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Classical and modular approaches

to exponential Diophantine equations
I. Fibonacci and Lucas perfect powers

By Yann Bugeaud, Maurice Mignotte, and Samir Siksek*

Abstract

This is the first in a series of papers whereby we combine the classical
approach to exponential Diophantine equations (linear forms in logarithms,
Thue equations, etc.) with a modular approach based on some of the ideas
of the proof of Fermat’s Last Theorem. In this paper we give new improved
bounds for linear forms in three logarithms. We also apply a combination of
classical techniques with the modular approach to show that the only perfect
powers in the Fibonacci sequence are 0, 1, 8 and 144 and the only perfect
powers in the Lucas sequence are 1 and 4.

1. Introduction

Wiles’ proof of Fermat’s Last Theorem [53], [49] is certainly the most
spectacular recent achievement in the field of Diophantine equations. The proof
uses what may be called the ‘modular’ approach, initiated by Frey ([19], [20]),
which has since been applied to many other Diophantine equations; mostly—
though not exclusively—of the form

axp + byp = czp, axp + byp = cz2, axp + byp = cz3, . . . (p prime).
(1)

The strategy of the modular approach is simple enough: associate to a putative
solution of such a Diophantine equation an elliptic curve, called a Frey curve,
in a way that the discriminant is a p-th power up to a factor which depends
only on the equation being studied, and not on the solution. Next apply
Ribet’s level-lowering theorem [43] to show that the Galois representation on
the p-torsion of the Frey curve arises from a newform of weight 2 and a fairly
small level N say. If there are no such newforms then there are no nontrivial
solutions to the original Diophantine equation. (A solution is said to be trivial
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if the corresponding Frey curve is singular.) Occasionally, even when one has
newforms of the predicted level there is still a possibility of showing that it is
incompatible with the original Galois representation (see for example [18], [5],
[21]), though there does not seem to be a general strategy that is guaranteed
to succeed.

A fact that has been underexploited is that the modular approach yields a
tremendous amount of local information about the solutions of the Diophantine
equations. For equations of the form (1) it is perhaps difficult to exploit this
information successfully since we neither know of a bound for the exponent p,
nor for the variables x, y, z. This suggests that the modular approach should
be applied to exponential Diophantine equations; for example, equations of the
form

axp + byp = c, ax2 + b = cyp, . . . (p prime).

For such equations, Baker’s theory of linear forms in logarithms (see the book
of Shorey and Tijdeman [46]) gives bounds for both the exponent p and the
variables x, y. This approach through linear forms in logarithms and Thue
equations, which we term the ‘classical’ approach, has undergone substantial
refinements, though often it still yields bounds that can only be described as
‘number theoretical’.

The present paper is the first in a series of papers whose aims are the
following:

(I) To present theoretical improvements to various aspects of the classical
approach.

(II) To show how local information obtained through the modular approach
can be used to reduce the size of the bounds, both for exponents and for
variables, of solutions to exponential Diophantine equations.

(III) To show how local information obtained through the modular approach
can be pieced together to provide a proof that there are no missing so-
lutions less than the bounds obtained in (I), (II).

(IV) To solve various outstanding exponential Diophantine equations.

Our theoretical improvement in this paper is a new and powerful lower
bound for linear forms in three logarithms. Such a lower bound is often the
key to bounding the exponent in an exponential Diophantine equation. This is
our choice for (I). Our choice for (IV) is the infamous problem of determining
all perfect powers in the Fibonacci and Lucas sequences. Items (II), (III) will
be present in this paper only in the context of solving this problem. A sequel
combining the classical and modular approaches for Diophantine equations of
the form x2 + D = yp has just been completed [13].
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We delay presenting our lower bound for linear forms in three logarithms
until Section 12, as this is somewhat technical. Regarding the Fibonacci and
Lucas sequences we prove the following theorems.

Theorem 1. Let Fn be the n-th term of the Fibonacci sequence defined
by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0.

The only perfect powers in this sequence are F0 = 0, F1 = 1, F2 = 1, F6 = 8
and F12 = 144.

Theorem 2. Let Ln be the n-th term of the Lucas sequence defined by

L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for n ≥ 0.

The only perfect powers in this sequence are L1 = 1 and L3 = 4.

It is appropriate to point out that equations Fn = yp and Ln = yp have
previously been solved for small values of the exponent p by various authors.
We present a brief survey of known results in Section 2.

The main steps in the proofs of Theorems 1 and 2 are as follows:

(i) We associate Frey curves to putative solutions of the equations Fn = yp

and Ln = yp with even index n to Frey curves and apply level-lowering.
This, together with some elementary arguments, is used to reduce to the
case where the index n satisfies n ≡ ±1 (mod 6).

(ii) Then we may suppose that the index n in the equations Fn = yp and
Ln = yp is prime. In the Fibonacci case this is essentially a result proved
first by Pethő [40] and Robbins [44] (independently).

(iii) We apply level-lowering again under the assumption that the index n is
odd. We are able to show using this that n ≡ ±1 (mod p) for p < 2×108

in the Fibonacci case. In the Lucas case we prove that n ≡ ±1 (mod p)
unconditionally.

(iv) We show how to reduce the equations Fn = yp and Ln = yp to Thue
equations. We do not solve these Thue equations completely, but com-
pute explicit upper bounds for their solutions using classical methods (see
for example [10]). This provides us with upper bounds for n in terms of
p. In the Lucas case we need the fact that n ≡ ±1 (mod p) to obtain a
simpler equation of Thue type.

(v) We show how the results of the level-lowering of step (iii) can be used,
with the aid of a computer program, to produce extremely stringent
congruence conditions on n. For p ≤ 733 in the Fibonacci case, and for
p ≤ 281 in the Lucas case, the congruences obtained are so strong that,
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when combined with the upper bounds for n in terms of p obtained in
(iv), they give a complete resolution for Fn = yp and Ln = yp.

(vi) It is known that the equation Ln = yp yields a linear form in two loga-
rithms. Applying the bounds of Laurent, Mignotte and Nesterenko [27]
we show that p ≤ 281 in the Lucas case. This completes the determina-
tion of perfect powers in the Lucas sequences.

(vii) The equation Fn = yp yields a linear form in three logarithms. However
if p < 2×108 then by step (iii) we know that n ≡ ±1 (mod p). We show
how in this case the linear form in three logarithms may be rewritten as
a linear form in two logarithms. Applying [27] we deduce that p ≤ 733,
which is the case we have already solved in step (v).

(viii) To complete the resolution of Fn = yp it is enough to show that p <

2× 108. We present a powerful improvement to known bounds for linear
forms in three logarithms. Applying our result shows indeed that p <

2 × 108 and this completes the determination of perfect powers in the
Fibonacci sequence.

Let us make some brief comments.
The condition n ≡ ±1 (mod p) obtained after step (iii) cannot be strength-

ened. Indeed, we may define Fn and Ln for negative n by the recursion formulae
Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln. We then observe that F−1 = 1 and
L−1 = −1. Consequently, F−1, F1, L−1 and L1 are p-th powers for any odd
prime p. Thus equations Fn = yp and Ln = yp do have solutions with n ≡ ±1
(mod p).

The strategy of combining explicit upper bounds for the solutions of Thue
equations with a sieve has already been applied successfully in [12]. The idea
of combining explicit upper bounds with the modular approach was first ten-
tatively floated in [48].

A crucial observation for the proof of Theorem 1 is the fact that, with a
modicum of computation, we can indeed use linear forms in two logarithms,
and then get a much smaller upper bound for the exponent p.

The present paper is organised as follows. Section 2 is devoted to a survey
of previous results. Sections 3 and 4 are concerned with useful preliminaries.
Steps (i) and (ii) are treated in Sections 5 and 6, respectively. Sections 7 and
8 are devoted to step (iii). Sections 9 and 10 are concerned with Steps (iv)
and (v). Section 11 deals with steps (vi) and (vii), and finishes the proof of
Theorem 2. Finally, the proof of Theorem 1 is completed in Section 13, which
deals with step (viii), by applying estimates for linear forms in three logarithms
proved in Section 12.

The computations in the paper were performed using the computer pack-
ages PARI/GP [2] and MAGMA [7]. The total running time for the various compu-
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tational parts of the proof of Theorem 1 is roughly 158 hours on a 1.7 GHz Intel
Pentium 4. By contrast, the total time for the corresponding computational
parts of the proof of Theorem 2 is roughly six hours.

2. A brief survey of previous results

In this section we would like to place our Theorems 1 and 2 in the context
of other exponential Diophantine equations. We also give a very brief survey
of results known to us on the problem of perfect powers in the Fibonacci and
Lucas sequences, though we make no claim that our survey is exhaustive.

Thanks to Baker’s theory of linear forms in logarithms, we know (see
for example the book of Shorey and Tijdeman [46]) that many families of
Diophantine equations have finitely many integer solutions, and that one can
even compute upper bounds for their absolute values. These upper bounds
are however huge and do not enable us to provide complete lists of solutions
by brutal enumeration. During the last decade, thanks to important progress
in computational number theory (such as the LLL-algorithm) and also in the
theory of linear forms in logarithms (the numerical constants have been sub-
stantially reduced in comparison to Baker’s first papers), we are now able to
solve completely some exponential Diophantine equations. Perhaps the most
striking achievement obtained via techniques from Diophantine approximation
is a result of Bennett [4], asserting that, for any integers a, b and p ≥ 3 with
a > b ≥ 1, the Diophantine equation

|aXp − bY p| = 1

has at most one solution in positive integers X and Y .
Among other results in this area obtained thanks to (at least in part) the

theory of linear forms in logarithms, we note that Bugeaud and Mignotte [11]
proved that the equation (10n − 1)/(10 − 1) = yp has no solution with y > 1,
and that Bilu, Hanrot and Voutier [6] solved the long-standing problem of the
existence of primitive divisors of Lucas–Lehmer sequences.

Despite substantial theoretical progress and the use of techniques com-
ing from arithmetic geometry and developed in connection with Fermat’s Last
Theorem (see for example the paper of Bennett and Skinner [5]), some cele-
brated Diophantine equations are still unsolved. We would particularly like to
draw the reader’s attention to the following three equations:

x2 + 7 = yp, p ≥ 3,(2)

x2 − 2 = yp, p ≥ 3,(3)

and

Fn = yp, n ≥ 0 and p ≥ 2,(4)
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where Fn is the n-th term in the Fibonacci sequence. Let us explain the
difficulties encountered with equations (2), (3) and (4). Classically, we first
use estimates for linear forms in logarithms in order to bound the exponent p,
and then we use a sieve. Equations (2) and (4) yield linear forms in three
logarithms, and thus upper bounds for p of the order of 1013, at present far
too large to allow the complete resolution of (2) and (4) by classical methods
(however, a promising attempt at equation (2) is made in [48]). The case
of (3) is different, since estimates for linear forms in two logarithms yield
that n is at most 164969 [22], an upper bound which can certainly be (at
least) slightly improved. There is however a notorious difficulty in (3) and (4),
namely the existence of solutions 12 − 2 = (−1)p and F1 = 1p for each value of
the exponent p. These small solutions prevent us from using a sieve as efficient
as the one used for (2). A natural way to overcome this is to derive, from (3)
and (4), Thue equations, though these are of degree far too large to allow for
a complete resolution by classical methods alone.

As explained in the introduction, the present work is devoted to equa-
tion (4), and to the analogous equation for the Lucas sequence.

As for general results, Pethő [39] and, independently, Shorey and Stewart
[45] proved that there are only finitely many perfect powers in any nontrivial
binary recurrence sequence. Their proofs, based on Baker’s theory of linear
forms in logarithms, are effective but yield huge bounds. We now turn to
specific results on the Fibonacci and Lucas sequences.

• The only perfect squares in the Fibonacci sequence are F0 = 0, F1 =
F2 = 1 and F12 = 144; this is a straightforward consequence of two
papers by Ljunggren [29], [30], [32]. This has been rediscovered by Cohn
[14] (see the Introduction to [31]) and Wyler [54].

• London and Finkelstein [33] showed that the only perfect cubes in the
Fibonacci sequence are F0 = 0, F1 = F2 = 1 and F6 = 8. This was
reproved by Pethő [40], using a linear form in logarithms and congruence
conditions.

• For m = 5, 7, 11, 13, 17, the only m-th powers are F0 = 0, F1 = F2 = 1.
The case m = 5 is due to Pethő [41], using the method described in
[40]. It has been reproved by McLaughlin [34] by using a linear form in
logarithms together with the LLL algorithm. The other cases are solved
in [34] with this method.

• If n > 2 and Fn = yp then p < 5.1 × 1017; this was proved by Pethő
using a linear form in three logarithms [42]. In the same paper he also
showed that if n > 2 and Ln = yp then p < 13222 using a linear form in
two logarithms.
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• Another result which is particularly relevant to us is the following: If
p ≥ 3 and Fn = yp for integer y then either n = 0, 1, 2, 6 or there is
a prime q | n such that Fq = yp

1 , for some integer y1. This result was
established by Pethő [40] and Robbins [44] independently.

• Cohn [15] proved that L1 = 1 and L3 = 4 are the only squares in the
Lucas sequence.

• London and Finkelstein [33] proved that L1 = 1 is the only cube in the
Lucas sequence.

3. Preliminaries

We collect in this section various results which will be useful throughout
this paper. Our problem of determining the perfect powers in the Fibonacci
and Lucas sequences naturally reduces to the problem of solving the following
pair of equations:

Fn = yp, n ≥ 0, and p prime,(5)

and

Ln = yp, n ≥ 0, and p prime.(6)

Throughout this paper we will use the facts that

Fn =
ωn − τn

√
5

, Ln = ωn + τn,(7)

where

ω =
1 +

√
5

2
, τ =

1 −
√

5
2

.(8)

This quickly leads us to associate the equations Fn = yp and Ln = yp with
auxiliary equations as the following two lemmas show.

Lemma 3.1. Suppose that Fn = yp. If n is odd then

5y2p = L2
n + 4,(9)

and if n is even then

5y2p = L2
n − 4.(10)

Lemma 3.2. Suppose that Ln = yp. If n is odd then

y2p = 5F 2
n − 4,(11)

and if n is even then

y2p = 5F 2
n + 4.(12)
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For a prime l �= 5 define

M(l) =
{

l − 1, if l ≡ ±1 (mod 5),
2(l + 1), if l ≡ ±2 (mod 5).

(13)

We will need the following two lemmas.

Lemma 3.3. Suppose that l �= 5 is a prime and n ≡ m (mod M(l)). Then

Fn ≡ Fm (mod l) and Ln ≡ Lm (mod l).

Proof. Write O for the ring of integers of the field Q(
√

5). Recall, by (7),
that Fn and Ln are expressed in terms of ω, τ . Let π be a prime in O dividing l.
To prove the lemma all we need to show is that

ωM(l) ≡ τM(l) ≡ 1 (mod π).

If l ≡ ±1 (mod 5) then 5 is a quadratic residue modulo l. The lemma follows
immediately in this case from the fact that (O/πO)∗ ∼= F∗

l and so has order
l − 1.

Now suppose that l ≡ ±2 (mod 5). Note that

ωl ≡ 1l + 5
l−1
2

√
5

2l
≡ 1 −

√
5

2
≡ τ (mod π),

since 5 is a quadratic nonresidue modulo l. Thus

ωM(l) ≡ ω2(l+1) ≡ (ωτ)2 ≡ 1 (mod π),

and similarly for τ .

Lemma 3.4. The residues of Ln, Fn modulo 4 depend only on the residue
of n modulo 6, and are given by the following table

Ln (mod 4) Fn (mod 4)
n ≡ 0 (mod 6) 2 0
n ≡ 1 (mod 6) 1 1
n ≡ 2 (mod 6) 3 1
n ≡ 3 (mod 6) 0 2
n ≡ 4 (mod 6) 3 3
n ≡ 5 (mod 6) 3 1

Proof. The lemma is proved by a straightforward induction, using the
recurrence relations defining Fn and Ln.

4. Eliminating small exponents and indices

We will later need to assume that the exponent p and the index n in the
equations (5) and (6) are not too small. More precisely, in this section, we
prove the following pair of propositions.
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Proposition 4.1. If there is a perfect power in the Fibonacci sequence
not listed in Theorem 1 then there is a solution to the equation

Fn = yp, n > 25000 and p ≥ 7 is prime.(14)

Proposition 4.2. If there is a perfect power in the Lucas sequence not
listed in Theorem 2 then there is a solution to the equation

Ln = yp, n > 25000 and p ≥ 7 is prime.(15)

The propositions follow from the results on Fibonacci perfect powers
quoted in Section 2 together with Lemmas 4.3 and 4.4 below.

4.1. Ruling out small values of the index n.

Lemma 4.3. For no integer 13 ≤ n ≤ 25000 is Fn a perfect power. For
no integer 4 ≤ n ≤ 25000 is Ln a perfect power.

Proof. Suppose Fn = yp where p is some prime and n is in the range
13 ≤ n ≤ 25000. It is easy to see from (7), (8) that 2 ≤ p ≤ n log(ω)/ log(2).
Now fix n, p. We would like to show that Fn is not a p-th power.

Suppose l is a prime satisfying l ≡ ±1 (mod 5) and l ≡ 1 (mod p). The
condition l ≡ ±1 (mod 5) ensures that 5 is a quadratic residue modulo l. Then
one can easily compute Fn modulo l using (7) (without having to write down
Fn). Now let k = (l − 1)/p. If F k

n �≡ 1 (mod l) then we know that Fn is not a
p-th power.

We wrote a short PARI/GP program to check for n in the above range, and
for each prime 2 ≤ p ≤ n log(ω)/ log(2) that there exists a prime l proving that
Fn is not a p-th power, using the above idea. This took roughly 15 minutes on
a 1.7 GHz Pentium 4.

The corresponding result for the Lucas sequence is proved in exactly the
same way, with the program taking roughly 16 minutes to run on the same
machine.

4.2. Solutions with exponent p = 2, 3, 5. Later on when we come to
apply level-lowering we will need to assume that p ≥ 7. It is straightforward
to solve equations (5) and (6) for p = 2, 3, 5 with the help of the computer
algebra package MAGMA. We give the details for the Lucas case; the Fibonacci
case is similar. Alternatively we could quote the known results surveyed in
Section 2, although p = 5 for the Lucas case does not seem to be covered by
the literature.

Lemma 4.4. The only solutions to the equation (6) with p = 2, 3, 5 are
(n, y, p) = (1, 1, p) and (3, 2, 2).
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Proof. Suppose first that n is even. By Lemma 3.2 it is enough to show
that (12) does not have a solution. Suppose that (n, y, p) is a solution to (12).
Clearly Fn and y are odd, and y is not divisible by 5. Thus we have

(2 + Fn

√
−5) = a2p

for some ideal a of Z[
√
−5]. Now the class number of Z[

√
−5] is 2, and hence

a2 is a principal ideal. It follows that

2 + Fn

√
−5 = ε(u + v

√
−5)p

for some integers u, v, where ε = ±1 if p = 2 and ε = 1 otherwise. If p = 2
then we get ±2 = u2 − 5v2 which is impossible modulo 5. If p = 3 then

2 = u(u2 − 15v2),

and if p = 5 then
2 = u(u4 − 50u2v2 + 125v4).

It is easy to see that both of these are impossible. Next we turn to the case
where n is odd. Again by Lemma 3.2 it is enough to solve the equation (11).
Suppose first that p = 3, 5. If (n, y, p) is any solution to equation (11) then
we quickly see that y must be odd and

2 +
√

5Fn =

(
1 +

√
5

2

)r

(u + v
√

5)p.

For some r = 0, . . . , p− 1 we see that u and v are both integers or both halves
of odd integers. The computer algebra package MAGMA quickly solves all the
resulting Thue equations showing that y = ±1. This implies that for p = 3, 5
the only solution to equation (6) is the trivial one (1, 1, p).

Finally to deal with p = 2 we note that if (n, y) satisfies (11) then (X, Y ) =
(5y2, 25Fny) is an integral point on the elliptic curve Y 2 = X3 + 100X. Again
MAGMA quickly computes all integral points on this curve: these are (X, Y ) =
(0, 0), (5,±25), (20,±100), which yield the solutions (n, y) = (1, 1), (3, 2). This
completes the proof of the lemma.

5. Reducing to the case n ≡ ±1 (mod 6)

In this section we would like to reduce the study of equations (5) and (6)
to the special case where the index n satisfies n ≡ ±1 (mod 6). For Fibonacci
we show that if there is some solution (n, y, p) to (5) then there is another
solution with the same exponent p such that the index n satisfies the above
condition. For the Lucas sequence we prove the following stronger result.

Lemma 5.1. If (n, y, p) is a solution to the equation (6) with p ≥ 7 then
n ≡ ±1 (mod 6).
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For Fibonacci our result is weaker but still useful.

Lemma 5.2. If (n, y, p) is a solution to equation (5) with p ≥ 7 then either
n = 0 or n ≡ ±1 (mod 6) or else n = 2k with

(a) k ≡ ±1 (mod 6).

(b) Fk = Up and Lk = V p for some positive integers U and V .

The proofs of both Lemmas 5.1 and 5.2 make use of Frey curves and level-
lowering. Here and elsewhere where we make use of these tools, we do not
directly apply the original results in this field (Ribet’s level-lowering Theorem
[43], modularity of elliptic curves by Wiles and others [53], [8], irreducibility of
Galois representations by Mazur and others [36], etc.). We will instead quote
directly from the excellent recent paper of Bennett and Skinner [5], which is
concerned with equations of the form Axn + Byn = Cz2. In every instance we
will put our equation in this form before applying the results of [5].

Proof of Lemma 5.1. Suppose that (n, y, p) is a solution to equation (6)
with p ≥ 7. We observe first that n �≡ 0, 3 (mod 6). For in this case Lemma 3.4
implies that both Fn and Ln are even, and hence by Lemma 3.2 either 5 or −5
is a 2-adic square, which is not the case.

We now restrict our attention to n ≡ 2, 4 (mod 6) and p ≥ 7 and show
that this leads to a contradiction. This is enough to prove the lemma. Let

Gn =
{

−Fn if n ≡ 2 (mod 6)
Fn if n ≡ 4 (mod 6).

It follows from Lemma 3.2 that

y2p = 5Gn
2 + 4.

We associate to our solution (n, y, p) of (6) with n ≡ 2, 4 (mod 6) the Frey
curve

En : Y 2 = X3 + 5GnX2 − 5X.(16)

Let E be the elliptic curve 100A1 in Cremona’s tables [17]; E has the following
model:

E : Y 2 = X3 − X2 − 33X + 62.

Write ρp(E) for the Galois representation

ρp(E) : Gal(Q/Q) → Aut(E[p])

on the p-torsion of E, and let ρp(En) be the corresponding Galois representa-
tion for En.

Applying the results of [5, §§2, 3], we see that ρp(En) arises from a cuspi-
dal newform of weight 2, level 100, and trivial Nebentypus character. However
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using the computer algebra package MAGMA we find that the dimension of new-
forms of weight 2 and level 100 is one. Moreover the curve E above is (up to
isogeny) the unique elliptic curve of conductor 100. Thus ρp(En) and ρp(E)
are isomorphic. It follows from this, by [5, Prop. 4.4], that 5 does not divide
the denominator of the j-invariant of E. This is not true as j(E) = 16384/5,
giving us a contradiction.

For the convenience of the reader we point out that in Bennett and Skin-
ner’s notation:

A = 1, B = −4, C = 5, a = y2, b = 1, c = Gn.

Lemma 3.4 and our definition of Gn above imply that c ≡ 3 (mod 4) which is
needed to apply the results of Bennett and Skinner. This completes our proof
of Lemma 5.1.

Proof of Lemma 5.2. Suppose that (n, y, p) is a solution to equation (5)
with n �= 0 and p ≥ 7. By Lemma 3.4 we see that n �≡ 3 (mod 6). Suppose
then that n �≡ ±1 (mod 6). Clearly n = 2k for some integer k. It is well-known
and easy to see from (7) that Fn = F2k = FkLk. It is also easy to see that the
greatest common divisor of Fk and Lk is either 1 or 2. The crux of the proof
is to show that if Fn = yp then Fn is odd.

Thus suppose that Fn (and hence y) is even. Lemma 3.2 tells us that
5y2p + 4 = L2

n. Since y even, we see that 2 ‖Ln. Let z = y/2 and

x =
{

Ln/2, if Ln ≡ 2 (mod 8),
−Ln/2, if Ln ≡ 6 (mod 8) .

Thus x ≡ 1 (mod 4) and

22p−2 · 5z2p + 1 = x2.

Following [5, §2] we associate to this equation the Frey curve

Y 2 + XY = X3 +
(

x − 1
4

)
X2 + 22p−8 · 5z2pX.

Applying level-lowering [5, §3] shows that the Galois representation arises from
a cusp form of weight 2 and level 10. Since there are no such cusp forms we
get a contradiction. (This is essentially the same argument used in the proof
of Fermat’s Last Theorem.) It is noted that the argument here fails for n = 0
since in this case the Frey curve is singular.

We deduce that Fn is odd, so that Fk = Up and Lk = V p for some positive
integers U, V . By Lemma 5.1 we know that k ≡ ±1 (mod 6). This completes
the proof of Lemma 5.2.
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6. Reduction to the prime index case

In this section we reduce our problem to the assumption that the index n

is prime, as in the following pair of propositions.

Proposition 6.1. If there is a perfect power in the Fibonacci sequence
not listed in Theorem 1 then there is a solution to the equation

Fn = yp, n > 25000, p ≥ 7 with n, p prime.(17)

Proposition 6.2. If there is a perfect power in the Lucas sequence not
listed in Theorem 2 then there is a solution to the equation

Ln = yp, n > 25000, p ≥ 7 with n, p prime.(18)

After we prove these two propositions the remainder of this paper will be
devoted to showing that there are no solutions to equations (17) and (18).

Proof of Proposition 6.1. If Fn = yp with n odd then this is just the result
of Pethő and Robbins quoted in Section 2 together with our Proposition 4.1.
Suppose n = 2k. By Lemma 5.2 we know that k is odd and Fk = Up for some
integer U . Now simply apply the result of Pethő and Robbins again, together
with Proposition 4.1.

Proof of Proposition 6.2. Suppose that Ln = yp where n �= 1, 3 and p ≥ 7.
By Lemma 5.1 we know that n ≡ ±1 (mod 6), and so n is odd. If n is prime
then the result follows from Proposition 4.2. Thus suppose that n is composite
and let q be its smallest prime factor. Write n = kq, where k > 1. Then
Ln = yp can be rewritten as

(ωk − ω−k)(ωk(q−1) + ωk(q−3) + · · · + ω−k(q−3) + ω−k(q−1)) = ωn − ω−n = yp.

(19)

It is straightforward to see that the two factors on the left-hand side are in Z
and that their greatest common factor divides q. [Proof: If this gcd is d then
ω2k ≡ 1 (mod d) and ωk(q−1) + · · · + ω−k(q−1) ≡ q ≡ 0 (mod d), which shows
that d divides q.] Suppose that q divides the two factors. Then we see that

ω2k ≡ 1 (mod π)

for some prime π of O lying above q. But ω2 − 1 = ω and so ω2 �≡ 1 (mod π).
Therefore, the order of the image of ω2 in (O/π)∗ is not 1 and that it divides k

and hence n. But #(O/π)∗ is either q−1 or q2−1. Therefore, some nontrivial
factor of n divides (q−1)(q+1). Moreover, n is odd, and all odd prime factors
of (q − 1)(q + 1) are smaller than q. This contradicts the assumption that q is
the smallest prime factor of n.
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We deduce that q does not divide the factors on the right-hand side of (19).
Hence Lk = ωk − ω−k = yp

1 for some integer y1. If k is prime then the
proof is complete by Proposition 4.2. Otherwise we apply the above argument
recursively.

7. Level-lowering for Fibonacci — The odd index case

Previously we used a Frey curve and level-lowering to obtain information
about solutions of Fn = yp for even n. In this section we associate a Frey curve
to any solution of equation (17).

Suppose that (n, y, p) is a solution to (17). Thus n and p are primes with
p ≥ 7 and n > 25000. Let

Hn =
{

Ln, if n ≡ 1 (mod 6),
−Ln, if n ≡ 5 (mod 6).

(20)

Lemma 7.1. With notation as above, Hn ≡ 1 (mod 4) and

5y2p − 4 = H2
n.(21)

The lemma follows immediately from Lemma 3.1 and Lemma 3.4.
We associate to the solution (n, y, p) the Frey curve

En : Y 2 = X3 + HnX2 − X.(22)

We now come to level-lowering. Let E be the following elliptic curve
over Q:

E : Y 2 = X3 + X2 − X;(23)

this is curve 20A2 in Cremona’s tables [17]. As before, write ρp(E) for the
Galois representation on the p-torsion of E, and let ρp(En) be the correspond-
ing Galois representation on the p-torsion of En. If l is a prime, let al(E)
be the trace of the Frobenius of the curve E at l, and let al(En) denote the
corresponding trace of the Frobenius of En.

Proposition 7.2. Suppose that (n, y, p) is a solution to (17). With nota-
tion as above, the Galois representations ρp(En), ρp(E) are isomorphic. More-
over, for any prime l �= 2, 5,

(i) al(En) ≡ al(E) (mod p) if l � y,

(ii) l + 1 ≡ ±al(E) (mod p) if l | y.

Proof. First we apply the results of [5, §§2,3]. From these we know that
ρp(En) arises from a cuspidal newform of weight 2, level 20, and trivial Neben-
typus character. (In applying the results of [5] we need Lemma 7.1.) However
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S2(Γ0(20)) has dimension 1. Moreover, the curve E is (up to isogeny) the
unique curve of conductor 20. It follows that ρp(E) and ρp(En) are isomor-
phic.

The rest of the proposition follows from [24, Prop. 3], and the fact that if
l �= 2, 5 and l | y then l is a prime of multiplicative reduction for En and so
al(En) = ±1.

Proposition 7.2 is useful in several stages of our proof of Theorem 1. The
following proposition is needed later, and follows from Proposition 7.2 and
some computational work.

Proposition 7.3. If (n, y, p) is any solution to equation (17) with p <

2 × 108 then n ≡ ±1 (mod p).

The idea behind the proof is inspired by a method of Kraus (see [23]
or [48]) but there are added complications in our situation: for any prime p

the equation Fn = yp has the solution (n, y) = (1, 1), and also the solution
(n, y) = (−1, 1) (obtained by extrapolating the definition of the Fibonacci
sequence backwards).

Before proving Proposition 7.3 we start with a little motivation. Suppose
that p ≥ 7 is a prime, and we find some small positive integer k such that
l = 2kp + 1 is prime, and l ≡ ±1 (mod 5). It follows that 5 is a quadratic
residue modulo l, and we choose an element in Fl which we conveniently denote
by

√
5, satisfying (

√
5)2 ≡ 5 (mod l). We may then consider ω, τ (defined

in (8)) as elements of Fl.
Consider the equation Fn = yp. Now l − 1 = 2kp, with k small. This

means that yp comes from a small subset of Fl. We can now use the level-
lowering to predict the values of yp. Hopefully, we may find that the only
value of yp modulo l predicted by the level-lowering and also belonging to our
small subset are ±1. Under a further minor hypothesis we can show that this
implies that n ≡ ±1 (mod p). If a particular value of k does not work, we may
continue trying until a suitable k is found.

We make all this precise. Suppose as above that l, p are primes with
l = 2kp + 1 and l ≡ ±1 (mod 5). Define

A(p, k) =
{

ζ ∈ (F∗
l )

2p \{1} :
(

5ζ − 4
l

)
= 0 or 1

}
.

For each ζ ∈ A(p, k), choose an integer δζ such that

δ2
ζ ≡ 5ζ − 4 (mod l).

Let
Eζ : Y 2 = X3 + δζX

2 − X.

As above, E will denote the elliptic curve 20A2.
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Lemma 7.4. Suppose p ≥ 7 is a prime. Suppose there exists an integer k

satisfying the following conditions:

(a) The integer l = 2kp + 1 is prime, and l ≡ ±1 (mod 5).

(b) The order of ω modulo l is divisible by p; equivalently ω2k �≡ 1 (mod l).

(c) For all ζ ∈ A(p, k),

al(Eζ)2 �≡ al(E)2 (mod p).

Then any solution to the equation (17) must satisfy n ≡ ±1 (mod p).

Proof. Suppose p, k satisfy the conditions of the lemma, and that (n, y, p)
is a solution to equation (17). Let Hn and En be as above. Thus Hn satis-
fies (21).

We will prove first that l � y. Suppose that l | y. Then (ωn + ω−n)/
√

5 =
Fn = yp ≡ 0 (mod l) and so ω4n ≡ 1 (mod l). From (b) we deduce that
p | 4n. However, the integer n is prime, and so p = n. This is impossible, since
otherwise Fp = yp and clearly 1 < Fp < 2p. Hence l � y.

Next we will show that y2p ≡ 1 (mod l). Thus suppose that y2p �≡ 1
(mod l). By Lemma 7.1 there is some ζ ∈ A(p, k) such that y2p ≡ ζ (mod l).
Further δζ ≡ ±Hn (mod l). It follows that al(Eζ) = ±al(En). Applying
Proposition 7.2 again, we see that al(En) ≡ al(E) (mod p). These congruences
now contradict condition (c).

We have finally proved that y2p ≡ 1 (mod l). By equation (21) we see
that Hn ≡ ±1 (mod l). Since n is odd (in fact an odd prime), and τ = −ω−1,
we get from the definition of Hn that ω2n ± ωn − 1 ≡ 0 (mod l). Solving this
we find that ωn ≡ ±ω±1 (mod l). Thus

ω2(n+1) ≡ 1 (mod l) or ω2(n−1) ≡ 1 (mod l).

However, condition (b) of the lemma assures us that the order of ω modulo l

is divisible by p. This immediately shows that n ≡ ±1 (mod p) as required.

Proof of Proposition 7.3. We used a PARI/GP program to check that for
each prime in the range 7 ≤ p < 2 × 108, there is some k satisfying conditions
(a), (b) and (c) of Lemma 7.4. This took approximately 41 hours on a 1.7 GHz
Pentium 4. This proves the proposition.

8. Level-lowering for Lucas — The odd-index case

In this section we associate a Frey curve to solutions of (18) and apply
level-lowering. Our objective is to give the Lucas analogue of Propositions 7.2
and 7.3.
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Suppose then that (n, y, p) is a solution to (18), and associate to this
solution the Frey curve

En : Y 2 = X3 − 5FnX2 + 5X.(24)

Let E be the elliptic curve 200B1 in Cremona’s tables [17]. This has the
model

E : Y 2 = X3 + X2 − 3X − 2.(25)

Proposition 8.1. Suppose that (n, y, p) is a solution to (18). With nota-
tion as above, the Galois representations ρp(En), ρp(E) are isomorphic. More-
over, for any prime l �= 2, 5

(i) al(En) ≡ al(E) (mod p) if l � y,

(ii) l + 1 ≡ ±al(E) (mod p) if l | y.

Proposition 8.2. If (n, y, p) is any solution to equation (18) then n ≡
±1 (mod p).

The proof of Proposition 8.1 is by no means as simple as the proof of
the corresponding proposition for Fibonacci. However, given Proposition 8.1,
the proof of Proposition 8.2 is a fairly trivial modification of the proof of
Proposition 7.3 and we omit it. The reader will notice that in Proposition 7.3
(the Fibonacci case) we suppose that p < 2× 108, but in the Lucas case above
there is no such assumption. This is because we know by a result of Pethő
quoted in Section 2 that p < 13222, which also means that our program for
the proof of Proposition 8.2 takes only a few seconds. Later on we will prove
a much better bound for p in the Lucas case, namely p ≤ 283, but we do not
need such a good bound for the proof of Proposition 8.2.

8.1. Level-lowering. Let E1, . . . , E5 be the elliptic curves 200A1, 200B1,
200C1, 200D1, 200E1 in Cremona’s tables [17]. Note that E2 is just our elliptic
curve E defined above. We follow the notation of previous sections with regard
to Galois representations and traces of Frobenius.

Lemma 8.3. Suppose (n, y, p) is a solution to equation (18). With nota-
tion as above, the Galois representation ρp(En) is isomorphic to one of the
Galois representations ρp(E1), . . . , ρp(E5). Moreover, if ρp(En) is isomorphic
to ρp(Ei) then, for any prime l �= 2, 5,

(i) al(En) ≡ al(Ei) (mod p) if l � y.

(ii) l + 1 ≡ ±al(Ei) (mod p) if l | y.
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Proof. By the results of [5, §§2, 3], ρp(En) arises from a cuspidal newform
of weight 2, level 200, and trivial Nebentypus character. For this we need
Lemma 3.2 and using MAGMA we find that the dimension of newforms of weight
2 and level 200 is 5 and there are (up to isogeny) exactly five elliptic curves of
conductor 200, and these are the curves E1, . . . , E5 above.

The rest of the lemma follows from [24, Prop. 3], and the fact that if
l �= 2, 5 and l | y then l is a prime of multiplicative reduction for En and so
al(En) = ±1.

8.2. Eliminating newforms. Lemma 8.3 relates the Galois representation
of En to too many Galois representations. We now eliminate all but one of
them.

Suppose l �= 2, 5 is a prime. Define dl(En, Ei) = al(En)−al(Ei). Let M(l)
be given by (13). Recall that (Lemma 3.3) the residue class of Fn modulo l,
and hence the Frey curve En modulo l, depends only on the residue class of n

modulo M(l). We see that the following definitions make sense: let

Tl(Ei) =
{
m ∈ Z/M(l) : dl(Em, Ei) = 0

}
,

gl(Ei) = lcm
{
dl(Em, Ei) : m ∈ Z/M(l), m �∈ Tl(Ei)

}
,

and

hl(Ei) =
{

gl(Ei), if l ≡ ±2 (mod 5),
lcm(gl(Ei), l + 1 − al(Ei), l + 1 + al(Ei)), if l ≡ ±1 (mod 5).

Lemma 8.4. Suppose that l �= 2, 5 is a prime. If ρp(En) is isomorphic to
ρp(E(i)) then either the reduction of n modulo M(l) belongs to Tl(Ei) or else
p divides hl(Ei).

Proof. Recall that by Lemma 3.2, y2p = 5F 2
n − 4. Thus if l ≡ ±2 (mod 5)

then l does not divide y. The lemma now follows from Lemma 8.3.

Given two positive integers M1, M2, and two sets T1 ⊂ Z/M1 and T2 ⊂
Z/M2 we loosely define their ‘intersection’ T1 ∩T2 to be the set of all elements
of Z/lcm(M1, M2) whose reduction modulo M1 and M2 is respectively in T1

and T2.
We are now ready to prove Proposition 8.1.

Proof of Proposition 8.1. Suppose that (n, y, p) is a solution to (18). Thus
p ≥ 7 and n ≡ ±1 (mod 6). We recall that the elliptic curves E and E2 are
one and the same. Thus the proposition follows from Lemma 8.3 if we can
demonstrate that ρp(En) cannot be isomorphic to the corresponding represen-
tation for E1, E3, E4 and E5. Fix i one of 1, 3, 4, 5. By the above lemma,
to show that the Galois representations of En and Ei are not isomorphic it is
enough to produce a set of primes S = {l1, . . . , lr} all neither 2 nor 5 satisfying
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(1) For every l ∈ S the integer hl(Ei) is not divisible by any prime number
greater than 5,

(2)
(
∩l∈STl(Ei)

)
∩ T0 = ∅,

where T0 =
{
1, 5

}
⊆ Z/6Z. With the help of a short PARI/GP program we find

that we can take S = {3} to eliminate E1, E3, E5 and S = {3, 7, 11, 13, 17,
19, 23} to eliminate E4.

We note in passing that the j-invariant of the curve E3 is 55296/5, and so
the argument used in the proof of Lemma 5.1 also shows that the
Galois representation ρp(E3) is not isomorphic to ρ(En). This argument does
not apply to the Galois representations of E1, E4, E5 as these have integral
j-invariants.

9. Bounds for n in terms of p

Our objective in this section is to obtain bounds for n in terms of p for
solutions to (17) and (18). It follows from Baker’s theory of linear forms in
logarithms (see for example the book of Shorey and Tijdeman [46]) that the
sizes of n and y are bounded in terms of p. Unfortunately, these bounds are
huge, and there is no hope to complete the resolution of our equations by
proceeding in that way. We however recall, by Lemma 3.1 (and 3.2), that
it is sufficient to obtain upper bounds for the size of integer solutions to the
equation x2 + 4 = 5y2p (and one like it in the Lucas case). As is explained
below, this equation easily reduces to a Thue equation, and we may apply
the results of Bugeaud and Győry [10] to get an upper bound for x and y.
However, it is of much interest to rework the proof of Bugeaud and Győry in
our particular context. On the one hand, our particular equation has some
nice properties not taken into account in the general result of [10], and, on
the other hand, there has been an important improvement, due to Matveev,
in the theory of linear forms in logarithms since [10] has appeared. Altogether
we actually compute a much better upper bound than the one obtained by
applying the main result of [10] directly.

Before giving a precise statement of the main results of this section, we
need an upper bound for the regulators of number fields. Several explicit upper
bounds for regulators of a number field are available in the literature; see for
example [28] and [47]. We have however found it best to use a result of Landau.

Lemma 9.1. Let K be a number field with degree d = r1 + 2r2 where r1

and r2 are numbers of real and complex embeddings. Denote the discriminant
by DK and the regulator by RK, and the number of roots of unity in K by w.
Suppose, moreover, that L is a real number such that DK ≤ L. Let

a = 2−r2 π−d/2
√

L.
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Define the function fK(L, s) by

fK(L, s) = 2−r1 w as
(
Γ(s/2)

)r1
(
Γ(s)

)r2sd+1 (s − 1)1−d,

and let CK(L) = min {fK(L, 2 − t/1000) : t = 0, 1, . . . , 999}. Then RK <

CK(L).

Proof. Landau [25] proved the inequality RK < fK(DK, s) for all s > 1. It
is thus clear that RK < CK(L).

Perhaps a comment is in order. For a complicated number field of high
degree it is difficult to calculate the discriminant DK exactly, though it is
easy to give an upper bound L for its size. It is also difficult to minimise
the function fK(L, s) analytically, but we have found that the above gives an
accurate enough result, which is easy to calculate on a computer.

We are now ready to state our upper bound for n in terms of p for the
Fibonacci and Lucas cases.

Proposition 9.2. Suppose p ≥ 7 is prime. Let α be any root of the
polynomial

P (X) :=
p∑

k=0

(−4)[(p−k)/2]

(
p

k

)
Xk,(26)

and let K = Q(α). Let CK(·) be as in Lemma 9.1 and

Θ = 3.9·30p+3 p13/2 (p−1)p+1
(
(p−1)!

)2 (3p+2)
(
1+log(p(p−1))

)
CK(10p−1pp).

If (n, y, p) satisfies the equation and conditions (17) then n < 2.5pΘ log Θ.

Proposition 9.3. Suppose p ≥ 7 is prime. Denote by p
√

ω the real p-th
root of ω (where ω is given by (8)) and set K = Q(

√
5, p

√
ω), and let CK(·) be

as in Lemma 9.1. Let

Θ = 67 · 30p+5(p − 1)p+2p3 (p + 2)5.5 (p!)2
(
1 + log(2p(p − 1))

)
CK(5pp2p).

If (n, y, p) satisfies the equation and conditions (18) then n < 2.5 p Θ log Θ.

9.1. Preliminaries. We first need a lower bound for linear forms in loga-
rithms due to Matveev. Let L be a number field of degree D, let α1, . . . , αn

be nonzero elements of L and b1, . . . , bn be rational integers. Set

B = max{|b1|, . . . , |bn|},
and

Λ = αb1
1 . . . αbn

n − 1.

Let h denote the absolute logarithmic height and let A1, . . . , An be real numbers
with

Aj ≥ h′(αj) := max{D h(αj), | log αj |, 0.16}, 1 ≤ j ≤ n.
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We call h′ the modified height (with respect to the field L). With this notation,
the main result of Matveev [35] implies the following estimate.

Theorem 9.4. Assume that Λ is nonzero. Then

log |Λ| > −3 · 30n+4 (n + 1)5.5 D2 (1 + log D) (1 + log nB)A1 . . . An.

Furthermore, if L is real,

log |Λ| > −1.4 · 30n+3 n4.5 D2 (1 + log D) (1 + log B) A1 . . . An.

Proof. Denote by log the principal determination of the logarithm. If
|Λ| < 1/3, then there exists an integer b0, with |b0| ≤ n B, such that

Ω := |b0 log(−1) + b1 log α1 + . . . + bn log αn|
satisfies |Λ| ≥ Ω/2. Noticing that h′(−1) = π, and that b0 = 0 if L is real, we
deduce our lower bounds from Corollary 2.3 of Matveev [35].

We also need some precise results from algebraic number theory. In the
rest of this section, let K denote a number field of degree d = r1 + 2r2 and
unit rank r = r1 + r2 − 1 with r > 0. Let RK and DK be its regulator and
discriminant, respectively. Let w denote the number of roots of unity in K.
Observe that w = 2 if r1 > 0.

Lemma 9.5. For every algebraic integer η which generates K,

d h(η) ≥ log |DK| − d log d

2(d − 1)
.

Proof. As in Mignotte [37], it follows from the Hadamard inequality that

|DK| ≤ Discr(1, η, . . . , ηd−1)2 ≤ dd M(η)2(d−1),

where M(η) is the Mahler measure of η. Since d log M(η) = h(η), the lemma
is proved.

In the course of our proof, we use fundamental systems of units in K with
specific properties.

Lemma 9.6. There exists in K a fundamental system {ε1, . . . , εr} of units
such that

r∏
i=1

h(εi) ≤ 21−r (r!)2 d−r RK,

and the absolute values of the entries of the inverse matrix of (log |εi|vj
)i,j=1,... ,r

do not exceed (r!)2 2−r (log(3d))3.

Proof. This is Lemma 1 of [9] combined with a result of Voutier [50] (see
[10]) giving a lower bound for the height of any nonzero algebraic number
which is not a root of unity.
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Furthermore, we need sharp bounds for discriminants of number fields in
a relative extension.

Lemma 9.7. Let K1 and K2 be number fields with K1 ⊆ K2 and denote
the discriminant of the extension K2/K1 by DK2/K1

. Then

|DK2 | = |DK1 |[K2:K1] |NK1/Q(DK2/K1
)|.

Proof. This is Proposition 4.9 of [38].

9.2. Proof of Proposition 9.2. We now turn our attention to the proof of
Proposition 9.2 and so to equation (17). Lemma 3.1 reduces the problem to
solving the superelliptic equation x2 + 4 = 5y2p. Factoring the left-hand side
over Z[i], we deduce the existence of integers a and b with a2 + b2 = y2 and

±4i = (2 + i)(a + ib)p − (2 − i)(a − ib)p.(27)

Dividing by 2i, we get

±2 = 2
[p/2]∑
k=0

(
p

2k

)
a2k (−1)(p−2k−1)/2 bp−2k

+
[p/2]∑
k=0

(
p

2k + 1

)
a2k+1 (−1)(p−2k−1)/2 bp−2k−1.

We infer that a is even. Consequently, (b, a/2) is an integer solution of the
Thue equation

p∑
k=0

(−4)[(p−k)/2]

(
p

k

)
Xk Y p−k = ±1.(28)

To bound the size of the solutions of (28) we follow the general scheme of [10],
which was also used in [12]. Let P (X) and α and K be as in Proposition 9.2;
we note that P (X) is the polynomial naturally associated to the Thue equa-
tion (28). We first need information on the number field K and its Galois
closure. We would like to thank Mr. Julien Haristoy for his help in proving
the following lemma.

Lemma 9.8. The field K = Q(α) is totally real and its Galois closure L
has degree p(p−1) over Q. Furthermore, the discriminant of K divides 10p−1pp.

Proof. Observe that any root of the polynomial

Q(X) :=
1
2i

·
(
(2 + i)(X + i)p − (2 − i)(X − i)p

)
= (−1)(p−1)/2(X/2)pP (2/X)

satisfies |X + i| = |X − i|, and so must be real. Hence, K is a totally real field.
Furthermore, L(i)/Q(i) is a Kummer extension obtained by adjoining the p-th
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roots of unity and the p-th roots of (2 + i)/(2 − i). Hence, this extension has
degree p(p − 1), and this is the same for L/Q.

Observe now that K(i) is generated over Q(i) by any root of either of
the following two monic polynomials with coefficients in Z[i], namely Y p −
(2 + i)(2 − i)p−1 and Y p − (2 − i)(2 + i)p−1. Since the discriminant D1

(viewed as an algebraic integer in Z[i] and not as an ideal) of the extension
K(i)/Q(i) divides the discriminant of each of these polynomials, D1 divides
pp5p−1(2 − i)(p−1)(p−2) and pp5p−1(2 + i)(p−1)(p−2). However, 2 + i and 2 − i

are relatively prime; thus D1 divides 5p−1pp. Furthermore, estimating the
discriminant of K(i)/Q in two different ways thanks to Lemma 9.7 gives

|DK(i)| = 4pD2
1 = |DK|2 · |NK/Q(DK(i)/K)|.(29)

Consequently, |DK| divides 5p−1(2p)p. We now refine this estimate by showing
that 4 divides |NK/Q(DK(i)/K)|.

Suppose that the decomposition of the ideal 2 · OK in K/Q is given by

2 · OK = Pe1
1 . . .Pes

s .

At least one of the ei is odd, since otherwise 2 would divide
∑s

i=1 eifi = p.
Thus, there is (at least) one prime P in OK lying above 2 whose ramification
index e is odd: this prime must ramify in K(i)/K, since 2i = (1 + i)2 in K(i).
Thus P divides DK(i)/K and so |NK/Q(DK(i)/K)| is divisible by 2. However,
by (29), we know that |NK/Q(DK(i)/K)| is a square and so must be divisible
by 4.

Remark. Based on computations for small p, it seems very likely that
10p−1pp is the exact value of |DK| for most p.

Since we introduce many changes in the proof of [10], we give a complete
proof, rather than only quoting [10].

Let α1, . . . , αp be the roots of P (X) and let (X, Y ) be a solution of (28).
Without any loss of generality, we assume that α = α1 and |X − α1Y | =
min1≤j≤p |X − αjY |. We will make repeated use of the fact that |α1|, . . . |αp|
are neither greater than 4p, nor smaller than 4−p (since 4p − 1 is an upper
bound for the absolute values of the coefficients of P (X)). Assuming that Y

is large enough, namely that

log |Y | ≥ (30p)p,(30)

we get |Y | ≥ 2 min2≤j≤p {|α1 − αj |−1} and

|X − α1Y | ≤ 2p−1
∏

2≤j≤p

|α1 − αj | |Y |−p+1 ≤ 22p2 |Y |−p+1,(31)

since |X − αjY | ≥ |α1 − αj | · |Y |/2 if |X − α1Y | ≤ |α1 − αj | · |Y |/2, for any
j = 2, . . . , p.
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From the ‘Siegel identity’,

(X − α1Y )(α2 − α3) + (X − α2Y )(α3 − α1) + (X − α3Y )(α1 − α2) = 0,

we have
Λ :=

α2 − α3

α3 − α1
· X − α1Y

X − α2Y
=

X − α3Y

X − α2Y
· α2 − α1

α3 − α1
− 1.

Observe that the unit rank of K is p − 1, since K is totally real. Let ε1,1, . . .

. . . , ε1,p−1 be a fundamental system of units in K := Q(α1) given by Lemma 9.6,
hence, satisfying ∏

1≤i≤p−1

h(ε1,i) ≤
(
(p − 1)!

)2

2p−2pp−1
RK,(32)

where RK denotes the regulator of the field K. For j = 2, 3, denote by
ε2,1, . . . , ε2,p−1 and ε3,1, . . . , ε3,p−1 the conjugates of ε1,1, . . . , ε1,p−1 in Q(α2)
and Q(α3), respectively. They all belong to the Galois closure L of K.

The polynomial P (X) is monic and the left-hand side of (28) is a unit.
Thus X − α1Y is a unit. This simple observation appears to be crucial, since,
roughly speaking, it allows us to gain a factor of size around ppRK (compare
with the proofs in [10] and in [12]).

Since the only roots of unity in K are ±1, there exist integers b1, . . . , bp−1

such that X − α1Y = ±εb1
1,1 . . . ε

bp−1

1,p−1; thus

Λ = ±
(

ε3,1

ε2,1

)b1

. . .

(
ε3,p−1

ε2,p−1

)bp−1 α2 − α1

α3 − α1
− 1.

As in [10, 6.12], we infer from Lemma 9.6 that

B := max{|b1|, . . . , |bp−1|} ≤ 22−p p (p!)2 (log(3p))3 h(X − α1Y )

≤ p2(p+1) log |Y |,
(33)

by (31).
Further, we notice that

h
(

α2 − α1

α3 − α1

)
= h

(
α2/2 − α1/2
α3/2 − α1/2

)
≤ 4 h(α1/2) + log 4 ≤ 6p + 4

p
log 2,

since we have (here and below, M(·) denotes the Mahler measure and H(·)
stands for the näıve height)

h(α1/2) ≤ log M(Q)
p

≤ log
(√

p + 1 H(Q)
)

p
≤

log
(
2
√

p + 1
( p
[p/2]

))
p

≤ p + 1
p

log 2.

Hence, with the modified height h′ related to the field L, we have

h′
(

α2 − α1

α3 − α1

)
≤ 2(3p + 2)(p − 1) log 2.
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We may assume from Lemma 9.8 that the absolute value of the discriminant
of K is 10p−1pp, since the upper bound for n we aim to prove is an increasing
function of |DK|. For i = 1, . . . , p − 1, we have h(ε1,i) = h(ε2,i) = h(ε3,i) and,
by Lemma 9.5, the height of the real algebraic integer ε1,i satisfies h(ε1,i) ≥
(log 10)/2. Thus, we get

h′
(

ε2,i

ε3,i

)
≤ 2p(p − 1)h(ε1,i).

Consequently, using Theorem 9.4 in the real case with n = p and D = p(p−1),
we get

log |Λ|>−1.4 · 30p+3p7/2
(
p(p − 1)

)p+2 (3p + 2)
(
1 + log(p(p − 1))

)
(34)

×(1 + log B) (2 log 2) 2p−1
∏

1≤i≤p−1

h(ε1,i).

Then, (32) gives us that

log |Λ|>−3.9 · 30p+3 p13/2 (p − 1)p+2 (3p + 2)
(
(p − 1)!

)2(35)

×
(
1 + log(p(p − 1))

)
(1 + log B) RK.

Furthermore, it follows from (31) that

log |Λ| < 5p2 − (p − 1) log |Y |.(36)

By (33), we have the upper bound

(1 + log B) < 3p2 + log log |Y |.(37)

Finally, we observe that if Fn is a p-th power for some odd n, then there are
integers X and Y such that (X, Y ) is a solution of the Thue equation (28) and
F

2/p
n = 4X2 + Y 2. Since |X| ≤ 1 + 4p|Y | and Fn ≥ 0.4 · 1.6n (for n ≥ 7), we

derive from (30) that n < 2.2 p log |Y |. It then follows from (35), (36), and
(37), together with Lemmas 9.1 and (9.8) that

n < 2.5 p Θ log Θ,

with

Θ = 3.9·30p+3 p13/2 (p−1)p+1 (3p+2)
(
(p−1)!

)2 (
1+log(p(p−1))

)
CK(10p−1pp).

This proves Proposition 9.2.

9.3. Proof of Proposition 9.3. Suppose that (n, y, p) is a solution to the
equation (18). In particular, we know

yp = Ln = ωn + τn,

where we recall that ω = (1 +
√

5)/2 and τ is the conjugate of ω. We also
know by Proposition 8.2 that n is congruent to ±1 modulo p. This means that
there exists an integer ν such that

yp − ω±1 (ων)p = −τn.



994 YANN BUGEAUD, MAURICE MIGNOTTE, AND SAMIR SIKSEK

Thus, we are left with an equation of Thue type, namely

Xp − ω±1 Y p = unit in Q(
√

5).(38)

We only deal with the + case, since the − case is very similar.
As in the statement of Proposition 9.3, denote by p

√
ω the real p-th root

of ω and set K = Q(
√

5, p
√

ω). Let ζ be a primitive p-th root of unity.

Lemma 9.9. The field K has degree 2p and r1 = 2, r2 = p− 1 and r = p.
The absolute value of the discriminant of K is at most equal to 5pp2p. Its
nontrivial subfields are Q(

√
5) and Q( p

√
ω − ( p

√
ω)−1), whose discriminant is,

in absolute value, at most equal to 5(p−1)/2pp. Furthermore, the Galois closure
L of K is the field K(ζ), of degree 2p(p − 1).

Proof. We observe that the minimal defining polynomial of p
√

ω over Z is
R(X) := X2p − Xp − 1. Thus

|DK| ≤ |NK/Q(R′( p
√

ω))| = |NK/Q(p
√

5( p
√

ω)p−1)| = 5p p2p.

The fact that K has only two nontrivial subfields, one of degree two, and
another of degree p, is clear. Furthermore, since K is obtained from the field
Q( p

√
ω − ( p

√
ω)−1) by adjoining

√
5, we get from Lemma 9.7 that the absolute

value of the discriminant of the field Q( p
√

ω − ( p
√

ω)−1) is not greater than
5(p−1)/2pp. Since the roots of the polynomial R(X) are the algebraic numbers
p
√

ω, ζ p
√

ω, . . . , ζp−1 p
√

ω, p
√

τ , ζ p
√

τ , . . . , ζp−1 p
√

τ , we see that the Galois closure
of K is the field K(ζ).

Let ε1,1, . . . , ε1,p be a fundamental system of units in K given by Lemma 9.6.
There exist integers b1, . . . , bp such that

X − p
√

ωY = ±εb1
1,1 . . . ε

bp

1,p.

Keep in mind that we are only interested in solutions (X, Y ) of (38) with X

an integer and Y an algebraic integer in the field Q(
√

5). Thus, X/Y is real,
|X − p

√
ωY | is small, and |X − ζj p

√
ωY | is quite large for j = 1, . . . , p − 1

(consider the imaginary part). More precisely, for Y > 2,

|X − p
√

ωY | ≤ pp Y −p+1.(39)

Furthermore, when B = max{|b1|, . . . , |bp|}, Lemma 9.6 yields

B ≤ 21−p p(p!)2(log 6p)3 h(X − p
√

ωY )(40)

≤ p2(p+1) log Y,

by our assumptions on X and Y .
Recall that ζ is a primitive p-th root of unity. We introduce the quantity

Λ :=
ζ − ζ2

ζ2 − 1
· X − p

√
ωY

X − ζ p
√

ωY
=

X − ζ2 p
√

ωY

X − ζ p
√

ωY
· ζ − 1
ζ2 − 1

− 1,(41)
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hence, the linear form in logarithms

Λ =
(

ε3,1

ε2,1

)b1

. . .

(
ε3,p

ε2,p

)bp ζ − 1
ζ2 − 1

− 1.

Let h′ denote the modified height related to the field L. We have

h′
(

ζ − 1
ζ2 − 1

)
≤ 2p(p − 1) log 4,

and h′(ε1,i) = h(ε1,i). To check this, we observe that any algebraic unit in K
generates one of the subfields of K, and we apply Lemma 9.9 (we may assume
that the absolute value of the discriminant of K is 5pp2p, since the upper bound
for n (we aim to prove) is an increasing function of |DK|). Using Theorem 9.4
in the complex case with n = p + 1 and D = 2p(p − 1), we get

log |Λ|>−3 · 30p+5(p + 2)5.5
(
2p(p − 1)

)p+3 (
1 + log(2p(p − 1))

)
(42)

×(1 + log(p + 1)B) (log 4) 2p
∏

1≤i≤p

h(ε1,i).

By (42) and Lemma 9.6, we get

log |Λ|>−3 · 30p+5(p + 2)5.5
(
2p(p − 1)

)p+3 (
1 + log(2p(p − 1))

)
(43)

×
(
1 + log((p + 1)B)

)
(log 4) 2−p+1 p−p (p!)2 RK.

Furthermore, it follows from (39) and (41) that

log |Λ| < 5p2 − (p − 1) log |Y |.(44)

Observe now that if Ln = yp for some n, then equation (38) has a solution
(X, Y ) with Y = ω(n±1)/p, and we get that −1 < Ln − ω±1yp < 0; thus
n < 2.2 p log Y . It then follows from (40), (42)–(44), together with Lemma 9.1
that

n < 2.5 p Θ log Θ,

with

Θ = 67 · 30p+5(p − 1)p+2p3 (p + 2)5.5 (p!)2
(
1 + log(2p(p − 1))

)
CK(5pp2p).

This completes the proof of Proposition 9.3.

10. The sieve

In this section we use Propositions 7.2 and 9.2 (for the Fibonacci case)
and Propositions 8.1 and 9.3 (for the Lucas case) together with a substantial
computation to prove the following.

Proposition 10.1. If (n, y, p) satisfies the equation and conditions (17)
then

p > 733, n ≥ 1.033 × 108733, log y > 108000.
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Proposition 10.2. If (n, y, p) satisfies the equation and conditions (18)
then

p > 283, n ≥ 4.938 × 103383, log y > 103000.

We will focus on the Fibonacci case; the Lucas case is very similar.
Throughout this section we will follow the notation of Section 7. In particular,
Hn, En and E are given respectively by (20), (22), and (23).

Lemma 10.3. Suppose l ≡ ±1 (mod 5) is prime and let

K(l) = lcm(l − 1, 6).

The trace of Frobenius al(En) depends only on the residue class of n modulo
K(l).

Proof. By Lemma 3.3, the residue class of Ln modulo l depends only on
the residue class of n modulo l − 1. From the definition of the integer Hn

in (20) we see that Hn modulo l depends only on the residue class of n modulo
K(l). The lemma follows at once from the fact that the Frey curve En depends
only on Hn.

Suppose l ≡ ±1 (mod 5); we see by Lemma 10.3 that for n ∈ Z/K(l) it
makes sense to talk of al(En). Suppose q ≥ 5 is a fixed prime. Define N (l, q)
to be the subset of all n ∈ (Z/K(l))∗ such that

• either H2
n + 4 �≡ 0 (mod l), and the integer al(En)− al(E) is divisible by

some prime p > q,

• or H2
n+4 ≡ 0 (mod l) and one of the two integers l+1±al(E) is divisible

by some prime p > q.

Lemma 10.4. Suppose that q ≥ 5 is prime. Suppose l satisfies

l ≡ ±1 (mod 5) is prime and every prime factor of l − 1 is < 25000.(45)

If (n, p, y) satisfies the equation (17) and p > q then the reduction of n modulo
K(l) belongs to N (l, q).

Proof. First observe, since n satisfies (17), that n is prime and n ≥ 25000.
However, every prime divisor of l− 1 is < 25000 and the same must be true of
K(l) = lcm(l − 1, 6). Thus the reduction of n modulo K(l) certainly belongs
to (Z/K(l))∗.

Next we recall (Lemma 7.1) that H2
n + 4 = 5y2p and so l | y if and only if

H2
n+4 ≡ 0 (mod l). The lemma now immediately follows from Proposition 7.2.
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Given two positive integers M1, M2, and two sets T1 ⊂ Z/M1 and T2 ⊂
Z/M2 recall that we have already defined their ‘intersection’ T1 ∩ T2 to be the
set of all elements of Z/lcm(M1, M2) whose reduction modulo M1 and M2 is
respectively in T1 and T2.

The following proposition will be our main tool in proving Proposition 10.1.

Proposition 10.5. Suppose S = {(l1, q1), . . . , (lt, qt)} is a finite set of
pairs of primes (l, q) where each l satisfies the condition (45) and each q is
≥ 5. Let K(S) = lcm(6, l1 − 1, . . . , lt − 1), and

N (S) = ∩(l,q)∈SN (l, q) ⊂ (Z/K(S))∗.

Write
N (S) =

{
1, a, b, . . .

}
where 1 < a < b < · · · < K(S).

If (n, y, p) is a solution to (17) with p > q1, . . . , qt then n ≥ a.

Proof. Suppose that (n, y, p) is a solution to the equation (17). It follows
immediately from Lemma 10.4 and the definition of ‘intersection’ that the
reduction of n modulo K(S) belongs to N (S).

The reader can check that 1 is always in N (S). Moreover n �= 1 since
n > 25000. Hence n ≥ a.

The following lemma will provide a useful check for our later calculations.

Lemma 10.6. With the notation of the above proposition, suppose that
4 | K(S). Then the residue classes of 1, −1, K(S)/2 + 1, K(S)/2 − 1 modulo
K(S) all belong to the set N (S).

Proof. We note that H1 = H−1 = 1, and so E1 = E. It follows from the
definition of N (l, p) that the residue classes of 1 and −1 modulo K(l) belong
to N (l, q) for all pairs (l, q) ∈ S, and so residue classes of 1, −1 modulo K(S)
belong to N (S).

Let us prove the same for n = K(S)/2 + 1; we will leave the other case to
the reader. Suppose that (l, q) ∈ S. We would like to prove that the residue
class of n modulo K(l) belongs to N (l, q). Write v2 : Z → Z≥0 ∪ {∞} for the
2-adic valuation.

Clearly (l − 1) divides K(S). If v2(l − 1) < v2(K(S)) then n ≡ 1
(mod K(l)) and we already know that 1 ∈ N (l, q).

Thus suppose that v2(l − 1) = v2(K(S)). Since 4 divides K(S) we see
that l ≡ 1 (mod 4). Further we can write

n =
K(S)

2
+ 1 = k

(l − 1)
2

+ 1

for some odd integer k. Note that

ωn ≡ (ω
l−1
2 )k · ω ≡ ±ω (mod l),
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and so

Hn ≡ ±Ln ≡ ±(ωn − ω−n) ≡ ±(ω − ω−1) ≡ ±1 (mod l).

A glance at the definition of N (l, q) shows that we must prove that al(En) −
al(E) is divisible by some prime greater than q. Actually we will prove that
al(En) = al(E). By comparing the equations for E and En we see that,
modulo l, the two curves E and En are isomorphic when H(n) ≡ 1 (mod l).
If H(n) ≡ −1 (mod l) then, modulo l, the curve En is the −1–twist of E. But(−1

l

)
= 1, and so again E and En are isomorphic modulo l. This proves that

al(En) = al(E) and completes the proof.

10.1. Proof of Proposition 10.1. Suppose that (n, y, p) is a solution to (17).
Notice that Proposition 10.5 provides us with a way of obtaining lower bounds
for the index n, and Proposition 9.2 provides us with a way of obtaining an up-
per bound for n (dependent on p). This gives us hope, given a particular prime
p, that we may be able to obtain a contradiction using these two propositions
and so prove that there are no solutions for this particular p.

We wrote a PARI/GP program to carry out the above idea and derive the
contradiction for the primes in the range 7 ≤ p ≤ 733.

We would like to give the reader the flavour of this computation by pro-
viding more for the proof that p > 7.

A priori , all we know about the exponent p is that p > 5, so we take
q = 5. We let S = {(11, 5)}. Then

N (S) = N (11, 5) =
{
1, 11, 19, 29

}
⊂ Z/30,

where we used our program to calculate N (11, 5) from the definition of N (l, q).
Next we look for primes l satisfying l ≡ ±1 (mod 5) and

(l − 1)|M, where M = 6983776800 = 25 × 33 × 52 × 7 × 11 × · · · × 19

and for each such prime l we find we append (l, 5) to the set S, thus redefining
N to be N (S) ∩ N (l, 5). We continue until N ⊂ Z/M and N (S) has four
elements (we do not expect less than four elements by Lemma 10.6). The
reader will no doubt expect that since most of our l − 1 are highly composite
and have lots of common factors, the set N (S) will be a small set of congruences
modulo a large modulus. After a few seconds we found that

N (S) =
{
1, 3491888399, 3491888401, 6983776799

}
⊂ Z/M.

We then replaced the value of M by M × 23 and continued until N (S) had
exactly four elements and N ⊂ Z/M with this new value of M , etc. The entire
computation took 42 seconds and proved that the the reduction of n belongs
to a set

N =
{
1, a, b, c

}
⊂ Z/M
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where

a = 100704598854427777024179418273944411482999002799,

b = 100704598854427777024179418273944411482999002801,

c = 201409197708855554048358836547888822965998005599,

and the value of M is now

M = 25 × 33 × 52 × 7 × 11 × · · · × 109.

Note that a ≈ 1.007 × 1047.
By Proposition 10.5, we know that n ≥ a. However, if p = 7 then Propo-

sition 9.2 implies that n < 2.639 × 1046. This proves that p > 7. As a check
on our computations, we note that a = M/2− 1, b = M/2 + 1 and c = M − 1,
which is entirely consistent with Lemma 10.6.

The next step is to prove that p > 11. We continue as above but now
take q = 7. We note that N (l, 7) ⊆ N (l, 5) for any prime l, and that probably
N (l, 7) is strictly smaller N (l, 5). Thus our sieve becomes more efficient.

The proof program took roughly 97 hours to run on a 1.7 GHz Intel
Pentium 4. By the end of the proof the set S had 6262 pairs, and we have
also shown that p > 733 and n ≥ 1.033 × 108733. To complete the proof we
must show that log y ≥ 108000. However yp = Fn = (ωn − τn)/

√
5. Taking

logarithms and using Pethő’s result that p < 5.1×1017 (mentioned in Section 2)
we deduce that log y ≥ 108000 with a huge margin.

10.2. Proof of Proposition 10.2. The proof of Proposition 10.2 is practi-
cally identical to the above proof of Proposition 10.1 and we omit almost all
the details. We can take K(l) = l − 1 in this case, and we let En and E be
given by equations (24) and (25) respectively. If l ≡ ±1 (mod 5) and q ≥ 5
are primes we define N (l, q) to be the subset of all n ∈ (Z/K(l))∗ such that

• either 5F 2
n − 4 �≡ 0 (mod l), and the integer al(En) − al(E) is divisible

by some prime p > q,

• or 5F 2
n − 4 ≡ 0 (mod l) and one of the two integers l + 1 ± al(E) is

divisible by some prime p > q.

The other details are practically identical to the Fibonacci case. Since the lower
bound for p that we are trying to establish is much smaller in the Lucas case
our program runs much faster, and completes the proof on the same machine
in about six hours.

11. A refined bound on p using linear forms in two logarithms

In the previous section we showed that if (n, y, p) is a solution to equa-
tion (18) then p > 283. In this section we will use the results of the paper of
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Laurent, Mignotte and Nesterenko [27] on linear forms in two logarithms to
prove that p ≤ 283, thus completing the proof of Theorem 2.

The Fibonacci case still needs more work, since it yields a linear form in
three logarithms. However, for now we are able to show the following.

Proposition 11.1. If (n, y, p) is a solution to equation (17) then p >

2 × 108.

Proof. Suppose that (n, y, p) is a solution to (17). The most obvious
approach to obtain an upper bound for p is to consider

Fn =
ωn − ω−n

√
5

= yp

and the linear form in logarithms

Λ = n log ω − log
√

5 − p log y.

Then a standard argument shows that

log |Λ| < −2p log y + 1.

We note that Λ is a linear forms in three logarithms. In the remainder of this
paper we will present a substantial improvement to the theory of linear forms
in three logarithms, and apply our result to show that p < 2 × 108.

For now, to prove the proposition, we argue by contradiction, assuming
that p < 2 × 108. We then know from Proposition 7.3 that n ≡ ±1 (mod p)
for primes p in this range. Write n = sp + ε, where ε = ±1. Note now that we
can rewrite the expression Λ as

Λ = p log (ωs/y) − log (
√

5ω−ε),

which is now a linear form in two logarithms! We can apply Théorème 1 of
[27] with

Λ = b1 log α1 − b2 log α2,

where
b1 = p, α1 = ωs/y; b2 = 1, α2 =

√
5 ω−ε

and
log α2 = log

√
5 − ε log ω, log α1 ≈ 1

p
log α2,

and

h(α2) =
log 10

2
, h(α1) ≤ log y + log 5.

Thus (with the notation of this result), we can take

a1 = (ρ − 1) log α1 + 4 (log y + log 5), a2 = (ρ − 1) log α2 + 2 log 10.
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The case ε = −1. In this case, we choose (again with the notation of
[27]) L = 8, ρ = 27.6, m = 0.209671121 and get

p ≤ 733.

The case ε = 1. In this case, we choose L = 7, ρ = 31.6, m = 0.218149476
and get

p ≤ 241.

In either case we have p ≤ 733 which contradicts Proposition 10.1. This
completes the proof of the proposition.

As promised we also complete the resolution of the Lucas case by present-
ing the proof of Theorem 2.

Proof of Theorem 2. Suppose that (n, y, p) is a solution to equation (18).
It is apparent, by Proposition 10.2, that all we have to do is to show that
p ≤ 283, and to do this we apply [27].

Put
Λ = p log y − n log ω

where ω = (1 +
√

5)/2. By Proposition 10.2 we know that

log y > 106,

and indeed much more. Then (because Ln = ωn + (−1/ω)n)

log |Λ| < −2p log y + 1.

Write n = sp+r with 0 ≤ r < p (notice that we do not use here the congruence
n ≡ ±1 (mod p) proved above). This allows us to rewrite Λ as

Λ = p log(y/ωs) − r log ω.

We apply [27, Prop. 1] with the notation D = 2 and

α1 = y/ωs, α2 = ω, b1 = p, b2 = r, a1 = 2.00001 log(yωs), a2 = (ρ + 1) log ω.

Here

b̃ =
1

ρ + 1

(
p

log ω
+

r(1 + ρ)
a1

)
≈ 1

ρ + 1
p

log ω
.

We get either
p ≤ µL(ρ + 1) log ω

or
log |Λ| > −KL log ρ − log(KL)

provided that

2K log θ + 2 log(2πK/e3/2) − 3 log(KL) − c + log K

3K
− a1L

3
− a2L

2

3
− 2K

µa1
≥ 0
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and

µ
(
(L − 1) log ρ + 2 log(2/θ) − 2(1.5 − log µ + log b̃)

)
≥ L

3
.

It is enough to take

log θ =
1.01 × a1L

3 × 2µ2a1a2L
=

1.01
6µ2(ρ + 1) log ω

.

For ρ = 22.9, taking µ = 2/(3ω), working as above we first get p < 326 and
then, after several iterations of the above argument,

p ≤ 283.

Remark. Using the congruence n ≡ ±1 (mod p) we could improve this
estimate a little and get something like p ≤ 241.

12. An estimate on linear forms in three logarithms

12.1. Preliminaries.

Lemma 12.1. Let K, L, R, S, T be positive integers, put N = K2L and
assume N ≤ RST . Put also


n =
⌊

n − 1
K2

⌋
, 1 ≤ n ≤ N,

and (r1, . . . , rN ) ∈ {0, 1, . . . , R − 1}N . Suppose that for each r ∈ {0, 1, . . .

. . . , R − 1} there are at most ST indices such that rj = r. Then∣∣∣∣∣
N∑

n=1


nrn − M

∣∣∣∣∣ ≤ GR

where

M =
(

L − 1
2

) N∑
n=1

rn and GR =
NLR

2

(
1
4
− N

12RST

)
.

Proof. Apply [27, Lemme 4].

As in [3] or [52, p. 192], for (k, m) ∈ N2, we put ‖(k, m)‖ = k + m. And
we put

Θ(K0, I) = min
{
‖(k1, m1)‖ + · · · + ‖(kI , mI)‖

}
,

where the minimum is taken over if the I–tuples (k1, m1), . . . , (kI , mI) ∈ N2

which are pairwise distinct and satisfy m1, . . . , mI ≤ K0. Then, we have:
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Lemma 12.2. Let K0, L and I be positive integers with K0 ≥ 3, L ≥ 2
and I ≥ K0(K0 + 1)/2. Then

Θ(K0, I) ≥
(

I2

2(K0 + 1)

) (
1 +

(K0 − 1)(K0 + 1)
I

− K0(K0 + 2)(K0 + 1)2

12I2

)
.

Proof. Except for some details, this is [3, Lemma 1.4]. We follow more or
less the proof of this result. The argument is elementary: the smallest value for
the sum ‖(k1, m1)‖ + · · · + ‖(kI , mI)‖ is reached when we choose successively,
for each integer n = 0, 1, . . . all the points in the domain

Dn = {(k, m) ∈ N2; m ≤ K0, k + m = n},
and stop when the total number of points is I. Moreover,

Card(Dn) =
{

n + 1, if n ≤ K0,

K0 + 1, if n ≥ K0.

With the notation of [3], the number I of points can be written as

I =
(

A − K0

2

)
(K0 + 1) + r, with 0 ≤ r ≤ K0,

provided that I ≥ K0(K0 + 1)/2, which is a hypothesis of the lemma.
Then, the computation of [3] shows that

Θ(K0, I) ≥ Θ̃(K0, I) :=
K0 + 1

2

(
A(A − 1) − K0(K0 − 1)

3

)
+ rA.

In terms of I,

A =
K0

2
+

I − r

K0 + 1
.

We have,

∂Θ̃
∂r

=
K0 + 1

2
(2A−1)

∂A

∂r
+A+r

∂A

∂r
= −2A − 1

2
+A− r

K0 + 1
=

1
2
− r

K0 + 1
,

which shows that the minimum of Θ̃ is reached either for r = 0 or r = K0. It
is easy to verify that Θ̃ takes the same value for r = 0 and r = K0 + 1 (which
is indeed out of the range of r); this implies that the minimum is reached for
r = 0. It follows that
2Θ(K0, I)
K0 + 1

≥
(

K0

2
+

I

K0 + 1

) (
K0

2
+

I

K0 + 1
− 1

)
− K0(K0 − 1)

3

=
K2

0

4
+

I2

(K0 + 1)2
+

K0I

K0 + 1
− K0

2
− I

K0 + 1
− K2

0

3
+

K0

3

=
I2

(K0 + 1)2
+

(K0 − 1)I
K0 + 1

− K2
0

12
− K0

6

=
(

I

K0 + 1

)2 (
1 +

(K0 − 1)(K0 + 1)
I

− K0(K0 + 2)(K0 + 1)2

12I2

)
,

which proves the lemma.
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The version of Liouville inequality that we use is the same as in [27,
pp. 298–99]:

Lemma 12.3. Let α1, α2, α3 be nonzero algebraic numbers and f ∈
Z[X1, X2, X3] such that f(α1, α2, α3) �= 0. Then

|f(α1, α2, α3)| ≥ |f |−D+1(α∗
1)

d1(α∗
2)

d2(α∗
3)

d3

× exp
{
−D

(
d1h(α1) + d2h(α2) + d3h(α3)

)}
where D = [Q(α1, α2, α3) : Q]

/
[R(α1, α2, α3) : R],

di = degXi
f, i = 1, 2, 3, |f | = max

{
|f(z1, z2, z3)|; |zi| ≤ 1, i = 1, 2, 3

}
,

and h(α) is the absolute logarithmic height of the algebraic number α, and
α∗ = max{1, |α|}.

Lemma 12.4. Let K > 1 be an integer ; then

log

(
K−1∏
k=1

k!

) 4
K(K−1)

≥ 2 log K − 3 +
2 log(2πK/e3/2)

K − 1
− 2 + 6π−2 + log K

3K(K − 1)
.

Proof. This is a consequence of a variant of the proof of [27, Lemme 8].

Now we present the type of linear forms in three logarithms to be studied.
For a while, we consider three nonzero algebraic numbers α1, α2 and α3 and
positive rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 log α2 − b1 log α1 − b3 log α3 �= 0,

without any loss in generality.
We restrict our study to the following cases:

• the real case: α1, α2 and α3 are real numbers > 1, and the logarithms
of the αi’s are real (and > 0),

• the complex case: α1, α2 and α3 are complex numbers of modulus one,
and the logarithms of the αi’s are arbitrary determinations of the loga-
rithm.

This does not cause inconvenience in practice since in the general case we
obviously always have

|Λ| ≥ max{|�(Λ)|, |�(Λ)|}.
Without loss of generality, we may assume that

b2| log α2| = b1| log α1| + b3| log α3| ± |Λ|.
Choosing rational positive integers K, L, R, S, T , with K, L ≥ 2, we put
N = K2L and assume RST ≥ N . Let a1, a2, a3 be positive real numbers.
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The authors of [3] use Laurent’s method, and they consider a suitable
interpolation determinant ∆. Let i be an index such that (ki, mi, 
i) runs
through all triples of integers with 0 ≤ ki ≤ K − 1, 0 ≤ mi ≤ K − 1 and
0 ≤ 
i ≤ L− 1. Thus, each number 0, . . . , K − 1 occurs KL times as a ki, and
similarly as an mi, and each number 0, . . . , L − 1 occurs K2 times as an 
i.
With the above definitions, let

∆ = det
{(

rjb2 + sjb1

ki

)(
tjb2 + sjb3

mi

)
α

�irj

1 α
�isj

2 α
�itj

3

}
where rj , sj , tj are nonnegative integers less than R, S, T , respectively, such
that (rj , sj , tj) runs over N distinct triples. Put β1 = b1/b2, β3 = b3/b2. Let

λi = 
i −
L − 1

2
, η0 =

R − 1
2

+ β1
S − 1

2
, ζ0 =

T − 1
2

+ β3
S − 1

2
,

and

b = (b2η0)(b2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

.

Notice that, by Lemma 12.4,

log b≤ log
(R − 1)b2 + (S − 1)b1

2
+ log

(T − 1)b2 + (S − 1)b3

2

−2 log K + 3 − 2 log(2πK/e3/2)
K − 1

+
2 + 6π−2 + log K

3K(K − 1)
.

Then
∑N−1

i=0 λi = 0 and ([3, formula (2.1)])

α
�irj

1 α
�isj

2 α
�itj

3 = α
λi(rj+sjβ1)
1 α

λi(tj+sjβ3)
3 (1 + θijΛ′),

where

Λ′ = |Λ| · max

{
LReLR|Λ|/(2b1)

2b1
,
LSeLS|Λ|/(2b2)

2b2
,
LTeLT |Λ|/(2b3)

2b3

}
and where all |θij | are ≤ 1.

12.2. An upper bound for |∆|. It is proved in [3] (last formula of page 111)
that

∆ = αM1
1 αM2

2 αM3
3

∑
I⊆N

(Λ′)N−|I|∆I

where

M1 =
L − 1

2

N∑
j=1

rj , M2 =
L − 1

2

N∑
j=1

sj , M3 =
L − 1

2

N∑
j=1

tj ,
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and where N = {0, 1, . . . , N−1} and ∆I is the determinant of a certain matrix
MI defined below. Let

φj(z, ζ) =
bki+mi

2

ki!mi
zkiζmiαλiz

1 αλiζ
3 ,

(where αλiz
1 = exp(λiz log α1) and similarly for αλiζ

3 ) and

ΦI(x)ij =

{
φj(xzj , xζj) if i ∈ I,
θijφj(xzj , xζj) if i �∈ I.

Then, MI =
(
ΦI(1)ij

)
and when ΨI(x) = det

(
ΦI(x)

)
,

|∆I | =
∣∣det

(
ΦI(1)

)∣∣ = |ΨI(1)|.

Now, when
JI = order(Ψ, 0),

the maximum modulus principle implies

|ΨI(1)| ≤ ρ−JI · max
|x|=ρ

|ΨI(x)|.

Since |zj | ≤ η0 and |ζj | ≤ ζ0,

max
|x|=ρ

∣∣ΨI(x)
∣∣≤N !

b2

∑
ki+

∑
mi∏

ki!
∏

mi!
(ρη0)

∑
ki(ρζ0)

∑
mi

× max
σ∈S(N )

exp
{

ρ
((∑

λizσ(i)

)
log α1 +

(∑
λiζσ(i)

)
log α2

)}
.

Put

g =
1
4
− N

12RST
, G1 =

NLR

2
g, G2 =

NLS

2
g, G3 =

NLT

2
g,

then (see the proof of [3, p. 114] and use Lemma 12.1)

N−1∑
i=0

λizσ(i) ≤ G1 + β1G2,
N−1∑
i=0

λiζσ(i) ≤ G3 + β3G2.

It follows that (recall that b2| log α2| = b1| log α1| + b3| log α3| ± |Λ|)

exp
{

ρ
((∑

λizσ(i)

)
| log α1| +

(∑
λiζσ(i)

)
| log α3|

)}
≤ exp

{
ρ
(
(G1 + β1G2)| log α1| + (G3 + β3G2)| log α3|

)}
≤ exp

{
ρ

(
G1| log α1| + G2

(
| log α2| +

|Λ|
b2

)
+ G3| log α3|

)}
.

As in [3], we see that if

Λ′ < ρ−KL(46)
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then

ρG2
|Λ|
b2

≤ ρK2L

4ρKL
≤ eK2L

4eKL
≤ K2L2

eKL
< 10−4

for KL ≥ 15. Putting these estimates together, we see that condition (46)
implies the upper bound

|∆| ≤ 1.0001 α1
M1+ρG1 α2

M2+ρG2 α3
M3+ρG3 N ! × 2N ρ

∑
(ki+mi)

×(b2η0)
∑

ki∏
ki!

× (b2ζ0)
∑

mi∏
mi!

× max
σ∈S(N )

|Λ′|N−|I|

ρJI

where
JI = order(ΨI , 0).

Under condition (46), we have

|Λ′|N−|I|

ρJI
≤ ρ−KL(N−|I|)−JI .

If |I| ≤ 0.5 N then

KL(N − |I|) ≥ 0.5 KLN ≥ NKL

4

(
1 +

4
L

+
1

2K − 1

)
as soon as K ≥ 3 and L ≥ 5, conditions that we assume from now on.

If |I| ≥ 0.5 N , then using [3, Lemma 1.3], we obtain

JI ≥ Θ(K0, |I|), for K0 = 2(K − 1) .

Now, |I| ≥ 0.5 K2L implies |I| ≥ 2.5 K2 and using Lemma 12.2 we get (with
the notation I = |I|)

KL(N − I) + JI ≥ KL(N − I)

+
(

I2

2(K0 + 1)

) (
1 +

(K0 − 1)(K0 + 1)
I

− K0(K0 + 2)(K0 + 1)2

12I2

)
.

It is easy to verify that the right-hand side is a decreasing function of I in
the range [N/2, N ], since L ≥ 5, and we get (recall that N = K2L and K0 =
2K − 2)

KL(N − |I|) + JI ≥
N2

2(K0 + 1)

(
1 +

K2
0 − 1
N

− K0(K0 + 2)(K0 + 1)2

12N2

)
=

N2

4K

(
2K

K0 + 1
+

2K(K0 − 1)
N

− KK0(K0 + 1)(K0 + 2)
6N2

)
=

N2

4K

(
1 +

1
2K − 1

+
2(2K − 3)

KL
− 2(K − 1)(2K − 1)

3K2L2

)
=

N2

4K

(
1 +

4
L

+
1

2K − 1
− 4

3L2
− 6

KL
+

2
KL2

− 2
3K2L2

)
≥ N2

4K

(
1 +

4
L

+
1

2K − 1
− 4

3L2
− 6

KL

)
,
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because L ≥ 5, and this implies, in all cases,

KL(N − |I|) + JI ≥ N2

4K

(
1 +

4
L

+
1

2K − 1
− 6

KL
− 4

3L2

)
.

Thus, gathering all the previous estimates and using the relations

N−1∑
i=0

ki =
N−1∑
i=0

mi =
(K − 1)K

2
KL =

N

2
(K − 1),

and the definition of b, we obtain the following result.

Proposition 12.5. With, the previous notation, if K ≥ 3, L ≥ 5 and
Λ′ ≤ ρ−KL, and with ρ ≥ e,

log |∆| ≤
3∑

i=1

Mi log |αi| + ρ

3∑
i=1

Gi| log αi| + log(N !) + N log 2 +
N

2
(K − 1) log b(

NKL

4
+

NKL

4(2K − 1)
− NK

3L
− N

2

)
log ρ + 0.0001.

12.3. A lower bound for |∆|. Using our Liouville estimate (Lemma 12.3)
and arguing as in [3], or [27, Lemme 6], we get the following.

Proposition 12.6. If ∆ �= 0 then

log |∆| ≥−D − 1
2

N log N

+
3∑

i=1

(Mi + Gi) log |αi| − 2D

3∑
i=1

Gih(αi) −
D − 1

2
(K − 1)N log b.

Proof. We have ∆ = P (α1, α2, α3) where P ∈ Z[X1, X2, X3] is given by

P (X1, X2, X3)

=
∑

σ∈SN

sg(σ) ·
N∏

i=1

(
rσ(i)b2 + sσ(i)b1

ki

)(
tσ(i)b2 + sσ(i)b3

mi

)
Xnrσ

1 Xnsσ

2 Xntσ

3 ,

and where

nrσ =
N∑

i=1


irσ(i), nsσ =
N∑

i=1


isσ(i), ntσ =
N∑

i=1


itσ(i).

By Lemma 12.1, ∣∣degXi
P − Mi

∣∣ ≤ Gi, i = 1, 2, 3.

When
Vi = �Mi + Gi�, Ui = �Mi − Gi�, i = 1, 2, 3,
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then
∆ = α1

V1α2
V2α3

V3 P̃ (α−1
1 , α−1

2 , α−1
3 ),

where
degXi

P̃ ≤ Vi − Ui, i = 1, 2, 3.

By our Liouville estimate

log
∣∣P̃ (α−1

1 , α−1
2 , α−1

3 )
∣∣ ≥ −(D − 1) log |P̃ | − D

3∑
i=1

(Vi − Ui) h(αi).

Now we have to find an upper bound for |P̃ | (or for |P | which is equal to |P̃ |).
By the multilinearity of the determinant, for all η, ζ ∈ C,

P (z1, z2, z3) = det
(

(rjb2 + sjb1 − η)ki

ki!
(tjb2 + sjb3 − ζ)mi

mi!
· z1

�irj · z2
�isj · z3

�itj

)
.

Choose

η =
(R − 1)b2 + (S − 1)b1

2
, ζ =

(T − 1)b2 + (S − 1)b3

2
and notice that, for 1 ≤ j ≤ N ,

|rjb2 + sjb1 − η|ki ≤
(

(R − 1)b2 + (S − 1)b1

2

)ki

,

|tjb2 + sjb3 − ζ|ki ≤
(

(T − 1)b2 + (S − 1)b3

2

)mi

and that
N−1∑
i=0

ki =
N−1∑
i=0

mi =
(K − 1)K

2
KL =

N

2
(K − 1).

Then Hadamard’s inequality implies

|P | ≤NN/2

(
(R − 1)b2 + (S − 1)b1

2

) (K−1)N

2
(

(T − 1)b2 + (S − 1)b3

2

) (K−1)N

2

×
(

K−1∏
i=0

ki!

)−1 (
K−1∏
i=0

mi!

)−1

.

Recall that

b = (b2η0)(b2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

where
η0 =

R − 1
2

+ β1
S − 1

2
, ζ0 =

T − 1
2

+ β3
S − 1

2
.

Thus we get,
|P | ≤ NN/2 b(K−1)N/2.
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Collecting all the above estimates, we find

log |∆| ≥−(D − 1)
(

log
(
NN/2

)
+

(K − 1)N
2

log b

)
−D

3∑
i=1

(Vi − Ui)h(αi) +
3∑

i=1

Vi log |αi|.

The inequalities Dh(αi) ≥ log |αi| ≥ 0 imply

Vi log |αi| − D(Vi − Ui)h(αi) ≥ (Mi + Gi) log |αi| − 2DGih(αi)

and the result follows.

12.4. Synthesis. Under the hypotheses of Propositions 12.5 and 12.6, we
get

−D − 1
2

N log N +
3∑

i=1

(Mi + Gi) log |αi|

−2D

3∑
i=1

Gih(αi) −
D − 1

2
(K − 1) N log b

≤
3∑

i=1

Mi log |αi| + ρ
3∑

i=1

Gi| log αi| + log(N !) + N log 2 +
N

2
(K − 1) log b

−
(

NKL

4
+

NKL

4(2K − 1)
− NK

3L
− N

2

)
log ρ + 0.0001.

Or, after some simplification,

− D − 1
2

N log N ≤
3∑

i=1

Gi

(
ρ| log αi| − log |αi| + 2Dh(αi)

)
+ log(N !)

+N log 2+
K − 1

2
DN log b−

(
NKL

4
+

NKL

4(2K − 1)
− KN

3L
− N

2

)
log ρ+0.0001.

This result implies (divide by N/2 and use N ! < N(N/e)N , true for N > 7):

Proposition 12.7. With, the previous notation, if K ≥ 3, L ≥ 5, ρ ≥ e,
and if ∆ �= 0 then

Λ′ > ρ−KL

provided that(
KL

2
+

L

4
− 1 − 2K

3L

)
log ρ≥ (D + 1) log N + gL(a1R + a2S + a3T )

+D(K − 1) log b − 2 log(e/2),

where the ai’s satisfy

ai ≥ ρ| log αi| − log |αi| + 2Dh(αi), i = 1, 2, 3.
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Remark. We notice that the statement of Proposition 12.7 is perfectly
symmetric with respect to the bi’s or the αi’s, except for the choice of b. From
now on we do not assume that b1 and b3 are positive, but we still suppose that
b2 > 0 and that

b2| log α2| = |b1 log α1| + |b3 log α3| ± |Λ|.

12.5. Row rank. To conclude we need to find conditions under which one
of our determinants ∆ is nonzero, a so called zero lemma. We quote [3, Th. 3]
with some minor technical changes.

Proposition 12.8. Let K, L, R, R1, R2, S, S1, S2, T , T1, T2 be rational
integers all ≥ 3, with K ≥ 2L, R > R1 + R2, S > S1 + S2, T > T1 + T2 and
T1 ≥ R1. Let b1, b2, b3 and α1, α2, α3 be as above and moreover assume that
α1, α2, α3 are multiplicatively independent. If

4(R1 + 1)(S1 + 1) ≥ T1 + 1,(i)

4(R1 + 1)(T1 + 1) ≥ S1 + 1,(ii)

(R2 + 1)(S2 + 1)(T2 + 1) ≥ 12(K − 1)2(L − 1),(iii)

and

(R1 + 1)(S1 + 1)(T1 + 1) ≥ 8(2K + L − 2)2(iv)

then either there exists a choice of ∆ which is nonzero or at least one of the
following conditions holds:
(C1)
∃r, s ∈ Z, rb2 = sb1 with 0 < r ≤ Ri and 0 < s ≤ Si for some i = 1, 2,

(C2)
∃t, s ∈ Z, tb2 = sb3 with 0 < t ≤ Ti and 0 < s ≤ Si for some i = 1, 2,

(C3): there exist r′, s′, t′, t′′ ∈ Z, such that

s′t′b1 + r′t′′b2 + r′s′b3 = 0,

which satisfy

0 < |r′| < min

{
R1 + 1,

(
(R1 + 1)(S1 + 1)

T1 + 1

)1/2
}

,

0 < |s′| < min

{
S1 + 1,

(
(R1 + 1)(S1 + 1)

T1 + 1

)1/2
}

and

0 < |t′| < min

{
T1 + 1,

(
(S1 + 1)(T1 + 1)

R1 + 1

)1/2
}

,
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|t′′| < min

{
T1 + 1,

(
(R1 + 1)(T1 + 1)

S1 + 1

)1/2
}

,

which implies a nontrivial relation of the form

d1b1+d2b2+d3b3 = 0 with |d1| ≤ S1, |d2| ≤ R1, |d3| ≤
(R1 + 1)(S1 + 1)

T1 + 1
.

12.6. A lower bound for the linear form. Now we have all the tools to
conclude and we get at once the following result.

Theorem 12.9. Consider three nonzero algebraic numbers α1, α2 and α3

which are multiplicatively independent and positive rational integers b1, b2, b3

with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 log α2 − b1 log α1 − b3 log α3 �= 0.

Suppose that either α1, α2 and α3 are real numbers > 1, and the logarithms
of the αi’s are real (and > 0), or α1, α2 and α3 are complex numbers of
modulus one, and the logarithms of the αi’s are arbitrary determinations of the
logarithm. Without loss of generality, one may assume that

b2| log α2| = b1| log α1| + b3| log α3| ± |Λ|.

Let K, L, R, R1, R2, S, S1, S2, T , T1, T2 be rational integers all ≥ 3, with
K ≥ 2L, L ≥ 5, R > R1 + R2, S > S1 + S2, T > T1 + T2 and T1 ≥ R1. Let
ρ ≥ e be a real number. Assume first that

(o)
(

KL

2
+

L

4
− 1 − 2K

3L

)
log ρ≥ (D + 1) log N + gL(a1R + a2S + a3T )

+D(K − 1) log b − 2 log(e/2),

where N = K2L, D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R],

g =
1
4
− N

12RST
, b = (b2η0)(b2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

where
η0 =

R − 1
2

+
b1

b2
× S − 1

2
, ζ0 =

T − 1
2

+
b3

b2
× S − 1

2
,

and
ai ≥ ρ| log αi| − log |αi| + 2Dh(αi), i = 1, 2, 3.

If

4(R1 + 1)(S1 + 1) ≥ T1 + 1,(i)

4(R1 + 1)(T1 + 1) ≥ S1 + 1,(ii)

(R2 + 1)(S2 + 1)(T2 + 1) ≥ 12(K − 1)2(L − 1),(iii)
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and

(R1 + 1)(S1 + 1)(T1 + 1) ≥ 8(2K + L − 2)2,(iv)

then either
Λ′ > ρ−KL

where

Λ′ = |Λ| · max

{
LReLR|Λ|/(2b1)

2b1
,
LSeLS|Λ|/(2b2)

2b2
,
LTeLT |Λ|/(2b3)

2b3

}
or at least one of the conditions (C1), (C2), (C3) of Proposition 12.8 holds.

13. Proof of Theorem 1

We are now ready to complete the proof of Theorem 1. We argue by
contradiction. Suppose that there is a perfect power in the Fibonacci sequence
other than those listed in Theorem 1. By Propositions 6.1 and 11.1 there is a
solution (n, y, p) to (17) with p > 2 × 108.

Recall that Fn = (ωn − ω−n)/
√

5. Thus the linear form

Λ = n log ω − log
√

5 − p log y

satisfies
log |Λ| < −2p log y + 1.

By Proposition 10.1
log y > 1020

(and indeed much more). It seems very difficult to get good lower bounds for
|Λ| when it is written in the previous form. We write

n = kp − q, where 0 ≤ q < p.

(Notice that q is not necessarily a prime number, but we have some lack of
letters!) Then

Λ = p log(ωk/y) − q log ω − log
√

5

and it is easy to see that it is now of the right form. We know that p > 2×108

and we will obtain a contradiction by showing that p < 2 × 108 using our
Theorem 12.9.

The first step is to get an upper bound on p free of any condition. For
this purpose our Theorem 12.9 is inconvenient to use; we have to deal with
the conditions (C1), (C2) and (C3). This is the reason why we first apply
Matveev’s estimate (Corollary 2.3). Assume Λ �= 0; if real numbers Aj satisfy

Aj ≥ max
{
Dh(αj), | log αj |, 0.16

}
, 1 ≤ j ≤ 3,
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and if
B = max{|b1|, |b2|, |b3|}

then
log |Λ| >

3e

2
30633.5D2A1A2A3 log(eD) log(eB),

where D = 2 and B = p in our case. This leads to

p < 2.4 × 1013.

We can now apply Theorem 12.9 with

α1 = ω, α2 = ωk/y, α3 =
√

5, D = 2

and
b1 = q, b2 = p, b3 = 1.

We can take

a1 = (ρ + 3) log
√

5, a2 = (ρ + 2p) log ω + 4 log y > 4 · 1020,

a3 = (ρ + 1) log ω,

where ρ > e. To apply the theorem, we shall choose some rational integer

L ≥ 100

and put
K = �mLa1a2a3�, with 10 < m < 50,

and take

R1 = �c1L
2/3a2a3�, S1 = �c1L

2/3a1a3�, T1 = �c1L
2/3a1a2�,

with c1 = (32.001 m2)1/3, and finally

R2 = �c2La2a3�, S2 = �c2La1a3�, T2 = �c2La1a2�, with c2 = (12m2)1/3.

We use the notation

R = R1 + R2 + 1, S = S1 + S2 + 1, T = T1 + T2 + 1.

With such a choice it is easy to check that the four conditions (i), (ii), (iii),
(iv) hold. And we get either

log |Λ| > −KL log ρ − log(KL)

or at least one of the conditions (C1), (C2) and (C3) hold. First notice that,
in our case (where b2 = p is prime),(

(C1) or (C2)
)

⇒ p ≤ max{S1, S2}.
Thus, if p > max{S1, S2} then (C1) and (C2) do not hold and then (C3) holds.
If (C3) holds then recall that

s′t′b1 + r′t′′b2 + r′s′b3 = 0,
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where the factors of the bi’s are bounded above as in Proposition 12.8. In the
previous relation we may assume that

gcd(s′, t′′) = gcd(r′, t′) = 1.

Moreover, since |s′| < p, we see that s′ and pt′′ are coprime, so that the above
relation implies that s′ divides r′, say r′ = r′′s′. Then this relation is simplified
into

t′b1 + r′′t′′b2 + r′′s′b3 = 0.

Then, since r′ and t′′ are coprime, gcd(r′′, t′) = 1 and r′′ divides b1. In the
present case, we get

t′q′ + t′′p + s′ = 0, with q = r′′q′,

where

|t′| ≤ 1 +
(

(S1 + 1)(T1 + 1)
R1 + 1

)1/2

< 1 + 1.0001 ·
(

(S1 + 1)a1

a3

)1/2

and

0 < r′ <

(
(R1 + 1)(S1 + 1)

T1 + 1

)1/2

< 1.0001 ·
(

(S1 + 1)a3

a1

)1/2

.

Now, we rewrite s′Λ as a linear form in two logarithms:

s′Λ = p log
(
αs′

2 α3
t′′

)
− q′ log

(
ωr′

α3
−t′

)
,

where

ω =
1 +

√
5

2
, α2 =

ωk

y
, α3 =

√
5.

This ends our preliminary discussion.
Now, after a computer search we see that we can apply Theorem 12.9 with

the choices
L = 250, ρ = 11, m = 21.8432676837,

and then, in the first case,
p < 426 × 106.

With these choices,

max{S1, S2} = max{64049, 290961} < 108

so that neither condition (C1) nor condition (C2) holds. And, using the upper
bounds obtained above thanks to Proposition 12.8, we get

|r′| ≤ 354, |t′| ≤ 182.

Moreover, the relation t′q′ + t′′p + s′ = 0, combined with 0 ≤ q < p, implies
the inequality |t′′| ≤ |t′|; hence we also have

|t′′| ≤ 182.
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Then we apply the main result (Théorème 1) of [27], with the choices (using
the notation of this result)

L = 13, R1 = 1, S1 = 13, m = 0.138356081647, ρ = 22, . . .

and we get
n < 295 × 106.

Thus we have proved that p < 426 × 106. From this upper bound, if we
use this process once more (taking now L = 180 and r = 11 in the first case,
and keeping the same values L = 13 and ρ = 22 in the application of [27]), we
get:

p < 197 × 106,

which certainly shows that p < 2×108 and we have obtained our contradiction.
This completes the proof of Theorem 1.
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[9] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74
(1996), 67–80.



CLASSICAL AND MODULAR APPROACHES 1017
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