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An abelianization of SU(2) WZW model

By TOMOYOSHI YOSHIDA

1. Introduction

The purpose of this paper is to carry out the abelianization program pro-
posed by Atiyah [1] and Hitchin [9] for the geometric quantization of SU(2)
Wess-Zumino-Witten model.

Let C be a Riemann surface of genus g. Let M, be the moduli space of
semi-stable rank 2 holomorphic vector bundles on C with trivial determinant.
For a positive integer k, let I'(M,, LF) be the space of holomorphic sections of
the k-th tensor product of the determinant line bundle £ on M,. An element
of I'(M,, £*) is called a rank 2 theta function of level k.

The main result of our abelianization is to give an explicit representation of
a base of I'(My, £¥) as well as its transformation formula in terms of classical
Riemann theta functions with automorphic form coefficients defined on the
Prym variety P associated with a two-fold branched covering surface C' of C.

['(My, £F) can be identified with the conformal block of level k of the
SU(2) WZW model ([5], [15]). The abelianization procedure enables us to de-
duce the various known results about the conformal block in a uniform way.
Firstly, we construct a projectively flat connection on the vector bundle over
the Teichmiiller space with fibre T'(My, £¥). Secondly, making use of our ex-
plicit representation of rank 2 theta functions we construct a Hermitian product
on the vector bundle preserved by the connection. Also our explicit represen-
tation enables us to prove that I'(M,, £¥) has the predicted dimension from
the Quantum Clebsh-Gordan conditions.

A natural connection on the said vector bundle for the SU(N) WZW
model was first constructed by Hitchin [11]. It will turn out that the connection
constructed in this paper coincides with the Hitchin connection.

Laszlo [16] showed that the Hitchin connection coincides with the con-
nection constructed by Tsuchiya, Ueno and Yamada [21] through the above
identification. On the other hand Kirillov [13], [14] constructed a Hermitian
product on the conformal block compatible with the Tsuchiya-Ueno-Yamada
connection using the representation theory of affine Lie algebras together with
the theory of hermitian modular tensor categories; cf. [22]. Laszlo’s result
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implies that the Hermitian product of Kirillov defines the one on I'(My, £F)
compatible with the Hitchin connection. The author cannot figure out a re-

lation between the Hermitian product constructed in this paper and the one
found by Kirillov.

The paper is organized as follows. In Section 2 we study the topological
properties of a family of 2-fold branched covering surfaces C of a fixed Riemann
surface C' parametrized by the configuration space of 4g — 4 mutually distinct
points on C.

In Sections 3 and 4 we study the Prym variety P of C and the classi-
cal Riemann theta functions defined on it. Especially we will be concerned
with their symmetric properties. That is, the fundamental group of the con-
figuration space induces a finite group action on the space of Riemann theta
functions on P. We call it global symmetry. There is a morphism 7 : P — M,
and a pulled back section of F(Mg,ﬁk) by 7 can be expressed by Riemann
theta functions of level 2k on P. Then it should satisfy an invariance with
respect to this group action.

In Sections 5 we study the branching divisor of 7 : P — M,. The square
root (Pfaffian) of the determinant of 7 is given by a Riemann theta function
IT of level 4 ([9]). II plays a central role throughout the paper, and we give a
precise formula for it.

In Section 6 we construct a differential operator D on the space of holo-
morphic sections of the line bundles on the family of Prym varieties P such
that a family 1 of holomorphic sections, which is a pull back by 7 of a section
Y € D(M,, L), satisfies the differential equation Dy = 0.

In Section 7 we will show that the global symmetry and the differential
equation D1 = 0 characterize the pull back sections.

In Section 8 we construct a basis of I'(M,, £¥). It will be given in terms
of classical Riemann theta functions with automorphic form coefficients. The
result includes the fact that the dimension of T'(M,, £F) is equal to the num-
ber of the ‘admissible’ spin weights attached to a pant decomposition of the
Riemann surface (Quantum Clebsch-Gordan condition).

In Section 9 we construct a projectively flat connection and a hermitian
product compatible with it on the vector bundle over Teichmiiller space with
fibre I'(M,, £F).

In Section 10 we give the transformation formula of rank 2 theta functions.
It involves a subtle but important aspect related to the Maslov index.

The author’s hearty thanks go to Professor M. F. Atiyah and Professor
N. J. Hitchin for their encouragement and interest in this work. Also we thank
M. Furuta, A. Tsuchiya and T. Oda for valuable conversations with them. We
are grateful to H. Fujita, S. K. Hansen, and D. Moskovich for their careful
reading of the manuscript.
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2. A family of 2-fold branched covering surfaces

2.1. A family of 2-fold branched covering surfaces. Let C be a closed
Riemann surface of genus g (> 2). Let Cyq—4(C') be the configuration space of
4g — 4 unordered mutually distinct points b = {z;}1<j<4g9—4 in C; that is,

C49—4(C) = (04974 - A) /549—4

where A denotes the big diagonal of C%~* and S,, is the symmetric group of
degree n acting on C49~* by permutations of factors.

For b = {z;} in C4g9—4(C), let c¢; denotes the class in Hy(C — b, Zy) repre-
sented by the boundary circle of a small disc centered at z; in C. Let

(1) HYC —b,Zy) = {a € H(C —b,Zy) | (a,c;) =1}

where (, ) denotes the evaluation of cohomology classes on homology classes.

H YO —b,Zy) is in one-one correspondence with the set of topologically
distinct 2-fold branched coverings of C' with branch locus b = {z;}. Here two
branched coverings with branch locus b = {z;} are topologically distinct if
and only if there is no diffeomorphism between them which is equivariant with
respect to the covering involutions and covers the identity map of C.

Definition 2.1. We call an element of o € fIl(C’ —b,Z3) a covering type
of C.

The family H = {H'(C — b, Z3)}pec,, . (c) forms a fiber bundle over
Cyg—4(C) with finite discrete fiber. Choose a base point b, € C4y—4(C) and let

p: m1(Cagua(C),bo) — Aut(H'(C — by, Zs))

be the holonomy representation of the fiber bundle H.

We can describe p as follows. For an oriented loop I = {b* = {!}}o<i<1
based at b, in C4g—4(C'), the union of oriented 4g—4 arcs {2} forms an oriented
closed curve [ in C. For a € Hi(C — b,, Z2) we can define the Zs-intersection
number [ - a € Zs. We obtain the following homomorphism ev which we call
the evaluation map

(2) ev : 11 (Cag—a(C), by) — HY(C — by, Zo).
Clearly [ - cj = 0 for 1 <¢j <49 — 4 and we have the following lemma:

LEMMA 2.1. Let [lI] € m1(Cag—a(C),b,) be the homotopy class represented
by a closed loop | based at b,. Then p([l]) € Aut(H(C — by, Zs)) is given by

3) p([l))(@) = a + ev([l])
for a € HY(C — by, Zs).
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Definition 2.2. Let q : B — C4y—4(C) be the covering space of Cyq_4(C)
associated with the kernel of p. The set B can be identified with the set of
pairs Cyg—4(C) X HY(C — b,Z5) with ¢ the projection to the first factor. We
represent a point b of B by a pair

(4) b= (b,a)  for be Cyy 4(C) and a € H(C —b,Zy).

For b = (b,a) € B, let C' = C’~ be the associated two-fold branched
covering surface of C' with branch point set b of the covering type a. The
genus § of C'is 4g — 3. We denote the covering projection by p : C — C and
the covering involution by ¢ : C' — C.

_ Definition 2.3. Let C — B be the fiber bundle over B whose fiber at
b= (b,a) € B is the 2-fold branched covering surface Cj of C.

Note that B and C are connected.

2.2. Pant decompositions of surfaces. Throughout the paper we use the
following notation;

So: the three-holed 2-dimensional sphere
To: the one-holed 2-dimensional torus.

Definition 2.4. A pant decomposition T = {¢;, C;} of a Riemann surface
C of genus g is defined to be a set of simple closed curves {e;};—1.... 35—3 and
surfaces {C;}i=1,... 2g—2 in C such that

(i) {e;} is a family of mutually disjoint and mutually freely nonhomotopic
simple closed curves in C,

(ii) C =JC; where C; = Sy or C; = Tp. If C; = Sy, then OC; is a union of
three elements of {e;}. If C; = Ty, then 9C; is an element of {e;}, and
C; contains an element of {e;} in its interior as an essential simple closed
curve.

(iii) If we cut C along J; e;, then the resulting surface is a disjoint union of
{C:}lgiggg_g, where Cz* =5y for 1 <i < 2g— 2 and, if C; = Sp, then
C; = C; and, if C; = Tp, then 0C] = e; U el+ Ue; , where ey = 0C; and

eljE are the two copies of the essential curve ¢; C Cj.

Definition 2.5. Let T = {¢;, C;} be a pant decomposition of C,

(i) We define Cyy—4(C)y to be the open subset of Cyq_4(C) consisting of
those points b € Cyg—4(C) such that CY = C; — |, e; contains exactly
two points {z%, x5} of b.
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(ii) We define By to be the open subset of B consisting of those points b =
(b,a) € B such that b € Cyy_4(C)y and that (o, [e]) = 0 for 1 <
[ < 3g — 3, where [¢] is the Zs homology class represented by e; in
Hi(C —b,Z5).

Let Cy — By be the restriction of C — B to Br.

Definition 2.6. For a pant decomposition T of C| let

(5) WT =T (BTa b) )
where b = (b, ) is a base point of Br-.
LEMMA 2.2. There is an exact sequence of groups

(6) 1— W’r — 11 (C4g_4(C)'r,b) — Z‘g — 1.

Proof. If we set C; = (C? x C? — {diagonal})/Ss and b N C¢? = b;, where
C¢? = C; — ey, the group Wy is the kernel of the composition map

(7) Hm(Ci,bi) — 1 (C4g,4(0)'r,b) —>H1(C—b, ZQ)

(]

where the first map is induced by the inclusion and the second is the evaluation
map ev. O

Now we choose and fix a pant decomposition T. We fix an orientation
of ¢; for each | = 1,---,3g9 — 3. We write ¢, = C; N —Cj if ¢; is a common
boundary of C; and C; and the orientation of ¢; agrees with that of Cj.

We study the group Wr.

Let Sy be a 3-holed sphere as before. Let e be a boundary circle of Sy.
Let z1,x2 be two points in the interior of Sp. Let p. = {pe(s)}o<s<1 be the
embedded arc in Sy connecting p.(0) = x1 and p.(1) = x5 as is depicted in
Figure 1.

Figure 1: Arc p.
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Definition 2.7. Let e, ez, ez be the three boundary circles of Sy. We de-
fine the following closed loops in the symmetric product (Sp x So — A)/S2
in which the lower indices should be understood mod.3 (anti-clockwise in
Figure 2),

(1) tel = {(pem (S) ) pel—l(]‘ - S) )}Ogsgl’

(11) kez = tezqt@ztezﬂ'

Here in Figure 2 the left represents the curve t., and the right represents
the curve ke,. In the figure the curve with one arrow represents the trajectory
of x1 and one with double arrow does that of x5 corresponding to the paths
te, and ke, respectively.

€2
€2 €3

Figure 2: Curves

For a pant decomposition T = {e;, C;} of C, cutting out C along |J, €,
we obtain the disjoint union J, C; as in (iii) in Definition 2.4. Each C} can
be identified with Sy. Then the loops te, and ke, in Sy given in Definition 2.7
define the corresponding loops tel and kg respectively in C; for ¢, C 0C;.

LEMMA 2.3. Let Y = {e;,C;} be a pant decomposition of C. Then Wy is
generated by the following elements.

(i) {167 (ter )=}, where e = Cin G G # ),
9 (92 where C; = Ty and € is as in Definition 2.4 (i
o (g , where C; = Ty and €] is as in Definition 2.4 (iii),

2% }, where e; C C; is separating,

o\ 2
(te;) , where e; C Cj,
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Proof. Clearly the listed elements are in the kernel of the evaluation map
ev. Let (Cj,b;) be as in the proof of Lemma 2.2. The pure Braid group in
the Braid group m1(C;, b;) has index two and is generated by those homotopy
classes represented by the loops such that x1 moves once along the small circle
centered at xo while x5 is fixed and x; (or zg resp.) moves once along the loop
parallel to one component of the boundary dC; while zo (z; resp.) is fixed. It
can be seen without difficulty that those homotopy classes can be represented
by combinations of t.,. Hence the Braid group [[, 71(C;,b;) is generated by
the loops {tg }el coc,” It is not difficult to see that Ker(ev) is generated by the
listed elements. O

2.3. Holonomy action of Wy. We study the holonomy diffeomorphisms of
the fibre bundle Cy — By induced by moves of the branch points along simple
closed curves in By.

Let Sp be the 3-holed 2-sphere with Sy = e; U es U es. Let Sy be the
2-fold branched covering space of Sy with branch locus x1 U x5 and covering
involution o.

For each e; the curve t., in Sp induces a diffeomorphism 7, of 5’0 depicted
in Figure 3 where the upper and the lower boundary circles are €; and oé¢;
respectively and €; U o¢; represents the lifts of ¢;. The diffeomorphism is a
combination of the half Dehn twists along the four curves in the picture in the
directions indicated by the arrows and the flip of the component of Sy contain-
ing the branch points cutting along the two vertical circles which interchange
the points z; and z9 and the two components €; and oé;. The diffeomorphism
is the identity on the lifts of the other boundary components.

Figure 3: The induced diffeomorphism
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Likewise the curve ke, induces the Dehn twist k., of 5’0 along the simple
closed curve which is the inverse image of the arc p,, (Figure 1) in Sp.

Let T = {e;, C;} be a pant decomposition of C'.

Cutting out C along |J; e; to the disjoint union |J; C;, where C} is iden-
tified with Sp, let C¥ be the 2-fold branched cover of C; branched at 2% U .
Then the above diffeomorphisms 7., and ke, of 5’0 are converted to C~’Z* ; that
is, for ; C OC, the holonomy along the curve tgi* induces the diffeomorphism
TS 7 of é;" which is 7, under the identification C;* = Sy, and, for ¢; C 9C7, the
holonomy along the curve k:g induces the Dehn twist /{g"* of CN'Z* which is ke,
under the identification C} = Sp.

Definition 2.8. Let T = {e;, C;} be a pant decomposition of C. Let b €
By and let C = C,.

(i) For e = 0C; N OC;(i # j), we define a diffeomorphism of C by

7_66;; on él
(8) (e) =14 5 on G

Id 0nC~'—C~'iUC~'j.

(ii) Let C; = Ty and let ¢; € Y be the essential simple closed curve in Cj.
We define a diffeomorphism 7(e;) of C' by
Cr _Cr A
(9) ey =4 g MG
Id on C - C;.

(ili) For ¢; = 0C; N OC; which is separating in C, let C' = C_ U C; U Cy be
the decomposition of C',where C is the connected component of C' — ¢;

containing C;. Let C=C_ Ué’iu(jbr be the corresponding decomposition
of C. We define a diffeomorphism v(e;) of C' by

I~d on C_
(10) V(el) = 757 on C’,
o on Ch.

(iv) For ¢ C Cy, kg induces a diffeomorphism «(e;) of C defined by

Cr =
11 ={ fel onCi
(11) wle) { Id onC -0,

A\ 2
LEMMA 2.4. Let W be the subgroup of Wy generated by {(tg) } and
{kecl} Then there is an exact sequence of groups

1HW§HWTHZ3973H1.
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Proof. For 1 <1 < 3g — 3, the inverse image p~'(e;) consists of two
connected components € and oé;. The diffeomorphisms listed in (i) and (ii) in
Definition 2.8 interchanges these two connected components. Hence the action
of the holonomy diffeomorphisms on the homology classes {[é; — 0¢;]} (with
¢, suitably oriented) in H;(C,R) induces the homomorphism Wy — Zgg “in
the above sequence in the lemma. Then the exactness of the sequence is an
immediate consequence of the construction. O

2.4. Marking and the universal cover of By. Let T = {e;,C;} be a pant
decomposition of C'. Let By be the space defined in Definition 2.5.

Let b = (b,a) € By and let p : C = éB — C be the corresponding two-fold
branched covering surface of C' with covering involution o.

Since b = (b, @) € By, we may write b = {x}, 25 }1<i<24 o for a4, zh € C°
and C' = UC;,where C; is the 2-fold branched covering surface of C; branched
at 2 Uah for 1 <i < 29— 2.

Figure 4: Marking

Definition 2.9. Let T = {e;,C;} be a pant decomposition of C. Let b=
(b, a) € Bry.
We define a marking m = {fi,e;, T} of C associated with T as follows:

(i) For 1 <1 <3g—3such that ¢ = C;NC; (1 <i#j<39-3), fiis
an embedded arc in C; U C; connecting z% and x] such that f;Ne =
{a point}.

(ii) For 1 <[ < 3g—3 such that ¢; is an essential curve in a 1-holed torus Cj,
f1 1s an essential simple closed curve in C; such that f;Ne; = {a point}.

(iii) For 1 <1 #1' < 39— 3, fiN fy is empty or ¢, where the latter case
occurs exactly when e; Uep C C;.

(iv) T is a mazimal tree which is a 1-complex whose vertices are {x!}1<;<24-2
and {f; N e }i<i<3g—3 and whose edges are arcs in {f; N C;} connecting
i and fijNe in C; for 1 <17 <2g — 2.
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The set of pairs (b,m) for b € By and a marking m associated with T
serves as the universal covering space By of By.

2.5. The o-anti-invariant homology group, the Lagrangian ¢ and the lat-
tices Ag and A. Let T = {e;,C;} be a pant decomposition of C. For the
covering surface p : C' — C' associated with b = (b, ) € By, let

(12) Hi(C,R) = Hi(C,R)1 & Hi(C,R)-

be the decomposition into the invariant (+) and anti-invariant (—) subspaces
of the involution o, on H 1(C,R) induced by the covering involution o. Then
H,(C,R)y is isomorphic to H;(C,R) and dimgr H;(C,R)_ = 6g — 6.

peﬁnition 2.10. We define a symplectic form w on Hl(é’, R)_, for a,b €
Hl(Ca R)*a by

w(a,b) = %(a, b,

where (-,-) denotes the symplectic form induced by the intersection pairing

on C.

Let & be a connected component of p~!(e;) (1 < I < 3g —3). Then
pil(el) = ¢; U oé;. We choose and fix an orientation of é€;.

Let £ be the subspace in H;(C,R)_ spanned by {l&1—0oé]}1<i<3g—3. Then
lis Lagrangian with respect to w.

Definition 2.11. Let C; € Y.

(i) Assume C; = Sp with 9C; = e;; U e U ey We set

(13) Ej = % [~ (&1 — oe) + (&1 — &) + (&5 — o€y3)]
By = % (&1 — o&r) — (&1 — o&r) + (&5 — 0&y3)]
By = % (€ — oe) + (&, — o) — (& — aéy)]
Ey = % (€ —ae) + (&, — o) + (& —oey)] -

(ii) Assume C; = Tp. Let e = 0C; and let ¢y € T be the essential simple
closed curve in C;. We set

. 1 ) ) )
(14) By = —gl&; —oey] + ey — o],
Ezzl[él —Uéi]
2 92 4 i1
1 ) ) )
Ey = gley —oep] + [ey — oey].

2
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Those classes are repyesented by the oriented simple closed curves which
are the inverse images in C; of the arcs in ~C’Z connecting the two branch points
{z%, 24} in it, and hence are contained in £ N Hy(C,Z)_. In fact {NH,(C,Z)—
is spanned by {E}, ES, E5}i<i<ag—2.

Associated with a marking, m = {f, e/}, given in Definition 2.9, we have
homology classes {[f; — o fi]}1<i<39—3 in Hi(C,R)_, where f; is a component
of p~1(f;) oriented in such a way that w ([el — o), [fi — aﬁ}) =

For 1 <1,k < 3g9—3 we choose dy;, € Z so that dj; = 0, Z1§l§3973 dy, € 27,
and f; € H{(C,Z)_ defined by

fi=lh—ofl+ D duléx— o0&
1<k<3g-3
satisfies
w <[él - aéz],f’g) =0k , w (ﬂ*vfg) =0
(We note that we can construct one such example of {dj, € Z} by using the

notion of ‘grouping’ which will be defined in §8.1. )
We denote /* the Lagrangian spanned by { fl }.

Definition 2.12. (i) Let Ag be the integral lattice in / generated by
{[é1— aélj}. Let Aj be the integral lattice in £* spanned by {ff hi<i<sg—3,
where {f/}1<i<34—3 and £* are defined as above.

(ii) Let A be the integral lattice in { generated by {E}, B}, Ei}<i<og—2. Let
A* be the integral lattice in £* which is the symplectic dual of A. Now,
A* is a subset of A} consisting of those vectors {3, nif;* € Aj} such that,
for each C; € T vvlth ICT = e Uey Ueys,

(15) nli + nl; + nlé S 2Z,

where ny;; = ny; it C; = Tp.

3. Family of Prym varieties

3.1. Prym varieties and dominant maps to the moduli space of semistable
rank two bundles on C. Let p : C — C be a 2-fold branched covering, where
C= CN’I; for b= (b,a) € B. Let J be the Jacobian of C.

Let 0 be the line bundle over C' of degree 2g—2 such that p.Oz = Oc®o L.
Let J be the Jacobian of C, and let J2972 be the variety which parametrizes
the line bundles of degree 2g — 2 on C.

For a line bundle L on C, let p, L be the direct image of L which is a rank
2 bundle on C with determinant Nm(L) ® 9. In particular for L € J?92,
p«L is of degree 0. Let

(16) P'={Le J*?|Nm(L) = d}.
Then for L € P’, the determinant of p, L is trivial.
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P’ is an Abelian variety of dimension 3g—3. Let P, (resp. P.,) be the sub-
set of P’ consisting of those L € P’ such that p,L is stable (resp. semistable).
LEMMA 3.1 ([4], [6]). P’ — P., (resp. P' — P.) is a subvariety of P’ of

Ss S

codimension > g+ 1 (resp. > g — 1).

Proof. p.L is not semistable (resp. stable) if it contains a line subbundle
M of positive (resp. nonnegative) degree. Then there is a nonzero homomor-
phism p*M — L. Hence L = p*M (D) for an effective divisor D on C such
that Nm(M (D)) = . Let uy, : J” x C2972=2" — P’ be the morphism defined
by u,(M, D) = p*M (D), where J" denotes the variety parametrizing the iso-
morphism classes of line bundles of degree » on C. The image of u, restricted
to those pairs (M, D) such that Nm(M (D)) = 0 is a subvariety of P’ of codi-
mension > g — 1 + 2r. The subset of L such that p,L is not semistable is the
union of those subvarieties and the lemma follows. O

Let M, be the moduli space of semistable, holomorphic, rank-two vector
bundles on C' with trivial determinant. Let Mg, be the subset of M, consisting
of the isomorphism classes of stable holomorphic rank 2 bundles. Mg, is Zariski
dense in M.

From the above argument it follows that the map L — p,L defines a
morphism 7’ : P, — M, and 7’ : P, — Mgs.

Ss S

PROPOSITION 3.1 ([4], [6]). The morphism 7' : P, — Mg is dominant.

S

Proof. Let L € P;. The sheaf p,L has a structure of a p,Oz-module, and
it induces a homomorphism v : p,Ops — End(p«L). On the other hand the
tangent space T}, ,(M,) is canonically identified with H'(C,End(p.L)), and
the space Ty (P') with H'(C, Op) which is isomorphic to H'(C,p.Oz). By
functoriality the differential dr of ©’ at L is identified with H!(v).

Let N be the kernel of the canonical surjective homomorphism p*p.L — L.
We have an exact sequence

(17) 0 — Hom(L, L) — Hom(p*p.L, L) — Hom(N, L) — 0.

Applying p,, we have

(18) 0 — p.Ogs — End(p.L) — p,(N"'® L) — 0.

Hence the cokernel of H!(v) which is the first homomorphism of the above

exact sequence is identified with H1(C, N~ ® L). Since det(p,L) = Nm(L) ®

97!, we have N = L~ '®@p* det(p.L) = U*~L®p*0_1, and N7'®L = Loo*L~'®

p*0. Since the canonical bundle K5 of C' is isomorphic to p*(K¢ ®0), by the

duality, T, () is surjective if and only if the space H*(C,0*L ® L™! @ p*K¢)

is zero. Since the genus of C is 4g — 3, dn; is surjective on a Zariski open set.
O
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3.2. A coordinate on a Prym variety. Let T = {e;, C;} be a pant decom-
position of C. Let (l;, m) € By, where m is a marking of C' associated with T
and b = (b, @) for b= {a}, xh}1<i<ag_2 such that =}, zh € C? (§2.4).

Let ng be a divisor of degree 0 of C = CN’I; such that ¢*ng = 1y and

29—2 29—2
(19) 2m0 = — Y [i] + ) [ah].
i=1 i=1
Let 7 be the divisor of degree 2g — 2 of C' defined by
2g—2

(20) n=mo+ > s

Formally we may write = 3 527972 ([24] + [#3]).

We denote the corresponding line bundle by the same letter n. Then
clearly n = o*n and n € P’. We choose 7 as an origin of P’.

We write a line bundle L on C of degree 2g — 2 as L = nLg for a degree
0 line bundle Lo on C. Then, since o*n ® n = [b], the condition that nLy € P’
is equivalent to 0*Lg ® Lo = 1, that is, Lg is o-anti-invariant.

Thus choosing 7 as the origin of the Prym variety, we see that P’ can be
identified with the set of the isomorphism classes of g-anti-invariant degree 0
line bundles on C.

For1<i<2g—2let C~'Z be the 2-fold branched cover of C; with branch
set {2}, 25}. Then the set of the isomorphism classes of o-anti-invariant degree
0 line bundles on C can be coordinated by (21)1<i<3¢—3, Where (2;) represents
the line bundle on C constructed from the disjoint union of the trivial bundles
UC; x C by attaching them by the transition functions exp(27iz) at & and
exp(—2miz;) at oé;. We use (z;) as the coordinate of the universal cover of P’.

Let (£,*) be the Lagrangian pair in Hy(C R)_ given in Section 2.5, and
let Ag and Af) be the integral lattices in ¢ and 0* respectively given there.

Then H,(C, Z)_ = A+ Aj, and as a real symplectic manifold we have

P = Hi(C,R)_/(A+ A}).

Here we make the following important remark; P’ is difficult to manage
for technical reasons and it is much more convenient for us to consider the
covering space P of P’ defined by

(21) P = H(C,R)_/(Ao + A}).

There is a covering map P — P’ whose covering transformation is the
translation by an element of A/Ag, and P is an abelian variety with the complex
structure compatible with that of P’.

Instead of studying P’ directly we consider everything as A-invariant ob-
jects on P, and from now on we call P as Prym variety. Also 7 : P — M,
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denote the obvious map, and Ps; and P, denote the set of the same meaning
as P! and P!, respectively.

Let {[¢; — o¢], fl*}lglggg,g be the symplectic basis of Hl(é’, R)_ given in
Definition 2.12.

Let {w;}1<i<34—3 be the holomorphic 1-forms on C such that o*w; = —w;
and that, for 1 < 1,1’ < 3g — 3,

(22) [ ) wyp = 5”/.
e —aoe;

The set {w;}1<i<34—3 forms a basis of the space of g-anti-invariant holo-
morphic 1-forms on C.

Definition 3.1. The Riemann matrix associated with the lattice Ag + Ag
(23) Q= (Qij)1<ij<se-3
is defined by

Then 2 is a complex symmetric matrix and its imaginary part, Im 2, is
positive definite. Ao+ QAf forms a lattice in C3973 and we have, as a complex
variety,

(25) P =C%3 J(Ag+ QA}) .

The symplectic form w on P is represented by the de Rham cohomology
class

i _ _
(26) w=g > (ImQ); dz; A dz;.

Definition 3.2. Let £ be the holomorphic hermitian line bundle on P with
nontrivial holomorphic section whose curvature form is w.

4. Riemann theta functions on polarized Prym varieties

4.1. Riemann theta functions on the polarized Prym wvariety. Let T =
{e;,C;} be a pant decomposition of C. Let (b,m) € By and let P = P.my be
the corresponding polarized Prym variety. Let m : Py — M, be the dominant
map defined in Section 3.2.

Let £ be the determinant line bundle on My; i.e., £ corresponds to the
divisor of M, defined by the set of rank two semi-stable bundles £ on C such
that HY(C,E ® F) # 0, where F is the line bundle on C satisfying F? = K¢
corresponding to the theta constant of C' ([18]). Since the codimension of Pk
in P is greater than g, the pull-back of £* to P, extends to a line bundle on
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P which we denote by 7*£F. Also the pull-back of a holomorphic section of
LF extends to one of 7*£* by Hartog’s theorem.

LEMMA 4.1 ([4, Lemme 1.7]).
(7L = 2],
where the right-hand side denotes the de Rham cohomology class of 2w.

Since an isomorphism class of a holomorphic line bundle with nontrivial
holomorphic section on an abelian variety is determined by its first Chern class,
7* L is isomorphic to the line bundle £2, where £ is the line bundle defined in
Definition 3.2.

Thus the pull back by 7 of a holomorphic section of £ is a holomorphic
section of £2¥, and it can be described as a Riemann theta function of level 2k
on P.

For a positive integer k£ and

(27) ieAi®Q,beA®Q,

“} (2kZ, 2kQ) by

we define ¥ [l—)»

(28)

) H (2kZ,2kQ) = > exp(mi(ii + @) 2kQ7 + @) + 2mi(7i + @) (2kZ + b)),

neEA

where a,n and b are thought of as column vectors with respect to the basis
{[ﬁ*]}lglggg_g and {[é; — 0€]}1<i<39—3 respectively, 7 is a column vector in
C3973 and @ etc. denote their transposed vectors (we use the notation given
n [18] for the Riemann theta function). The space Og of Riemann theta
functions of level 2k on P associated with the lattice Ag has a base given by

{19 m (2kZ, 2m)} .
0 aes-A;

4.2. The heat equation. For (b,m) € By let P = P.my Pe the associated
polarized Prym variety.

The complex structure J = Jo on P = P(;)’m) is parametrized by {2 given
in equation (23) in Definition 3.1 which is an element of the Siegel domain S of
complex symmetric (3g—3) x (3g —3) matrices with positive definite imaginary
part.

The map 2 — Jq is a holomorphic map. If we denote by § the holomorphic
derivative with respect to €2, then

(29) §J = —(0Q)(ImQ) .



16 TOMOYOSHI YOSHIDA

As in [2], [18], the holomorphic derivatives on the sections of the line bundle
L% become

30) Vil )= (5 Sk s - ) ) $ ),

6p(z,Q) = (59 + %((59)(11119)—1)“(2]- — zj)a%) D(z,Q)

2R T (1m62) 1 (692) (1n62) )iz — 20) (25 — %)=, ),

where 6% denotes the partial differential operator in the variables Q;;. The

anti-holomorphic derivatives are given by
— 0

31 Vi=——,

( ) ! 822'

If we combine the equations (29),(30) and (31), the differential operator
which gives the parallelism on the space of Riemann theta functions (which is

5 =06

a section of £2¥) is

1 .
(32) 6+ - (01w ) Viv; = 6" + itr(&]),
where
~ 1 o 0\ -

§TMap(z,Q) = (0% - 0Q)ij7— o Q).

(33) e = (07 - e Vgt ) . 9)
The differential operator acting on O,
- 1

(34) O+0+ S—k(éjw_l)ijvivj'

gives a projectively flat connection on the bundle over the Siegel domain S
with fibre Oy whose curvature is central and which is given by the 2-form on
S, %tr(g J6.J). The differential operator 6+37" gives the metaplectic correction
of it on §. Thus we represent the metaplectic correction on & by replacing the
operator § by § — ttr(6.J) ([2], [18]).

4.3. Actions of Wy on Riemann theta functions and automorphic forms.

Definition 4.1. (i) For a positive integer k, let Agx be the vector space
of automorphic forms of level 2k associated with the lattice A, that is, an
element of Agy is a holomorphic function ¢(25) of Riemann matrix Q5 of C
associated with A which has automorphy with respect to the Siegel modular
group. Throughout this paper we only deal with the case where 2, is obtained
from € by prescribed linear transformation. Hence we consider ¢(£2,) also as
a holomorphic function of 2.

(ii) Let Agg - O be the space of Riemann theta functions of level 2k with
coefficients in Asj, on the polarized Prym variety P = P(B ) for (b,m) € Bry.
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Let Wy be the group given in Definition 2.6 in Section 2.2. We consider
the 239_3—action on Ay - O, induced by Wr.

From the description of the holonomy action of W~ in Section 2.3 and
Lemma 2.4, it follows that Wy induces a Z39™% = {£1}39~3.action on
Hl(é', R)_ preserving ? given by, for £= (e1)1<1<39—3,

(35) 5_’ [él—O'él] :e’;‘l[él—aél] 5 e’;:"fl*:&l_]gl*.
In each C; € T(1 < i < 2g —2), the action is the combination of the following
three involutions
Lil ( ivE%?E{ZB) - (E(l)’ _Eilu;v _Eé)
(36) Lé : (E’iv EévEé) - (_Eiz’n El.?)u _E’i)
Lé : (EivEé’Eé) - (_Eé7 - i’Eé)
These involutions correspond to the Z;’g ~3_action on Aj ® Q given by, for
£= (517 T 7639*3)15 € Zggis and @ = (a17 e aa3g73)t € AEk) ® Qa
(37) g-d= (81&1, ce ,€3g,3a3g,3)t.
Also we have the corresponding change of the coordinate Z = (2;)! on the
Prym variety
(38) 7—é& Z= (812’1, ce ,639_32’39_3)t

and that of the Riemann matrix

(39) Q- Q= Q ,
0 €3¢—3 0 €3g—3
and a similar change of 4.
For a Riemann theta function 9 [g] (2kZ, 2kQY) € Oy, this change of vari-

ables is equivalent to the substitution of characteristics @ — - @.

The diffeomorphism k(e;) given in Definition 2.8 induces the endomor-
phism of the line bundle 7 of equation (20) covering r(e;). It induces the
change of the complex structure of 7, and hence it induces the shift of the base
point of P. From the fact that x(e;) is half the Dehn twist on the homology
class in the pant interchanging the two branch points, the resulting shift oper-
ator on the space of Riemann theta functions is the action as such given in (iii)
in the next definition below. To summarize, we make the following definition.

Definition 4.2. (i) We define Z‘;g_g—action on Ay, by, for €€ Z;’g_?’ and
q(Qn) € Agg,
q(Qa) — q(£- Q).
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(ii) We define Z39 *-action on g, by, for &€ Z397°
9 [g} (2k7,2kQ) — ¥ F 6“] (2kZ, 2kQ).

(iii) We define the shift operator S%)A*/A;; by

Al 01> a+ A o,
SHN <19 [g] (2kz,2k§2)> = > 9 7| (2K7,2k92),
XeLA /A
where @ € iA(ﬁ’ and b= 0 or g:(%, ,%)t.

(iv) Also for later use we define the anti-invariant shift operator Si. - by,
sA/AG
for @ € 5 A},

S%A*/Ag <’l9 {g] (2kZ, 2kQ)> = Z 62”i<xtg)19

XeLA*/A;

(2kZ, 2kQ2).

The group of the holonomy diffeomorphisms induced by W4 is generated
by a Dehn twist of él? along simple closed curves each of which is contained
in Cj(1 < i < 2g —2). Those holonomy diffeomorphisms induce symplectic
automorphisms of Hl(é’,R)_, and hence we have a projective action of Wi
on Agk . @Qk.

Definition 4.3. Let ¢ € Aoy - O9k. Then 9 is called projectively invariant
under W4 if, for v € Wy,
VY = cY

for a complex number ¢ which depends on both of v and .

5. Branching divisor and theta function I

Proposition 3.1 and its proof show that the dominant map 7 : P — M, is
a holomorphic branched covering whose branching locus is given by

(40) {Le P|HYC,0"L® L' @ p*K¢) # 0},

where p : C' — C' is the covering map.

We write L = nlg € P for a degree 0 divisor Ly as in Section 3.2.
Then, since 0*Lg = L ! the above condition is equivalent to the condition
HO(C, La2 ® p*K¢) # 0. Furthermore, since K5 = p*0 ® p*K¢ = [b] ® p* K¢,
it is equivalent to the condition

(41) HY(C,LE @ [b]) #0
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by the Serre duality and the Riemann-Roch theorem. Let As and Ac be
the theta constants of C' and C' respectively [18, Chap.IT §3]. We define the
‘relative’ theta characteristic Ap by Ap = Aé — 1 Ac.

Let 9¥(2, ) be the Riemann theta function on P defined by

(42) 9(Z,9Q) = Y exp (mifi'Qii + 2mifi' 7).
AEA;
Then the locus of Ly satisfying the condition (41) is given by the divisor
of the Riemann theta function which is Sg A+ A*—image of the Riemann theta

function obtained from ¥(Z,2) by the change of variables z — 22" and shifting
by the characteristic Ap.

PROPOSITION 5.1. Let 3 = (3, ,
Then

D=
S~—
o~

I 1
4 Ap=—-+Q=
(3) P 2—!— 26

% (Ao + QA2).

Proof. We calculate Ap in a similar way as in [18, Th. 3.1] and [19
Th. 5.3].

We give the proof under the assumption that C; = Sy for all C; € T.
In the case that there is a C; such that C; = Tj a slight modification of the
following calculation does well.

Let T be the 1-complex in C' defined in Definition 2.9 (iv) in Section 2.4.
Let T = p~ T be the inverse image of T in C. We cut open C along T and
U, (&;Ucé) to a disjoint union of simply connected surfaces A = Ui<i<ag—2 A,
where A; is C; cut open along T. We use the notation

0A; = | @uee)u(fiTulefiYU(f Ulafi),
e CC

where fli+ corresponds to the endpoint of éf.

Let @ = (wy,--- ,w39_3)t, where {w;}1<j<39—3 is the basis of o-anti-
invariant holomorphic 1-forms on C satisfying equation (22). Asin [18, Th. 3.1],
we define the function on Cy, for all # € C39-3, h(P) = ¢ (5+ 1", Q)

where, for P € A;, the line integral is taken along a path in A,.

Although the function of P, Z + fon; w, has discontinuities across the
boundaries OA, the values of the discontinuities are contained in the lattice
Ao+ QAp; hence the set of zeros of h(P) is well defined by the quasi-periodicity
of the theta function.

For 1 < k < 3g— 3, let gi be the half of the indefinite integral of w; on A
defined, for z € A;(1 <i <29 —2), by

(44) g(@) = 2 / “n,
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where the right-hand side denotes the line integral along a path in A; connect-
ing ox and .

In the same way as in the proof of [18, Th. 3.1] we see that there are exactly
6g — 6 points (counted with multiplicity if necessary) {Q,}i1<r<6g—6 such that
h(Q,) = 0 and we may assume that U,Q, are contained in the interior of A.
Let D, be a small disc neighborhood of @, for 1 <r < 6g — 6.

Then we have the equation

(45) 0= / d (gk@>
(A-UD,) h

6g—6

dh
o ; /8Dr o " %: /(é;’+aé;'

dh dh
+ / Ok +/~_ Gk
2 Firtofiity b Sy R

1

@
)gkh

Taking these terms one at a time, we have

69—6 69—6 6g9—6

dh 1 [
(46) / k= = 2mig(Qy) = 2mi —/ W

Next we consider the third and the fourth terms in the last line of equation
(45). . .

In the following we use the notations h' = h|A; and gk = gr|A;.

qu e C‘C'Z-, g}.€ on ( lZ+:|- gle);is g}; on~( i _,_Uj;_) plus %&d because the
path & — oé! leads from (f;~ +of/”) to (f{T +of/") and f(éi—aéi) wk = Oy

So for ¢, = C; N )}, using the notation fli = Nlii U flji, we have

dh dh
(47) N R
; ( z++‘7fz+) h (fe +of) h

1 dh
=D 0|

1 (fr—i—af;r)

5 L [ / dh / dh]
=) Ou || = =

2 =ity b Jefr—efity b

= —mifdy — 2miz, mod 2miZ.

Next we consider the second term in the last line of equation (45). '
‘Note that, for e, = C; N —Cj, % on € (o€ resp.) is equal to % on €
(o€} resp.) minus 2w;.
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Hence for ¢, = C; N —C},

dh dh
(48) / gk— + / Gk~
@+eh) b Jeeivos)” b

S(dhi dh

= /é I (F — 2m(2wl)> — giﬁ

- (dh? _ . dh?
—i—/ 9 ( i —27rz(2wl)> - g; X

57
€

= —27ri/ (2giwy) —2m'/ (2g]wy)
& oél

+/e (g;i—gi)dh—};jJr/Ué] (1 - ot) dg-

First we consider the sum of the first and the second integrals of the four
integrals of the last line of equation (48).
Using the o-anti-invariance we see that the integral is equal to

2772'/~ ) wk/ wy,
flu—af] &

where fl’ is the curve in AiUAj connecting z% and ﬂ:% Let {djx} be the integers
defined just before Definition 2.12 in Section 2.5. Then we have

(49) —27”'/_(291?105) - 27”’/ (2gjwi) = =iy — midy + 1Tk
€ oé]

where 7 = £( Fes fl> is the intersection number of the curves f; and f; arising
from the pairs such that ey Ue; C Cj.

Now we note here the following; the function g; has discontinuities across
each éf by values in % (Z + >, ZQ4;). Hence to compute Ap, we compensate
for these discontinuities.

The discontinuity of g, yields at ! the compensations of the integrals (49)
given by the integrals

(50) o / |

i
1

(2giwn) + 2mi / (2giw).

57
ge;

The integral (50) is given as follows.
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First we assume k = [. Using the o-anti-invariance and dgp = wy, we have

(51) —2mi /

= —27i / d(gt)? +27m'/ d(gi)2

=3
k €k

(297w

(2giwk)+2m/ _

J
g€y

— 2 [<gi(0) + %)2 —,(0)" + <9i(1) - %)2 - gi(l)Ql

= —2mi(g}(0) — g (1)) — mi
= —ﬂ'igkk - 7Ti,

where 0 and 1 denote the initial and end points of é’f and é{ respectively and
they are equal. ‘
Next we assume k # [. Since fé;- wg = 0, gi and g{g have the same values

at the two endpoints of éf and é{ respectively, and hence by partial integration
we can see that the two integrals cancel out and we have

(52) —27ri/ (2g3wy) + 2m'/ (2ghwn) = Sl
& 0é] 4

where }, = +(fg, f;) is similar to 7j; in equation (49). Note that, from the
curve configuration in each C; € T, we have >, (ry + r},;) € 4Z.

Next we consider the sum of the third and fourth integrals of the last line
of equation (48). '

By the quasi-periodicity of the theta function, %j at é{ differs from d,ﬁ-i
at o€ by 2mi(4w;). Hence, by similar calculations in (49), (50), (51) and (52),
we have

(53) / 1- (9?; — gi) % /J ) (gi - g?;) dh}zi
= 27 /éi (g,zg - gi) 4wy

=0 mod 27miZ + 2wiZ§)y,.

Putting equations (45), (46), (47), (48), (49), (50) and (51) together and
using Y, dix € 2Z and 1 3", (r + 1) € Z, we find

6g—6 39—3

1 /Qr 1 1
S wp = -2k — |5 Qa + 5
2 2 Q. [2 l; 2

Here we regard the left-hand side to be compensated by the discontinuity of gj.

mod Z + »  ZQy.
l
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It follows that the k-th component of the vector Ap is given by

1 1
-3 ZQM—§ mod Z + Y ZQu.
=1 l

This proves Proposition 5.1. O

THEOREM 5.1. Let C = CN'(I;’m) be the 2-fold branched covering surface

of C'" with marking associated to (lNJ,m) € By. Coordinate the Prym variety
P = P(Em as in Section 3.2. Let II be a Riemann theta function of level 4 on
P defined by

VT g X
II(zZ,Q) = 2miN'3) w1712 47, 4Q),
> ) Z () |15 2] (47,49
XeLAs/A; Fez3e
where Xt% denotes the scalar product of the two column vectors X and % and

’LU(€_> =£€1"""€3g-3 fO’/“ g= (51, s ,€3g73) S Zggis.
Then the branching divisor of the map m: P — M, is given by the divisor
of IT1, Div(II).

Proof. The branching locus is the divisor of the Riemann theta function
IT of level 4 obtained from ¥(Z, ) by translating by Ap, substituting Z’ with
27 and making it %A* /A§ invariant. Hence it is the divisor of

T
ng A <19 H (22, Q))
2
which is equal to e~ Seimigy O

6. Differential equations satisfied by pull back sections

In this section we construct a differential equation which characterizes
locally the pull back of holomorphic sections of £*¥ by the dominant map 7 :
P — M,. Throughout this section we fix a pant decomposition T = {e;, C;}
of C.

6.1. The point-inverse vector field. Let Py — By be the bundle of the
polarized Prym varieties over the universal cover By of By. Then the morphism
m: P = PB,m — M, at each fiber combines to define a morphism 7 : Py —
M,. Let Ps and My, be the subsets of P and M, respectively corresponding
to the stable bundles as in Section 3.2.

Definition 6.1 (Point-inverse vector field). For a holomorphic tangent vec-

1,0) 5 . . .
torveT ((B,m;BT’ the morphism 7 : Py — M, induces a holomorphic tangent

vector field V of Py defined on Ps = P, with singularity along Div(II) N P



24 TOMOYOSHI YOSHIDA

such that it is mapped to v by the projection Py — By and m,V = 0; i.e. it is
tangent to the inverse images of points of Mys — Div(I]) by 7 at P.

Let P = P(b m) be the universal cover of the Prym variety P = (13 m) and
let Py — BT be the fibre bundle on By whose fibre at b is P = P(b m)" Then
the vector field V}, can be pulled back to a vector field V, on Py. Let P; be
the inverse image of P, under the covering projection P — P.

(1,0) ;3

THEOREM 6.1. For v € TS By, the corresponding vector field V on P,

(b,m)

s given by

1 0
4 = 59 — 6 -1 i -1 H_
(54) Vv + 8( Jw™ ) 1 0; 9z’
where 6 denotes the tangent vector on the Siegel domain S induced by v. It
descends to the vector field V on P; given by

0
—1 —1
(55) V=4§+ 8(5Jw )i IV H(‘)z]

where § and V; are the covariant derivatives given in equation (30) of Sec-

tion 4.2.

Proof. Let 7 : Py — Mygs be the composition of the covering map P,— P
and 7. If we choose a local holomorphic coordinate (y;)i1<j<3g—3 of Mys at a
point and we write 7(Q, z;) = (f;(€, 2)), then the meromorphic vector field V
is given by

(56) P (afﬂ) (ﬁ) |
92i ) 1<ij<ag-3 N0 ) 1<j<ag3

Hence if we write

(57) V=64 vo—
; J

then 7 = (vj)1<j<3g—3 is a meromorphic vector with singularity along the
-1
divisor of det(af J) which is Div(IT).

Let A3973T M, 4 and A3973T P be the top exterior bundle of the holomorphic
tangent bundles of M, and P respectively. Then the morphism 7 : P — M,
gives a holomorphic section s of the bundle (A39737* P) @ * A3973 T M, which
is isomorphic to 7*£* = £® ([4]). As was mentioned in Section 5 the branching
locus of the map 7; : P, — M, is given by the divisor of the Riemann theta

function IT of level 4. Hence we have s = ¢(b)II? for a holomorphic function
c(b) on Br.
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The divergence divy;(c(b)II?) of the vector field V with respect to the
volume form c¢(b)II? is given by
(58) divi(c®)?)= Y (e(b) 1) 9i(c(b)v;)
1<j<39-3
—(c(0)IT%) 0% (e(b)11%)
where the second term in the right-hand side of the above equation is incorpo-

rated since ¢ acts on the complex volume form (the canonical bundle) on P;

by the said amount.
2

Since V is defined by the tangent vector field of the point inverses, c(b)IT
satisfies the tautological relation
(59) divy, (e(b)IT?) = (c(b)IT%) 5% (c(b) I1%).

From the equations (58) and (59) it follows that

(60)  2c)I*) M eI*) = Y (c(0) 1) O;(c(0) Iy

1<5j<39-3
which is equivalent to
I—16%(1)

1 1

(61) =3 S oy + 1 > 9 —c(b)de(b).
1<j<39-3 1<j<3g9-3
On the other hand by the heat equation satisfied by II,
1
(62) o' =—- Y E((SJurl)ijzrlaic‘)jﬂ.
1<4,j<39-3

The right-hand sides of the two equations (61) and (62) should coincide
with each other. Hence from the equation

(63) 10,0, = (II0;1T) (IO, IT) + 9; (IT'0,1T)
we can deduce ¢(b) = 1 and obtain the equation

1
(64) vy = é(éjw_l)ijﬂ_laiﬂ

which proves (54) in the theorem.
To obtain equation (55) we substitute the terms in (54) by covariant
derivatives

1
— Q E: O AY-)
(65) 0l =16"— Q_Z 4 (SJIL] (Zz — Zl)a] H,
1J
2(.4.)"
Jl= | 0; Ej Uz —z;) | II.
\% 0; + SN (2 — Zj)

Then V can be expressed as in (55) and it defines a meromorphic vector field
on P, with singularity along Div(IT). O
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The meromorphic vector field V in the above theorem is defined on Ps.
However the resulting equation can have a meaning on the whole P as a mero-
morphic vector field with singularity along Div(/I). Hence from now on we
regard V to be defined on P.

6.2. The differential equation satisfied by pull back sections. We construct
a differential equation satisfied by pull-back sections of £* by lifting the vector
field V to a differential operator acting on sections of the vector bundle £
over Br.

Definition 6.2. Let
(66) PH : @2(k+2) - H@gk

be the orthogonal projection onto the subspace 11609, with respect to the usual
Hermitian inner product on Oy ;).

THEOREM 6.2. Let D be the differential operator on L2, for ) € (L2,
given by

(67) DY = 11! <5 + (6Jw™1)i;0:0; — 6PH> ()

1
8(k+2)
where § P is the derivative of Pry. . 3

Then for a holomorphic section v of LF, its pull back section ¥ of L**
satisfies the differential equation

(68) Dip = 0.

Proof. The differential equation satisfied by pull back sections can be
derived from the fact that the pull back section should be invariant along the
vector field V. Hence we must lift the differential operator defined by V to a
differential operator on the space of holomorphic sections of £2.

The required differential operator must have several necessary properties.
We construct it step by step so that it may satisfy all the necessary conditions.

Step 1. To derive the correct differential equation we must take into
account the parallelism of the Riemann theta functions. The bundle @9 has
the natural basis and hence the natural framing consisting of parallel Riemann
theta functions. With respect to this framing of @9, the differential along V is
expressed by the differential operator
(6Jw_1)ij (H_lﬁzﬂ@j + 81@) T/NJ

(69)  Di(d) =60+ m

Here we note that the factor is incorporated to eliminate ¢ (holomor-

1
8 12)
phicity preservation).
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Step 2. Let @i = (n;) € Z3973. Using the relation

(70) 6 (D + QM) = (69) (24 Q) + (6Q)7); (9:5) (2 + )

and the quasi-periodicity of ¢, we have

(71) (D1)(Z + i) = e™ T2 (D)) (2)
+ki+2(5jw1)ij (II710,11) (2)njd(2).

Therefore the differential operator D; does not preserve the quasi-periodicity
of 1 because of the second term of the right-hand side of the above equation.
Consequently it does not preserve the sections of £2¥. This can be remedied
by adding to D; the multiplication operator

(72) 06— (gl m@ ) e

By the heat equation (33) we have

k 1
Y =o'+ ———Jt —,.8;0;11.
(73) P ) SIT + ) (6Jw™1);;0:0;

Hence adding the multiplication operator (72), D; changes to

(74) Doy = ot <(5 + m(&]wl)w&aj) 1.

Another explanation of the reason for adding the multiplication opera-
tor (72) is the necessity for the incorporation of the difference of trivializa-
tions of fibres of £?*. For x € M, and a nonzero vector a € L&, 7~ (a) de-
fines a holomorphic function on the point-inverse orbit 7=1(x). The derivative
vy = 6y log m'a does not depend on the choice of a and the family {Ve Ywenm,
combines together to give a holomorphic function on the universal cover P. To
obtain the lift of the differential operator V to a differential operator on the
space of holomorphic sections of £2¥, we must take a covariant derivative with
respect to the holomorphic connection defined by {v,}.

Step 3. We note that the expression (74) is formal as it stands because
the differential operator in the parentheses on the right-hand side of (74) does
not keep the subbundle 110 invariant in general and hence we cannot divide
by II. We may remedy this by adding the term of the operator

(75) b — —I 5Py (m[;).

As a result we obtain the operator D given in equation (67) in the theorem
and this completes the construction of the desired differential operator D. O
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7. The pull back sections; a characterization

7.1. A characterization of pull back sections. Let T = {e;,C;} be a
decomposition of C' into 3-holed spheres.

The results so far obtained in the preceding sections are sufficient to give
a characterization of holomorphic sections of £2* which are pull-backs of holo-
morphic sections of £LF.

We have the following three conditions for the pull back sections:

(i) local invariance,
(ii) global invariance,
(iii) automorphy.

(i) Local invariance. Theorem 6.2 states that a pull back section Y satisfies
the differential equation given in equation (68).

(ii) Global invariance. A pull back section 1; should be a linear combina-
tion of Sg A" A image of Riemann theta functions which are invariant under
2 0

the action of Zgg ~3 and projectively invariant under the W-action (Definition
4.3).

(iii) Automorphy. A pull back section 1 should be a linear combination of
Riemann theta functions of level 2k with coefficients of holomorphic functions
of Riemann matrices Q4.

Consequently a pull back section should be a linear combination of sections
of the form

(76) )= Sa-/as (Z ca(Qp)0 [g} (2kZ, 2kQ)> ,

—

a

where cz(25) € A, and the section in the parenthesis is projectively invariant
under W4 action.
To summarize we have the following characterization of pull back sections,

PROPOSITION 7.1. Let T be a pant decomposition of C. A family of holo-
morphic sections of Egk on Br, {1; = Qﬁ(é,m)}(i,m)eér’ is a family of pull back
sections of a holomorphic section of LF if and only if it satisfies the above
conditions (i), (ii) and (iil), and it has the form of equation (76).

Proof. 1t is obvious that the said conditions are necessary for {1;} to be a
family of pull back sections of a holomorphic section of £F.

We prove the converse. Assume that {1} satisfies the local condition.
Since the differential equation is constructed from the point-inverse vector
field, its solution is locally a pull-back of a holomorphic section. Hence {1;} is
locally a pull-back of a holomorphic section.
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The map « : P, — M, factors the map P’ — M, and the degree of the
latter is 23973 ([6] and see Section 3 for P’). Since the order of Wy /W2 is
equal to Zgg ~3 stated as in Lemma 2.4, Wr-invariance implies that the family
descends to a holomorphic section of £¥, that is, it is globally a family of pull
back sections. O

8. A construction of a basis of I'(M,, £F)

In this section we construct a set of holomorphic sections {1[1} of L2
satisfying the conditions stated in Section 7. Throughout this section we choose
and fix a pant decomposition T = {¢;, C;} of C.

In the defining equation (67) of the differential operator D in Theorem
6.2, the operator in the big parenthesis coincides with the usual heat operator
of the Riemann theta function of level 2k + 4 (see equation (33)) except for
the last term —dP;;. Hence we expect that I 1/; might be expressed in much
simpler form than 1) itself. Hence we look for ¢ such that ¢ = %

From the formula of IT given in Theorem 5.1, II is anti-invariant with
respect to the Z;gfg—action of Definition 4.2. Since 1 is Zggfg—invariant, ¢ =
I @B is Zgg ~3_anti-invariant. Also 1; is 59 A/ As—invariant, and from the formula
of IT given in Theorem 5.1 again, we see that ¢ = I 1/; isa S 1A+ /A image, where
S% A+/A; 18 the anti-invariant shift operator defined in Definition 4.2 (iv).

Taking this into account, from the characterization of pull back sections
in the previous section, we make the following definition.

Definition 8.1. Let (AQ(;HQ) . @Q(HQ))KV? be the subspace of Aj(gyo) -
Oy(r+2) spanned by those elements each of which is Wi-projectively invari-
ant and is of the form

= (27+1)
S w@eE ) | 2<f+2>] (205 +2)7,2(k + 2)9),
geZi? 0
where w(&) = €1 ---e3,3 and T = (1,--- , 1)t € Z3973.

Since our object is to find ¢ € (Ag(j12) -@2(;”2))‘1[/; such that S%A*/Ag (¢) =
I, we begin by studying the condition for ¢ € (Ag(it2) - @Q(k‘_l’_Q))‘iV.? so that
S% As /Ag(qb) may be divisible by IT. For this purpose we use the following

notions:

Energy weight, spin weight and weight lattice. Let ¢ € Ag(pio) - O
Then by Fourier expansion S’% A=/a; (@) can be expressed by an infinite linear
combination of exponential functions each of which has the form e™s(@ ¢2mi(11'2)
where s(@) is a function of @, m € Q%93 and 7 = (2, - - - . 23g-3)".
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Definition 8.2. The weight lattice Ly of ¢ with respect to the coordinate
7 is defined as the point set Ly = {(Ims(@),m)} in R&@R373. s(@) and m are
called the energy and spin weight respectively. For a vector @ = (q;) such that
la;] < 1for 1 <1< 3g—3, s(d) is called a minimal energy weight.

8.1. Grouping and decomposition of minimal energy weight part of II. We
introduce the notion of grouping for the construction of the basis of I'(My, £F).

Definition 8.3. Let T = {e;,C;} be a pant decomposition of C. We set
& = {e; € T}Hi<i<3g—3 and define a grouping g to be a decomposition of £ into
three disjoint subsets

(77) g:E=&UEJUES
such that, for 1 < m < 3, &}, = {eim)} consists of g — 1 elements, and, for

each C; € T,

(i) if C; = Sp and all the three boundary curves are simultaneously separat-
ing or nonseparating, then #{e;,) € &N | ejom) C Ci} = 1,

(i) if C; = Sy and one boundary curve is separating and the other two
boundary curves are nonseparating, then

(a) #{eim) € Emleim) € Ciy =0, or

(b) #{eim) € Emlem) € Ci} = 1 and it is the separating boundary
component, or

(c) #Hewm) € Emleam) C Ci} = 2 and they are the two nonseparating
boundary components,

(iii) if C; = Ty, then lj{el(m) €& | €1(m) C Ci} =0, or 1.

We denote the set of all the groupings by Ey; here the numbering m
is irrelevant; that is, 83(1) U 879_(2) U 83(3) defines the same grouping for any
permutation 7 of m.

The following can be proved by induction on the genus g without difficulty.

LEMMA 8.1. Let T = {¢;, C;} be a pant decomposition of C. Let Ey be
the set of all the groupings.
Then

(78) 1<ty <2972

We relate the concept of grouping to a more geometric one, that is, a
system of simple closed curves each of which is transverse to | J, e; as follows.
Associated to the marking m = {f;,e;}, there is a dual graph G of the
pant decomposition Y; that is, G is the trivalent graph in C' whose vertices
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Figure 5: curve system

are {%}}1§iggg_2 and whose edges are {f;}1<i<3g—3. Let N(G) be a regular
neighborhood of G in C. Then C' is homeomorphic to the double of N(G).

For each C; € T, N(G) N C; is a hexagon with three disjoint boundary
arcs in 0C;. In Figure 5 we define the arcs in N(G) N C;, where the symbol -
denotes the branch point z} and the letters n or s attached to the boundary
component N(G) N IC; indicate that the corresponding boundary component
of C; is nonseparating or separating respectively.

Definition 8.4. Let T = {e;, C;} be a pant decomposition of C. A triple
of maximal curve system is defined to be a triple s = (s1, $2, s3) satisfying the
following conditions: for 1 < m < 3, s, is a disjoint union of simple closed
curves in N(G) — |J; x! such that each ¢; € Y intersects with at most one
component of s, and exactly 2g — 2 ¢;’s intersects S, S, N C;(C; € T) is one
of the arcs listed in Figure 5, and {s,, N C;}m=1,23 runs through all the three
types of arcs listed there corresponding to the type of C;.

We denote the set of all the triples of maximal curve system by Sy.

LEMMA 8.2. There is a one-one correspondence between the sets Ey and S~ .

Proof. Let g : £ = EJUEJUES be a grouping. For 1 < m < 3, we construct
from &£, = {€i(m)} the corresponding curve system s9, as follows.
For C; € Y, s%, N C; is defined so that:
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(i) If C; = Sp and all the boundary components are simultaneously nonsepa-
rating, then s3,NC; is one of (ia), (ib) and (ic) in which e,y corresponds
to the boundary component of N(G) N JC; disjoint from the arcs.

(ii) If C; = Sy and all the boundary components are simultaneously separat-
ing, then s7, N C; is one of (iia), (iib) and (iic) in which e;(,,) corresponds
to the boundary component of N(G) N dC; disjoint from the arcs.

(iii) If C; = Sy and exactly one boundary component is separating, then
(a) if #{eyom) C Ci} = 0, then s, N C; is (iiia),
(b) if #{eyom) C Ci} = 1, then s7, N C; is (iiib),
(c) if #{eyum) C Ci} = 2, then s7, N C; is (ilic).

(iV) If Cz = To, then

(a) if #{e;m) C Ci} =0, then s7, N Cj is (iva),

(b) if #{em) C Ci} = 1 and ey is the nonseparating simple closed
curve, then sf, N C; is (ivb),

(c) if #H{eyumy C Ci} = 1 and e,y = 9C;, then s, N Cj is (ive).
From such a chosen subset {s?n N Cz‘}lgigzg_g we can construct a curve

system sy, satisfying the condition in Definition 8.4 and the construction gives

a one-one correspondence between &y and Sy. O
Definition 8.5. For a grouping g € &y, let s9 = (s9,s3,s) denote the
curve system constructed in Lemma 8.2.

By formula I in Theorem 5.1 we can write II as
(79) I =1y + 114,
where Il is the sum of the terms of minimal energy weights and is equal to
3 23 D) 3 w@e.s,
XELA*/A; gez3e 3

for

- t - = t
(& g o (€ o\ .
(80) €z5 = €XPp (m (5 +)\> Q <§+)\) + 4mi <§+)\> z),

and I is the sum of those of higher energy weights.
For each C; € T we make a change of variables in the following way:
First we assume that C; = So. Let C; = e; Uey Ues. Let {2,215, 21 }
be the corresponding variables defined in Section 3.2.
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In C; C C we make the base-change of ‘n Hl(é’i, R)_ as
{le — oty [ey, — oey), [y, —oey)} — {B] B, B3},
where {E!} are as in Definition 2.11.
This induces the change of variables
wyi = 23 + 2
(81) wy, =z + 2
wyy = 2 + 2,

R Nz o (o o t
and for vectors, 7; = (ngi,mys,ny:)"s My = (Mg, mg,mg)'s Zi = (25, 218, 21)
and Wi = (wyi, wyy, wy ), satisfying 7} 2; = miad;, we have

myy = 5 (=g 4y + )
(82) myy = 5 (may — g + )
myy = g (nyg + = nyg) -

Next assume that C; = T;. Let e = 0C; and let ey € T be the essential
simple closed curve in C;. Then we have

~ 1
(83) AmHl(Ci,R):Zi[él{ _Uéli]@z[élé_gélé]'
In C; we make the base change of /N Hl(é'i, R)_ as
{ley — oeul, [6y — o]} — {E}, E3},

where {E!},_1 2 are as in Definition 2.11.
This induces the changes of variables

(84) { wll le

Wy = 21+ 2,

2 (s mn Y T — R - R V" o
and for vectors, 7; = (ngi,ng)", M = (myi,my)’, Zi = (2,2;)" and @; =
(wli,wlé)t, satisfying, 7'z, = mlw;, we have

my = —sng 4+ ng

(85) i 2700 I
o1
Mg, = Mg -

Let HOXZO be the part of Ily with X = 0. Then using the above change of
variables we decompose each term of H()\:O as follows.

Extracting the part of UOXZO only involving the variables concerning C;
and using the variable changes (81) and (84), we set

; ! . ’ . ’ .
2mi(e;; wy; e, w e wl%)
i 5

(86) Ty~ = 3 w(E)eAe : ,
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for Cl = So, and

(87) iR~ = > w(E)es()e ™ i e ),

&, €22

for C; = Ty, where ez(£2) is an elementary exponential function of €2, the vector
(5%,62;,52;)’5 in (86) is obtained from (g;:,&5,€;;)" by the transformation (82),
and the vector (sgi,sgé)t in (87) is obtained from (g;:, ;)" by the transforma-
tion (85).

The variable wj; is a linear combination of variables in {2, 2,2}
(Ci = So) or {z:,2;}(C; = Tp). Hence, at each ¢; = dC; N 9C}, the equality
of the spin weight of the variable z; (= 2 = 2 for some 7 and s) determines
a coincident relation between the terms of I7 (i)§:0 and II(j )f‘;:O appearing on
the right-hand side of equation (86) and equation (87) such that two terms in
H(j)gio are related to one term in H(i)ézo.

We make the following correspondence between the set of arcs in C; listed
in Figure 5, all but the ones in (iiic) and (ivb) and the set of elementary
exponential functions in w;, each of which is a factor of a term on the right-
hand side of equations (86) and (87);

(i) The arc of (ia), (ib) or (ic) connecting e;; and e;: corresponds to the term
2mie], wy &

e mtm . where wp = 20 + 2.
(ii) The arcs of (iia),(iib) or (iic) connecting e;; and e;: correspond to the

> =/
27718”

Wi
term e m'm_where wp = zpi + 2pi.
m s s

(iii) The arcs of (iiia) connecting {e;:,e;: } and {ej:,e;:} correspond to the

2mie!, wyi —2mie!, wy
(2miey wiy, —2miey wiy )

term e , where wyi = 2ii + 2;; and wy; = 25 + 25

. . 2mie’, wyi
(iv) The arc of (iiib) connecting e;i and e;: corresponds to the term e™ ' "' |
where wy; = 2i + 255

2mie’, w

. miel, Wy
(v) The arc of (iva) corresponds to the term e % "2, where wy; = 2z +2;.

>~
27”5“1 w

(vi) The arc of (ivc) corresponds to the term e” i "1, where wy; = z;.

This correspondence, if there is a mjlximal set of mutually incident terms
involved in a subset of terms in {I7(i)}="}1<i<ag—2, defines a simple closed
curve or an arc in C which is a combination of those arcs listed in Figure 5. If it
is not closed, then its endpoints lie in a separating e; ¢ £7, at which &, realizes
the case (ii) with f{e;,,) C Ci} = 2 or the case (iii) with f#{e;;,,) C Ci} = 1 in
Definition 8.3. By adding to it the arc (iiic) or (ivb) in Figure 5 in the respective
case, we obtain a simple closed curve. Hence the choice of a maximal family of
mutually coincident terms corresponds to a triple of a maximal curve system
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as in Definition 8.4, and hence by Lemma 8.2 it corresponds to a grouping
g € &Ex. ~

Thus, if we choose and fix a grouping g € &y, then each term of Hé‘zo is a
product of three elementary exponential functions each of which corresponds
to one of the curves s,, of the corresponding curve system and

(88) Ty = (Sé - /ASHXZO)O.

Finally we note the following. Using the notation of equation (80) we
consider the following terms contained in I1; L

I
— 1, e | . LAE Ak
Ups = €565 Ugx —e_axea)\ ()\;AOE 2A JAG -

Then all the shifts of the spin weights induced from the multiplication by
11y L are generated by those induced from the mutiplications by {ug X}a 5 For
example in C; = Sy ,in the above coordinate of spin weight 77; = (nli,nlé,nlé)t,
the shifts of the spin weights induced from the multiplication of II; Lare gen-
erated by the translations by the vectors (1 L 0) , (%, 0 1) and (O L 1).

299 59 ORI
Also {ug SU_g 5} and {vaxv_a 5} generate the shifts of the energy weights

without spin weight shifts through their multiplications.
8.2. Diwisibility by II and the Quantum-Clebsh-Gordan condition.

Definition 8.6. Let T = {e;,C;} be a pant decomposition of C. For a
positive integer k, an admissible weight j = (j;)1<i<39-3 € %Z39—3 of level k is
defined as a function

(50) i=6: e {050 5}
satisfying the so-called Quantum-Clebsch-Gordan condition of level k: For each
Ci € T(1 <i <29 —2) with 9C; = ¢;; U e U ey, the corresponding weights
g5 ug» dis } satisty

g+t €l
Ju = Il < g < g+ i
Jip + i + g <k,

where if C; = Tp, then e;; = e;; and j;; = jj; are to be understood.
We denote the set of all the admissible weights of level k by QCG,,.

(90)

THEOREM 8.1. Let j ¢ QCGy. Then there does not exist a nontrivial
Riemann theta function gb;. € (A(rqa) - @%)KVT of the form

O gy= Y w@d0

ez

such that &; = S%A*/A3(¢]~.) is divisible by II.

o 27 +1
© (W)] @2k +2)7, 2(k + 2)Q),
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Proof. Let II = Il + II; be the decomposition given in equation (79).
We formally expand I _1(;55. as

(92) 17 = 1156+ [ S (=1 (115 m)™ | .

m>1

Then gz;; is divisible by II if and only if the above series converges. If the first

term 11y 1(;;]4. converges, then there are constants C, ¢ > 0 such that the second
term satisfies the inequality

ST ()™ (g™ | 6| < Cln(g) )P,

m>1

where 7(q) = [[,,>1(1 — ¢") is the Dedekind 7 function.

Thus (;3;. is divisible by IT if and only if it is divisible by I1j.

Choosing an elementary exponential function summand qq of 11y, we write
IIy = qo(1 + II})). Then q~5]~. can be divisible by Il if and only if the formal
power series

(93) Og'éy=qp' | 1+ ) (D)™™ | 65

m>1

defines a convergent series. Moreover it defines a convergent series if and only
if the right-hand side of the above equation involves only finitely many terms
with the same energy weight at each energy level; actually all the terms must
be contained in the convex hull of the weight lattice Ly of ¢ = q%. (Definition
8.2).

Case with C; = Sp. For C; € T with C; = ;i Uey; Ueyi, we consider the
three-vectors (n;:, nlé,nlé) representing the spin weights at the three boundary
circles.

The first condition of (90) follows from the A invariance of IT _1qz~53.; ie.
it is invariant by the change of variables w; — w;i + 1 where w;: is as in
equation (81). ’ ’ ’

By the description of ITj given in equation (88), for C; (1 < i < 2g — 2),
multiplication of each elementary function term in the parenthesis on the right-
hand side of equation (93) affects the spin weight (n;:,ny;,ny;) by a shift given
by a linear combination of the vectors (1,1,0),(1,0,1) and (0,1,1).

Hence if the right-hand side of (93) converges, the spin weights (r;: , 75, 7))
of all the terms with minimal energy weights appearing on the right-hand
side of (93) must be contained in a convex hull spanned by the vectors
{2415, 2515, 23: )} and their shift by the vectors {#(1,1,0),4(1,0,1),£(0,1,1)}
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in R3 which is of finite volume and has {2455 2415, 2975 ) } s its vertices. Now,
we have the following equation

for nonnegative integers p,q and r. It is equivalent to the second condition
of (90).

By the periodicity of the Riemann theta function the same argument can
be applied to the convex hull in R? spanned by the spin weights

{=£ ((2k — 2jis), (2k — 24y3), (2k + 2j33)) }
and their shift by the vectors {%£(1,1,0),£(1,0,1),£(0,1,1)}. It follows that
¢7 is divisible by Iy only if the vector ((2k — 2415 )5 (2k — 2452 ), (2k + 2jl§))
satisfies the first and second conditions of (90). This yields the inequality

(95) Jut g+ <k
which is the third condition of (90).

Case with C; = Tp.  Let e = 0C; and let e;; be the essential simple
closed curve in C;. The second and the third conditions of (90) are

{ —ji + 2 > 0

(96) : .
Jip + 25 < k.

Changing the variables as given in equation (84), we see that essentially
the same argument as in the former case proves the claim of the theorem. O

8.3. Diwvisibility by II and QCG: sufficiency. We proceed to prove the
existence theorem which claims that, for 3 € QCG,, there is a nontrivial
Riemann theta function qﬁ; of the form (91) in Theorem 8.1 which is projectively

invariant under Wy and is such that q%. = S1p+/a;(¢7) can be divided by II.

Definition 8.7 (Marking of the lattice A). Let T = {e;,C;} be a pant
decomposition of C. Let g : £ = EJ UEJ U EJ € Ex be a grouping.
We define a triple of markings (bases) of A, {m}, } =123, such that

md, = {—[& — 0@l }e,cen, U { Bl hi<icog—2,

where Eé(i) is one of the vectors given in Definition 2.11 for C; € Y.

Likewise for & = (g) € Z‘;g 3 we define a triple of markings of A,
{m&"}=1,2,3 in the same way by replacing {€} by {;&;} (and hence replacing
{E;(i)} by the corresponding elements).

Let Q% be the Riemann matriz for Hy(C,R)_ associated with the mark-
ing my; and its symplectic dual.
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Remark; 8.1. In the above definition we neglect to fix an ordering of the
basis m7;,". What we need actually is a coherent orientation of the Lagrangian ‘.
We choose and fix, arbitrarily, ordering of mj;” so that it defines the orientation
of ¢ which differs from that of {;[&; — o&;]} by (—1)9~L.

Now we define automorphic forms which are of fundamental importance
in the subsequent arguments.

Definition 8.8 (Basic automorphic forms). Let T = {e;,C;} be a pant
decomposition of C.
For a grouping g : £ = & UEJ U EY € Ex, we define a triple of vectors,

{59 :( )1<l<3g 3}m 1,2,3, by

m ~1 e €&
o = g

+1 e & &

For j = (71) € QCGy, and g € &y, let A? be the set of triples a = (a1, da,ds) of
vectors in Z3973 such that, for 1 < m < 3, @, = (a") with 0 < a* <2k +3
satisfies the following two conditions:

(i) For 1 <1< 3g—3,

o (all)2 + 67 (a?)2 + 6} (a?)2 =0 mod 4(k + 2).
(ii) For each pair ey Uey C C; (1 <1i<2g—2),

al al/ + al al/ + al a/l/ = —(2jl -+ 1)(2jl/ —+ 1) mOd Q(k‘ + 2)

For j = (ji) € QCCy. g € &x, a = (@m)1<mes € AL and €= (1) € 257,

we define a theta series 191/3,@,5-(9?,{5) associated with the marking m&%;° by

- - Nt o -
191/;,:,5-(9%5) = Z exp {2(k + 2)mi ()\ + V§7’§;€> 09< <)\ + u§$€> } ,
AEA*

where

5lal = 1 %
o7 @ A
(97) Z 2+ Iie 2k +2)

and on the right-hand side the vectors X and 9° are understood to be written

jm
as column vectors with respect to the basis m¥;".
Finally, for j = (j;) € QCGy, we define

(98) j Zﬁw ngw(ﬂgf)ﬂw(ggf).

7,3
aGA"
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The following existence theorem is the main result of this section.
THEOREM 8.2. Let T = {e;, Ci} be a pant decomposition of C. Choose a
grouping g € Ex. For j € QCGy, and € € ng 3 , let qg8 be the automorphic
form of level 2(k + 2) defined in equation (98) of Deﬁmtwn 8.8. Now,
(99)
. . . e 2T
= JI €, k >
Up = TS50 (S w@ 270 | 0T | 2+ 2)7, 20k +2)) )
3
Then @E; defines a Riemann theta function which is an image of the shift
operator of a projectively invariant section under the action of Wi.
Proof. First we prove that the Riemann theta function

s g 25+f
(100)  ¢7=) w(@q?" v | 2k +2)7, 20k +2))

g
is projectively invariant under the action of Wg.

A\ 2
W4 is generated by (TS;) and /iecl' for ¢, C C; € Y. We prove the

projective invariance of ¢~ under /{ec; The corresponding statement for (Tg )
can be proved similarly, and we omit the details.

For 0C; = e;; Uey Uey, let {Ei, E, Ei} be as in Definition 2.11.

The eigenvalue of the Dehn twist along the direction E (r=1,2,3) of

-~ 27+1
9 |° 20+
0

(51(271 +1) + 62(2j, + 1) + 03(2jy, +1))°
P 2(k+2)

for some J; = £1 (s = 1,2,3). The conditions (i) and (ii) in Definition 8.8
ensure that the corresponding eigenvalues of ¢2° cancel the off-diagonal terms

of the expansion of the square in the above eigenvalue, and hence the corre-
- =, 2741
sponding eigenvalue of qjj’a v, [ 2((_){f+2)] does not depend on &. Therefore d);

is projectively invariant under the Dehn twists along the curves Iic

Secondly we prove that Si,., A;(#57) can be divided by II. As noted in
the proof of Theorem 8.1, S% A*/As (qu) can be divided by IT if and only if it
can be divided by 1Iy. Moreover the divisibility by Il is equivalent to that;
if we expand IT; ' into a formal power series as in equation (93), the formal
power series 11 1S, LA /A ((Z) ) involves only finitely many terms at each energy
level. The multlphcatlon by (I1p)~! induces the shifts both of the spin weight
and the energy weight. Let Py be the group of shifts of the spin weights gen-
erated by all the transformations induced by multiplication by (1Ip)~!. Then
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Py is generated by the shifts of the spin weights corresponding to the vec-
tors in %A*/AE’;. Hence by the condition QCGy, for each fixed € € Zgg_?’,
4z 27+1

the sum of {w(:l:é)qjg’ig- 9| %(k+2)] } and their transformed image by

S 1A-/A; supplies one set of subsums divisible by Ily. Thus the right-hand side

of equation (99) in Theorem 8.2 defines a well defined Riemann theta function.
O

THEOREM 8.3. The set of families {@;}begr indezed by ] € QCGy, con-
structed in Theorem 8.2 forms a basis of the vector space consisting of pull

back sections of holomorphic sections of LF. Hence this set of families can be
canonically identified with a basis of T'(My, LF).

Proof. {J’f}EEBT satisfies the global invariance (ii) in Section 7.1. As was
mentioned at the end of Section 8.1, the terms {u_5u__5} and {”aXU—aX} in
II~! generate the energy- shifts without spin-shifts through their multiplica-
tion, where Ugs, and vy are given below equation (88).

To make the multiplication by IT~! well defined, we must eliminate by
adding the counter terms the negative engrgy—weight terms produced from the

- 2741
minimal energy weight term of ¢ +e @ by producting by the combina-
tions of the above generators and their inverses.

Let (s, s9, s5) be the maximal curve system corresponding to the grouping
g € Ev. Each segment s, NC;(C; € T) corresponds to an element X e 1A*/A*
such that X = Q(fl + fl/) where the two endpoints of sy, N C; lies on e; U ep.
The above generators of energy-weights shift operators are assembled into three
groups each of which belongs to the subgroup generated by those elements of
SA*/A§ corresponding to {sf, N Ci}e, (1 < m < 3).

By the description of the minimal energy part of IT A=0 given in Section
8.1, for each sy,, we may perform a simultaneous coherent coordinate change in
all the pants C; so that {2 },ces and {w;, } forms a coordinate associated with
the lattice A. For such three coordinate systems, the necessary counter terms
are coherently assembled to the sum of the product of three theta constants
qjg,’g given in Definition 8.8 equation (98). We note that those counter terms
correspond to the Dehn twists along the basis vectors of A given in Definition
8.7, and the conditions (i) and (ii) in Definition 8.8 come from the effects of
those Dehn twists. )

Thus the coefficients q;Z’E of zﬁj in equation (99) automatically appear for

the well-definedness of the multiplication by the formal power series IT7!. It
shows that the 1/15. are minimal,that is, any other element of H‘lS;A*/AS (Ag(rs2)
2

QZ(k_,_Q))KW is a linear combination of the form } - f (Q)jﬂﬁ; for some functions
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f (Q); It implies that the operator 6 Pj7 in the differential operator D in The-
orem 6.2 is given by the differential of qjl’g. Hence each of {lz]}EeBT satisfies

the local invariance (i) in Section 7.1. Hence we obtain the theorem. O

9. Projectively flat connection and unitarity

Up to the previous section our argument has been done for a fixed Riemann
surface C'. In this section we vary the complex structure of C' and we extend
the results in previous sections to the whole family on the Teichmiiller space
of genus g Riemann surfaces.

9.1. Projectively flat connection. Let 7 be the Teichmiiller space of genus
g Riemann surfaces. We denote the point of 7 represented by a Riemann
surface C by [C]. Then we have a fibre bundle C — 7 whose fibre over [C] is
Ce.

There is a fibre bundle By — 7" whose fibre on [C] is Bjg), where By is
the space B introduced in Definition 2.2 (Section 2) associated to the surface
C. Also we have a fibre bundle Pr — B whose fibre over [C] is the family of
the Prym varieties P; with beB.

The family {I"(M,, £k)}[c] combines together to form a holomorphic vec-
tor bundle over 7. We denote it by I['(M,, L*)7.

We consider the pull back of a section in {T'(Mg, £F)} (¢ as a holomorphic
section in the family {I'(F;, L£%) 71 .

Let T = {e;,C;} be a pant decomposition of C. Let Bys be the fibre
bundle over 7 whose fibre over [C] is the universal cover By of By for C. Let
O — By be the fibre bundle over 7 whose fibre over [C] is the family of
the vector spaces of Riemann theta functions of level k.

The Riemann theta functions II combine together to give a global holo-
morphic section II of the bundle @47 which is parallel with respect to the
usual connection on the level-4 Riemann theta functions.

For j € QCG i» the holomorphic sections 15; given in Theorem 8.2 combine

together to define a global holomorphic section 1;5. of T'(P, Z%)T on Byr.
The operator § P;y (P is the projection operator given in Definition 6.2)
can be defined also on T'(P, £2¥) .

THEOREM 9.1 (projectively flat connection). The differential operator D
acting on T'(P, L)1 given by
- 1 -
101 D =17 6+ < (0w ™)0,0; — 6Py ) (119)
() i =117 (54 s 6900, — o ) (1m0
defines a projectively flat connection on the vector bundle F(Mg,ﬁk)q—. The
curvature of D is central and equal to the multiplication
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(102) ﬁtréﬂ(lmﬁ)l.

Moreover, for a decomposition of C, Y = {e;, C;}, {@z)f}feQCG forms a basis
k

of parallel sections in I'( My, LF)r with respect to this connection.

Proof. The curvature of D is equal to 6D and it coincides with
(103) —06Prp + 46.

This is equal to the central curvature of the determinant line bundle on
the Grassamann varieties consisting of II@s; which is the sum of the central
curvature of Oy 9y and the curvature which comes from the variation of II.
Hence it equals
k
8(k+2) 8(k+2)

and we obtain the result. O

étr&Q(ImQ)_l - troQ(ImQ)~* = troQ(Im€) ~*

In [11] Hitchin showed that a connection on I'(M,;, £¥)7 defined by a differ-
ential operator on £¥ is uniquely determined by the holomorphicity-preserving
property of the differential operator up to a constant multiplication operator.
The differential operator D defining the connection in Theorem 9.1 is also con-
structed basically from the holomorphicity-preserving condition (Step 1 in the
proof of Theorem 6.2). D is a family of differential operators on {I'(P;, £2¥)7}
which are invariant under the variation of b. Hence D defines a differential
operator on £* which induces a connection on I'(M,, £¥)7. Thus the Hitchin’s
result implies

THEOREM 9.2. The connection in Theorem 9.1 coincides with the Hitchin
connection in [11].

9.2. Unitarity. Next we prove the existence of a hermitian product on
['(M,, £*) which is invariant with respect to the projectively flat connection
defined in the above theorem.

The space Oy 19) has the usual Hermitian inner product such that {19 [g} }

forms an orthonormal bases. Likewise the space Aj) has the Hermitian
product given by the Petersson scalar product ([8]).

THEOREM 9.3 (The invariant Hermitian product). Let T = {e;,C;} be
a pant decomposition of C. Let (, )40 = (, )Ayuie) Osuss be the Hermitian
product on Ay 4z) - Ozq2) defined by the tensor product of the usual Hermi-
tian product on the space of Riemann theta functions and the Petersson scalar
product on the space of automorphic forms. Let Vi be the vector space gener-
ated by {@;};GQCG]C. We define a Hermitian inner product (, )y, on Vi, for
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b, € Vi, by
(0:0),, = (o) .

This defines a Hermitian inner product { , ) on the space I'(My, L¥) which
is invariant under the projectively flat connection D given in Theorem 9.1.

10. The transformation formula

10.1. General Remarks. A symplectic linear transformation of the Prym
variety P induces a metaplectic transformation of theta functions and theta
constants in the usual way.

The metaplectic correction on the Prym variety is defined by incorporat-
ing the bundle of half-volume form on Prym varieties ([23]). What we should
actually consider is the half-volume form of M, which is a holomorphic sec-
tion of the square root Ky, = \/K—Mg of the canonical bundle of M,. Now
T K, 18 isomorphic to L4, and IT is a holomorphic section of it (see Theorem
5.1). Thus IT 1&; incorporates the half-volume form of M, and we consider its
transformation law.

10.2. Transformation formula. Let (b,m) € By where b = (b, a).

Let h be a diffeomorphism of C. By isotopy we may assume that h fixes
b pointwise.

Let T = {e;, C;} be a pant decomposition of C' and let Y/ = h, Y = {¢;, C!}
be the transformed image of T by h. Likewise let o/ = (h;!)a and m’ = h,m
be the transformed images by h.

Let {1;;} and {@’jﬂ,} be the corresponding bases of pull back sections as
constructed in Theorem 8.2.

We consider the transformation law between {@ZJ;} and {@Z;’f,}.

First we note that h alone cannot determine a lifting of it to a diffeomor-
phism & of C.

To determine h, we need extra information attached to k. Let {Y,h, h T}
be a triple of h, a pant decomposition T and its transformed image h,Y. Then
such a triple determines a lifting of h, fw, such that hy maps the decomposition
of C induced by T to the decomposition of C' induced by k. Y. The set of such
triples {Y, h, h, T} forms a groupoid and it defines a projective group action
of a central extension of the mapping class group of C' on the conformal block
by making use of the projectively flat connection.

Definition 10.1. The diffeomorphism hy is called a lifting of h associated
with Y.

Let £ be the Lagrangian in H;(C,R)_ spanned by {[& — 0€]}1<1<39-3-
We choose and fix a complementary Lagrangian £*. Let {f/'} be the basis of
¢* which is the symplectic dual of {[é; — 0é;]}. See Definition 2.12.
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Let hy, : Hi(C,R)_ — Hy(C, R)_ be the symplectic linear transforma-
tion induced by the diffeomorphism hy : C' — C.
Let

(104) T, = <é g)

be the matrix representation of the symplectic transformation h. with respect
to the basis {[é&; — o&]} U {f]"}, where

(105) Al =0 |, B:0r—={ , C:l—0 , D:0*—=/".
The symplectic matrix T},  acts on the pair (£, 2) by
T; (Q,7) = ((AQ+ B)(CQ2+ D)~ ', (CQ2+ D)~ '2).

Likewise for the groupings g € &y, ¢’ = hyg € &,y and v € S3, we have
a matrix, for 1 <m < 3,

oo Ag7g/7ag; Bg:glzs—:g
(106) (T;, )55 —< e

that is,

’ gl = = r = - -7 —1
g 75 — il 1= ) ’ 1= k] 1= ) ’ 1=
077 = (agg 77 0ss + Bee? ) (cngeP g + Dy o)
Let Sp(H 1(C,R)_) be the group of all the symplectic transformations of
H{(C,R)_. Then a choice of a path in Sp(H;(C,R)_) connecting hy, to the

identity determines the lifts of 7;  and (TET)%%E’E' to metaplectic transfor-
mations

Tj,,  Oz(kt2) = Oa(ir2) > (Tﬁy)gﬁ%’s’e/  Ag(kg2) — Ao(kt2)
both of which are isometries with respect to the usual Hermitian product on

Oa(k+2) and the Petersson scalar product on Ay 9 respectively.
The transformation TAET : Og(jg2) — Oo(r42) i represented as (for y, u' e

sz Ay and X, X € JA%/AY)

=

w+ A

oL+

(107) Ty <19
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The transformation (T~ Vs 19 Ee : Ao(ky2) — Ag(rto) Dreserves the sub-

space

(108)

where for v,/ € BTt

spanned by the theta constants and is represented as

(2u095)) = 32 (04577, 9 (5050),

!
v,V

(T~ ) ;{55_7
k-}-Q)A>|<

9, =3 exp {2(k +2)mi (X+ y)t Q9 (X + y)} ,

XeA

and similarly for 9, (7 < ))

V(m

THEOREM 10.1. Let Vi, be the subspace in Ag(rig) - Or42) spanned by

{Hd;f}feQCGk' For~a diffeomorphism h of C, let hy be the lifting of h to a
diffeomorphism of C associated with Y. There is a fized grouping g € Ex and
g = hag.

(i)

(i)

Choose a path in Sp(H,(C,R)_) connecting hrs to the identity, and there
are metaplectic transformations Tj,  and (T~ )gg =€ s above.

Then those data define a linear transformation
Tﬁy : Vk — Vk,

and this gives an action of a central extension of the mapping class group

of C on Vj.

Let € € Zggf?’, j,f’ € QCGy, and )€ %A*/AS. Let a;j:_+x be the coef-
ficient on the right-hand side of equation (107) where py = 2%%1; and

_ 24T - g g
i = 2(Jk+2). Likewise for g € Evy, ¢ € Eny, a € A;, a € Ajﬂ, and

v € S3, set

(109) po.g ST\ (pog ST
iy .;,]7 my Vg,a,57ygl,a/af ’

Fm 75~y (m)

' a1 . . . .

where (b%]y’s’ ) v grarp 18 the coefficient on the right-hand side of
2

7 3’y (m)

T
99 and /' —1/9 s

1 _
equation (108) forv = l/ 7’y (m)

(97) in Definition 8.8. We define

which are given by equation

%f,: Z Z Z (&)e?m ggg ZH( 5T)]

XeLAx/A; E€Z5% acAs ¥€S; m=1
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Then ¢ , does not depend on the choices of g € G and d’ € Ag.:, and

73’

when ¢G5 = c;; the transformation T, « Vi — Vi is given by

(111) Ty, () = Y o pllds.

7/€QCGK

Proof. The existence of the linear transformation Tj_ follows from the
fact that a pull back section transforms to a pull back section.

) W a
The coefficients a_’ 5 and (bg 98 1) are calculated as sums of ele-
€

Hi i
mentary exponential functions of the symplectic pairings of the involved theta

characteristics and Maslov index, and it can be seen that ¢ . does not depend

)

on the choice of g € G and d’ € AJZ;. O

11. The case of genus one

So far we have been working on Riemann surfaces of genus g > 2. We
briefly comment on the case of genus one curves in this section.

Although all of the results in the genus one case in this section are well
known ([2], [12]), we deduce them here by using arguments similar to our
arguments in the genus g > 2 case.

Let C' be a Riemann surface of genus one. The moduli space M; of
holomorphic rank 2 bundles on C' is the quotient space C'/o where o is the
hyperelliptic involution of C. Thus M; is the complex line P*.

The space of holomorphic sections of the line bundle £* on M; can be
identified with the space of the o-invariant holomorphic sections of the pull-
back line bundles £2¥ on C.

Let T = {e, f} be a marking of C; that is, T is a pair of two oriented
simple closed curves e and f in C such that eN f is a point and the orientation
of C coincides with the one defined by {e, f}. Let b = {z1,22} be a pair of
points in C' —e. Let a € Hl(C — b,Zs2) be a covering type and let Cp be the
two-fold branched covering surface of C' with branch set b associated to .

The Prym variety P, of Cy is an elliptic curve which is isomorphic to C'.
Let € and f be a lifting of e and f to C respectively such that éN f = {a point}
and éNof = 0. Let w be the holomorphic 1-forms on C such that fé w =1 and
fé ow = 0. Then {w;, cw;} forms a basis of the space of holomorphic 1-forms
on C.

The Riemann matrix Q5 of C with respect to the above basis is a 2 x 2-
matrix whose entries are the line integrals of these holomorphic 1-forms along

{Lfi, [0 ful},

~ Q1 Qu)
112 Q= ~
(112) <921 Q29
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where  is a complex symmetric matrix such that

(113) Qll—ﬁwl/ s ng—/awl/

and QQQ = QH, Q21~: Ql~2 ~

The Jacobian J of C is given by C?/(Z? 4 QZ?). The Prym variety P is
the subspace of J consisting of o-anti-invariant elements. The Prym variety is
the subspace of J spanned by [f — o f].

Let A be the lattice in H;(C,R)_ generated by {[é — o€l %[f— o ~]}
We set

(114) Q=0 — Q.

Then as a symplectic manifold P = H;(C,R)_/A and as an elliptic curve
P=C/Z+ QZ.

We have a family of holomorphic maps 7 : P, — M; parametrized by
be B=CxC-A.

Both of the spaces By and 7 are complex one-dimensional and the space
By can be identified with By x 7. It is parametrized by the set of pairs
(QH, ng) and Q41 + Q1 is constant along By.

We apply the arguments of the previous sections to the genus one case. In
the genus one case II is the o-anti-invariant Riemann theta function of level 4
on the Prym variety and the multiplication operator

(115) IT : (Ogk), — (O2(12)) _

is an isomorphism between the linear spaces over C, where £+ denote the o-
invariant and o-anti-invariant subspaces. Hence the subspace of Oy con-
sisting of those elements divisible by Il coincides with the o-anti-invariant
subspace and we have

(116) 5Py = 0.

Moreover,for € = £1 and for each half integer 0 < j < %, we can set

(117) ¢ =1,

where qji is the automorphic form corresponding to qjg’g in Theorem 8.2 in the

case of genus one.
Thus we obtain the following:

THEOREM 11.1. For a Riemann surface of genus 1 the differential oper-
ator

(118) D =11 (5 +3

1 ~
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gives a projectively flat connection on the vector bundle of conformal blocks
D(My, LF)1 of level k.
The set of Riemann theta functions defined by

(2j+1)

(119) g =17 w(e)y E2(16+2> (2(k +2)z,2(k + 2)Q),
e€Zs

where j € %Z such that 0 < j < k/2, forms a parallel orthonormal basis of
(P, L%)7 with respect to the above connection and the invariant hermitian
form given by

(120) (W, ¥ = (9, m)

O(k+2)
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