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An abelianization of SU(2) WZW model

By Tomoyoshi Yoshida

1. Introduction

The purpose of this paper is to carry out the abelianization program pro-
posed by Atiyah [1] and Hitchin [9] for the geometric quantization of SU(2)
Wess-Zumino-Witten model.

Let C be a Riemann surface of genus g. Let Mg be the moduli space of
semi-stable rank 2 holomorphic vector bundles on C with trivial determinant.
For a positive integer k, let Γ(Mg,Lk) be the space of holomorphic sections of
the k-th tensor product of the determinant line bundle L on Mg. An element
of Γ(Mg,Lk) is called a rank 2 theta function of level k.

The main result of our abelianization is to give an explicit representation of
a base of Γ(Mg,Lk) as well as its transformation formula in terms of classical
Riemann theta functions with automorphic form coefficients defined on the
Prym variety P associated with a two-fold branched covering surface C̃ of C.

Γ(Mg,Lk) can be identified with the conformal block of level k of the
SU(2) WZW model ([5], [15]). The abelianization procedure enables us to de-
duce the various known results about the conformal block in a uniform way.
Firstly, we construct a projectively flat connection on the vector bundle over
the Teichmüller space with fibre Γ(Mg,Lk). Secondly, making use of our ex-
plicit representation of rank 2 theta functions we construct a Hermitian product
on the vector bundle preserved by the connection. Also our explicit represen-
tation enables us to prove that Γ(Mg,Lk) has the predicted dimension from
the Quantum Clebsh-Gordan conditions.

A natural connection on the said vector bundle for the SU(N) WZW
model was first constructed by Hitchin [11]. It will turn out that the connection
constructed in this paper coincides with the Hitchin connection.

Laszlo [16] showed that the Hitchin connection coincides with the con-
nection constructed by Tsuchiya, Ueno and Yamada [21] through the above
identification. On the other hand Kirillov [13], [14] constructed a Hermitian
product on the conformal block compatible with the Tsuchiya-Ueno-Yamada
connection using the representation theory of affine Lie algebras together with
the theory of hermitian modular tensor categories; cf. [22]. Laszlo’s result
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implies that the Hermitian product of Kirillov defines the one on Γ(Mg,Lk)
compatible with the Hitchin connection. The author cannot figure out a re-
lation between the Hermitian product constructed in this paper and the one
found by Kirillov.

The paper is organized as follows. In Section 2 we study the topological
properties of a family of 2-fold branched covering surfaces C̃ of a fixed Riemann
surface C parametrized by the configuration space of 4g − 4 mutually distinct
points on C.

In Sections 3 and 4 we study the Prym variety P of C̃ and the classi-
cal Riemann theta functions defined on it. Especially we will be concerned
with their symmetric properties. That is, the fundamental group of the con-
figuration space induces a finite group action on the space of Riemann theta
functions on P . We call it global symmetry. There is a morphism π : P → Mg

and a pulled back section of Γ(Mg,Lk) by π can be expressed by Riemann
theta functions of level 2k on P . Then it should satisfy an invariance with
respect to this group action.

In Sections 5 we study the branching divisor of π : P → Mg. The square
root (Pfaffian) of the determinant of π is given by a Riemann theta function
Π of level 4 ([9]). Π plays a central role throughout the paper, and we give a
precise formula for it.

In Section 6 we construct a differential operator D on the space of holo-
morphic sections of the line bundles on the family of Prym varieties P such
that a family ψ̃ of holomorphic sections, which is a pull back by π of a section
ψ ∈ Γ(Mg,Lk), satisfies the differential equation Dψ̃ = 0.

In Section 7 we will show that the global symmetry and the differential
equation Dψ̃ = 0 characterize the pull back sections.

In Section 8 we construct a basis of Γ(Mg,Lk). It will be given in terms
of classical Riemann theta functions with automorphic form coefficients. The
result includes the fact that the dimension of Γ(Mg,Lk) is equal to the num-
ber of the ‘admissible’ spin weights attached to a pant decomposition of the
Riemann surface (Quantum Clebsch-Gordan condition).

In Section 9 we construct a projectively flat connection and a hermitian
product compatible with it on the vector bundle over Teichmüller space with
fibre Γ(Mg,Lk).

In Section 10 we give the transformation formula of rank 2 theta functions.
It involves a subtle but important aspect related to the Maslov index.

The author’s hearty thanks go to Professor M. F. Atiyah and Professor
N. J. Hitchin for their encouragement and interest in this work. Also we thank
M. Furuta, A. Tsuchiya and T. Oda for valuable conversations with them. We
are grateful to H. Fujita, S. K. Hansen, and D. Moskovich for their careful
reading of the manuscript.
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2. A family of 2-fold branched covering surfaces

2.1. A family of 2-fold branched covering surfaces. Let C be a closed
Riemann surface of genus g (≥ 2). Let C4g−4(C) be the configuration space of
4g − 4 unordered mutually distinct points b = {xj}1≤j≤4g−4 in C; that is,

C4g−4(C) =
(
C4g−4 − ∆

)
/S4g−4

where ∆ denotes the big diagonal of C4g−4 and Sn is the symmetric group of
degree n acting on C4g−4 by permutations of factors.

For b = {xj} in C4g−4(C), let cj denotes the class in H1(C − b,Z2) repre-
sented by the boundary circle of a small disc centered at xj in C. Let

Ĥ1(C − b,Z2) ≡ {α ∈ H1(C − b,Z2) | 〈α, cj〉 = 1 }(1)

where 〈 , 〉 denotes the evaluation of cohomology classes on homology classes.
Ĥ1(C − b,Z2) is in one-one correspondence with the set of topologically

distinct 2-fold branched coverings of C with branch locus b = {xj}. Here two
branched coverings with branch locus b = {xj} are topologically distinct if
and only if there is no diffeomorphism between them which is equivariant with
respect to the covering involutions and covers the identity map of C.

Definition 2.1. We call an element of α ∈ Ĥ1(C − b,Z2) a covering type
of C.

The family H = {Ĥ1(C − b,Z2)}b∈C4g−4(C) forms a fiber bundle over
C4g−4(C) with finite discrete fiber. Choose a base point bo ∈ C4g−4(C) and let

ρ : π1(C4g−4(C), bo) → Aut(Ĥ1(C − bo,Z2))

be the holonomy representation of the fiber bundle H.
We can describe ρ as follows. For an oriented loop l = {bt = {xt

j}}0≤t≤1

based at bo in C4g−4(C), the union of oriented 4g−4 arcs {xt
j} forms an oriented

closed curve l̄ in C. For a ∈ H1(C − bo,Z2) we can define the Z2-intersection
number l̄ · a ∈ Z2. We obtain the following homomorphism ev which we call
the evaluation map

ev : π1(C4g−4(C), bo) → H1(C − bo,Z2).(2)

Clearly l̄ · cj = 0 for 1 ≤ cj ≤ 4g − 4 and we have the following lemma:

Lemma 2.1. Let [l] ∈ π1(C4g−4(C), bo) be the homotopy class represented
by a closed loop l based at bo. Then ρ([l]) ∈ Aut(Ĥ1(C − bo,Z2)) is given by

ρ([l])(α) = α + ev([l])(3)

for α ∈ Ĥ1(C − bo,Z2).
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Definition 2.2. Let q : B → C4g−4(C) be the covering space of C4g−4(C)
associated with the kernel of ρ. The set B can be identified with the set of
pairs C4g−4(C) × Ĥ1(C − b,Z2) with q the projection to the first factor. We
represent a point b̃ of B by a pair

b̃ = (b, α) for b ∈ C4g−4(C) and α ∈ Ĥ1(C − b,Z2).(4)

For b̃ = (b, α) ∈ B, let C̃ = C̃b̃ be the associated two-fold branched
covering surface of C with branch point set b of the covering type α. The
genus g̃ of C̃ is 4g − 3. We denote the covering projection by p : C̃ → C and
the covering involution by σ : C̃ → C̃.

Definition 2.3. Let C → B be the fiber bundle over B whose fiber at
b̃ = (b, α) ∈ B is the 2-fold branched covering surface C̃b̃ of C.

Note that B and C are connected.

2.2. Pant decompositions of surfaces. Throughout the paper we use the
following notation;

S0: the three-holed 2-dimensional sphere

T0: the one-holed 2-dimensional torus.

Definition 2.4. A pant decomposition Υ = {el, Ci} of a Riemann surface
C of genus g is defined to be a set of simple closed curves {el}l=1,··· ,3g−3 and
surfaces {Ci}i=1,··· ,2g−2 in C such that

(i) {el} is a family of mutually disjoint and mutually freely nonhomotopic
simple closed curves in C,

(ii) C =
⋃

Ci where Ci = S0 or Ci = T0. If Ci = S0, then ∂Ci is a union of
three elements of {el}. If Ci = T0, then ∂Ci is an element of {el}, and
Ci contains an element of {el} in its interior as an essential simple closed
curve.

(iii) If we cut C along
⋃

l el, then the resulting surface is a disjoint union of
{C∗

i }1≤i≤2g−2, where C∗
i = S0 for 1 ≤ i ≤ 2g − 2 and, if Ci = S0, then

C∗
i = Ci and, if Ci = T0, then ∂C∗

i = el′ ∪ e+
l ∪ e−l , where el′ = ∂Ci and

e±l are the two copies of the essential curve el ⊂ Ci.

Definition 2.5. Let Υ = {el, Ci} be a pant decomposition of C,

(i) We define C4g−4(C)Υ to be the open subset of C4g−4(C) consisting of
those points b ∈ C4g−4(C) such that Co

i = Ci −
⋃

l el contains exactly
two points {xi

1, x
i
2} of b.



AN ABELIANIZATION OF SU(2) WZW MODEL 5

(ii) We define BΥ to be the open subset of B consisting of those points b̃ =
(b, α) ∈ B such that b ∈ C4g−4(C)Υ and that 〈α, [el]〉 = 0 for 1 ≤
l ≤ 3g − 3, where [el] is the Z2 homology class represented by el in
H1(C − b,Z2).

Let CΥ → BΥ be the restriction of C → B to BΥ.

Definition 2.6. For a pant decomposition Υ of C, let

WΥ = π1(BΥ, b̃) ,(5)

where b̃ = (b, α) is a base point of BΥ.

Lemma 2.2. There is an exact sequence of groups

1 → WΥ → π1 (C4g−4(C)Υ, b) → Zg
2 → 1.(6)

Proof. If we set Ci = (Co
i × Co

i − {diagonal})/S2 and b ∩ Co
i = bi, where

Co
i = Ci −

⋃
el, the group WΥ is the kernel of the composition map∏

i

π1(Ci, bi) → π1 (C4g−4(C)Υ, b) → H1(C − b,Z2)(7)

where the first map is induced by the inclusion and the second is the evaluation
map ev.

Now we choose and fix a pant decomposition Υ. We fix an orientation
of el for each l = 1, · · · , 3g − 3. We write el = Ci ∩ −Cj if el is a common
boundary of Ci and Cj and the orientation of el agrees with that of Ci.

We study the group WΥ.
Let S0 be a 3-holed sphere as before. Let e be a boundary circle of S0.

Let x1,x2 be two points in the interior of S0. Let pe = {pe(s)}0≤s≤1 be the
embedded arc in S0 connecting pe(0) = x1 and pe(1) = x2 as is depicted in
Figure 1.

.
.

e

x1

x2

Figure 1: Arc pe
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Definition 2.7. Let e1, e2, e3 be the three boundary circles of S0. We de-
fine the following closed loops in the symmetric product (S0 × S0 − ∆)/S2

in which the lower indices should be understood mod.3 (anti-clockwise in
Figure 2),

(i) tel
=

{(
pel+1(s) , pel−1(1 − s)

)}
0≤s≤1

,

(ii) kel
= tel−1tel

tel+1 .

Here in Figure 2 the left represents the curve te1 and the right represents
the curve ke1 . In the figure the curve with one arrow represents the trajectory
of x1 and one with double arrow does that of x2 corresponding to the paths
tel

and kel
respectively.

.
. .

.

e1

x1

x2

e2 e3

e1

x1

x2

e2 e3

Figure 2: Curves

For a pant decomposition Υ = {el, Ci} of C, cutting out C along
⋃

l el,
we obtain the disjoint union

⋃
i C

∗
i as in (iii) in Definition 2.4. Each C∗

i can
be identified with S0. Then the loops tel

and kel
in S0 given in Definition 2.7

define the corresponding loops t
C∗

i
el and k

C∗
i

el respectively in C∗
i for el ⊂ ∂C∗

i .

Lemma 2.3. Let Υ = {el, Ci} be a pant decomposition of C. Then WΥ is
generated by the following elements.

(i)
{

t
C∗

i
el (t

C∗
j

el )±1
}

, where el = Ci ∩ Cj (i �= j),

(ii)
{

t
C∗

i

e+
l

(tC
∗
i

e−
l

)±1
}

, where Ci = T0 and e±l is as in Definition 2.4 (iii),

(iii)
{

t
C∗

i
el

}
, where el ⊂ Ci is separating,

(iv)
{(

t
C∗

i
el

)2
}

, where el ⊂ Ci,

(v)
{

k
C∗

i
el

}
, where el ⊂ Ci.
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Proof. Clearly the listed elements are in the kernel of the evaluation map
ev. Let (Ci, bi) be as in the proof of Lemma 2.2. The pure Braid group in
the Braid group π1(Ci, bi) has index two and is generated by those homotopy
classes represented by the loops such that x1 moves once along the small circle
centered at x2 while x2 is fixed and x1 (or x2 resp.) moves once along the loop
parallel to one component of the boundary ∂Ci while x2 (x1 resp.) is fixed. It
can be seen without difficulty that those homotopy classes can be represented
by combinations of tel

. Hence the Braid group
∏

i π1(Ci, bi) is generated by
the loops

{
tCi
el

}
el⊂∂Ci

. It is not difficult to see that Ker(ev) is generated by the
listed elements.

2.3. Holonomy action of WΥ. We study the holonomy diffeomorphisms of
the fibre bundle CΥ → BΥ induced by moves of the branch points along simple
closed curves in BΥ.

Let S0 be the 3-holed 2-sphere with ∂S0 = e1 ∪ e2 ∪ e3. Let S̃0 be the
2-fold branched covering space of S0 with branch locus x1 ∪ x2 and covering
involution σ.

For each el the curve tel
in S0 induces a diffeomorphism τel

of S̃0 depicted
in Figure 3 where the upper and the lower boundary circles are ẽl and σẽl

respectively and ẽl ∪ σẽl represents the lifts of el. The diffeomorphism is a
combination of the half Dehn twists along the four curves in the picture in the
directions indicated by the arrows and the flip of the component of S̃0 contain-
ing the branch points cutting along the two vertical circles which interchange
the points x1 and x2 and the two components ẽl and σẽl. The diffeomorphism
is the identity on the lifts of the other boundary components.

 ó 

 ó  ó 

.

ẽ1

ẽ2 ẽ3

σẽ1

σẽ2σẽ3

x1

Figure 3: The induced diffeomorphism
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Likewise the curve kel
induces the Dehn twist κel

of S̃0 along the simple
closed curve which is the inverse image of the arc pel

(Figure 1) in S̃0.
Let Υ = {el, Ci} be a pant decomposition of C.
Cutting out C along

⋃
l el to the disjoint union

⋃
i C

∗
i , where C∗

i is iden-
tified with S0, let C̃∗

i be the 2-fold branched cover of C∗
i branched at xi

1 ∪ xi
2.

Then the above diffeomorphisms τel
and κel

of S̃0 are converted to C̃∗
i ; that

is, for el ⊂ ∂C∗
i , the holonomy along the curve t

C∗
i

el induces the diffeomorphism

τ
C̃∗

i
el of C̃∗

i which is τel
under the identification C∗

i = S0, and, for el ⊂ ∂C∗
i , the

holonomy along the curve kCi
el

induces the Dehn twist κ
C̃∗

i
el of C̃∗

i which is κel

under the identification C∗
i = S0.

Definition 2.8. Let Υ = {el, Ci} be a pant decomposition of C. Let b ∈
BΥ and let C̃ = C̃b.

(i) For el = ∂Ci ∩ ∂Cj(i �= j), we define a diffeomorphism of C̃ by

τ(el) =


τ

C̃∗
i

el on C̃i

τ
C̃∗

j
el on C̃j

Id on C̃ − C̃i ∪ C̃j .

(8)

(ii) Let Ci = T0 and let el ∈ Υ be the essential simple closed curve in Ci.
We define a diffeomorphism τ(el) of C̃ by

τ(el) =

{
τ

C̃∗
i

e±
l

τ
C̃∗

i

e∓
l

on C̃i

Id on C̃ − C̃i.
(9)

(iii) For el = ∂Ci ∩ ∂Cj which is separating in C, let C = C− ∪ Ci ∪ C+ be
the decomposition of C,where C+ is the connected component of C − el

containing Cj . Let C̃ = C̃−∪C̃i∪C̃+ be the corresponding decomposition
of C̃. We define a diffeomorphism ν(el) of C̃ by

ν(el) =


Id on C̃−

τ
C̃∗

i
el on C̃i

σ on C̃+.

(10)

(iv) For el ⊂ Ci, kCi
el

induces a diffeomorphism κ(el) of C̃ defined by

κ(el) =

{
κ

C̃∗
i

el on C̃i

Id on C̃ − C̃i.
(11)

Lemma 2.4. Let W o
Υ be the subgroup of WΥ generated by {

(
t
C∗

i
el

)2
} and

{kC∗
i

el }. Then there is an exact sequence of groups

1 → W o
Υ → WΥ → Z3g−3

2 → 1.
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Proof. For 1 ≤ l ≤ 3g − 3, the inverse image p−1(el) consists of two
connected components ẽl and σẽl. The diffeomorphisms listed in (i) and (ii) in
Definition 2.8 interchanges these two connected components. Hence the action
of the holonomy diffeomorphisms on the homology classes {[ẽl − σẽl]} (with
ẽl suitably oriented) in H1(C̃,R) induces the homomorphism WΥ → Z3g−3

2 in
the above sequence in the lemma. Then the exactness of the sequence is an
immediate consequence of the construction.

2.4. Marking and the universal cover of BΥ. Let Υ = {el, Ci} be a pant
decomposition of C. Let BΥ be the space defined in Definition 2.5.

Let b̃ = (b, α) ∈ BΥ and let p : C̃ = C̃b̃ → C be the corresponding two-fold
branched covering surface of C with covering involution σ.

Since b̃ = (b, α) ∈ BΥ, we may write b = {xi
1, x

i
2}1≤i≤2g−2 for xi

1, x
i
2 ∈ Co

i

and C̃ = ∪C̃i,where C̃i is the 2-fold branched covering surface of Ci branched
at xi

1 ∪ xi
2 for 1 ≤ i ≤ 2g − 2.

..
.

.

Figure 4: Marking

Definition 2.9. Let Υ = {el, Ci} be a pant decomposition of C. Let b̃ =
(b, α) ∈ BΥ.

We define a marking m = {fl, el, T} of C associated with Υ as follows:

(i) For 1 ≤ l ≤ 3g − 3 such that el = Ci ∩ Cj (1 ≤ i �= j ≤ 3g − 3), fl is
an embedded arc in Ci ∪ Cj connecting xi

1 and xj
1 such that fl ∩ el =

{a point}.

(ii) For 1 ≤ l ≤ 3g−3 such that el is an essential curve in a 1-holed torus Ci,
fl is an essential simple closed curve in Ci such that fl ∩ el = {a point}.

(iii) For 1 ≤ l �= l′ ≤ 3g − 3, fl ∩ fl′ is empty or xi
1, where the latter case

occurs exactly when el ∪ el′ ⊂ Ci.

(iv) T is a maximal tree which is a 1-complex whose vertices are {xi
1}1≤i≤2g−2

and {fl ∩ el}1≤l≤3g−3 and whose edges are arcs in {fl ∩ Ci} connecting
xi

1 and fl ∩ el in Ci for 1 ≤ i ≤ 2g − 2.
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The set of pairs (b̃, m) for b̃ ∈ BΥ and a marking m associated with Υ
serves as the universal covering space B̃Υ of BΥ.

2.5. The σ-anti-invariant homology group, the Lagrangian �̃ and the lat-
tices Λ0 and Λ. Let Υ = {el, Ci} be a pant decomposition of C. For the
covering surface p : C̃ → C associated with b̃ = (b, α) ∈ BΥ, let

H1(C̃,R) = H1(C̃,R)+ ⊕ H1(C̃,R)−(12)

be the decomposition into the invariant (+) and anti-invariant (−) subspaces
of the involution σ∗ on H1(C̃,R) induced by the covering involution σ. Then
H1(C̃,R)+ is isomorphic to H1(C,R) and dimR H1(C̃,R)− = 6g − 6.

Definition 2.10. We define a symplectic form ω on H1(C̃,R)−, for a, b ∈
H1(C̃,R)−, by

ω(a, b) =
1
2
〈a, b〉,

where 〈·, ·〉 denotes the symplectic form induced by the intersection pairing
on C̃.

Let ẽl be a connected component of p−1(el) (1 ≤ l ≤ 3g − 3). Then
p−1(el) = ẽl ∪ σẽl. We choose and fix an orientation of ẽl.

Let �̃ be the subspace in H1(C̃,R)− spanned by {[ẽl−σẽl]}1≤l≤3g−3. Then
�̃ is Lagrangian with respect to ω.

Definition 2.11. Let Ci ∈ Υ.

(i) Assume Ci = S0 with ∂Ci = eli1
∪ eli2

∪ eli3
. We set

Ei
1 =

1
2

[
−(ẽli1

− σẽli1
) + (ẽli2

− σẽli2
) + (ẽli3

− σẽli3
)
]
,(13)

Ei
2 =

1
2

[
(ẽli1

− σẽli1
) − (ẽli2

− σẽli2
) + (ẽli3

− σẽli3
)
]
,

Ei
3 =

1
2

[
(ẽli1

− σẽli1
) + (ẽli2

− σẽli2
) − (ẽli3

− σẽli3
)
]
,

Ei
0 =

1
2

[
(ẽli1

− σẽli1
) + (ẽli2

− σẽli2
) + (ẽli3

− σẽli3
)
]
.

(ii) Assume Ci = T0. Let eli1
= ∂Ci and let eli2

∈ Υ be the essential simple
closed curve in Ci. We set

Ei
1 = −1

2
[ẽli1

− σẽli1
] + [ẽli2

− σẽli2
],(14)

Ei
2 =

1
2
[ẽli1

− σẽli1
],

Ei
0 =

1
2
[ẽli1

− σẽli1
] + [ẽli2

− σẽli2
].
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Those classes are represented by the oriented simple closed curves which
are the inverse images in C̃i of the arcs in Ci connecting the two branch points
{xi

1, x
i
2} in it, and hence are contained in �̃∩H1(C̃,Z)−. In fact �̃∩H1(C̃,Z)−

is spanned by {Ei
1, E

i
2, E

i
3}1≤i≤2g−2.

Associated with a marking, m = {fl, el}, given in Definition 2.9, we have
homology classes {[f̃l − σf̃l]}1≤l≤3g−3 in H1(C̃,R)−, where f̃l is a component

of p−1(fl) oriented in such a way that ω
(
[ẽl − σẽl], [f̃l − σf̃l]

)
= 1.

For 1 ≤ l, k ≤ 3g−3 we choose dlk ∈ Z so that dll = 0,
∑

1≤l≤3g−3 dlk ∈ 2Z,
and f̃∗

l ∈ H1(C̃,Z)− defined by

f̃∗
l = [f̃l − σf̃l] +

∑
1≤k≤3g−3

dlk[ẽk − σẽk]

satisfies
ω

(
[ẽl − σẽl], f̃∗

k

)
= δlk , ω

(
f̃∗

l , f̃∗
k

)
= 0.

(We note that we can construct one such example of {dlk ∈ Z} by using the
notion of ‘grouping’ which will be defined in §8.1.)

We denote �̃∗ the Lagrangian spanned by {f̃∗
l }.

Definition 2.12. (i) Let Λ0 be the integral lattice in �̃ generated by
{[ẽl−σẽl]}. Let Λ∗

0 be the integral lattice in �̃∗ spanned by {f̃∗
l }1≤l≤3g−3,

where {f̃∗
l }1≤l≤3g−3 and �̃∗ are defined as above.

(ii) Let Λ be the integral lattice in �̃ generated by {Ei
1, E

i
2, E

i
3}1≤i≤2g−2. Let

Λ∗ be the integral lattice in �̃∗ which is the symplectic dual of Λ. Now,
Λ∗ is a subset of Λ∗

0 consisting of those vectors {
∑

l nlf̃
∗
l ∈ Λ∗

0} such that,
for each Ci ∈ Υ with ∂C∗

i = eli1
∪ eli2

∪ eli3
,

nli1
+ nli2

+ nli3
∈ 2Z,(15)

where nli2
= nli3

if Ci = T0.

3. Family of Prym varieties

3.1. Prym varieties and dominant maps to the moduli space of semistable
rank two bundles on C. Let p : C̃ → C be a 2-fold branched covering, where
C̃ = C̃b̃ for b̃ = (b, α) ∈ B. Let J be the Jacobian of C.

Let d be the line bundle over C of degree 2g−2 such that p∗OC̃ = OC⊕d−1.
Let J̃ be the Jacobian of C̃, and let J̃2g−2 be the variety which parametrizes
the line bundles of degree 2g − 2 on C̃.

For a line bundle L on C̃, let p∗L be the direct image of L which is a rank
2 bundle on C with determinant Nm(L) ⊗ d−1. In particular for L ∈ J̃2g−2,
p∗L is of degree 0. Let

P ′ = {L ∈ J̃2g−2 | Nm(L) = d}.(16)

Then for L ∈ P ′, the determinant of p∗L is trivial.
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P ′ is an Abelian variety of dimension 3g−3. Let P ′
s (resp. P ′

ss) be the sub-
set of P ′ consisting of those L ∈ P ′ such that p∗L is stable (resp. semistable).

Lemma 3.1 ([4], [6]). P ′ − P ′
ss (resp. P ′ − P ′

s) is a subvariety of P ′ of
codimension ≥ g + 1 (resp. ≥ g − 1).

Proof. p∗L is not semistable (resp. stable) if it contains a line subbundle
M of positive (resp. nonnegative) degree. Then there is a nonzero homomor-
phism p∗M → L. Hence L = p∗M(D) for an effective divisor D on C̃ such
that Nm(M(D)) = d. Let up : Jr × C̃2g−2−2r → P ′ be the morphism defined
by ur(M, D) = p∗M(D), where Jr denotes the variety parametrizing the iso-
morphism classes of line bundles of degree r on C. The image of ur restricted
to those pairs (M, D) such that Nm(M(D)) = d is a subvariety of P ′ of codi-
mension ≥ g − 1 + 2r. The subset of L such that p∗L is not semistable is the
union of those subvarieties and the lemma follows.

Let Mg be the moduli space of semistable, holomorphic, rank-two vector
bundles on C with trivial determinant. Let Mgs be the subset of Mg consisting
of the isomorphism classes of stable holomorphic rank 2 bundles. Mgs is Zariski
dense in Mg.

From the above argument it follows that the map L → p∗L defines a
morphism π′ : P ′

ss → Mg and π′ : P ′
s → Mgs.

Proposition 3.1 ([4], [6]). The morphism π′ : P ′
s → Mgs is dominant.

Proof. Let L ∈ P ′
s. The sheaf p∗L has a structure of a p∗OC̃-module, and

it induces a homomorphism ν : p∗OC̃ → End(p∗L). On the other hand the
tangent space Tp∗L(Mg) is canonically identified with H1(C,End(p∗L)), and
the space TL(P ′) with H1(C̃,OC̃) which is isomorphic to H1(C, p∗OC̃). By
functoriality the differential dπ′

L of π′ at L is identified with H1(ν).
Let N be the kernel of the canonical surjective homomorphism p∗p∗L → L.

We have an exact sequence

0 → Hom(L, L) → Hom(p∗p∗L, L) → Hom(N, L) → 0.(17)

Applying p∗, we have

0 → p∗OC̃ → End(p∗L) → p∗(N−1 ⊗ L) → 0.(18)

Hence the cokernel of H1(ν) which is the first homomorphism of the above
exact sequence is identified with H1(C̃, N−1 ⊗L). Since det(p∗L) = Nm(L)⊗
d−1, we have N = L−1⊗p∗ det(p∗L) = σ∗L⊗p∗d−1, and N−1⊗L = L⊗σ∗L−1⊗
p∗d. Since the canonical bundle KC̃ of C̃ is isomorphic to p∗(KC ⊗ d), by the
duality, TL(π′

∗) is surjective if and only if the space H0(C̃, σ∗L⊗L−1 ⊗ p∗KC)
is zero. Since the genus of C̃ is 4g − 3, dπ′

L is surjective on a Zariski open set.
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3.2. A coordinate on a Prym variety. Let Υ = {el, Ci} be a pant decom-
position of C. Let (b̃, m) ∈ B̃Υ, where m is a marking of C associated with Υ
and b̃ = (b, α) for b = {xi

1, x
i
2}1≤i≤2g−2 such that xi

1, x
i
2 ∈ Co

i (§2.4).
Let η0 be a divisor of degree 0 of C̃ = C̃b̃ such that σ∗η0 = η0 and

2η0 = −
2g−2∑
i=1

[xi
1] +

2g−2∑
i=1

[xi
2].(19)

Let η be the divisor of degree 2g − 2 of C̃ defined by

η = η0 +
2g−2∑
i=1

[xi
1].(20)

Formally we may write η = 1
2

∑2g−2
i=1

(
[xi

1] + [xi
2]

)
.

We denote the corresponding line bundle by the same letter η. Then
clearly η = σ∗η and η ∈ P ′. We choose η as an origin of P ′.

We write a line bundle L on C̃ of degree 2g − 2 as L = ηL0 for a degree
0 line bundle L0 on C̃. Then, since σ∗η ⊗ η = [b], the condition that ηL0 ∈ P ′

is equivalent to σ∗L0 ⊗ L0 = 1, that is, L0 is σ-anti-invariant.
Thus choosing η as the origin of the Prym variety, we see that P ′ can be

identified with the set of the isomorphism classes of σ-anti-invariant degree 0
line bundles on C̃.

For 1 ≤ i ≤ 2g − 2 let C̃i be the 2-fold branched cover of Ci with branch
set {xi

1, x
i
2}. Then the set of the isomorphism classes of σ-anti-invariant degree

0 line bundles on C̃ can be coordinated by (zl)1≤l≤3g−3, where (zl) represents
the line bundle on C̃ constructed from the disjoint union of the trivial bundles⋃

C̃i × C by attaching them by the transition functions exp(2πizl) at ẽl and
exp(−2πizl) at σẽl. We use (zl) as the coordinate of the universal cover of P ′.

Let (�̃, �̃∗) be the Lagrangian pair in H1(C̃,R)− given in Section 2.5, and
let Λ0 and Λ∗

0 be the integral lattices in �̃ and �̃∗ respectively given there.
Then H1(C̃,Z)− = Λ + Λ∗

0, and as a real symplectic manifold we have

P ′ = H1(C̃,R)−/(Λ + Λ∗
0).

Here we make the following important remark; P ′ is difficult to manage
for technical reasons and it is much more convenient for us to consider the
covering space P of P ′ defined by

P = H1(C̃,R)−/(Λ0 + Λ∗
0).(21)

There is a covering map P → P ′ whose covering transformation is the
translation by an element of Λ/Λ0, and P is an abelian variety with the complex
structure compatible with that of P ′.

Instead of studying P ′ directly we consider everything as Λ-invariant ob-
jects on P , and from now on we call P as Prym variety. Also π : P → Mg
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denote the obvious map, and Ps and Pss denote the set of the same meaning
as P ′

s and P ′
ss respectively.

Let {[ẽl −σẽl], f̃∗
l }1≤l≤3g−3 be the symplectic basis of H1(C̃,R)− given in

Definition 2.12.
Let {wl}1≤l≤3g−3 be the holomorphic 1-forms on C̃ such that σ∗wl = −wl

and that, for 1 ≤ l, l′ ≤ 3g − 3,∫
ẽl−σẽl

wl′ = δll′ .(22)

The set {wl}1≤l≤3g−3 forms a basis of the space of σ-anti-invariant holo-
morphic 1-forms on C̃.

Definition 3.1. The Riemann matrix associated with the lattice Λ0 + Λ∗
0

Ω = (Ωij)1≤i,j≤3g−3(23)

is defined by

Ωij =
∫

f̃∗
j

wi.(24)

Then Ω is a complex symmetric matrix and its imaginary part, Im Ω, is
positive definite. Λ0 +ΩΛ∗

0 forms a lattice in C3g−3 and we have, as a complex
variety,

P = C3g−3 /(Λ0 + ΩΛ∗
0) .(25)

The symplectic form ω on P is represented by the de Rham cohomology
class

ω =
i

2

∑
(Im Ω)−1

ij dzi ∧ dz̄j .(26)

Definition 3.2. Let L̃ be the holomorphic hermitian line bundle on P with
nontrivial holomorphic section whose curvature form is ω.

4. Riemann theta functions on polarized Prym varieties

4.1. Riemann theta functions on the polarized Prym variety. Let Υ =
{el, Ci} be a pant decomposition of C. Let (b̃,m) ∈ B̃Υ and let P = P(b̃,m) be
the corresponding polarized Prym variety. Let π : Ps → Mg be the dominant
map defined in Section 3.2.

Let L be the determinant line bundle on Mg; i.e., L corresponds to the
divisor of Mg defined by the set of rank two semi-stable bundles E on C such
that H0(C, E ⊗ F ) �= 0, where F is the line bundle on C satisfying F 2 = KC

corresponding to the theta constant of C ([18]). Since the codimension of Pss

in P is greater than g, the pull-back of Lk to Pss extends to a line bundle on
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P which we denote by π∗Lk. Also the pull-back of a holomorphic section of
Lk extends to one of π∗Lk by Hartog’s theorem.

Lemma 4.1 ([4, Lemme 1.7]).

c1(π∗L) = [2ω],

where the right-hand side denotes the de Rham cohomology class of 2ω.

Since an isomorphism class of a holomorphic line bundle with nontrivial
holomorphic section on an abelian variety is determined by its first Chern class,
π∗L is isomorphic to the line bundle L̃2, where L̃ is the line bundle defined in
Definition 3.2.

Thus the pull back by π of a holomorphic section of Lk is a holomorphic
section of L̃2k, and it can be described as a Riemann theta function of level 2k
on P .

For a positive integer k and

�a ∈ Λ∗
0 ⊗ Q , �b ∈ Λ0 ⊗ Q,(27)

we define ϑ

[
�a
�b

]
(2k�z, 2kΩ) by

ϑ

[
�a
�b

]
(2k�z, 2kΩ) =

∑
�n∈Λ∗

0

exp
(
πi(�n + �a)t2kΩ(�n + �a) + 2πi(�n + �a)t(2k�z +�b)

)
,

(28)

where �a,�n and �b are thought of as column vectors with respect to the basis
{[f̃∗

l ]}1≤l≤3g−3 and {[ẽl − σẽl]}1≤l≤3g−3 respectively, �z is a column vector in
C3g−3 and �at etc. denote their transposed vectors (we use the notation given
in [18] for the Riemann theta function). The space Θ2k of Riemann theta
functions of level 2k on P associated with the lattice Λ0 has a base given by{

ϑ

[
�a
�0

]
(2k�z, 2kΩ)

}
�a∈ 1

2k
Λ∗

0

.

4.2. The heat equation. For (b̃,m) ∈ B̃Υ let P = P(b̃,m) be the associated
polarized Prym variety.

The complex structure J = JΩ on P = P(b̃,m) is parametrized by Ω given
in equation (23) in Definition 3.1 which is an element of the Siegel domain S of
complex symmetric (3g−3)×(3g−3) matrices with positive definite imaginary
part.

The map Ω → JΩ is a holomorphic map. If we denote by δ the holomorphic
derivative with respect to Ω, then

δJ = −(δΩ)(ImΩ)−1.(29)
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As in [2], [18], the holomorphic derivatives on the sections of the line bundle
L̃2k become

∇iψ̃(z,Ω) =
(

∂

∂zi
− 8kπ(ImΩ)−1

ij (zj − z̄j)
)

ψ̃(z,Ω),(30)

δψ̃(z,Ω) =
(

δΩ +
1
2i

((δΩ)(ImΩ)−1)ij(zj − z̄j)
∂

∂zi

)
ψ̃(z,Ω)

+2k
π

i
((ImΩ)−1(δΩ)(ImΩ)−1)ij(zi − z̄i)(zj − z̄j)ψ̃(z,Ω),

where δΩ denotes the partial differential operator in the variables Ωij . The
anti-holomorphic derivatives are given by

∇̄i =
∂

∂z̄i
, δ̄ = δ̄Ω.(31)

If we combine the equations (29),(30) and (31), the differential operator
which gives the parallelism on the space of Riemann theta functions (which is
a section of L̃2k) is

δ +
1
8k

(δJω−1)ij∇i∇j = δTh +
i

4
tr(δJ),(32)

where

δThψ̃(z,Ω) =
(

δΩ − 1
8πki

(δΩ)ij
∂

∂zi

∂

∂zj

)
ψ̃(z,Ω).(33)

The differential operator acting on Θ2k

δ̄ + δ +
1
8k

(δJω−1)ij∇i∇j(34)

gives a projectively flat connection on the bundle over the Siegel domain S
with fibre Θ2k whose curvature is central and which is given by the 2-form on
S, i

4tr(δ̄JδJ). The differential operator δ̄+δTh gives the metaplectic correction
of it on S. Thus we represent the metaplectic correction on S by replacing the
operator δ by δ − i

4tr(δJ) ([2], [18]).

4.3. Actions of WΥ on Riemann theta functions and automorphic forms.

Definition 4.1. (i) For a positive integer k, let A2k be the vector space
of automorphic forms of level 2k associated with the lattice Λ, that is, an
element of A2k is a holomorphic function q(ΩΛ) of Riemann matrix ΩΛ of C̃

associated with Λ which has automorphy with respect to the Siegel modular
group. Throughout this paper we only deal with the case where ΩΛ is obtained
from Ω by prescribed linear transformation. Hence we consider q(ΩΛ) also as
a holomorphic function of Ω.

(ii) Let A2k ·Θ2k be the space of Riemann theta functions of level 2k with
coefficients in A2k on the polarized Prym variety P = P(b̃,m) for (b̃,m) ∈ B̃Υ.
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Let WΥ be the group given in Definition 2.6 in Section 2.2. We consider
the Z3g−3

2 -action on A2k · Θ2k induced by WΥ.
From the description of the holonomy action of WΥ in Section 2.3 and

Lemma 2.4, it follows that WΥ induces a Z3g−3
2 = {±1}3g−3-action on

H1(C̃,R)− preserving �̃ given by, for �ε = (εl)1≤l≤3g−3,

�ε · [ẽl − σẽl] = εl[ẽl − σẽl] , �ε · f̃∗
l = εlf̃

∗
l .(35)

In each Ci ∈ Υ(1 ≤ i ≤ 2g − 2), the action is the combination of the following
three involutions 

ιi1 : (Ei
1, E

i
2, E

i
3) → (Ei

0,−Ei
3,−Ei

2)
ιi2 : (Ei

1, E
i
2, E

i
3) → (−Ei

3, E
i
0,−Ei

1)
ιi3 : (Ei

1, E
i
2, E

i
3) → (−Ei

2,−Ei
1, E

i
0).

(36)

These involutions correspond to the Z3g−3
2 -action on Λ∗

0 ⊗Q given by, for
�ε = (ε1, · · · , ε3g−3)t ∈ Z3g−3

2 and �a = (a1, · · · , a3g−3)t ∈ Λ∗
0 ⊗ Q,

�ε · �a = (ε1a1, · · · , ε3g−3a3g−3)t.(37)

Also we have the corresponding change of the coordinate �z = (zl)t on the
Prym variety

�z → �ε · �z = (ε1z1, · · · , ε3g−3z3g−3)t(38)

and that of the Riemann matrix

Ω → �ε · Ω =

ε1 0
. . .

0 ε3g−3

 Ω

ε1 0
. . .

0 ε3g−3

 ,(39)

and a similar change of ΩΛ.

For a Riemann theta function ϑ

[
�a
�0

]
(2k�z, 2kΩ) ∈ Θ2k, this change of vari-

ables is equivalent to the substitution of characteristics �a → �ε · �a.
The diffeomorphism κ(el) given in Definition 2.8 induces the endomor-

phism of the line bundle η of equation (20) covering κ(el). It induces the
change of the complex structure of η, and hence it induces the shift of the base
point of P . From the fact that κ(el) is half the Dehn twist on the homology
class in the pant interchanging the two branch points, the resulting shift oper-
ator on the space of Riemann theta functions is the action as such given in (iii)
in the next definition below. To summarize, we make the following definition.

Definition 4.2. (i) We define Z3g−3
2 -action on A2k by, for �ε ∈ Z3g−3

2 and
q(ΩΛ) ∈ A2k,

q(ΩΛ) → q(�ε · ΩΛ).
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(ii) We define Z3g−3
2 -action on Θ2k by, for �ε ∈ Z3g−3

2

ϑ

[
�a
�0

]
(2k�z, 2kΩ) → ϑ

[
�ε · �a
�0

]
(2k�z, 2kΩ).

(iii) We define the shift operator S0
1
2
Λ∗/Λ∗

0
by

S0
1
2
Λ∗/Λ∗

0

(
ϑ

[
�a
�b

]
(2k�z, 2kΩ)

)
=

∑
�λ∈ 1

2
Λ∗/Λ∗

0

ϑ

[
�a + �λ

�b

]
(2k�z, 2kΩ),

where �a ∈ 1
2kΛ∗

0, and �b = �0 or �1
2 = (1

2 , · · · , 1
2)t.

(iv) Also for later use we define the anti-invariant shift operator S 1
2
Λ∗/Λ∗

0
by,

for �a ∈ 1
2kΛ∗

0,

S 1
2
Λ∗/Λ∗

0

(
ϑ

[
�a
�0

]
(2k�z, 2kΩ)

)
=

∑
�λ∈ 1

2
Λ∗/Λ∗

0

e
2πi

(
�λt�1

2

)
ϑ

[
�a + �λ

�0

]
(2k�z, 2kΩ).

The group of the holonomy diffeomorphisms induced by W o
Υ is generated

by a Dehn twist of C̃b̃ along simple closed curves each of which is contained
in C̃i(1 ≤ i ≤ 2g − 2). Those holonomy diffeomorphisms induce symplectic
automorphisms of H1(C̃,R)−, and hence we have a projective action of W o

Υ

on A2k · Θ2k.

Definition 4.3. Let ψ ∈ A2k · Θ2k. Then ψ is called projectively invariant
under W o

Υ if, for γ ∈ W o
Υ,

γψ = cψ

for a complex number c which depends on both of γ and ψ.

5. Branching divisor and theta function Π

Proposition 3.1 and its proof show that the dominant map π : P → Mg is
a holomorphic branched covering whose branching locus is given by

{L ∈ P | H0(C̃, σ∗L ⊗ L−1 ⊗ p∗KC) �= 0},(40)

where p : C̃ → C is the covering map.

We write L = ηL0 ∈ P for a degree 0 divisor L0 as in Section 3.2.
Then, since σ∗L0 = L−1

0 , the above condition is equivalent to the condition
H0(C̃, L−2

0 ⊗ p∗KC) �= 0. Furthermore, since KC̃ = p∗d ⊗ p∗KC = [b] ⊗ p∗KC ,
it is equivalent to the condition

H0(C̃, L2
0 ⊗ [b]) �= 0(41)
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by the Serre duality and the Riemann-Roch theorem. Let ∆C̃ and ∆C be
the theta constants of C̃ and C respectively [18, Chap.II §3]. We define the
‘relative’ theta characteristic ∆P by ∆P = ∆C̃ − π∗∆C .

Let ϑ(�z,Ω) be the Riemann theta function on P defined by

ϑ(�z,Ω) =
∑

�n∈Λ∗
0

exp
(
πi�ntΩ�n + 2πi�nt�z

)
.(42)

Then the locus of L0 satisfying the condition (41) is given by the divisor
of the Riemann theta function which is S0

1
2
Λ∗/Λ∗

0
-image of the Riemann theta

function obtained from ϑ(�z,Ω) by the change of variables �z → 2�z and shifting
by the characteristic ∆P .

Proposition 5.1. Let �1
2 = (1

2 , · · · , 1
2)t.

Then

∆P =
�1
2

+ Ω
�1
2
∈ 1

2
(Λ0 + ΩΛ∗

0) .(43)

Proof. We calculate ∆P in a similar way as in [18, Th. 3.1] and [19,
Th. 5.3].

We give the proof under the assumption that Ci = S0 for all Ci ∈ Υ.
In the case that there is a Ci such that Ci = T0 a slight modification of the
following calculation does well.

Let T be the 1-complex in C defined in Definition 2.9 (iv) in Section 2.4.
Let T̃ = p−1T be the inverse image of T in C̃. We cut open C̃ along T̃ and⋃

l(ẽl∪σẽl) to a disjoint union of simply connected surfaces ∆̃ =
⋃

1≤i≤2g−2 ∆̃i,
where ∆̃i is C̃i cut open along T̃ . We use the notation

∂∆̃i =
⋃

el⊂Ci

(ẽi
l ∪ σẽi

l) ∪ (f̃ i+
l ∪ (σf̃ i+

l ) ∪ (f̃ i−
l ∪ (σf̃ i−

l ),

where f̃ i+
l corresponds to the endpoint of ẽi

l.
Let �w = (w1, · · · , w3g−3)

t, where {wl}1≤l≤3g−3 is the basis of σ-anti-
invariant holomorphic 1-forms on C̃ satisfying equation (22). As in [18, Th. 3.1],
we define the function on C̃0, for all �z ∈ C3g−3, h(P ) = ϑ

(
�z +

∫ P
σP �w,Ω

)
,

where, for P ∈ ∆̃i, the line integral is taken along a path in ∆̃i.
Although the function of P , �z +

∫ P
σP �w, has discontinuities across the

boundaries ∂∆̃, the values of the discontinuities are contained in the lattice
Λ0+ΩΛ0; hence the set of zeros of h(P ) is well defined by the quasi-periodicity
of the theta function.

For 1 ≤ k ≤ 3g − 3, let gk be the half of the indefinite integral of ωk on ∆̃
defined, for x ∈ ∆̃i(1 ≤ i ≤ 2g − 2), by

gk(x) =
1
2

∫ x

σx
wk,(44)
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where the right-hand side denotes the line integral along a path in ∆̃i connect-
ing σx and x.

In the same way as in the proof of [18, Th. 3.1] we see that there are exactly
6g − 6 points (counted with multiplicity if necessary) {Qr}1≤r≤6g−6 such that
h(Qr) = 0 and we may assume that ∪rQr are contained in the interior of ∆̃.
Let Dr be a small disc neighborhood of Qr for 1 ≤ r ≤ 6g − 6.

Then we have the equation

0 =
∫

(∆̃−∪Dr)
d

(
gk

dh

h

)
(45)

=−
6g−6∑
r=1

∫
∂Dr

gk
dh

h
+

∑
l,i

∫
(ẽi

l+σẽi
l)

gk
dh

h

+
∑
l,i

∫
(f̃ i+

l +σf̃ i+
l )

gk
dh

h
+

∫
(f̃ i−

l +σf̃ i−
l )

gk
dh

h
.

Taking these terms one at a time, we have

6g−6∑
r=1

∫
∂Dr

gk
dh

h
=

6g−6∑
r=1

2πigk(Qr) = 2πi

6g−6∑
r=1

1
2

∫ Qr

σQr

wk.(46)

Next we consider the third and the fourth terms in the last line of equation
(45).

In the following we use the notations hi = h|∆̃i and gi
k = gk|∆̃i.

For el ⊂ Ci, gi
k on (f̃ i+

l +σf̃ i+
l ) is gi

k on (f̃ i−
l +σf̃ i−

l ) plus 1
2δkl because the

path ẽi
l − σẽi

l leads from (f̃ i−
l + σf̃ i−

l ) to (f̃ i+
l + σf̃ i+

l ) and
∫
(ẽi

l−σẽi
l)

wk = δkl.

So for el = Ci ∩ Cj , using the notation f̃±
l = f̃ i±

l ∪ f̃ j±
l , we have

∑
l

∫
(f̃+

l +σf̃+
l )

gk
dh

h
−

∫
(f̃−

l +σf̃−
l )

gk
dh

h
(47)

=
∑

l

1
2
δkl

∫
(f̃+

l +σf̃+
l )

dh

h

=
∑

l

1
2
δkl

[∫
(f̃ i+

l −f̃ j+
l )

dh

h
+

∫
(σf̃ i+

l −σf̃ j+
l )

dh

h

]
≡ −πiΩkk − 2πizk mod 2πiZ.

Next we consider the second term in the last line of equation (45).
Note that, for el = Ci ∩ −Cj , dh

h on ẽi
l (σẽj

l resp.) is equal to dh
h on ẽj

l

(σẽi
l resp.) minus 2wl.
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Hence for el = Ci ∩ −Cj ,

∫
(ẽi

l+ẽj
l )

gk
dh

h
+

∫
(σẽi

l+σẽj
l )

gk
dh

h
(48)

=
∫

ẽi
l

gi
k

(
dhj

hj
− 2πi(2wl)

)
− gj

k

dhj

hj

+
∫

σẽj
l

gj
k

(
dhi

hi
− 2πi(2wl)

)
− gi

k

dhi

hi

= −2πi

∫
ẽi

l

(2gi
kwl) − 2πi

∫
σẽj

l

(2gj
kwl)

+
∫

ẽi
l

(
gi
k − gj

k

) dhj

hj
+

∫
σẽj

l

(
gj
k − gi

k

) dhi

hi
.

First we consider the sum of the first and the second integrals of the four
integrals of the last line of equation (48).

Using the σ-anti-invariance we see that the integral is equal to

2πi

∫
f̃ ′

l∪−σf̃ ′
l

wk

∫
ẽl

wl,

where f̃ ′
l is the curve in ∆̃i∪∆̃j connecting xi

2 and xj
2. Let {dlk} be the integers

defined just before Definition 2.12 in Section 2.5. Then we have

−2πi

∫
ẽi

l

(2gi
kwl) − 2πi

∫
σẽj

l

(2gj
kwl) = −πiΩkl − πidkl +

1
4
rkl,(49)

where rkl = ±〈f̃k, f̃l〉 is the intersection number of the curves f̃k and f̃l arising
from the pairs such that ek ∪ el ⊂ Ci.

Now we note here the following; the function gk has discontinuities across
each ẽi

l by values in 1
2 (Z +

∑
l ZΩkl). Hence to compute ∆P , we compensate

for these discontinuities.
The discontinuity of gk yields at ẽi

l the compensations of the integrals (49)
given by the integrals

−2πi

∫
ẽi

l

(2gi
kwl) + 2πi

∫
σẽj

l

(2gj
kwl).(50)

The integral (50) is given as follows.
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First we assume k = l. Using the σ-anti-invariance and dgk = wk, we have

−2πi

∫
ẽi

k

(2gi
kwk) + 2πi

∫
σẽj

k

(2gj
kwk)(51)

= −2πi

∫
ẽi

k

d(gi
k)

2 + 2πi

∫
σẽj

k

d(gj
k)

2

= −2πi

[(
gi
k(0) +

1
2

)2

− gi
k(0)2 +

(
gj
k(1) − 1

2

)2

− gj
k(1)2

]

= −2πi(gi
k(0) − gj

k(1)) − πi

= −πiΩkk − πi,

where 0 and 1 denote the initial and end points of ẽi
l and ẽj

l respectively and
they are equal.

Next we assume k �= l. Since
∫
ẽi

l
wk = 0, gi

k and gj
k have the same values

at the two endpoints of ẽi
l and ẽj

l respectively, and hence by partial integration
we can see that the two integrals cancel out and we have

−2πi

∫
ẽi

l

(2gj
kwl) + 2πi

∫
σẽj

l

(2gi
kwl) =

1
4
r′kl,(52)

where r′kl = ±〈f̃k, f̃l〉 is similar to rkl in equation (49). Note that, from the
curve configuration in each Ci ∈ Υ, we have

∑
l(rkl + r′kl) ∈ 4Z.

Next we consider the sum of the third and fourth integrals of the last line
of equation (48).

By the quasi-periodicity of the theta function, dhj

hj at ẽj
l differs from dhi

hi

at σẽi
l by 2πi(4wl). Hence, by similar calculations in (49), (50), (51) and (52),

we have ∫
ẽi

l

(
gi
k − gj

k

) dhj

hj
+

∫
σẽj

l

(
gj
k − gi

k

) dhi

hi
(53)

= 2πi

∫
ẽi

l

(
gi
k − gj

k

)
4wl

≡ 0 mod 2πiZ + 2πiZΩkl.

Putting equations (45), (46), (47), (48), (49), (50) and (51) together and
using

∑
l dlk ∈ 2Z and 1

4

∑
l(rkl + r′kl) ∈ Z, we find

1
2

6g−6∑
r=1

∫ Qr

σQr

wk ≡ −zk −
[

1
2

3g−3∑
l=1

Ωkl +
1
2

]
mod Z +

∑
l

ZΩkl.

Here we regard the left-hand side to be compensated by the discontinuity of gk.
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It follows that the k-th component of the vector ∆P is given by

−1
2

3g−3∑
l=1

Ωkl −
1
2

mod Z +
∑

l

ZΩkl.

This proves Proposition 5.1.

Theorem 5.1. Let C̃ = C̃(b̃,m) be the 2-fold branched covering surface

of C with marking associated to (b̃, m) ∈ B̃Υ. Coordinate the Prym variety
P = P(b̃,m) as in Section 3.2. Let Π be a Riemann theta function of level 4 on
P defined by

Π(�z,Ω) =
∑

�λ∈ 1
2
Λ∗/Λ∗

0

e2πi(�λt�1
2
)

∑
�ε∈Z3g−3

2

w(�ε)ϑ

[
�ε
4 + �λ

2
�0

]
(4�z, 4Ω),

where �λt�1
2 denotes the scalar product of the two column vectors �λ and �1

2 and
w(�ε) = ε1 · · · ε3g−3 for �ε = (ε1, · · · , ε3g−3) ∈ Z3g−3

2 .
Then the branching divisor of the map π : P → Mg is given by the divisor

of Π, Div(Π).

Proof. The branching locus is the divisor of the Riemann theta function
Π of level 4 obtained from ϑ(�z,Ω) by translating by ∆P , substituting �z with
2�z and making it 1

2Λ∗/Λ∗
0 invariant. Hence it is the divisor of

S0
1
2
Λ∗/Λ∗

0

(
ϑ

[
�1
2
�1
2

]
(2�z,Ω)

)

which is equal to e−
(3g−3)

2
πiΠ.

6. Differential equations satisfied by pull back sections

In this section we construct a differential equation which characterizes
locally the pull back of holomorphic sections of Lk by the dominant map π :
P → Mg. Throughout this section we fix a pant decomposition Υ = {el, Ci}
of C.

6.1. The point-inverse vector field. Let PΥ → B̃Υ be the bundle of the
polarized Prym varieties over the universal cover B̃Υ of BΥ. Then the morphism
π : P = P(b̃,m) → Mg at each fiber combines to define a morphism π : PΥ →
Mg. Let Ps and Mgs be the subsets of P and Mg respectively corresponding
to the stable bundles as in Section 3.2.

Definition 6.1 (Point-inverse vector field). For a holomorphic tangent vec-
tor v ∈ T

(1,0)

(b̃,m)
B̃Υ, the morphism π : PΥ → Mg induces a holomorphic tangent

vector field V of PΥ defined on Ps = Pbs with singularity along Div(Π) ∩ Ps
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such that it is mapped to v by the projection PΥ → B̃Υ and π∗V = 0; i.e. it is
tangent to the inverse images of points of Mgs − Div(Π) by π at Ps.

Let P̃ = P̃(b̃,m) be the universal cover of the Prym variety P = P(b̃,m) and

let P̃Υ → B̃Υ be the fibre bundle on B̃Υ whose fibre at b is P̃ = P̃(b̃,m). Then

the vector field Vb can be pulled back to a vector field Ṽb on P̃Υ. Let P̃s be
the inverse image of Ps under the covering projection P̃ → P .

Theorem 6.1. For v ∈ T
(1,0)

(b̃,m)
B̃Υ, the corresponding vector field Ṽ on P̃s

is given by

Ṽ = δΩ +
1
8
(δJω−1)ijΠ

−1∂iΠ
∂

∂zj
,(54)

where δΩ denotes the tangent vector on the Siegel domain S induced by v. It
descends to the vector field V on Ps given by

V = δ +
1
8
(δJω−1)ijΠ

−1∇iΠ
∂

∂zj
(55)

where δ and ∇i are the covariant derivatives given in equation (30) of Sec-
tion 4.2.

Proof. Let π̃ : P̃s → Mgs be the composition of the covering map P̃s → P

and π. If we choose a local holomorphic coordinate (yj)1≤j≤3g−3 of Mgs at a
point and we write π̃(Ω, zi) = (fj(Ω, zi)), then the meromorphic vector field Ṽ
is given by

Ṽ = −
(

∂fj

∂zi

)−1

1≤i,j≤3g−3

(
∂fj

∂Ω

)
1≤j≤3g−3

.(56)

Hence if we write

Ṽ = δΩ +
3g−3∑
i=1

νj
∂

∂zj
(57)

then �ν = (νj)1≤j≤3g−3 is a meromorphic vector with singularity along the

divisor of det
(

∂fj

∂zi

)−1
which is Div(Π).

Let ∧3g−3TMg and ∧3g−3TP be the top exterior bundle of the holomorphic
tangent bundles of Mg and P respectively. Then the morphism π : P → Mg

gives a holomorphic section s of the bundle (∧3g−3T ∗P )⊗π∗∧3g−3 TMg which
is isomorphic to π∗L4 = L̃8 ([4]). As was mentioned in Section 5 the branching
locus of the map πb̃ : Pb̃ → Mg is given by the divisor of the Riemann theta
function Π of level 4. Hence we have s = c(b)Π2 for a holomorphic function
c(b) on B̃Υ.
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The divergence divṼ(c(b)Π2) of the vector field Ṽ with respect to the
volume form c(b)Π2 is given by

divṼ(c(b)Π2) =
∑

1≤j≤3g−3

(c(b)Π2)−1∂j(c(b)Π2νj)(58)

−(c(b)Π2)−1δΩ(c(b)Π2)

where the second term in the right-hand side of the above equation is incorpo-
rated since δ acts on the complex volume form (the canonical bundle) on Pb̃

by the said amount.
Since Ṽ is defined by the tangent vector field of the point inverses, c(b)Π2

satisfies the tautological relation

divṼ(c(b)Π2) = (c(b)Π2)−1δΩ(c(b)Π2).(59)

From the equations (58) and (59) it follows that

2(c(b)Π2)−1δΩ(c(b)Π2) =
∑

1≤j≤3g−3

(c(b)Π2)−1∂j(c(b)Π2νj)(60)

which is equivalent to

Π−1δΩ(Π)

=
1
2

∑
1≤j≤3g−3

(Π−1∂jΠ)νj +
1
4

∑
1≤j≤3g−3

∂jνj − c(b)−1δc(b).(61)

On the other hand by the heat equation satisfied by Π,

Π−1δΩΠ = −
∑

1≤i,j≤3g−3

1
16

(δJω−1)ijΠ
−1∂i∂jΠ.(62)

The right-hand sides of the two equations (61) and (62) should coincide
with each other. Hence from the equation

Π−1∂i∂jΠ =
(
Π−1∂jΠ

) (
Π−1∂iΠ

)
+ ∂j

(
Π−1∂iΠ

)
,(63)

we can deduce c(b) = 1 and obtain the equation

νj =
1
8
(δJω−1)ijΠ

−1∂iΠ(64)

which proves (54) in the theorem.
To obtain equation (55) we substitute the terms in (54) by covariant

derivatives

δΠ =

δΩ − 1
2i

∑
ij

δJij(zi − z̄i)∂j

 Π,(65)

∇iΠ =

∂i +
∑

j

2ωij

i
(zj − z̄j)

 Π.

Then V can be expressed as in (55) and it defines a meromorphic vector field
on Ps with singularity along Div(Π).
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The meromorphic vector field V in the above theorem is defined on Ps.
However the resulting equation can have a meaning on the whole P as a mero-
morphic vector field with singularity along Div(Π). Hence from now on we
regard V to be defined on P .

6.2. The differential equation satisfied by pull back sections. We construct
a differential equation satisfied by pull-back sections of Lk by lifting the vector
field V to a differential operator acting on sections of the vector bundle L̃2k

over BΥ.

Definition 6.2. Let

PΠ : Θ2(k+2) → ΠΘ2k(66)

be the orthogonal projection onto the subspace ΠΘ2k with respect to the usual
Hermitian inner product on Θ2(k+2).

Theorem 6.2. Let D be the differential operator on L̃2k, for ψ̃ ∈ Γ(L̃2k),
given by

Dψ̃ = Π−1

(
δ +

1
8(k + 2)

(δJω−1)ij∂i∂j − δPΠ

) (
Πψ̃

)
(67)

where δPΠ is the derivative of PΠ .
Then for a holomorphic section ψ of Lk, its pull back section ψ̃ of L̃2k

satisfies the differential equation

Dψ̃ = 0.(68)

Proof. The differential equation satisfied by pull back sections can be
derived from the fact that the pull back section should be invariant along the
vector field V. Hence we must lift the differential operator defined by V to a
differential operator on the space of holomorphic sections of L̃2k.

The required differential operator must have several necessary properties.
We construct it step by step so that it may satisfy all the necessary conditions.

Step 1. To derive the correct differential equation we must take into
account the parallelism of the Riemann theta functions. The bundle Θ2k has
the natural basis and hence the natural framing consisting of parallel Riemann
theta functions. With respect to this framing of Θ2k the differential along V is
expressed by the differential operator

D1(ψ̃) = δψ̃ +
1

8(k + 2)
(δJω−1)ij

(
Π−1∂iΠ∂j + ∂i∂j

)
ψ̃.(69)

Here we note that the factor 1
8(k+2) is incorporated to eliminate ∂̄δψ̃ (holomor-

phicity preservation).
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Step 2. Let �n = (ni) ∈ Z3g−3. Using the relation

δ
(
ψ̃(�z + Ω�n)

)
= (δψ̃)(�z + Ω�n) + ((δΩ)�n)i (∂iψ̃)(�z + Ω�n)(70)

and the quasi-periodicity of ψ̃, we have

(D1ψ̃)(�z + �n) = eπi(t�nΩ�n+2t�n�z)(D1ψ̃)(�z)(71)

+
k

k + 2
(δJω−1)ij

(
Π−1∂iΠ

)
(�z)njψ̃(�z).

Therefore the differential operator D1 does not preserve the quasi-periodicity
of ψ̃ because of the second term of the right-hand side of the above equation.
Consequently it does not preserve the sections of L̃2k. This can be remedied
by adding to D1 the multiplication operator

ψ̃(�z) →
(

k

k + 2
(Π−1δΠ)(�z)

)
ψ̃(�z).(72)

By the heat equation (33) we have

k

k + 2
Π−1δΠ = Π−1δΠ +

1
8(k + 2)

Π−1(δJω−1)ij∂i∂jΠ.(73)

Hence adding the multiplication operator (72), D1 changes to

D2ψ̃ = Π−1

(
δ +

1
8(k + 2)

(δJω−1)ij∂i∂j

)
Πψ̃.(74)

Another explanation of the reason for adding the multiplication opera-
tor (72) is the necessity for the incorporation of the difference of trivializa-
tions of fibres of L̃2k. For x ∈ Mg and a nonzero vector a ∈ Lk

x, π−1(a) de-
fines a holomorphic function on the point-inverse orbit π−1(x). The derivative
vx = δV log π−1a does not depend on the choice of a and the family {vx}x∈Mg

combines together to give a holomorphic function on the universal cover P̃ . To
obtain the lift of the differential operator V to a differential operator on the
space of holomorphic sections of L̃2k, we must take a covariant derivative with
respect to the holomorphic connection defined by {vx}.

Step 3. We note that the expression (74) is formal as it stands because
the differential operator in the parentheses on the right-hand side of (74) does
not keep the subbundle ΠΘ2k invariant in general and hence we cannot divide
by Π. We may remedy this by adding the term of the operator

ψ̃ → −Π−1δPΠ

(
Πψ̃

)
.(75)

As a result we obtain the operator D given in equation (67) in the theorem
and this completes the construction of the desired differential operator D.
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7. The pull back sections; a characterization

7.1. A characterization of pull back sections. Let Υ = {el, Ci} be a
decomposition of C into 3-holed spheres.

The results so far obtained in the preceding sections are sufficient to give
a characterization of holomorphic sections of L̃2k which are pull-backs of holo-
morphic sections of Lk.

We have the following three conditions for the pull back sections:

(i) local invariance,

(ii) global invariance,

(iii) automorphy.

(i) Local invariance. Theorem 6.2 states that a pull back section ψ̃ satisfies
the differential equation given in equation (68).

(ii) Global invariance. A pull back section ψ̃ should be a linear combina-
tion of S0

1
2
Λ∗/Λ∗

0
image of Riemann theta functions which are invariant under

the action of Z3g−3
2 and projectively invariant under the W o

Υ-action (Definition
4.3).

(iii) Automorphy. A pull back section ψ̃ should be a linear combination of
Riemann theta functions of level 2k with coefficients of holomorphic functions
of Riemann matrices ΩΛ.

Consequently a pull back section should be a linear combination of sections
of the form

ψ̃ = S0
1
2
Λ∗/Λ∗

0

(∑
�a

c�a(ΩΛ)ϑ
[
�a
�0

]
(2k�z, 2kΩ)

)
,(76)

where c�a(ΩΛ) ∈ A∗ and the section in the parenthesis is projectively invariant
under W o

Υ action.
To summarize we have the following characterization of pull back sections,

Proposition 7.1. Let Υ be a pant decomposition of C. A family of holo-
morphic sections of L̃2k

b on B̃Υ, {ψ̃ = ψ̃(b̃,m)}(b̃,m)∈B̃Υ
, is a family of pull back

sections of a holomorphic section of Lk if and only if it satisfies the above
conditions (i), (ii) and (iii), and it has the form of equation (76).

Proof. It is obvious that the said conditions are necessary for {ψ̃} to be a
family of pull back sections of a holomorphic section of Lk.

We prove the converse. Assume that {ψ̃} satisfies the local condition.
Since the differential equation is constructed from the point-inverse vector
field, its solution is locally a pull-back of a holomorphic section. Hence {ψ̃} is
locally a pull-back of a holomorphic section.
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The map π : Pb̃ → Mg factors the map P ′ → Mg and the degree of the
latter is 23g−3 ([6] and see Section 3 for P ′). Since the order of WΥ/W o

Υ is
equal to Z3g−3

2 stated as in Lemma 2.4, WΥ-invariance implies that the family
descends to a holomorphic section of Lk, that is, it is globally a family of pull
back sections.

8. A construction of a basis of Γ(Mg,Lk)

In this section we construct a set of holomorphic sections {ψ̃} of L̃2k

satisfying the conditions stated in Section 7. Throughout this section we choose
and fix a pant decomposition Υ = {el, Ci} of C.

In the defining equation (67) of the differential operator D in Theorem
6.2, the operator in the big parenthesis coincides with the usual heat operator
of the Riemann theta function of level 2k + 4 (see equation (33)) except for
the last term −δPΠ . Hence we expect that Πψ̃ might be expressed in much
simpler form than ψ̃ itself. Hence we look for φ such that ψ̃ = φ

Π .
From the formula of Π given in Theorem 5.1, Π is anti-invariant with

respect to the Z3g−3
2 -action of Definition 4.2. Since ψ̃ is Z3g−3

2 -invariant, φ =
Πψ̃ is Z3g−3

2 -anti-invariant. Also ψ̃ is S0
1
2
Λ∗/Λ∗

0
-invariant, and from the formula

of Π given in Theorem 5.1 again, we see that φ = Πψ̃ is a S 1
2
Λ∗/Λ∗

0
image, where

S 1
2
Λ∗/Λ∗

0
is the anti-invariant shift operator defined in Definition 4.2 (iv).

Taking this into account, from the characterization of pull back sections
in the previous section, we make the following definition.

Definition 8.1. Let (A2(k+2) · Θ2(k+2))
W o

Υ
− be the subspace of A2(k+2) ·

Θ2(k+2) spanned by those elements each of which is W o
Υ-projectively invari-

ant and is of the form∑
�ε∈Z3g−3

2

w(�ε)q(�ε · ΩΛ)ϑ

[
�ε · (2�j+�1)

2(k+2)
�0

]
(2(k + 2)�z, 2(k + 2)Ω),

where w(�ε) = ε1 · · · ε3g−3 and �1 = (1, · · · , 1)t ∈ Z3g−3.

Since our object is to find φ ∈ (A2(k+2)·Θ2(k+2))
W o

Υ
− such that S 1

2
Λ∗/Λ∗

0
(φ) =

Πψ̃, we begin by studying the condition for φ ∈ (A2(k+2) · Θ2(k+2))
W o

Υ
− so that

S 1
2
Λ∗/Λ∗

0
(φ) may be divisible by Π. For this purpose we use the following

notions:

Energy weight, spin weight and weight lattice. Let φ ∈ A2(k+2) · Θ2k+2.
Then by Fourier expansion S 1

2
Λ∗/Λ∗

0
(φ) can be expressed by an infinite linear

combination of exponential functions each of which has the form eπis(�a)e2πi(�mt�z),
where s(�a) is a function of �a, �m ∈ Q3g−3 and �z = (z1, · · · , z3g−3)t.
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Definition 8.2. The weight lattice Lφ of φ with respect to the coordinate
�z is defined as the point set Lφ = {(Ims(�a), �m)} in R⊕R3g−3. s(�a) and �m are
called the energy and spin weight respectively. For a vector �a = (al) such that
|al| < 1 for 1 ≤ l ≤ 3g − 3, s(�a) is called a minimal energy weight.

8.1. Grouping and decomposition of minimal energy weight part of Π. We
introduce the notion of grouping for the construction of the basis of Γ(Mg,Lk).

Definition 8.3. Let Υ = {el, Ci} be a pant decomposition of C. We set
E = {el ∈ Υ}1≤l≤3g−3 and define a grouping g to be a decomposition of E into
three disjoint subsets

g : E = Eg
1 ∪ Eg

2 ∪ Eg
3(77)

such that, for 1 ≤ m ≤ 3, Eg
m = {el(m)} consists of g − 1 elements, and, for

each Ci ∈ Υ,

(i) if Ci = S0 and all the three boundary curves are simultaneously separat-
ing or nonseparating, then �{el(m) ∈ Eg

m | el(m) ⊂ Ci} = 1;

(ii) if Ci = S0 and one boundary curve is separating and the other two
boundary curves are nonseparating, then

(a) �{el(m) ∈ Eg
m | el(m) ⊂ Ci} = 0, or

(b) �{el(m) ∈ Eg
m | el(m) ⊂ Ci} = 1 and it is the separating boundary

component, or

(c) �{el(m) ∈ Eg
m | el(m) ⊂ Ci} = 2 and they are the two nonseparating

boundary components,

(iii) if Ci = T0, then �{el(m) ∈ Eg
m | el(m) ⊂ Ci} = 0, or 1.

We denote the set of all the groupings by EΥ; here the numbering m

is irrelevant; that is, Eg
τ(1) ∪ Eg

τ(2) ∪ Eg
τ(3) defines the same grouping for any

permutation τ of m.

The following can be proved by induction on the genus g without difficulty.

Lemma 8.1. Let Υ = {el, Ci} be a pant decomposition of C. Let EΥ be
the set of all the groupings.

Then

1 ≤ �EΥ ≤ 2g−2.(78)

We relate the concept of grouping to a more geometric one, that is, a
system of simple closed curves each of which is transverse to

⋃
l el as follows.

Associated to the marking m = {fl, el}, there is a dual graph G of the
pant decomposition Υ; that is, G is the trivalent graph in C whose vertices
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Figure 5: curve system

are {x1
i }1≤i≤2g−2 and whose edges are {fl}1≤l≤3g−3. Let N(G) be a regular

neighborhood of G in C. Then C is homeomorphic to the double of N(G).
For each Ci ∈ Υ, N(G) ∩ Ci is a hexagon with three disjoint boundary

arcs in ∂Ci. In Figure 5 we define the arcs in N(G) ∩ Ci, where the symbol ·
denotes the branch point x1

i and the letters n or s attached to the boundary
component N(G) ∩ ∂Ci indicate that the corresponding boundary component
of Ci is nonseparating or separating respectively.

Definition 8.4. Let Υ = {el, Ci} be a pant decomposition of C. A triple
of maximal curve system is defined to be a triple s = (s1, s2, s3) satisfying the
following conditions: for 1 ≤ m ≤ 3, sm is a disjoint union of simple closed
curves in N(G) −

⋃
i x

1
i such that each el ∈ Υ intersects with at most one

component of sm and exactly 2g − 2 el’s intersects sm, sm ∩Ci(Ci ∈ Υ) is one
of the arcs listed in Figure 5, and {sm ∩ Ci}m=1,2,3 runs through all the three
types of arcs listed there corresponding to the type of Ci.

We denote the set of all the triples of maximal curve system by SΥ.

Lemma 8.2. There is a one-one correspondence between the sets EΥ and SΥ.

Proof. Let g : E = Eg
1 ∪E

g
2 ∪E

g
3 be a grouping. For 1 ≤ m ≤ 3, we construct

from Eg
m = {el(m)} the corresponding curve system sg

m as follows.
For Ci ∈ Υ, sg

m ∩ Ci is defined so that:
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(i) If Ci = S0 and all the boundary components are simultaneously nonsepa-
rating, then sg

m∩Ci is one of (ia), (ib) and (ic) in which el(m) corresponds
to the boundary component of N(G) ∩ ∂Ci disjoint from the arcs.

(ii) If Ci = S0 and all the boundary components are simultaneously separat-
ing, then sg

m ∩Ci is one of (iia), (iib) and (iic) in which el(m) corresponds
to the boundary component of N(G) ∩ ∂Ci disjoint from the arcs.

(iii) If Ci = S0 and exactly one boundary component is separating, then

(a) if �{el(m) ⊂ Ci} = 0, then sg
m ∩ Ci is (iiia),

(b) if �{el(m) ⊂ Ci} = 1, then sg
m ∩ Ci is (iiib),

(c) if �{el(m) ⊂ Ci} = 2, then sg
m ∩ Ci is (iiic).

(iv) If Ci = T0, then

(a) if �{el(m) ⊂ Ci} = 0, then sg
m ∩ Ci is (iva),

(b) if �{el(m) ⊂ Ci} = 1 and el(m) is the nonseparating simple closed
curve, then sg

m ∩ Ci is (ivb),

(c) if �{el(m) ⊂ Ci} = 1 and el(m) = ∂Ci, then sg
m ∩ Ci is (ivc).

From such a chosen subset {sg
m ∩ Ci}1≤i≤2g−2 we can construct a curve

system sg
m satisfying the condition in Definition 8.4 and the construction gives

a one-one correspondence between EΥ and SΥ.

Definition 8.5. For a grouping g ∈ EΥ, let sg = (sg
1, s

g
2, s

g
3) denote the

curve system constructed in Lemma 8.2.

By formula Π in Theorem 5.1 we can write Π as

Π = Π0 + Π1,(79)

where Π0 is the sum of the terms of minimal energy weights and is equal to∑
�λ∈ 1

2
Λ∗/Λ∗

0

e2πi(�λt�1
2
)

∑
�ε∈Z3g−3

2

w(�ε)e
�ε,�λ

,

for

e
�ε,�λ

= exp

(
πi

(
�ε

2
+ �λ

)t

Ω
(

�ε

2
+ �λ

)
+ 4πi

(
�ε

2
+ �λ

)t

�z

)
,(80)

and Π1 is the sum of those of higher energy weights.
For each C̃i ∈ Υ we make a change of variables in the following way:
First we assume that Ci = S0. Let ∂Ci = eli1

∪ eli2
∪ eli3

. Let {zli1
, zli2

, zli3
}

be the corresponding variables defined in Section 3.2.
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In C̃i ⊂ C̃ we make the base-change of �̃ ∩ H1(C̃i,R)− as{
[ẽli1

− σẽli1
] , [ẽli2

− σẽli2
] , [ẽli3

− σẽli3
]
}

→ {Ei
1, E

i
2, E

i
3},

where {Ei
r} are as in Definition 2.11.

This induces the change of variables
wli1

= zli2
+ zli3

wli2
= zli1

+ zli3

wli3
= zli1

+ zli2
,

(81)

and for vectors, �ni = (nli1
, nli2

, nli3
)t, �mi = (mli1

, mli2
, mli3

)t, �zi = (zli1
, zli2

, zli3
)t

and �wi = (wli1
, wli2

, wli3
)t, satisfying �nt

i�zi = �mt
i �wi, we have

mli1
= 1

2

(
−nli1

+ nli2
+ nli3

)
mli2

= 1
2

(
nli1

− nli2
+ nli3

)
mli3

= 1
2

(
nli1

+ nli2
− nli3

)
.

(82)

Next assume that Ci = T0. Let eli1
= ∂Ci and let eli2

∈ Υ be the essential
simple closed curve in Ci. Then we have

Λ ∩ H1(C̃i,R) = Z
1
2
[ẽli1

− σẽli1
] ⊕ Z[ẽli2

− σẽli2
].(83)

In C̃i we make the base change of �̃ ∩ H1(C̃i,R)− as{
[ẽli1

− σẽli1
] , [ẽli2

− σẽli2
]
}

→ {Ei
1, E

i
2},

where {Ei
r}r=1,2 are as in Definition 2.11.

This induces the changes of variables{
wli1

= 2zli2

wli2
= zli1

+ zli2
,

(84)

and for vectors, �ni = (nli1
, nli2

)t, �mi = (mli1
, mli2

)t, �zi = (zli1
, zli2

)t and �wi =
(wli1

, wli2
)t, satisfying, �nt

i�zi = �mt
i �wi, we have{
mli1

= −1
2nli1

+ nli2

mli2
= 1

2nli1
.

(85)

Let Π
�λ=0
0 be the part of Π0 with �λ = 0. Then using the above change of

variables we decompose each term of Π
�λ=0
0 as follows.

Extracting the part of Π
�λ=0
0 only involving the variables concerning C̃i

and using the variable changes (81) and (84), we set

Π(i)�λ=0
0 =

∑
�εi∈Z3

2

w(�εi)e�ε(Ω)e
2πi(ε′

li1
wli1

+ε′
li2

wli2
+ε′

li3
wli3

)
,(86)
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for Ci = S0, and

Π(i)�λ=0
0 =

∑
�εi∈Z2

2

w(�εi)e�ε(Ω)e
2πi(ε′

li1
wli1

+ε′
li2

wli2
)
,(87)

for Ci = T0, where e�ε(Ω) is an elementary exponential function of Ω, the vector
(ε′li1 , ε

′
li2
, ε′li3)

t in (86) is obtained from (εli1
, εli2

, εli3
)t by the transformation (82),

and the vector (ε′li1 , ε
′
li2
)t in (87) is obtained from (εli1

, εli2
)t by the transforma-

tion (85).
The variable wlim is a linear combination of variables in {zli1

, zli2
, zli3

}
(Ci = S0) or {zli1

, zli2
}(Ci = T0). Hence, at each el = ∂Ci ∩ ∂Cj , the equality

of the spin weight of the variable zl (= zlir = zljs
for some r and s) determines

a coincident relation between the terms of Π(i)�λ=0
0 and Π(j)�λ=0

0 appearing on
the right-hand side of equation (86) and equation (87) such that two terms in
Π(j)�λ=0

0 are related to one term in Π(i)�λ=0
0 .

We make the following correspondence between the set of arcs in Ci listed
in Figure 5, all but the ones in (iiic) and (ivb) and the set of elementary
exponential functions in �wi, each of which is a factor of a term on the right-
hand side of equations (86) and (87);

(i) The arc of (ia), (ib) or (ic) connecting elir and elis corresponds to the term

e
2πiε′

lim
wlim , where wlim = zlir + zlis .

(ii) The arcs of (iia),(iib) or (iic) connecting elir and elis correspond to the

term e
2πiε′

lim
wlim , where wlim = zlir + zlis .

(iii) The arcs of (iiia) connecting {elir , elis} and {elir , elit
} correspond to the

term e
(2πiε′

lim
wlim

−2πiε′
lin

wlin
), where wlim = zlir + zlis and wlin = zlir + zlit

.

(iv) The arc of (iiib) connecting elir and elis corresponds to the term e
2πiε′

lim
wlim ,

where wlim = zlir + zlis .

(v) The arc of (iva) corresponds to the term e
2πiε′

li2
wli2 , where wli2

= 2zli1
+zli2

.

(vi) The arc of (ivc) corresponds to the term e
2πiε′

li1
wli1 , where wli1

= zli2
.

This correspondence, if there is a maximal set of mutually incident terms
involved in a subset of terms in {Π(i)�λ=0

0 }1≤i≤2g−2, defines a simple closed
curve or an arc in C which is a combination of those arcs listed in Figure 5. If it
is not closed, then its endpoints lie in a separating el /∈ Eg

m at which Eg
m realizes

the case (ii) with �{el(m) ⊂ Ci} = 2 or the case (iii) with �{el(m) ⊂ Ci} = 1 in
Definition 8.3. By adding to it the arc (iiic) or (ivb) in Figure 5 in the respective
case, we obtain a simple closed curve. Hence the choice of a maximal family of
mutually coincident terms corresponds to a triple of a maximal curve system
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as in Definition 8.4, and hence by Lemma 8.2 it corresponds to a grouping
g ∈ EΥ.

Thus, if we choose and fix a grouping g ∈ EΥ, then each term of Π
�λ=0
0 is a

product of three elementary exponential functions each of which corresponds
to one of the curves sm of the corresponding curve system and

Π0 =
(
S 1

2
Λ∗/Λ∗

0
Π

�λ=0
)

0
.(88)

Finally we note the following. Using the notation of equation (80) we
consider the following terms contained in Π−1

0 ,

u
�ε,�λ

= e−1

�ε,�0
e
�ε,�λ

, v
�ε,�λ

= e−1

−�ε,�λ
e
�ε,�λ

(
�λ �= �0 ∈ 1

2
Λ∗/Λ∗

0

)
.

Then all the shifts of the spin weights induced from the multiplication by
Π−1

0 are generated by those induced from the mutiplications by {u
�ε,�λ

}
�ε,�λ

. For
example in Ci = S0 ,in the above coordinate of spin weight �ni = (nli1

, nli2
, nli3

)t,
the shifts of the spin weights induced from the multiplication of Π−1

0 are gen-
erated by the translations by the vectors

(
1
2 , 1

2 , 0
)
,
(

1
2 , 0, 1

2

)
and

(
0, 1

2 , 1
2

)
.

Also {u
�ε,�λ

u−�ε,�λ
} and {v

�ε,�λ
v−�ε,�λ

} generate the shifts of the energy weights
without spin weight shifts through their multiplications.

8.2. Divisibility by Π and the Quantum-Clebsh-Gordan condition.

Definition 8.6. Let Υ = {el, Ci} be a pant decomposition of C. For a
positive integer k, an admissible weight �j = (jl)1≤l≤3g−3 ∈ 1

2Z
3g−3 of level k is

defined as a function

�j = (jl) : {el} →
{

0,
1
2
, · · · ,

k

2

}
(89)

satisfying the so-called Quantum-Clebsch-Gordan condition of level k: For each
Ci ∈ Υ(1 ≤ i ≤ 2g − 2) with ∂Ci = eli1

∪ eli2
∪ eli3

, the corresponding weights
{jli1

, jli2
, jli3

} satisfy 
jli1

+ jli2
+ jli3

∈ Z

|jli1
− jli2

| ≤ jli3
≤ jli1

+ jli2

jli1
+ jli2

+ jli3
≤ k,

(90)

where if Ci = T0, then eli2
= eli3

and jli2
= jli3

are to be understood.
We denote the set of all the admissible weights of level k by QCGk.

Theorem 8.1. Let �j /∈ QCGk. Then there does not exist a nontrivial
Riemann theta function φ�j ∈ (A2(k+2) · Θ2k)

W o
Υ

− of the form

φ�j =
∑

�ε∈Z3g−3
2

w(�ε) q�ε
�j
· ϑ

[
�ε ·

(
2�j+�1

2(k+2)

)
�0

]
(2(k + 2)�z , 2(k + 2)Ω),(91)

such that φ̃�j = S 1
2
Λ∗/Λ∗

0
(φ�j) is divisible by Π.
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Proof. Let Π = Π0 + Π1 be the decomposition given in equation (79).
We formally expand Π−1φ̃�j as

Π−1φ̃�j = Π−1
0 φ̃�j +

∑
m≥1

(−1)m
(
Π−1

0 Π1

)m

 φ̃�j .(92)

Then φ̃�j is divisible by Π if and only if the above series converges. If the first
term Π−1

0 φ̃�j converges, then there are constants C, q > 0 such that the second
term satisfies the inequality∣∣∣∣∣∣

∑
m≥1

(−1)m
(
Π−1

0 Π1

)m

 φ̃�j

∣∣∣∣∣∣ ≤ C(η(q)−2)(3g−3),

where η(q) =
∏

n≥1(1 − qn) is the Dedekind η function.
Thus φ̃�j is divisible by Π if and only if it is divisible by Π0.
Choosing an elementary exponential function summand q0 of Π0, we write

Π0 = q0(1 + Π ′
0). Then φ̃�j can be divisible by Π0 if and only if the formal

power series

Π−1
0 φ̃�j = q−1

0

1 +
∑
m≥1

(−1)mΠ
′m
0

 φ̃�j(93)

defines a convergent series. Moreover it defines a convergent series if and only
if the right-hand side of the above equation involves only finitely many terms
with the same energy weight at each energy level; actually all the terms must
be contained in the convex hull of the weight lattice Lφ of φ = φ̃�j (Definition
8.2).

Case with Ci = S0. For Ci ∈ Υ with ∂Ci = eli1
∪ eli2

∪ eli3
, we consider the

three-vectors (nli1
, nli2

, nli3
) representing the spin weights at the three boundary

circles.
The first condition of (90) follows from the Λ invariance of Π−1φ̃�j ; i.e.

it is invariant by the change of variables wlij
→ wlij

+ 1 where wlij
is as in

equation (81).
By the description of Π0 given in equation (88), for C̃i (1 ≤ i ≤ 2g − 2),

multiplication of each elementary function term in the parenthesis on the right-
hand side of equation (93) affects the spin weight (nli1

, nli2
, nli3

) by a shift given
by a linear combination of the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1).

Hence if the right-hand side of (93) converges, the spin weights (nli1
, nli2

, nli3
)

of all the terms with minimal energy weights appearing on the right-hand
side of (93) must be contained in a convex hull spanned by the vectors
{±(2jli1

, 2jli2
, 2jli3

)} and their shift by the vectors {±(1, 1, 0),±(1, 0, 1),±(0, 1, 1)}
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in R3 which is of finite volume and has {±(2jli1
, 2jli2

, 2jli3
)} as its vertices. Now,

we have the following equation

(4jli1
, 4jli2

, 4jli3
) = p(1, 1, 0) + q(1, 0, 1) + r(0, 1, 1)(94)

for nonnegative integers p, q and r. It is equivalent to the second condition
of (90).

By the periodicity of the Riemann theta function the same argument can
be applied to the convex hull in R3 spanned by the spin weights

{±
(
(2k − 2jli1

), (2k − 2jli2
), (2k + 2jli3

)
)
}

and their shift by the vectors {±(1, 1, 0),±(1, 0, 1),±(0, 1, 1)}. It follows that
φ̃�j is divisible by Π0 only if the vector

(
(2k − 2jli1

), (2k − 2jli2
), (2k + 2jli3

)
)

satisfies the first and second conditions of (90). This yields the inequality

jli1
+ jli2

+ jli3
≤ k(95)

which is the third condition of (90).

Case with Ci = T0. Let eli1
= ∂Ci and let eli2

be the essential simple
closed curve in Ci. The second and the third conditions of (90) are{

−jli1
+ 2jli2

≥ 0
jli1

+ 2jli2
≤ k.

(96)

Changing the variables as given in equation (84), we see that essentially
the same argument as in the former case proves the claim of the theorem.

8.3. Divisibility by Π and QCG: sufficiency. We proceed to prove the
existence theorem which claims that, for �j ∈ QCGk, there is a nontrivial
Riemann theta function φ�j of the form (91) in Theorem 8.1 which is projectively
invariant under W o

Υ and is such that φ̃�j = S 1
2
Λ∗/Λ∗

0
(φ�j) can be divided by Π.

Definition 8.7 (Marking of the lattice Λ). Let Υ = {el, Ci} be a pant
decomposition of C. Let g : E = Eg

1 ∪ Eg
2 ∪ Eg

3 ∈ EΥ be a grouping.
We define a triple of markings (bases) of Λ, {mg

m}m=1,2,3, such that

mg
m = {−[ẽl − σẽl]}el∈Eg

m
∪ {Ei

s(i)}1≤i≤2g−2,

where Ei
s(i) is one of the vectors given in Definition 2.11 for Ci ∈ Υ.

Likewise for �ε = (εl) ∈ Z3g−3
2 we define a triple of markings of Λ,

{mg,�ε
m }m=1,2,3 in the same way by replacing {ẽl} by {εlẽl} (and hence replacing

{Ei
s(i)} by the corresponding elements).

Let Ωg,�ε
m be the Riemann matrix for H1(C̃,R)− associated with the mark-

ing m
g,�ε
m and its symplectic dual.
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Remark 8.1. In the above definition we neglect to fix an ordering of the
basis m

g,�ε
m . What we need actually is a coherent orientation of the Lagrangian �̃.

We choose and fix, arbitrarily, ordering of m
g,�ε
m so that it defines the orientation

of �̃ which differs from that of {εl[ẽl − σẽl]} by (−1)g−1.

Now we define automorphic forms which are of fundamental importance
in the subsequent arguments.

Definition 8.8 (Basic automorphic forms). Let Υ = {el, Ci} be a pant
decomposition of C.

For a grouping g : E = Eg
1 ∪ Eg

2 ∪ Eg
3 ∈ EΥ, we define a triple of vectors,

{�δg
m = (δm

l )1≤l≤3g−3}m=1,2,3, by

δm
l =

{
−1 el ∈ Eg

m

+1 el /∈ Eg
m.

For �j = (jl) ∈ QCGk and g ∈ EΥ, let Ag
�j

be the set of triples a = (�a1,�a2,�a3) of

vectors in Z3g−3 such that, for 1 ≤ m ≤ 3, �am = (am
l ) with 0 ≤ am

l ≤ 2k + 3
satisfies the following two conditions:

(i) For 1 ≤ l ≤ 3g − 3,

δ1
l

(
a1

l

)2 + δ2
l

(
a2

l

)2 + δ3
l

(
a3

l

)2 ≡ 0 mod 4(k + 2).

(ii) For each pair el ∪ el′ ⊂ Ci (1 ≤ i ≤ 2g − 2),

a1
l a

1
l′ + a2

l a
2
l′ + a3

l a
3
l′ ≡ −(2jl + 1)(2jl′ + 1) mod 2(k + 2).

For �j = (jl) ∈ QCGk, g ∈ EΥ, a = (�am)1≤m≤3 ∈ Ag
�j

and �ε = (εl) ∈ Z3g−3
2 ,

we define a theta series ϑνg,a,�ε
�j,m

(Ωg,�ε
m ) associated with the marking m

g,�ε
m by

ϑνg,a,�ε
�j,m

(Ωg,�ε
m ) =

∑
�λ∈Λ∗

exp
{

2(k + 2)πi
(
�λ + νg,a,�ε

�j,m

)t
Ωg,�ε

m

(
�λ + νg,a,�ε

�j,m

)}
,

where

νg,a,�ε
�j,m

=
l=3g−3∑

l=1

εla
m
l

2(k + 2)
[f̃l

∗
] ∈ 1

2(k + 2)
Λ∗(97)

and on the right-hand side the vectors �λ and νg,�ε
�j,m

are understood to be written

as column vectors with respect to the basis m
g,�ε
m .

Finally, for �j = (jl) ∈ QCGk, we define

qg,�ε
�j

=
∑
a∈Ag

�j

ϑνg,a,�ε
�j,1

(Ωg,�ε
1 )ϑνg,a,�ε

�j,2
(Ωg,�ε

2 )ϑνg,a,�ε
�j,3

(Ωg,�ε
3 ).(98)
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The following existence theorem is the main result of this section.

Theorem 8.2. Let Υ = {el, Ci} be a pant decomposition of C. Choose a
grouping g ∈ EΥ. For �j ∈ QCGk and �ε ∈ Z3g−3

2 , let qg,�ε
�j

be the automorphic
form of level 2(k + 2) defined in equation (98) of Definition 8.8. Now,

ψ̃�j = Π−1S 1
2
Λ∗/Λ∗

0

(∑
�ε

w(�ε) qg,�ε
�j

· ϑ
[
�ε · 2�j+�1

2(k+2)
�0

]
(2(k + 2)�z , 2(k + 2)Ω)

)
.

(99)

Then ψ̃�j defines a Riemann theta function which is an image of the shift
operator of a projectively invariant section under the action of W o

Υ.

Proof. First we prove that the Riemann theta function

φ�j =
∑

�ε

w(�ε) qg,�ε
�j

· ϑ
[
�ε · 2�j+�1

2(k+2)
�0

]
(2(k + 2)�z , 2(k + 2)Ω)(100)

is projectively invariant under the action of W o
Υ.

W o
Υ is generated by

(
τ

C∗
i

el

)2
and κ

C∗
i

el for el ⊂ Ci ∈ Υ. We prove the

projective invariance of φ�j under κ
C∗

i
el . The corresponding statement for

(
τ

C∗
i

el

)2

can be proved similarly, and we omit the details.
For ∂Ci = eli1

∪ eli2
∪ eli3

, let {Ei
1, E

i
2, E

i
3} be as in Definition 2.11.

The eigenvalue of the Dehn twist along the direction Ei
r (r = 1, 2, 3) of

ϑ

[
�ε · 2�j+�1

2(k+2)
�0

]
is

exp

{
πi

(
δ1(2jli1

+ 1) + δ2(2jli2
+ 1) + δ3(2jli3

+ 1)
)2

2(k + 2)

}
for some δs = ±1 (s = 1, 2, 3). The conditions (i) and (ii) in Definition 8.8
ensure that the corresponding eigenvalues of qg,�ε

�j
cancel the off-diagonal terms

of the expansion of the square in the above eigenvalue, and hence the corre-

sponding eigenvalue of qg,�ε
�j

· ϑ
[
�ε · 2�j+�1

2(k+2)
�0

]
does not depend on �ε. Therefore φ�j

is projectively invariant under the Dehn twists along the curves κCi
el

.
Secondly we prove that S 1

2
Λ∗/Λ∗

0
(φ�j) can be divided by Π. As noted in

the proof of Theorem 8.1, S 1
2
Λ∗/Λ∗

0
(φ�j) can be divided by Π if and only if it

can be divided by Π0. Moreover the divisibility by Π0 is equivalent to that;
if we expand Π−1

0 into a formal power series as in equation (93), the formal
power series Π−1

0 S 1
2
Λ∗/Λ∗

0
(φ�j) involves only finitely many terms at each energy

level. The multiplication by (Π0)−1 induces the shifts both of the spin weight
and the energy weight. Let PΥ be the group of shifts of the spin weights gen-
erated by all the transformations induced by multiplication by (Π0)−1. Then
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PΥ is generated by the shifts of the spin weights corresponding to the vec-
tors in 1

2Λ∗/Λ∗
0. Hence by the condition QCGk, for each fixed �ε ∈ Z3g−3

2 ,

the sum of

{
w(±�ε)qg,±�ε

�j
· ϑ

[
±�ε · 2�j+�1

2(k+2)
�0

]}
and their transformed image by

S 1
2
Λ∗/Λ∗

0
supplies one set of subsums divisible by Π0. Thus the right-hand side

of equation (99) in Theorem 8.2 defines a well defined Riemann theta function.

Theorem 8.3. The set of families {ψ̃�j}b∈BΥ indexed by �j ∈ QCGk con-
structed in Theorem 8.2 forms a basis of the vector space consisting of pull
back sections of holomorphic sections of Lk. Hence this set of families can be
canonically identified with a basis of Γ(Mg,Lk).

Proof. {ψ̃�j}b̃∈BΥ
satisfies the global invariance (ii) in Section 7.1. As was

mentioned at the end of Section 8.1, the terms {u
�ε,�λ

u−�ε,�λ
} and {v

�ε,�λ
v−�ε,�λ

} in
Π−1 generate the energy- shifts without spin-shifts through their multiplica-
tion, where u

�ε,�λ
and v

�ε,�λ
are given below equation (88).

To make the multiplication by Π−1 well defined, we must eliminate by
adding the counter terms the negative energy-weight terms produced from the

minimal energy weight term of ϑ

[
±�ε · 2�j+�1

2(k+2)
�0

]
by producting by the combina-

tions of the above generators and their inverses.
Let (sg

1, s
g
2, s

g
3) be the maximal curve system corresponding to the grouping

g ∈ EΥ. Each segment sg
m ∩Ci(Ci ∈ Υ) corresponds to an element �λ ∈ 1

2Λ∗/Λ∗
0

such that �λ = 1
2(f̃∗

l + f̃∗
l′) where the two endpoints of sg

m ∩ Ci lies on el ∪ el′ .
The above generators of energy-weights shift operators are assembled into three
groups each of which belongs to the subgroup generated by those elements of
1
2Λ∗/Λ∗

0 corresponding to {sg
m ∩ Ci}Ci

(1 ≤ m ≤ 3).
By the description of the minimal energy part of Π

�λ=0 given in Section
8.1, for each sg

m, we may perform a simultaneous coherent coordinate change in
all the pants Ci so that {zl}el∈Eg

m
and {wli} forms a coordinate associated with

the lattice Λ. For such three coordinate systems, the necessary counter terms
are coherently assembled to the sum of the product of three theta constants
qg,�ε
�j

given in Definition 8.8 equation (98). We note that those counter terms
correspond to the Dehn twists along the basis vectors of Λ given in Definition
8.7, and the conditions (i) and (ii) in Definition 8.8 come from the effects of
those Dehn twists.

Thus the coefficients qg,�ε
�j

of ψ̃�j in equation (99) automatically appear for

the well-definedness of the multiplication by the formal power series Π−1. It
shows that the ψ̃�j are minimal,that is, any other element of Π−1S 1

2
Λ∗/Λ∗

0
(A2(k+2)·

Θ2(k+2))
W o

Υ
− is a linear combination of the form

∑
�j f(Ω)�jψ̃�j for some functions
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f(Ω)�j . It implies that the operator δPΠ in the differential operator D in The-

orem 6.2 is given by the differential of qg,�ε
�j

. Hence each of {ψ̃�j}b̃∈BΥ
satisfies

the local invariance (i) in Section 7.1. Hence we obtain the theorem.

9. Projectively flat connection and unitarity

Up to the previous section our argument has been done for a fixed Riemann
surface C. In this section we vary the complex structure of C and we extend
the results in previous sections to the whole family on the Teichmüller space
of genus g Riemann surfaces.

9.1. Projectively flat connection. Let T be the Teichmüller space of genus
g Riemann surfaces. We denote the point of T represented by a Riemann
surface C by [C]. Then we have a fibre bundle C → T whose fibre over [C] is
CC .

There is a fibre bundle BT → T whose fibre on [C] is B[C], where B[C] is
the space B introduced in Definition 2.2 (Section 2) associated to the surface
C. Also we have a fibre bundle PT → BT whose fibre over [C] is the family of
the Prym varieties Pb̃ with b̃ ∈ B.

The family {Γ(Mg,Lk)}[C] combines together to form a holomorphic vec-
tor bundle over T . We denote it by Γ(Mg,Lk)T .

We consider the pull back of a section in {Γ(Mg,Lk)}[C] as a holomorphic
section in the family {Γ(Pb̃, L̃2k)T }.

Let Υ = {el, Ci} be a pant decomposition of C. Let B̃ΥT be the fibre
bundle over T whose fibre over [C] is the universal cover B̃Υ of BΥ for C. Let
ΘkT → B̃ΥT be the fibre bundle over T whose fibre over [C] is the family of
the vector spaces of Riemann theta functions of level k.

The Riemann theta functions Π combine together to give a global holo-
morphic section Π of the bundle Θ4T which is parallel with respect to the
usual connection on the level-4 Riemann theta functions.

For �j ∈ QCGk, the holomorphic sections ψ̃�j given in Theorem 8.2 combine
together to define a global holomorphic section ψ̃�j of Γ(P, L̃2k)T on B̃ΥT .

The operator δPΠ (PΠ is the projection operator given in Definition 6.2)
can be defined also on Γ(P, L̃2k)T .

Theorem 9.1 (projectively flat connection). The differential operator D

acting on Γ(P, L̃2k)T given by

Dψ̃ = Π−1

(
δ +

1
8(k + 2)

(δJω−1)ij∂i∂j − δPΠ

) (
Πψ̃

)
(101)

defines a projectively flat connection on the vector bundle Γ(Mg,Lk)T . The
curvature of D is central and equal to the multiplication
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k

8(k + 2)
trδΩ(ImΩ)−1.(102)

Moreover , for a decomposition of C, Υ = {el, Ci}, {ψ̃�j}�j∈QCGk
forms a basis

of parallel sections in Γ(Mg,Lk)T with respect to this connection.

Proof. The curvature of D is equal to δ̄D and it coincides with

−δ̄δPΠ + δ̄δ.(103)

This is equal to the central curvature of the determinant line bundle on
the Grassamann varieties consisting of ΠΘ2k which is the sum of the central
curvature of Θ2(k+2) and the curvature which comes from the variation of Π.
Hence it equals

1
8
trδΩ(ImΩ)−1 − 2

8(k + 2)
trδΩ(ImΩ)−1 =

k

8(k + 2)
trδΩ(ImΩ)−1

and we obtain the result.

In [11] Hitchin showed that a connection on Γ(Mg,Lk)T defined by a differ-
ential operator on Lk is uniquely determined by the holomorphicity-preserving
property of the differential operator up to a constant multiplication operator.
The differential operator D defining the connection in Theorem 9.1 is also con-
structed basically from the holomorphicity-preserving condition (Step 1 in the
proof of Theorem 6.2). D is a family of differential operators on {Γ(Pb̃, L̃2k)T }
which are invariant under the variation of b̃. Hence D defines a differential
operator on Lk which induces a connection on Γ(Mg,Lk)T . Thus the Hitchin’s
result implies

Theorem 9.2. The connection in Theorem 9.1 coincides with the Hitchin
connection in [11].

9.2. Unitarity. Next we prove the existence of a hermitian product on
Γ(Mg,Lk) which is invariant with respect to the projectively flat connection
defined in the above theorem.

The space Θ2(k+2) has the usual Hermitian inner product such that
{

ϑ

[
�a
�0

]}
forms an orthonormal bases. Likewise the space A2(k+2) has the Hermitian
product given by the Petersson scalar product ([8]).

Theorem 9.3 (The invariant Hermitian product). Let Υ = {el, Ci} be
a pant decomposition of C. Let ( , )A·Θ = ( , )A2(k+2)·Θ2(k+2) be the Hermitian
product on A2(k+2) · Θ2(k+2) defined by the tensor product of the usual Hermi-
tian product on the space of Riemann theta functions and the Petersson scalar
product on the space of automorphic forms. Let Vk be the vector space gener-
ated by {ψ̃�j}�j∈QCGk

. We define a Hermitian inner product 〈 , 〉Vk
on Vk, for
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ψ̃, ψ̃′ ∈ Vk, by 〈
ψ̃, ψ̃′

〉
Vk

=
(
Πψ̃, Πψ̃′

)
A·Θ

.

This defines a Hermitian inner product 〈 , 〉 on the space Γ(Mg,Lk) which
is invariant under the projectively flat connection D given in Theorem 9.1.

10. The transformation formula

10.1. General Remarks. A symplectic linear transformation of the Prym
variety P induces a metaplectic transformation of theta functions and theta
constants in the usual way.

The metaplectic correction on the Prym variety is defined by incorporat-
ing the bundle of half-volume form on Prym varieties ([23]). What we should
actually consider is the half-volume form of Mg which is a holomorphic sec-
tion of the square root κMg

=
√

KMg
of the canonical bundle of Mg. Now

π∗κMg
is isomorphic to L̃4, and Π is a holomorphic section of it (see Theorem

5.1). Thus Πψ̃�j incorporates the half-volume form of Mg, and we consider its
transformation law.

10.2. Transformation formula. Let (b̃, m) ∈ B̃Υ where b̃ = (b, α).
Let h be a diffeomorphism of C. By isotopy we may assume that h fixes

b pointwise.
Let Υ = {el, Ci} be a pant decomposition of C and let Υ′ = h∗Υ = {e′l, C ′

i}
be the transformed image of Υ by h. Likewise let α′ = (h−1

∗ )α and m′ = h∗m
be the transformed images by h.

Let {ψ̃�j} and {ψ̃′
�j′} be the corresponding bases of pull back sections as

constructed in Theorem 8.2.
We consider the transformation law between {ψ̃�j} and {ψ̃′

�j′}.
First we note that h alone cannot determine a lifting of it to a diffeomor-

phism h̃ of C̃.
To determine h̃, we need extra information attached to h. Let {Υ, h, h∗Υ}

be a triple of h, a pant decomposition Υ and its transformed image h∗Υ. Then
such a triple determines a lifting of h, h̃Υ, such that h̃Υ maps the decomposition
of C̃ induced by Υ to the decomposition of C̃ induced by h∗Υ. The set of such
triples {Υ, h, h∗Υ} forms a groupoid and it defines a projective group action
of a central extension of the mapping class group of C on the conformal block
by making use of the projectively flat connection.

Definition 10.1. The diffeomorphism h̃Υ is called a lifting of h associated
with Υ.

Let �̃ be the Lagrangian in H1(C̃,R)− spanned by {[ẽl − σẽl]}1≤l≤3g−3.
We choose and fix a complementary Lagrangian �̃∗. Let {f̃∗

l } be the basis of
�̃∗ which is the symplectic dual of {[ẽl − σẽl]}. See Definition 2.12.
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Let h̃Υ∗ : H1(C̃,R)− → H1(C̃,R)− be the symplectic linear transforma-
tion induced by the diffeomorphism h̃Υ : C̃ → C̃.

Let

Th̃Υ
=

(
A B

C D

)
(104)

be the matrix representation of the symplectic transformation h̃∗ with respect
to the basis {[ẽl − σẽl]} ∪ {f̃∗

l }, where

A : �̃ → �̃ , B : �̃∗ → �̃ , C : �̃ → �̃∗ , D : �̃∗ → �̃∗.(105)

The symplectic matrix Th̃Υ
acts on the pair (Ω, �z) by

Th̃Υ
(Ω, �z) =

(
(AΩ + B)(CΩ + D)−1, (CΩ + D)−1�z

)
.

Likewise for the groupings g ∈ EΥ, g′ = h∗g ∈ Eh∗Υ and γ ∈ S3, we have
a matrix, for 1 ≤ m ≤ 3,

(Th̃Υ
)g,g′,�ε,�ε′

m,γ =

(
Ag,g′,�ε,�ε′

m,γ Bg,g′,�ε,�ε′
m,γ

Cg,g′,�ε,�ε′
m,γ Dg,g′,�ε,�ε′

m,γ

)
(106)

which transforms the corresponding Riemann matrix Ωg,�ε
m to

Ωg′,�ε′

γ(m) = (Th̃Υ
)g,g′,�ε,�ε′

m,γ (Ωg,�ε
m );

that is,

Ωg′,�ε′

γ(m) =
(
Ag,g′,�ε,�ε′

m,γ Ωg,�ε
m + Bg,g′,�ε,�ε′

m,γ

) (
Cg,g′,�ε,�ε′

m,γ Ωg,�ε
m + Dg,g′,�ε,�ε′

m,γ

)−1
.

Let Sp(H1(C̃,R)−) be the group of all the symplectic transformations of
H1(C̃,R)−. Then a choice of a path in Sp(H1(C̃,R)−) connecting h̃Υ∗ to the
identity determines the lifts of Th̃Υ

and (Th̃Υ
)g,g′,�ε,�ε′
m,γ to metaplectic transfor-

mations

T̂h̃Υ
: Θ2(k+2) → Θ2(k+2) , (T̂h̃Υ

)g,g′,�ε,�ε′

m,γ : A2(k+2) → A2(k+2)

both of which are isometries with respect to the usual Hermitian product on
Θ2(k+2) and the Petersson scalar product on A2(k+2) respectively.

The transformation T̂h̃Υ
: Θ2(k+2) → Θ2(k+2) is represented as (for µ, µ′ ∈

1
2(k+2)Λ

∗
0 and �λ, �λ′ ∈ 1

2Λ∗/Λ∗
0)

(107) T̂h̃Υ

(
ϑ

[
µ + �λ

�0

]
(2(k + 2)�z, 2(k + 2)Ω)

)

=
∑
µ′, �λ′

aµ′+�λ′

µ+�λ
ϑ

[
µ′ + �λ′

�0

]
(2(k + 2)�z, 2(k + 2)Ω).
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The transformation (T̂h̃Υ
)g,g′,�ε,�ε′
m,γ : A2(k+2) → A2(k+2) preserves the sub-

space spanned by the theta constants and is represented as

(T̂h̃Υ
)g,g′,�ε,�ε′

m,γ

(
ϑν(Ωg,�ε

m )
)

=
∑
ν′

(
bg,g′,�ε,�ε′

m,γ

)
ν,ν′

ϑν′(Ωg′,�ε′

γ(m)),(108)

where for ν, ν ′ ∈ 1
2(k+2)Λ

∗,

ϑν(Ωg,�ε
m ) =

∑
�λ∈Λ∗

exp
{

2(k + 2)πi
(
�λ + ν

)t
Ωg,�ε

m

(
�λ + ν

)}
,

and similarly for ϑν′(Ωg′,�ε′

γ(m)).

Theorem 10.1. Let Vk be the subspace in A2(k+2) · Θ2(k+2) spanned by
{Πψ̃�j}�j∈QCGk

. For a diffeomorphism h of C, let h̃Υ be the lifting of h to a

diffeomorphism of C̃ associated with Υ. There is a fixed grouping g ∈ EΥ and
g′ = h∗g.

(i) Choose a path in Sp(H1(C̃,R)−) connecting h̃Υ∗ to the identity, and there
are metaplectic transformations T̂h̃Υ

and (T̂h̃Υ
)g,g′,ε,ε′

m,γ as above.

Then those data define a linear transformation

Th̃Υ
: Vk → Vk,

and this gives an action of a central extension of the mapping class group
of C on Vk.

(ii) Let �ε ∈ Z3g−3
2 , �j, �j′ ∈ QCGk and �λ ∈ 1

2Λ∗/Λ∗
0. Let a

µ�j′

�ε·µ�j+
�λ

be the coef-

ficient on the right-hand side of equation (107) where µ�j = 2�j+�1
2(k+2) and

µ�j′ = 2�j′+�1
2(k+2) . Likewise for g ∈ EΥ, g′ ∈ Eh∗Υ, a ∈ Ag

�j
, a′ ∈ Ag′

�j′ and
γ ∈ S3, set (

bg,g′,�ε,�1
m,γ

)a,a′

�j,�j′
=

(
bg,g′,�ε,�1
m,γ

)
νg,a,�ε

�j,m
,νg′,a′,�1

�j′,γ(m)

,(109)

where
(
bg,g′,�ε,�1
m,γ

)
νg,a,�ε

�j,m
,νg′,a′,�1

�j′,γ(m)

is the coefficient on the right-hand side of

equation (108) for ν = νg,a,�ε
�j,m

and ν ′ = νg′,a′,�1
�j′,γ(m)

which are given by equation

(97) in Definition 8.8. We define

cg
�j,�j′ =

∑
�λ∈ 1

2
Λ∗/Λ∗

0

∑
�ε∈Z3g−3

2

∑
a∈Ag

�j

w(�ε)e2πi(�λt�1
2
)a

µ�j′

�ε·µ�j+
�λ

 ∑
γ∈S3

3∏
m=1

(
bg,g′,�ε,�1
m,γ

)a,a′

�j,�j′

 .

(110)
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Then cg
�j,�j′ does not depend on the choices of g ∈ G and a′ ∈ Ag′

�j′ , and

when c�j,�j′ = cg
�j,�j′ , the transformation Th̃Υ

: Vk → Vk is given by

Th̃Υ
(Πψ̃�j) =

∑
�j′∈QCGk

c�j,�j′Πψ̃�j′ .(111)

Proof. The existence of the linear transformation Th̃Υ
follows from the

fact that a pull back section transforms to a pull back section.

The coefficients a
µ�j′

�ε·µ�j+
�λ

and
(
bg,g′,�ε,�1
m,γ

)a,a′

�j,�j′
are calculated as sums of ele-

mentary exponential functions of the symplectic pairings of the involved theta
characteristics and Maslov index, and it can be seen that cg

�j,�j′ does not depend

on the choice of g ∈ G and a′ ∈ Ag′

�j′ .

11. The case of genus one

So far we have been working on Riemann surfaces of genus g ≥ 2. We
briefly comment on the case of genus one curves in this section.

Although all of the results in the genus one case in this section are well
known ([2], [12]), we deduce them here by using arguments similar to our
arguments in the genus g ≥ 2 case.

Let C be a Riemann surface of genus one. The moduli space M1 of
holomorphic rank 2 bundles on C is the quotient space C/σ where σ is the
hyperelliptic involution of C. Thus M1 is the complex line P1.

The space of holomorphic sections of the line bundle Lk on M1 can be
identified with the space of the σ-invariant holomorphic sections of the pull-
back line bundles L̃2k on C.

Let Υ = {e, f} be a marking of C; that is, Υ is a pair of two oriented
simple closed curves e and f in C such that e∩f is a point and the orientation
of C coincides with the one defined by {e, f}. Let b = {x1, x2} be a pair of
points in C − e. Let α ∈ Ĥ1(C − b,Z2) be a covering type and let C̃b be the
two-fold branched covering surface of C with branch set b associated to α.

The Prym variety Pb of C̃b is an elliptic curve which is isomorphic to C.
Let ẽ and f̃ be a lifting of e and f to C̃ respectively such that ẽ∩ f̃ = {a point}
and ẽ∩σf̃ = ∅. Let w be the holomorphic 1-forms on C̃ such that

∫
ẽ w = 1 and∫

ẽ σw = 0. Then {wl, σwl} forms a basis of the space of holomorphic 1-forms
on C̃.

The Riemann matrix ΩC̃ of C̃ with respect to the above basis is a 2 × 2-
matrix whose entries are the line integrals of these holomorphic 1-forms along
{[f̃l], [σf̃l]},

Ω̃ =
(

Ω̃11 Ω̃12

Ω̃21 Ω̃22

)
(112)
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where Ω̃ is a complex symmetric matrix such that

Ω̃11 =
∫

f̃l

wl′ , Ω̃12 =
∫

f̃l

σwl′(113)

and Ω̃22 = Ω̃11, Ω̃21 = Ω̃12.
The Jacobian J̃ of C̃ is given by C2/(Z2 + Ω̃Z2). The Prym variety P is

the subspace of J̃ consisting of σ-anti-invariant elements. The Prym variety is
the subspace of J̃ spanned by [f̃ − σf̃ ].

Let Λ be the lattice in H1(C̃,R)− generated by
{

[ẽ − σẽ] , 1
2 [f̃ − σf̃ ]

}
.

We set

Ω = Ω̃11 − Ω̃12.(114)

Then as a symplectic manifold P = H1(C̃,R)−/Λ and as an elliptic curve
P = C/Z + ΩZ.

We have a family of holomorphic maps π : P̃b → M1 parametrized by
b ∈ B = C × C − ∆.

Both of the spaces B̃Υ and T are complex one-dimensional and the space
B̃ΥT can be identified with B̃Υ × T . It is parametrized by the set of pairs
(Ω̃11, Ω̃12) and Ω̃11 + Ω̃12 is constant along BΥ.

We apply the arguments of the previous sections to the genus one case. In
the genus one case Π is the σ-anti-invariant Riemann theta function of level 4
on the Prym variety and the multiplication operator

Π : (Θ2k)+ →
(
Θ2(k+2)

)
−(115)

is an isomorphism between the linear spaces over C, where ± denote the σ-
invariant and σ-anti-invariant subspaces. Hence the subspace of Θ2(k+2) con-
sisting of those elements divisible by Π coincides with the σ-anti-invariant
subspace and we have

δPΠ = 0.(116)

Moreover,for ε = ±1 and for each half integer 0 ≤ j ≤ k
2 , we can set

qε
�j

= 1,(117)

where qε
�j

is the automorphic form corresponding to qg,ε
�j

in Theorem 8.2 in the
case of genus one.

Thus we obtain the following:

Theorem 11.1. For a Riemann surface of genus 1 the differential oper-
ator

Dψ̃ = Π−1

(
δ +

1
8(k + 2)

(δJω−1)ij∂i∂j

)
Πψ̃(118)
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gives a projectively flat connection on the vector bundle of conformal blocks
Γ(M1, L̃k)T of level k.

The set of Riemann theta functions defined by

ψ̃j = Π−1
∑
ε∈Z2

w(ε)ϑ

[
ε (2j+1)

2(k+2)

0

]
(2(k + 2)z, 2(k + 2)Ω),(119)

where j ∈ 1
2Z such that 0 ≤ j ≤ k/2, forms a parallel orthonormal basis of

Γ(P, L̃2k)T with respect to the above connection and the invariant hermitian
form given by

〈ψ̃ , ψ̃′〉 =
(
Πψ̃ , Πψ̃′

)
Θ2(k+2)

.(120)
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