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Minimal surfaces from circle patterns:
Geometry from combinatorics

By ALEXANDER I. BOBENKO™, TiM HOFFMANN**, and BORIS A. SPRINGBORN***

1. Introduction

The theory of polyhedral surfaces and, more generally, the field of discrete
differential geometry are presently emerging on the border of differential and
discrete geometry. Whereas classical differential geometry investigates smooth
geometric shapes (such as surfaces), and discrete geometry studies geometric
shapes with a finite number of elements (polyhedra), the theory of polyhedral
surfaces aims at a development of discrete equivalents of the geometric notions
and methods of surface theory. The latter appears then as a limit of the
refinement of the discretization. Current progress in this field is to a large
extent stimulated by its relevance for computer graphics and visualization.

One of the central problems of discrete differential geometry is to find
proper discrete analogues of special classes of surfaces, such as minimal, con-
stant mean curvature, isothermic surfaces, etc. Usually, one can suggest vari-
ous discretizations with the same continuous limit which have quite different
geometric properties. The goal of discrete differential geometry is to find a dis-
cretization which inherits as many essential properties of the smooth geometry
as possible.

Our discretizations are based on quadrilateral meshes, i.e. we discretize
parametrized surfaces. For the discretization of a special class of surfaces, it
is natural to choose an adapted parametrization. In this paper, we investigate
conformal discretizations of surfaces, i.e. discretizations in terms of circles and
spheres, and introduce a new discrete model for minimal surfaces. See Figures
1 and 2. In comparison with direct methods (see, in particular, [23]), leading
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Figure 1: A discrete minimal Enneper surface (left) and a discrete minimal
catenoid (right).

Figure 2: A discrete minimal Schwarz P-surface (left) and a discrete minimal
Scherk tower (right).

usually to triangle meshes, the less intuitive discretizations of the present pa-
per have essential advantages: they respect conformal properties of surfaces,
possess a maximum principle (see Remark on p. 245), etc.

We consider minimal surfaces as a subclass of isothermic surfaces. The
analogous discrete surfaces, discrete S-isothermic surfaces [4], consist of touch-
ing spheres and of circles which intersect the spheres orthogonally in their
points of contact; see Figure 1 (right). Continuous isothermic surfaces allow
a duality transformation, the Christoffel transformation. Minimal surfaces are
characterized among isothermic surfaces by the property that they are dual
to their Gauss map. The duality transformation and the characterization of
minimal surfaces carries over to the discrete domain. Thus, one arrives at the
notion of discrete minimal S-isothermic surfaces, or discrete minimal surfaces
for short. The role of the Gauss maps is played by discrete S-isothermic sur-
faces the spheres of which all intersect one fixed sphere orthogonally. Due to
a classical theorem of Koebe (see §3) any 3-dimensional combinatorial convex
polytope can be (essentially uniquely) realized as such a Gauss map.
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This definition of discrete minimal surfaces leads to a construction method
for discrete S-isothermic minimal surfaces from discrete holomorphic data, a
form of a discrete Weierstrass representation (see §5). Moreover, the classical
“associated family” of a minimal surface, which is a one-parameter family of
isometric deformations preserving the Gauss map, carries over to the discrete
setup (see §6).

Our general method to construct discrete minimal surfaces is schematically
shown in the following diagram. (See also Figure 15.)

continuous minimal surface

4

image of curvature lines under Gauss-map

4

cell decomposition of (a branched cover of) the sphere

4

orthogonal circle pattern

4
Koebe polyhedron

Y

discrete minimal surface

As usual in the theory on minimal surfaces [18], one starts constructing such
a surface with a rough idea of how it should look. To use our method, one
should understand its Gauss map and the combinatorics of the curvature line
pattern. The image of the curvature line pattern under the Gauss map provides
us with a cell decomposition of (a part of) S? or a covering. From these data,
applying the Koebe theorem, we obtain a circle packing with the prescribed
combinatorics. Finally, a simple dualization step yields the desired discrete
minimal surface.

Let us emphasize that our data, besides possible boundary conditions,
are purely combinatorial—the combinatorics of the curvature line pattern. All
faces are quadrilaterals and typical vertices have four edges. There may exist
distinguished vertices (corresponding to the ends or umbilic points of a minimal
surface) with a different number of edges.

The most nontrivial step in the above construction is the third one listed
in the diagram. It is based on the Koebe theorem. It implies the existence and
uniqueness for the discrete minimal S-isothermic surface under consideration,
but not only this. This theorem can be made an effective tool in constructing
these surfaces. For that purpose, we use a variational principle from [5], [28]
for constructing circle patterns. This principle provides us with a variational
description of discrete minimal S-isothermic surfaces and makes possible a
solution of some Plateau problems as well.
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In Section 7, we prove the convergence of discrete minimal S-isothermic
surfaces to smooth minimal surfaces. The proof is based on Schramm’s approxi-
mation result for circle patterns with the combinatorics of the square grid [26].
The best known convergence result for circle patterns is C'*°-convergence of
circle packings [14]. It is an interesting question whether the convergence of
discrete minimal surfaces is as good.

Because of the convergence, the theory developed in this paper may be
used to obtain new results in the theory of smooth minimal surfaces. A typical
problem in the theory of minimal surfaces is to decide whether surfaces with
some required geometric properties exist, and to construct them. The discovery
of the Costa-Hoffman-Meeks surface [19], a turning point of the modern theory
of minimal surfaces, was based on the Weierstrass representation. This power-
ful method allows the construction of important examples. On the other hand,
it requires a specific study for each example; and it is difficult to control the
embeddedness. Kapouleas [21] proved the existence of new embedded exam-
ples using a new method. He considered finitely many catenoids with the same
axis and planes orthogonal to this axis and showed that one can desingularize
the circles of intersection by deformed Scherk towers. This existence result is
very intuitive, but it gives no lower bound for the genus of the surfaces. Al-
though some examples with lower genus are known (the Costa-Hoffman-Meeks
surface and generalizations [20]), which prove the existence of Kapouleas’ sur-
faces with given genus, to construct them using conventional methods is very
difficult [30]. Our method may be helpful in addressing these problems. At the
present time, however, the construction of new minimal surfaces from discrete
ones remains a challenge.

Apart from discrete minimal surfaces, there are other interesting sub-
classes of S-isothermic surfaces. In future publications, we plan to treat dis-
crete constant mean curvature surfaces in Euclidean 3-space and Bryant sur-
faces [7], [10]. (Bryant surfaces are surfaces with constant mean curvature 1
in hyperbolic 3-space.) Both are special subclasses of isothermic surfaces that
can be characterized in terms of surface transformations. (See [4] and [16]
for a definition of discrete constant mean curvature surfaces in R? in terms
of transformations of isothermic surfaces. See [17] for the characterization of
continuous Bryant surfaces in terms of surface transformations.)

More generally, we believe that the classes of discrete surfaces considered
in this paper will be helpful in the development of a theory of discrete confor-
mally parametrized surfaces.

2. Discrete S-isothermic surfaces

Every smooth immersed surface in 3-space admits curvature line parame-
ters away from umbilic points, and every smooth immersed surface admits con-
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formal parameters. But not every surface admits a curvature line parametriza-
tion that is at the same time conformal.

Definition 1. A smooth immersed surface in R3 is called isothermic if it
admits a conformal curvature line parametrization in a neighborhood of every
nonumbilic point.

Geometrically, this means that the curvature lines divide an isothermic
surface into infinitesimal squares. An isothermic immersion (a surface patch
in conformal curvature line parameters)

f:R?>D—R3
(z,y) — f(z,y)

is characterized by the properties

(1) ||fI|| = ||fy||7 fo—fya fmy € Span{f:rvfy}'

Being an isothermic surface is a M&bius-invariant property: A Mobius transfor-
mation of Euclidean 3-space maps isothermic surfaces to isothermic surfaces.
The class of isothermic surfaces contains all surfaces of revolution, all quadrics,
all constant mean curvature surfaces, and, in particular, all minimal surfaces
(see Theorem 4). In this paper, we are going to find a discrete version of mini-
mal surfaces by characterizing them as a special subclass of isothermic surfaces
(see §4).

While the set of umbilic points of an isothermic surface can in general
be more complicated, we are only interested in surfaces with isolated umbilic
points, and also in surfaces all points of which are umbilic. In the case of iso-
lated umbilic points, there are exactly two orthogonally intersecting curvature
lines through every nonumbilic point. An umbilic point has an even number
2k (k # 2) of curvature lines originating from it, evenly spaced at m/k angles.
Minimal surfaces have isolated umbilic points. If, on the other hand, every
point of the surface is umbilic, then the surface is part of a sphere (or plane)
and every conformal parametrization is also a curvature line parametrization.

Definition 2 of discrete isothermic surfaces was already suggested in [3].
Roughly speaking, a discrete isothermic surface is a polyhedral surface in
3-space all faces of which are conformal squares. To make this more pre-
cise, we use the notion of a “quad-graph” to describe the combinatorics of a
discrete isothermic surface, and we define “conformal square” in terms of the
cross-ratio of four points in R3.

A cell decomposition D of an oriented two-dimensional manifold (possibly
with boundary) is called a quad-graph, if all its faces are quadrilaterals, that
is, if they have four edges. The cross-ratio of four points z1, zo, 23, 24 in the
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Figure 3: Left: A conformal square. The sides a, da’, b, b’ are interpreted as
complex numbers. Right: Right-angled kites are conformal squares.

Riemann sphere C = C U {oo} is
(21 — 20)(23 — 24)
(22 — 23) (24 — 21)

The cross-ratio of four points in R® can be defined as follows: Let S be a

CI'(Zl, 22,23, 24) =

sphere (or plane) containing the four points. S is unique except when the four
points lie on a circle (or line). Choose an orientation on S and an orientation-
preserving conformal map from S to the Riemann sphere. The cross-ratio of
the four points in R3 is defined as the cross-ratio of the four images in the
Riemann sphere. The two orientations on .S lead to complex conjugate cross-
ratios. Otherwise, the cross-ratio does not depend on the choices involved in
the definition: neither on the conformal map to the Riemann sphere, nor on
the choice of S when the four points lie in a circle. The cross-ratio of four
points in R? is thus defined up to complex conjugation. (For an equivalent
definition involving quaternions, see [3], [15].) The cross-ratio of four points
in R3 is invariant under Mé&bius transformations of R3. Conversely, if py, pa,
p3, pa € R3 have the same cross-ratio (up to complex conjugation) as p}, ph,
ph, Py € R3 , then there is a M&bius transformation of R? which maps each Dj
to p;-.

Four points in R3 form a conformal square, if their cross-ratio is —1, that
is, if they are Mobius-equivalent to a square. The points of a conformal square
lie on a circle (see Figure 3).

Definition 2. Let D be a quad-graph such that the degree of every interior
vertex is even. (That is, every vertex has an even number of edges.) Let V(D)
be the set of vertices of D. A function

f:V(D) —R3

is called a discrete isothermic surface if for every face of D with vertices vy, va,
v3, vy in cyclic order, the points f(v1), f(ve), f(vs), f(v4) form a conformal
square.

The following three points should motivate this definition.
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e Like the definition of isothermic surfaces, this definition of discrete isother-
mic surfaces is Mobius-invariant.

o If f:R? D> D — R? is an immersion, then for € — 0,

cr(f(:c—e,y—e),f(x—i—e,y—e),f(ac+e,y+e),f(x—e,y+e)) = —1+0(é?)

for all z € D if and only if f is an isothermic immersion (see [3]).

e The Christoffel transformation, which also characterizes isothermic sur-
faces, has a natural discrete analogue (see Propositions 1 and 2). The
condition that all vertex degrees have to be even is used in Proposition 2.

Interior vertices with degree different from 4 play the role of umbilic
points. At all other vertices, two edge paths—playing the role of curvature
lines—intersect transversally. It is tempting to visualize a discrete isothermic
surface as a polyhedral surface with planar quadrilateral faces. However, one
should keep in mind that those planar faces are not Mobius invariant. On the
other hand, when we will define discrete minimal surfaces as special discrete
isothermic surfaces, it will be completely legitimate to view them as polyhedral
surfaces with planar faces because the class of discrete minimal surfaces is not
Mobius invariant anyway.

The Christoffel transformation [8] (see [15] for a modern treatment) trans-
forms an isothermic surface into a dual isothermic surface. It plays a crucial
role in our considerations. For the reader’s convenience, we provide a short
proof of Proposition 1.

PROPOSITION 1. Let f : R2 D D — R3 be an isothermic immersion,
where D is simply connected. Then the formulas

o fy
25 15,12

define (up to a translation) another isothermic immersion f* : R> > D — R3
which is called the Christoffel transformed or dual isothermic surface.

(2) Iz

Iy =-

Proof. First, we need to show that the 1-form df* = f7 dz+ f dy is closed
and thus defines an immersion f*. From equations (1), we have fz, = af,+bfy,
where a and b are functions of x and y. Taking the derivative of equations (2)
with respect to y and x, respectively, we obtain

1 1
* —af, b I
fo = TR T = T E e

Hence, df* is closed. Obviously, || f;]| = [|f;|l, fzLf;, and f;, € span{f;, f;}.
Hence, f* is isothermic. O

(afe = bfy) = fya
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Remarks. (i) In fact, the Christoffel transformation characterizes isother-
mic surfaces: If f is an immersion and equations (2) do define another surface,
then f is isothermic.

(ii) The Christoffel transformation is not Mébius invariant: The dual of a
Mobius transformed isothermic surface is not a Mobius transformed dual.

(iii) In equations (2), there is a minus sign in the equation for f; but not
in the equation for f;. This is an arbitrary choice. Also, a different choice of
conformal curvature line parameters, this means choosing (Az, Ay) instead of
(z,y), leads to a scaled dual immersion. Therefore, it makes sense to consider
the dual isothermic surface as defined only up to translation and (positive or
negative) scale.

The Christoffel transformation has a natural analogue in the discrete set-
ting: In Proposition 2, we define the dual discrete isothermic surface. The
basis for the discrete construction is the following lemma. Its proof is straight-
forward algebra.

LEMMA 1. Suppose a,b,a’,t' € C\ {0} with

/

btd +6 =0, 22— _4
at+b+a + Y
and let
1 * 1 1 " 1
a*:j, a’ = = b*:—:7 b/ = -,
a a b 14

where Z denotes the complex conjugate of z. Then
N a*a’™
@'+ b " V=0, = -1
PROPOSITION 2. Let f : V(D) — R3 be a discrete isothermic surface,
where the quad-graph D is simply connected. Then the edges of D may be la-

belled “+” and “—" such that each quadrilateral has two opposite edges labelled

“+” and the other two opposite edges labeled “—" (see Figure 4). The dual
discrete isothermic surface is defined by the formula
Af
Aff ==+ ;
[ravals

where Af denotes the difference of neighboring vertices and the sign is chosen
according to the edge label.

For a consistent edge labelling to be possible it is necessary that each
vertex have an even number of edges. This condition is also sufficient if the
the surface is simply connected.

In Definition 3 we define S-quad-graphs. These are specially labeled quad-
graphs that are used in Definition 4 of S-isothermic surfaces which form the
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Figure 4: Edge labels of a discrete isothermic surface.

subclass of discrete isothermic surfaces used to define discrete minimal surfaces
in Section 4. For a discussion of why S-isothermic surfaces are the right class
to consider, see the remark at the end of Section 4.

Definition 3. An S-quad-graph is a quad-graph D with interior vertices
of even degree as in Definition 2 and the following additional properties (see
Figure 5):

(i) The 1-skeleton of D is bipartite and the vertices are bicolored “black”
and “white”. (Then each quadrilateral has two black vertices and two
white vertices.)

(ii) Interior black vertices have degree 4.

(iii) The white vertices are labelled (©) and (9 in such a way that each quadri-
lateral has one white vertex labelled (¢) and one white vertex labelled ().

Definition 4. Let D be an S-quad-graph, and let V;(D) be the set of black
vertices. A discrete S-isothermic surface is a map

fb : ‘/E)(ID) - Rga
with the following properties:

(i) If v1,... ,v2, € V4(D) are the neighbors of a (©)-labeled vertex in cyclic
order, then fy(v1),..., fy(ven) lie on a circle in R? in the same cyclic
order. This defines a map from the (¢)-labeled vertices to the set of
circles in R3.

(i) If vy,... ,v2, € V3(D) are the neighbors of an (9)-labeled vertex, then
fo(v1), ..., fo(voy) lie on a sphere in R3. This defines a map from the
(-labeled vertices to the set of spheres in R3.

(iii) If v, and v, are the (©)-labeled and the (s)-labeled vertices of a quadri-
lateral of D, then the circle corresponding to v, intersects the sphere
corresponding to vg orthogonally.
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Figure 5: Left: Schramm'’s circle patterns as discrete conformal maps. Right:
The combinatorics of S-quad-graphs.

There are two spheres through each black vertex, and the orthogonality
condition (iii) of Definition 4 implies that they touch. Likewise, the two circles
at a black vertex touch; i.e., they have a common tangent at the single point of
intersection. Discrete S-isothermic surfaces are therefore composed of touching
spheres and touching circles with spheres and circles intersecting orthogonally.
Interior white vertices of degree unequal to 4 are analogous to umbilic points
of smooth isothermic surfaces. Generically, the orthogonality condition (iii)
follows from the seemingly weaker condition that the two circles through a
black vertex touch:

LEMMA 2 (Touching Coins Lemma). Whenever four circles in 3-space
touch cyclically but do not lie on a common sphere, they intersect the sphere
which passes through the points of contact orthogonally.

From any discrete S-isothermic surface, one obtains a discrete isothermic
surface (as in Definition 2) by adding the centers of the spheres and circles:

Definition 5. Let fy, : V3(D) — R? be a discrete S-isothermic surface. The
central extension of fy is the discrete isothermic surface f : V' — R? defined by

f) = folv) ifvels,
and otherwise by

f(v) = the center of the circle or sphere corresponding to v.

The central extension of a discrete S-isothermic surface is indeed a dis-
crete isothermic surface: The quadrilaterals corresponding to the faces of the
quad-graph are planar right-angled kites (see Figure 3 (right)) and therefore
conformal squares.

The following statement is easy to see [4]. It says that the duality trans-
formation preserves the class of discrete S-isothermic surfaces.
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O

touching spheres

-~

orthogonal circles

planar faces

30

orthogonal kite

Figure 6: Geometry of a discrete S-isothermic surface without “umbilics”.

ProproSITION 3. The Christoffel dual of a central extension of a discrete
S-isothermic surface is itself a central extension of a discrete S-isothermic
surface.

The construction of the central extension does depend on the choice of
a point at infinity, because the centers of circles and spheres are not Mdbius
invariant. Strictly speaking, a discrete S-isothermic surface has a 3-parameter
family of central extensions. However, we will assume that one infinite point
is chosen once and for all and we will not distinguish between S-isothermic
surfaces and their central extension. Then it also makes sense to consider
the S-isothermic surfaces as polyhedral surfaces. Note that all planar kites
around a (¢)-labeled vertex lie in the same plane: the plane that contains the
corresponding circle. We will therefore consider an S-isothermic surface as a
polyhedral surface whose faces correspond to (¢)-labeled vertices of the quad-
graph, whose vertices correspond to (s)-labeled vertices of the quad-graph, and
whose edges correspond to the black vertices of the quad-graph. The elements
of a discrete S-isothermic surface are shown schematically in Figure 6. Hence:

A discrete S-isothermic surface is a polyhedral surface such that the faces
have inscribed circles and the inscribed circles of neighboring faces touch their
common edge in the same point.

In view of the Touching Coins Lemma (Lemma 2), this could almost be
an alternative definition.

The following lemma, which follows directly from Lemma 1, describes the
dual discrete S-isothermic surface in terms of the corresponding polyhedral
discrete S-isothermic surface.

LEMMA 3. Let P be a planar polygon with an even number of cyclically
ordered edges given by the vectors ly,... ,la, € R2, I + ...+ lo, = 0. Suppose
the polygon has an inscribed circle with radius R. Let r; be the distances from
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Figure 7: Left: A circle packing corresponding to a triangulation. Middle:
The orthogonal circles. Right: A circle packing corresponding to a cellular
decomposition with orthogonal circles.

the vertices of P to the nearest touching point on the circle: ||lj|| =rj + rjt1.
Then the vectors l7,... 15, given by
o1
I = (~1) I
=0 i1’

form a planar polygon with an inscribed circle with radius 1/R.

It follows that the radii of corresponding spheres and circles of a discrete
S-isothermic surface and its dual are reciprocal.

3. Koebe polyhedra

In this section we construct special discrete S-isothermic surfaces, which
we call the Koebe polyhedra, coming from circle packings (and more general
orthogonal circle patterns) in S2.

A circle packing in S? is a configuration of disjoint discs which may touch
but not intersect. Associating vertices to the discs and connecting the vertices
of touching discs by edges one obtains a combinatorial representation of a circle
packing, see Figure 7 (left).

In 1936, Koebe published the following remarkable statement about circle
packings in the sphere [22].

THEOREM 1 (Koebe). For every triangulation of the sphere there is a
packing of circles in the sphere such that circles correspond to vertices, and
two circles touch if and only if the corresponding vertices are adjacent. This
circle packing is unique up to Mobius transformations of the sphere.

Observe that for a triangulation one automatically obtains not one but
two orthogonally intersecting circle packings as shown in Figure 7 (middle).
Indeed, the circles passing through the points of contact of three mutually
touching circles intersect these orthogonally. This observation leads to the
following generalization of Koebe’s theorem to cellular decompositions of the
sphere with faces which are not necessarily triangular, see Figure 7 (right).
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Figure 8: The Koebe polyhedron as a discrete S-isothermic surface.

THEOREM 2. For every polytopal' cellular decomposition of the sphere,
there exists a pattern of circles in the sphere with the following properties.
There is a circle corresponding to each face and to each vertex. The vertex
circles form a packing with two circles touching if and only if the corresponding
vertices are adjacent. Likewise, the face circles form a packing with circles
touching if and only if the corresponding faces are adjacent. For each edge,
there is a pair of touching vertex circles and a pair of touching face circles.
These pairs touch in the same point, intersecting each other orthogonally.

This circle pattern is unique up to Mobius transformations.

The first published statement and proof of this theorem seems to be con-
tained in [6]. For generalizations, see [25], [24], and [5], the latter also for a
variational proof (see also §8 of this article).

Now, mark the centers of the circles with white dots and mark the in-
tersection points, where two touching pairs of circles intersect each other or-
thogonally, with black dots. Draw edges from the center of each circle to the
intersection points on its periphery. You obtain a quad-graph with bicolored
vertices. Since, furthermore, the black vertices have degree four, the white
vertices may be labeled (s) and (© to make the quad-graph an S-quad-graph.

Now let us construct the spheres intersecting S? orthogonally along the
circles marked by (9. Connecting the centers of touching spheres, one ob-
tains a Koebe polyhedron: a convex polyhedron with all edges tangent to the
sphere S2. Moreover, the circles marked with (©) are inscribed into the faces of
the polyhedron; see Figure 8. Thus we have a polyhedral discrete S-isothermic
surface. The discrete S-isothermic surface is given by the spheres (8) and the
circles (©.

Thus, Theorem 2 implies the following theorem.

THEOREM 3. FEvery polytopal cell decomposition of the sphere can be re-
alized by a polyhedron with edges tangent to the sphere. This realization is
unique up to projective transformations which fix the sphere.

We call a cellular decomposition of a surface polytopal, if the closed cells are closed discs,
and two closed cells intersect in one closed cell if at all.
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There is a simultaneous realization of the dual polyhedron, such that cor-
responding edges of the dual and the original polyhedron touch the sphere in
the same points and intersect orthogonally.

The last statement of the theorem follows from the construction if one
interchanges the (¢) and (9) labels.

4. Discrete minimal surfaces

The following theorem about continuous minimal surfaces is due to
Christoffel [8]. For a modern treatment, see [15]. This theorem is the ba-
sis for our definition of discrete minimal surfaces. We provide a short proof for
the reader’s convenience.

THEOREM 4 (Christoffel). Minimal surfaces are isothermic. An isother-
mic immersion is a minimal surface, if and and only if the dual immersion is
contained in a sphere. In that case the dual immersion is in fact the Gauss
map of the minimal surface, up to scale and translation.

Proof. Let f be an isothermic immersion with normal map N. Then

(N, fo) = N2k and  (Ny, f,) = N2k,

where k1 and kg are the principal curvature functions of f and A = || f2|| = || fy||-
By equations (2), the dual isothermic immersion f* has normal N* = —N, and
* * f
<Nxvfx> = <_N$7 —z2> = —ki,
£l
* * f
<Ny7fy> = <_Ny> _—y2> = k2'
£yl
Its principal curvature functions are therefore
* kl % ]{2
]{71 = _ﬁ and kf2 = ﬁ
Hence f is minimal (this means ky = —ko) if and only if f* is contained in

a sphere (k] = k3). In that case, f* is the Gauss map of f (up to scale and
translation), because the tangent planes of f and f* at corresponding points
are parallel. 0

The idea is to define discrete minimal surfaces as S-isothermic surfaces
which are dual to Koebe polyhedra, the latter being a discrete analogue of
conformal parametrizations of the sphere. By Theorem 5 below, this leads to
the following definition.

Definition 6. A discrete minimal surface is an S-isothermic discrete sur-
face I : Q — R3? which satisfies any one of the equivalent conditions (i)—(iii)
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N

e

Figure 9: Condition for discrete minimal surfaces.

below. Suppose z € @ is a white vertex of the quad-graph @ such that F(x)
is the center of a sphere. Let v ...y2, be the vertices neighboring = in @ in
cyclic order. (Generically, n = 2.) Then F(y;) are the points of contact with
the neighboring spheres and simultaneously points of intersection with the or-
thogonal circles. Let F(y;) = F(x) + b;. (See Figure 9.) Then the following
equivalent conditions hold:

(i) The points F(x) + (—1)7b; lie on a circle.
(ii) Thereis an N € R3 such that (—1)7 (b;, N) is the same for j = 1,... ,2n.

(iii) There is plane through F(z) and the centers of the orthogonal circles.
Then the points {F(y;) | j even} and the points {F(y;) | j odd} lie in
planes which are parallel to it at the same distance on opposite sides.

Remark. The definition implies that a discrete minimal surface is a polyhe-
dral surface with the property that every interior vertex lies in the convex hull
of its neighbors. This is the maximum principle for discrete minimal surfaces.

Ezamples.  Figure 1 (left) shows a discrete minimal Enneper surface.
Only the circles are shown. A variant of the discrete minimal Enneper surface
is shown in Figure 16. Here, only the touching spheres are shown. Figure 1
(right) shows a discrete minimal catenoid. Both spheres and circles are shown.
Figure 2 shows a discrete minimal Schwarz P-surface and a discrete minimal
Scherk tower. These examples are discussed in detail in Section 10.

THEOREM 5. An S-isothermic discrete surface is a discrete minimal sur-
face, if and only if the dual S-isothermic surface corresponds to a Koebe poly-
hedron.
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Proof. That the S-isothermic dual of a Koebe polyhedron is a discrete
minimal surface is fairly obvious. On the other hand, let F : @ — R3 be a
discrete minimal surface and let x € Q and y; . .. y2, € @ be as in Definition 6.
Let F : Q — R? be the dual S-isothermic surface. We need to show that
all circles of F lie in one and the same sphere S and that all the spheres of
F intersect S orthogonally. It follows immediately from Definition 6 that the
points F(y1) ... F(yan) lie on a circle ¢, in a sphere S, around F(z). Let S
be the sphere which intersects S, orthogonally in ¢;. The orthogonal circles
through F(y1)...F(yan) also lie in S. Hence, all spheres of F intersect S
orthogonally and all circles of F lie in S. O

Remark. Why do we use S-isothermic surfaces to define discrete minimal
surfaces? Alternatively, one could define discrete minimal surfaces as the sur-
faces obtained by dualizing discrete (cross-ratio —1) isothermic surfaces with
all quad-graph vertices in a sphere. Indeed, this definition was proposed in [3].
However, it turns out that the class of discrete isothermic surfaces is too general
to lead to a satisfactory theory of discrete minimal surfaces.

Every way to define the concept of a discrete isothermic immersion im-
poses an accompanied definition of discrete conformal maps. Since a conformal
map R? O D — R? is just an isothermic immersion into the plane, discrete
conformal maps should be defined as discrete isothermic surfaces that lie in a
plane. Definition 2 for isothermic surfaces implies the following definition for
discrete conformal maps: A discrete conformal map is a map from a domain
of Z? to the plane such that all elementary quads have cross-ratio —1. The
so-defined discrete conformal maps are too flexible. In particular, one can fix
one sublattice containing every other point and vary the other one; see [4].

Definition 4 for S-isothermic surfaces, on the other hand, leads to discrete
conformal maps that are Schramm’s “circle patterns with the combinatorics
of the square grid” [26]. This definition of discrete conformal maps has many
advantages: First, there is Schramm’s convergence result (ibid). Secondly,
orthogonal circle patterns have the right degree of rigidity. For example, by
Theorem 2, two circle patterns that correspond to the same quad-graph de-
composition of the sphere differ by a Mobius transformation. One could say:
The only discrete conformal maps from the sphere to itself are the Mdbius
transformations. Finally, a conformal map f : R?2 D D — R? is characterized
by the conditions

(3) ’fm‘ - ’fy‘v fzJ—fy-

To define discrete conformal maps f : Z> D> D — C, it is natural to impose
these two conditions on two different sub-lattices (white and black) of Z2, i.e.
to require that the edges meeting at a white vertex have equal length and the
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edges at a black vertex meet orthogonally. Then the elementary quadrilater-
als are orthogonal kites, and discrete conformal maps are therefore precisely
Schramm’s orthogonal circle patterns.

5. A Weierstrass-type representation

In the classical theory of minimal surfaces, the Weierstrass representation
allows the construction of an arbitrary minimal surface from holomorphic data
on the underlying Riemann surface. We will now derive a formula for discrete
minimal surfaces that resembles the Weierstrass representation formula. An
orthogonal circle pattern in the plane plays the role of the holomorphic data.
The discrete Weierstrass representation describes the S-isothermic minimal
surface that is obtained by projecting the pattern stereographically to the
sphere and dualizing the corresponding Koebe polyhedron.

THEOREM 6 (Weierstrass representation). Let Q be an S-quad-graph, and
let ¢: Q — C be an orthogonal circle pattern in the plane: For white vertices
x € Q, c(x) is the center of the corresponding circle, and for black vertices
y € Q, c(y) is the corresponding intersection point. The S-isothermic minimal
surface

F {:J: € Q|$ 18 labelled@} — R3,
F(z) = the center of the sphere corresponding to x

that corresponds to this circle pattern is given by the following formula. Let
1, T € Q be two vertices, both labelled (5), that correspond to touching circles
of the pattern, and let y € @ be the black vertex between x1 and xo, which
corresponds to the point of contact. The centers F(x1) and F(x2) of the cor-
responding touching spheres of the S-isothermic minimal surface F satisfy
1—p?
i1+p*) ] |,
2p

R(x2) + R(z1) c(z2) — c(x1)
1+ |pf? |c(z2) — c(z1)]

(4) F(z2) — F(x1) =£Re

where p = c(y) and the radit R(x;) of the spheres are
1+ [e())* — |e(z;) — pl?
() R(xj) =
’ 2|e(z5) — pl
The sign on the right-hand side of equation (4) depends on whether the two

edges of the quad-graph connecting x1 with y and y with xo are labelled ‘+’ or
‘—’ (see Figures 4 and 5 (right)).

Proof. Let s : C — S? C R? be the stereographic projection
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Figure 10: How to derive equation (5).

Its differential is

2
dsy(v) =Re | —27 '(11 )
sp(v) =Re | ——= | ¢ P ,
1+ 2)2
(1+1[p[?) 2
and
2Jv|
ds,(v)|| = ———,
Jasy] = 1210
where || - || denotes the Euclidean norm.

The edge between F(x1) and F(x2) of F has length R(z1)+ R(z2) (this is
obvious) and is parallel to dsp(c(z2) — ¢(21)). Indeed, this edge is parallel to
the corresponding edge of the Koebe polyhedron, which, in turn, is tangential
to the orthogonal circles in the unit sphere, touching in ¢(p). The pre-images of
these circles in the plane touch in p, and the contact direction is c(z2) — ¢(z1).
Hence, equation (4) follows from

dsp(c(z2) — c(z1))
dsp(e(w2) = (@)

F(.TQ) — F(.’L’l) = ZE(R(IQ) + R(ﬂjl))

To show equation (5), note that the stereographic projection s is the
restriction of the reflection on the sphere around the north pole N of S? with
radius /2, restricted to the equatorial plane C. See Figure 10. We denote
this reflection also by s. Consider the sphere with center c¢(x;) and radius
r= ’c(xj) - p}, which intersects the equatorial plane orthogonally in the circle
of the planar pattern corresponding to x;. This sphere intersects the ray from
the north pole N through c¢(z;) orthogonally at the distances d & r from N,
where d, the distance between N and c(x;), satisfies d> = 1 + ‘c(a:j)‘Q. This
sphere is mapped by s to a sphere, which belongs to the Koebe polyhedron
and has radius 1/R(x;). It intersects the ray orthogonally at the distances
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Figure 11: Proof of Lemma 4. The vector 0!?) is obtained by rotating v; in

J
the tangent plane to the sphere at c;.

2/(d £ r). Hence, its radius is

2r
A2 — 2

Equation (5) follows. O

1/R(x;) =

6. The associated family

Every continuous minimal surfaces comes with an associated family of iso-
metric minimal surfaces with the same Gauss map. Catenoid and helicoid are
members of the same associated family of minimal surfaces. The concept of an
associated family carries over to discrete minimal surfaces. In the smooth case,
the members of the associated family remain conformally, but not isothermi-
cally, parametrized. Similarly, in the discrete case, one obtains discrete surfaces
which are not S-isothermic but should be considered as discrete conformally
parametrized minimal surfaces.

The associated family of an S-isothermic minimal surface consists of the
one-parameter family of discrete surfaces that are obtained by the following
construction. Before dualizing the Koebe-polyhedron (which would yield the
S-isothermic minimal surface), rotate each edge by an equal angle in the plane
which is tangent to the unit sphere in the point where the edge touches the
unit sphere.

This construction leads to well-defined surfaces because of the following
lemma, which is an extension of Lemma 3. See Figure 11.

LEMMA 4. Let P be a planar polygon with an even number of cyclically
ordered edges given by the vectors ly,... lop, € R3 Iy 4+ ...+ Iy, = 0. Suppose
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the polygon has an inscribed circle ¢ with radius R, which lies in a sphere S.
Let r;j be the distances from the vertices of P to the nearest touching point on

the circle: ||lj|| = rj + rj11. Rotate each vector l; by an equal angle ¢ in the
plane which is tangent to S in the point c; where the edge touches S to obtain
the vectors lgp), - ,léﬁ). Then the vectors lg‘p)*, o ,l;ﬁ)* gwen by

@ it
! riTie1 7

satisfy lgw* +...+ lgﬁ)* = 0; that is, they form a (nonplanar) closed polygon.

Proof. For j = 1,...,2n let (vj,w;,n) be the orthonormal basis of R3
which is formed by v; = [;/||l;||, the unit normal n to the plane of the poly-
gon P, and

(6) wj =n X vj.

Let v§¢) be the vector in the tangent plane to the sphere S at ¢; that makes
an angle ¢ with v;. Then

v](.“o) = cos ¢ vj + singcosf w; + sin psinf n,

where 0 is the angle between the tangent plane and the plane of the polygon.
This angle is the same for all edges. Since

()% (1 1 ()
Sy | T P
i = (7"3' +7“j+1>v’ ’

we have to show that

2n
1 1
Z(—l)] (— + —> (cos<p vj + sin ¢ cos § w; + sin ¢ sin n) =0.
= i T4l
By Lemma 3,
2n
1 1
> (—1y (— + —) v; =0
= i Tinl
Due to (6),

as well. Finally,

because it is a telescopic sum. O
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Figure 12: The associated family of the S-isothermic catenoid. The Gauss
map is preserved

The following two theorems are easy to prove. First, the Weierstrass-type
formula of Theorem 6 may be extended to the associate family.

THEOREM 7. With the notation of Theorem 6, the discrete surfaces I, of
the associated family satisfy

Fiy(x2) — Fp(z1)
1 —p2
i(1+4p?)
2p

Jio B(w2) + R(z1) c(wa) = c(a1)

= +Re
1+ [p[? |c(wa) — c(x1)]

Q

Figure 12 shows the associated family of the S-isothermic catenoid. The
essential properties of the associated family of a continuous minimal surface—
that the surfaces are isometric and have the same Gauss map—carry over to
the discrete setting in the following form.

THEOREM 8. The surfaces F, of the associated family of an S-isothermic
minimal surface Fy consist, like Fy, of touching spheres. The radii of the
spheres do not depend on .
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In the generic case, when the quad-graph has Z?-combinatorics, there are
also circles through the points of contact, as in the case with Fy. The normals
of the circles do not depend on .

This theorem follows directly from the geometric construction of the as-
sociated family (Lemma 4).

7. Convergence

Schramm has proved the convergence of circle patterns with the com-
binatorics of the square grid to meromorphic functions [26]. Together with
the Weierstrass-type representation formula for S-isothermic minimal surfaces,
this implies the following approximation theorem for discrete minimal surfaces.
Figure 13 illustrates the convergence of S-isothermic Enneper surfaces to the
continuous Enneper surface.

THEOREM 9. Let D C C be a simply connected bounded domain with
smooth boundary, and let W C C be an open set that contains the closure
of D. Suppose that F : W — R3 is a minimal immersion without umbilic
points in conformal curvature line coordinates. There exists a sequence of
S-isothermic minimal surfaces F,, : @Q, — R3 such that the following holds.
Each Q,, is a simply connected S-quad-graph in D which is a subset of the
lattice %ZQ. If, for x € D, ﬁn(l‘) is the value of F,, at a point of @, closest to
x, then ﬁn converges to F uniformly with error O(%) on compacts in D. In
fact, the whole associated families ﬁn,w converge to the associated family F, of
F uniformly (also in @) and with error O(1) on compacts in D.

Proof. When F' is appropriately scaled,

l_g('z)Z d
= Re 1 2)? 2z
o e[l

where g : W — C is a locally injective meromorphic function. By Schramm’s
results (Theorem 9.1 of [26] and the remark on p. 387), there exists a sequence
of orthogonal circle patterns ¢, : @, — C approximating g and ¢’ uniformly
and with error O(%) on compacts in D. Define F;, by the Weierstrass for-
mula (4) with data ¢ = ¢,. Using the notation of Theorem 6, one finds

1 00 1 ‘ 79(2/)22 1 1
E(Fn(‘rQ) — Fu(z1)) — - i(1 ;Lg(gy(;ﬂ ) 7@ + O(ﬁ)

uniformly on compacts in D. After rescaling F, = #Fn, the convergence claim
follows. The same reasoning applies to the whole associated family of F. [
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Figure 13: A sequence of S-isothermic minimal Enneper surfaces in different
discretizations.

8. Orthogonal circle patterns in the sphere

In the simplest cases, like the discrete Enneper surface and the discrete
catenoid (Figure 1), the construction of the corresponding circle patterns
in the sphere can be achieved by elementary methods; see Section 10. In
general, the problem is not elementary. Developing methods introduced by
Colin de Verdiere [9], the first and third authors have given a constructive
proof of the generalized Koebe theorem, which uses a variational principle [5].
It also provides a method for the numerical construction of circle patterns (see
also [27]). An alternative algorithm was implemented in Stephenson’s program
circlepack [12]. It is based on methods developed by Thurston [29]. The first
step in both methods is to transfer the problem from the sphere to the plane
by a stereographic projection. Then the radii of the circles are calculated. If
the radii are known, it is easy to reconstruct the circle pattern. The radii
are determined by a set of nonlinear equations, and the two methods differ in
the way in which these equations are solved. Thurston-type methods work by
iteratively adjusting the radius of each circle so that the neighboring circles fit
around. The above mentioned variational method is based on the observation
that the equations for the radii are the equations for a critical point of a convex
function of the radii. The variational method involves minimizing this function
to solve the equations.

Both of these methods may be used to construct the circle patterns for
the discrete Schwarz P-surface and for the discrete Scherk tower; see Figures 2
and 15. One may also take advantage of the symmetries of the circle patterns
and construct only a piece of it (after stereographic projection) as shown in
Figure 14. To this end, one solves the Euclidean circle pattern problem with
Neumann boundary conditions: For boundary circles, the nominal angle to be
covered by the neighboring circles is prescribed.

However, we have actually constructed the circle patterns for the discrete
Schwarz P-surface and the discrete Scherk tower using a new method suggested
in [28]. It is a variational method that works directly on the sphere. No stereo-
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Figure 14: A piece of the circle pattern for a Schwarz P-surface after stereo-
graphic projection to the plane.

graphic projection is necessary; the spherical radii of the circles are calculated
directly. The variational principle for spherical circle patterns is completely
analogous to the variational principles for Euclidean and hyperbolic patterns
presented in [5]. We briefly describe our variational method for circle patterns
on the sphere. For a more detailed exposition, the reader is referred to [28].
Here, we will only treat the case of orthogonally intersecting circles.

The spherical radius r of a nondegenerate circle in the unit sphere satisfies
0 < r < 7. Instead of the radii r of the circles, we use the variables

(8) p = logtan(r/2).

For each circle j, we need to find a p; such that the corresponding radii solve
the circle pattern problem.

PROPOSITION 4. The radii rj are the correct radii for the circle pattern
if and only if the corresponding p; satisfy the following equations, one for each
circle:

The equation for circle j is

(9) 2 Z(arctan ePPi + arctan e TPi) = @,
netghbors k

where the sum is taken over all neighboring circles k. For each circle j, ®;
18 the nominal angle covered by the neighboring circles. It is normally 2w for
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interior circles, but it differs for circles on the boundary or for circles where
the pattern branches.
The equations (9) are the equations for a critical point of the functional

S(p) = Z (ImLiZ(iepk_pj) + Im Lig (e %)
(4,k)
— Im Liy(¢e” %) — Im Lig(ie % %) — w(p; + pr)) + Z Qjp;.
J

Here, the first sum is taken over all pairs (j, k) of neighboring circles, the second
sum is taken over all circles j. The dilogarithm function Lis(2) is defined by
Lia(z) = — [ log(1 —¢) d¢/¢.

The second derivative of S(p) is the quadratic form

1

(10) D*S =3 (W

oo Pk — Pj)

dpp —dp;)? — ———_
( Pk P]) COSh(pk—F,O])

where the sum is taken over pairs of neighboring circles.

We provide a proof of Proposition 4 in the appendix. Unlike the analo-
gous functionals for Euclidean and hyperbolic circle patterns, the functional
S(p) is unfortunately not convex: The second derivative is negative for the
tangent vector v = 3°,09/0p;. The index is therefore at least 1. Thus, one
cannot simply minimize S to get to a critical point. However, the following
method seems to work. Define a reduced functional S (p) by maximizing in the
direction v:

(11) S(p) = mtaXS(,o—l—tv).

Obviously, § (p) is invariant under translations in the direction v. Now the idea
is to minimize S(p) restricted to >_;pj = 0. This method has proved to be
amazingly powerful. In particular, it can be used to produce branched circle
patterns in the sphere. It would be very interesting and important to give a
theoretical explanation of this phenomenon.

9. Constructing discrete minimal surfaces

Given a specific continuous minimal surface, how does one construct an
analogous discrete minimal surface? In this section we outline the general
method for doing this. By way of an example, Figure 15 illustrates the con-
struction of the Schwarz P-surface. Details on how to construct the concrete
examples in this paper are explained in Section 10. The difficult part is finding
the right circle pattern (steps 1 and 2 below). The remaining steps, building
the Koebe polyhedron and dualizing it (steps 3 and 4) are rather mechanical.
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—
Gauss image of the curvature lines circle pattern
— —
Koebe polyhedron discrete minimal surface

Figure 15: Construction of the discrete Schwarz P-surface.

1. Investigate the Gauss image of the curvature lines. The Gauss map
of the continuous minimal surface maps its curvature lines to the sphere. One
obtains a qualitative picture of this image of the curvature lines under the
Gauss map. This yields a quad-graph immersed in the sphere. Here one has to
choose how many curvature lines one wants to use. This corresponds to a choice
of different levels of refinement of the discrete surface. Also, a choice is made as
to which vertices will be black and which will be white. This choice is usually
determined by the nature of the exceptional vertices corresponding to umbilics
and ends. (Umbilics have to be white vertices.) Only the combinatorics of this
quad graph matter. (Figure 15, top left.) Generically, the (interior) vertices
have degree 4. Exceptional vertices correspond to ends and umbilic points
of the continuous minimal surface. In Figure 15, the corners of the cube are
exceptional. They correspond to the umbilic points of the Schwarz P-surface.
The exceptional vertices may need to be treated specially. For details see
Section 10.

2. Construct the circle pattern. From the quad graph, construct the cor-
responding circle pattern. White vertices will correspond to circles, black ver-
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tices to intersection points. Usually, the generalized Koebe theorem is evoked
to assert existence and Mobius uniqueness of the pattern. The problem of
practically calculating the circle pattern was discussed in Section 8. Use sym-
metries of the surface or special points where you know the direction of the
normal to eliminate the Mobius ambiguity of the circle pattern.

3. Construct the Koebe polyhedron. From the circle pattern, construct
the Koebe polyhedron. Here, a choice is made as to which circles will become
spheres and which will become circles. The two choices lead to different discrete
surfaces close to each other. Both are discrete analogues of the continuous
minimal surface.

4. Discrete minimal surface. Dualize the Koebe polyhedron to obtain a
minimal surface.

If the function g(z) in the Weierstrass representation (7) of the continuous
minimal surface is simple enough, it may be that one can construct an orthogo-
nal circle pattern that is analogous to (or even approximates) this holomorphic
function explicitly by some other means. For example, this is the case for the
Enneper surfaces and the catenoid (see §10). In this case one does not use
Koebe’s theorem to construct the circle pattern.

10. Examples

We now apply the method outlined in the previous section to construct
concrete examples of discrete minimal surfaces. In the case of Enneper’s sur-
face, the orthogonal circle pattern is trivial. The circle patterns for the higher
order Enneper surfaces and for the catenoid are known circle pattern analogues
of the functions 2% and e®. To construct the circle patterns for the Schwarz
P-surface and the Scherk tower, we use Koebe’s theorem.

10.1. FEnneper’s surface. The Weierstrass representation of Enneper’s
surface in conformal curvature line coordinates is equation (7) with g(z) = 2.
The domain is C, and there are no umbilic points. In the domain, the curvature
lines are the parallels to the real and imaginary axes. The Gauss map embeds
the domain into the sphere.

The quad graph that captures this qualitative behavior of the curvature
lines is the regular square grid decomposition of the plane. There are also
obvious candidates for the circle patterns to use: Take an infinite regular
square grid pattern in the plane. It consists of circles with equal radius r and
centers on a square grid with spacing v/27. It was shown by He [13] that these
patterns are the only embedded and locally finite orthogonal circle patterns
with this quad graph. Project it stereographically to the sphere and build the
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Figure 16: S-isothermic higher order Enneper surface. Only the spheres are
shown.

Koebe polyhedron. Dualize to obtain a discrete version of Enneper’s surface.
See Figures 1 (left) and 13.

10.2. The higher order Enneper surfaces. As the next example, consider
the higher order Enneper surfaces [11]. Their Weierstrass representation has
g(z) = 2% One may think of them as Enneper surfaces with an umbilic point
in the center.

An orthogonal circle pattern analogue of the maps z* was introduced in [4].
Sectors of these circle patterns were proven to be embedded [2], [1]. Stereo-
graphic projection to the sphere followed by dualization leads to S-isothermic
analogues of the higher order Enneper surfaces. An S-isothermic higher order
Enneper surface with a simple umbilic point (a = 4/3) is shown in Figure 16.

10.3. The catenoid. The next most simple example is a discrete version of
the catenoid. Here, g(z) = e*. The corresponding circle pattern in the plane is
the S-Exp pattern [4], a discretization of the exponential map. The underlying
quad-graph is Z2, with circles corresponding to points (m,n) with m +n =0
mod 2. The centers ¢(m,n) and the radii 7(n, m) of the circles are

an+ipm
)

c(n,m)=e r(n,m) = sin(p)|c(n, m)|,

where
p=m/N, «a=arctanh(:[1—e*”|).

(It is not true that ¢(m,n) is an intersection point if m +n =1 mod 2.)

The corresponding S-isothermic minimal surface is shown in Figure 1
(right). The associated family of the discrete catenoid (see §6) is shown in
Figure 12.

Other discrete versions of the catenoid have been put forward. A discrete
isothermic catenoid is constructed in [3]. This construction can be generalized
in such a way that one obtains the discrete S-isothermic catenoid described
above. This works only because the surface is so particularly simple. Then,
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there is also the discrete catenoid constructed in [23]. It is an area-minimizing
polyhedral surface. This catenoid is not related to the S-isothermic catenoid.

10.4. The Schwarz P-surface. The Schwarz P-surface is a triply periodic
minimal surface. It is the symmetric case in a 2-parameter family of minimal
surfaces with three different hole sizes (only the ratios of the hole sizes matter);
see [11]. The domain of the Schwarz P-surface, where the translation periods
are factored out, is a Riemann surface of genus 3. The Gauss map is a double
cover of the sphere with eight branch points. The image of the curvature line
pattern under the Gauss map is shown schematically in Figure 15 (top left),
thin lines. It is a refined cube. More generally, one may consider three different
numbers m, n, and k of slices in the three directions. The eight corners of the
cube correspond to the branch points of the Gauss map. Hence, not three but
six edges are incident with each corner vertex. The corner vertices are assigned
the label (¢). We assume that the numbers m, n, and k are even, so that the
vertices of the quad graph may be labelled ‘(©)’, ‘(8)’, and ‘e’ consistently
(see §2).

To invoke Koebe’s theorem (in the form of Theorem 2), forget momentarily
that we are dealing with a double cover of the sphere. Koebe’s theorem implies
the existence and Mébius-uniqueness of a circle pattern as shown in Figure 15
(top right). (Only one eighth of the complete spherical pattern is shown.) The
Mobius ambiguity is eliminated by imposing octahedral metric symmetry.

Now lift the circle pattern to the branched cover, construct the Koebe
polyhedron and dualize it to obtain the Schwarz P-surface; see Figure 15
(bottom row). A fundamental piece of the surface is shown in Figure 2 (left).

We summarize these results in a theorem.

THEOREM 10. Given three even positive integers m, n, k, there exists a
corresponding unique (unsymmetric) S-isothermic Schwarz P-surface.

Surfaces with the same ratios m : n : k are different discretizations of the
same continuous Schwarz P-surface. The cases with m = n = k correspond to
the symmetric Schwarz P-surface.

10.5. The Scherk tower. Finally, consider Scherk’s saddle tower, a simple
periodic minimal surface, which is asymptotic to two intersecting planes. There
is a 1-parameter family, the parameter corresponding to the angle between the
asymptotic planes, see [11]. An S-isothermic minimal Scherk tower is shown
in Figure 2 (right).

When mapped to the sphere by the Gauss map, the curvature lines of the
Scherk tower form a pattern with four special points, which correspond to the
four half-planar ends. A loop around a special point corresponds to a period of
the surface. In a neighborhood of each special point, the pattern of curvature
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o

Figure 17: The combinatorics of the Scherk tower.

lines behaves like the image of the standard coordinate net under the map
2+ 2% around z = 0. In the discrete setting, the special points are modeled by
pairs of 3-valent vertices; see Figure 17 (left). This is motivated by the discrete
version of 22 in [2]. The quad graph we use to construct the Scherk tower looks
like the quad graph for an unsymmetric Schwarz P-surface with one of the
discrete parameters equal to 2. The ratio m : n corresponds to the parameter
of the smooth case. Again, by Koebe’s theorem, there exists a corresponding
circle pattern, which is made unique by imposing metric octahedral symmetry.
But now we interpret the special vertices differently. Here, they are not branch
points. The right-hand side of Figure 17 shows how they are to be treated:
Split the vertex (and edges) between each pair of 3-valent vertices in two. Then
introduce new 2-valent vertices between the doubled vertices. Thus, instead
of pairs of 3-valent vertices we now have 2-valent vertices. The newly inserted
edges have length 0. Thus, stretching the concept a little bit, one obtains
infinite edges after dualization. This is in line with the fact that the special
points correspond to half-planar ends.
Figure 2 (right) shows an S-isothermic Scherk tower.

THEOREM 11. Given two even positive integers m and n there exists a
corresponding unique S-isothermic Scherk tower.

The cases with m = n correspond to the most symmetric Scherk tower,
the asymptotic planes of which intersect orthogonally.

Appendix. Proof of Proposition 4

Figure 18 shows a “flower” of an orthogonal circle pattern: a central circle
and its orthogonally intersecting neighbors. For simplicity, it shows a circle
pattern in the euclidean plane. We are, however, concerned with circle patterns
in the sphere, where the centers are spherical centers, the radii are spherical
radii and so forth. The radii of the circles are correct if and only if for each
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Figure 18: A flower of an orthogonal circle pattern.

circle the neighboring circles “fit around”. This means that for each circle j,
2 Z ik = 5,
neighbors k

where ;5 is half the angle covered by circle k£ as seen from the center of
circle j, and where normally ®; = 27 except if j is a boundary circle or a
circle where branching occurs. (In those cases, ®; has some other given value.)
Equations (9) follow from the next spherical trigonometry lemma:

LEMMA 5. In a right-angled spherical triangle, let 11 and ro be the sides
enclosing the right angle, and let ¢ be the angle opposite side ro. Then

(12) @ = arctan e”?”** + arctan e”> P,

where v and p are related by equation (8).

Proof. Napier’s rule says?

Equation (12) follows from this and the trigonometric identity

tanrg

(13) arctan < ) = arctan e”?~ "' + arctan eP2tor

sin rq

(To derive equation (13), start by applying the identity

a+b
arctan a + arctan b = arctan
1—ab

to its right-hand side.) O

2In several editions of Bronshtein and Semendyayev’s Handbook of Mathematics there is
a misprint in the corresponding equation.
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Now let
f(x) = arctane”.

Then a primitive function is
Fla) = / F(u) du = Tm Lis(ic®),
(see [5], [28]) and the derivative is

f@) = —

~ 2coshz’
Since

(14) S(p)=>_ (F(px — ps) + F(pj — pr)
(k)

— F(pj + p) — F(—p; — pr) — m(pj + pr)) + > ®jpj,
J

one obtains after some manipulations that

95(p)
dp;

=-2 g (arctan e”* 7 4 arctan e”* ) + ;.
neighbors k

This proves that equations (9) are the equations for a critical point of S(p).
Equation (10) for the second derivative of S is obtained by taking the
second derivative term by term in the first sum of equation (14). For example,
the second derivative of F(px, — p;) is f'(pr — pj)(dpr — dpj)?.
This concludes the proof of Proposition 4.
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