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Cauchy transforms of point masses:
The logarithmic derivative of polynomials

By J. M. Anderson and V. Ya. Eiderman*

1. Introduction

For a polynomial

QN (z) =
N∏

k=1

(z − zk)

of degree N , possibly with repeated roots, the logarithmic derivative is given
by

Q′
N (z)

Q(z)
=

N∑
k=1

1
z − zk

.

For fixed P > 0 we define sets Z(QN , P ) and X (QN , P ) by

Z(QN , P ) =

{
z : z ∈ C,

∣∣∣∣∣
N∑

k=1

1
z − zk

∣∣∣∣∣ > P

}
,

X (QN , P ) =

{
z : z ∈ C,

N∑
k=1

1
|z − zk|

> P

}
.

(1.1)

Clearly Z(QN , P ) ⊂ X (QN , P ). Let D(z, r) denote the disk

{ζ : ζ ∈ C, |ζ − z| < r} .

In [2] it was shown that X (QN , P ) is contained in a set of disks D(wj , rj) with
centres wj and radii rj such that∑

j

rj <
2N

P
(1 + log N),
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or, as we prefer to state it,

M(X (QN , P )) <
2N

P
(1 + log N).(1.2)

Here M denotes 1-dimensional Hausdorff content defined by

M(A) = inf
∑

j

rj ,

where the infimum is taken over all coverings of a bounded set A by disks
with radii rj . The question of the sharpness of the bound in (1.2) was left
open in [2]. We prove – Theorem 2.3 below – that the estimate (1.2) for X is
essentially best possible.

Obviously, (1.2) implies the same estimate for M(Z(QN , P )). It was sug-
gested in [2] that in this case the (1+ log N) term could be omitted at the cost
of multiplying by a constant. The above suggestion means that in the passage
from the sum of moduli to the modulus of the sum in (1.1) essential cancella-
tion should take place. As a contribution towards this end the authors showed
that any straight line L intersects Z(QN , P ) in a set FP of linear measure less
than 2eP−1N . Further information about the complement of FP under certain
conditions on {zk} is obtained in [1]. Clearly we may assume that N > 1 and
we do so in what follows, for ease of notation.

However, it was shown in [3] that there is an absolute positive constant c

such that for all N � 3 one can find a polynomial QN of degree N for which
the projection Π of Z(QN , P ) onto the real axis has measure greater than

c

P
N(log N)

1
2 (log log N)−

1
2 , N � 3.(1.3)

Throughout this paper c will denote an absolute positive constant, not neces-
sarily the same at each occurrence. Marstand suggested in [3] that the best
result for M(Z(QN , P )) would be obtained by omitting the log log -term in
(1.3). It is the object of this paper to show that this is indeed the case and
that the corresponding result is then, apart from a constant best possible (The-
orems 2.1 and 2.2 below). Thus the cancellation mentioned above does indeed
occur but in general it is not as “strong” as was suggested in [2].

2. Results

We prove

Theorem 2.1. Let zk, 1 � k � N , N > 1, be given points in C. There
is an absolute constant c such that for every P > 0 there exists a set of disks
Dj = D(wj , rj) so that∣∣∣∣∣

N∑
k=1

1
z − zk

∣∣∣∣∣ < P, z ∈ C\
⋃
j

Dj(2.1)
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and ∑
j

rj <
c

P
N(log N)

1
2 .

In other words

M(Z(QN , P )) <
c

P
N(log N)

1
2 .(2.2)

Theorem 2.2. For every N > 1 and every P > 0 there are points
z1, z2, . . . , zN such that

M(Z(QN , P )) >
c

P
N(log N)

1
2 ,(2.3)

where

QN (z) =
N∏

i=1

(z − zi),

i.e. for every set of disks satisfying (2.1) we have∑
j

rj >
c

P
N(log N)

1
2 .

Moreover there is a straight line L such that |Π| > cN
P (log N)1/2, where Π is

the projection of Z(QN , P ) onto L and |·| denotes length. Here, as always, c

denotes absolute constants.

The logarithmic derivative is, of course, an example of a Cauchy transform.
For a complex Radon measure ν in C the Cauchy transform Cν(z) is defined
by

Cν(z) =
∫
C

dν(ζ)
ζ − z

, z ∈ C\supp ν.

In fact Cν(z) is defined almost everywhere in C with respect to area measure.
In analogy with (1.1) we set

Z(ν, P ) = {z : z ∈ C, |Cν(z)| > P} .

The proof of Theorem 2.1 is based on results of Melnikov [5] and Tolsa [6], [7].
The important tool is the concept of curvature of a measure introduced in [5].

For the counter example required for the lower estimate in Theorem 2.2
we need a Cantor-type set En. We set E(0) =

[
−1

2 , 1
2

]
and at the ends of

E(0) we take subintervals E
(1)
j of length 1

4 , j = 1, 2. Let E(1) =
2⋃

j=1
E

(1)
j =[

−1
2 ,−1

4

]
∪

[
1
4 , 1

2

]
. We then construct, in a similar manner, two sub-intervals

E
(2)
j,i of length 4−2 in each E

(1)
j and denote by E(2) the union of the four intervals
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E
(2)
j,i . Continuing this process we obtain a sequence of sets E(n) consisting of

2n intervals of length 4−n. We define

En = E(n) × E(n),

the Cartesian product, and note that En consists of 4n squares En,k, k =
1, 2, . . . , 4n with sides parallel to the coordinate axes. The following is the
explicit form of Theorem 2.2.

Theorem 2.2′. Let P > 0 be given and set E = (100P )−1n
1
2 4nEn where

En is the set defined above. Let ν be the measure formed by 4n+1 Dirac masses
(i.e. unit charges in the language of Potential Theory) located at the corners
of the squares which form En. Then

M(Z(ν, P )) >
cN

P
(log N)

1
2 where N = 4n+1.(2.4)

Moreover, there is a straight line L such that |Π| > cN
P (log N)

1
2 .

The constant 100 appearing in Theorem 2.2′ is merely a constant conve-
nient for our proof.

For fixed N � 4 (not necessarily of the form N = 4n+1) we can choose n

with 4n+1 � N < 4n+2 to see that (2.4) holds for all N ∈ N with a different
constant c. To obtain a corresponding measure ν with N Dirac masses we
locate the remaining N − 4n+1 points sufficiently far from the set E in order
to make the influence of these points as small as we want.

A set homothetic to En also gives the example which shows the sharpness
of the estimate (1.2). We have

Theorem 2.3. For the set E = (
√

2P )−1n4nEn and for the measure ν

as in Theorem 2.2′ we have

M(X (QN , P )) >
cN

P
(log N).(2.5)

In Section 5 we give a generalization of Theorem 2.1.

3. Preliminary lemma and notation

Following [5] we define the Menger curvature c(x, y, z) of three pairwise
different points x, y, z ∈ C by

c(x, y, z) = [R(x, y, z)]−1 ,

where R(x, y, z) is the radius of the circle passing through x, y, z with R(x, y, z)
= ∞ if x, y, z lie on some straight line (or if two of these points coincide). For
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a positive Radon measure µ we set

c2
µ(x) =

∫∫
c(x, y, z)2dµ(y)dµ(z)

and we define the curvature c(µ) of µ as

c2(µ) =
∫

c2
µ(x)dµ(x) =

∫∫∫
c(x, y, z)2dµ(x)dµ(y)dµ(z).

The analytic capacity γ(E) of a compact set E ⊂ C is defined by

γ(E) = sup
∣∣f ′(∞)

∣∣ ,

where the supremum is taken over all holomorphic functions f(z) on C\E with
|f(z)| � 1 on C\E. Here f ′(x) = lim

z→∞
z(f(z) − f(∞)). The capacity γ+ is

defined as follows:
γ+(E) = supµ(E),

where the supremum runs over all positive Radon measures µ supported in E

such that Cµ(z) ∈ L∞(C) and ‖Cµ‖∞ � 1. Since |C′µ(∞)| = µ(E), we have
γ+ � γ.

Theorem A. For any compact set E ⊂ C we have

γ+(E) � c · sup
{

[µ(E)]
3
2
[
µ(E) + c2(µ)

]− 1
2

}
,(3.1)

where c is an absolute constant and the supremum is taken over all positive
measures µ supported in E such that µ(D(z, r)) � r for any disk D(z, r).

The inequality (3.1) with γ instead of γ+ was obtained by Melnikov [5].
The strengthened form is due to Tolsa [7].

Theorem B ([8, p. 321]). There is an absolute constant c such that for
any positive Radon measure ν and any λ > 0

γ+ {z : z ∈ C, C∗ν(z) > λ} � c ‖ν‖
λ

.(3.2)

Here C∗ν(z) = sup
ε>0

|Cεν(z)| where Cε denotes the truncated Cauchy transform

Cεν(z) =
∫

|ζ−z|>ε

dν(ζ)
ζ − z

.

We apply this result (excepting the proof of Theorem 5.1) only to discrete
measures ν with unit charges at the points zk, k = 1, 2, . . . , N according to
multiplicity. So the support of ν is {z1, z2, . . . , zN} and ‖ν‖ = N. Also

C∗ν(z) � |Cν(z)| =

∣∣∣∣∣
N∑

i=1

1
z − zi

∣∣∣∣∣ , z ∈ C\{z1, z2, . . . , zN}.
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For P > 0 we set

Z(P ) = Z(ν, P ) = Z(QN , P ) = {z : z ∈ C, |Cν(z)| > P}
and put M(P ) = M(Z(P )).

Lemma 3.1. Suppose that P > 0 and zk, 1 � k � N , are given and that
M(P ) > 10N

P . Then there is a family of disks Dj = D(wj , rj), j = 1, 2, . . . , N0

(different from the disks of Theorem 2.1), with the following properties

1) N0 � N,

2) D̄j ⊂ Z
(

P
2

)
, j = 1, 2, . . . , N0,

3) D(wk, 4rk) ∩
( ⋃

j �=k

Dj

)
= ∅, k = 1, 2, . . . , N0,

4)
∑
j

rj > cM(P ),

5) if µ is a positive measure concentrated on
⋃

j Dj such that µ(Dj) = rj

and µ is uniformly distributed on each Dj , j = 1, 2, . . . , N0 (with different
densities, of course) then µ(D(w, r)) < cr for every disk D ⊂ C.

Proof. (a) Let d(z) = dist(z, S) for our set S = {z1, z2, . . . , zN}. We apply
Lemma 1 in [1] (which is an analogue of Cartan’s Lemma) with H = N

P , α=1,
n = N . There is a set of at most N disks D′

k = D(w′
k, hk) whose radii satisfy

the inequality ∑
k

hk � 2N

P
(3.3)

such that if
Z ′(P ) =

⋃
k

D′
k,

then ν(D(z, r)) < Pr for all r > 0 and all z /∈ Z ′(P ). One may also obtain this
result, with a worse constant, by standard arguments based on the Besicovitch
covering lemma. Hence, for z /∈ Z ′(P )

∣∣C′ν(z)
∣∣ �

∑
i

1
|z − zi|2

<
∞∑

j=1

∑
(i,j)

1
|z − zi|2

 ,

where
∑
(i,j)

denotes summation over the annulus 2j−1d(z) � |z − zi| < 2jd(z).

This latter sum does not exceed
∞∑

j=1

P2jd(z)
[2j−1d(z)]2

=
4P

d(z)

∞∑
j=1

2−j =
4P

d(z)
.(3.4)
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We now set

Z ′′(P ) = {z : z ∈ Z(P ), dist(z,Z ′(P )) > (0.1)d(z)},
Z1(P ) = {z : dist(z,Z ′(P )) � (0.1)d(z)},

so that Z ′′(P ) = Z(P )\Z1(P ).
Let z ∈ Z1(P ) and let D′

k = D(w′
k, hk) be a disk such that dist(z,Z ′(P )) =

dist(z, D′
k). By the construction in [2], each disk D′

k contains at least one point
zj ∈ S. Hence

dist(z,Z ′(P )) � (0.1)d(z) � (0.1) |z − zj | � (0.1)[dist(z,Z ′(P )) + 2hk],

so that
dist(z,Z ′(P )) � 2

9
hk,

and hence ∣∣z − w′
k

∣∣ < dist(z,Z ′(P )) + 2hk � 20
9

hk.

Thus

Z1(P ) ⊂
⋃
k

D

(
w′

j ,
20
9

hk

)
.

Since M(P ) > 10N
P we have, using (3.3),

20
9

∑
k

hk � 40
9

N

P
<

4
9
M(P ) <

1
2
M (P ) .

Hence

M(Z ′′(P )) =M [Z(P )\Z1(P )](3.5)

� M(Z(P )) − M(Z1(P )) � M(P ) − 20
9

∑
k

hk >
1
2
M (P ) .

For every j = 1, 2, . . . , N for which the set {w : w ∈ Z ′′(P ), d(w) = |w − zj |}
is not empty we finally choose a point wj ∈ Z ′′(P ) such that d(wj) = |wj − zj |
and

d(wj) > 3
4 sup

{
d(w) : w ∈ Z ′′(P ), d(w) = |w − zj |

}
.

The point is that not only is |Cν(wj)| > P but we can use the estimate (3.4)
on the derivative to show that a disk around wj is contained in Z

(
P
2

)
. So set

rj = (0.1)d(wj) and consider the disks Dj = D(wj , rj). Clearly Dj ⊂ C\Z ′(P )
and so, for every z ∈ Dj ,

|Cν(z)|=
∣∣∣∣Cν(wj) −

∫ wj

z
C′ν(t)dt

∣∣∣∣ > |Cν(wj)| −
∫ wj

z

∣∣C′ν(t)
∣∣ |dt|(3.6)

> P − 4P

d(wj) − |wj − z| · |wj − z| > P − 4P (0.1)d(wj)
d(wj) − (0.1)d(wj)

=
5
9
P >

P

2
,
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by (3.4). Hence D̄j = D̄(wj , rj) ⊂ Z
(

P
2

)
and conditions 1) and 2) of Lemma

3.1 are satisfied.
We now show that we can extract a subsequence Dji

with the properties
3), 4) and 5). Take any point z ∈ Z ′′(P ) and suppose that d(z) = |z − zj |.
Then |z − wj | � |z − zj | + |zj − wj | � 4

3d(wj) + d(wj) = 70
3 rj < 25rj , so that

Z ′′(P ) ⊂
⋃
j

D(wj , 25rj).

(b) Denote by Dj1 the disk D(wj , rj) with maximal rj . We delete all
disks Dj , j 	= j1 for which Dj ∩ D(wj1 , 4rj1) 	= ∅. From the remaining disks
dj , j 	= j1 we select the maximal disk Dj2 = D(wj2 , rj2) and remove all disks
for which Dj ∩ D(wj2 , 4rj2) 	= ∅, and so on. For all the disks D(wj , rj) which
we remove on the k’th step, rj � rjk

and |wj − wjk
| < 5rjk

. Hence

D(wj , 25rj) ⊂ D(wjk
, 30rjk

).

For simplicity, henceforth we denote the family of disks {Djk
} so obtained also

by {Dk}. Note that r1 � r2 � · · · � rN1 , where N1 � N . We have

Z ′′(P ) ⊂
⋃
k

D(wk, 30rk),(3.7)

and, by (3.5), conditions 3) and 4) are satisfied.

(c) Let µ be a measure satisfying the assumptions of 5). To prove 5) we
extract a further subsequence from {Dk} with preservation of the property 4).
We denote by Q(w, �) the square

Q (w, �) = {z = x + iy : |x − a| < �, |y − b| < �} ,

where w = a + ib, and set

J(Q) = {j : Dj ∩ ∂Q 	= ∅}.

We shall show that

µ (Q∩ {∪ (Dj : j ∈ J(Q))}) < 4�.(3.8)

We note that each Dj is contained in a square Q(Dj) (with sides parallel to the
coordinate axes) and with side-length 2rj and all squares Q(Dj) are disjoint. If
Q(Dj) intersects only one side of Q then µ(Q(Dj)∩Q) � rj = 1

2 |Q(Dj) ∩ ∂Q|.
If, however, Q(Dj) intersects at least two sides of Q we suppose that the side-
lengths of the rectangle Q∩Q(Dj) are 2αrj and 2βrj where 0 � α, β � 1.
The density of the measure µ in Dj is (πrj)−1 and so

µ (Q∩Q(Dj)) < 4αβr2
j (πrj)−1 = 4αβrj(π−1).

But
4αβ(π−1)rj < 2αβrj � (α + β)rj ,
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and so, again
µ (Q∩Q(Dj)) � 1

2 |Q(Dj) ∩ ∂Q| .

Thus
µ (Q∩ {∪ (Dj : j ∈ J(Q))}) � 1

2 |∂Q| = 1
2 · 8� = 4�.

We set �0 = 10rN1 and

Q(0)(k, m) = Q ((1 + 2k)�0 + i(1 + 2m)�0, �0) , k, m = 0,±1,±2, . . . .

Suppose that there are squares

Q(0)
n = Q(0)(kn, mn)

and that

µ(Q(0)
n ) = µ

(
Q(0)

n ∩
(⋃

j

Dj

))
> 6�0.

From (3.8) there is at least one disk Dj contained in Q(0)
n . For such disks we

have rj � �0 and µ(Dj) = rj .
We may, therefore, remove a number of disks Dj contained in Q(0)

n in such
a way that, for the remaining disks Dj ,

5�0 < µ(Q(0)
n ) < 6�0.

The left inequality, together with (3.8), implies that∑
j

∗rj > �0,

where the sum extends over those j for which Dj ⊂ Q(0)
n .

We now set �1 = 2�0 and

Q(1)(k, m) = Q( (1 + 2k)�1 + i(1 + 2m)�1, �1) .

In a similar manner we remove disks from the corresponding squares

Q(1)
n = Q(1)(kn, mn)

for which µ(Q(1)
n ) > 6�1. Again we obtain

5�1 < µ(Q(1)
n ) < 6�1.

Repeating this procedure with �p = 2p�0 sufficiently many times we obtain a
set of disks {Dj} satisfying conditions 1), 2) and 3). Since for every square
Q(p)(k, m) we have

µ(Q(p)(k, m)) < 6�p,

condition 5) is also satisfied.
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To verify 4) we denote by Q̃(p)
n those squares Q(p)

n such that there are no
squares Q(q)

m with q > p containing Q̃(p)
n . Hence all the squares Q̃(p)

n are disjoint
and ∑

rj > �p,(3.9)

where the sum extends over those j for which Dj ⊂ Q̃(p)
n . If w

(p)
n denotes the

centre of Q̃(p)
n , so that Q̃(p)

n = Q(w(p)
n , �p), then all disks deleted at stage (c)

are contained in
⋃
n,p

Q̃(p)
n . By (3.7),

Z ′′(P ) ⊂
[⋃

Q
(

w(p)
n , 30�p

)] ⋃[⋃
k

D(wk, 30rk)
]
,

where the first union is taken over all squares Q̃(p)
n . Hence

M(P ) � 30
(∑√

2�p +
∑

rk

)
,

where, again, the first sum is taken over all squares Q̃(p)
n . By (3.9)

M(P ) � 30

(
√

2
∑

k

rk +
∑

k

rk

)
< 75

∑
k

rk,

and the proof of Lemma 3.1 is complete.

4. Another lemma

Lemma 4.1. Suppose that a family of disks Dj , j = 1, 2, . . . , N0, N0 > 1,

and a measure µ satisfy the conditions 3) and 5) in Lemma 3.1. Then there
exists an absolute constant c so that

c2(µ) � cH log N0,(4.1)

where

H =
N0∑
j=1

rj = µ(C).

Proof. Suppose that among the N0 disks D(wj , rj) there are Nk disks with
2−kH � rj < 2−k+1H, k = 2, 3, . . . , s and N1 disks with 2−1H � rj . Here s is
such that 2−sH � rj for all j = 1, 2, . . . , N0. Obviously

N1 + N2 + · · · + Ns = N0.

Let
B1 =

⋃
j

{
Dj : 2−1H � rj

}
,

Bk =
⋃
j

{
Dj : 2−kH � rj < 2−k+1H

}
for k = 2, 3, . . . , s. Possibly Nk = 0 and Bk = ∅ for some k.
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Now take any x ∈
⋃
j

Dj and evaluate c2
µ(x). Suppose that x ∈ Dj ⊂ Bk

and set F(x) = {(y, z) ∈ C2 : |z − x| � |y − x|}. For (y, z) ∈ F(x),

2R(x, y, z) � |y − x| .

Hence

c2
µ(x) � 2

∫∫
F(x)

1
R2(x, y, z)

dµ(y)dµ(z) � 8
∫∫
F(x)

1
|y − x|2

dµ(y)dµ(z).

If we set µx(r) = µ(D(x, r)) then this latter term equals

8
∫
C

µ(D(x, |y − x|))
|y − x|2

dµ(y) = 8
∫ ∞

0

µx(r)
r2

dµx(r).

A related estimate is due to Mattila [4].
By conditions 3) and 5) of Lemma 3.1, for x ∈ Dj ,

µx(r) � r2

rj
, 0 < r � 2rj ,

< c r, r > 2rj ,

for some absolute constant c. If we define

h(r) =


cr2

rj
, 0 < r � 2rj ,

2cr, 2rj < r � H
2c ,

H, r > H
2c ,

then h(r) is a continuous nondecreasing function with h(r) � µx(r) for 0 <

r < ∞ provided the constant c � 1 is suitably chosen. Now

µx(r)
r

� h(r)
r

→ 0 as r → 0,

µx(r)
r

� H

r
→ 0 as r → ∞,

and hence, integrating by parts we obtain

c2
µ(x) � 8

∫ ∞

0

µx(r)
r2

dµx(r) = 8
∫ ∞

0

[µx(r)]2

r3
dr < 8

∫ ∞

0

h2(r)
r3

dr.

If x ∈ Bk this last integral does not exceed

c + c log
H

rj
< c + ck,

for some c. Thus

c2(µ) =
s∑

k=1

∫
Bk

c2
µ(x)dµ(x) <

s∑
k=1

(c + ck)µ(Bk).
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But
s∑

k=1

µ(Bk) = H and

µ(Bk) =
∑∗

µ(Dj) =
∑∗

rj � 2HNk2−k,

where the sums extend over those j for which Dj ⊂ Bk. We have

c2(µ) < cH + cH
s∑

k=1

kNk2−k.(4.2)

On the other hand

H =
∑

j

µ(Bj) =
s∑

k=1

{∑∗
µ(Dj)

}
�

s∑
k=1

2−kHNk,

so that
s∑

k=1

2−kNk � 1.

Here again, the inner sum
∑∗ extends over those j with Dj ⊂ Bk.

We set K = [log2 N0] + 1 where [x] denotes the integer part of x. We may
suppose that K < s; otherwise we set Ns = Ns+1 = · · · = NK = 0. Then

∞∑
k=1

kNk2−k �
( K∑

k=1

+
∞∑

k=K+1

)
kNk2−k(4.3)

� K

K∑
k=1

Nk2−k + N0

∞∑
k=K+1

k2−k < 2K + 2 < c log N0,

since ∞∑
k=K+1

k2−k = (K + 2)2−K <
K + 2

N0
.

The inequalities (4.2) and (4.3) imply (4.1) and Lemma 4.1 is proved.

5. Proof of Theorem 2.1

If M(P ) � 10N
P then (2.2) holds and Theorem 2.1 is proved. So suppose

that M(P ) > 10N
P . We set λ = 1

2P. By (3.2)

γ+(Z(λ)) � c
2N

P
.(5.1)

Let E =
⋃

j D̄j and put µ′ = c−1µ, where Dj , µ and c are the disks,
measure and constant in 5) of Lemma 3.1. Clearly µ′ satisfies all the conditions
of Theorem A. Moreover, by property 4)

µ′(E) > cM(P )
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for suitable c. From (3.1), with µ′ in place on µ, and (4.1) we have, for suitable
constants c,

γ+(E) > c(µ′(E))3/2
[
µ′(E) + cµ′(E) log2 N

]− 1
2(5.2)

> cµ′(E)(log N)−
1
2 > cM(P )(log N)−

1
2 .

The combination of (5.1), (5.2) and 2) in Lemma 3.1 gives

c
N

P
� γ+(Z(λ)) � γ+(E) > cM(P )(log N)−

1
2 ,

which proves Theorem 2.1.

Remark. Although the same number N appears in the two factors N and
(logN)

1
2 in (2.2), the meaning in these factors is different. The first factor is

the total charge of the measure ν but, in the second factor, N is the number of
points and this reflects the complexity of the geometry of Z(P ). More exactly
this fact is illustrated by the following generalization of Theorem 2.1.

Theorem 5.1. Let points zk in C and numbers (generally speaking, com-
plex ) νk, 1 � k � N , N > 1, be given. There is an absolute constant c such
that for every P > 0

M

(
z :

∣∣∣∣∣
N∑

k=1

νk

z − zk

∣∣∣∣∣ > P

)
<

c

P
‖ν‖(log N)

1
2 ,

where ‖ν‖ =
∑N

k=1 |νk|.

Sketch of the proof. It is claimed in [6, Section 3] that (3.2) holds for any
complex Radon measure ν and any λ > 0. Moreover, one may easily verify
that essentially the same arguments as in the proof of Lemma 3.1 work in the
more general situation with arbitrary charges νk. The required corrections in
this case are obvious; for example, we should write ‖ν‖ instead of N in the
inequality M(P ) > 10N/P , in (3.3) etc. Thus, the same estimates as above
give Theorem 5.1.

6. Proof of Theorem 2.2′

For convenience we consider the set En with the normalized measure µ,

consisting of 4n+1 charges at the corners of En,k such that each charge is equal
to 4−(n+1). We denote the centre of En,k by zn,k and let

E =
{

En,k : |Re Cµ(zn,k)| > (0.01)n
1
2

}
.

Let #F denote the number of elements in a set F .
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Lemma 6.1. There is an absolute positive constant c so that

#E >c4n.(6.1)

Assuming this lemma for the moment we show how Theorem 2.2′ follows.

Proof of Theorem 2.2′. We set

w(n, P ) = (100P )−1n
1
2 4n, z′n,k = w(n, P )zn,k,

Dn,k = D(zn,k, (0.05)4−n), D′
n,k = w(n, P )Dn,k,

Z = {Dn,k : En,k ∈ E} , Z ′ = w(n, P )Z =
{
D′

n,k : En,k ∈ E
}

.

Then, for En,k ∈ E ,

∣∣Cν(z′n,k)
∣∣ = 4n+1w(n, P )−1 |Cµ(zn,k)| =

4n+1100P

n
1
2 4n

|Cµ(zn,k)| > 4P.

Clearly, µ(D(z, r)) < cr for r > 0 and z ∈ Z. Continuing to scale by w(n, P )
we set

z′ = w(n, P )z, r′ = w(n, P )r.

If z ∈ Z then

ν
(
D(z′, r′)

)
= 4n+1µ(D(z, r)) < c4n+1r = cn− 1

2 Pr′ < Pr′,

if n is sufficiently large. Moreover, if z′ ∈ D′
n,k then∣∣z′ − z′n,k

∣∣ < (0.05)w(n, P )4−n < (0.1)2−
1
2 w(n, P )4−n = (0.1)dist(z′n,k, S).

Essentially the same estimates as in (3.4) and (3.6) (with z′n,k and z′ in place
of wj and z respectively) yield

Z ′ ⊂ Z(ν, P ).(6.2)

Clearly, (2.4) follows from the lower bound of |Π|. To prove the desired in-
equality, we project onto the line y = x

2 . We note that the projection of E0

onto L is equal to the projection of E1 onto L. Moreover the projections of
all four squares E1,k are disjoint apart from the end points. By self similar-
ity the same is true for the projections of En. Since, from (6.2) and (6.1),
Z ′ ⊂ Z(ν, P ) and #E >c4n we have

|Π| >
∣∣proj(Z ′)

∣∣ = (#E)diam(D′
n,k) > c4n · 2w(n, P ) · (0.05)4−n,

as required. Theorem 2.2′ is proved.
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7. Proof of Lemma 6.1

This depends on a further lemma. With each square En,k we associate a
sequence of vectors

ē
(k)
1 , ē

(k)
2 , . . . , ē(k)

n , ē
(k)
l =

(
i
(k)
l , j

(k)
l

)
, l = 1, 2, . . . , n,

such that every ē
(k)
l is one of the following vectors: (−1,−1), (−1, 1), (1,−1),

(1, 1). For example, if ē
(k)
1 = (−1, 1), then the square En,k lies in the left hand

upper square Q of E1; ē
(k)
2 = (1,−1) means that the square En,k is in the right

hand lower square of E2 ∩ Q and so on. By this means we have a one-to-one
correspondence between squares En,k and couples (̄ı(k), j̄(k)) of multi-indices

ı̄(k) =
(
i
(k)
1 , . . . , i

(k)
n

)
and j̄(k) =

(
j
(k)
1 , . . . , j

(k)
n

)
.

Lemma 7.1. Suppose that the squares En,k1 and En,k2 are such that j̄(k1) =
j̄(k2) and

i(k1)
p = −1, i(k2)

p = 1 for some p;

i(k1)
r = i(k2)

r for r 	= p.

Then

Re Cµ(zn,k1) − Re Cµ(zn,k2) > 0.02.(7.1)

Proof. We split the squares En,k into the following sets:

Q1 = {En,k : ē(k)
r 	= ē(k1)

r = ē(k2)
r for some r < p},

Q2 = {En,k : ē(k)
r = ē(k1)

r , r = 1, 2, . . . , p},
Q3 = {En,k : ē(k)

r = ē(k2)
r , r = 1, 2, . . . , p},

Q4 = {En,k : ē(k)
r = ē(k1)

r , r = 1, 2, . . . , p − 1, ē(k)
p = −ē(k1)

p },
Q5 = {En,k : ē(k)

r = ē(k1)
r , r = 1, 2, . . . , p − 1, ē(k)

p = −ē(k2)
p }.

For simplicity we write zn,k1 = a, zn,k2 = b, and for p = 1 we set Q1 = ∅. It is
easy to see that∫

Q2

dµ(z)
z − a

=
∫
Q3

dµ(z)
z − b

, a − b = −3
4
4−p+1 = −3 · 4−p.

Thus

Cµ(a) − Cµ(b) =
∫
Q1

(a − b)dµ(z)
(z − a)(z − b)

+
∫
Q4

(a − b)dµ(z)
(z − a)(z − b)

+
∫
Q5

(a − b)dµ(z)
(z − a)(z − b)

+
∫
Q3

dµ(z)
z − a

−
∫
Q2

dµ(z)
z − b

= I1 + I2 + I3 + I4 + I5,



1072 J. M. ANDERSON AND V. YA. EIDERMAN

say. We examine each integral separately. Let G1, G2, . . . , Gp−1 be the fol-
lowing chain of sets: Gp−1 is the set consisting of the three squares from Ep−1

which are situated in the same square of Ep−2 as a and b and which do not
contain a and b; Gp−2 is the set of those three squares from Ep−2 which are in
the same square of Ep−3 as Gp−1 and which do not contain Gp−1. Continuing
in this way we see that

Q1 =

En,k : En,k ⊂
p−1⋃
j=1

Gj

 ,

µ(Gj) = 3 · 4−j

and
|z − a| � 2 · 4−j , |z − b| � 2 · 4−j for z ∈ Gj .

Moreover, |z − a| � (3− 1
4)4−j for z lying in the four squares from Ej+1 situated

in Gj . Altogether Gj contains 12 squares from Ej+1. Also |z − a| � 2
√

2 · 4−j

for z in three such squares and |z − a| � (3 − 1
4)
√

2 · 4−j in one such square.
The same inequalities hold also for |z − b|. Hence

|I1|< 3 · 4−p
p−1∑
j=1

∫
Gj

dµ(z)
|z − a| |z − b|(7.2)

< 3 · 4−p
p−1∑
j=1

4−j−1

{
4(2 · 4−j)−2 + 4

[(
3 − 1

4

)
4−j

]−2

+3(2
√

2 · 4−j)−2 +
[(

3 − 1
4

)√
2 · 4−j

]−2}
= 3

p−1∑
j=1

{
1
4

+
(

4
11

)2

+
3
32

+
(

4
11

)2 1
8

}
4j−p

< 3 · 0.4926
∞∑
l=1

4−l = 0.4926.

For z ∈ Q4 we have

arctan 1
2 � |arg(z − a)| � arctan 2,

arctan 2 � |arg(z − b)| � π − arctan 2.

Moreover, arg(z−a) and arg(z−b) have the same sign. Hence π
2 � |arg(z − a)(z − b)| �

π. Since a − b < 0 we see that

Re I2 > 0.

Similarly, π � |arg(z − a)(z − b)| � 3π
2 for z ∈ Q5, and Re I3 > 0.
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To estimate Re I4 we note that, for z ∈ Q3, |Im (z − a)| � 4−p. If t =
|z − a|2 then

Re
(

1
z − a

)
=

Re (z − a)
|z − a|2

� (t − 4−2p)
1
2

t

and this function decreases for t � 2·4−2p. The square Q3 contains four squares
from Ep+1 where, if p = n, we consider, instead, the four vertices. Each of these
supports a measure 4−p−1. For two of these squares t �

[
3
44−p+1 + 1

44−p
]2 +

(4−p)2 = 4−2p
((

13
4

)2 + 1
)
, while for the other two squares t � 4−2p+2 +

(4−p)2 = 17 · 4−2p. Thus

Re I4 > 2 · 4−p−1

[
4−2p

(
13
4

)2
] 1

2

· 42p

[(
13
4

)2

+ 1

]−1

+ 2 · 4−p−1(16 · 4−2p)
1
2 42p · 1

17
=

26
185

+
2
17

> 0.258.

Similarly
Re I5 > 0.258

and so from (7.2),

Re Cµ(a) − Re Cµ(b) > 2 · 0.258 − 0.4926 > 0.02

and Lemma 7.1 is proved.

We continue the proof of Lemma 6.1. Denote by pk, qk the number of
positive and negative components of ı̄(k) respectively, and set i(n) = [

√
n + 1].

For j̄ fixed we introduce the following sets of squares (or, equivalently, sets of
multi-indices ı̄(k)):

E1(j̄) = {En,k : j̄(k) = j̄, |Re Cµ(zn,k)| > (0.01)
√

n},
F(j̄) = {En,k : j̄(k) = j̄, En,k /∈ E1(j̄)},

E(j̄, l) = {En,k : j̄(k) = j̄, pk = l}, l = 0, 1, 2, . . . , n.

Then all the sets E(j̄, l) are disjoint and we shall prove that, for
[

n
2

]
− 2i(n) �

l <
[

n
2

]
− i(n) we have

#
(
E1(j̄) ∩ E(j̄, l)

)
+ #

(
E1(j̄) ∩ E(j̄, l + i(n))

)
� #E(j̄, l).(7.3)

If E(j̄, l) ⊂ E1(j̄) then (7.3) is trivial. Suppose that

E(j̄, l) ∩ F(j̄) 	= ∅

for some l ∈
[[

n
2

]
− 2i(n),

[
n
2

]
− i(n)

)
. For simplicity we omit the fixed indices

j̄, n and set
Al = E(j̄, l) ∩ F (j̄) .
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For ı̄ ∈ Al let Bl(̄ı) be the set of all multi-indices ı̄′ in E(j̄, l + i(n)) such that
for all l positive components of ı̄ are also positive components of ı̄′, but ı̄′ has
a further i(n) positive components among the n − l negative components of ı̄.
Thus

#Bl (̄ı) =
(

n − l

i(n)

)
for each ı̄ ∈ Al.

We set Bl = ∪Bl(̄ı) where the union is over all ı̄ ∈ Al and consider the following
set of couples

Dl =
{
(̄ı, ı̄′) : ı̄ ∈ Al, ı̄′ ∈ Bl(̄ı)

}
.

Clearly #Dl = (#Al)
(

n − l

i(n)

)
. On the other hand, in order to obtain the

corresponding indices ı̄ for given ı̄′ ∈ Bl, we must choose certain ı̄(n) positive
components from among the l + i(n) positive components of ı̄′n and replace
them by negative ones. Hence, for every ı̄′ ∈ Bl the number of couples (̄ı, ı̄′) in

Dl does not exceed
(

l + i(n)
i(n)

)
. Therefore #Dl � (#Bl)

(
l + i(n)

i(n)

)
and

so

(#Al)
(

n − l

i(n)

)
� (#Bl)

(
l + i(n)

i(n)

)
.

Since (n − l) − (l + i(n)) = n − 2l − i(n) > n − (n − 2i(n)) − i(n) � i(n) > 0
we see that

#Al � #Bl.

Now if ı̄′ ∈ Bl we let ı̄ = ı̄(k) be any multi-index in Al such that (̄ı, ı̄′) ∈ Dl.
Since ı̄(k) ∈ F(j̄),

|Re Cµ(zn,k)| � (0.01)
√

n.

In order to obtain ı̄′ from ı̄(k) we replace a negative component by a positive
one i(n) times. We apply (7.1) i(n) times to deduce that, for the point zn,k′

which corresponds to ı̄′,

Re Cµ(zn,k′) < (0.01)
√

n − (0.02)i(n) � −(0.01)
√

n.

Thus
|Re Cµ(zn,k′)| > (0.01)

√
n,

and hence Bl ⊂ E1(j̄) and so in (E1(j̄) ∩ E(j̄, l + i(n)).
Moreover, #(E1(j̄) ∩ E(j̄, l)) = #E(j̄, l) − #Al. Since #Al � #Bl we

obtain (7.3). Now #E(j̄, l) =
(
n
l

)
and we show that for n

2 − 2i(n) � l < n
2 ,(

n

l

)
≈ cn− 1

2 2n.(7.4)

This is an elementary consequence of Stirling’s formula. Indeed(
n

l

)
≈ (2π)−

1
2 2n

(
n

l(n − l)

) 1
2
(

n

2n − 2l

)n (
n − l

l

)l

,
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and l(n − l) is maximal when l = n
2 . Thus(
n

l(n − l)

) 1
2

>
2√
n

.

For the last two factors we set t = 1
2 − l

n , i.e. l = n
2 −nt. Then 0 < t � 2i(n) �

2n− 1
2 + 2n−1. Now an easy computation shows that

log

{(
n

2n − 2l

)n (
n − l

l

)l
}

= O(nt2) = O(1) as n → ∞

and hence (7.4) is established. Inequality (7.4) is obviously related to the Law
of Large Numbers.

We note that the sets (E1(j̄) ∩ E(j̄, l)) and (E1(j̄) ∩ E(j̄, l + i(n))) are all
disjoint since

[
n
2

]
− 2i(n) � l <

[
n
2

]
− i(n). Summing the inequalities (7.3)

over those l, we have
#E1(j̄) � c2n.

This inequality holds for all multi-indices j̄. But there are 2n different such
multi-indices j̄ and E =

⋃
j̄ E1(j̄). We conclude that

#E � c4n.

Thus Lemma 6.1 and hence Theorem 2.2′ are proved.

8. Proof of Theorem 2.3

For a fixed point z ∈ En let

Q(n) ⊂ Q(n−1) ⊂ · · · ⊂ Q(0)

be the chain of squares such that z ∈ Q(n) and

Q(j) ⊂ Ej , j = 0, 1, 2, . . . , n.

Clearly

dist(z, ζ) �
√

2 · 4−(j−1) for all ζ ∈ Q(j−1)\Q(j),

µ(Q(j−1)\Q(j)) = 3 · 4−j , j = 1, 2, . . . , n,

where µ is the normalized measure at the beginning of Section 6. Hence,∫
En

dµ(ζ)
|ζ − z| >

n∑
j=1

3 · 4−j

√
2 · 4−(j−1)

=
3

4
√

2
n.

For the set E = (
√

2P )−1n4nEn and z′ = (
√

2P )−1n4nz and for the corre-
sponding measure ν we have

N∑
k=1

1
|z′ − zk|

=
√

2P4n+1

n44

∫
dµ(z)
|ζ − z| > 3P.
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Thus E ⊂ X (QN , P ). Since Z ⊂ En for Z defined in Section 6 and M(Z) �
c > 0 (by (6.3)) we have that M(En) � c > 0 and hence

M(X (QN , P )) � M(E) =
n4n

√
2P

M(En) >
cn4n

P
,

as required. Theorem 2.3 is proved.
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Note in proof. Extensions of the results of this paper have been ob-
tained by the second author. A summary will appear in Dokl. Akad. Nauk.
407 (2006), no. 5 (English translation in Dokl. Math.) with complete proofs
appearing elsewhere later.
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