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Dimers and amoebae

By Richard Kenyon, Andrei Okounkov, and Scott Sheffield*

Abstract

We study random surfaces which arise as height functions of random per-
fect matchings (a.k.a. dimer configurations) on a weighted, bipartite, doubly
periodic graph G embedded in the plane. We derive explicit formulas for the
surface tension and local Gibbs measure probabilities of these models. The
answers involve a certain plane algebraic curve, which is the spectral curve of
the Kasteleyn operator of the graph. For example, the surface tension is the
Legendre dual of the Ronkin function of the spectral curve. The amoeba of the
spectral curve represents the phase diagram of the dimer model. Further, we
prove that the spectral curve of a dimer model is always a real curve of special
type, namely it is a Harnack curve. This implies many qualitative and quan-
titative statement about the behavior of the dimer model, such as existence
of smooth phases, decay rate of correlations, growth rate of height function
fluctuations, etc.
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1. Introduction

A perfect matching of a graph is a collection of edges with the property
that each vertex is incident to exactly one of these edges. A graph is bipartite
if the vertices can be 2-colored, that is, colored black and white so that black
vertices are adjacent only to white vertices and vice versa.
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Random perfect matchings of a planar graph G—also called dimer con-
figurations— are sampled uniformly (or alternatively, with a probability pro-
portional to a product of the corresponding edge weights of G) from the set of
all perfect matchings on G. These so-called dimer models are the subject of
an extensive physics and mathematics literature. (See [9] for a survey.)

Since the set of perfect matchings of G is also in one-to-one correspondence
with a class of height functions on the faces of G, we may think of random
perfect matchings as (discretized) random surfaces. One reason for the interest
in perfect matchings is that random surfaces of this type (and a more general
class of random surfaces called solid-on-solid models) are popular models for
crystal surfaces (e.g. partially dissolved salt crystals) at equilibrium. These
height functions are most visually compelling when G is a honeycomb lattice.
In this case, we may represent the vertices of G by triangles in a triangular
lattice and edges of G by rhombi formed by two adjacent triangles. Dimer
configurations correspond to tilings by such rhombi; they can be viewed as
planar projections of surfaces of the kind seen in Figure 1. The third coordi-
nate, which can be reconstructed from the dimer configuration uniquely, up to
an overall additive constant, is the height function.
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Figure 1. On the left is the height function of a random volume-constrained

dimer configuration on the honeycomb lattice. The boundary conditions here

are that of a crystal corner: all dimers are aligned the same way deep enough

in each of the three sectors. On the right is (the boundary of ) the amoeba of

a straight line.

Most random surface models cannot be solved exactly, and we are content
to prove qualitative results about the surface tension, the existence of facets,
the set of gradient Gibbs measures, etc.
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We will prove in this paper, however, that models based on perfect match-
ings (on any weighted doubly-periodic bipartite graph G in the plane) are ex-
actly solvable in a rather strong sense. Not only can we derive explicit formulas
for the surface tension—we also explicitly classify the set of Gibbs measures
on tilings and explicitly compute the local probabilities in each of them. These
results are a generalization of [2] where similar results for G = Z2 with constant
edge weights were obtained.

In particular we show that Gibbs measures come in three distinct phases:
a rough, or critical, phase, where the height fluctuations are on the order of
log n for points separated by distance n, and correlations decay quadratically
in n; a frozen phase where there are no large-scale fluctuations and the model
is a Bernoulli process (points far apart are independent); and a smooth (some-
times referred to as rigid) phase where fluctuations have bounded variance, and
correlations decay exponentially. We refer to these three phases respectively
as liquid, frozen, and gaseous.

The theory has some surprising connections to algebraic geometry. In
particular, in a sense described below, the phase diagram of dimer model on
a weighted, doubly periodic graph (as one varies a two-parameter external
magnetic field), is represented by the amoeba of an associated plane algebraic
curve, the spectral curve; see Theorem 4.1. We recall that by definition [5], [14]
the amoeba of an affine algebraic variety X ∈ Cn (plane curve, in our case) is
the image of X under the map taking coordinates to the logarithms of their
absolute value. See Figures 6 for an illustration of an amoeba with multiple
holes. The so-called Ronkin function of the spectral curve (a function which
is linear on each component of the complement of the amoeba and is strictly
concave within the amoeba itself; see Figure 5) turns out to be the Legendre
dual of the surface tension (Theorem 3.6).

Crystal facets in the model are in bijection with the components of the
complement of the amoeba. In particular, the bounded ones correspond to
compact holes in the amoeba; the number of bounded facets equals the genus
of the spectral curve. By the Wulff construction, the Ronkin function describes
the fine mesh limit height function of certain volume-constrained random sur-
face models based on dimer height functions (which can in some cases be
interpreted as the shape of a partially dissolved crystal corner). For example,
the limit shape in the situation shown in Figure 1 is the Ronkin function of
the straight line. It has genus zero and, hence, has no bounded facets. A more
complicated limit shape, in which a bounded facet develops, can be seen in
Figures 2 and 5.

Crystals that appear in nature typically have a small number of facets—
the slopes of which are rational with respect to the underlying crystal lattice.
But laboratory conditions have produced equilibrium surfaces with up to sixty
identifiably different facet slopes [17]. It is therefore of interest to have a model
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Figure 2. On the left are the level sets of perimeter 10 or longer of the height

function of a random volume-constrained dimer configuration on Z2 (with 2×2
fundamental domain). The height function is essentially constant in the middle

— a facet is developing there. The intermediate region, in which the height

function is not approximately linear, converges to the amoeba of the spectral

curve, which can be seen on the right. The spectral curve in this case is a

genus 1 curve with the equation z + z−1 + w + w−1 = 6.25.

in which it is possible to generate crystal surfaces with arbitrarily many facets
and to observe precisely how the facets evolve when weights and temperature
are changed.

For another surprising connection between dimers and algebraic geometry
see [16].

Acknowledgments. The paper was completed while R. K. was visiting
Princeton University. A. O. was partially supported by DMS-0096246 and a
fellowship from Packard foundation. S. S. was supported in part by NSF Grant
No. DMS-0403182.

2. Definitions

2.1. Combinatorics of dimers.

2.1.1. Periodic bipartite graphs and matchings. Let G be a Z2-periodic
bipartite planar graph. By this we mean G is embedded in the plane so that
translations in Z2 act by color-preserving isomorphisms of G — isomorphisms
which map black vertices to black vertices and white to white. An example of
such a graph is the square-octagon graph, the fundamental domain of which
is shown in Figure 3. More familiar (and, in a certain precise sense, universal
[12]) examples are the standard square and honeycomb lattices. Let Gn be the
quotient of G by the action of nZ2. It is a finite bipartite graph on a torus.
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Figure 3. The fundamental domain of the square-octagon graph.

Let M(G) denote the set of perfect matchings of G. A well-known nec-
essary and sufficient condition for the existence of a perfect matching of G is
the existence of a unit flow from white vertices to black vertices, that is a flow
with source 1 at each white vertex and sink 1 at every black vertex. If a unit
flow on G exists, then by taking averages of the flow over larger and larger
balls and subsequential limits one obtains a unit flow on G1. Conversely, if a
unit flow on G1 exists, it can be extended periodically to G. Hence G1 has a
perfect matching if and only if G has a perfect matching.

2.1.2. Height function. Any matching M of G defines a white-to-black
unit flow ω: flow by one along each matched edge. Let M0 be a fixed periodic
matching of G and ω0 the corresponding flow. For any other matching M with
flow ω, the difference ω − ω0 is a divergence-free flow. Given two faces f0, f1

let γ be a path in the dual graph G∗ from f0 to f1. The total flux of ω − ω0

across γ is independent of γ and therefore is a function of f1 called the height
function of M .

The height function of a matching M is well-defined up to the choice of
a base face f0 and the choice of reference matching M0. The difference of the
height functions of two matchings is well-defined independently of M0.

A matching M1 of G1 defines a periodic matching M of G; we say M1 has
height change (j, k) if the horizontal and vertical height changes of M for one
period are j and k respectively, that is

h(v + (x, y)) = h(v) + jx + ky

where h is the height function on M . The height change is an element of Z2,
and can be identified with the homology class in H1(T2, Z) of the flow ω1−ω0.
The height change of a larger graph Gn is defined analogously, replacing G1

with Gn. (In particular, if M1 is extended periodically to a matching Mn of
Gn, then the height change of Mn is n times that of M1.)

2.2. Gibbs measures.

2.2.1. Definitions. Let E be a real-valued function on edges of G1, the
energy of an edge. It defines a periodic energy function on edges of G. We
define the energy of a finite set M of edges by E(M) =

∑
e∈M E(e).
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A Gibbs measure on M(G) is a probability measure with the following
property. If we fix any finite subgraph of G, then conditioned on the edges that
lie outside of G, the probability of any interior matching M of the remaining
vertices is proportional to e−E(M). An ergodic Gibbs measure (EGM) is a Gibbs
measure on M(G) which is invariant and ergodic under the action of Z2.

For an EGM µ let s = E[h(v+(1, 0))−h(v)] and t = E[h(v+(0, 1))−h(v)]
be the expected horizontal and vertical height change. We then have

E[h(v + (x, y)) − h(v)] = sx + ty.

We call (s, t) the slope of µ.

2.2.2. Gibbs measures of fixed slope. On M(Gn) we define a probability
measure µn satisfying

µn(M) =
e−E(M)

Z
,

for any matching M ∈ M(Gn). Here Z is a normalizing constant known as
the partition function.

For a fixed (s, t) ∈ R2, let Ms,t(Gn) be the set of matchings of Gn whose
height change is (�ns�, �nt�). Assuming that Ms,t(Gn) is nonempty, let µn(s, t)
denote the conditional measure induced by µn on Ms,t(Gn).

The following results are found in Chapters 8 and 9 of [18]:

Theorem 2.1 ([18]). For each (s, t) for which Ms,t(Gn) is nonempty for
n sufficiently large, µn(s, t) converges as n → ∞ to an EGM µ(s, t) of slope
(s, t). Furthermore µn itself converges to µ(s0, t0) where (s0, t0) is the limit of
the slopes of µn. Finally, if (s0, t0) lies in the interior of the set of (s, t) for
which Ms,t(Gn) is nonempty for n sufficiently large, then every EGM of slope
(s, t) is of the form µ(s, t) for some (s, t) as above; that is, µ(s, t) is the unique
EGM of slope (s, t).

2.2.3. Surface tension . Let

Zs,t(Gn) =
∑

M∈Ms,t(Gn)

e−E(M)

be the partition function of Ms,t(Gn). Define

Zs,t(G) = lim
n→∞

Zs,t(Gn)1/n2
.

The existence of this limit is easily proved using subadditivity as in [2]. The
function Zs,t(G) is the partition function per fundamental domain of µ(s, t)
and

σ(s, t) = − log Zs,t(G)

is called the surface tension or free energy per fundamental domain. The
explicit form of this function is obtained in Theorem 3.6.
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The measure µ(s0, t0) in Theorem 2.1 above is the one which has minimal
free energy per fundamental domain. Since the surface tension is strictly convex
(see Chapter 8 of [18] or Theorem 3.7 below), the surface-tension minimizing
slope is unique and equal to (s0, t0).

2.3. Gauge equivalence and magnetic field.

2.3.1. Gauge transformations. Since G is bipartite, each edge e = (w, b)
has a natural orientation: from its white vertex w to its black vertex b. Any
function f on the edges can therefore be canonically identified with a 1-form,
that is, a function on oriented edges satisfying f(−e) = −f(e), where −e is
the edge e with its opposite orientation. We will denote by Ω1(G1) the linear
space of 1-forms on G1. Similarly, Ω0 and Ω2 will denote functions on vertices
and oriented faces, respectively.

The standard differentials

0 → Ω0 d−→ Ω1 d−→ Ω2 → 0

have the following concrete meaning in the dimer problem. Given two energy
functions E1 and E2, we say that they are gauge equivalent if

E1 = E2 + df , f ∈ Ω0 ,

which means that for every edge e = (w, b)

E1(e) = E2(e) + f(b) − f(w) ,

where f is some function on the vertices. It is clear that for any perfect
matching M , the difference E1(M) − E2(M) is a constant independent of M ,
hence the energies E1 and E2 induce the same probability distributions on dimer
configurations.

2.3.2. Rotations along cycles. Given an oriented cycle

γ = {w0, b0, w1, b1, . . . , bk−1, wk} , wk = w0 ,

in the graph G1, we define∫
γ
E =

k−1∑
i=1

[
E(wi, bi) − E(wi+1, bi)

]
.

It is clear that E1 and E2 are gauge equivalent if and only if
∫
γ E1 =

∫
γ E2 for

all cycles γ. We call
∫
γ E the magnetic flux through γ. It measures the change

in energy under the following basic transformation of dimer configurations.
Suppose that a dimer configuration M is such that every other edge of a

cycle γ is included in M . Then we can form a new configuration M ′ by

M ′ = M � γ ,
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where � denotes the symmetric difference. This operation is called rotation
along γ. It is clear that

E(M ′) = E(M) ±
∫

γ
E .

The union of any two perfect matchings M1 and M2 is a collection of closed
loops and one can obtain M2 from M1 by rotating along all these loops. There-
fore, the magnetic fluxes uniquely determine the relative weights of all dimer
configurations.

2.3.3. Magnetic field coordinates. Since the graph G1 is embedded in
the torus, the results of the previous section imply that the gauge equivalence
classes of energies are parametrized by RF−1 ⊕ R2, where F is the number of
faces of G1. The first summand is dE , a function on the faces subject to one
relation: the sum is zero. We will denote the function dE ∈ Ω2(G1) by Bz. We
write B := (Bx, By, Bz) where the other two parameters

(Bx, By) ∈ R2

are the magnetic flux along a cycle winding once horizontally (resp. vertically)
around the torus.

In practice we will fix Bz and vary Bx, By, as follows. Let γx be a path
in the dual of G1 winding once horizontally around the torus. Suppose that k

edges of G1 are crossed by γx. On each edge of G1 crossed by γx, add energy
± 1

k∆Bx according to whether the upper vertex (the one to the left of γx when
γx is oriented in the positive x-direction) is black or white. Similarly, let γy be
a vertical path in the dual of G1, crossing k′ edges of G1; add ± 1

k′ ∆By to the
energy of edges crossed by γy according to whether the left vertex is black or
white.

The new magnetic field is now B′ = B + (0, ∆Bx, ∆By). This implies
that the change in energy of a matching under this change in magnetic field
depends linearly on the height change of the matching:

Lemma 2.2. For a matching M of G1 with height change (hx, hy) we have

EB′(M) − EB′(M0) = EB(M) − EB(M0) + ∆Bxhx + ∆Byhy .

3. Surface tension

3.1. Kasteleyn matrix and characteristic polynomial.

3.1.1. Kasteleyn weighting. A Kasteleyn matrix for a finite bipartite
planar graph Γ is a weighted, signed adjacency matrix for Γ, whose determinant
is the partition function for matchings on Γ. It can be defined as follows.
Multiply the edge weight of each edge of Γ by 1 or −1 in such a way that the
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following holds: around each face there are an odd number of − signs if the
face has 0 mod 4 edges, and an even number if the face has 2 mod 4 edges.
This is always possible [8]. Although the Kasteleyn matrix is not uniquely
determined, it is uniquely determined as a function of the edge weights once
we choose these signs.

Let K = (Kwb) be the matrix with rows indexed by the white vertices
and columns indexed by the black vertices, with Kwb being the above signed
edge weight ±e−E((w,b)) (and 0 if there is no edge). Kasteleyn proved [8] that
|det K| is the partition function,

|det K| = Z(Γ) =
∑

m∈M(Γ)

e−E(m).

3.1.2. Periodic boundary conditions. For bipartite graphs embedded in
a torus, one can construct a Kasteleyn matrix K as above [8]. As in the
previous section, we assume that we have fixed the signs of the edges, so that
the Kasteleyn matrix is determined as a function of the edge weights. Then
|det K| is a signed sum of weights of matchings, where the sign of a matching
depends on the parity of its horizontal and vertical height change. This sign is
a function on H1(T2, Z/2Z), that is, matchings with the same horizontal and
vertical height change modulo 2 appear in detK with the same sign. Moreover
of the four possibly parity classes, three have the same sign in detK and one
has the opposite sign [19]. (For the reader familiar with this terminology, this
sign function is one of the 4 spin structures or theta characteristics on the
torus.)

The sign depends on the choices in the definition of the Kasteleyn matrix.
By an appropriate choice we can make the (0, 0) parity class (whose height
changes are both even) have even sign and the remaining classes have odd
sign, that is, detK = M00 − M10 − M01 − M11, where M00 is the partition
function for matchings with even horizontal and vertical height changes, and
so on.

The actual partition function can then be obtained as a sum of four de-
terminants

Z =
1
2
(−Z(00) + Z(10) + Z(01) + Z(11)),

where Z(θτ) is the determinant of K in which the signs along a horizontal dual
cycle (edges crossing a horizontal path in the dual) have been multiplied by
(−1)θ and along a vertical cycle have been multiplied by (−1)τ . (Changing
the signs along a horizontal dual cycle has the effect of negating the weight of
matchings with odd horizontal height change, and similarly for vertical.) For
details see [8], [19].
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3.1.3. Characteristic polynomial. Let K be a Kasteleyn matrix for the
graph G1 as above. Given any positive parameters z and w, we construct a
“magnetically altered” Kastelyn matrix K(z, w) from K as follows.

Let γx and γy be the paths introduced in Section 2.3.3. Multiply each
edge crossed by γx by z±1 depending on whether the black vertex is on the left
or on the right, and similarly for γy. See Figure 4 for an illustration of this
procedure in the case of the honeycomb graph with 3×3 fundamental domain.
We will refer to P (z, w) = det K(z, w) as the characteristic polynomial of G.
The description of detK(z, w) as a signed partition function above implies that
up to reflections z → −z and w → −w of the inputs, P (z, w) is independent
of the choice of signs used in defining K.

z−1 z−1 z−1

w

w

w

b

w

Kwb

γx

γy

Figure 4. The operator K(z, w)

For example, for the square-octagon graph from Figure 3 this gives

P (z, w) = z +
1
z

+ w +
1
w

+ 5 .(1)

Recall that M0 denotes the reference matching in the definition of the height
function and ω0 denotes the corresponding flow. Let x0 denote the total flow
of ω0 across γx and similarly let y0 the total flow of ω0 across γy. The above
remarks imply the following:

Proposition 3.1. We have

P (z, w) = z−x0w−y0
∑

M∈M(G1)

e−E(M)zhxwhy(−1)hxhy+hx+hy

where hx = hx(M) and hy = hy(M) are the (integer) horizontal and vertical
height change of the matching M and E(M) is its energy.

Since G1 has a finite number of matchings, P (z, w) is a Laurent polynomial
in z and w with real coefficients. The coefficients are negative or zero except
when hx and hy are both even. Note that if the coefficients in the definition of P
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were replaced with their absolute values (i.e., if we ignored the (−1)hxhy+hx+hy

factor), then P (1, 1) would be simply the partition function Z(G1), and P (z, w)
(with z and w positive) would be the partition function obtained using the
modified energy E ′(M) = E(M)+hx log z +hy log w. With the signs, however,
P ((−1)θ, (−1)τ ) = Z(θτ) and the partition function may be expressed in terms
of the characteristic polynomial as follows:

Z =
1
2

(−P (1, 1) + P (1,−1) + P (−1, 1) + P (−1,−1)) .

As we will see, all large-scale properties of the dimer model depend only
on the polynomial P (z, w).

3.1.4. Newton polygon and allowed slopes. By definition, the Newton
polygon N(P ) of P is the convex hull in R2 of the set of integer exponents of
monomials in P , that is

N(P ) = convex hull
{

(j, k) ∈ Z2
∣∣ zjwk is a monomial in P (z, w)

}
.

Proposition 3.2. The Newton polygon is the set of possible slopes of
translation invariant measures, that is, there exists a translation invariant mea-
sure of slope (s, t) if and only if (s, t) ∈ N(P ).

Proof. A translation-invariant measure of average slope (s, t) determines
a unit white-to-black flow on G1 with vertical flux s and horizontal flux t:
the flow along an edge is the probability of that edge occurring. However the
matchings of G1 are the vertices of the polytope of unit white-to-black flows of
G1, and the height change (s, t) is a linear function on this polytope. Therefore
(s, t) is contained in N(P ) by Proposition 3.1.

If M1 is the matching corresponding to a vertex of N(P ), then the slope
corresponding to that vertex is achieved by the the singleton measure in which
the tiling is a periodic extension of M1 with probability one. All interior slopes
are given by measures that are weighted averages of these periodic ones. Now
[18], Theorem 9.1.1 proves that there is an (in fact unique) EGM of slope (s, t)
for every slope (s, t) for which there is a translation-invariant measure.

Note that changing the reference matching M0 in the definition of the
height function merely translates the Newton polygon.

3.2. Asymptotics.

3.2.1. Enlarging the fundamental domain. Characteristic polynomials of
larger graphs may be computed recursively as follows:

Theorem 3.3. Let Pn be the characteristic polynomial of Gn. Then

Pn(z, w) =
∏

zn
0 =z,

∏
wn

0 =w

P (z0, w0).
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Proof. We follow the argument of [2] where this fact is proved for grid
graphs. Since symmetry implies that the right side is a polynomial in z and w,
it is enough to check this statement for positive values of z and w. View the
Kastelyn matrix Kn(z, w) of Gn as a linear map from the space Vw of functions
on white vertices of Gn to the space Vb of functions on black vertices. When
α and β are nth roots of unity, let V α,β

w and V α,β
b be the subspaces of func-

tions for which translation by one period in the horizontal or vertical direction
corresponds to multiplication by α and β respectively. (This spaces can also
be defined using the discrete Fourier transform.) Clearly, these subspaces give
orthogonal decompositions of Vw and Vb, and Kn(z, w) is block diagonal in the
sense that it sends an element in V α,β

w to an element in V α,β
b . We may thus

write det Kn(z, w) as a product of the determinants of the n2 restricted linear
maps from V α,β

w to V α,β
b ; these determinants are given by detK(αz1/n, βw1/n).

This recurrence relation allows us to compute partition functions on gen-
eral Gn in terms of P :

Corollary 3.4.

Z(Gn) =
1
2
(−Z(00)

n + Z(01)
n + Z(10)

n + Z(11)
n ),(2)

where

Z(θτ)
n = Pn((−1)θ, (−1)τ ) =

∏
zn=(−1)θ,

∏
wn=(−1)τ

P (z, w).(3)

3.2.2. Partition function per fundamental domain. We are interested in
the asymptotics of Z(Gn) when n is large. The logarithm of the expression (3)
is a Riemann sum for an integral over the unit torus T2 = {(z, w) ∈ C2 : |z| =
|w| = 1} of log P ; thus

1
n2

log Z(θτ)
n =

1
(2πi)2

∫
T2

log |P (z, w)|dz

z

dw

w
+ o(1)

on condition that none of the points

{(z, w) : zn = (−1)θ, wn = (−1)τ}(4)

falls close to a zero of P . If it does, such a point will affect the sum only if it
falls within e−O(n2) of a zero of P (and in any case can only decrease the sum).
In this case, for any n′ near but not equal to n, no point of the form (4) will
fall so close to this zero of P . In Theorem 5.1 below we prove that P has at
most two simple zeros on the unit torus. It follows that only for a very rare
set of n does the Riemann sum not approximate the integral.
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Note that Z(Gn) ≥ Z
(θ,τ)
n since these both count all configurations but

the latter has some − signs. Since by (2), Z(Gn) satisfies

Z(θτ)
n ≤ Z(Gn) ≤ 2 max

θ,τ
{|Z(θ,τ)

n |},

we have
lim

n→∞
′ 1
n2

log Z(Gn) =
1

(2πi)2

∫
T2

log |P (z, w)|dz

z

dw

w
,

where the lim′ means that the limit holds except possibly for a rare set of
ns. But now a standard subadditivity argument (see e.g. [2]) shows that
Z(Gn)1/n2 ≤ Z(Gm)1/m2

(1 + o(1)) for all large m so that in fact the limit
exists without having to take a subsequence.

Theorem 3.5. We have

log Z
def= lim

n→∞
1
n2

log Z(Gn) =
1

(2πi)2

∫
T2

log |P (z, w)|dz

z

dw

w
.

The quantity Z is the partition function per fundamental domain.

3.2.3. The amoeba and Ronkin function of a polynomial. Given a polyno-
mial P (z, w), its Ronkin function is by definition the following integral

F (x, y) =
1

(2πi)2

∫
T2

log |P (exz, eyw)|dz

z

dw

w
.(5)

A closely related object is the amoeba of the polynomial P defined as the image
of the curve P (z, w) = 0 in C2 under the map

(z, w) 
→ (log |z|, log |w|) .

We will call the curve P (z, w) = 0 the spectral curve and denote its amoeba
by A(P ).

It is clear that the integral (5) is singular if and only if (x, y) lies in the
amoeba. In fact, the Ronkin function is linear on each component of the
amoeba complement and strictly convex over the interior of the amoeba (in
particular, implying that each component of R2 \ A(P ) is convex). This and
many other useful facts about the amoebas and Ronkin function can be found
in [14]. See Figures 5 and 6 for an illustration of these notions.

We distinguish between the unbounded complementary components and
the bounded complementary components.

3.2.4. Surface tension. Theorem 2.1 gave, for a fixed magnetic field, a
two-parameter family of EGMs {µ(s, t)}. (No magnetic field was mentioned in
Theorem 2.1, but since the result was for arbitrary edge weights, can modify
the edge weights the same way they would be modified by a magnetic field.)
Let us vary the magnetic field as in Section 2.3.3. Let µ̃n(Bx, By) be the
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Figure 5. The curved part of minus the Ronkin function of z + 1
z + w + 1

w + 5.

This is the limit height function shape for square-octagon dimers with crystal

corner boundary conditions.

-6 -4 -2 2 4

-8
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8

Figure 6. The amoeba corresponding to the model of Figure 8. Its comple-

ment has one bounded component for each of the five interior integer points

of N(P ) = {x : |x|1 ≤ 2}. It also has two “semi-bounded” (i.e., contained

in a strip of finite width) components, corresponding to two of the noncorner

integer points on the boundary of N(P ). The four large components corre-

spond to the corner vertices of N(P ). In the case of equal weights, the holes

in the amoeba shrink to points and only four large unbounded components of

the complement are present.
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measure on dimer configurations on Gn in the presence of an additional parallel
magnetic field Bx, By. We define µ̃(Bx, By) to be the limit of µ̃n(Bx, By) as
n → ∞ (which exists, by [18]) and let ZBx,By

be its partition function per
fundamental domain.

We can compute ZBx,By
in two different ways. On the one hand, using

Proposition 3.1, the characteristic polynomial becomes P (e−Bxz, e−Byw) and,
hence, by Theorem 3.3 we have ZBx,By

= F (Bx, By), where F is the the Ronkin
function of P . On the other hand, using Lemma 2.2 and basic properties of
the surface tension (see Section 2.2.3) we obtain

F (Bx, By) = max
(s,t)

(−σ(s, t) + sBx + tBy) .(6)

In other words, F is the Legendre dual of the surface tension. Since the surface
tension is strictly convex, the Legendre transform is involutive and we obtain
the following

Theorem 3.6. The surface tension σ(s, t) is the Legendre transform of
the Ronkin function of the characteristic polynomial P .

Recall that the Ronkin function is linear on each component of the amoeba
complement. We will call the corresponding flat pieces of the graph of the
Ronkin function facets. They correspond to conical singularities (commonly
referred to as “cusps”) of the surface tension σ. The gradient of the Ronkin
function maps R2 to the Newton polygon N(P ). It is known that the slopes
of the facets form a subset of the integer points inside N(P ) [14]. Therefore,
we have the following immediate corollary:

Corollary 3.7. The surface tension σ is strictly convex and is smooth
on the interior of N(P ), except at a subset of points in Z2 ∩ N(P ). Also, σ is
a piecewise linear function on ∂N(P ), with no slope discontinuities except at
a subset of points in Z2 ∩ ∂N(P ).

Corollary 3.8. The slope of µ̃(Bx, By) is the image of (Bx, By) under
the map ∇F . That is, µ̃(Bx, By) = µ(s, t) where (s, t) = ∇F (Bx, By).

Proof. Since µ̃(Bx, By) is an EGM, it is equal to µ(s, t) for some (s, t) by
Theorem 2.1. By (6) we must have (s, t) = ∇F (Bx, By).

In Section 5, we will see that the spectral curves of dimer models are
always very special real plane curves. As a result, their amoebas and Ronkin
function have a number of additional nice properties, many of which admit a
concrete probabilistic interpretation.
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Figure 7. (negative of ) Surface tension for the square-octagon graph

Figure 7 shows the Legendre dual of the Ronkin function from Figure 5.
It is the surface tension function for certain periodically weighted dimers on
the square grid with 2 × 2 fundamental domain and also for the uniformly
weighted dimers on the square-octagon graph.

4. Phases of the dimer model

4.1. Frozen, liquid, and gaseous phases. We will show that EGMs with dis-
tinctly different qualitative properties are possible in a general periodic dimer
model. The different types of behavior can be classified as frozen, liquid, and
gaseous. We will take the fluctuation of the height function as the basis for
the classification. This, as it will turn out, is equivalent to the classification
by the rate of decay of correlations.

Let f and f ′ be two faces of the graph G and consider the height function
difference h(f)− h(f ′). An EGM is called a frozen phase if some of the height
differences are deterministic—i.e., there exist distinct f and f ′ arbitrarily far
apart for which h(f)−h(f ′) is deterministic. An example is the delta-measure
on the brick-wall matching of the square grid.

A nonfrozen EGM µ is called a gaseous phase or smooth phase if the height
fluctuations have bounded variance, i.e., the µ variance of the random variable
h(f)−h(f ′) is bounded independently of f and f ′. A nonfrozen EGM µ is called
a liquid phase or rough phase if the µ-variance of the height difference is not
bounded. The difference between the smooth and rough phases is illustrated
in Figure 8.

We will prove in Theorem 4.5 that in the liquid phase the variance of
h(f) − h(f ′) grows universally like π−1 times the logarithm of the distance
between f and f ′. The following is our main result about phases:
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Figure 8. All cycles of length ten or longer in the union of two random perfect

matching of Z2 with 4×4 fundamental domain. The weight of one edge equals

to 10 and all other edges have weight 1. The amoeba for this case is plotted in

Figure 6. The slope on the left is (0, 0) and this is a smooth phase. The rough

phase on the right has slope (0, 0.5).

Theorem 4.1. The measure µ̃(Bx, By) is frozen, liquid, or gaseous, re-
spectively, when (Bx, By) is respectively in the closure of an unbounded com-
plementary component of A(P ), in the interior of A(P ), or in the closure of a
bounded complementary component of A(P ).

This theorem is proved in the next three sections. In Corollary 9.1.2 of
[18] there is a different proof that when (s, t) lies in the interior of N(P ), µ(s, t)
can only be smooth if s and t are integers.

We will see that in the liquid and gaseous phases the edge-edge correlations
decay polynomially and exponentially, respectively. In the frozen case, some
edge-edge correlations do not decay at all.

4.2. Frozen phases.

4.2.1. Matchings and flows. Recall the interpretation of a matching as a
black-to-white unit flow. If M is a matching and M0 is the reference matching
in the definition of the height function, then the difference of the flows M −M0

defines a divergence-free flow. The height function of M is the corresponding
flux, that is, for two faces f1, f2, h(f2) − h(f1) is the amount of flow crossing
any dual path from f1 to f2. For two adjacent faces f1, f2 let d(f1, f2) be the
maximal possible (oriented) flow along the edge e between them (where e is
oriented so that f1 is on its left). This is the forward capacity of the oriented
edge e. That is, if e ∈ M0, its capacity is 1 from its black vertex to its white
vertex, and 0 in the other direction; if e ∈ M0, its capacity is 1 from its white
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vertex to its black vertex, and zero in the reverse direction. For any two faces
f1 and f2 let D(f1, f2) be the minimum, over all dual paths from f1 to f2, of
the sum of the capacities of the segments oriented to cross the path from left
to right. By the max-flow-min-cut theorem, a function h is the height function
for a tiling if and only if

for all f1, f2 D(f1, f2) ≥ h(f2) − h(f1).

See [3], [21] for a reference.
Now let (s, t) ∈ R2. If there is no tiling with height function having

slope (s, t) then there is a face f and (x, y) ∈ Z2 such that D(f, f + (x, y)) <

sx+ty. We claim that in this case there is a face path from f to some translate
f + (x′, y′) on which D(f, f + (x′, y′)) < sx′ + ty′ and all faces along this path
are of distinct types, that is, are not translates of each other (except for the
first and last faces). To see this, note that if a face path f1, f2, . . . , fk passes
through two faces of the same type, say fi and fj , then one of the two paths
f1, . . . , fi, (fi − fj) + fj+1, (fi − fj) + fj+2 . . . , (fi − fj) + fk and fi, . . . , fj will
necessarily satisfy the strict inequality.

But up to translation there are only a finite number of face paths which
start and end at the same face type and which pass through each face type
at most once. Each such path gives one restriction on the slope: D(f1, f2) ≥
sx + ty where (x, y) = f2 − f1.

In particular the Newton polygon N(P ) is the set of (s, t) defined by the
intersection of the inequalities {(s, t) | sx + ty ≤ D(f1, f2)}, one for each of
the above finite number of paths. If (s, t) is on the edge of N(P ), the path
γ from the corresponding inequality has maximal flow, that is, in a tiling of
slope (s, t) all edges on γ are determined: they must occur with probability 1
or 0.

4.2.2. Frozen paths. When (Bx, By) is in an unbounded component of the
complement of the amoeba, we prove that µ̃(Bx, By) is in a frozen phase.

The slope (s, t) of µ̃(Bx, By) is an integer point on the boundary of N(P ).
By the argument of the previous section, there is a face path γ on G1, with
homology class perpendicular to (s, t), for which every edge crossing each lift
of γ is present with probability 1 or 0 for µ̃(Bx, By). These lifts constitute
frozen paths in the dual G′. Edges which are in different components of the
complement of the set of frozen paths are independent.

For each corner of N(P ) there are two sets of frozen paths, with different
asymptotic directions. The components of the complements of these paths are
finite sets of edges. The edges in each set are independent of all their translates.

4.3. Edge-edge correlations. For a finite planar graph Γ the inverse of the
Kasteleyn matrix determines the edge probabilities: the probability of a set



1038 RICHARD KENYON, ANDREI OKOUNKOV, AND SCOTT SHEFFIELD

of edges {e1, . . . , ek} being in a random matching is the determinant of the
corresponding submatrix of K−1, times the product of the edge weights [10].

For a graph on a torus the corresponding statement is more complicated:
We have

Theorem 4.2 ([2]). The probability of edges {e1 = (w1, b1), . . . , ek

= (wk, bk)} occurring in a random matching of Gn equals
∏

K(wj , bj) times

(7)
1
2

(
−Z

(00)
n

Z
det(K−1

00 (bj , wi)) +
Z

(10)
n

Z
det(K−1

10 (bj , wi))

+
Z

(01)
n

Z
det(K−1

01 (bj , wi)) +
Z

(11)
n

Z
det(K−1

11 (bj , wi))

)
.

Here the determinants det(K−1
θτ (bj , wi)) are k× k minors of K−1

θτ . The asymp-
totics of this expression are again complicated by the zeros of P on T2. The
entries in K−1

θτ have the form (see [2])

K−1
θτ (b, w) =

1
n2

∑
zn=(−1)θ

∑
wn=(−1)τ

Q(z, w) wxzy

P (z, w)

where Q(z, w) is one of a finite number of polynomials (depending on where
w and b sit in their respective fundamental domains: Q/P is an entry of
K(z, w)−1 where K(z, w) is the magnetically altered Kasteleyn matrix) and
(x, y) ∈ Z2 is the translation taking the fundamental domain containing w to
the fundamental domain containing b.

This expression is a Riemann sum for the integral

1
(2πi)2

∫
T2

Q(z, w)wxzy

P (z, w)
dw

w

dz

z
,

except near the zeros of P . However the contribution for the root (z, w) nearest
to a zero of P is negligible unless (z, w) is at distance O( 1

n2 ) of the zero. But
if this is the case then replacing n with any n′ at distance at least O(

√
n) from

n makes the contribution for this root negligible. Thus we see that

lim
n→∞

′ K−1
n,θτ (w, b) =

1
(2πi)2

∫
T2

Q(z, w)wxzy

P (z, w)
dw

w

dz

z
,

where the limit is taken along a subsequence of n’s.
Since all the K−1

n,θτ have the same limit along a subsequence of ns, their
weighted average (as in (7)) with weights ±Zθτ/2Z (weights which sum to one
and are bounded between −1 and 1) has the same (subsequential) limit. This
subsequential limit defines a Gibbs measure on M(G). By Theorem 2.1, this
measure is the unique limit of the Boltzmann measures on Gn. Thus we have
proved
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Theorem 4.3. For the limiting Gibbs measure µ = limn→∞ µn, the prob-
ability of edges {e1, . . . , e�} where ej = (wj , bj), is �∏

j=1

K(wj , bj)

 det(K−1(bk, wj))1≤j,k≤� ,

where, assuming b and w are in a single fundamental domain,

K−1(b, w + (x, y)) =
1

(2πi)2

∫
T2

K−1(z, w)bw wxzy dw

w

dz

z
.(8)

We reiterate that K−1(z, w)bw = Qbw(z, w)/P (z, w), where Qbw is a poly-
nomial in z and w.

4.4. Liquid phases (rough nonfrozen phases).

4.4.1. Generic case. When (Bx, By) is in the interior of the amoeba,
Theorem 5.1, below, shows that P (eBxz, eByw) either has two simple zeros on
the unit torus or a real node on the unit torus (a real node is a zero of P ,
(z0, w0) = (±1,±1) where, locally, P looks like the product of two lines,

P (z, w) = (α1(z−z0)+β1(w−w0))(α2(z−z0)+β2(w−w0))+O(z−z0, w−w0)3.

Generically P will not have real nodes). In the case of simple zeros (see Lemma
4.4 below), K−1(b, w) decays linearly but not faster, as |w − b| → ∞. This
implies that the edge covariances decay quadratically:

Cov(e1, e2) := Pr(e1 and e2) − Pr(e1) Pr(e2)

= −K(w1, b1)K(w2, b2)K−1(b2, w1)K−1(b1, w2) .

In Section 4.4.2 we show that in the case of a real node we have similar behavior.

Lemma 4.4. Suppose that |z0| = |w0| = 1, Im(−βw0/αz0) > 0, x, y ∈ Z,
and R(z, w) is a smooth function on T2 with a only a single zero, at (z0, w0),
and satisfying

R(z, w) = α(z − z0) + β(w − w0) + O(|z − z0|2 + |w − w0|2).

Then we have the following asymptotic formula for the Fourier coefficients of
R−1:

1
(2πi)2

∫
T2

wxzy

R(z, w)
dz

z

dw

w
=

−wx
0zy

0

2πi(xαz0 − yβw0)
+ O

(
1

x2 + y2

)
.

If Im(−βw0/αz0) < 0 then we get the same answer but with opposite sign.

Note that if R has k simple zeros, 1/R can be written as a sum of k terms,
each of which is of the above form.
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Proof. Replacing z with eiaz0 and w with eibw0 we have

α(z − z0) + β(w − w0) + O(. . . ) = αz0ia + βw0ib + O(. . . ).

By adding a smooth function (whose Fourier coefficients decay at least quadrat-
ically) to 1/R we can replace 1/R with

1
αz0ia + βw0ib

.

The integral is therefore

wx
0zy

0

(2π)2i

∫ π

−π

∫ π

−π

ei(xb+ya)

βw0b + αz0a
dadb + O(. . . )

=
wx

0zy
0

(2π)2i

∫ ∞

−∞

∫ ∞

−∞

ei(xb+ya)

βw0b + αz0a
dadb + O(. . . ).

We first integrate over the variable a: the integrand is a meromorphic function
of a with a simple pole in the upper half-plane if Im(−βw0b/αz0) > 0. Change
the path of integration to a path from −N to N followed by the upper half
of a semicircle centered at the origin of radius N . The residue theorem then
yields

wx
0zy

0

2παz0

∫ ∞

0
ei(x−yβw0/αz0)bdb =

wx
0zy

0

2παz0

−1
i(x − yβw0/αz0)

=
−wx

0zy
0

2πi(xαz0 − yβw0)

which gives the result.
In case Im(−βw0/αz0) < 0 the above integral would be from −∞ to 0,

resulting in the opposite sign.

We now compute the variance in the height function.

Theorem 4.5. Suppose that the zeros of P on T2 are simple zeros at
(z0, w0) and (z̄0, w̄0). Let α, β be the derivatives of P (z, w) with respect to z

and w at (z0, w0). Then the height variance between two faces f1 and f2 is

Var[h(f1) − h(f2)] =
1
π

log |φ(f1) − φ(f2)| + o(log |φ(f1) − φ(f2)|),

where φ is the linear mapping φ(x + iy) = xαz0 − yβw0.

Since φ is a nondegenerate linear mapping, the above expression for the
variance is equivalent to 1

π log |f1 − f2| + o(log |f1 − f2|). However it appears
that a slightly finer analysis would improve the little-o error in the statement
to o(1), so we chose to leave the expression in the given form.

Proof. Define h̃ = h−E(h). Let f1, f2, f3, f4 be four faces, all of which are
far apart from each other. We shall approximate (h̃(f1)−h̃(f2))(h̃(f3)−h̃(f4)).
To simplify the computation we assume that f1 and f2 are translates of each
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other, as well as f3 and f4. Let f1 = g1, g2, . . . , gk = f2 be a path of translates
of f1 from f1 to f2, with gp+1 − gp being a single step in Z2. Similarly let
f3 = g′1, g

′
2, . . . , g

′
� = f4 be a path from f3 to f4. We assume that these paths

are far apart from each other.
Then

(h̃(f1) − h̃(f2))(h̃(f3) − h̃(f4))(9)

=
k−1∑
p=1

�−1∑
q=1

(h̃(gp+1) − h̃(gp))(h̃(g′q+1) − h(g′q)).

We consider one element of this sum at a time. There are three cases to
consider: when gp+1 − gp and g′q+1 − g′q are both horizontal, both vertical, and
one vertical, one horizontal.

Since P only has zeros at (z0, w0) and its conjugate, Q(z, w)/P (z, w) can
be written as sum of two terms 1/R(z, w) where R is as in Lemma 4.4. There-
fore for x, y large we have

1
(2πi)2

∫
T2

Q(z, w)wxzy

P (z, w)
dz

z

dw

w
= −2Im

(
wx

0zy
0Q(z0, w0)

2π(xαz0 − yβw0)

)
+ O(

1
x2 + y2

).

Recall that since P (z, w) = detK(z, w), the matrix Q(z, w) satisfies

Q(z, w)K(z, w) = P (z, w) · Id.

Since (z0, w0) is a simple zero of P , K(z0, w0) has co-rank 1. In particular
Q(z0, w0) must have rank 1. We write Q(z0, w0) = UV t where V tK(z0, w0) =
0 = K(z0, w0)U.

Let ai = (wi, bi) be the edges crossing a “positive” face path γ from gp

to gp+1, that is, a face path with the property that each edge crossed has its
white vertex on the left. Similarly let a′j = (w′

j , b
′
j) be the edges crossing a

positive face path γ′ from g′q to g′q+1. Then

E((h̃(gp+1) − h̃(gp))(h̃(g′q+1) − h̃(g′q)))

= E(
∑
i,j

(ai − āi)(a′j − ā′j))

=
∑
i,j

E(aia
′
j) − E(ai)E(a′j)

=−
∑
i,j

K(wi, bi)K(w′
j , b

′
j)K

−1(b′j , wi)K−1(bi, w
′
j).
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Assuming these faces gp, g
′
q are far apart, this is equal to

− 1
4π2

∑
i,j

K(wi, bi)K(wj , bj)

×
(

wx
0zy

0UiV
′
j

xαz0 − yβw0
−

w̄x
0 z̄y

0 ŪiV̄
′
j

xᾱz̄0 − yβ̄w̄0
+ O

(
1

x2 + y2

))

×
(

w−x
0 z−y

0 U ′
jVi

xαz0 − yβw0
−

w̄−x
0 z̄−y

0 Ū ′
j V̄i

xᾱz̄0 − yβ̄w̄0
+ O

(
1

x2 + y2

))
.

When we combine the cross terms we get an oscillating factor w2x
0 z2y

0 or
its conjugate, which causes the sum (9) of these terms when we sum over p

and q to remain small. So the leading term for fixed p, q is

(10)

− 2
4π2

Re

 1
(xαz0 − yβw0)2

∑
i,j

K(wi, bi)K(wj , bj)UiViU
′
jV

′
j


= − 1

2π2
Re

 1
(xαz0 − yβw0)2

(
∑

i

K(wi, bi)UiVi)(
∑

j

K(wj , bj)U ′
jV

′
j )

 .

Now we claim that if f2 − f1 = (1, 0) then∑
i∈γ

K(wi, bi)UiVi = z0
∂P

∂z
(z0, w0) = z0α

and when f2 − f1 = (0, 1) then∑
i∈γ′

K(wi, bi)UiVi = w0
∂P

∂w
(z0, w0) = w0β,

and similarly for f4−f3. To see this, note first that the function K(wi, bj)UiVj

is a function on edges which is a closed 1-form, that is, a divergence-free flow.
In particular the sum

∑
i K(wi, bi)UiVi is independent of the choice of face

path (in the same homology class). We can therefore assume that the face
paths γ, γ′ are equal to either γx or γy according to whether they are hor-
izontal or vertical. Suppose for example f2 − f1 = (1, 0) and differentiate
Q(z, w)K(z, w) = P (z, w) · Id with respect to z and evaluate at (z0, w0): we
get

Qz(z0, w0)K(z0, w0) + Q(z0, w0)Kz(z0, w0) = Pz(z0, w0) · Id.

Applying U from the right to both sides, using K(z0, w0)U = 0 and Q(z0, w0) =
UV t, and then multiplying both sides by z0, this becomes

UV tz0Kz(z0, w0)U = z0Pz(z0, w0)U.
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However z0Kz(z0, w0) =
∑

γx
K(w, b)w⊗ b =

∑
i∈γ K(wi, bi)wi ⊗ bi, so we get

U
∑

K(wi, bi)ViUi = z0Pz(z0, w0)U

and since U = 0 the claim follows. The same argument works for γy.
Recall that (x, y) was the translation between the fundamental domains

containing gp and g′q. In the sum (9), let (x1, y1) ∈ Z2 be the position of the
fundamental domain of gp and (x2, y2) that of g′q. Let z1 = x1αz0 − y1βw0 and
z2 = x2αz0 − y2βw0. The sum (9) becomes (up to lower order terms)

− 1
2π2

Re
∫ φ(f2)

φ(f1)

∫ φ(f4)

φ(f3)

dz1dz2

(z1 − z2)2

where φ is the linear map (x, y) 
→ xβw0 − yαz0. This integral evaluates to

1
2π2

Re log
(

(φ(f4) − φ(f1))(φ(f3) − φ(f2))
(φ(f4) − φ(f2))(φ(f3) − φ(f1))

)
.

To approximate the height variance σ(h̃(f2)− h̃(f1)), let f3 be close to f1 and
f4 close to f2 (but still far enough apart on the scale of the lattice so that
the above approximations hold). Then as |f2 − f1| → ∞ while |f3 − f1| and
|f4 − f2| are remaining bounded, the variance is

1
π2

log |φ(f1) − φ(f2)| + o(log |φ(f1) − φ(f2)|).

4.4.2. Case of a real node. In this section we show how to modify the
above proof in case P has a real node. This happens when the two simple zeros
(z0, w0), (z̄0, w̄0) merge into a single zero at one of the four points (±1,±1),
and Pz = Pw = 0 there. In this case the slope of the corresponding EGM
is integral but the amoeba does not have a complementary component, The
component is reduced to a point (and is therefore not “complementary”).

The canonical example of this behavior is the square grid with uniform
weights and a 2×2 fundamental domain; in this case P = 4+z+z−1+w+w−1,
and there is a real node at (z, w) = (−1,−1).

Since K−1(b, w) is a continuous function of the edge weights, so is the
variance of the height between two points. When P (z, w) has a node, at say
(z, w) = (1, 1), the polynomial P̃ (z, w) = P (eBxz, eByw) has two simple zeros
on T2 as long as Bx, By are sufficiently close to but not equal to 0. So the
height variance of P is the limit of the height variances of P̃ as Bx, By → 0.

In fact suppose without loss of generality that the node is at (z, w) = (1, 1)
and P has the expansion

P (z, w) = a(z − 1)2 + b(z − 1)(w − 1) + c(w − 1)2 + . . . ,
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where a, b, c ∈ R and . . . denotes terms of order at least 3. Then near the
node a point on P satisfies either z − 1 = λ(w − 1) + O(w − 1)2 or z − 1 =
λ̄(w− 1)+O(w−w0)2 where λ, λ̄, which are necessarily nonreal, are the roots
of a + bx + cx2 = 0.

The proof of Theorem 4.5 is valid for P̃ except for one assertion, where we
ignored the cross terms in equation (10). Indeed, when z, w are each close to 1
the cross terms do not oscillate. However we will show that

∑
i K(wi, bi)UiV̄i =

o(|α| + |β|) as (z, w) tends to the node. Along with the complex conjugate
equation this proves that the cross terms make no contribution.

The cross terms of (10) give

− 1
2π2

1
|xα − yβ|2

(
∑

i

K(wi, bi)UiV̄i)(
∑

j

K(wj , bj)Ū ′
jV

′
j ) + (conjugate)


(11)

where recall that α = Pz, β = Pw are tending to 0 at the node. We first show
that

∑
i K(wi, bi)UiV̄i = O(|α| + |β|), and similarly for its complex conjugate.

Recall the equation QK = P · Id. Differentiating with respect to z we find

QzK + QKz = Pz · Id.

At a point (z0, w0) on P we have Q = UV t and at (z̄0, w̄0) we have Q = Ū V̄ t.
Applying Ū to the right and evaluating in the limit as (z0, w0) tends to the
node, we see that

UV tKzŪ = 0

so that 0 = V tKzŪ =
∑

i K(wi, bi)UiV̄i at the node. Since U, V can be chosen
polynomial in z, w the quantity

∑
i K(wi, bi)UiV̄i necessarily vanishes to order

at least one at the node (as do α and β).
Let c1 be the limit at the node of 1

α

∑
i K(wi, bi)UiV̄i when gp+1 − gp =

(1, 0) and c2 the same limit when gp+1 − gp = (0, 1), so we may write

lim
1
α

∑
i

K(wi, bi)UiV̄i = c1dx + c2dy

at the node. The cross terms are then

− 1
2π2

1
|x − yβ/α|2

(
(c1dx1 + c2dy1)(c̄1dx2 + c̄2dy2)

+ (c̄1dx1 + c̄2dy1)(c1dx2 + c2dy2)
)
.

A short computation now shows that, since α/β ∈ R, this is not a closed 1-form
in (x1, y1) or (x2, y2) unless c1 = c2 = 0.

However since the height function differences h(f1)−h(f2) do not depend
on the path g1, . . . , gk, the cross terms should necessarily be a closed 1-form.
So c1 = c2 = 0. We have proved
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Theorem 4.6. Suppose P has a real node (z0, w0) = (±1,±1) on the unit
torus, and

P (z, w) = a(z − z0)2 + b(z − z0)(w − w0) + c(w − w0)2 + . . . .

Then the height variance between two faces f1 and f2 is

Var[h(f1) − h(f2)] =
1
π

log |φ(f1) − φ(f2)| + o(log |φ(f1) − φ(f2)|),

where φ is the linear mapping φ(x + iy) = xz0 − yλw0, λ being the root of
a + bλ + cλ2 = 0.

4.5. Gaseous phases (smooth nonfrozen phases). When (Bx, By) is in
a bounded complementary component, P (e−Bxz, e−Byw) has no zeros on the
unit torus. As a consequence K−1(b, w) decays exponentially fast in |b − w|.

Proposition 4.7. The height variance σ(h(f1) − h(f2)) is bounded.

Proof. The height difference h(f1) − h(f2)) can be measured along any
path from f1 to f2. Suppose a dual path from f1 to f2 is chosen so that each
edge crosses an edge of G with black vertex on its left. (This is clearly possible
if f1 and f2 share a black or white vertex, by simply moving counterclockwise
or clockwise around that vertex; since we can connect any f1 and f2 by a
path in which consecutive faces share vertices, it is possible in general.) Then
the height difference is a constant plus the sum of the indicator functions of
the edges on the path: h(f1) − h(f2) =

∑
(ai − āi). Consider two such paths

γ1, γ2, consisting of edges ai and bj respectively, which are close only near their
endpoints. The height variance is then the sum of the covariances of ai and bj :

σ(h(f1) − h(f2)) =
∑
i,j

Pr(ai and bj) − Pr(ai) Pr(bj).

However these covariances are exponentially small except when both ai and
bj are near the endpoints f1 or f2. In particular the above summation is
approximately a geometric series, which has sum bounded independently of
the distance between f1 and f2.

4.6. Loops surrounding the origin. Smooth phases are characterized by
their bounded height variance or exponential decay of correlation. Here is
another characterization of smooth phases in terms of loops in the union of
two perfect matchings sampled independently.

Theorem 4.8. A nonfrozen EGM µ is smooth if and only if when two
perfect matchings M1 and M2 are chosen independently from µ, there are al-
most surely only finitely many cycles in M1 ∪ M2 that surround the origin.
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Similarly, a nonfrozen EGM is rough if and only if when two perfect match-
ings M1 and M2 are chosen independently from µ, there are almost surely
infinitely many cycles in M1 ∪ M2 that surround the origin.

Proof. Since having infinitely many cycles surround the origin is a
translation-invariant event, it is clear that if µ is an EGM, then there are
either µ-almost-surely infinitely many cycles or µ-almost-surely finitely many
cycles surrounding the origin. If the former is the case, it is easy to see that
the variance is unbounded; to see this, simply use the fact that, conditioned
on the positions of the cycles, the two orientations of a given cycle (i.e., which
alternative set of edges in the cycle belongs to which of the Mi) are equally
likely, and orientations of the cycles are independent of one another. (Note
that the orientation of the cycle determines whether the height difference of
the two height functions goes up or down when we cross that cycle.)

Now suppose that there are almost surely only finitely many cycles sur-
rounding the origin. Lemma 8.4.3 of [18] further implies that if two perfect
matchings M1 and M2 are sampled independently from µ(s, t), then the union
M1 ∪ M2 almost surely contains no infinite paths. It follows that the height
difference between the two height functions is constant on the infinite cluster
of faces that are not enclosed in any loops. The proof can now be completed
using the fact that the height difference distribution is log concave, so that the
expected number of cycles surrounding the origin is finite. Specifically, Lemma
8.3.4 of [18] implies that µ is smooth with respect to the (differently formu-
lated but actually equivalent) definition given in Chapter 8 of [18], and Lemmas
8.1.1 and 8.1.2 imply that the height difference variances remain bounded in
this case.

5. Maximality of spectral curves

5.1. Harnack curves. The characteristic polynomial P (z, w) has real co-
efficients and, hence, the spectral curve P (z, w) = 0 is a real plane curve—the
zero set of a real bivariate polynomial (in fact, it is more natural to consider the
spectral curve as embedded in the toric surface corresponding to the Newton
polygon of P ). While all smooth complex curves of given genus are topologi-
cally the same, the number and the configuration of the ovals of a real plane
curve can be very different. In particular, there is a distinguished class of real
plane curves, known as Harnack curves, which have the maximal number of
ovals (for given Newton polygon) in the, so to speak, best possible position.
These curves are also known as maximal curves and also as simple Harnack
curves. The precise topological definition of a Harnack curve can be found in
[14]; here we will use the following alternative characterization of a Harnack
curve obtained in [15]. Namely, a curve P (z, w) is Harnack if and only if the
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map from the curve to its amoeba is 2-to-1 over the amoeba interior (except
for a finite number of real nodes where it is 1-to-1). The main result of this
section is the following

Theorem 5.1. For any choice of nonnegative edge weights the spectral
curve P (z, w) = 0 is a Harnack curve.

Harnack curves form a very special and much studied class of curves.
Several characterizations and many beautiful properties of these curves can be
found in [14], [15] (see also [12]). We will see that several of them have a direct
probabilistic interpretation.

5.2. Proof of maximality. Maximality is an important property and several
proofs of it are available. In many respects, it resembles the notion of total
positivity [4], [7] and the proof given below exploits this analogy. Proofs of
maximality based on different ideas can be found in [12], [13].

First observe that by the two-to-one property, being Harnack is a closed
condition (since being not Harnack is clearly open), hence it is enough to prove
that spectral curve is Harnack for a generic choice of weights. Furthermore, any
periodic planar bipartite graph can be obtained, after using “vertex expansions
and contractions”, as a limit case of the periodically weighted hexagonal lattice
when some of the edge weights are zero. (If a graph has a degree-2 vertex,
removing this vertex and gluing its neighbors into a single vertex results in a
graph with the same dimer coverings. This is a vertex contraction; a vertex
expansion is the reverse of this process.) It is therefore, enough to consider the
case of generic periodic weights on the hexagonal lattice with n×n fundamental
domain.

z−1 z−1 z−1

w

w

w

Figure 9. The solution to K(z, w)f = 0 can be constructed layer by layer

By definition, P (z, w) is a determinant of an n2 × n2 matrix K(z, w)
whose rows and columns are indexed by the n2 white and black vertices in
the fundamental domain. We can also write P (z, w) as a determinant of an
n× n matrix using transfer matrices as follows. The equation detK(z, w) = 0
means that there exists a nonzero function f on black vertices annihilated by
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the operator K(z, w). We can construct such a function row by row as follows:
given the values of f on a horizontal row of black vertices as in Figure 9,
the equation Kf = 0 determines the values of f on the row below it. The
corresponding linear map is given by −T (w), where T (w) is the transfer matrix
of the form

T (w) =


a1 b1

a2 b2

a3 b3

. . . . . .
bn w an

 , ai, bi > 0 .(12)

Here ai are the weights on the edges in the NE-SW direction, bi are weights
on the NW-SE edges, and we may assume using a gauge transformation that
the weights on the vertical edges are 1. Iterating this procedure once around
the period, we get a consistency relation, which gives that P (z, w) = 0 only if

0 = P2(z, w) = det (z − (−1)n T1(w) · · ·Tn(w)) .

Since for generic weights both P and P2 are both monic polynomials of degree
d in z, with the same roots (and the roots are distinct, at least for w sufficiently
large), we must have P = P2.

Suppose now that for some point (x, y) ∈ R2 the torus {|z| = ex, |w| = ey}
contains more than two points of the curve P (z, w). By changing the magnetic
field, we can assume that y = 0. That is, we can assume that for a pair of
points (z1, w1) and (z2, w2) on the spectral curve we have

|w1| = |w2| = 1 , w2 = w1, w̄1 , |z1| = |z2| .
Since being not Harnack is an open condition, we can find a nearby curve for
which both w1 and w2 are roots of unity. It is easy to see (a more general
statement is proved in [12]) that we can achieve this by a small perturbation of
the dimer weights. So, we can assume that wm

1 = wm
2 = 1 for some integer m.

Taking nm as the new horizontal period, we find that the matrix

M = T1(1) · · ·Tn(1)(13)

has more than two eigenvalues of the same absolute value. We will now show
that this is impossible.

This follows from the following lemma which is a version of a standard
argument in the theory of total positivity (cf. [4]).

Lemma 5.2. Suppose that all odd-size minors of a matrix M are nonneg-
ative and that there exists k such that all odd-size minors of Mk are positive.
Then the eigenvalues of M have the following form

λ1 > |λ2| ≥ |λ3| > |λ4| ≥ |λ5| > |λ6| ≥ |λ7| > . . . .
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Remark, in particular, that if |λ2k| > |λ2k+1| then both of these eigenvalues
are real.

Proof. Let us order the eigenvalues of M so that

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . . .

Since all matrix elements of M are nonnegative and all matrix elements of Mk

are positive, the Perron-Frobenius theorem implies that λ1 is simple, positive,
and that

λ1 > |λi| , i > 1 .

Now consider the action of the matrix M in the third exterior power Λ3Rn of
the original space Rn. The matrix elements of this action are the 3× 3 minors
of M and, hence, Perron-Frobenius theorem again applies. The eigenvalues of
this action are the numbers

λiλjλk , 1 ≤ i < j < k ≤ n .

It follows that the number λ1λ2λ3 is real, positive, and greater in absolute
value than λ1λ2λi for any i > 3. It follows that

|λ3| > |λ4| .

Iteration of this argument concludes the proof.

It is immediate to see that any matrix of the form Ti(1) satisfies the
hypothesis of the lemma. Matrices with nonnegative minors of any given order
form a semigroup because, s× s minors of a matrix A are the matrix elements
of A acting in the sth exterior power of the original space. It follows that all
odd-size minors of (13) are nonnegative. In fact, all odd-size minors of Mk

are positive for some large enough k, which can be seen as follows. Consider a
graph with vertices indexed by s-element subsets of {1, . . . , n}. Two vertices
are joined by an edge if the corresponding minor of M is positive. It is clear
that this graph is connected and aperiodic, that is, some power of its adjacency
matrix has positive entries. This concludes the proof.

5.3. Implications of maximality.

5.3.1. Phase diagram of a dimer model. The two-to-one property implies
the following [14], [15]:

(i) the only singularities of the amoeba map (points where the map is not a
local diffeomorphism) are folds over the boundary of the amoeba;

(ii) the boundary of the amoeba is the image of the real locus of the spectral
curve;
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(iii) to any lattice point in the interior of the Newton polygon corresponds
either a bounded component of the amoeba complement or an isolated
real node of the spectral curve. In particular, the number of holes in the
amoeba equals the geometric genus of the curve1.

For a general plane curve, more complicated singularities of the amoeba
map are possible, which are then reflected in more complicated singularities of
the Ronkin function and, hence, of its Legendre dual. In fact, we have used the
two-to-one property in Section 4 in the classification of the phases of the dimer
model. In this sense, the probabilistic meaning of maximality is the absence
of any exotic phases with anomalous decay of correlations.

Part (iii) implies that the gaseous phases persist unless the corresponding
component of the amoeba complement shrinks to a point and a nodal singu-
larity develops. In particular, generically, the spectral curve is smooth and all
gaseous phases are present. Conversely, if no gaseous phases are present then
the spectral curve has the maximal possible number of nodes and hence is a
curve of genus zero. It is shown in [12] that the latter case corresponds to
isoradial dimers studied in [11]. It is also shown in [12] that all Harnack curves
arise as spectral curves of some dimer model.

To summarize, part (iii) implies the following:

Theorem 5.3. The number of gaseous phases of a dimer model equals
the genus of the spectral curve. For a generic choice of weights, the dimer
model has a gaseous phase for every lattice point in the interior of the Newton
polygon N(P ) and a frozen phase for every lattice point on the boundary of
N(P ).

Part (ii) shows that the phase boundaries can be easily determined. Note
that the outer oval (the component of the real locus intersecting the coordinate
axes) of a Harnack curve is smooth and connected. It follows that any Harnack
curve is irreducible, that is, the polynomial P (z, w) is irreducible. Hence its
amoeba can be defined by a single inequality∏

P (±ex,±ey) ≤ 0 ,(14)

where the product is over all four choices of signs. Indeed, the product in
(14) has a simple zero at the amoeba boundary (by irreducibility) and, hence,
changes sign whenever we cross the boundary. Furthermore, generically, (14)
is positive when x or y is large. We remark that for a general, non-Harnack,
curve it is a rather nontrivial task to determine its amoeba, see the discussion
in [20].

1For a nodal curve, the geometric genus equals (2 − χ − # of nodes)/2, where χ is the
topological Euler characteristic.
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Using the interpretation of P (±1,±1) as the expectation of

(±1)hx(±1)hy(−1)hxhy

with respect to the measure µ1, see Section 3.1.3, we arrive at the following:

Theorem 5.4. The minimal free energy measure µ is smooth (that is,
frozen or gaseous) if the µ1-measure of one of the four H1(T2, Z/2Z) classes
of matchings of G1 exceeds 1

2 . If the µ1-measure equals 1/2, the measure is
smooth unless the spectral curve has a real node over the origin in the amoeba
(in which case µ is in a liquid phase).

For example, for the square-octagon lattice, the spectral curve is P =
5 + z + 1/z + w + 1/w, see (1). The measure µ is smooth: the four homology
classes have µ1-weights proportional to 5 : 2 : 2 : 0 (these are the weights of
the coefficients of monomials of P with exponents taken modulo 2). For the
square grid with 2× 2 fundamental domain, P (z, w) = 4 + z + 1/z + w + 1/w.
Even though the µ1-weight of 0 ∈ H1(T2, Z/2Z) is 1/2, the measure µ is in a
liquid phase since P (z, w) = 0 has a real node at the origin.

5.3.2. Universality of height fluctuations. In Theorem 4.5 we proved that
in a liquid phase the variance of the height function difference grows like π−1

times the logarithm of the distance. The proof of that theorem shows that the
constant in front of the logarithm is directly connected to the number of roots
of the characteristic polynomial on the unit torus. In particular, maximality
was used in the essential way to show that this constant is always π−1.

5.3.3. Monge-Ampère equation for surface tension. It follows from the
results of [15] that the Ronkin function F of a Harnack curve satisfies the
following Monge-Ampère equation

det
(

Fxx Fxy

Fyx Fyy

)
=

1
π2

,(15)

for any (x, y) in the interior of the amoeba. By the well-known duality for the
Monge-Ampère equation, this implies the analogous equation for the surface
tension function.

Theorem 5.5.

det
(

σxx σxy

σyx σyy

)
= π2 .(16)

It should be pointed out that in [6] it was argued that for certain class of
random surface models the equation (16) should be satisfied at any cusp of the
surface tension. It seems remarkable that in our case (16) is satisfied not just
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at a cusp but identically. For a general random surface model, we only expect
the left-hand side of (16) to be positive, by strict concavity.

The geometric meaning of the equations (15) and (16) is that the gradients
of F and σ, which are mutually inverse maps, are area-preserving, up to a
factor. This leads to another characterization of Harnack curves as curves with
amoebas of maximal possible area for given Newton polygon N(P ), namely
π2 times the area of N(P ). It would be interesting to find a probabilistic
interpretation of this.

5.3.4. Slopes and arguments. Recall that by the Corollary 3.8 the gradient
(s, t) of the Ronkin function at a point (Bx, By) ∈ R2 equals the slope of the
measure µ̃(Bx, By). Suppose that the point (Bx, By) is in the interior of the
amoeba and let (z0, w0) be one of its two preimages in the spectral curve.
Maximality connects the slope (s, t) with the arguments z and w as follows.

Theorem 5.6.

(s, t) = ± 1
π

(arg w0, arg z0) mod Z2 .

Proof.

s =
d

dBx

1
(2πi)2

∫∫
T2

log P (eBxz, eByw)
dz

z

dw

w

=
1

2πi

∫
|w|=eBy

(
1

2πi

∫
|z|=eBx

d log P

)
dw

w
.

The inner integral counts, for w fixed, the number of zeros of P (z, w) inside
{|z| = eBx}. As w varies over the circle the number of zeros is locally constant
with unit jumps whenever a zero crosses the circle. These jump points are
precisely the points w where P (z, w) has a root on T2, that is precisely the
two points w0 and w̄0 where (z0, w0) and its conjugate are the unique zeros of
P on T2. Thus the integral is

1
2π

∫ arg w0

− arg w0

ndφ +
∫ 2π−arg w0

arg w0

(n ± 1)dφ = ±arg w0

π
mod Z.

A similar argument applies for t.

6. Random surfaces and crystal facets

The goal of this section is to review some known facts about random
surfaces in order to say precisely what Theorem 3.6 and Theorem 4.1 imply
about crystal facets and random surfaces based on perfect matchings. We
begin with some analytical results.
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6.1. Continuous surface tension minimizers. A standard problem of vari-
ational calculus is the following: given a bounded open domain D ⊂ R2 and
any strictly convex surface tension function σ : R2 → R, find the continuous
function f : D → R whose (distributional) gradient minimizes the surface
tension integral

I(f) =
∫

D
σ(∇f(x)) dx

subject to the boundary condition that f extends continuously to a function
f0 on the boundary of D and the volume condition that∫

D
f(x) = B

for some constant B. If σ is the surface tension of one of the dimer models
described in this paper, then σ(u) = ∞ whenever u lies outside of the closure
of the Newton polygon N(P ), so that f is necessarily Lipschitz. The following
result is well known (see [2], [18] for details and references).

Proposition 6.1. If there exists any f̃ , satisfying prescribed volume and
boundary constraints and satisfying I(f̃) < ∞, then the surface tension mini-
mizer f is unique and its gradient is almost everywhere defined.

Both ∇σ and ∇f are functions from R2 to R2. The Euler-Lagrange equa-
tion for the functional I(f) takes the following form:

Proposition 6.2. Let f be the surface tension minimizer described above.
Then whenever x ∈ D, f is C2 at x, and σ is smooth at f(x), we have:

div(∇σ ◦ ∇f(x)) = C(17)

for some constant C, which depends on B and f0. If f is also the minimal
surface tension function when the volume constraint is ignored, then (17) holds
with C = 0.

The archetypal solution to (17) is the Legendre dual of σ, which, in our
setting, is the Ronkin function F . By construction

∇σ ◦ ∇F = Id

throughout the amoeba—in particular, the divergence is constant. By analogy
with the case of the Ronkin function we say that f has a facet of slope u if ∇f

is equal to u on some open subset of D.
If f0 is linear of any slope u on the boundary of D, then it is easy to

see that the minimal surface tension function, ignoring the volume constraint,
is linear of slope u, has (trivially) a facet of slope u, and satisfies (17) with
C = 0. If we require, however, that C = 0, so that the volume constraint
exerts some nonzero amount of pressure (upward or downward) on the surface,
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then Proposition 6.2 and Corollary 3.7 imply that the slope of any facet of f

must be a lattice point inside N(P ). In other words, the facet slopes of the
Ronkin function F represent all possible facet slopes of the dimer model.

6.2. Concentration inequalities for discrete random surfaces. In this sec-
tion, we aim to show that the surface tension minimizing shapes and facets
described in Section 6.1 are approximated by perfect-matching-based discrete
random surfaces. First, suppose that D is a domain in R2, that f0 is a continu-
ous Lipschitz function defined on ∂D, and that f is a surface tension minimizer
(with no volume constraint) which agrees with f0 on the boundary.

Next, denote by 1
nG the weighted infinite graph G whose embedding into

R2 has been re-scaled by a factor of 1/n. For example, when G = Z2, then 1
nG

is a grid mesh that is n times finer than G. Suppose that Dn is a sequence of
simply connected subgraphs of 1

nG that approximate (D, f) from the inside in
the sense that

1. The embedding of Dn is contained in D for all n.

2. The Hausdorff distance between the boundary of Dn and the boundary
of D tends to zero in n.

3. Each Dn admits at least one perfect matching for which the height func-
tion h0

n on the boundary of Dn is such that sup |h0
n − f | tends to zero in

n (where h0
n is treated as a function on a subset of the points in D, by

letting hn(x)0 denote the height at the face of Dn containing x).

For each n, define νn to be the Boltzmann measure on perfect matchings
Mn of Dn (i.e., the probability of each matching M is proportional to E(M),
as defined in Section 2.2). Intuitively, we would expect that for sufficiently
large values of n, the normalized function hn/n (where hn is sampled from νn)
will closely approximate the continuous function f with high νn probability.
A version of this statement is proved in [2] in the case G = Z2. Analogous
but more general statements (in the form of large deviations principles) are
discussed in Chapter 7 of [18] (see the paragraphs on Lipschitz potentials in
Sections 7.3 through 7.5). In both [2] and [18], the results imply that, for
a fixed value of ε, νn{sup|hn/n − f | > ε} tends to zero exponentially in n2.
Also, if x ∈ D is a point at which ∇f(x) = u, we conjecture that the local
statistics of hn, near the point x, are those of the Gibbs measure µu1,u2 . More
precise versions of this statement can be found in Chapter 7 [18]. The issue of
weighting by enclosed volume is addressed briefly in Section 7.5 of [18].
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