma 9.1

hold for the data (24).
Applying Lemma 9.1, we now learn the following, for any Whitney cube

Qν with diameter δν < 1:

(25) There exists a function Fν ∈ Cm(Rn), with

(a) |∂αFν | ≤ CA(δν) · δm−|α|
ν on Rn, for |α| ≤ m; and

(b) Jx(Fν) ∈ [f(x) − Jx(F̃ )] + I(x) for all x ∈ E ∩ Q∗
ν .

We can also show that in effect (25) holds when the Whitney cube Qν

has diameter δν = 1. In fact, we may simply apply our induction hypothesis
(Theorem 3 with fewer than ∧ strata), with E ∩ Q∗

ν , f(x), I(x) in place of
E, f(x), I(x). One checks trivially that the hypotheses of Theorem 3 hold for
E ∩ Q∗

ν , f(x), I(x), since they are assumed to hold for E, f(x), I(x). Again,
E∩Q∗

ν has fewer than ∧ strata because Q∗
ν does not meet the lowest stratum E1.

Applying the inductive hypothesis, we obtain a function F̌ν ∈ Cm(Rn), with
|∂αF̌ν | ≤ C on Rn, for |α| ≤ m; and Jx(F̌ν) ∈ f(x) + I(x) for all x ∈ E ∩ Q∗

ν .
Setting Fν = F̌ν − F̃ , and recalling (10), we see that Fν ∈ Cm(Rn), with

|∂αFν | ≤ C on Rn, for |α| ≤ m; and(26)

Jx(Fν) ∈ [f(x) − Jx(F̃ )] + I(x) for all x ∈ E ∩ Q∗
ν .(27)

Replacing A(t) by A+(t) = A(t)+t, we preserve (20), (21), (25). Moreover,
the analogue of (25), with A(t) replaced by A+(t), holds also for δν = 1, thanks
to (26), (27) and the obvious estimate A+(1) ≥ 1. Thus, we have proven the
following result.

Lemma 10.1. There exist functions Fν ∈ Cm(Rn) and A : (0, 1] −→
(0,∞), for which the following hold :

(a) Jx(Fν) ∈ [f(x) − Jx(F̃ )] + I(x) for all x ∈ E ∩ Q∗
ν , and for all ν;

(b) |∂αFν | ≤ CA(δν) · δm−|α|
ν on Rn, for |α| ≤ m and for all ν;

(c) 0 < A(t) ≤ C for all t ∈ (0, 1]; and

(d) lim
t→0+

A(t) = 0.

This completes Step 2 of the plan of the proof of Theorem 3, as outlined
in the introduction.
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11. Proof of the main result

In this section, we carry out Step 3 of the plan given in the introduction,
and complete the proof of Theorem 3. Since we have already reduced Theorems
1 and 2 to Theorem 3, this will establish those results as well.

We let E, f(x), I(x), E1,∧ be as in Section 4. We retain the Whitney
cubes Qν and the cutoff functions θν from Section 10. Finally, we let Fν and
A(t) be as in Lemma 10.1.

For δ > 0, we define

F [δ](x) =
∑
δν>δ

θν(x)Fν(x) .(1)

From (10.3), (10.7), (10.9), we see that any x ∈ E1 has an open neighbor-
hood (depending on δ) that meets none of the supports of the θν with δν > δ;
while any x ∈ Rn � E1 has an open neighborhood that meets at most C of
the supports of the θν . Together with (10.8) and Lemma 10.1, this shows that
each F [δ] belongs to Cm(Rn), and that

Jx(F [δ]) = 0 for all x ∈ E1, and(2)

Jx(F [δ]) =
∑
δν >δ

supp θν�x

Jx(θν) · Jx(Fν) for all x ∈ Rn � E1 .(3)

On the right side of (3), there are only finitely many summands, and the dot
denotes multiplication in Rx.

Since supp θν ⊂ Q∗
ν and I(x) is an ideal in Rx for x ∈ E, Lemma 10.1(a)

shows that

Jx(θν) · Jx(Fν) ∈ Jx(θν) · [f(x) − Jx(F̃ )] + I(x) for x ∈ E ∩ supp θν .

Hence, (3) implies

Jx(F [δ]) ∈ [
∑
δν >δ

supp θν�x

Jx(θν)] · [f(x) − Jx(F̃ )] + I(x) for x ∈ E � E1 .(4)

Fix x ∈ Rn � E1. Then x belongs to only finitely many of supports
of the θν , say, supp θν1 , . . . , supp θνN

. If 0 < δ < min{δν1 , . . . , δνN
}, then∑

δν >δ

supp θν�x

Jx(θν) =
∑

supp θν�x

Jx(θν) = 1, thanks to (10.6). Therefore, (4) shows

that

Jx(F [δ]) ∈ [f(x) − Jx(F̃ )] + I(x) for x ∈ E � E1, δ < δ̃(x) ,(5)

where δ̃(x) is a small enough positive number depending on x.
Next, we estimate the Cm-norm of F [δ]. From Lemma 10.1(b),(c) and

(10.8), we obtain

|∂α(θνFν)| ≤ CA(δν) · δm−|α|
ν ≤ C ′δm−|α|

ν ≤ C ′ on Rn for |α| ≤ m .(6)
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Since also each x ∈ Rn belongs to at most C of the supports of the θν , it
follows from (1) and (6) that

‖ F [δ] ‖Cm(Rn)≤ C ′′ for all δ > 0 .(7)

Similarly, if 0 < δ1 < δ2, then we can estimate F [δ1] − F [δ2]. In fact, for
|α| ≤ m and x ∈ Rn, (1) and (6) show that

|∂αF [δ1](x) − ∂αF [δ2](x)|= |
∑

δ1<δν≤δ2
supp θν�x

∂α(θνFν)(x)|

≤
∑

δ1<δν≤δ2
supp θν�x

CA(δν) · δm−|α|
ν ≤ C ′ · sup{A(δ) : δ ≤ δ2} ,

since x ∈ supp θν for at most C distinct ν. In view of Lemma 10.1(d), it follows
that lim

δ1,δ2→0+
‖ F [δ1] − F [δ2] ‖Cm(Rn)= 0. Consequently, F [δ] converges in Cm

norm to a function F [0] ∈ Cm(Rn), as δ → 0+. In particular, Jx(F [δ]) −→
Jx(F [0]) as δ → 0+, for each x. Hence, (2), (5), (7) show that

Jx(F [0]) = 0 for all x ∈ E1 ,(8)

Jx(F [0]) ∈ [f(x) − Jx(F̃ )] + I(x) for all x ∈ E � E1 , and(9)

‖ F [0] ‖Cm(Rn)≤ C .(10)

Although we will not use the fact, the reader may readily verify that F [0] =∑
ν

θνFν on Rn. Thus, the results in this section agree with the description of

Step 3 of the plan of our proof, given in the introduction.
Next, we recall from Section 10 that F̃ ∈ Cm(Rn), with

Jx(F̃ ) ∈ f(x) + I(x) for all x ∈ E1, and(11)

‖ F̃ ‖Cm(Rn)≤ C .(12)

Finally, we set

F = F [0] + F̃ ∈ Cm(Rn) .(13)

From (8) and (11), we have Jx(F ) ∈ f(x) + I(x) for all x ∈ E1; and from
(9), we have Jx(F ) ∈ f(x) + I(x) for all x ∈ E � E1. Thus,

Jx(f) ∈ f(x) + I(x) for all x ∈ E .(14)

From (10) and (12) we have

‖ F ‖Cm(Rn)≤ C ′ .(15)

Thus, we have exhibited a Cm-function F satisfying (14) and (15). However,
the existence of such an F is precisely the conclusion of Theorem 3. Thus,
Theorem 3 holds for E, f(x), I(x).

This completes our induction on the number of strata, and proves Theo-
rem 3.
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