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On a class of type II1 factors
with Betti numbers invariants

By Sorin Popa*

Abstract

We prove that a type II1 factor M can have at most one Cartan subalgebra
A satisfying a combination of rigidity and compact approximation properties.
We use this result to show that within the class HT of factors M having such
Cartan subalgebras A ⊂ M , the Betti numbers of the standard equivalence
relation associated with A ⊂ M ([G2]), are in fact isomorphism invariants for
the factors M , β

HT

n (M), n ≥ 0. The class HT is closed under amplifications
and tensor products, with the Betti numbers satisfying β

HT

n (M t) = β
HT

n (M)/t,
∀t > 0, and a Künneth type formula. An example of a factor in the class HT
is given by the group von Neumann factor M = L(Z2 � SL(2, Z)), for which
β

HT

1 (M) = β1(SL(2, Z)) = 1/12. Thus, M t �� M,∀t �= 1, showing that the
fundamental group of M is trivial. This solves a long standing problem of
R. V. Kadison. Also, our results bring some insight into a recent problem of
A. Connes and answer a number of open questions on von Neumann algebras.
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0. Introduction

We consider in this paper the class of type II1 factors with maximal abelian
∗-subalgebras satisfying both a weak rigidity property, in the spirit of Kazhdan,
Margulis ([Ka], [Ma]) and Connes-Jones ([CJ]), and a weak amenability prop-
erty, in the spirit of Haagerup’s compact approximation property ([H]). Our
main result shows that a type II1 factor M can have at most one such maximal
abelian ∗-subalgebra A ⊂ M , up to unitary conjugacy. Moreover, we prove that
if A ⊂ M satisfies these conditions then A is automatically a Cartan subalgebra
of M , i.e., the normalizer of A in N , N (A) = {u ∈ M | uu∗ = 1, uAu∗ = A},
generates all the von Neumann algebra M . In particular, N (A) implements
an ergodic measure-preserving equivalence relation on the standard probability
space (X, µ), with A = L∞(X, µ) ([FM]), which up to orbit equivalence only
depends on the isomorphism class of M .

We call HT the Cartan subalgebras satisfying the combination of the
rigidity and compact approximation properties and denote by HT the class
of factors having HT Cartan subalgebras. Thus, our theorem implies that if
M ∈ HT , then there exists a unique (up to isomorphism) ergodic measure-
preserving equivalence relation RHT

M on (X, µ) associated with it, implemented
by the HT Cartan subalgebra of M . In particular, any invariant for RHT

M is an
invariant for M ∈ HT .

In a recent paper ([G2]), D. Gaboriau introduced a notion of �2-Betti
numbers for arbitrary countable measure-preserving equivalence relations R,
{βn(R)}n≥0, starting from ideas of Atiyah ([A]) and Connes ([C4]), and gen-
eralizing the notion of L2-Betti numbers for measurable foliations defined in
[C4]. His notion also generalizes the �2-Betti numbers for discrete groups Γ0

of Cheeger-Gromov ([ChGr]), {βn(Γ0)}n≥0, as Gaboriau shows that βn(Γ0) =
βn(RΓ0), for any countable equivalence relation RΓ0 implemented by a free,
ergodic, measure-preserving action of the group Γ0 on a standard probability
space (X, µ) ([G2]).

We define in this paper the Betti numbers {βHT

n (M)}n≥0 of a factor M in
the class HT as the �2-Betti numbers ([G2]) of the corresponding equivalence
relation RHT

M , {βn(RHT

M )}n.
Due to the uniqueness of the HT Cartan subalgebra, the general properties

of the Betti numbers for countable equivalence relations proved in [G2] entail
similar properties for the Betti numbers of the factors in the class HT . For
instance, after proving that HT is closed under amplifications by arbitrary
t > 0, we use the formula βn(Rt) = βn(R)/t in [G2] to deduce that β

HT

n (M t) =
β

HT

n (M)/t,∀n. Also, we prove that HT is closed under tensor products and
that a Künneth type formula holds for β

HT

n (M1⊗M2) in terms of the Betti
numbers for M1, M2 ∈ HT , as a consequence of the similar formula for groups
and equivalence relations ([B], [ChGr], [Lu], [G2]).
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Our main example of a factor in the class HT is the group von Neumann
algebra L(G0) associated with G0 = Z2 � SL(2, Z), regarded as the group-
measure space construction L∞(T2, µ) = A0 ⊂ A0 �σ0 SL(2, Z), where T2 is
regarded as the dual of Z2 and σ0 is the action implemented by SL(2, Z) on it.
More generally, since our HT condition on the Cartan subalgebra A requires
only part of A to be rigid in M , we show that any crossed product factor of
the form A �σ SL(2, Z), with A = A0⊗A1, σ = σ0 ⊗ σ1 and σ1 an arbitrary
ergodic action of SL(2, Z) on an abelian algebra A1, is in the class HT . By a
recent result in [Hj], based on the notion and results on tree-ability in [G1], all
these factors are in fact amplifications of group-measure space factors of the
form L∞(X, µ) � Fn, where Fn is the free group on n generators, n = 2, 3, . . . .

To prove that M belongs to the class HT , with A its corresponding HT
Cartan subalgebra, we use the Kazhdan-Margulis rigidity of the inclusion Z2 ⊂
Z2 � SL(2, Z) ([Ka], [Ma]) and Haagerup’s compact approximation property
of SL(2, Z) ([Ha]). The same arguments are actually used to show that if
α ∈ C, |α| = 1, and Lα(Z2) denotes the corresponding “twisted” group algebra
(or “quantized” 2-dimensional thorus), then Mα = Lα(Z2) � SL(2, Z) is in the
class HT if and only if α is a root of unity.

Since the orbit equivalence relation R
HT

M implemented by SL(2, Z) on A

has exactly one nonzero Betti number, namely β1(R
HT

M ) = β1(SL(2, Z)) = 1/12
([B], [ChGr], [G2]), it follows that the factors M = A �σ SL(2, Z) satisfy
β

HT

1 (M) = 1/12 and β
HT

n (M) = 0,∀n �= 1. More generally, if α is an nth

primitive root of 1, then the factors Mα = Lα(Z2)�SL(2, Z) satisfy β
HT

1 (Mα) =
n/12, β

HT

k (Mα) = 0,∀k �= 1. We deduce from this that if α, α′ are primitive
roots of unity of order n respectively n′ then Mα � Mα′ if and only if n = n′.

Other examples of factors in the class HT are obtained by taking discrete
groups Γ0 that can be embedded as arithmetic lattices in SU(n, 1) or SO(m, 1),
together with suitable actions σ of Γ0 on abelian von Neumann algebras A �
L(ZN ). Indeed, these groups Γ0 have the Haagerup approximation property
by [dCaH], [CowH] and their action σ on A can be taken to be rigid by a recent
result of Valette ([Va]). In each of these cases, the Betti numbers have been
calculated in [B]. Yet another example is offered by the action of SL(2, Q) on
Q2: Indeed, the rigidity of the action of SL(2, Z) (regarded as a subgroup of
SL(2, Q)) on Z2 (regarded as a subgroup of Q2), as well as the property H of
SL(2, Q) proved in [CCJJV], are enough to insure that L(Q2 � SL(2, Q)) is in
the class HT .

As a consequence of these considerations, we are able to answer a number
of open questions in the theory of type II1 factors. Thus, the factors M =
A �σ SL(2, Z) (more generally, A �σ Γ0 with Γ0, σ as above) provide the first
class of type II1 factors with trivial fundamental group, i.e.

F (M)def={t > 0 | M t � M} = {1}.
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Indeed, we mentioned that β
HT

n (M t) = β
HT

n (M)/t,∀n, so that if β
HT

n (M) �= 0
or ∞ for some n then F (M) is forced to be equal to {1}.

In particular, the factors M are not isomorphic to the algebra of n by n

matrices over M , for any n ≥ 2, thus providing an answer to Kadison’s Problem
3 in [K1] (see also Sakai’s Problem 4.4.38 in [S]). Also, through appropriate
choice of actions of the form σ = σ0 ⊗ σ1, we obtain factors of the form
M = A �σ SL(2, Z) having the property Γ of Murray and von Neumann, yet
trivial fundamental group.

The fundamental group F (M) of a II1 factor M was defined by Murray
and von Neumann in the early 40’s, in connection with their notion of contin-
uous dimension. They noticed that F (M) = R∗

+ when M is isomorphic to the
hyperfinite type II1 factor R, and more generally when M “splits off” R.

The first examples of type II1 factors M with F (M) �= R∗
+, and the first

occurrence of rigidity in the von Neumann algebra context, were discovered by
Connes in [C1]. He proved that if G0 is an infinite conjugacy class discrete
group with the property (T) of Kazhdan then its group von Neumann algebra
M = L(G0) is a type II1 factor with countable fundamental group. It was
then proved in [Po1] that this is still the case for factors M which contain
some irreducible copy of such L(G0). It was also shown that there exist type
II1 factors M with F (M) countable and containing any prescribed countable
set of numbers ([GoNe], [Po4]). However, the fundamental group F (M) could
never be computed exactly, in any of these examples.

In fact, more than proving that F (M) = {1} for M = A �σ SL(2, Z), the
calculation of the Betti numbers shows that M t1⊗M t2 . . .⊗M tn is isomorphic
to M s1⊗M s2 . . .⊗M sm if and only if n = m and t1t2 . . . tn = s1s2 . . . sm. In
particular, all tensor powers of M , M⊗n, n = 1, 2, 3, . . . , are mutually noni-
somorphic and have trivial fundamental group. (N.B. The first examples of
factors having nonisomorphic tensor powers were constructed in [C4]; another
class of examples was obtained in [CowH]). In fact, since β

HT

k (M⊗n) �= 0 if and
only if k = n, the factors {M⊗n}n≥1 are not even stably isomorphic.

In particular, since M t � L∞(X, µ) � Fn for t = (12(n − 1))−1 (cf. [Hj]),
it follows that for each n ≥ 2 there exists a free ergodic action σn of Fn on the
standard probability space (X, µ) such that the factors Mn = L∞(X, µ) �σn

Fn, n = 2, 3, . . . , satisfy Mk1⊗ · · ·⊗Mkp
� Ml1⊗ . . .⊗Mlr if and only if p = r

and k1k2 . . . kp = l1l2 . . . lr. Also, since β
HT

1 (Mn) �= 0, the Künneth formula
shows that the factors Mn are prime within the class of type II1 factors in HT .

Besides being closed under tensor products and amplifications, the class
HT is closed under finite index extensions/restrictions, i.e., if N ⊂ M are type
II1 factors with finite Jones index, [M : N ] < ∞, then M ∈ HT if and only if
N ∈ HT . In fact, factors in the class HT have a remarkably rigid “subfactor
picture”.
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Thus, if M ∈ HT and N ⊂ M is an irreducible subfactor with [M : N ]
< ∞ then [M : N ] is an integer. More than that, the graph of N ⊂ M ,
Γ = ΓN,M , has only integer weights {vk}k. Recall that the weights vk of
the graph of a subfactor N ⊂ M are given by the “statistical dimensions”
of the irreducible M -bimodules Hk in the Jones tower or, equivalently, as the
square roots of the indices of the corresponding irreducible inclusions of factors,
M ⊂ M(Hk). They give a Perron-Frobenius type eigenvector for Γ, satisfying
ΓΓt�v = [M : N ]�v. We prove that if β

HT

n (M) �= 0 or ∞ then

vk = β
HT

n (M(Hk))/β
HT

n (M), ∀k;

i.e., the statistical dimensions are proportional to the Betti numbers. As an
application of this subfactor analysis, we show that the non-Γ factor L(Z2 �
SL(2, Z)) has two nonconjugate period 2-automorphims.

We also discuss invariants that can distinguish between factors in the
class HT which have the same Betti numbers. Thus, we show that if Γ0 =
SL(2, Z), Fn, or if Γ0 is an arithmetic lattice in some SU(n, 1),SO(n, 1), for
some n ≥ 2, then there exist three nonorbit equivalent free ergodic measure-
preserving actions σi of Γ0 on (X, µ), with Mi = L∞(X, µ) �σi

Γ0 ∈ HT
nonisomorphic for i = 1, 2, 3. Also, we apply Gaboriau’s notion of approximate
dimension to equivalence relations of the form RHT

M to distinguish between HT
factors of the form Mk = L∞(X, µ)�Fn1 ×· · ·×Fnk

×S∞, with S∞ the infinite
symmetric group and k = 1, 2, . . . , which all have only 0 Betti numbers.

As for the “size” of the class HT , note that we could only produce ex-
amples of factors M = A �σ Γ0 in HT for certain property H groups Γ0,
and for certain special actions σ of such groups. We call H

T
the groups

Γ0 for which there exist free ergodic measure-preserving actions σ on the
standard probability space (X, µ) such that L∞(X, µ) �σ Γ0 ∈ HT . Be-
sides the examples Γ0 = SL(2, Z),SL(2, Q), Fn, or Γ0 an arithmetic lattice
in SU(n, 1),SO(n, 1), n ≥ 2, mentioned above, we show that the class of H

T

groups is closed under products by arbitrary property H groups, crossed prod-
uct by amenable groups and finite index restriction/extension.

On the other hand, we prove that the class HT does not contain factors
of the form M � M⊗R, where R is the hyperfinite II1 factor. In particular,
R /∈ HT . Also, we prove that the factors M ∈ HT cannot contain property (T)
factors and cannot be embedded into free group factors (by using arguments
similar to [CJ]). In the same vein, we show that if α ∈ T is not a root of unity,
then the factors Mα = Lα(Z2) � SL(2, Z) = R � SL(2, Z) cannot be embedded
into any factor in the class HT . In fact, such factors Mα belong to a special
class of their own, that we will study in a forthcoming paper.

Besides these concrete applications, our results give a partial answer to
a challenging problem recently raised by Alain Connes, on defining a no-
tion of Betti numbers βn(M) for type II1 factors M , from similar conceptual



814 SORIN POPA

grounds as in the case of measure-preserving equivalence relations in [G2] (sim-
plicial structure, �2 homology/cohomology, etc), a notion that should satisfy
βn(L(G0)) = βn(G0) for group von Neumann factors L(G0). In this respect,
note that our definition is not the result of a “conceptual approach”, relying
instead on the uniqueness result for the HT Cartan subalgebras, which allows
reduction of the problem to Gaboriau’s work on invariants for equivalence re-
lations and, through it, to the results on �2-cohomology for groups in [ChGr],
[B], [Lu]. Thus, although they are invariants for “global factors” M ∈ HT , the
Betti numbers β

HT

n (M) are “relative” in spirit, a fact that we have indicated by
adding the upper index

HT
. Also, rather than satisfying βn(L(G0)) = βn(G0),

the invariants β
HT

n satisfy β
HT

n (A � Γ0) = βn(Γ0). In fact, if A � Γ0 = L(G0),
where G0 = ZN � Γ0, then βn(G0) = 0, while β

HT

n (L(G0)) = βn(Γ0) may be
different from 0.

The paper is organized as follows: Section 1 consists of preliminaries: we
first establish some basic properties of Hilbert bimodules over von Neumann
algebras and of their associated completely positive maps; then we recall the
basic construction of an inclusion of finite von Neumann algebras and study
their compact ideal space; we also recall the definitions of normalizer and quasi-
normalizer of a subalgebra, as well as the notions of regular, quasi-regular,
discrete and Cartan subalgebras, and discuss some of the results in [FM] and
[PoSh]. In Section 2 we consider a relative version of Haagerup’s compact
approximation property for inclusions of von Neumann algebras, called relative
property H (cf. also [Bo]), and prove its main properties. In Section 3 we give
examples of property H inclusions and use [PoSh] to show that if a type II1
factor M has the property H relative to a maximal abelian subalgebra A ⊂ M

then A is a Cartan subalgebra of M . In Section 4 we define a notion of
rigidity (or relative property (T)) for inclusions of algebras and investigate its
basic properties. In Section 5 we give examples of rigid inclusions and relate
this property to the co-rigidity property defined in [Zi], [A-De], [Po1]. We
also introduce a new notion of property (T) for equivalence relations, called
relative property (T), by requiring the associated Cartan subalgebra inclusion
to be rigid.

In Section 6 we define the class HT of factors M having HT Cartan sub-
algebras A ⊂ M , i.e., maximal abelian ∗-subalgebras A ⊂ M such that M

has the property H relative to A and A contains a subalgebra A0 ⊂ A with
A′

0∩M = A and A0 ⊂ M rigid. We then prove the main technical result of the
paper, showing that HT Cartan subalgebras are unique. We show the stability
of the class HT with respect to various operations (amplification, tensor prod-
uct), and prove its rigidity to perturbations. Section 7 studies the lattice of
subfactors of HT factors: we prove the stability of the class HT to finite index,
obtain a canonical decomposition for subfactors in HT and prove that the in-
dex is always an integer. In Section 8 we define the Betti numbers {βHT

n (M)}n
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for M ∈ HT and use the previous sections and [G2] to deduce various prop-
erties of this invariant. We also discuss some alternative invariants for factors
M ∈ HT , such as the outomorphism group OutHT(M)def=Aut(RHT

M )/Int(RHT

M ),
which we prove is discrete countable, or adHT(M), defined to be Gaboriau’s
approximate dimension ([G2]) of RHT

M . We end with applications, as well as
some remarks and open questions. We have included an appendix in which we
prove some key technical results on unitary conjugacy of von Neumann sub-
algebras in type II1 factors. The proof uses techniques from [Chr], [Po2,3,6],
[K2].
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A. Valette for useful conversations on the properties H and (T) for groups.
My special thanks are due to Damien Gaboriau, for keeping me informed on
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itude to MSRI and the organizers of the Operator Algebra year 2000–2001,
for their hospitality and for a most stimulating atmosphere. This article is
an expanded version of a paper with the same title which appeared as MSRI
preprint 2001/0024.

1. Preliminaries

1.1. Pointed correspondences. By using the GNS construction as a link, a
representation of a group G0 can be viewed in two equivalent ways: as a group
morphism from G0 into the unitary group of a Hilbert space U(H), or as a
positive definite function on G0.

The discovery of the appropriate notion of representations for von Neu-
mann algebras, as so-called correspondences, is due to Connes ([C3,7]). In
the vein of group representations, Connes introduced correspondences in two
alternative ways, both of which use the idea of “doubling” - a genuine concep-
tual breakthrough. Thus, correspondences of von Neumann algebras N can be
viewed as Hilbert N -bimodules H, the quantized version of group morphisms
into U(H); or as completely positive maps φ : N → N , the quantized version of
positive definite functions on groups (cf. [C3,7] and [CJ]). The equivalence of
these two points of view is again realized via a version of the GNS construction
([CJ], [C7]).

We will in fact need “pointed” versions of Connes’s correspondences,
adapted to the case of inclusions B ⊂ N , as introduced in [Po1] and [Po5].
In this section we detail the two alternative ways of viewing such pointed
correspondences, in the same spirit as [C7]: as “B-pointed bimodules” or as
“B-bimodular completely positive maps”. This is a very important idea, to
appear throughout this paper.
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1.1.1. Pointed Hilbert bimodules. Let N be a finite von Neumann algebra
with a fixed normal faithful tracial state τ and B ⊂ N a von Neumann subal-
gebra of N . A Hilbert (B ⊂ N)-bimodule (H, ξ) is a Hilbert N -bimodule with
a fixed unit vector ξ ∈ H satisfying bξ = ξb,∀b ∈ B. When B = C, we simply
call (H, ξ) a pointed Hilbert N -bimodule.

If H is a Hilbert N -bimodule then ξ ∈ H is a cyclic vector if spNξN = H.
To relate Hilbert (B ⊂ N)-bimodules and B-bimodular completely posi-

tive maps on N one uses a generalized version of the GNS construction, due
to Stinespring, which we describe below:

1.1.2. From completely positive maps to Hilbert bimodules. Let φ be a
normal, completely positive map on N , normalized so that τ(φ(1)) = 1. We
associate to it the pointed Hilbert N -bimodule (Hφ, ξφ) in the following way:

Define on the linear space H0 = N ⊗N the sesquilinear form 〈x1⊗y1, x2⊗
y2〉φ = τ(φ(x∗

2x1)y1y
∗
2), x1,2, y1,2 ∈ N . The complete positivity of φ is easily

seen to be equivalent to the positivity of 〈·, ·〉φ. Let Hφ be the completion of
H0/ ∼, where ∼ is the equivalence modulo the null space of 〈·, ·〉φ in H0. Also,
let ξφ be the class of 1 ⊗ 1 in Hφ. Note that ‖ξφ‖2 = τ(φ(1)) = 1.

If p = Σixi ⊗ yi ∈ H0, then by use again of the complete positivity of φ

it follows that N � x → Σi,jτ(φ(x∗
jxxi)yiy

∗
j ) is a positive normal functional

on N of norm 〈p, p〉φ. Similarly, N � y → Σi,jτ(φ(x∗
jxi)yiyy∗j ) is a positive

normal functional on N of norm 〈p, p〉φ. Note that the latter can alternatively
be viewed as a functional on the opposite algebra Nop (which is the same as
N as a vector space but has multiplication inverted, x · y = yx). Moreover, N

acts on H0 on the left and right by xpy = x(Σixi ⊗ yi)y = Σixxi ⊗ yiy. These
two actions clearly commute and the complete positivity of φ entails:

〈xp, xp〉φ = 〈x∗xp, p〉φ ≤ ‖x∗x‖〈p, p〉φ = ‖x‖2〈p, p〉φ.

Similarly
〈py, py〉φ ≤ ‖y‖2〈p, p〉φ.

Thus, the above left and right actions of N on H0 pass to H0/ ∼ and then
extend to commuting left-right actions on Hφ. By the normality of the forms
x → 〈xp, p〉φ and y → 〈py, p〉φ, these left-right actions of N on Hφ are normal
(i.e., weakly continuous).

This shows that (Hφ, ξφ) with the above N -bimodule structure is a pointed,
Hilbert N -bimodule, which in addition is clearly cyclic. Moreover, if B ⊂ N is
a von Neumann subalgebra and the completely positive map φ is B-bimodular,
then it is immediate to check that bξφ = ξφb,∀b ∈ B. Thus, if φ is B-bimodular,
then (Hφ, ξφ) is a Hilbert (B ⊂ N)-bimodule.

Let us end this paragraph with some useful inequalities which show that
elements that are almost fixed by a B-bimodular completely positive map φ

on N are almost commuting with the associated vector ξφ ∈ Hφ:
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Lemma. 1◦. ‖φ(x)‖2 ≤ ‖φ(1)‖2,∀x ∈ N, ‖x‖ ≤ 1.
2◦. If a = 1 ∨ φ(1) and φ′(·) = a−1/2φ(·)a−1/2, then φ′ is completely

positive, B-bimodular and satisfies φ′(1) ≤ 1, τ ◦ φ′ ≤ τ ◦ φ and the estimate:

‖φ′(x) − x‖2 ≤ ‖φ(x) − x‖2 + 2‖φ(1) − 1‖1/2
1 ‖x‖,∀x ∈ N.

3◦. Assume φ(1) ≤ 1 and define φ′′(x) = φ(b−1/2xb−1/2), where b =
1∨ (dτ ◦ φ/dτ) ∈ L1(N, τ)+. Then φ′′ is completely positive, B-bimodular and
satisfies φ′′(1) ≤ φ(1) ≤ 1, τ ◦ φ′′ ≤ τ , as well as the estimate:

‖φ′′(x) − x‖2
2 ≤ 2‖φ(x) − x‖2 + 5‖b − 1‖1/2

1 ,∀x ∈ N, ‖x‖ ≤ 1.

4◦. ‖xξφ − ξφx‖2
2 ≤ 2‖φ(x)−x‖2

2 + 2‖φ(1)‖2‖φ(x)−x‖2,∀x ∈ N, ‖x‖ ≤ 1.

Proof. 1◦. Since any x ∈ N with ‖x‖ ≤ 1 is a convex combination of two
unitary elements, it is sufficient to prove the inequality for unitary elements
u ∈ N . By continuity, it is in fact sufficient to prove it in the case the unitary
elements u have finite spectrum. If u = Σiλipi for some scalars λi with |λi| = 1,
1 ≤ i ≤ n, and some partition of the identity exists with projections pi ∈ N ,
then τ(φ(pi)φ(pj)) ≥ 0,∀i, j. Taking this into account, we get:

τ(φ(u)φ(u∗)) = Σi,jλiλjτ(φ(pi)φ(pj)) ≤ Σi,j |λiλj |τ(φ(pi)φ(pj))

= Σi,jτ(φ(pi)φ(pj)) = τ(φ(1)φ(1)).

2◦. Since a ∈ B′ ∩ N , φ′ is B-bimodular. We clearly have φ′(1) =
a−1/2φ(1)a−1/2 ≤ 1. Since a−1 ≤ 1, for x ≥ 0 we get τ(φ′(x)) = τ(φ(x)a−1) ≤
τ(φ(x)). Also, we have:

‖φ′(x) − x‖2 ≤‖a−1/2φ(x)a−1/2 − a−1/2xa−1/2‖2 + ‖a−1/2xa−1/2 − x‖2

≤‖φ(x) − x‖2 + 2‖a−1/2 − 1‖2‖x‖.

But

‖a−1/2 − 1‖2 ≤‖a−1 − 1‖1/2
1 = ‖a−1 − aa−1‖1

≤‖a − 1‖1‖a−1‖ ≤ ‖a − 1‖1 ≤ ‖φ(1) − 1‖1.

Thus,

‖φ′(x) − x‖2 ≤ ‖φ(x) − x‖2 + 2‖φ(1) − 1‖1/2
1 ‖x‖.

3◦. The first properties are clear by the definitions. Then note that
‖y‖2

2 ≤ ‖y‖‖y‖1 and ‖φ′′(y)‖1 ≤ ‖y‖1. (Indeed, because if φ′′∗ is as defined
in Lemma 1.1.5, then for z ∈ N with ‖z‖ ≤ 1 we have ‖φ′′∗(z)‖ ≤ 1 so that
‖φ′′(y)‖1 = sup{|τ(φ′′(y)z)| | z ∈ N, ‖z‖ ≤ 1} = sup{|τ(yφ′′∗(z))| | z ∈ N ,
‖z‖ ≤ 1} ≤ sup{|τ(yz))| | z ∈ N, ‖z‖ ≤ 1} = ‖y‖1.) Note also that τ(b) ≤
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1 + τ(φ(1)) ≤ 2. Thus, for x ∈ N, ‖x‖ ≤ 1, we get:

‖φ′′(x) − x‖2
2 ≤ 2‖φ′′(x) − x‖1

≤ 2‖φ′′(x) − φ′′(b1/2xb1/2)‖1 + 2‖φ(x) − x‖1

≤ 2‖x − b1/2xb1/2‖1 + 2‖φ(x) − x‖1

≤ 2‖x − xb1/2‖1 + 2‖xb1/2 − b1/2xb1/2‖1 + 2‖φ(x) − x‖1.

But ‖x‖2 ≤ 1 and ‖xb1/2‖2
2 ≤ τ(b) ≤ 2, so by the Cauchy-Schwartz

inequality the above is majorized by:

2‖x‖2‖1 − b1/2‖2 + 2‖1 − b1/2‖2‖xb1/2‖2 + 2‖φ(x) − x‖2

≤ (2 + 23/2)‖b1/2 − 1‖2 + 2‖φ(x) − x‖2 ≤ 5‖b − 1‖1/2
1 + 2‖φ(x) − x‖2.

4◦. Since by the Cauchy-Schwartz inequality we have

±Reτ(φ(x)(φ(x)∗ − x∗)) ≤ ‖φ(x)‖2‖φ(x∗) − x∗‖2,

it follows that

‖φ(x) − x‖2
2 = τ(φ(x)φ(x)∗) + 1 − 2Reτ(φ(x)x∗)

= Reτ(φ(x)x∗) + Reτ(φ(x)(φ(x)∗ − x∗)) + 1 − 2Reτ(φ(x)x∗)

≥ 1 − Reτ(φ(x)x∗) − ‖φ(x) − x‖2‖φ(x)‖2

= ‖xξφ − ξφx‖2
2/2 − ‖φ(x) − x‖2‖φ(x)‖2,

which by part 1◦ proves the statement.

The inequalities in the previous lemmas show in particular that if φ almost
fixes some u ∈ U(N), then φ(ux) is close to uφ(x), uniformly in x ∈ N, ‖x‖ ≤ 1,
whenever we have control over ‖φ‖:

Corollary. For any unitary element u ∈ N and x ∈ N ,

‖φ(ux) − uφ(x)‖2 ≤‖φ‖1/2‖x‖‖[u, ξφ]‖2

≤‖φ‖1/2‖x‖(2‖φ(u) − u‖2
2 + 2‖φ(1)‖2‖φ(u) − u‖2)1/2.

Proof. By using the fact that

‖φ(ux) − uφ(x)‖2 = sup{|τ((φ(ux) − uφ(x))y)| | y ∈ N, ‖y‖2 ≤ 1},

we get:

‖φ(ux) − uφ(x)‖2 = sup{|〈uxξφy, ξφ〉 − 〈xξφyu, ξφ〉| | y ∈ N, ‖y‖2 ≤ 1}
= sup{|〈xξφy, [u∗, ξφ]〉| | y ∈ N, ‖y‖2 ≤ 1}
≤ sup{‖xξφy‖2 | y ∈ N, ‖y‖2 ≤ 1}‖[u∗, ξφ]‖2

= ‖φ(x∗x)‖1/2‖[u, ξφ]‖2 ≤ ‖φ‖1/2‖x‖‖[u, ξφ]‖2.
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1.1.3. From Hilbert bimodules to completely positive maps. Conversely,
let (H, ξ) be a pointed Hilbert (B ⊂ N)-bimodule, with 〈ξ·, ξ〉 ≤ cτ , for some
c > 0. Let T : L2(N, τ) → H be the unique bounded operator defined by
T ŷ = ξy, y ∈ N . Then 〈ξy, ξy〉 ≤ cτ(yy∗) = c‖ŷ‖2

2, so that ‖T‖ ≤ c1/2.
It is immediate to check that if for clarity we denote by L(x) the operator

of left multiplication by x on H, then T satisfies:

〈T ∗L(x)T (JNyJN (ŷ1)), ŷ2〉τ = 〈L(x)(ξy1y
∗), ξy2〉H

= 〈L(x)ξy1, ξy2y〉H = 〈JNyJN (T ∗L(x)T )ŷ1, ŷ2〉τ .

This shows that the operator φ(H,ξ)(x)def=T ∗L(x)T commutes with the right
multiplication on L2(N, τ) by elements y ∈ N . Thus, φ(H,ξ)(x) belongs to
(JNNJN )′ ∩B(L2(N, τ)) = N , showing that φ(H,ξ) defines a map from N into
N , which is obviously completely positive and B-bimodular, by the definitions.
Furthermore, if we denote by H′ the closed linear span of NξN in H, then
U : Hφ → H′, U(x ⊗ y) = xξy is easily seen to be an isomorphism of Hilbert
(B ⊂ N)-bimodules.

The assumption that ξ is “bounded from the right” by c is not really a
restriction for this construction, since if we put H0 = {ξ ∈ H | bξ = ξb,∀b ∈ B,
ξ bounded from the left and from the right }, then it is easy to see that H0 is
dense in the Hilbert space H0 ⊂ H of all B-central vectors in H. This actually
implies that any (B ⊂ N) Hilbert bimodule (H, ξ) is a direct sum of some
(B ⊂ N) Hilbert bimodules (Hi, ξi) with ξi bounded both from left and right
(hint: just use the above density and a maximality argument).

Note that if (H, ξ) comes itself from a completely positive B-bimodular
map φ, i.e., (H, ξ) = (Hφ, ξφ) as in 1.1.2, then φ(H,ξ) = φ. Similarly, if (H, ξ)
is a cyclic pointed (B ⊂ N)-Hilbert bimodule and φ = φ(H,ξ), then (Hφ, ξφ) �
(H, ξ).

Let us also note a converse to Lemma 1.1.3, showing that if ξ almost
commutes with a unitary element u ∈ N then u is almost fixed by φ = φ(H,ξ),
provided we have some control over ‖φ(1)‖2:

Lemma. Let ξ ∈ H be a vector bounded from the right and denote
φ = φ(H,ξ).

1◦. Let a0, b0 ∈ L1(N, τ)+ be such that 〈·ξ, ξ〉 = τ(·b0), 〈ξ·, ξ〉 = τ(·a0) and
put a = 1 ∨ a0, b = 1 ∨ b0, ξ′ = b−1/2ξa−1/2. Then φ(1) = a0 and

‖ξ − ξ′‖2 ≤ 4‖a0 − 1‖1 + 4‖b0 − 1‖1.

2◦. If u ∈ U(N), then

‖φ(u) − u‖2
2 ≤ ‖[u, ξ]‖2

2 + (‖φ(1)‖2
2 − 1).
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Proof. 1◦. We have:

‖ξ − ξ′‖2 ≤ 2‖ξ − b−1/2ξ‖2 + 2‖ξ − ξa−1/2‖2

= 2τ((1 − b−1/2)2b0) + 2τ((1 − a−1/2)2a0)

≤ 4‖b0 − 1‖1 + 4‖a0 − 1‖1.

2◦. By part 1◦ of Lemma 1.1.2 we have τ(φ(u∗)φ(u)) ≤ τ(φ(1)φ(1)), so
that:

‖φ(u) − u‖2
2 = τ(φ(u)φ(u∗)) + 1 − 2Reτ(φ(u)u∗)

≤ τ(φ(1)φ(1)) + 1 − 2Reτ(φ(u)u∗)

= 2 − 2Reτ(φ(u)u∗) + (τ(φ(1)φ(1)) − 1)

= ‖[u, ξ]‖2
2 + (‖φ(1)‖2

2 − 1).

1.1.4. Correspondences from representations of groups. Let Γ0 be a dis-
crete group, (B, τ0) a finite von Neumann algebra with a normal faithful tracial
state and σ a cocycle action of Γ0 on (B, τ0) by τ0-preserving automorphisms.
Denote by N = B �σ Γ0 the corresponding crossed product algebra and by
{ug}g ⊂ N the canonical unitaries implementing the action σ on B.

Let (π0,H0, ξ0) be a pointed, cyclic representation of the group Γ0. We
denote by (Hπ0 , ξπ0) the pointed Hilbert space (H0, ξ0)⊗(L2(N, τ), 1̂). We let
N act on the right on Hπ0 by (ξ⊗x̂)y = ξ⊗(x̂y), x, y ∈ N, ξ ∈ H0 and on the left
by b(ξ ⊗ x̂) = ξ ⊗ b̂x, ug(ξ ⊗ x̂) = π0(g)(ξ)⊗ ˆugx, b ∈ B, x ∈ N, g ∈ Γ0, ξ ∈ H0.

It is easy to check that these are indeed mutually commuting left-right
actions of N on Hπ0 . Moreover, the vector ξπ0 = ξ0⊗ 1̂ implements the trace τ

on N , both from left and right. Also, ξπ0 is easily seen to be B-central. Thus,
(Hπ0 , ξπ0) is a Hilbert (B ⊂ N)-bimodule.

Let now ϕ be a positive definite function on Γ0 and denote by (πϕ,Hϕ, ξϕ)
the representation obtained from it through the GNS construction. Let (H, ξ)
denote the (B ⊂ B � Γ0)-Hilbert bimodule constructed out of the representa-
tion πϕ as above and φ the completely positive B-bimodular map associated
with (H, ξ) as in 1.1.3. An easy calculation shows that φ acts on B � Γ0 by
φ(Σgbgug) = Σgϕ(g)bgug.

Conversely, if (H, ξ) is a (B ⊂ N) Hilbert bimodule, then we can asso-
ciate to it the representation π0 on H0 = sp{ugξu

∗
g | g ∈ Γ0} by π0(g)ξ′ =

ugξ
′u∗

g, ξ
′ ∈ H0. Equivalently, if φ is the B-bimodular completely positive map

associated with (H, ξ) then ϕ(g) = τ(φ(ug)u∗
g), g ∈ Γ0, is a positive definite

function on Γ0.

1.1.5. The adjoint of a bimodule. Let (H, ξ0) be a (B ⊂ N) Hilbert
bimodule. Let H be the conjugate Hilbert space of H, i.e., H = H as a set, the
sum of vectors in H is the same as in H, but the multiplication by scalars is
given by λ·ξ = λξ and 〈ξ, η〉H = 〈η, ξ〉H. Denote by ξ the element ξ regarded as
a vector in the Hilbert space H. Define on H the left and right multiplication
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operations by x · ξ · y = y∗ξx∗, for x, y ∈ N, ξ ∈ H. It is easy to see that
they define an N Hilbert bimodule structure on H. Moreover, ξ0 is clearly
B-central. We call (H, ξ0) the adjoint of (H, ξ0). Note that we clearly have
(H, ξ0) = (H, ξ0).

Lemma. Let φ be a normal B-bimodular completely positive map on N .
For each x ∈ N let φ∗(x) ∈ L1(N, τ) denote the Radon-Nykodim derivative of
N � y �→ τ(φ(y)x) with respect to τ .

1◦. φ∗(N) ⊂ N if and only if τ ◦ φ ≤ cτ for some c > 0, i.e., if and
only if the Radon-Nykodim derivative b0 = dτ ◦ φ/dτ is a bounded operator.
Moreover, if the condition is satisfied then φ∗ defines a normal, B-bimodular,
completely positive map of N into N with φ∗(1) = b0 and

‖φ∗‖ = ‖b0‖ = inf{c > 0 | τ ◦ φ ≤ cτ}.

2◦. If φ satisfies condition 1◦ then φ∗ also satisfies it, and (φ∗)∗ = φ.
Also, (Hφ∗ , ξφ∗) = (Hφ, ξφ).

3◦. If τ ◦ φ ≤ τ then for any unitary element u ∈ N ,

‖φ∗(u) − u‖2
2 ≤ 2‖φ(u) − u‖2.

Proof. Parts 1◦ and 2◦ are trivial by the definition of φ∗.
To prove 3◦, note that by part 1◦, τ ◦ φ ≤ τ implies φ∗(1) ≤ 1 and so by

Lemma 1.1.2 we get:

‖φ∗(u) − u‖2
2 = τ(φ∗(u)φ∗(u)∗) + 1 − 2Reτ(φ∗(u)u∗)

≤ τ(φ∗(1)φ∗(1)) + 1 − 2Reτ(φ(u)u∗) ≤ 2 − 2Reτ(φ(u)u∗)

= 2Reτ((u − φ(u))u∗) ≤ 2‖φ(u) − u‖2.

1.2. Completely positive maps as Hilbert space operators. We now show
that if a completely positive map φ on the finite von Neumann algebra N

is sufficiently smooth with respect to the normal faithful tracial state τ on
N , then it can be extended to the Hilbert space L2(N, τ). In case φ is B-
bimodular, for some von Neumann subalgebra B ⊂ N , these operators belong
to the algebra of the basic construction associated with B ⊂ N , defined in the
next paragraph.

1.2.1. Lemma. 1◦. If there exists c>0 such that ‖φ(x)‖2≤c‖x‖2,∀x ∈ N ,
then there exists a bounded operator Tφ on L2(N, τ) such that Tφ(x̂) = ˆφ(x).
The operator Tφ commutes with the canonical conjugation JN . Also, if B ⊂ N

is a von Neumann subalgebra, then Tφ commutes with the operators of left and
right multiplication by elements in B (i.e., Tφ ∈ B′ ∩ (JBJ)′) if and only if
the completely positive map φ is B-bimodular.

2◦. If τ ◦ φ ≤ c0τ, for some constant c0 > 0, then φ satisfies condition 1◦

above, and so there exists a bounded operator Tφ on the Hilbert space L2(N, τ)
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such that Tφ(x̂) = ˆφ(x), for x ∈ N . Moreover, if φ∗ : N → N is the adjoint of
φ, as defined in 1.1.5, then ‖Tφ‖2 ≤ ‖φ(1)‖‖φ∗(1)‖. Also, φ∗ satisfies τ ◦ φ∗ ≤
‖φ(1)‖τ and so Tφ∗ = T ∗

φ .

3◦. If φ is B-bimodular then φ(1) ∈ B′∩N . Thus, if B′∩N = Z(B) then
φ(1) ∈ Z(B), τ ◦ φ ≤ ‖φ(1)‖τ and the bounded operator Tφ exists by 2◦. If in
addition φ(1) = 1, then φ is trace-preserving as well.

Proof. 1◦. The existence of Tφ is trivial. Also, for x ∈ N we have

Tφ(JN (x̂)) = ˆφ(x∗) = ˆφ(x)∗ = JN (Tφ(x̂)).

If φ is B-bimodular and b ∈ B is regarded as an operator of left multiplication
by b on L2(N, τ), then

bTφ(x̂) = ˆbφ(x) = ˆφ(bx) = Tφ(bx̂).

Thus, Tφ ∈ B′.
Similarly,

JbJ(Tφ(x̂)) = φ(x)b = φ(xb) = Tφ(JbJ(x̂))

showing that Tφ ∈ JBJ ′ as well. Conversely, if Tφ ∈ B′ ∩ JBJ ′, then by
exactly the same equalities, φ(bx) = bφ(x), φ(xb) = φ(x)b,∀x ∈ N, b ∈ B.

2◦. By Kadison’s inequality, for x ∈ M ,

〈Tφ(x̂), Tφ(x̂)〉 = τ(φ(x)∗φ(x)) ≤ ‖φ(1)‖τ(φ(x∗x)),∀x ∈ N.

Thus, by Lemma 1.1.5 we have ‖Tφ‖2 ≤ ‖φ(1)‖‖φ∗(1)‖. The last part is now
trivial, by 1.1.5 and the definitions of Tφ, φ∗ and Tφ∗ .

3◦. The B-bimodularity of φ implies uφ(1)u∗ = φ(1),∀u ∈ U(B); thus
φ(1) ∈ B′ ∩ N .

Using again the bimodularity, as well as the normality of φ, for each fixed
x ∈ N we have

τ(φ(x)) = τ(uφ(x)u∗) = τ(φ(uxu∗)) = τ(φ(y))

for all u ∈ U(B) and all y in the weak closure of the convex hull of {uxu∗ | u ∈
U(N)}. The latter set contains EB′∩N (x) ∈ B′ ∩ N ⊂ B (see e.g. [Po6]); thus

τ(φ(x)) = τ(φ(EB′∩N (x))) = τ(EB′∩N (x)φ(1)).

This shows that if x ≥ 0 then τ(φ(x)) ≤ ‖φ(1)‖τ(x). It also shows that in case
φ(1) = 1 then τ(φ(x)) = τ(x),∀x ∈ N .

1.3. The basic construction and its compact ideal space. We now recall
from [Chr], [J1], [Po2,3] some well known facts about the basic construction
for an inclusion of finite von Neumann algebras B ⊂ N with a normal faithful
tracial state τ on it. Also, we establish some properties of the ideal generated
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by finite projections in the semifinite von Neumann algebra 〈N, B〉 of the basic
construction.

1.3.1. Basic construction for B ⊂ N . We denote by 〈N, B〉 the von Neu-
mann algebra generated in B(L2(N, τ)) by N (regarded as the algebra of left
multiplication operators by elements in N) and by the orthogonal projection
eB of L2(M, τ) onto L2(B, τ).

Since eBxeB = EB(x)eB,∀x ∈ N , where EB is the unique τ -preserving
conditional expectation of N onto B, and ∨{x(eB(L2(N))) | x ∈ N} = L2(N),
it follows that spNeBN is a *-algebra with support equal to 1 in B(L2(N, τ)).
Thus, 〈N, B〉 = spw{xeBy | x, y ∈ N} and eB〈N, B, 〉eB = BeB.

One can also readily see that if J = JN denotes the canonical conjugation
on the Hilbert space L2(N, τ), given on N̂ by J(x̂) = x̂∗, then 〈N, B〉 =
JBJ ′ ∩ B(L2(N, τ)). This shows in particular that 〈N, B〉 is a semifinite von
Neumann algebra. It also shows that the isomorphism of N ⊂ 〈N, B〉 only
depends on B ⊂ N and not on the trace τ on N (due to the uniqueness of the
standard representation).

As a consequence, if φ is a B-bimodular completely positive map on N

satisfying ‖φ(x)‖2 ≤ c‖x‖2,∀x ∈ N , for some constant c > 0, as in Lemma
1.2.1, then the corresponding operator Tφ on L2(N, τ) defined by Tφ(x̂) =

ˆφ(x), x ∈ N belongs to B′ ∩ 〈N, B〉.
We endow 〈N, B〉 with the unique normal semifinite faithful trace Tr sat-

isfying Tr(xeBy) = τ(xy),∀x, y ∈ N . Note that there exists a unique N

bimodule map Φ from spNeBN ⊂ 〈N, B〉 into N satisfying Φ(xey) = xy,∀x,
y ∈ N , and τ ◦ Φ = Tr. In particular this entails ‖Φ(X)‖1 ≤ ‖X‖1,Tr,∀X ∈
spNeBN . Note that the map Φ extends uniquely to an N -bimodule map from
L1(〈N, B〉,Tr) onto L1(N, τ), still denoted Φ. This N -bimodule map satisfies
the “pull down” identity eX = eΦ(eX),∀X ∈ 〈N, B〉 (see [PiPo], or [Po2]).
Note that Φ(eX) actually belongs to L2(N, τ) ⊂ L1(N, τ), for X ∈ 〈N, B〉.

1.3.2. The compact ideal space of a semifinite algebra. In order to define
the compact ideal space of the semifinite von Neumann algebra 〈N, B〉, it will
be useful to first mention some remarks about the compact ideal space of an
arbitrary semifinite von Neumann algebra N .

Thus, we let J (N ) be the norm-closed two-sided ideal generated in N
by the finite projections of N , and call it the compact ideal space of N (see
e.g., [KafW], [PoRa]). Note that T ∈ N belongs to J (N ) if and only if all
the spectral projections e[s,∞)(|T |), s > 0, are finite projections in N . As a
consequence, it follows that the set J 0(N ) of all elements supported by finite
projections (i.e., the finite rank elements in J (N )) is a norm dense ideal in
J (N ).

Further, let e ∈ N be a finite projection with central support equal to 1
and denote by Je(N ) the norm-closed two-sided ideal generated by e in N . It is
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easy to see that an operator T ∈ N belongs to J (N ) if and only if there exists
a partition of 1 with projections {zi}i in Z(N ) such that Tzi ∈ Je(N ),∀i. In
particular, if p ∈ N is a finite projection then there exists a net of projections
zi ∈ Z(N ) such that zi ↑ 1 and pzi ∈ Je(N ),∀i (see e.g., 2.1 in [PoRa]). Also,
T ∈ Je(N ) if and only if e[s,∞)(|T |) ∈ Je(N ),∀s > 0. In turn, a projection
f ∈ N lies in Je(N ) if and only if there exists a constant c > 0 such that
Tr(fz) ≤ cTr(ez), for any normal semifinite trace Tr on N and any projection
z ∈ Z(N ).

The next result, whose proof is very similar to some arguments in [Po7],
shows that one can “push” elements of J (N ) into the commutant of a subal-
gebra B of N , while still staying in the ideal J (N ), by averaging by unitaries
in B. We include a complete proof, for convenience.

Proposition. Let B ⊂ N be a von Neumann subalgebra of N . For x ∈ N
denote Kx = cow{uxu∗ | u ∈ U(B)}. If x ∈ J (N ) then B′ ∩ Kx consists of
exactly one element, denoted EB′∩N (x), which belongs to J (N ). Moreover, the
application x �→ EB′∩N (x) is a conditional expectation of J (N ) onto B′∩J (N ).
Also, if x ∈ Je(N ) for some finite projection e ∈ N of central support 1, then
EB′∩N (x) ∈ Je(N ).

Proof. If x = f is a projection in Je(N ) then there exists c > 0 such that
Tr(fz) ≤ cTr(ez), for any normal semifinite trace Tr on N and any projection
z ∈ Z(N ). By averaging with unitaries and taking weak limits, this implies
that Tr(yz) ≤ cTr(ez),∀y ∈ Kf , so that Tr(pz) ≤ s−1cTr(ez), for any spectral
projection p = e[s,∞)(y), s > 0 and z ∈ Z(N ). Thus, Kf ⊂ Je(N ). Since any
x ∈ Je(N ) is a norm limit of linear combinations of projections f in Je(N ),
this shows that the very last part of the statement follows from the first part.

To prove the first part, consider first the case when N has a normal
semifinite faithful trace Tr. Assume first that x ∈ J (N ) actually belongs to
N ∩ L2(N ,Tr) (⊂ J (N )). Note that in this case all Kx ⊂ N is a subset of
the Hilbert space L2(N ,Tr), where it is convex and weakly closed. Let then
x0 ∈ Kx be the unique element of minimal Hilbert norm ‖ ‖2,Tr in Kx. Since
‖ux0u

∗‖2,Tr = ‖x0‖2,Tr,∀u ∈ U(B), it follows that ux0u
∗ = x0,∀u ∈ U(B).

Thus, x0 ∈ B′ ∩N ∩ L2(N ,Tr). In particular, x0 ∈ B′ ∩ J (N ).
If we now denote by p the orthogonal projection of L2(N ,Tr) onto the

space of fixed points of the representation of U(B) on it given by ξ �→ uξu∗,
then x0 coincides with p(x). Since p(uxu∗) = p(x), this shows that x0 = p(x)
is in fact the unique element y in Kx with uyu∗ = y, ∀u ∈ U(B). Thus, if
for each x ∈ N ∩ L2(N ,Tr) we put EB′∩N (x)def=p(x), then we have proved the
statement for the subset N ∩ L2(N ,Tr).

Since ‖y‖ ≤ ‖x‖,∀y ∈ Kx, it follows that if {xn}n ⊂ N ∩ L2(N ,Tr) is a
Cauchy sequence (in the uniform norm), then so is {EB′∩N (xn)}n. Thus, EB′∩N
extends uniquely by continuity to a linear, norm one projection from J (N )
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onto B′ ∩ J (N ), which by the above remarks takes the norm dense subspace
N ∩ L2(N ,Tr) into itself.

Let us now prove that B′ ∩ Kx �= ∅,∀x ∈ J (N ). To this end, let x be an
arbitrary element in J (N ) and ε > 0. Let x1 ∈ N ∩ L2(N ,Tr) with ‖x − x1‖
≤ ε. Write EB′∩N (x1) as a weak limit of a net {Tuα

(x1)}α, for some finite
tuples uα = (uα

1 , . . . , uα
nα

) ⊂ U(B), where Tuα
(y) = n−1

α

∑
i u

α
i yuα∗

i , y ∈ N .
By passing to a subnet if necessary, we may assume {Tuα

(x)}α is also weakly
convergent, to some element x′ ∈ Kx. Since, ‖Tuα

(x)−Tuα
(x1)‖ ≤ ‖x−x1‖ ≤ ε,

it follows that ‖x′ − EB′∩N (x1)‖ ≤ ε. This shows that the weakly-compact set
Kx contains elements which are arbitrarily close to B′ ∩ N . Since there is a
weak limit of such elements it follows that B′ ∩ Kx �= ∅.

Finally, let x ∈ J (N ) and assume x0 is an element in B′ ∩ Kx. To prove
that x0 = EB′∩N (x), let ε > 0 and x1 ∈ N ∩ L2(N ,Tr) with ‖x − x1‖ ≤ ε,
as before. Write x0 as a weak limit of a net {Tvβ

(x)}β, for some finite tuples
vβ = (vβ

1 , . . . , vβ
mβ) ⊂ U(B). By passing to a subnet if necessary, we may

assume {Tvβ
(x1)}β is also weakly convergent, to some element x0

1 ∈ Kx1 . Since,
‖Tvβ

(x) − Tvβ
(x1)‖ ≤ ‖x − x1‖ ≤ ε, it follows that ‖x0 − x0

1‖ ≤ ε. But
p(x0

1) = p(x1) = EB′∩N (x1), and p(x0
1) is obtained as a weak limit of averaging

by unitaries in B, which commute with x0. Thus,

‖x0 − EB′∩N (x)‖≤‖x0 − EB′∩N (x1)‖
+‖EB′∩N (x1) − EB′∩N (x)‖ ≤ ε + ‖x1 − x‖ ≤ 2ε.

Since ε > 0 was arbitrary, this shows that x0 = EB′∩N (x).
This finishes the proof of the case when N has a faithful trace Tr. The

general case follows now readily, because if {zi}i is an increasing net of projec-
tions in Z(N ) such that Kzix ∩ (Bzi)′ consists of exactly one element, which
belongs to J (N )zi = J (N zi), ∀x ∈ J (N ), then the same holds true for the
projection lim

i→∞
zi.

1.3.3. The compact ideal space of 〈N, B〉. In particular, if B ⊂ N is
an inclusion of finite von Neumann algebras as in 1.3.1, then we denote by
J (〈N, B〉) the compact ideal space of 〈N, B〉. Noticing that eB has central
support 1 in 〈N, B〉, we denote J0(〈N, B〉) the norm closed two sided ideal
JeB

(〈N, B〉) generated by eB in 〈N, B〉. Note that if B = C then J (〈N, B〉) =
J0(〈N, B〉) is the usual ideal of compact operators K(L2(N)).

It will be useful to have the following alternative characterizations of the
compact ideal spaces J (〈N, B〉),J0(〈N, B〉).

Proposition. Let N be a finite von Neumann algebra with countably
decomposable center and B ⊂ N a von Neumann subalgebra. Let T ∈ 〈N, B〉.
The following conditions are equivalent :

1◦. T ∈ J (〈N, B〉).
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2◦. For any ε > 0 there exists a finite projection p ∈ 〈N, B〉 such that
‖T (1 − p)‖ < ε.

3◦. For any ε > 0 there exists z ∈ P(Z(JNBJN )) such that τ(1 − z) ≤ ε

and Tz ∈ J0(〈N, B〉).
4◦. For any given sequence {ηn}n ∈ L2(N) with the properties EB(η∗nηn)

≤ 1,∀n ≥ 1, and lim
n→∞

‖EB(η∗nηm)‖2 = 0,∀m, lim
n→∞

‖Tηn‖2 = 0.

5◦. For any given sequence {xn}n ∈ N with the properties EB(x∗
nxn)

≤ 1,∀n ≥ 1, and lim
n→∞

‖EB(x∗
nxm)‖2 = 0,∀m, lim

n→∞
‖Txn‖2 = 0.

Moreover, T ∈ J0(〈N, B〉) if and only if condition 2◦ above holds true with
projections p in J0(〈N, B〉).

Proof. The equivalence of 1◦ and 2◦ (resp. the equivalence in the last
part of the statement) is trivial by the following fact, noted in 1.3.2: T ∈
J (〈N, B〉) (resp. T ∈ J0(〈N, B〉)) if and only if e[s,∞)(|T |) ∈ J (〈N, B〉) (resp.
∈ J0(〈N, B〉)), ∀s > 0.

3◦ =⇒ 2◦ is trivial by the general remarks in 1.3.2. To prove 2◦ =⇒ 3◦,
for each n ≥ 1 let Tn be a linear combination of finite projections in 〈N, B〉 such
that ‖T−Tn‖ ≤ 2−n. We see that for any finite projection e ∈ 〈N, B〉 and δ > 0
there exists a projection z ∈ Z(〈N, B〉) = JNZ(B)JN such that τ(1 − z) ≤ δ

and ez ∈ J0(〈N, B〉). It follows that for each n there exists a projection
zn ∈ JNZ(B)JN such that τ(1 − zn) ≤ 2−nε and Tnzn ∈ J0(〈N, B〉). Let
z = ∧zn. Then τ(1 − z) ≤ Σn2−nε ≤ ε, Tnz ∈ J0(〈N, B〉) and ‖(T − Tn)z‖ ≤
‖T − Tn‖ ≤ 2−n,∀n. Thus, Tz ∈ J0(〈N, B〉) as well.

3◦ =⇒ 4◦ is just a particular case of (2.5 in [PoRa]). To prove 4◦ =⇒ 1◦,
assume by contradiction that there exists s > 0 such that the spectral pro-
jection e = es(|T |) is properly infinite. It follows that there exist mutu-
ally orthogonal, mutually equivalent projections p1, p2, · · · ∈ 〈N, B〉 such that
Σnpn ≤ e with pn majorised by eB,∀n. Thus, for each n ≥ 1 there exists
ηn ∈ L2(N) such that pn = ηneBη∗n. It then follows that EB(η∗nηm) = 0 for
n �= m, with EB(η∗nηn) mutually equivalent projections in B. In particular,
‖ηn‖2

2 = τ(η∗nηn) = c > 0 is constant, ∀n. Thus,

s−1‖Tηn‖2 ≥ ‖e(ηn)‖2 ≥ ‖pn(ηn)‖2 = ‖ηn‖2 = c1/2,∀n,

a contradiction.

4◦ =⇒ 5◦ is trivial. To prove 5◦ =⇒ 4◦ assume 5◦ holds true and
let ηn be a sequence satisfying the hypothesis in 4◦. For each n let qn be a
spectral projection corresponding to some interval [0, tn] of ηnη∗n (the latter
regarded as a positive, unbounded, summable operator in L1(N)) such that
‖ηn − qnηn‖2 < 2−n. Thus, xn = qnηn lies in N . One can easily check
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EB(x∗
nxn) ≤ EB(η∗nηn) ≤ 1 and

lim
n→∞

‖EB(x∗
nxm)‖2

2 = lim
n→∞

Tr((qnηneBη∗nqn)(qmηmeBη∗mqm)) = 0.

Thus lim
n→∞

‖Txn‖2 = 0. But

‖Tηn‖2 ≤ ‖Txn‖2 + ‖T‖‖ηn − xn‖2 ≤ ‖Txn‖2 + 2−n‖T‖,

showing that lim
n→∞

‖Tηn‖2 = 0 as well.

1.4. Discrete embeddings and bimodule decomposition. If B ⊂ N is an
inclusion of finite von Neumann algebras with a faithful normal tracial state τ

as before, then we often consider N as an (algebraic) (bi)module over B and
L2(N, τ) as a Hilbert (bi)module over B. In fact any vector subspace H of N

which is invariant under left (resp. right) multiplication by B is a left (resp.
right) module over B. Similarly, any Hilbert subspace of L2(N, τ) which is
invariant under multiplication to the left (resp. right) by elements in B is a
left (resp. right) Hilbert module. Also, the closure in L2(N, τ) of a B-module
H ⊂ N is a Hilbert B-module.

1.4.1. Orthonormal basis. An orthonormal basis for a right (respectively
left) Hilbert B-module H ⊂ L2(N, τ) is a subset {ηi}i ⊂ L2(N) such that
H = ΣkηkB (respectively H = ΣkBηk) and EB(η∗i ηi′) = δii′pi ∈ P(B),∀i, i′,
(respectively EB(ηj′η∗j ) = δj′jqj ∈ P(B),∀j, j′). Note that if this is the case,
then ξ = ΣiηiEB(η∗i ξ),∀ξ ∈ H (resp. ξ = ΣjEB(ξη∗j )ηj ,∀ξ ∈ H).

A set {ηj}j ⊂ L2(N, τ) is an orthonormal basis for HB if and only if the
orthogonal projection f of L2(N, τ) on H satisfies f = ΣjηjeBη∗j with ηjeBη∗j
projection ∀j. A simple maximality argument shows that any left (resp. right)
Hilbert B-module H ⊂ L2(N, τ) has an orthonormal basis (see [Po2] for all
this). The Hilbert module HB (resp. BH) is finitely generated if it has a finite
orthonormal basis.

1.4.2. Quasi-regular subalgebras. Recall from [D] that if B ⊂ N is an
inclusion of finite von Neumann algebras then the normalizer of B in N is the
set N (B) = N (B) = {u ∈ U(N) | uBu∗ = B}. The von Neumann algebra B

is called regular in N if N (B)′′ = N .
In the same spirit, the quasi-normalizer of B in N is defined to be the set

qN (B)def={x ∈ N | ∃ x1, x2, . . . , xn ∈ N such that xB ⊂
∑n

i=1 Bxi and Bx ⊂∑n
i=1 xiB} (cf. [Po5], [PoSh]). The condition “xB ⊂

∑
Bxi, Bx ⊂

∑
xiB”

is equivalent to “BxB ⊂ (
∑n

i=1 Bxi) ∩ (
∑n

i=1 xiB)” and also to “spBxB is
finitely generated both as a left and as a right B-module.” It then follows
readily that sp(qNN (B)) is a ∗-algebra. Thus, P

def=sp(qNN (B)) = qNN (B)′′

is a von Neumann subalgebra of N containing B. In case the von Neumann
algebra P = qNB(N)′′ is equal to all N , then B is quasi-regular in N ([Po5]).
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The most interesting case of inclusions B ⊂ N for which one considers
the normalizer N (B) and the quasi-normalizer qNN (B) of B in N is when the
subalgebra B satisfies the condition B′∩N ⊂ B, or equivalently B′∩N = Z(B),
notably when B and N are factors (i.e., when B′ ∩ N = C) and when B is a
maximal abelian ∗-subalgebra (i.e., when B′ ∩ N = B).

The next lemma lists some useful properties of qN (B). In particular, it
shows that if a Hilbert B-bimodule H ⊂ L2(N, τ) is finitely generated both as
a left and as a right Hilbert B module, then it is “close” to a bounded finitely
generated B-bimodule H ⊂ P .

Lemma. (i) Let N be a finite von Neumann algebra with a normal finite
faithful trace τ and B ⊂ N a von Neumann subalgebra. Let p ∈ B′∩〈N, B〉 be a
finite projection such that JNpJN is also a finite projection. Let H ⊂ L2(N, τ)
be the Hilbert space on which p projects (which is thus a Hilbert B-bimodule).
Then there exists an increasing sequence of central projections zn ∈ Z(B) such
that zn ↑ 1 and such that the Hilbert B-bimodules znHzn ⊂ L2(N) are finitely
generated both as left and as right Hilbert B-modules.

(ii) If B ⊂ N are as in (i) and H0 ⊂ L2(N) is a Hilbert B-bimodule such
that H0

B, BH0 are finitely generated Hilbert modules, with {ξi | 1 ≤ i ≤ n},
{ζj | 1 ≤ j ≤ m} their corresponding orthonormal basis, then for any ε > 0
there exists a projection q ∈ B′ ∩ N such that τ(1 − q) < ε and xi = qξiq

∈ N, yj = qζjq ∈ N, ∀i, j. In particular, ΣixiB = ΣjByj = qH0q ∩ N is dense
in qH0q and is finitely generated both as left and right B-module.

(iii) If p is a projection as in (i) then p ≤ eP . Also, B is quasiregular in
N if and only if B is discrete in N , i.e., B′∩〈N, B〉 is generated by projections
which are finite in 〈N, B〉 ([ILP]).

Proof. (i) and (ii) are trivial consequences of 1.4.1 and of the definitions.
The first part of (iii) is trivial by (i), (ii). Thus, eP is the supremum of all

projections p ∈ B′ ∩ 〈N, B〉 such that both p and JNpJN are finite in 〈N, B〉.
Thus, if q ∈ 〈N, B〉 is a nonzero finite projection orthogonal to eP then any
projection q′ ∈ B′ ∩ 〈N, B〉 with q′ ≤ JNqJN must be infinite (or else the
maximality of eP would be contradicted). But if q satisfies this property then
B′ ∩ 〈N, B〉 cannot be generated by finite projections.

1.4.3. Cartan subalgebras. Recall from [D] that a maximal abelian
∗-subalgebra A of a finite von Neumann factor M is called semiregular if N (A)
generates a factor, equivalently, if N (A)′ ∩ M = C. Also, while maximal
abelian ∗-subalgebras A with N (A)′′ = M were called regular in [D], as men-
tioned before, they were later called Cartan subalgebras in [FM], a terminology
that seems to prevail and which we therefore adopt.

By results of Feldman and Moore ([FM]), in case a type II1 factor M

is separable in the norm ‖ ‖2 given by the trace, to each Cartan subalge-
bra A ⊂ M corresponds a countable, measure-preserving, ergodic equivalence
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relation R = R(A ⊂ M) on the standard probability space (X, µ), where
L∞(X, µ) � (A, τ|A), given by orbit equivalence under the action of N (A).
In fact, N (A) also gives rise to an A-valued 2-cocycle v = v(A ⊂ M), re-
flecting the associativity mod A of the product of elements in the normalizing
pseudogroup GN def={pu | u ∈ N (A), p ∈ P(A)}.

Conversely, given any pair (R, v), consisting of a countable, measure-
preserving, ergodic equivalence relation R on the standard probability space
(X, µ) and an L∞(X, µ)-valued 2-cocycle v for the corresponding pseudogroup
action (N.B.: v ≡ 1 is always a 2-cocycle, ∀R), there exists a type II1 fac-
tor with a Cartan subalgebra (A ⊂ M) associated with it, via a group-
measure space construction “à la” Murray-von Neumann. The association
(A ⊂ M) → (R, v) → (A ⊂ M) is one-to-one, modulo isomorphisms of in-
clusions (A ⊂ M) and respectively measure-preserving orbit equivalence of R
with equivalence of the 2-cocycles v (see [FM] for all this).

Examples of countable, measure-preserving, ergodic equivalence relations
R are obtained by taking free ergodic measure-preserving actions σ of count-
able groups Γ0 on the standard probability space (X, µ), and letting xRy

whenever there exists g ∈ Γ0 such that y = σg(x).
If t > 0 then the amplification of a Cartan subalgebra A ⊂ M by t is the

Cartan subalgebra At ⊂ M t obtained by first choosing some n ≥ t and then
compressing the Cartan subalgebra A ⊗ D ⊂ M ⊗ Mn×n(C) by a projection
p ∈ A⊗D of (normalized) trace equal to t/n. (N.B. This Cartan subalgebra is
defined up to isomorphism.) Also, the amplification of a measurable equivalence
relation R by t is the equivalence relation obtained by reducing the equivalence
relation R×Dn to a subset of measure t/n, where Dn is the ergodic equivalence
relation on the n points set. Note that if A ⊂ M induces the equivalence
relation R then At ⊂ M t induces the equivalence relation Rt. Also, vA⊂M ≡ 1
implies vAt⊂M t ≡ 1,∀t > 0.

By using Lemma 1.4.2, we can reformulate a result from [PoSh], based on
prior results in [FM], in a form that will be more suitable for us:

Proposition. Let M be a separable type II1 factor.

(i) A maximal abelian ∗-subalgebra A ⊂ M is a Cartan subalgebra if and
only if A ⊂ M is discrete, i.e., if and only if A′ ∩ 〈M, A〉 is generated by
projections that are finite in 〈M, A〉.

(ii) Let A1, A2 ⊂ M be two Cartan subalgebras of M . Then A1, A2 are
conjugate by a unitary element of M if and only if A′

1 ∩ 〈M, A2〉 is generated
by finite projections of 〈M, A2〉 and A′

2 ∩ 〈M, A1〉 is generated by finite pro-
jections of 〈M, A1〉. Equivalently, A1, A2 are unitary conjugate if and only if
A1L

2(M, τ)A2 is a direct sum A1 −A2 Hilbert bimodules that are finite dimen-
sional both as left A1-Hilbert modules and as right A2-Hilbert modules.
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Proof. (i) By Lemma 1.4.2, the discreteness condition on A is equivalent
to the quasi-regularity of A in N . By [PoSh], the latter is equivalent to A

being Cartan.
(ii) If A′

i ∩ (JNAjJN )′ is generated by finite projections of the semifinite
von Neumann algebra (JNAjJN )′, for i, j = 1, 2, and we denote M = M2(N)
the algebra of 2-by-2 matrices over N and A = A1⊕A2 then A′∩ (JMAJM )′ is
also generated by finite projections of JMAJM . By part (i), this implies A is
Cartan in M . By [Dy] this implies there exists a partial isometry v ∈ M such
that vv∗ = e11, v

∗v = e22, where {eij}i,j=1,2, is a system of matrix units for
M2(C). Thus, if u ∈ N is the unitary element with ue12 = v then uA1u

∗ = A2.

2. Relative Property H: Definition and examples

In this section we consider a “co-type” relative version of Haagerup’s com-
pact approximation property for inclusions of von Neumann algebras. This
property can be viewed as a “weak co-amenability” property; see the next
section (see 3.5, 3.6). It is a property that excludes “co-rigidity”, as later ex-
plained (see 5.6, 5.7). We first recall the definition for groups and for single
von Neumann algebras, for completeness.

2.0.1. Property H for groups. In [H1] Haagerup proved that the free
groups Γ0 = Fn, 2 ≤ n ≤ ∞, satisfy the following condition: There exist
positive definite functions ϕn on Γ0 such that

lim
g→∞

ϕn(g) = 0, ∀n, (equivalently, ϕn ∈ c0(Γ0)).(2.0.1′)

lim
g→∞

ϕn(g) = 1, ∀g ∈ Γ0.(2.0.1′′)

Many more groups Γ0 were shown to satisfy conditions (2.0.1) in [dCaH],
[CowH], [CCJJV]. This property is often refered to as Haagerup’s approxi-
mation property, or property H (see e.g., [Cho], [CJ], [CCJJV]). By a result
of Gromov, a group has property H if and only if it satisfies a certain em-
beddability condition into a Hilbert space, a property he called a-T-menability
([Gr]). There has been a lot of interest in studying these groups lately. We
refer the reader to the recent book ([CCJJV]) for a comprehensive account on
this subject. Note that property H is a hereditary property, so if a group Γ0

has it, then any subgroup Γ1 ⊂ Γ0 has it as well.

2.0.2. Property H for algebras. A similar property H, has been considered
for finite von Neumann algebras N ([C3], [Cho], [CJ]): It requires the existence
of a net of normal completely positive maps φα on N satisfying the conditions:

(2.0.2′) τ ◦ φα ≤ τ and φα({x ∈ N | ‖x‖2 ≤ 1}) is ‖ ‖2-precompact, ∀α,



BETTI NUMBERS INVARIANTS 831

(2.0.2′′) lim
α→∞

‖φα(x) − x‖2 = 0,∀x ∈ N ,

with respect to some fixed normal faithful trace τ on N . The net can of course
be taken to be a sequence in case N is separable in the ‖ ‖2-topology.

It was shown in [Cho] that if N is the group von Neumann algebra L(Γ0)
associated to some group Γ0, then L(Γ0) has the property H (as a von Neumann
algebra) if and only if Γ0 has the property H (as a group). It was further shown
in [Jo1] that the set of properties (2.0.2) does not depend on the normal faithful
trace τ on N , i.e., if there exists a net of completely positive maps φα on
N satisfying conditions (2.0.2′), (2.0.2′′) with respect to some faithful normal
trace τ , then given any other faithful normal trace τ ′ on N there exists a net
of completely positive maps φ′

α on N satisfying the conditions with respect to
τ ′. It was also proved in [Jo1] that if N has property H then given any faithful
normal trace τ on N the completely positive maps φα on N satisfying (2.0.2)
with respect to τ can be taken τ -preserving and unital.

We now extend the definition of the property H from the above single
algebra case to the relative (“co-type”) case of inclusions of von Neumann
algebras, by using a similar strategy to the way the notions of amenabilty and
property (T) were extended from single algebras to inclusions of algebras in
[Po1,10]; see Remarks 3.5, 3.6, 5.6 hereafter.

2.1. Definition. Let N be a finite von Neumann algebra with countable
decomposable center and B ⊂ N a von Neumann subalgebra. N has property
H relative to B if there exists a normal faithful tracial state τ on N and a
net of normal completely positive B-bimodular maps φα on N satisfying the
conditions:

τ ◦ φα ≤ τ ;(2.1.0)

Tφα
∈ J(〈N, B〉),∀α;(2.1.1)

lim
α→∞

‖φα(x) − x‖2 = 0,∀x ∈ N,(2.1.2)

where Tφα
are the operators in the semifinite von Neumann algebra 〈N, B〉 ⊂

B(L2(N, τ)) defined out of φα and τ , as in 1.2.1.
Following [Gr], one can also use the terminology: N is a-T-menable relative

to B.
Note that the finite von Neumann algebra N has the property H as a

single von Neumann algebra if and only if N has the property H relative to
B = C.

Note that a similar notion of “relative Haagerup property” was consid-
ered by Boca in [Bo], to study the behaviour of the Haagerup property under
amalgamated free products. The definition in [Bo] involved a fixed trace and
it required the completely positive maps to be unital and trace preserving.
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The next proposition addresses some of the differences between his definition
and 2.1:

2.2. Proposition. Let N be a finite von Neumann algebra with count-
ably decomposable center and B ⊂ N a von Neumann subalgebra.

1◦. If N has the property H relative to B and {φα}α satisfy (2.1.0)–(2.1.2)
with respect to the trace τ on N , then there exists a net of completely positive
maps {φ′

α}α on N , which still satisfy (2.1.0)–(2.1.2) with respect to the trace τ ,
but also Tφ′

α
∈ J0(〈N, B〉) and φ′

α(1) ≤ 1,∀α.

2◦. Assume B′ ∩ N ⊂ B. Then the following conditions are equivalent :

(i) N has the property H relative to B.

(ii) Given any faithful normal tracial state τ0 on N , there exists a net of uni-
tal , τ0-preserving , B-bimodular completely positive maps φα on N such
that Tφα

∈ J0(〈N, B〉),∀α, and such that condition (2.1.2) is satisfied for
the norm ‖ ‖2 given by τ0.

(iii) There exists a normal faithful tracial state τ and a net of normal,
B-bimodular completely positive maps φα on N such that φα can be ex-
tended to bounded operators Tφα

on L2(N, τ), such that Tφα
∈ J (〈N, B〉)

and (2.1.2) is satisfied for the trace τ .

Moreover, in case N is countably generated as a B-module, i.e., there
exists a countable set S ⊂ N such that spSB = N , the closure being taken in
the norm ‖ ‖2, then the net φα in either 1◦, 2◦ or 3◦ can be taken to be a
sequence.

Proof. 1◦. By part 3◦ of Proposition 1.3.3, we can replace if necessary φα

by φα(zα · zα), for some zα ∈ P(Z(B)) with zα ↑ 1, so that the corresponding
operators on L2(N, τ) belong to J0(〈N, B〉),∀α.

By using continuous functional calculus for φα(1), let bα = (1∨φα(1))−1/2 ∈
B′ ∩ N . Then bα ≤ 1, ‖bα − 1‖2 → 0 and

φ′
α(x) = bαφα(x)bα, x ∈ N,

still defines a normal completely positive map on N with ‖φ′
α(x) − x‖2 → 0,

∀x ∈ N. Moreover, if x ≥ 0 then

τ(φ′
α(x)) = τ(φα(x)b2

α) ≤ τ(φα(x)).

Also, since Tφ′
α

= L(bα)R(bα)Tφα
and L(bα) ∈ N ⊂ 〈N, B〉, R(bα) ∈

J(B′ ∩ N)J ⊂ 〈N, B〉 and Tφα
∈ J (〈N, B〉), it follows that Tφ′

α
∈ J (〈N, B〉).

2◦. We clearly have (ii) =⇒ (i) =⇒ (iii).
Assume now (iii) holds true for the trace τ and let τ0 be an arbitrary

normal, faithful tracial state on N . Thus, τ0 = τ(·a0), for some a0 ∈ Z(N)+
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with τ(a0) = 1. Since B′ ∩ N = Z(B), by part 3◦ of Lemma 1.2.1 we have
aα = φα(1) ∈ Z(B). Also, (2.1.2) implies

(2.2.2′) lim
α→∞

‖aα − 1‖2 = 0,

where ‖ ‖2 denotes the norm given by τ .
Let pα be the spectral projection of aα corresponding to [1/2,∞). Since

aα ∈ Z(B), pα ∈ Z(B). Also, condition (2.2.2′) implies lim
α→∞

‖pα − 1‖2 =

lim
α→∞

‖a−1
α pα − pα‖2 = 0. Furthermore, by condition 3◦ of Proposition 1.3.3,

there exists p′α ∈ Z(B) with p′α ≤ pα, such that Tφα
p′α ∈ J0(〈N, B〉) and

(2.2.2′′) lim
α→∞

‖p′α − 1‖2 = 0, lim
α→∞

‖a−1
α pα − p′α‖2 = 0.

Define φ′
α on N by

φ′
α(x) = a−1/2

α p′αφα(x)p′αa−1/2
α + (1 − p′α)EB(x)(1 − p′α), x ∈ N.

Then we clearly have φ′
α(1) = 1, φ′

α are B-bimodular and Tφ′
α
∈ J0(〈N, B〉).

Since B′ ∩ N ⊂ B, by part 2◦ in Lemma 1.2.1, this also implies τ ◦ φ′
α = τ ,

τ0 ◦ φ′
α = τ0. Moreover, since a−1

α pα ≤ 2, it follows that for each x ∈ N ,

‖φ′
α(x) − x‖2 ≤‖a−1/2

α p′αφα(x)a−1/2
α p′α − p′αxp′α‖2

+‖(1 − p′α)xp′α‖2 + ‖p′αx(1 − p′α)‖2

+‖(1 − p′α)(x − EB(x))(1 − p′α)‖2

≤ 2‖φα(x) − x‖2 + 2‖a−1/2
α p′αxa−1/2

α p′α − p′αxp′α‖2

+3‖1 − p′α‖2‖x‖,

with the latter tending to 0 for all x ∈ N , by (2.2.2′′). Since this convergence
holds true for one faithful normal trace, it holds true in the s-topology, thus
for the normal trace τ0 as well.

The last part of 2◦ is trivial.

We now prove some basic properties of the relative property H, showing
that it is well behaved to simple operations such as tensor products, amplifi-
cations, finite index extensions/restrictions.

2.3. Proposition. 1◦. If N has property H relative to B and B0 ⊂ N0

is embedded into B ⊂ N with commuting squares, i.e., N0 ⊂ N , B0 ⊂ B,
B0 = N0∩B and EN0 ◦EB = EB ◦EN0 = EB0 , then N0 has property H relative
to B0.

2◦. If B1 ⊂ N1 and B2 ⊂ N2 then N1⊗N2 has property H relative to
B1⊗B2 if and only if Ni has property H relative to Bi, i = 1, 2.

3◦. Let B ⊂ N0 ⊂ N . If N has property H relative to B, then N0 has
property H relative to B. Conversely, if N0 ⊂ N has a finite orthonormal basis
{uj}j with uj unitary elements such that ujBu∗

j = B,∀j, and N0 has property
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H relative to B, with respect to τ|N0
for some normal faithful trace τ on N ,

then N has from property H relative to B, with respect to τ .

4◦. Assume B ⊂ B0 ⊂ N and B ⊂ B0 has a finite orthonormal basis. If
N has from property H relative to B0 then N has property H relative to B. If
in addition B′

0 ∩ N ⊂ B0 then, conversely, if N has from property H relative
to B, then N has property H relative to B0.

Proof. 1◦. If φα : N → N are B-bimodular completely positive maps
approximating the identity on N , then by the commuting square relation EN0 ◦
EB = EB ◦ EN0 = EB0 , it follows that φ′

α = EN0 ◦ φα|N0
approximate the

identity on N0 and are B0-bimodular. Moreover, by commuting squares, if
Tφα

satisfy condition 5◦ in 1.3.3 then so do Tφ′
α
.

2◦. The implication from left to right follows by applying 1◦ to (B ⊂N)
= (B1⊗B2 ⊂ N1⊗N2) and (B0 ⊂ N0) = (Bi ⊗ C ⊂ Ni ⊗ C), i = 1, 2. The
implication from right to left follows from the fact that Tφi

α
∈ J (〈Ni, Bi〉),

i = 1, 2, implies Tφ1
α⊗φ2

α
∈ J (〈N1⊗N2, B1⊗B2) (since the tensor product of

finite projections is a finite projection).

3◦. For the first implication, let φα be completely positive maps on N

that satisfy (2.1.0)–(2.1.2) for B ⊂ N and for the trace τ on N . Define
φ0

α(x) = EN0(φα(x)), x ∈ N0. Then φ0
α are completely positive, B-bimodular

maps which still satisfy τ ◦φ0
α ≤ τ . Moreover, since Tφα

satisfy condition 5◦ in
Proposition 1.3.3, then clearly φ0

α do as well.
For the converse, assuming φ0

α are completely positive maps on N0 that
satisfy (2.1.0)–(2.1.2) for B ⊂ N0, define φ̃α on 〈N, eN0〉 by

φ̃α(Σi,juixijeN0u
∗
j ) = Σi,juiφ

0
α(xij)eN0u

∗
j ,

where xij ∈ N0. It is then immediate to check that φ̃α are completely positive,
B-bimodular and check (2.1.0)–(2.1.2) with respect to the canonical trace τ̃

on 〈N, eN0〉 implemented by the trace τ on N (which is clearly Markov by
hypothesis). Thus, 〈N, eN0〉 has property H relative to B, so that by the first
part N has property H relative to B as well (with respect to τ̃|N = τ).

4◦. For the first implication, note that the condition that B0 has a fi-
nite orthonormal basis over B implies J0(〈N, B0〉) ⊂ J0(〈N, B〉). Indeed,
this follows by first approximating T ∈ J0(〈N, B0〉) by linear combination of
projections in J0(〈N, B0〉) then noticing that if dim(B0H) < ∞ (respectively,
dim(HB0) < ∞), then dim(BH) < ∞ (respectively, dim(HB) < ∞).

For the opposite implication, let {m′
j}j be a finite orthonormal basis of B0

over B and recall from ([Po2]) that b = Σjm
′
jm

′
j
∗ ∈ Z(B0) and b ≥ 1. Also,

since for any T ∈ B′ ∩ 〈N, B〉,

Σi,jL(m′
j)R(m′

i
∗) ◦ T ◦ L(m′

j
∗)R(m′

i) ∈ B′
0 ∩ 〈N, B0〉
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(cf. [Po2]), it follows that if we put mj = b−1/2m′
j then

T 0 = Σi,jL(mj)R(m∗
i ) ◦ T ◦ L(m∗

j )R(mi) ∈ B′
0 ∩ 〈N, B0〉.

This shows that if φ0
α = Σi,jmjφα(m∗

j · mi)m∗
i , then T 0 = Tφ0

α
∈ B′

0 ∩ 〈N, B0〉.
Also, if in the above we take T to be a projection with the property that
H = e(L2(N, τ)) is a finitely generated left-right Hilbert B-module, then the
support projection of the corresponding operator T 0 is contained in H0 =
Σi,jmiHm∗

j . To prove that T 0 is contained in J0(〈N, B0〉) it is sufficient to
show that H0 is a finitely generated left-right Hilbert B0-bimodule.

To do this, write first H as the closure of a finite sum ΣkηkB. Then H0

follows the closure of

Σi,jmi(ΣkηkB)m∗
j = Σi,k(miηk(ΣjBm∗

j ) = Σi,kmiηkB0.

This shows that dimB0H0 < ∞. Similarly, dimH0
B0

< ∞.
Taking linear combinations and norm limits, we get that T ∈ J0(〈N, B〉)

implies T 0 ∈ J0(〈N, B0〉).
Finally, since Σjmjm

∗
j = 1, by Corollary 1.1.2 the convergence to idN of

φα implies convergence to idN of φ0
α. By condition (iii) in 2.3.2◦, this implies

N has the property H relative to B0.

2.4. Proposition. 1◦. If N has property H relative to B and p ∈ P(B)
or p ∈ P(B′ ∩ N), then pNp has property H relative to pBp.

2◦. If {pn}n ⊂ P(B) or {pn}n ⊂ P(B′ ∩ N) are such that pn ↑ 1 and
pnNpn has property H relative to pnBpn, ∀n, then N has property H relative
to B.

3◦. Assume there exist partial isometries {vn}n≥0 ⊂ N such that v∗nvn ∈
pBp, vnv∗n ∈ B, vnBv∗n = vnv∗nBvnv∗n,∀n ≥ 0,Σnvnv∗n = 1 and B ⊂ ({vn}n ∪
pBp)′′. If pNp has property H relative to pBp then N has property H relative
to B.

4◦. If B ⊂ N0 ⊂ N1 ⊂ . . . , then N = ∪kNk has property H relative to B

(with respect to a trace τ on N) if and only if Nk has property H relative to B

(with respect to τ|Nk
), ∀k.

Proof. 1◦. In both cases, if φ is B-bimodular completely positive on N

then pφ(p · p)p is a pBp-bimodular completely positive map on pNp. Also,
τ ◦ φ ≤ τ implies τp ◦ (pφ(p · p)p) ≤ τp, where τp(x) = τ(x)/τ(p), x ∈ pNp.
Finally, if Tφ satisfies condition 5◦ in 1.3.3 as an element in 〈N, B〉 then clearly
Tpφ(p·p)p satisfies the condition as an element in 〈pNp, pBp〉.

The case {pn}n ⊂ P(B′ ∩ N) of 2◦ follows because if p ∈ P(B′ ∩ N)
and φp is Bp-bimodular completely positive map on pNp, with τp ◦ φp ≤ τp,
τ(1 − p) ≤ δ, ‖φp(x) − x‖2 ≤ δ, ∀x ∈ pFp, for some finite set F ⊂ N , and

Tφp
∈ J0(〈pNp, Bp〉), then φ(y)def=φp(pyp) + EB((1 − p)y(1 − p)), ∀y ∈ N
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is B-bimodular and satisfies τ ◦ φ ≤ τ , ‖φ(x) − x‖2 ≤ ε(δ),∀x ∈ F and
Tφ ∈ J0(〈N, B〉), where lim

δ→0
ε(δ) = 0.

To prove 3◦, let φp
α be pBp-bimodular, completely positive maps on pNp

with τp ◦ φp
α ≤ τp, Tφp

α
∈ J0(〈pNp, pBp〉) and φp

α → idpNp. Define φα on N by

φα(x) = Σi,jviφ
p
α(v∗i xvj)v∗j , x ∈ N.

Now, τ ◦ φα ≤ τ and φα → idN . Also, if b ∈ pBp or b = viv
∗
j then

bφα(x) = φα(bx), φα(x)b = φα(xb),∀x ∈ N . Thus, if we denote by B1 the von
Neumann algebra generated by pBp and {vn}n then φα is B1-bimodular.

Also, the same argument as in the last part of the proof of 2.3.4◦ shows
that Tφp

α
∈ J0(〈pNp, pBp〉) implies Tφα(pn·pn) ∈ J0(〈pnNpn, pnB1pn〉), where

pn = Σ0≤k≤nv∗kvk. Thus, pnNpn has property H relative to pnB1pn. Since
pnBpn ⊂ pnB1pn and pnB1pn has finite orthonormal basis over pnBpn, by
2.4.1◦ above and the first implication in 2.3.4◦, it follows that pnNpn has
property H relative to pnBpn,∀n.

For each n let {zn
k }k be a partition of the identity with projections in Z(B)

such that zn
k has a finite partition into projections in B that are majorized by

pnzn
k . Thus, there exist finitely many partial isometries vn

0 = pnzn
k , vn

1 , vn
2 , . . .

in B such that vn
i
∗vn

i ≥ vn
i+1

∗vn
i+1,∀i ≥ 0 and such that Σiv

n
i vn

i
∗ = zn

k . By the
first part of the proof, zn

k Nzn
k has property H relative to Bzn

k . By the case of
2◦ that we have already proved, it follows that N has property H relative to B.

The case {pn}n ⊂ B in 2◦ now follows by using 3◦, to reduce the problem
to the case where pn are central in B (as in the proof of the last part of 3◦).

4◦. The implication =⇒ follows by condition 2.3.3◦. The reverse implica-
tion follows immediately once we note that if φ is a completely positive map
on Nk such that τ ◦ φ ≤ τ and Tφ ∈ J (〈Nk, B〉), then the completely positive
map φk = φ◦ENk

on N satisfies τ ◦φk ≤ τ and Tφk ∈ J (〈N, B〉) (for instance,
by 5◦ in 1.3.3).

2.5. Corollary. Let A ⊂ M be a Cartan subalgebra of the type II1
factor M . If t > 0 then M t has property H relative to At if and only if M has
property H relative to A (see 1.4 for the definition of the amplification by t of
a Cartan subalgebra).

Proof. Since the amplification by 1/t of At ⊂ M t is A ⊂ M , it is sufficient
to prove one of the implications. Assume M has property H relative to A and
let n ≥ t. By 2.3.2◦ it follows that M ⊗ Mn×n(C) has property H relative
to A ⊗ Dn, where Dn is the diagonal algebra in Mn×n(C). If p ∈ A ⊗ Dn is
a projection with τ(p) = t/n then, by 2.4.1◦, M t = p(M ⊗ Mn×n(C))p has
property H relative to At = (A ⊗ Dn)p.

2.6. Remark. We do not know whether the “smoothness” condition (2.1.0)
on the B-bimodular, completely positive, compact maps φn approximating the
identity on N in Definition 2.1 can be removed. This is not known even in the
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case B = C1N . In this respect, we mention that in fact, for all later applica-
tions, the following weaker “property H”-type condition will be sufficient:

(2.6.1) There exists a net of completely positive B-bimodular maps φα

on N which satisfy condition (2.2.2) so that for all {un}n ⊂ U(N) with
lim

n→∞
‖EB(u∗

num)‖2 = 0,∀m, we have lim
n→∞

‖φα(un)‖2 = 0.

We do not know whether (2.6.1) implies conditions (2.1.0)–(2.1.2), not
even in the case N is a factor and B = C1N .

We mention however that for type II1 factors N without the property
Γ of Murray and von Neumann ([MvN]), the smoothness condition (2.1.0) is
automatically satisfied, in case the completely positive map φ is sufficiently
close to the identity, thus making condition (2.1.0) redundant. Indeed, we
have the following observation, essentially due to Connes and Jones ([CJ]):

2.7. Lemma. If N is a non-Γ type II1 factor then for any ε > 0 there
exist δ > 0 and a finite subset F ⊂ U(N) such that the following conditions
hold true:

1◦. If φ is a completely positive map satisfying ‖φ(u) − u‖2 ≤ δ, ∀u ∈ F ,
then there exists a normal completely positive map φ′′ on N such that φ′′(1)
≤ 1, τ ◦ φ′′ ≤ τ , ‖τ ◦ φ′′ − τ‖ ≤ ε, Φ′′ ≤ a0Φ(b0 · b0)a0, for some 0 ≤ a0, b0 ≤ 1
in N , and ‖φ′′(x) − x‖2 ≤ ‖φ(x) − x‖2 + ε, ∀x ∈ N , ‖x‖ ≤ 1. Moreover, if φ

is B-bimodular for some B ⊂ N , then φ′′ can be taken B-bimodular.
2◦. If (H, ξ) is a (B ⊂ N) Hilbert bimodule with ‖uξ − ξu‖ ≤ δ, ∀u ∈ F

then ‖〈·ξ, ξ〉 − τ‖ ≤ ε, ‖〈ξ·, ξ〉 − τ‖ ≤ ε.

Proof. 1◦. Since N is non-Γ, by [C2] there exist unitary elements u1, u2,

. . . , un in N such that if a state ϕ ∈ N∗ satisfies ‖ϕ − ϕ(u · u∗)‖ ≤ δ then
‖ϕ − τ‖ ≤ ε2/9.

Let F = {1} ∪ {ui}i. Assume φ is a completely positive map on N such
that ‖φ(u) − u‖2 ≤ δ4/200,∀u ∈ F . Let a = 1 ∨ φ(1) and first define φ′ on N

as in part 2◦ of Lemma 1.1.2, i.e., φ′(x) = a−1/2φ(x)a−1/2, x ∈ N . By 1.1.2,
φ′(1) ≤ 1 and

‖φ′(x) − x‖2 ≤ ‖φ(x) − x‖2 + 2‖φ(1) − 1‖1/2
2 ‖x‖.

Thus, by Corollary 1.1.2 we have for all x ∈ N with ‖x‖ ≤ 1 the estimates:

‖φ′(uxu∗) − uφ′(x)u∗‖2 ≤ 2(2‖φ′(u) − u‖2
2 + 2‖φ′(u) − u‖2)1/2 ≤ δ.

Thus, if ϕ = τ ◦φ′ then ‖ϕ−ϕ(ui ·u∗
i )‖ ≤ δ, ∀i, implying that ‖ϕ− τ‖ ≤ ε2/9.

Thus, if we now take φ1 to be the normal part of φ′ then we still have
φ1(1) ≤ 1, ‖τ ◦ φ1 − τ‖ ≤ ε2/9 and

‖φ1(x) − x‖2 ≤ ‖φ(x) − x‖2 + 2‖φ(1) − 1‖1/2
2 ≤ ‖φ(x) − x‖2 + δ2/6,

for all x ∈ N, ‖x‖ ≤ 1. Finally, let b1 ∈ L1(N, τ) be the Radon-Nykodim
derivative of τ ◦φ1 with respect to τ and define b = 1∨b1, φ′′ = φ1(b−1/2 ·b−1/2),
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as in Lemma 1.1.2. Thus, by part 3◦ of that lemma, all the required conditions
are satisfied, by letting a0 = a−1/2, b0 = b−1/2.

2◦. This part is now trivial, by part 1◦ above and 1.1.3.

3. More on property H

In this section we provide examples of inclusions of finite von Neumann
algebras with property H. We also prove that if a type II1 factor N has property
H relative to a maximal abelian ∗-subalgebra B then B is necessarily a Cartan
subalgebra of N . Finally, we relate relative property H with notions of relative
amenability considered in [Po1,5].

The examples we construct arise from crossed product constructions, be-
ing a consequence of the following relation between groups and inclusions of
algebras with property H:

3.1. Proposition. Let Γ0 be a discrete group and (B, τ0) a finite von
Neumann algebra with a normal faithful tracial state. Let σ be a cocycle action
of Γ0 on (B, τ0) by τ0-preserving automorphisms. Then N = B �σ Γ0 has
property H relative to B if and only if the group Γ0 has property H.

Proof. First assume that Γ0 has property H and let ϕα : Γ0 → C be unital
positive definite functions such that ϕα ∈ c0(Γ0) and ϕα(g) → 1,∀g ∈ Γ0.
Also, without loss of generality, we may assume ϕα(e) = 1,∀α. For each α,
let φα be the associated completely positive map on N = B � Γ0 defined as
in Section 1.4, by φ(Σgbgug) = Σgϕ(g)bgug. Note that φα are unital, trace-
preserving and B-bimodular (cf. 1.4).

Also, since Tφα
= Σϕ(g)ugeBu∗

g, it follows that Tφα
∈ J (〈N, B〉) if and

only if ϕα ∈ c0(Γ0). Finally, since |1 − ϕα(g)| = ‖φ(ug) − ug‖2, it fol-
lows that lim

α→∞
ϕα(g) = 1,∀g ∈ Γ0, if and only if lim

α→∞
‖φα(x) − x‖2 = 0,

∀x ∈ N .
In particular, this shows that N has property H relative to B.
Conversely, assume N has property H relative to B and let φα : N → N be

a net of completely positive maps satisfying (2.3.0)–(2.3.2). Let ϕα : Γ0 → C
be defined out of φα, as in Section 1.4, i.e., by ϕα(g) = τ(φα(ug)u∗

g),∀g ∈ Γ0.
By 2.6.1◦,

lim
g→∞

‖φα(ug)‖2 = 0,∀α.

Thus, by the Cauchy-Schwartz inequality,

lim
g→∞

ϕα(g) = 0,∀α.

Similarly, lim
α
‖φα(ug)− ug‖2 = 0 implies lim

α
ϕα(g) = 1, thus showing that

Γ0 has property H.
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3.2. Examples of groups with property H. The following groups Γ0 (and
thus, by heredity, any of their subgroups as well) are known to have property H,
thus giving rise to property H inclusions B ⊂ B�Γ0 whenever acting (possibly
with a cocycle) on a finite von Neumann algebra (B, τ0), by trace-preserving
automorphisms, as in 3.1:

3.2.0. Any amenable group Γ0 (cf. [BCV]; see also 3.5 below).

3.2.1. G = Fn, for some 2 ≤ n ≤ ∞, more generally FS , for S an arbitrary
set of generators (cf. [H]).

3.2.2. Γ0 a discrete subgroup of SO(n, 1), for some n ≥ 2 (cf. [dCaH]).

3.2.3. Γ0 a discrete subgroup of SU(n, 1), for some n ≥ 2 (cf. [CowH]).

3.2.4. SL(2, Q), more generally SL(2, K) for any field K ⊂ R which is a
finite extension over Q (by a result of Jolissaint, Julg and Valette, cf. [CCJJV]).

3.2.5. Γ0 = G1∗H G2, where G1, G2 have property H and H ⊂ G1, H ⊂ G2

is a common finite subgroup (cf. [CCJJV]). In particular Γ0 = SL(2, Z).

3.2.6. Γ = Γ0×Γ1, with Γ0,Γ1 property H groups. Also, Γ = Γ0�γΓ1, with
Γ0 a property H group and Γ1 an amenable group acting on it (cf. [CCJJV]).

We refer the reader to the book ([CCJJV]) for a more comprehensive list of
groups with the property H. As pointed out there, the only known examples of
groups which do not have the Haagerup property are the groups G0 containing
infinite subgroups G ⊂ G0 such that (G0, G) has the relative property (T) in
the sense of ([Ma, dHVa]; see also the next section).

3.3. Examples of actions. We are interested in constructing examples of
cocycle actions σ of (property H) groups Γ0 on finite von Neumann algebras
(B, τ) (see e.g. [CJ] for the def. of cocycle actions) that are ergodic (i.e.,
σg(b) = b,∀g ∈ Γ0 implies b ∈ C1) and properly outer (i.e., σg(b)b0 = b0b,
∀b ∈ B, implies g = e or b0 = 0). Also, we consider the condition of weak
mixing, which requires that ∀F ⊂ B finite and ∀ε > 0, ∃g ∈ Γ0 such that
|τ(σg(x)y) − τ(x)τ(y)| ≤ ε, ∀x, y ∈ F . Weakly mixing actions are clearly
ergodic.

Recall that the proper outernes of σ is equivalent to the condition B′ ∩
B �σ Γ0 = Z(B). Also, if σ is a properly outer action, then σ acts ergodically
on the center of B if and only if B �σ Γ0 is a factor. Finally, weak-mixing
is equivalent to the fact that L2(B, τ) has no σ-invariant finite dimensional
subspaces other than C1.

Yet another property of actions to be considered is the action σ of Γ0 on
(B, τ) which is strongly ergodic if B has no nontrivial approximately
σ-invariant sequences; i.e., if (bn)n ∈ �∞(N, B) satisfies lim

n→∞
‖σg(bn)−bn‖2 = 0,
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∀g ∈ Γ0 then lim
n→∞

‖bn − τ(bn)1‖2 = 0. Note that if we denote N = B �σ Γ0

and take ω to be a free ultrafilter on N, then this condition is equivalent to
N ′ ∩ Bω = C.

3.3.1. Bernoulli shifts. Given any countable discrete group Γ0 and any
finite von Neumann algebra (B0, τ0), Γ0 acts on

(B, τ) = (B, τ) = ⊗̄
g∈Γ0

(B0, τ0)g

by Bernoulli shifts σg; namely, σg(⊗hxh) = x′
h, where x′

h = xg−1h.
If B0 has no atoms or if Γ0 is an infinite group, then σ is known to be

properly outer. Also, if Γ0 is infinite, then σ is ergodic, in fact even mixing.
A Bernoulli shift action is strongly ergodic if and only if Γ0 is nonamenable
(cf. [J2]).

3.3.2. Actions induced by automorphisms of groups. Let γ be an action
of an infinite group Γ0 on a group G, by automorphisms. Let also ν be a
(normalized) scalar 2-cocycle on G such that νγh(g1),γh(g2) = νg1,g2 ,∀g1, g2 ∈ G,
h ∈ Γ0. Then γ implements an action of Γ0 on the “twisted” group von
Neumann algebra Lν(G), denoted σγ , defined by σγ(h)(λ(g)) = λ(γh(g)),
∀g ∈ G, h ∈ Γ0. Note that σγ preserves the canonical trace τ of Lν(G).

Lemma. (i) The following conditions are equivalent :

(a) σγ is ergodic;

(b) σγ is weakly mixing;

(c) γ has no finite invariant subsets �= {e};

(d) For any finite subset S ⊂ G there exists h ∈ Γ0 such that γh(S)∩ S = ∅.
(ii) If G1 ⊂ G is so that {g−1

1 g0γh(g1) | g1 ∈ G1} is infinite, ∀h ∈ Γ0 \{e},
∀g0 ∈ G then Lν(G1)′∩Lν(G)�σγ

Γ0 ⊂ Lν(G). In particular, if this holds true
for G1 = G then σγ is properly outer. If ν = 1 then the converse holds true as
well.

(iii) Let Γ1 ⊂ Γ0, G1 ⊂ G be subgroups of finite index such that G1 is
invariant to the restriction of γ to Γ1. If γ,Γ0, G satisfy either of the conditions
(c), (d) in (i), or (ii) then γ|Γ1

,Γ1, G1 satisfy that condition as well.

Proof. (i). (b) =⇒ (a) is trivial.

(a) =⇒ (c). If γh(S) = S, ∀h ∈ Γ0 for some finite set S ⊂ G with e �∈ S,
then x = Σg∈Sλ(g) /∈ C1 satisfies σγ(h)(x) = x, ∀h ∈ Γ0, implying that σγ is
not ergodic.

(c) =⇒ (d). If γh(S)∩S �= ∅,∀h ∈ Γ0, for some finite set S ⊂ G\{e}, then
denote by f the characteristic function of S regarded as an element of �2(G).
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If we denote by γ̃ the action (=representation) of Γ0 on �2(G) implemented
by γ, then 〈γ̃h(f), f〉 ≥ 1/|S|,∀h ∈ Γ0. Thus, the element a of minimal norm
‖ ‖2 in the weak closure of co{γ̃h(f) | h ∈ Γ0} ⊂ �2(G) is nonzero. But then
any “level set” of a ≥ 0 is invariant to γ, showing that (c) doesn’t hold true.

(d) =⇒ (b). Let E0 be a finite set in the unit ball of Lν(G), ε > 0
and F0 ⊂ Γ0\{e} a finite set as well. Let S0 ⊂ G\{e} be finite and such
that ‖(x − τ(x)1) − xS0‖2 ≤ ε/2,∀x ∈ E0. By applying the hypothesis to
S = ∪{γh(S0) | h ∈ F0}, we see that there exists h ∈ Γ0 such that γh(S)∩S = ∅.
But then h /∈ F0 and γh(S0) ∩ S0 = ∅. Also, by Cauchy-Schwartz, for each
x, y ∈ E0,

|τ(σγ(h)(x)y) − τ(x)τ(y)|
≤ ‖(x − τ(x)1) − xS0‖2‖y‖2

+‖(y − τ(y)1) − yS0‖2‖x‖2 + |τ(σγ(h)(xS0)yS0)|
= ‖(x − τ(x)1) − xS0‖2‖y‖2 + ‖(y − τ(y)1) − yS0‖2‖x‖2 ≤ ε.

(ii) If y0 ∈ Lν(G) �σ Γ0 satisfies y0x = y0x,∀x ∈ Lν(G1) and y0 /∈ Lν(G)
then there exists h ∈ Γ0, h �= e, such that σγ(h)(x)a = ax,∀x ∈ Lν(G), for
some a ∈ Lν(G), a �= 0. This implies λ(γh(g1))aλ(g−1

1 ) = a,∀g1 ∈ G1. But if
this holds true then {γh(g1)g′g−1

1 | g1 ∈ G1} must be finite, for any g′ ∈ G in
the support of a. When G1 = G and ν = 1, reversing the implications proves
the converse.

(iii) Note first that if S ⊂ G1 is a finite subset such that γh(S) = S,

∀h ∈ Γ1, the set ∪h∈Γ0γh(S) is finite as well. Thus, if γ,Γ0, G check with (c)
in (i) so are γ|Γ1

,Γ1, G1.
Then note that if γ,Γ0, G verify (ii) and for some g1 ∈ G1 the set

{γh(g)g1g
−1 | g ∈ G1}

is finite, then the set {γh(g)g1g
−1 | g ∈ G} is finite, a contradiction.

Corollary. Let γ̃ be the action of the group SL(2, R) on R2. For each
α = e2πit ∈ T, let ν̃ = ν̃(α) be the unique normalized scalar 2-cocycle on R2

satisfying the relation uxvy = exp(2πitxy)vyux, where ux = (x, 0), vy = (0, y)
for x, y ∈ R. Then ν̃ is γ̃-invariant. Moreover, the following restrictions
(γ,Γ0, G, ν) of (γ̃,SL(2, R), R2, ν̃) are strongly ergodic and satisfy conditions
(i), (ii) in the previous lemma (so the corresponding actions σγ of Γ0 are free
and weakly mixing on Lν(G)):

(a) Γ0 = SL(2, Z), G = Z2, or any other subgroup G of R2 which is
SL(2, Z)-invariant, with γ the appropriate restriction of γ̃ (and of ν̃).

(b) Γ0 = SL(2, Q), G = Q2 (or any other SL(2, Q)-invariant subgroup of
R2), with γ the appropriate restriction of γ̃.

(c) Γ0 � Fn, regarded as a subgroup of finite index in SL(2, Z) (see e.g.,
[dHVa]), and G = L((kZ)2), for some k ≥ 1.
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Proof. Both conditions (i) and (ii) of the lemma are trivial in cases (a)
and (b). Then (c) is just a simple consequence of part (iii) of the lemma. The
strong ergodicity of these actions was proved in [S1].

3.3.3. Tensor products of actions. We often need to take tensor products
of actions σi of the same group Γ0 on (Bi, τi), i = 1, 2, . . . , thus getting an
action σ = σ1 ⊗ σ2 ⊗ . . . of Γ0 on (B, τ) = (B1, τ1)⊗(B2, τ2)⊗ . . . .

It is easy to see that the tensor product of a properly outer action σ of a
group Γ0 with any other action σ0 of Γ0 gives a properly outer action. In fact, if
σ is an action of Γ0 on (B, τ) and A0 ⊂ B is so that A′

0∩B�σΓ0 ⊂ B then given
any action σ0 of Γ0 on some (B0, τ0), we have (A0 ⊗ 1)′ ∩ (B⊗B0 �σ⊗σ0 Γ0) =
(A′

0 ∩ B)⊗B0.
While ergodicity does not always behave well with respect to tensor prod-

ucts, weak-mixing does: If σ is weakly mixing and σ0 is ergodic then σ ⊗ σ0 is
ergodic. If σi, i ≥ 1, are weakly mixing then ⊗iσi is weakly mixing.

If σ0 is not strongly ergodic, then σ ⊗ σ0 is not strongly ergodic for all σ.
Note that by [CW], if Γ0 is an infinite property H group then there always
exist free ergodic measure-preserving actions σ0 of Γ0 on L∞(X, µ) which are
not strongly ergodic. Thus, given any σ, σ ⊗ σ0 is not strongly ergodic either.

The following combination of Bernoulli shifts and tensor products of ac-
tions will be of interest to us: Let σ0 be an action of Γ0 on (B0, τ0). Let also
Γ1 be another discrete group and γ an action of Γ1 on Γ0 by group automor-
phisms. (N.B. The action γ may be trivial.) Let σ1 be the Bernoulli shift
action of Γ1 on (B, τ) = ⊗̄

g1∈Γ1

(B0, τ0)g1 . Let also σγ
0 be the action of Γ0 on

(B, τ) given by σγ
0 = ⊗g1σ0 ◦ γ(g1).

Lemma. 1◦. σ1(g1)σ
γ
0 (g0)σ1(g−1

1 ) = σγ
0 (γ(g1)(g0)), for any g0 ∈ Γ0 and

g1 ∈ Γ1. Thus, (g0, g1) �→ σγ
0 (g0)σ1(g1) implements an action σ = σ0 �γ σ1 of

Γ0 �γ Γ1 on (B, τ).
2◦. If the group Γ0 is infinite and the action σ0 is properly outer then

the action σ defined in 1◦ is properly outer. Moreover, if B1 ⊂ B0 satisfies
B′

1 ∩ (B0 �σ0 Γ0) ⊂ B0, and B1 is identified with · · · ⊗ C ⊗ B1 ⊗ C · · · ⊂ B,
then B′

1 ∩ (B �σ (Γ0 � Γ1)) = B′
1 ∩ B.

3◦. If the action σ0 is weakly mixing, or if the group Γ1 is infinite, then σ

is weakly mixing (thus ergodic).
4◦. If the group Γ1 is nonamenable, then σ is strongly ergodic.

Proof. 1◦ is a straightforward direct calculation.
2◦ follows once we notice that if Γ0 is infinite and σ0 is properly outer, it

automatically follows that B0 has no atomic part. This in turn implies that
the Bernoulli shift of Γ1 on (B0, τ0)⊗Γ1 is a properly outer action, even when
Γ1 is a finite group.
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3◦. This follows by the observations at the beginning of 3.3.3 and 3.3.1.
4◦. This follows from the properties of the Bernoulli shift listed in 3.3.1

(cf. [J2]).

3.4. Proposition. If the finite von Neumann algebra N has property H
relative to its von Neumann subalgebra B ⊂ N , then B is quasiregular in N .
If in addition N is a type II1 factor M and B = A is maximal abelian in M ,
then A is a Cartan subalgebra of M .

Proof. By Proposition 2.3, given any x1, x2, . . . , xn ∈ N , with ‖xi‖2 ≤ 1,
and any ε > 0, there exists an operator T ∈ B′ ∩ J(〈N, B〉) such that ‖T‖ ≤ 1
and ‖T (x̂i) − x̂i‖2 < ε2/32,∀i. Since ‖T‖ ≤ 1, this implies

‖T ∗(x̂i) − x̂i‖2
2 = ‖T ∗(x̂i)‖∗2 − 2Re〈T ∗(x̂i), x̂i〉 + ‖xi‖2

2

≤ 2‖xi‖2
2 − 2Re〈T ∗(x̂i), x̂i〉 = 2Re〈x̂i, (x̂i − T (x̂i))〉

≤ 2‖xi‖2‖x̂i − T (x̂i)‖2 < ε2/16.

As a consequence, we get:

‖T ∗T (x̂i) − x̂i‖2 ≤ ‖T ∗‖‖T (x̂i) − x̂i‖2 + ‖T ∗(x̂i) − x̂i‖2 < ε/2.

Thus, if we let e be the spectral projection of T ∗T corresponding to [1 − δ, 1]
then ‖T ∗T − T ∗Te‖ ≤ δ, yielding

‖e(x̂i) − x̂i‖2 ≤‖T ∗T (x̂i) − x̂i‖2 + ‖e(T ∗T (x̂i) − (x̂i))‖2 + ‖T ∗T − T ∗Te‖
≤ 2‖T ∗T (x̂i) − x̂i‖2 + δ.

But for δ sufficiently small the latter follows less than ε,∀i. Since the projection
e lies in B′ ∩ J(〈N, B〉), this proves that ∨{f | f ∈ P(B′ ∩ 〈N, B〉), f finite
projection in 〈N, B〉} = 1. By part (iii) of Lemma 1.4.2, this implies B is
quasiregular in N . If in addition B is a maximal abelian subalgebra then B

follows Cartan by ([PoSh]; see also part (i) in Proposition 1.4.3).

3.5. Remarks. 0◦. It is interesting to note that in most known examples
of groups Γ0 with property H, the positive definite functions ϕn ∈ c0(Γ0)
approximating the identity can be chosen in �p(Γ0), for some p = p(n). This is
the case, for instance, with the free groups Fm (cf. [H]), the arithmetic lattices
in SO(m, 1),SU(m, 1), etc. It is a known fact that if all ϕn can be taken in the
same �p(Γ0) (which is easily seen to imply they can be taken in �2(Γ0),∀n),
then Γ0 is amenable. This fact, along with many other similar observations,
justifies regarding Haagerup’s approximating property as a “weak amenability”
property.

1◦. The same proof as in [Cho] shows that if G ⊂ G0 is an inclusion of
discrete groups with the property that there exists a net of positive definite
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functions ϕα on G0 which are constant on double cosets Gg0G,∀g0 ∈ G0 (thus
factoring out to bounded functions on G\G0/G) and satisfy

(3.5.1′) G is quasi-normal in G0 and ϕα ∈ c0(G\G0/G),∀α;

(3.5.1′′) lim
α→∞

ϕα(g0) = 1,∀g0 ∈ Γ0,

then Lν(G0) has property H relative to Lν(G) for any scalar 2-cocycle ν for G0.
When G ⊂ G0 satisfies the set of conditions (3.5.1) we say that G0 has

property H relative to G. Note that in the case G is normal in G0 this is
equivalent to G0/G having property H as a group. (See 3.18–3.20 in [Bo] for
similar considerations).

2◦. The relative property H for inclusions of finite von Neumann algebras
is related to the following notion of relative amenability considered in [Po1,5]:
If B ⊂ N is an inclusion of finite von Neumann algebras then N is amenable
relative to B if there exists a norm-one projection of 〈N, B〉 = (JNBJN )′ ∩
B(L2(N)) onto N , where L2(N) is the standard representation of N and JN

is the corresponding canonical conjugation.
It is easy to see that if B ⊂ N is a crossed product inclusion B ⊂ B �σ Γ0

for some cocycle action σ of a discrete group Γ0 on (B, τ0), with τ0 a faithful
normal trace on B, then N is amenable relative to B in the above sense if and
only if Γ0 is amenable, a fact that justifies the terminology. Thus, in this case
N amenable relative to B implies N has the property H relative to B.

If N is an arbitrary finite von Neumann algebra with a normal faithful
tracial state τ and B ⊂ N is a von Neumann subalgebra, then the amenability
of N relative to B is equivalent to the existence of an N -hypertrace on 〈N, B〉,
i.e., a state ϕ on 〈N, B〉 with N in its centralizer: ϕ(xT ) = ϕ(Tx),∀x ∈ N ,
T ∈ 〈N, B〉 (cf. [Po1]). It is also easily seen to be equivalent (by using the
standard Day-Namioka-Connes trick) to the following Følner type condition:
∀F ⊂ U(N) finite and ε > 0, ∃ e ∈ P(〈N, B〉) with Tre < ∞ such that

(3.5.2) ‖u0e − eu0‖2,Tr < ε‖e‖2,Tr,∀u0 ∈ F.

Note that in case (B ⊂ N) = (Lν(G) ⊂ Lν(G0)) for some inclusion of
discrete groups G ⊂ G0 and a scalar 2-cocycle ν on G0, condition (3.5.2)
amounts to the following: ∀F ⊂ G0 finite and ε > 0, ∃E ⊂ G0/G finite such
that

(3.5.2′) |g0E − E| < ε|E|,∀g0 ∈ F.

This condition for inclusions of groups, for which the terminology used is
“G co-Følner in G0”, was first considered in [Ey]. It has been used in [CCJJV]
to prove that if G ⊂ G0 is an inclusion of groups, G0 is amenable relative to
G and G has the Haagerup property, then G0 has Haagerup’s property. It
would be interesting to know whether a similar result holds true in the case of
inclusions of finite von Neumann algebras B ⊂ N .
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3◦. A stronger version of relative amenability for inclusions of finite von
Neumann algebras B ⊂ N was considered in [Po5], as follows: N is s-amenable
relative to B if given any finite set of unitaries F ⊂ U(N) and any ε > 0 there
exists a projection e ∈ B′ ∩ 〈N, B〉, with Tre < ∞, such that e satisfies the
Følner condition (3.5.2) and ‖Tr(·e)/Tr(e) − τ‖ ≤ ε. (No specific terminology
is in fact used in [Po5] to nominate this amenability property.) Note that in
case B′ ∩ N = C, we actually have Tr(·e)/Tr(e) = τ for any finite projection
e in B′ ∩ 〈N, B〉, so the second condition is redundant. The s-amenability
of N relative to B is easily seen to be equivalent to: There exists a net of
B-bimodular completely positive maps φα on N such that τ ◦ φα ≤ τ , Tφα

belong to the (algebraic) ideal generated in 〈N, B〉 by eB and

lim
α→∞

‖φα(x) − x‖2 = 0, ∀x ∈ N.

Thus, N s-amenable relative to B implies N has property H relative to B.
Also, one can check that if N = B �σ Γ0 for some cocycle action σ of a discrete
group Γ0 on (B, τ), then N is s-amenable relative to B if and only if N is
amenable relative to B and if and only if Γ0 is an amenable group.

4◦. Let N ⊂ M be an extremal inclusion of type II1 factors with finite
Jones index and let T = M∨Mop ⊂ M �

eN

Mop = S be its associated symmetric

enveloping inclusion, as defined in [Po5]. It was shown in [Po5] that T is
quasiregular in S. It was also shown that S is amenable relative to T if and
only if S is s-amenable relative to T and if and only if N ⊂ M has amenable
graph ΓN,M (or, equivalently, N ⊂ M has amenable standard invariant GN,M ).

By [Po5, §3], if N ⊂ M is the subfactor associated to a properly outer
cocycle action σ of a finitely generated group Γ0 on a factor � M , then the
corresponding symmetric enveloping inclusion

T = M ∨ Mop ⊂ M �
eN

Mop = S

is isomorphic to
M⊗Mop ⊂ M⊗Mop �σ⊗σop Γ0,

so that T is regular in S. But if N ⊂ M has index λ−1 ≥ 4 and Temperley-Lieb-
Jones (TLJ) standard invariant GN,M = Gλ, then the corresponding symmetric
enveloping inclusion T ⊂ S is quasi-regular but not regular. In particular, if
λ−1 = 4 then [S : T ] = ∞ and S has property H relative to T (because GN,M

is amenable by [Po3]), while T is quasi-regular but not regular in S.

5◦. By exactly the same arguments as in the case of property (T) for
standard lattices considered in [Po5], it can be shown that for an extremal
standard lattice G the following conditions are equivalent: (i). There exists an
irreducible subfactor N ⊂ M with GN,M = G such that M �

eN

Mop has property
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H relative to M ∨ Mop; (ii). Given any subfactor N ⊂ M with GN,M = G,
M �

eN

Mop has property H relative to M ∨ Mop. If G satisfies either of these

conditions, we say that the standard lattice G has property H. By 4◦ above,
any amenable G has property H. We will prove in a forthcoming paper that
TLJ standard lattices Gλ have the property H, ∀λ−1 ≥ 4, while they are known
to be amenable if and only if λ−1 = 4 ([Po2], [Po5]).

6◦. When applied to the case of Cartan subalgebras A ⊂ M coming
from standard equivalence relations R (i.e., countable, free, ergodic, measure-
preserving) and having trivial 2-cocycle v ≡ 1, Definition 2.2 gives the follow-
ing: A standard equivalence relation R has property H (or is of Haagerup-type)
if M has property H relative to A. Note that in case R comes from an action
σ of a group Γ0 then property H of the corresponding R depends entirely on
the group Γ0, and not on the action (cf. 3.1). Since in addition A � Γ0 has
property H relative to A if and only if p(A � Γ0)p has the property H relative
to Ap, for p ∈ P(A) (cf. 2.5), it follows that property H for groups is invariant
to stable orbit equivalence (this fact was independently noticed by Jolissaint;
see [Fu] for a reformulation of stable orbit equivalence as Gromov’s “measure
equivalence”, abbreviated ME).

4. Rigid embeddings: Definitions and properties

In this section we consider a notion of rigid embeddings for finite von
Neumann algebras, inspired by the Kazhdan-Margulis example of the rigid
embedding of groups Z2 ⊂ Z2 � SL(2, Z) ([Ka], [Ma]). Our definition will be
the operator algebraic version of the notion of property (T) for pairs of groups
in [Ma], in the same spirit Connes and Jones defined property (T) for single
von Neumann algebras starting from property (T) of groups, in [CJ]. Thus, as
in [CJ], to formulate the definition we use Connes’s idea ([C3]) of regarding
Hilbert bimodules as an operator algebra substitute for unitary representations
of groups, and completely positive maps as an operator algebra substitute for
positive definite functions on groups (see Section 1.1). For convenience (and
comparison), we first recall the definition of property (T) for inclusions of
groups and for single II1 factors:

4.0.1. Relative property (T) for pairs of groups. The key part in Kazhdan’s
proof that the groups SL(n, R) (resp. SL(n, Z)), n ≥ 3, have the property (T)
consists in showing that representations of R2 � SL(2, R) that are close to the
trivial representation contain copies of the trivial representation of R2. This
type of “relative rigidity” property was later emphasized as a notion in its own
right by Margulis ([Ma]; see also [dHVa]), as follows:

Let G ⊂ G0 be an inclusion of discrete groups. The pair (G0, G) has
relative property (T) if the following condition holds true:
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(4.0.1) There exist finitely many elements g1, g2, . . . , gn ∈ G0 and ε > 0,
such that if π : G0 → U(H) is a unitary representation of the group G0 on the
Hilbert space H with a unit vector ξ ∈ H satisfying ‖π(gi)ξ − ξ‖ < ε,∀i, then
there exists a nonzero vector ξ0 ∈ H such that π(h)ξ0 = ξ0,∀h ∈ G.

Due to a recent result of Jolissaint ([Jo2]), the above condition is equivalent
to:

(4.0.1′) For any ε > 0, there exist a finite subset E′ ⊂ G0 and δ′ > 0
such that if (π,H) is a unitary representation of G0 on the Hilbert space
H and ξ ∈ H is a unit vector satisfying ‖π(h)ξ − ξ‖ ≤ δ′,∀h ∈ E′, then
‖π(g)ξ − ξ‖ ≤ ε,∀g ∈ G.

Note that the equivalence of (4.0.1) and (4.0.1′) is easy to establish in case
G is a normal subgroup of G0 (exactly the same argument as in [DeKi] will
do), but it is less simple in general (cf. [Jo2]). On the other hand, condition
(4.0.1′) is easily seen to be equivalent to:

(4.0.1′′) For any ε > 0, there exist a finite subset E ⊂ G0 and δ > 0 such
that if ϕ is a positive definite function on G0 with |ϕ(h)− 1| ≤ δ, ∀h ∈ E then
|ϕ(g) − 1| ≤ ε,∀g ∈ G.

Note that in the case G = G0, condition (4.0.1) amounts to the usual
property T of Kazhdan for the group G0 ([Ka]; see also [DeKi], [Zi]). We will
in fact also use the following alternative terminologies to designate property
(T) pairs: G ⊂ G0 is a property (T) (or rigid) embedding, or G is a relatively
rigid subgroup of G0.

4.0.2. Property (T) for factors. The abstract definition of property (T)
for a single von Neumann factor is due to Connes and Jones ([CJ]): A type II1
factor N has property (T) if the following condition holds true:

(4.0.2) There exist finitely many elements x1, x2, . . . , xn ∈ N and ε0 > 0
such that if H is an N Hilbert bimodule with a unit vector ξ ∈ H such that
‖xiξ − ξxi‖ ≤ ε0,∀i, then H contains a nonzero vector ξ0 such that xξ0 =
ξ0x,∀x ∈ N .

Connes and Jones have also proved that the fixed vector ξ0 can be taken
close to the initial ξ, if the “critical set” in N is taken sufficiently large and
the “commutation constant” sufficiently small ([CJ]), by showing that (4.0.2)
is equivalent to the following:

(4.0.2′) For any ε > 0, there exist a finite subset F ′ ⊂ N and δ′ > 0
such that if H is a Hilbert N -bimodule and ξ ∈ H is a unit vector satisfying
‖yξ − ξy‖ ≤ δ′,∀y ∈ F ′, then there exists ξ0 ∈ H such that xξ0 = ξ0x,∀x ∈ N

and ‖ξ − ξ0‖ ≤ ε.
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For inclusions of finite von Neumann algebras, we first establish the equiv-
alence of several conditions:

4.1. Proposition. Let N be a finite von Neumann algebra with count-
able decomposable center (i.e., with normal faithful tracial states). Let B ⊂ N

be a von Neumann subalgebra. The following conditions are equivalent :
1◦. There exists a normal faithful tracial state τ on N such that : ∀ε > 0,

∃F ′ ⊂ N finite and δ′ > 0 such that if H is a Hilbert N -bimodule with a
vector ξ ∈ H satisfying the conditions ‖〈·ξ, ξ〉 − τ‖ ≤ δ′, ‖〈ξ·, ξ〉 − τ‖ ≤ δ′ and
‖yξ − ξy‖ ≤ δ′,∀y ∈ F ′ then ∃ξ0 ∈ H such that ‖ξ0 − ξ‖ ≤ ε and bξ0 = ξ0b,
∀b ∈ B.

2◦. There exists a normal faithful tracial state τ on N such that : ∀ε > 0,
∃F ⊂ N finite and δ > 0 such that if φ : N → N is a normal, completely
positive map with τ ◦ φ ≤ τ, φ(1) ≤ 1 and ‖φ(x) − x‖2 ≤ δ, ∀x ∈ F , then
‖φ(b) − b‖2 ≤ ε,∀b ∈ B, ‖b‖ ≤ 1.

3◦. Condition 1◦ above is satisfied for any normal faithful tracial state τ

on N .
4◦. Condition 2◦ above is satisfied for any normal faithful tracial state τ

on N .

Proof. We first prove that condition 1◦ holds true for a specific normal
faithful tracial state τ if and only if condition 2◦ holds true for that same trace.
Then we prove 1◦ ⇔ 3◦, which due to the equivalence of 1◦ and 2◦ ends the
proof of the proposition.

2◦ =⇒ 1◦. By part 1◦ of Lemma 1.1.3, we may assume the vectors
ξ ∈ H in condition 4.1.1◦ also satisfy 〈·ξ, ξ〉 ≤ τ and 〈ξ·, ξ〉 ≤ τ , in addition
to the given properties. We take x1, x2, . . . , xn to be an enumeration of the
finite set F and for any given ε′ > 0 let δ′ be the δ given by condition 2◦

for ε = ε′2/4. By part 2◦ of Lemma 1.1.3, such a vector ξ gives rise to a
completely positive map φ = φ(H,ξ) on N which satisfies condition 4.1.2◦.
Thus, ‖φ(b) − b‖2 ≤ ε,∀b ∈ B, ‖b‖ ≤ 1. By Lemma 1.1.2, this implies that
ξ (which is equal to ξφ) satisfies ‖uξu∗ − ξ‖ ≤ 2ε1/2 ≤ ε′,∀u ∈ U(B). By
averaging over the unitaries u ∈ U(B), we see that there exists ξ0 ∈ H such
that ‖ξ0 − ξ‖ ≤ ε′ and ξ0 commutes with B.

1◦ =⇒ 2◦. Let ε > 0. Define F (ε) = F ′(ε2/8), δ(ε) = δ′(ε2/8)2/4. Let
then φ : N → N be a completely positive map satisfying the conditions 2◦

for this F (ε) and δ(ε). Let (Hφ, ξφ) be constructed as in 1.1.2. By part 4◦ of
Lemma 1.1.2, we have for x ∈ F (ε) the inequality

‖xξφ − ξφx‖ ≤ 2‖φ(x) − x‖1/2
2 ≤ δ′(ε2/8).

Thus, there exists ξ0 ∈ Hφ such that ‖ξφ − ξ0‖ ≤ ε2/8 and bξ0 = ξ0b,
∀b ∈ B. But then, if u ∈ U(B) we get
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‖φ(u) − u‖2
2 ≤ 2 − 2Re〈uξφu∗, ξφ〉
≤ 2 − 2‖ξ0‖2 + 4‖ξ0 − ξφ‖ ≤ 2 − 2(1 − ε2/8)2 + 4ε2/8 < ε2.

Since any b ∈ B, ‖b‖ ≤ 1, is a convex combination of unitary elements, we are
done.

3◦ =⇒ 1◦ is trivial. To prove 1◦ =⇒ 3◦, let τ0 be a normal faithful
tracial state on N . We have to show that ∀ε > 0, ∃F0 ⊂ N finite and δ0 > 0
such that if H is a Hilbert N -bimodule with η ∈ H satisfying ‖〈·η, η〉 − τ0‖ ≤
δ0, ‖〈η·, η〉 − τ0‖ ≤ δ0 and ‖yη − ηy‖ ≤ δ0,∀y ∈ F0 then ∃η0 ∈ H such that
‖η0 − η‖ ≤ ε and bη0 = η0b,∀b ∈ B.

By Sakai’s Radon-Nykodim theorem, τ0 is of the form τ0 = τ(·a0) for
some a0 ∈ L1(Z(N), τ)+ with τ(a0) = 1. It is clearly sufficient to prove the
statement in the case a0 is bounded and with finite spectrum (thus bounded
away from 0 as well). Also, by taking the spectral projections of a0 to be in
F0 and slightly perturbing η, we may assume η commutes with a0. We take
F0 = F ′(ε/‖a0‖) and δ0 = δ′(ε/‖a0‖)/‖a−1

0 ‖, as given by condition 1◦ for τ .
Let ξ = a

−1/2
0 η = ηa

−1/2
0 . Then

‖〈·ξ, ξ〉 − τ‖ = ‖〈·a−1
0 η, η〉 − τ0(·a−1

0 )‖ ≤ ‖a−1
0 ‖(δ′/‖a−1

0 ‖) = δ′.

Similarly, ‖〈ξ·, ξ〉 − τ‖ ≤ δ′. Also, for y ∈ F0,

‖[y, ξ]‖ = ‖[y, a
−1/2
0 η]‖ ≤ ‖a−1/2

0 ‖(δ′/‖a−1
0 ‖) ≤ δ′.

Thus, by 1◦, there exists ξ0 ∈ H such that bξ0 = ξ0b,∀b ∈ B and ‖ξ0 − ξ‖ ≤
ε/‖a0‖. In addition, since ξ commutes with a0, we may assume ξ0 also does.
Let η0 = a

1/2
0 ξ0. Then η0 still commutes with B and we have the estimates:

‖η0 − η‖ = ‖a1/2
0 ξ0 − a

1/2
0 ξ‖ ≤ ‖a1/2

0 ‖‖ξ0 − ξ‖ ≤ ‖a1/2
0 ‖(ε/‖a0‖) ≤ ε.

4.2. Definitions. Let N be a countable decomposable finite von Neumann
algebra and B ⊂ N a von Neumann subalgebra.

4.2.1. B ⊂ N is a rigid (or property (T)) embedding (or, B is a relatively
rigid subalgebra of N , or the pair (N, B) has the relative property (T)) if B ⊂ N

satisfies the equivalent conditions 4.1.

4.2.2. If N is a finite factor and ε0 > 0 then B ⊂ N is ε0-rigid if ∃F ⊂ N

finite and δ > 0 such that if φ is a completely positive map on N with φ(1) ≤ 1,
τ ◦ φ ≤ τ and ‖φ(x) − x‖2 ≤ δ, ∀x ∈ F then ‖φ(b) − b‖2 ≤ ε0,∀b ∈ B, ‖b‖ ≤ 1.

Note that if N is a finite factor then an embedding B ⊂ N is rigid if and
only if it is ε0-rigid ∀ε0 > 0. We see that if some additional conditions are
satisfied (e.g., B regular, in N , in 4.3.2◦; B, N group algebras coming from a
group-subgroup situation, in 5.1) then B ⊂ N , ε0-rigid, for ε0 = 1/3, is in fact
sufficient to insure that B ⊂ N is rigid.
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4.3. Theorem. Let N be a separable type II1 factor and B ⊂ N a von
Neumann subalgebra.

1◦. Assume B ⊂ N is either rigid or ε0-rigid, for some ε0 < 1, with B

semi-regular. Then N ′ ∩Nω = N ′ ∩ (B′ ∩N)ω, for any free ultrafilter ω on N.
If in addition to either of the above conditions B also satisfies B′ ∩N = Z(B)
(resp. B′ ∩ N = C) then N is non-McDuff (resp. non-Γ).

2◦. Assume that either B is regular in N or that NN (B)′∩Nω = C. Then
B ⊂ N is rigid if and only if it is ε0-rigid for some ε0 ≤ 1/3.

Proof. 1◦. Assume first that B ⊂ N is rigid. By applying 4.1.2◦ to the
completely positive maps φ = Adu for u ∈ U(N), it follows that for any ε > 0
there exist δ > 0 and x1, x2, . . . , xn ∈ N such that if u ∈ U(N) satisfies

‖uxi − xiu‖2 ≤ δ, ∀i,

then
‖ub − bu‖2 ≤ ε,∀b ∈ B, ‖b‖ ≤ 1.

In particular, ‖vuv∗ − u‖2 ≤ ε,∀v ∈ U(B). Thus, by taking averages over the
unitaries v ∈ B, we see that ‖EB′∩N (u) − u‖2 ≤ ε. Thus, if (un) ⊂ U(N) is a
central sequence of unitary elements in N , i.e.,

lim
n→∞

‖[x, un]‖2 = 0,∀x ∈ N,

then
lim

n→∞
‖un − EB′∩N (un)‖2 = 0.

Assume now that B ⊂ N is ε0-rigid, with ε0 < 1, and that N (B)′∩N = C.
We proceed by contradiction, assuming there exists u = (un)n ∈ U(N ′ ∩ Nω)
such that u �∈ (B′ ∩ N)ω. By taking a suitable subsequence of (un), we see
that there exists (vn)n ⊂ U(N) such that lim

n→∞
‖[vn, x]‖2 = 0, ∀x ∈ N , and

‖EB′∩N (vn)‖2 ≤ c,∀n, for some c < 1. It further follows that given any
separable von Neumann subalgebra P ⊂ Nω there exist k1 � k2 � . . . such
that lim

n→∞
‖[vkn

, yn]‖2 = 0, ∀y = (yn)n ∈ P .

Moreover, if P ⊂ NNω(Bω)′′, then the subsequence v′ = (vkn
)n can be

taken so that we also have [EBω ′∩Nω(v′), y] = 0, ∀y ∈ P . To see this, let S ⊂
N (Bω) be a countable set such that the von Neumann algebra P0 generated by
S contains P . Choose kn ↑ ∞ so that lim

n→∞
‖[vkn

, wn]‖2 = 0, ∀w = (wn)n ∈ S.
We then have

wEBω ′∩Nω(v′)w∗ = wEBω ′∩Nω(w∗v′w)w∗ = EBω ′∩Nω(v′), ∀w ∈ S.

Thus [EBω ′∩Nω(v′), S] = 0, implying [EBω ′∩Nω(v′), P0] = 0 as well.
Now notice that (B′∩N)ω = Bω ′∩Nω (see e.g. [Po2]). As a consequence,

since EBω ′∩Nω(x) is the element of minimal norm ‖ ‖2 in cow{wxw∗ | w ∈
U(Bω)}, which in turn can be realized as a ‖ ‖2-limit of convex combinations



BETTI NUMBERS INVARIANTS 851

of the form wxw∗ with w in a suitable countable subset of U(Bω), it follows
that for any x ∈ Nω there exists a separable von Neumann subalgebra P ∈ Bω

such that EP ′∩Nω(x) = EBω ′∩Nω(x). Also, since NNω(Bω) ⊃ Π
n→∞

NN (B),

N (Bω)′′ follows a factor and for any x′ ∈ Nω there exists a separable von
Neumann subalgebra P0 generated by a countable subset in N (Bω) such that
P0 ⊃ P and EP ′

0∩Nω(x′) = τ(x′)1.
Using all the above, we prove the following statement:

(4.3.1′) If x ∈ Nω then there exists a subsequence (vkn
)n of (vn)n such that

v′ = (vkn
)n ∈ Nω satisfies ‖EBω ′∩Nω(xv′)‖2 = ‖EBω ′∩Nω(x)‖2‖EBω ′∩Nω(v′)‖2.

To see this, take first a separable von Neumann subalgebra P ⊂ Bω such
that EBω ′∩Nω(x) = EP ′∩Nω(x). Then take P0 a von Neumann algebra gen-
erated by a countable subset in N (Bω) such that P0 ⊃ P and EP ′

0∩Nω(x′) =
τ(x′)1 where x′ = EBω ′∩Nω(x)∗EBω ′∩Nω(x). Since Bω ′ ∩Nω ⊂ P ′ ∩Nω, if the
subsequence (vkn

)n is chosen such that [v′, P0] = 0 then [v′, P ] = 0 and

EBω ′∩Nω(xv′) = EBω ′∩Nω(EP ′∩Nω(xv′)) = EBω ′∩Nω(EP ′∩Nω(x)v′)

= EBω ′∩Nω(EBω ′∩Nω(x)v′) = EBω ′∩Nω(x)EBω ′∩Nω(v′).

Also, since y′ = EBω ′∩Nω(v′)EBω ′∩Nω(v′)∗ satisfies [y′, P0] = 0,

‖EBω ′∩Nω(xv′)‖2
2 = ‖EBω ′∩Nω(x)EBω ′∩Nω(v′)‖2

2 = τ(x′y′) = τ(EP ′
0∩Nω(x′y′))

= τ(EP ′
0∩Nω(x′)y′) = τ(x′)τ(y′) = ‖EBω ′∩Nω(x)‖2

2‖EBω ′∩Nω(v′)‖2
2.

Now, by applying (4.3.1′) recursively, we can choose a subsequence v1 of
v = (vn)n, then v2 of v1, etc, such that

‖EBω ′∩Nω(Πm
j=1v

j)‖2 = Πm
j=1‖EBω ′∩Nω(vj)‖2 = ‖EBω ′∩Nω(v)‖m

2 ≤ cm.

Take m so that cm < 1 − ε0 and put w = v1v2 . . . vm, w = (wn)n, with
wn ∈ U(N), and φn = Ad(wn). Then,

(4.3.1′′) lim
n→ω

‖EB′∩N (wn)‖2 < 1 − ε0, lim
n→∞

‖φn(x) − x‖2 = 0,∀x ∈ N.

By the ε0-rigidity of B ⊂ N the second condition in (4.3.1′′) implies that for
large enough n we have

‖uwnu∗ − wn‖2 = ‖wnuw∗
n − u‖2 = ‖φn(u) − u‖2 ≤ ε0,∀u ∈ U(B).

After we take convex combinations over u, this yields ‖EB′∩N (wn)−wn‖2 ≤ ε0.
Thus ‖EB′∩N (wn)‖2 ≥ 1 − ε0 for all large enough n, contradicting the first
condition in (4.3.1′′).

2◦. We need to show that if (ψn)n are completely positive maps on N

satisfying

(a) τ ◦ ψn ≤ τ, ψn(1) ≤ 1,∀n, lim
n→∞

‖ψn(x) − x‖2 = 0,∀x ∈ N,
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then lim sup
n→∞

({‖ψn(b) − b‖2 | b ∈ B, ‖b‖ ≤ 1}) = 0. Assume by contradiction

that there exist (ψn)n satisfying (a) but

(b) infn(sup{‖ψn(b) − b‖2 | b ∈ B, ‖b‖ ≤ 1}) > 0.

Note that by the ε0-rigidity of B ⊂ N , (a) implies

(c) lim sup
n→∞

(sup{‖ψn(b) − b‖2 | b ∈ B, ‖b‖ ≤ 1}) ≤ ε0.

If (ψn)n satisfies τ ◦ ψn ≤ τ, ψn(1) ≤ 1,∀n in (a) then

(d) Ψ((xn)n)def=(ψn(xn))n, (xn)n ∈ Nω,

gives a well defined completely positive map Ψ on Nω with τ ◦Ψ ≤ τ , Ψ(1) ≤ 1.
Thus, the fixed point set (Nω)Ψdef={x ∈ Nω | Ψ(x) = x} is a von Neumann
algebra. If (ψn)n also satisfies the last condition in (a), then N ⊂ (Nω)Ψ.
In particular Ψ(1) = 1 which together with ‖TΨ‖ ≤ 1 implies TΨ

∗(1̂) = 1̂;
equivalently Ψ∗(1) = 1, i.e., τ ◦ Ψ = τ .

If in addition to (a) the sequence (ψn)n satisfies (b), then Bω �⊂ (Nω)Ψ.
Let us prove that the ε0-rigidity of B ⊂ N entails

(e) Bω ⊂ε0 (Nω)Ψ.

For ψ a map on an algebra denote by ψm the m-time composition ψ ◦ψ · · · ◦ψ.
Then note that for each m ≥ 1 the sequence (ψm

n )n still satisfies (a), and thus,
by ε0-rigidity, (c) as well. Thus

‖Ψk(b) − b‖2 ≤ ε0, ∀b ∈ Bω, ‖b‖ ≤ 1.

But by von Neumann’s ergodic theorem applied to Ψ and x ∈ Nω, we have

(f) lim
n→∞

‖m−1Σm
k=1Ψ

k(x) − E(Nω)Ψ(x)‖2 = 0,

which together with the previous estimate shows that for x = b ∈ Bω, ‖b‖ ≤ 1,

we have ‖E(Nω)Ψ(b) − b‖2 ≤ ε0, i.e., (e).
The assumption N (B)′ ∩ Nω = C implies in particular that N ′ ∩ Nω =

C ⊂ (Nω)Ψ. We next prove that B regular in N implies N ′ ∩ Nω ⊂ (Nω)Ψ as
well, for any Ψ on Nω associated as in (d) to a sequence (ψn)n satisfying (a).
Denote P = (Nω)Ψ and assume by contradiction that N ′ ∩ Nω � P . Since
N ′∩Nω and P make a commuting square, this implies there exists x ∈ N ′∩Nω,
x �= 0, such that EP (x) = 0. Moreover, we may assume x = (xn)n satisfies
xn = x∗

n, ‖xn‖2 = 1,∀n.
By using (f), we can choose “rapidly” increasing k1 � k2 � . . . and

“slowly” nondecreasing m1 ≤ m2 ≤ . . . such that the sequence of completely
positive maps ψ′

n = (mn)−1Σmn

j=1ψ
j
kn

satisfies (a) and lim
n→∞

‖ψ′
n(x′

n)‖2 = 0, with

lim
n→∞

‖[x′
n, y]‖2 = 0,∀y ∈ N , lim

n→∞
τ((x′

n)k) = τ(xk),∀k, where x′
n = xkn

.
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Denote by Ψ1 the completely positive map on Nω associated with (ψ′
n)n,

as in (d), and put X = X1 = (x′
n)n ∈ Nω. Since each separable von Neumann

subalgebra of Nω is contained in a separable factor and since for each separable
Q ⊂ Nω there exists j1 � j2 � . . . such that X ′ = (x′

jn
)n ∈ Q′∩Nω, it follows

that there exist separable factors Q0 = N ⊂ Q1 ⊂ · · · ⊂ Qm−1 in Nω and
consecutive subsequences of indices (j, 1) < (j, 2) < . . . , for j = 1, 2, . . . , m,
with (1, n) = n, such that Xj = (x′

j,n)n ∈ Nω satisfy X1, X2, . . . , Xj ∈ Qj ,
[Qj , Xj+1] = 0, for 0 ≤ j ≤ m − 1. Denote by Ψj the completely positive
map on Nω associated with (ψ′

j,n)n, noticing that each one of these sequences
checks (a). Thus for each j = 1, 2, . . . , m we have Ψj(x) = x,∀x ∈ N and
Ψj(Xj) = 0. Moreover, the von Neumann algebra generated by X1, X2, . . . , Xm

in Nω is isomorphic to the tensor power (A(X), τ)⊗m, where A(X) is the von
Neumann algebra generated by X ∈ Nω.

Let X̃ = m−1/2Σm
j=1Xj and Ψ̃ = m−1Σm

j=1Ψj . Let Pj = (Nω)Ψj , 1 ≤ j

≤ m, and P̃ = (Nω)Ψ̃. By (a)−(e), P̃ , Pj are von Neumann algebras containing
N and Bω ⊂ε0 Pj , P̃ . Moreover, since by convexity we have Ψ̃(Y ) = Y if and
only if Ψj(Y ) = Y , ∀j, it follows that P̃ = ∩jPj . Thus, since Ψj(Xj) = 0
implies EPj

(Xj) = 0, it follows that EP̃ (X̃) = 0.
But by the central limit theorem, as m → ∞, X̃ gets closer and closer

(in distribution) to an element Y = Y ∗ with Gaussian spectral distribution,
independently of X. Let Y ′ = Y e[−2,2](Y ) and ‖Y ‖2

2 = t. By using Mathemat-
ica, one finds t > 0.731. Thus, for large enough m, X̃ ′ = X̃e[−2,2](X̃) satisfies
‖X̃ ′‖2

2 = t− with t− close to t. Let X̃ ′′ = X̃ − X̃ ′ and note that X̃ ′X̃ ′′ = 0, so
that ‖X̃ ′‖2

2 + ‖X̃ ′′‖2
2 = ‖X̃‖2

2 = 1. Also,

EP̃ (X̃ ′) = EP̃ (X̃ − X̃ ′′) = −EP̃ (X̃ ′′),

implying that ‖EP̃ (X̃ ′)‖2
2 ≤ ‖X̃ ′′‖2

2 = 1 − t−. Altogether

‖X̃ ′ − EP̃ (X̃ ′)‖2
2 = ‖X̃ ′‖2

2 − ‖EP̃ (X̃ ′)‖2
2 ≥ 2t− − 1.

Since X̃1 ∈ N ′∩Nω ⊂ Bω and ‖X̃1‖ = 2, if we take X̃0 = X̃ ′/2 then ‖X̃0‖ = 1
and ‖X̃0 − EP̃ (X̃0)‖2

2 = (2t− − 1)/4 > (1/3)2, this contradicts Bω ⊂1/3 P̃ .
This finishes the proof of the fact that N ′ ∩ Nω ⊂ (Nω)Ψ, independently

of Ψ, for arbitrary (ψn)n checking (a). Thus P = ∩i(Nω)Ψi , where Ψi, i ∈ I,

is the family of all completely positive maps on Nω coming from sequences
(ψi,n)n satisfying (a), still satisfies N, N ′ ∩ Nω ⊂ P . Let us show that this
newly designated P still satisfies Bω ⊂ε0 P . To see this, take a finite subset
I ⊂ I and consider the sequence ψI,n = |I|−1Σiψi,n, which clearly satisfies (a).
Thus, the associated completely positive map ΨI on Nω satisfies

‖EPI
(b) − b‖2 ≤ ε0,∀b ∈ Bω, ‖b‖ ≤ 1.
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where PI
def=(Nω)ΨI . Since |I|−1ΣiΨi(x) = x if and only if Ψi(x) = x, ∀i ∈ I, we

have PI = ∩
i∈I

(Nω)Ψi . But PI ↓ P as I ↑ I, implying that ‖EP (b)−b‖2 ≤ ε0,∀b,

as well.
Denote U0 = N (B) ∪ U(N (B)′ ∩ (Bω)′ ∩ Nω), N0 = U ′′

0 and notice that
v(Bω)v∗ = Bω,∀v ∈ U0. Also, if we let M = Nω, Q = Bω, then by 1◦ both
the assumption N (B)′ ∩ Nω = C and NN (B)′′ = N imply that U0 ⊂ P and
N ′

0 ∩M = Z(N0), [Z(N0), Q] = 0 are satisfied. Thus, A.3 applies and we get a
nonzero projection p ∈ Z(N0) such that Qp ⊂ P . In the case N (B)′∩Nω = C,
this implies p = 1 and we get Bω ⊂ P , a contradiction which finishes the proof
under this assumption.

If B is regular in N , then the group N (B) = N (B∨B′∩N) generates the
factor N , a fact that is easily seen to imply NNω(Bω)′ ∩Nω = C. This implies
there exists a countable subgroup U1 ⊂ N (Bω) such that τ(p)1 is a limit in the
norm-‖ ‖2 of convex combinations of elements of the form u1pu∗

1, u1 ∈ U1.
Let then (ψn)n be the sequence of completely positive maps satisfying (a)−(b)
at the beginning of the proof, with bn ∈ B, ‖bn‖ ≤ 1, ‖ψn(bn) − bn‖2 ≥ c > 0,
∀n. If we choose a sufficiently rapidly increasing k1 � k2 � . . . , then the
completely positive map Ψ′ associated with (ψkn

)n as in (d) has both N and
U1 in the fixed point algebra (Nω)Ψ

′
. But since P ⊂ (Nω)Ψ

′
, it follows that

(Nω)Ψ
′

contains Bωp, and thus u1(Bωp)u∗
1 = Bω(u1pu∗

1),∀u1 ∈ U1 as well.
This implies Bω ⊂ (Nω)Ψ

′
, contradicting ‖Ψ′(b′) − b′‖2 ≥ c > 0, where b′ =

(bkn
)n ∈ Bω.

4.4. Theorem. Let N be a type II1 factor and B ⊂ N a von Neumann
subalgebra such that B′ ∩ N = Z(B) and such that the normalizer of B in N ,
N (B), acts ergodically on the center of B. Let GB ⊂ AutN be the group
generated by IntN and by the automorphisms of N that leave all elements of
B fixed. If B ⊂ N is ε0-rigid for some ε0 < 1 then GB is open and closed in
AutN . Thus, AutN/GB is countable.

Proof. By applying condition 4.2.2◦ to the completely positive maps θ ∈
AutN , it follows that there exist δ > 0 and x1, x2, . . . , xn ∈ N such that if
‖θ(xi) − xi‖2 ≤ δ then

‖θ(u) − u‖2 ≤ ε0,∀u ∈ U(B).

Thus, if k denotes the unique element of minimal norm ‖ ‖2 in K =
cow{θ(u)u∗ | u ∈ U(B)} then ‖k − 1‖2 ≤ ε0 and thus k �= 0. Also, since
θ(u)Ku∗ ⊂ K and ‖θ(u)ku∗‖2 = ‖k‖2,∀u ∈ U(B), by the uniqueness of k it fol-
lows that θ(u)ku∗ = u, or equivalently θ(u)k = ku, for all u ∈ U(B). By a stan-
dard trick, if v ∈ N is the (nonzero) partial isometry in the polar decomposition
of k, then θ(u)v = vu,∀u ∈ U(B), v∗v ∈ B′ ∩ N = Z(B), vv∗ ∈ θ(B)′ ∩ N =
θ(Z(B)). Since N (B) acts ergodically on Z(B) (equivalently, N (B)′∩N = C),
there exist finitely many partial isometries v0 = v∗v, v1, v2, . . . , vn ∈ N such
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that v∗i vi = v∗v, 0 ≤ i ≤ n − 1, v∗nvn ∈ Z(B)v∗v and viv
∗
i ∈ Z(B), viBv∗i =

Bviv
∗
i ,∀i.
If we then define w = Σiθ(vi)vv∗i , an easy calculation shows that w is a

unitary element and wbw∗ = θ(b),∀b ∈ B.

4.5. Proposition. Let N be a type II1 factor and B ⊂ N a rigid
embedding.

1◦. For any ε0 > 0 there exist F0 ⊂ N and δ0 > 0 such that if N0 ⊂ N is a
subfactor with B ⊂ N0 and F0 ⊂δ0 N0, then B ⊂ N0 is ε0-rigid. In particular,
if Nk ⊂ N, k ≥ 1 is an increasing sequence of subfactors such that B ⊂ Nk,∀k,
and ∪kNk = N , then for any ε0 > 0 there exists k0 such that B ⊂ Nk is
ε0-rigid ∀k ≥ k0.

2◦. Assume in addition that B is regular in N and B′ ∩ N = Z(B). For
any ε > 0 there exist a finite subset F ⊂ N and δ > 0 such that if N0 ⊂ N is a
subfactor with N ′

0 ∩N = C and F ⊂δ N0 then there exists u ∈ U(N) such that
‖u− 1‖2 ≤ ε and uBu∗ ⊂ N0, with uBu∗ ⊂ N0 rigid embedding. If in addition
N0 ⊃ B then one can take u = 1. In particular, if Nk ⊂ N is an increasing
sequence of subfactors with N ′

k ∩ N = C and Nk ↑ N then there exist k0 such
that ukBu∗

k ⊂ Nk rigid, ∀k ≥ k0, for some uk ∈ U(N), ‖uk − 1‖2 → 0, and
such that if Nk ⊃ B,∀k, then B ⊂ Nk rigid ∀k ≥ k0.

Proof. 1◦. With the notation of 4.1.2◦, for the critical sets F (ε′) and
constants δ(ε′) for B ⊂ N , let F0 = F (ε0) and δ0 = δ(ε0)/2. Let N0 ⊂ N be
a von Neumann algebra with B ⊂ N0, ‖EN0(y) − y‖2 ≤ δ0,∀y ∈ F0. We want
to prove that B ⊂ N0 is ε0-rigid by showing that if φ0 is a completely positive
map on N0 with φ0(1) ≤ 1, τ ◦ φ0 ≤ τ and

‖φ0(y0) − y0‖2 ≤ δ(ε0)/2,∀y0 ∈ EN0(F0),

then ‖φ0(b) − b‖2 ≤ ε0,∀b ∈ B, ‖b‖ ≤ 1. To this end let φ = φ0 ◦ EN0 ,
which we regard as a completely positive map from N into N (⊃ N0). Clearly
φ(1) ≤ 1, τ ◦ φ ≤ τ . Also, for y ∈ F (ε0) we have

‖φ(y) − y‖2 ≤ ‖φ0(EN0(y)) − EN0(y)‖2 + ‖EN0(y) − y‖2 ≤ δ(ε0).

Thus, ‖φ(b)− b‖2 ≤ ε0,∀b ∈ B, ‖b‖ ≤ 1. Since for b ∈ B we have φ(b) = φ0(b),
we are done.

2◦. By application of condition 4.1.2◦ to the completely positive maps
EN0 , it follows that if we denote ε(N0) = sup{‖EN0(b)− b‖2 | b ∈ B, ‖b‖ ≤ 1},
then ε(N0) → 0 as EN0 → idN . Thus, by Theorem A.2 it follows that there
exist unitary elements u = u(N0) ∈ N such that uBu∗ ⊂ N0 and ‖u−1‖2 → 0.
Moreover, by 1◦ above and 4.3.2◦, it follows that uBu∗ ⊂ N0 (equivalently, B ⊂
uN0u

∗) is a rigid embedding when N0 is close enough to N on an appropriate
finite set of elements. The fact that B is still regular in N0 is a consequence
of ([JPo]). The last part is now trivial.
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4.6. Proposition. 1◦. (Bi ⊂ Ni) are rigid embeddings for i = 1, 2 if
and only if (B1⊗B2 ⊂ N1⊗N2) is a rigid embedding.

2◦. Let B ⊂ N0 ⊂ N . If B ⊂ N0 is a rigid embedding then B ⊂ N is a
rigid embedding. Conversely, if we assume N0 ⊂ N is a λ-Markov inclusion
([Po2]), i.e., N has an orthonormal basis {mj}j with Σmjm

∗
j = λ−1 for some

constant λ > 0 (e.g., if N, N0 are factors and [N : N0] < ∞) then B ⊂ N is a
rigid embedding, implies B ⊂ N0 is a rigid embedding.

3◦. Let B ⊂ B0 ⊂ N . If B0 ⊂ N is a rigid embedding, then B ⊂ N is a
rigid embedding. Conversely, if B0 has a finite orthonormal basis with respect
to B and B ⊂ N is a rigid embedding, then B0 ⊂ N is a rigid embedding.

Proof. 1◦. Assume first that (Bi ⊂ Ni) are rigid embeddings, τi, for
i = 1, 2. Let ε > 0 and F ′

i (ε/2), δ′i(ε/2) be the critical sets and constants for
Bi ⊂ Ni, as given by 4.1.1◦, for ε/2. Define F ′ = F ′

1⊗1∪1⊗F ′
2, δ

′ = min{δ′1, δ′2}.
Put N = N1⊗N2, B = B1⊗B2. Let H be a Hilbert N -bimodule with a

vector ξ ∈ H which satisfies conditions 4.1.1◦ with respect to the trace τ1 ⊗ τ2,
for F ′, δ′. In particular, H is a Hilbert Ni bimodule, for i = 1, 2. Thus, if
we denote by pi the orthogonal projection of H onto the Hilbert subspace of
all vectors in H that commute with Bi, then ‖ξ − pi(ξ)‖2 ≤ ε/2, i = 1, 2, for
any vector ξ ∈ H that satisfies 4.1.1◦ for the above F ′, δ′. But p1 and p2 are
commuting projections and p1p2 projects onto the Hilbert subspace of vectors
commuting with both B1 and B2, i.e., onto the Hilbert subspace of vectors
commuting with B. Since

‖ξ − p1p2(ξ)‖≤‖ξ − p1(ξ)‖ + ‖p1(ξ) − p1(p2(ξ))‖
≤‖ξ − p1(ξ)‖ + ‖ξ − p2(ξ)‖ ≤ ε,

it follows that B ⊂ N satisfies 4.1.1◦.
Assume now that B ⊂ N satisfies 4.1.2◦ for some trace τ . Since N1⊗N2 is

a dense ∗-subalgebra in N , by using Kaplanski’s density theorem and the fact
that in 4.1.2◦ we only have to deal with completely positive maps φ satisfying
τ ◦ φ ≤ τ, φ(1) ≤ 1, it follows that we may assume the critical set F ′(ε) is
contained in N1 ⊗ N2 (by diminishing if necessary the corresponding δ′(ε)).

Let F ′
i ⊂ Ni be finite subsets such that F ′ ⊂ spF ′

1 ⊗ F ′
2. There clearly

exist δ′i > 0 such that if φi are completely positive maps on Ni with τ ◦φi ≤ τ ,
φi(1) ≤ 1 and ‖φi(xi) − xi‖2 ≤ δ′i,∀xi ∈ F ′

i , i = 1, 2, then φ = φ1 ⊗ φ2 satisfies
‖φ(x) − x‖2 ≤ δ′,∀x ∈ F ′. Thus, ‖φ(b) − b‖2 ≤ ε,∀b ∈ B, ‖b‖ ≤ 1. Taking
b ∈ Bi, we get ‖φi(b) − b‖2 ≤ ε,∀b ∈ Bi, ‖b‖ ≤ 1, i = 1, 2.

2◦. The implication =⇒ follows by noticing that if φ is a completely
positive map on N such that φ(1) ≤ 1 and τ ◦ φ ≤ τ then for x ∈ N0 we have
‖EN0(φ(x)) − x‖2 ≤ ‖φ(x) − x‖2 while for b ∈ B, ‖b‖ ≤ 1, we have

‖φ(b) − b‖2
2 ≤ ‖EN0(φ(b)) − b‖2

2 + 2‖EN0(φ(b)) − b‖2.



BETTI NUMBERS INVARIANTS 857

Thus, if 4.1.2◦ is satisfied for B ⊂ N0 with critical set F0(ε) and constant
δ0(ε), then 4.1.2◦ holds true for B ⊂ N for the same set F0 but constant
δ(ε) = δ0(ε)2/3.

To prove the opposite implication, let e = eN0 be the Jones projection
corresponding to N0 ⊂ N and N1 = 〈N, e〉 the basic construction. Since
N0 ⊂ N is λ-Markov, there exists a unique trace τ on N1 extending the trace
τ of N and such that Eτ

N (e) = λ1.
We may assume 1 belongs to the orthonormal basis {mj}j of N over N0.

Note that x = ΣjmjEN (mj
∗x),∀x ∈ N . Any element X ∈ N1 can be uniquely

written in the form X = Σi,jmixijem
∗
j for some xij ∈ piN0pj , where pi =

EN0(m∗
i mi) ∈ P(N0). Also, if x ∈ N then

(4.6.2′) x = (Σimiem
∗
i )x(Σjmjem

∗
j ) = Σi,jmiEN0(m

∗
i xmj)emj

∗.

For each completely positive map φ on N0 define φ̃ on N1 by

(4.6.2′′) φ̃(Σi,jmixijem
∗
j ) = Σi,jmiφ(xij)em∗

j .

Note that if X = Σi,jmixijem
∗
j ≥ 0 and τ ◦ φ ≤ τ then

τ(φ̃(X) = τ(φ̃(Σi,jmixijem
∗
j )) = λΣi,jτ(miφ(xij)m∗

j )

= λΣi,jτ(miφ(xij)m∗
j ) = λΣiτ(φ(xii)pi)

≤λΣiτ(φ(xii)) ≤ λΣiτ(xii) = τ(X).

Similarly, if φ(1) ≤ 1 then φ̃(1) ≤ 1.
Let now ε > 0 be given. Let F = F (λε2/3), δ = δ(λε2/3) be the critical

set and constant for B ⊂ N , corresponding to λε2/3. Let F0 = {EN0(m∗
i xmj) |

∀i, j,∀x ∈ F}. Formulas (4.6.2′), (4.6.2′′) above show that there exists δ0 > 0
such that if ‖φ(x) − x‖2 ≤ δ0,∀x ∈ F0 then ‖φ̃(x) − x‖2 ≤ δ, ∀x ∈ F .

We claim that F0, δ0 give the critical set and constant for B ⊂ N0, corre-
sponding to ε. To see this, note first that by the proof of =⇒ above we get
‖φ̃(b) − b‖2 ≤ λ1/2ε,∀b ∈ B, ‖b‖ ≤ 1. By (4.6.2′′) this gives

λ1/2‖φ(b) − b‖2 = ‖(φ(b) − b)e‖2

≤‖φ̃(b) − b‖2 ≤ λ1/2ε.

3◦. The first implication is trivial. The opposite implication is equally
evident, if we take the critical set F0(ε) and constant δ0(ε) for B0 ⊂ N to
be defined as follows: We first choose δ1 > 0 with the property that if φ is a
completely positive map on N with τ◦φ ≤ τ, φ(1) ≤ 1 and ‖φ(b)−b‖2 ≤ δ1,∀b ∈
B, ‖b‖ ≤ 1 and ‖φ(b0

j ) − b0
j‖2 ≤ δ1, then ‖φ(b0) − b0‖2 ≤ ε,∀b0 ∈ B0, ‖b0‖ ≤ 1

({b0
j}j denotes here the orthonormal basis of B0 over B). We then define

F0(ε) = F (δ1) ∪ {b0
j}j and put δ0(ε) = δ1.

4.7. Proposition. 1◦. If B ⊂ N and {pn}n is an increasing sequence
of projections in N , with pn ↑ 1, which lie either in B or in B′ ∩ N , and with
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the property that pnBpn ⊂ pnNpn are rigid embeddings, ∀n, then B ⊂ N is a
rigid embedding. In particular, if B is atomic then B ⊂ N is rigid.

2◦. If B ⊂ N is a rigid embedding and p ∈ P(B) or p ∈ P(B′ ∩ N) then
pBp ⊂ pNp is a rigid embedding.

3◦. Let B ⊂ N and p ∈ P(B). Assume there exist partial isometries
{vn}n≥0 ⊂ N such that v∗nvn ∈ pBp, vnv∗n ∈ B, vnBv∗n = vnv∗nBvnv∗n,∀n ≥ 0,
Σnvnv∗n = 1 and B ⊂ ({vn}n ∪pBp)′′. If pBp ⊂ pNp is a rigid embedding then
B ⊂ N is a rigid embedding.

Proof. 1◦. Notice first that if φ is completely positive on N and τ ◦ φ ≤
τ, φ(1) ≤ 1 then τ(pnφ(pnxpn)pn) ≤ τ(φ(pnxpn)) ≤ τ(pnxpn),∀x ≥ 0, and
pnφ(pn)pn ≤ pn. Then we simply take the critical set and constant for B ⊂ N

to be the critical set and constant for pnBpn ⊂ pnNpn, with n sufficiently
large, and apply the above to deduce that for φ satisfying the conditions for
this set and constant, pnφ(pn · pn)pn follows uniformly close to the identity on
the unit ball of pnBpn.

The case when B is atomic is now trivial, when we first apply 4.6.3◦ and
then the first part of the proof.

2◦. The statement is clearly true in case p ∈ Z(N). Assume next that
p ∈ P(B). By part 1◦ above, we may suppose pBp has some nonatomic part.

Since there exist projections zn ∈ Z(N) with zn ↑ 1 such that each zn is a
sum of finitely many projections in Bzn which are majorized by pzn in B, by
1◦ above it is sufficient to prove the case when there exist partial isometries
v0 = p, v1, v2, . . . , vn ∈ B such that v∗i vi ≤ p,∀i, Σiviv

∗
i = 1.

Let then ε > 0. Let F = F (ετ(p)) and δ = δ(ετ(p)) be given by 4.1.2◦

for the inclusion B ⊂ N . Let also F0 = {v∗i xvj | 1 ≤ i, j ≤ n, x ∈ F}. We
show that F0 and δ0 = δ are good for pBp ⊂ pNp. Thus, let φ be a completely
positive map on pNp such that φ(p) ≤ p, τp ◦ φ ≤ τp and ‖φ(y) − y‖2 ≤ δ0,
∀y ∈ F0. Define φ̃(x) = Σi,jviφ(v∗i xvj)v∗j . As in the proof of 4.6.1◦, we get
τ ◦ φ̃(x) ≤ τ(x),∀x ∈ N and φ̃(1) ≤ 1.

An easy calculation shows that ‖φ̃(x) − x‖2 ≤ δ for x ∈ F . Thus,

‖φ̃(b) − b‖2 ≤ ετ(p), ∀b ∈ B, ‖b‖ ≤ 1.

But this implies ‖φ(pbp) − pbp‖2 ≤ ε‖p‖2,∀b ∈ B, ‖b‖ ≤ 1 as well.
If the projection p lies in B′ ∩ N then by the last part of 4.6.3◦ the

subalgebra B0 ⊂ N generated by B and {1, p} is rigid in N . But then we
apply the first part to get pBp = pB0p is rigid in pNp.

3◦. By 1◦ above, it is sufficient to prove the case when the set {vi}i is
finite. Let ε > 0 and Fp = F (ε′), δp = δ(ε′) be given by condition 4.1.2◦, for
pBp ⊂ pNp and ε′ = ε(miniτ(viv

∗
i )/2)2. Then define F0 = Fp ∪ {vi}0≤i≤n.

If φ is a completely positive map on N such that ‖φ(x) − x‖2 ≤ δ0 with
δ0 ≤ δpτ(p)1/2,∀x ∈ F0, then in particular we have ‖φ(x)−x‖2,p ≤ δp,∀x ∈ Fp.
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Thus, ‖pφ(b)p − b‖2 ≤ ε(mini‖viv
∗
i ‖2/2)2,∀b ∈ pBp, ‖pbp‖ ≤ 1. This easily

gives ‖φ(b) − b‖2 ≤ ε for all b in the von Neumann algebra B0 = Σi,jviBv∗j ,
generated by pBp and {vi}0≤i≤n, with ‖b‖ ≤ 1 (in fact, even for all b ∈ B0 that
satisfy ‖v∗i bvj‖ ≤ 1,∀i, j). Thus, B0 ⊂ N is rigid, so that by 4.6.3◦, B ⊂ N is
rigid as well.

5. More on rigid embeddings

In this section we produce examples of rigid inclusions of algebras, by
using results of Kazhdan ([Ka]) and Valette ([Va]), which provide examples
of property (T) inclusions of groups, and the result below, which establishes
the link between property (T) for an inclusion of groups and property (T)
(rigidity) for the inclusion of the corresponding group von Neumann algebras
(as defined in (4.2)).

5.1. Proposition. Let G ⊂ G0 be an inclusion of discrete groups
and ν a scalar 2-cocycle for G0. Denote (B ⊂ N) = (Lν(G) ⊂ Lν(G0)).
Conditions (a)–(d) are equivalent. If in addition Lν(G0) is a factor then
(a)–(e) are equivalent.

(a) (G0, G) is a property (T) pair, i.e., G ⊂ G0 satisfies the equivalent
conditions (4.0.1), (4.0.1′), (4.0.1′′).

(b) B ⊂ N is a rigid embedding of algebras.
(c) For any ε > 0 there exist a finite set F ′ ⊂ N and δ′ > 0 such that if H

is a Hilbert N -bimodule with a unit vector ξ ∈ H satisfying ‖xiξ− ξxi‖ ≤ δ′,∀i

then there exists a vector ξ0 ∈ H such that ‖ξ0 − ξ‖ ≤ ε and bξ0 = ξ0b,∀b ∈ B.
(d) For any ε > 0 there exist a finite set F ⊂ N and δ > 0 such that if

φ : N → N is a normal completely positive map with ‖φ(x)− x‖2 ≤ δ, ∀x ∈ F ,
then ‖φ(b) − b‖2 ≤ ε,∀b ∈ B, ‖b‖ ≤ 1.

(e) Lν(G) ⊂ Lν(G0) is ε0-rigid for some ε0 < 1.

Proof. To prove (a) =⇒ (c), we prove (4.0.1′) =⇒ (c). Let ε > 0 and let
E ⊂ G0, δ′ > 0 be given by (4.0.1′), for this ε. Let H be a Hilbert N bimodule
with ξ ∈ H, ‖ξ‖ = 1, ‖uhξ − ξuh‖ ≤ δ′,∀h ∈ E′. Taking π(g)η = ugηu∗

g,
η ∈ H, g ∈ G0, gives a representation of G0 on H, with ‖π(h)ξ − ξ‖ =
‖uhξ − ξuh‖ ≤ δ′. Thus, there exists ξ0 ∈ H fixed by π(G) (equivalently,
ugξ0 = ξ0ug,∀g ∈ G) and such that ‖ξ0 − ξ‖ ≤ ε.

(b) =⇒ (a). We prove that 4.1.1◦ implies (4.0.1′). Let ε > 0. By part 1◦ in
Lemma 1.1.3 and by Kaplanski’s density theorem (which implies that the unit
ball of the group algebra CνG0 is dense in the unit ball of Lν(G0) in the norm
‖ ‖2), it follows that given any ε there exist a finite set E0 ⊂ G0 and δ0 > 0,
δ0 ≤ ε, such that if H is an Lν(G0) Hilbert bimodule with ξ ∈ H a unit vector
which is left and right δ0-tracial and satisfies ‖uhξ − ξuh‖ ≤ δ0,∀h ∈ E0, then
there exists ξ1 ∈ H such that ‖ξ1−ξ‖ ≤ ε/2 and bξ1 = ξ1b,∀b ∈ Lν(G), ‖b‖ ≤ 1.
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Let then (π0,H0, ξ0) be a cyclic representation of G0 such that ‖π0(h)ξ0−
ξ0‖ ≤ δ0,∀h ∈ E0. Let (Hπ0 , ξπ0) be the pointed Hilbert Lν(G0) bimodule, as
defined in 1.4. We clearly have ‖uhξπ0−ξπ0uh‖ = ‖π0(h)ξ0−ξ0‖ ≤ δ0,∀h ∈ E0,
by the definitions. Thus, there exists ξ1 ∈ Hπ0 such that ‖ξ1 − ξπ0‖ ≤ ε/2 and
ξ1 commutes with Lν(G). But this implies that for all g ∈ G

‖π0(g)ξ0 − ξ0‖= ‖ugξπ0 − ξπ0ug‖
≤‖[ug, (ξπ0 − ξ1)]‖ + ‖[ug, ξ1]‖ ≤ 2ε/2 = ε.

Taking the element of minimal norm ξ2 in the weak closure of co{π0(g)ξ1 |
g ∈ G}, it follows that ξ2 is fixed by π0 and ‖ξ2 − ξ0‖ ≤ ε.

The implications (c) =⇒ (b), (d) =⇒ (b), (b) =⇒ (e) (the latter for
factorial Lν(G0)) are trivial.

To prove (a) =⇒ (d), we prove (4.0.1′) =⇒ (d). Let ε > 0 and let
E′ ⊂ G0, δ′ > 0 be given by (4.0.1′), for ε/2. Also, we take E′ to contain the
unit e of the group G0.

Let φ be a completely positive map on Lν(G0) such that ‖φ(uh) − uh‖2

≤ δ′, ∀h ∈ E′, where the norm ‖ ‖2 is given by some trace τ on Lν(G0). Let
F = {uh | h ∈ E′}.

Let (Hφ, ξφ) be the pointed Hilbert N -bimodule defined out of φ as in
1.1.2. Let π be the associated representation of G0 on Hφ, as in the last part
of 1.1.4. It follows that there exists ξ0 ∈ Hφ such that bξ0 = ξ0b,∀b ∈ Lν(G)
and ‖ξφ − ξ0‖ ≤ ε/2. Since 1 ∈ F , part 2◦ of Lemma 1.1.2 shows that we
may assume φ(1) ≤ 1. By part 1◦ of Lemma 1.1.2 it then follows that for any
u ∈ U(B)

‖φ(u) − u‖2
2 ≤ 2 − 2Reτ(φ(u)u∗) = ‖uξφ − ξφu‖2

= ‖u(ξφ − ξ0) − (ξφ − ξ0)u‖2 ≤ 4‖ξφ − ξ0‖2 ≤ ε2.

(e) =⇒ (a). As in the proof of (b) =⇒ (a), by Kaplanski’s density theorem,
there exists δ > 0 and E ⊂ G0 such that if φ is completely positive on N =
Lν(G0), with φ(1) ≤ 1, τ ◦ φ ≤ τ and ‖φ(uh) − uh‖2 ≤ δ, ∀h ∈ E, then
‖φ(b) − b‖2 ≤ ε0, for all b in the unit ball of B = Lν(G).

Let (π0,H0, ξ0) be a cyclic representation of G0 such that ‖π0(h)ξ0 − ξ0‖
≤ δ, ∀h ∈ E. Define φ0 on N by φ0(Σgαgug) = Σg〈π0(g)ξ0, ξ0〉αgug. We
clearly have φ0(1) = 1, τ ◦ φ0 = τ , ‖φ0(uh) − uh‖2 ≤ δ, ∀h ∈ E. Thus,
‖φ0(ug) − ug‖2 ≤ ε0, ∀g ∈ G, yielding |〈π0(g)ξ0, ξ0〉 − 1| ≤ ε0 < 1,∀g ∈ G.
Taking the vector ξ of minimal norm in co{π0(g) | g ∈ G} ⊂ H0, it follows
that ξ �= 0 and π0(g)(ξ) = ξ,∀g ∈ G. This shows that the pair (G0, G) satisfies
(4.0.1), i.e., it has relative property (T).

For the first part of the next corollary recall that any (normalized, unitary,
multiplicative) scalar 2-cocycle ν on Z2 is given by a bicharacter, and it is
uniquely determined by a relation of the form uv = αvu between the generators
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u = (1, 0), v = (0, 1) of Z2, where α is some scalar with |α| = 1. We already
considered such 2-cocycles in Corollary 3.3.2, where we pointed out that they
are SL(2, Z)-invariant. Thus, if we denote by Lα(Z2) the twisted group algebra
Lν(Z2), then the action σ of SL(2, Z) on Z2 induces an action still denoted σ

of SL(2, Z) on Lα(Z2), preserving the canonical trace (cf. 3.3.2). We have:

5.2. Corollary. 1◦. The inclusion Z2 ⊂ Z2 � SL(2, Z) is rigid. Thus,
given any α ∈ T, Lα(Z2) ⊂ Lα(Z2)�SL(2, Z) is a rigid embedding of algebras.
Moreover, if α is not a root of unity, then the “2-dimensional noncommutative
torus” Lα(Z2) is isomorphic to the hyperfinite II1 factor R, thus giving rigid
embeddings R ⊂ R �σ SL(2, Z). If α is a primitive root of unity of order n,
then

(Lα(Z2) ⊂ Lα(Z2) � SL(2, Z))

= (L((nZ)2) ⊂ L((nZ)2) � SL(2, Z)) ⊗ Mn×n(C)

� (L(Z2) ⊂ L(Z2) � SL(2, Z)) ⊗ Mn×n(C)

= (L∞(T2, λ) ⊂ L∞(T2, λ) � SL(2, Z)) ⊗ Mn×n(C).

2◦. If n ≥ 2 and Fn ⊂ SL(2, Z) has finite index, then the restriction to
Fn of the canonical action of SL(2, Z) on T2 = Ẑ2 (resp. on Lα(Z2) � R,
for α not a root of unity) is free, weakly mixing, measure-preserving , with
L∞(T2, µ) ⊂ L∞(T2, λ) � Fn rigid (resp. R ⊂ R � Fn rigid).

3◦. For each n ≥ 2 and each arithmetic lattice Γ0 in SO(n, 1) (resp. in
SU(n, 1)) there exist free weakly mixing, measure-preserving actions of Γ0 on
A � L∞(X, µ) such that the corresponding crossed product inclusions A ⊂
A � Γ0 are rigid.

4◦. Let σ0 be a properly outer, weakly mixing action of some group Γ0 on
(B0, τ0) such that B0 ⊂ B0 �σ0 Γ0 is rigid (e.g., as in 1◦, 2◦ or 3◦). Let σ1

be any action of Γ0 on some finite von Neumann algebra (B1, τ1), which acts
ergodically on the center of B1. If B = B0⊗B1 and M = (B0⊗B1) �σ0⊗σ1 Γ0,
then M is a factor, B′

0 ∩ M ⊂ B, and B0 ⊂ M is a rigid embedding.

Proof. 1◦. The rigidity of Z2 ⊂ Z2 � SL(2, Z) is a well known result
in [Ka], [Ma]; (see also [Bu], [Sha] for more elegant proofs). The fact that
Lα(Z2) � R if α is not a root of unity and that Lα(Z2) � A ⊗ Mn×n(C), with
A = Z(Lα(Z2)) � L((nZ)2), if α is a primitive root of order n, are folklore
type results (see [Ri] and [HkS]).

In the latter case, if p ∈ 1 ⊗ Mn×n(C) ⊂ Lα(Z2) is a projection of
central trace 1/n then σg(p) has central trace 1/n as well, so there exists
vg ∈ U(Lα(Z2)) such that vgσg(p)v∗g = p. Thus, since vg commutes with the
center A, if we denote by σ′

g the action implemented by the restriction of
Advg ◦ σg to p(Lα(Z2))p = Ap � A � L((nZ)2), then σ′

g coincides with the
restriction of σg to A � L((nZ)2).
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Moreover, if ug ∈ Lα(Z2) � SL(2, Z) are the canonical unitaries imple-
menting σg on Lα(Z2), then u′

g = vgugp implement the action σ′
g = σ|A on A,

but with an A-valued 2-cocycle v′, i.e., p(Lα(Z2) ⊂ Lα(Z2) �σ SL(2, Z))p �
(A ⊂ A �σ′,v′ SL(2, Z)). But by [Hj], A ⊂ A �σ′,v′ SL(2, Z) is the amplification
by 12 of an inclusion of the form A0 ⊂ A0 � F2, for some free ergodic action of
F2 on A0. Since any action by the free group has trivial cocycle, A0 ⊂ A0 � F2

is associated with the bare equivalence relation it induces on the probability
space, with trivial cocycle. Thus, so does its 1/12 reduction (see 1.4); i.e.,
(A ⊂ A �σ′ SL(2, Z)) = (L∞(T2, λ) ⊂ L∞(T2, λ) �σ SL(2, Z)).

The rest of the statement follows from part (a) of Corollary 3.3.2◦.
2◦ follows from part 1◦ above, Proposition 4.6.2◦ and part (c) of Corollary

3.3.2◦.
3◦ follows by a recent result in [Va], showing that there exist actions

γ of such Γ0 on some appropriate ZN which give rise to rigid embeddings
ZN ⊂ ZN � Γ0. It is easy to see that the actions γ in [Va] can be taken to
satisfy conditions (i), (ii) in Lemma 3.3.2.

4◦. By 3.3.3, since σ0 is properly outer, it follows that σ0 ⊗ σ1 is properly
outer and B′

0 ∩ M = Z(B0) ⊗ B1. Also, since σ0 is weakly mixing and σ1 is
ergodic, σ0 ⊗ σ1 is ergodic and M is a factor.

5.3. Corollary. 1◦. Let Γ0 be an arbitrary discrete, countable group.
Denote by σ1 the Bernoulli shift action of Γ0 on (A1, τ1) = ⊗g∈Γ0(L∞(T, λ))g

and let σ0 be an ergodic action of Γ0 on an abelian von Neumann algebra
(A0, τ0). If A = A0⊗A1, σ = σ0 ⊗ σ1 then σ is free ergodic and the inclusion
A ⊂ A �σ Γ0 is not rigid.

2◦. L(Q2) = A ⊂ M = L(Q2) � SL(2, Q) is not a rigid inclusion but
A0 = L(Z2) ⊂ A satisfies A0 ⊂ M rigid and A′

0 ∩ M = A.

3◦. If Γ0 is equal to SL(2, Z), or to Fn, for some n ≥ 2, or to an arith-
metic lattice in some SO(n, 1), SU(n, 1), n ≥ 2, then there exist three non
orbit equivalent free ergodic measure-preserving actions σi, 1 ≤ i ≤ 3, of Γ0

on the probability space (X, µ). Moreover, each σi can be taken such that
A = L∞(X, µ) contains a subalgebra Ai with Ai ⊂ A �σi

Γ0 rigid and A′
i ∩

A �σi
Γ0 = A.

Proof. 1◦. Write L∞(T, λ) = ∪nAn, with An an increasing sequence
of finite dimensional subalgebras and denote An

1 = ⊗g(An)g ⊂ A1. Then
An

1 ↑ A1 and σg(An
1 ) = An

1 ,∀g ∈ Γ0,∀n. Thus, if Nn = (A0⊗An
1 ∪ {ug}g)′′

then Nn ↑ N = A �σ Γ0. So if we assume A ⊂ N is rigid, then by 4.5 there
exists n such that ‖ENn

(a) − a‖2 ≤ 1/2,∀a ∈ A, ‖a‖ ≤ 1. But if a ∈ 1 ⊗ A1

then ENn
(a) = EAn

1
(a). Or, since An is finite dimensional and L∞(T, λ) is

diffuse, there exists a unitary element u0 ∈ L∞(T, λ) such that EAn
1
(u0) = 0.

Taking u = · · · ⊗ 1 ⊗ u0 ⊗ 1 · · · ∈ A, it follows that EAn
(u) = 0, so that

1 = ‖EAn
1
(u) − u‖2 = ‖ENn

(u) − u‖2 ≤ 1/2, a contradiction.
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2◦. For each n let Qn be the ring of rationals with the denominator
having prime decomposition with only the first n prime numbers appearing.
Then A ⊃ An = L(Qn) ⊂ L(Qn) � SL(2, Qn) = Mn ⊂ M and we have
EMn

◦ EA = EAn
,∀n. If A ⊂ M were rigid, then by 4.5 there would exist n

such that ‖EMn
(a) − a‖2 ≤ 1/2,∀a ∈ A, ‖a‖ ≤ 1. But any unitary element

u ∈ A = L(Q2) corresponding to a group element in Q\Qn satisfies EAn
(u) = 0,

a contradiction.
3◦. We take σ1 to be the action of Γ0 on A = L∞(X, µ) given by 5.2.1◦–

5.2.3◦ and σ2 to be the tensor product of σ1 with the Bernoulli shift action of
Γ0 on ⊗g∈Γ0(L∞(T, λ))g.

Finally, we take σ3 to be the tensor product of σ1 with a free ergodic
measure-preserving action of Γ0 which is not strongly ergodic, as provided by
the Connes-Weiss Theorem ([CW]; this is possible because Γ0 has property H,
so it does not have property (T)).

By part 1◦ we have (A ⊂ A�σ1 Γ0) �� (A ⊂ A�σ2 Γ0). By results of Klaus
Schmidt ([Sc]; see also [J2]), σ1, σ2 are strongly ergodic, while σ3 is not. Thus,
(A ⊂ A �σ3 Γ0) �� (A ⊂ A �σi

Γ0), i = 1, 2.

Since all these Cartan subalgebras have trivial 2-cocycle by construction,
their nonisomorphism implies the nonequivalence of the corresponding orbit
equivalence relations.

The existence of “large” subalgebras Ai ⊂ A with Ai ⊂ A �σi
Γ0 rigid

follows by construction and by 3.3.3.

5.4. Theorem. 1◦. If N is a type II1 factor with property H (as defined
in 2.0.2), then N contains no diffuse relatively rigid subalgebras B ⊂ N .

2◦. If N has property H relative to a type I von Neumann algebra B0 ⊂ N

then N contains no relatively rigid type II1 von Neumann subalgebras B ⊂ N .

Proof. 1◦. Let φn be completely positive maps on N such that φn → idN ,
τ ◦φn ≤ τ and Tφn

∈ K(L2(N, τ)). If B ⊂ N is a rigid inclusion then by 4.1.2◦,
there exists n such that φ = φn satisfies ‖φ(u) − u‖2 ≤ 1/2,∀u ∈ U(B). If
in addition B has no atoms, then any maximal abelian subalgebra A of B is
diffuse. Thus, such A contains unitary elements v with τ(vm) = 0,∀m �= 0.
Since the sequence {v̂m}m ⊂ L2(N, τ) is weakly convergent to 0 and Tφ is
compact, ‖φ(vm)‖2 = ‖Tφ(v̂m)‖2 → 0. Thus,

lim
m→∞

‖φ(vm) − vm‖2 = lim
m→∞

‖vm‖2 = 1,

contradicting ‖φ(vm) − vm‖2 ≤ 1/2,∀m.
2◦. Assume N does contain a relatively rigid type II1 von Neumann sub-

algebra B ⊂ N . Let φn contain completely positive B0 bimodular maps on N

such that φn → idN , τ ◦ φn ≤ τ and Tφn
∈ J0(〈N, B0〉). By the rigidity of
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B ⊂ N it follows that εn = sup{‖φn(u) − u‖2 | u ∈ U(B)} → 0. Since

‖u∗Tφn
u(1̂) − 1̂‖2 = ‖u∗φn(u) − 1‖2 = ‖φn(u) − u‖2,

by taking convex combinations and weak limits of elements of the form uTφn
u∗,

by Proposition 1.3.2 we see that there exists Tn ∈ KTφn
∩(B′∩J (〈N, B〉)) such

that ‖Tn(1̂) − 1̂‖2 → 0. Thus, Tn �= 0 for n large enough, so that B′ ∩ 〈N, B0〉
contains nonzero projections of finite trace. By [Chr], this implies there exist
nonzero projections p ∈ B, q ∈ B0 and a unital isomorphism θ of pBp into
qB0q. But qB0q is type I and pBp is not, a contradiction.

5.5. Corollary. 1◦. If N has a diffuse relatively rigid subalgebra B ⊂ N

then N cannot be embedded into a free group factor L(Fn). In particular, the
factors constructed in Corollary 5.2 cannot be embedded into L(Fn).

2◦. The factors Lα(Z2) � SL(2, Z), constructed in 5.2.1◦ for α irrational,
cannot be embedded into Lα′(Z2) � SL(2, Z) for α′ rational.

Proof. Part 1◦ is a consequence of 5.4.1, while part 2◦ follows trivially
from 5.4.2.

5.6. Remarks. 1◦. In the case when N is a finite factor, a different notion
of “relative property T” for inclusions B ⊂ N , was considered in [A-De], [Po1],
as follows:

(5.6.1). N has property T relative to B (or B is co-rigid in N) if there
exists a finite set F1 ⊂ N and ε1 > 0 such that if (H, ξ) is a (B ⊂ N)
Hilbert bimodule (recall that by definition this requires [B, ξ] = 0) such that
‖xξ − ξx‖ ≤ ε,∀x ∈ F , then there exists ξ0 ∈ H, ξ0 �= 0, with xξ0 = ξ0x,
∀x ∈ N .

In the case B is a Cartan subalgebra A of a type II1 factor N = M ,
this definition is easily seen to be equivalent to Zimmer’s property (T) ([Zi2])
for the countable, measurable, measure-preserving equivalence relation RA⊂M ,
which it thus generalizes to the case of arbitrary inclusions of von Neumann
algebras (cf. Section 4.8 in [Po1]). Thus, in this re-formulation, a standard
equivalence relation R satisfies Zimmer’s relative property (T) if and only if
the Cartan subalgebra A ⊂ M , constructed as in [FM] out of R and the trivial
2-cocycle v ≡ 1, is co-rigid in the sense of [Po1], [A-De]. We will in fact call
such equivalence relations R co-rigid.

2◦. It is easy to see that in case (B ⊂ N) = (B ⊂ B �σ Γ0), for some
cocycle action σ of a group Γ0 on (B, τ) then N has property (T) relative to
B (i.e., B is co-rigid in N) if and only if Γ0 has the property (T) of Kazhdan
(cf. [A-De], [Po1]; also [Zi] for the Cartan subalgebra case). In particular, if
H ⊂ G0 is a normal subgroup of G0 then L(G0) has property (T) relative to
L(H) if and only if the quotient group G0/H has property (T). In fact, it is
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easy to see that if H ⊂ G0 is an inclusion of discrete groups then L(G0) has
property (T) relative to L(H) if and only if the following holds true:

(5.6.2). There exist a finite set E ⊂ G0 and ε > 0 such that if π is a
unitary representation of G0 on a Hilbert space H with a unit vector ξ ∈ H
such that π(h)ξ = ξ,∀h ∈ H and ‖π(g)ξ − ξ‖ ≤ ε,∀g ∈ E, then H contains a
nonzero vector ξ0 such that π(g)ξ0 = ξ0,∀g ∈ G0.

A sufficient condition for an inclusion of groups H ⊂ G0 to satisfy 5.6.2◦

exists when G0 has finite length over H, i.e., when the following holds true:

(5.6.2′). There exist n ≥ 1 and a finite set E ⊂ G0 such that any element
g ∈ G0 can be written as g = h1f1h2f2 . . . hnfn, for some fi ∈ E, hj ∈ H.

Indeed, because then π(h)ξ = ξ,∀h ∈ H and ξ is almost fixed by π(f),
f ∈ E, implies that ξ is almost fixed by π(g), uniformly for all g ∈ G0. This, of
course, shows that H has a nonzero vector fixed by π(G0). (N.B. Finite length
was exploited in relation to rigidity in [Sha].)

An example of inclusion of groups H ⊂ G0 satisfying (5.6.2′) is obtained
by taking G0 to be the group of all affine transformations of Q and H to be
the subgroup of all homotheties of Q. Indeed, because if we take E to be
the single element set consisting of the translation by 1 on Q, then we clearly
have G0 = HEH. Thus, L(G0), which is isomorphic to the hyperfinite type
II1 factor R, has property (T) relative to L(H), which is a singular maximal
abelian subalgebra in L(G0) (cf. [D]).

5.7. Proposition. Let N be a finite factor and B ⊂ N a von Neumann
subalgebra.

1◦. If 〈N, B〉 is finite then N has both property (T) relative to B (in the
sense of (5.6.1)) and property H relative to B.

2◦. If N has both property (T) and H relative to B then there exists a
nonzero q ∈ P(B′∩N) such that qNq is a finitely generated Bq-module. Thus,
if in addition B is a subfactor with B′ ∩ N = C then [N : B] < ∞ and if B is
a maximal abelian von Neumann subalgebra in N then dimN < ∞.

Proof. 1◦. If 〈N, B〉 is finite, then there exists a sequence of projections
pn ∈ Z(B), pn ↑ 1, such that pnNpn has finite orthonormal basis over Bpn.
By 2.3.4◦, this implies pnNpn has property H relative to Bpn and by 4.6.3◦,
Bpn ⊂ pnNpn is rigid. By 2.4.2◦ this implies N has property H relative to B

and by 4.7.1◦, B ⊂ N is rigid.
2◦. Note first that if there exist no q ∈ P(B′ ∩ N) such that qNq is a

finitely generated Bq-module, then N ′ ∩ 〈N, B〉 contains no finite projections
of 〈N, B〉.

On the other hand, if N has property H relative to B then by 2.2.1◦

there exist unital completely positive, B-bimodular maps φn on N such that
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τ◦φn ≤ τ , φn(1) ≤ 1, φn → idN and Tφn
∈ J0(〈N, B〉). If in addition N has the

property (T) relative to B, then ∃n such that ‖φn(u)−u‖2 ≤ 1/4,∀u ∈ U(N).
By 1.3.3, ∃ a spectral projection p ∈ B′ ∩ J0(〈N, B〉) of T ∗

φn
Tφn

such that
‖Tφn

(1 − p)‖ < 1/4. If we now assume N ′ ∩ 〈N, B〉 has no finite projections,
then there exists a unitary element u ∈ U(N) such that Tr(pueBu∗) < 1/4. But
Tr(pueBu∗) = ‖p(û)‖2

2 (see the proof of 6.2 in the next section). Altogether,
since ‖p(û)‖2 ≥ ‖Tφn

(û)‖2 − ‖Tφn
((1 − p)(û))‖2 ≥ 1/2, it follows that 1/4 >

Tr(pueBu∗) ≥ 1/4, a contradiction. The last part of 2◦ follows trivially from
[PiPo].

5.8. Remarks. 1◦. Both the notion 4.2 considered here and the notion
considered in [A-De], [Po1] are in some sense “relative property (T)” notions
for an inclusion B ⊂ N ; but while the notion in [A-De], [Po1] means “N has the
property (T) relative to B”, thus being a “co”-type property (T), the notion
considered in this paper is a “property (T) of B relative to its embedding into
N”. The two notions are complementary, and together they imply (and are
implied by) property (T) of the global factor (see Proposition 5.9 below).

2◦. An interesting relation between these two complementary notions of
property (T) is the following: If a group Γ0 acts on (B, τ) such that B ⊂ N =
B � Γ0 is a rigid embedding, then N has property (T) relative to its group
von Neumann subalgebra L(Γ0) (i.e., L(Γ0) is co-rigid in N). Indeed, because
if (H, ξ) is an (L(Γ0) ⊂ N)-Hilbert bimodule with ξ almost commuting with
all u ∈ U(B), uniformly, then ξ almost commutes with the group of elements
G = {uug | u ∈ U(B), g ∈ Γ0}. Thus ξ is close to a vector commuting with
all v ∈ G, thus with all x ∈ N . For instance, the factor L(Z2 � SL(2, Z)) has
property T relative to its subalgebra L(SL(2, Z)) (in the sense of definition
(5.6.1)).

5.9. Proposition. Let N be a type II1 factor and B ⊂ N a von
Neumann subalgebra. The following conditions are equivalent :

1◦. N has property (T) in the sense of Connes and Jones (i.e., of the
equivalent conditions (4.0.2), (4.0.2′)).

2◦. The identity embedding N ⊂ N is rigid, i.e., for any ε > 0 there exists
a finite subset x1, x2, . . . , xn ∈ N and δ > 0 such that if H is a Hilbert N -bi-
module with a unit vector ξ ∈ H satisfying ‖〈·ξ, ξ〉 − τ‖ ≤ δ, ‖〈ξ, ξ·〉 − τ‖ ≤ δ

and ‖xiξ−ξxi‖ ≤ δ,∀i, then there exists a vector ξ0 ∈ H such that ‖ξ−ξ0‖ ≤ ε

and xξ0 = ξ0x,∀x ∈ N .

3◦. B ⊂ N is a rigid embedding (in the sense of Definition 4.2) and N

has property (T) relative to B (in the sense of (5.6.1)).

Proof. 1◦ =⇒ 3◦ and 1◦ =⇒ 2◦ are trivial, by the characterization
(4.0.2′) of property (T) for N .
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To prove 3◦ =⇒ 1◦ let F1 ⊂ N and ε1 give the critical set and constant
for property (T) of N relative to B and F ′ ⊂ N, δ′ > 0 be the critical set and
constant for the rigidity of B ⊂ N , corresponding to ε1/4. Let F = F ′∪F1 and
let H be a Hilbert N bimodule with a unit vector ξ which is left and right δ′-
tracial and satisfies ‖yξ−ξy‖ ≤ δ′,∀y ∈ F . By the rigidity of B ⊂ N it follows
that there exists ξ0 ∈ H such that bξ0 = ξ0b,∀b ∈ B and ‖ξ0 − ξ‖ ≤ ε1/4.

Thus, if we assume ε1 ≤ 1/4 from the beginning and denote ξ1 = ξ0/‖ξ0‖, then
‖ξ1‖ = 1, bξ1 = ξ1b,∀b ∈ B, and ‖yξ1 − ξ1y‖ ≤ ε1,∀y ∈ F , in particular for
all y ∈ F1. Thus, by the property (T) of N relative to B, H has a nonzero
N -central vector.

2◦ =⇒ 1◦. By part 1◦ of Theorem 4.3, N follows non-Γ. Thus, by
Lemma 2.9 it is sufficient to check that any Hilbert N bimodule with a vector
that is almost left-right tracial and almost central has a nonzero central vector
for N . But this does hold true by the fact that N satisfies condition 2◦.

5.10. Remark. When applied to the case of Cartan subalgebras coming
from standard equivalence relations with trivial 2-cocycle, the definition of rigid
embeddings 4.2 gives the following new property for equivalence relations:

5.10.1. Definition. A countable, ergodic, measure-preserving equivalence
relation R has the relative property (T) if its associated Cartan subalgebra
A ⊂ M , constructed out of R and the trivial 2-cocycle v ≡ 1 as in [FM], is a
rigid embedding (Definition 4.2).

Since the rigidity for Cartan subalgebras is an invariant for the isomor-
phism class of A ⊂ M , this relative property (T) is an orbit equivalence in-
variant for equivalence relations R. Also, when applied to the particular case
of Cartan subalgebras with trivial 2-cocycle, all the results on rigid embed-
dings of algebras in Sections 4 and 5 translate into corresponding results about
standard equivalence relations R. For instance, by 4.6, 4.7, if R has relative
property (T) then Rt has relative property (T), ∀t > 0, and if R1,R2 have
relative property (T) then so does R1 ×R2. Also, if R has relative property
(T) then Out(R)def=Aut(R)/Int(R) is discrete (cf. 4.4) and if we further have
R = ∪nRn for some increasing sequence of ergodic sub-equivalence relations,
then Rn have relative property (T) for all large enough n.

We have proved that equivalence relations implemented by Bernoulli shift
actions of a group Γ0 cannot have relative property (T), no matter the group
Γ0 (cf. 5.3). Thus, equivalence relations coming from actions of the same group
Γ0 may or may not have relative property (T), depending on the action. While
by [Zi] (see also [A-De], [Po1]), A �σ Γ0 has property (T) relative to A, in the
sense of definition (5.6.1) if and only if Γ0 has Kazhdan’s property (T), thus
being a property entirely depending on the group. Even more: since by [Po1]
if A ⊂ M is a Cartan subalgebra in a II1 factor and p ∈ P(A) then pMp has
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property (T) relative to Ap if and only if M has property (T) relative to A, it
follows that property (T) for groups is invariant to stable orbit equivalence, or
equivalently, it is an ME invariant (see [Fu] for an “ergodic theory” proof of
this fact).

Proposition 5.9 shows that when the relative property (T) (5.10.1) for R
is combined with the co-rigidity property (5.6.1) for R they imply, and are
implied by, the “full” property T of R, which by definition requires that the
finite factor M = M(R) have property (T) in the sense (4.0.2), of Connes-
Jones. It is thus of great interest to answer the following:

5.10.2. Problem. Characterize the countable discrete groups Γ0 that can
act rigidly on the probability space, i.e., for which there exist free ergodic
measure-preserving actions σ on (X, µ) such that L∞(X, µ) ⊂ L∞(X, µ) �σ

Γ0 is a rigid embedding. Do all property (T) groups Γ0 admit such rigid
actions (i.e., in view of the above, actions σ with property that the II1 factor
L∞(X, µ) �σ Γ0 has property (T) in the sense of (4.0.2))?

6. HT subalgebras and the class HT
6.1. Definition. Let N be a finite von Neumann algebra with a normal

faithful tracial state and B ⊂ N a von Neumann subalgebra. B is an HT
subalgebra of N (or B ⊂ N is an HT inclusion) if the following two conditions
are met:

(6.1.1). N has property H relative to B (as defined in Section 2).

(6.1.2). There exists a von Neumann subalgebra B0 ⊂ B such that B′
0 ∩

N ⊂ B and B0 ⊂ N is a rigid (or property (T)) embedding.

Also, B is an HT
s

subalgebra of N if conditions (6.1.1) and (6.1.2) hold
true with B0 = B, i.e., if N has the property H relative to B and B ⊂ N is
itself a rigid embedding.

If A ⊂ M is a Cartan subalgebra of a finite factor M and A ⊂ M satisfies
the conditions (6.1.1) and (6.1.2), then we call it an HT Cartan subalgebra.
Similarly, if a Cartan subalgebra A ⊂ M satisfies (6.1.1) and is a rigid embed-
ding then it is called an HT

s
Cartan subalgebra.

Note that condition (6.1.2) implies that B′∩N ⊂ B and (6.1.1) implies B

is quasi-regular in N (cf. 3.4). In particular, by Proposition 3.4, for A ⊂ M a
maximal abelian ∗-subalgebra of type II1 factor M , the condition that A is an
HT (resp. HT

s
) subalgebra of M is sufficient to insure that A is an HT (resp.

HT
s
) Cartan subalgebra of M .

6.2. Theorem. Let M be a type II1 factor with two abelian von Neumann
subalgebras A, A0 such that A, A′

0 ∩ M are maximal abelian in M . Assume
that M has property H relative to A and that A0 ⊂ M is a rigid inclusion.
Then both A and A′

0 ∩ M are HT Cartan subalgebras of M and there exists a
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unitary element u in M such that uA0u
∗ ⊂ A, and thus u(A′

0 ∩ M)u∗ = A.
In particular, if A1, A2 are HT Cartan subalgebras of a type II1 factor M then
there exists a unitary element u ∈ U(M) such that uA1u

∗ = A2.

Proof. We first prove that there exists a nonzero partial isometry v ∈
M such that v∗v ∈ A′

0 ∩ M , vv∗ ∈ A and vA0v
∗ ⊂ Avv∗. If we assume

by contradiction that this is not the case, then Theorem A.1 implies 0 ∈
KU(A0)(eA) ⊂ 〈M, A〉. This in turn implies that given any finite projection
f ∈ 〈M, A〉, with Tr(f) < ∞, and any ε > 0, there exists a unitary element
u ∈ U(A0) such that Tr(fueAu∗) < ε. Indeed, if for some c0 > 0 we had
Tr(fueAu∗) ≥ c0,∀u ∈ U(A0), then by taking appropriate convex combinations
and weak limits, we would get that 0 = Tr(f0) ≥ c0 > 0, a contradiction.

By property H of M relative to A, there exist completely positive, unital,
A-bimodular maps φn : M → M which tend strongly to the identity and satisfy
φn(1) ≤ 1, τ ◦ φn ≤ τ , Tφn

∈ J0(〈M, A〉).
Let 0 < ε0 < 1. By the rigidity of the embedding A0 ⊂ M , there exists n

large enough such that φ = φn satisfies

(6.2.1) ‖φ(v) − v‖2 ≤ ε0,∀v ∈ U(A0).

On the other hand, since Tφ ∈ J0(〈M, A〉), it follows that there exists a finite
projection f ∈ J0(〈M, A〉) such that Tr(f) < ∞ and

(6.2.2) ‖Tφ(1 − f)‖ ≤ (1 − ε0)/2.

Let then u ∈ U(A0) satisfy the condition

(6.2.3) Tr(fueAu∗) < (1 − ε0)2/4.

Let {mj}j ⊂ L2(M, τ) be such that ΣjmjeAm∗
j = f . Equivalently,

⊕jL
2(mjA) = f(L2(M, τ)). Thus, if x ∈ N = N̂ ⊂ L2(M, τ) then f(x̂) =

ΣjmjEA(m∗
jx) and ‖f(x̂)‖2

2 = Σj‖mjEA(m∗
jx)‖2

2.
It follows that

Tr(fueAu∗) = Tr(fueAu∗f)

= Tr((ΣjmjeAm∗
j )ueAu∗(ΣimieAm∗

i ))

= Σi,jτ(mjEA(m∗
ju)EA(u∗mi)m∗

i ) = ‖f(û)‖2
2.

By (6.2.3) this implies

(6.2.4) ‖f(û)‖2 < (1 − ε0)/2.

Thus, since ‖Tφ‖ ≤ 1, (6.2.2) and (6.2.4) entail:

‖Tφ(û)‖2 ≤‖Tφ((1 − f)(û))‖2 + ‖f(û)‖2

≤ (1 − ε0)/2 + ‖f(û)‖2 < 1 − ε0.
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But by (6.2.1), this implies:

‖u‖2 ≤‖Tφ(û)‖2 + ‖φ(u) − u‖2

< 1 − ε0 + ε0 = 1.

Thus 1 = τ(uu∗) < 1, a contradiction.
Let now (V,≤) denote the set of partial isometries v ∈ M with v∗v ∈

A′
0 ∩ M , vv∗ ∈ A and vA0v

∗ ⊂ Avv∗, endowed with the order ≤ given by
restriction, i.e., v ≤ v′ if v = vv∗v′. (V,≤) is clearly inductively ordered. Let
v0 ∈ V be a maximal element. Assume v0 is not a unitary element.

By 2.4.1◦, (1−v0v
∗
0)M(1−v0v

∗
0) has property H relative to A(1−v0v

∗
0) and

by 4.7.2◦ the inclusion A0(1−v∗0v0) ⊂ (1−v∗0v0)M(1−v∗0v0) is rigid. Let u0 ∈ M

be a unitary element extending v0 and denote M0 = (1 − v0v
∗
0)M(1 − v0v

∗
0),

A0
0 = u0(A0(1−v∗0v0))u∗

0, A0 = A(1−v0v
∗
0). Thus, M0 has property H relative

to A0 and A0
0 ⊂ M0 is rigid. By the first part it follows that there exists a

nonzero partial isometry v ∈ M0 such that v∗v ∈ (A0
0)

′ ∩ M , vv∗ ∈ A0 and
vA0

0v
∗ ⊂ A0vv∗. But then v′ = v0+vu∗

0 ∈ V, v′ ≥ v0 and v′ �= v0, contradicting
the maximality of v0.

We conclude that v0 is a unitary element, so that A, A′
0∩M are conjugate

in M . The last part follows now by Proposition 3.4.

6.3. Remarks. 1◦. If in the last part of Theorem 6.2 we restrict ourselves
to the case where A1, A2 are HT

s
Cartan subalgebras of the type II1 factor M ,

then we can give the following alternative proof of the statement, by using part
(ii) of Proposition 1.4.3 in lieu of Theorem A.1 and an argument similar to the
proof of 5.4.2◦: By property H of M relative to A1 there exists completely
positive A1 bimodular trace-preserving unital maps φn on M such that φn →
idM and Tφn

∈ J0(〈M, A1〉). By the rigidity of A2 ⊂ M it follows that εn =
sup{‖φn(u) − u‖2 | u ∈ U(A2)} → 0. Fix x ∈ M and note that by Corollary
1.1.2,

‖u∗Tφn
u(x̂) − x̂‖2 = ‖φn(ux) − ux‖2 ≤ ‖φn(ux) − uφn(x)‖2

+‖φn(x) − x‖2 ≤ 2ε1/2
n + ‖φn(x) − x‖2.

Thus, by taking weak limits of appropriate convex combinations of elements
of the form u∗Tφn

u with u ∈ U(A2), and using Proposition 1.3.2 we see that
Tn = EA′

2∩〈M,A1〉(Tφn
) ∈ KTφn

∩(A′
2∩J0(〈M, A1〉)) satisfy lim

n→∞
‖Tn(x̂)−x̂‖2 = 0.

But x ∈ M was arbitrary. This shows that the right supports of Tn span
the identity of 〈M, A1〉. Since Tn are compact, this shows that A′

2 ∩ 〈M, A1〉
is generated by finite projections of 〈M, A1〉. Thus, A2 is discrete over A1.
Similarly, A1 is discrete over A2 and A1 is conjugate to A2 by a result in
[PoSh]; see part (ii) of Proposition 1.4.3.

2◦. The above argument uses the fact that two Cartan subalgebras A1, A2

in M are unitarily equivalent in M if and only if the A1 − A2 Hilbert bimod-
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ule L2(M, τ) is a direct sum of Hilbert bimodules that are finite dimensional
both as left A1 modules and as right A2 modules. The proof of Theorem
6.2 uses, instead, Theorem A.1, which shows that in order for an abelian von
Neumann algebra A0 ⊂ M to be unitarily conjugate to a subalgebra of a semi-
regular maximal abelian ∗-subalgebra A of M it is sufficient that A′

0 ∩ M be
semi-regular abelian and that A0L

2(M, τ)A contain a nonzero A0 − A Hilbert
bimodule which is finite dimensional as a right A-module (a much weaker re-
quirement).

3◦. Note that by 3.4 and 4.3.2◦, A ⊂ M is HT
s

Cartan if and only if
A ⊂ M is maximal abelian, M has property H relative to A and A ⊂ M is
ε0-rigid for some ε0 ≤ 1/3.

4◦. Note that the proof of Theorem 6.2 shows in fact that if A, A0 are
abelian von Neumann subalgebras of a finite factor M such that A is maximal
abelian, M has property H relative to A, A′

0 ∩ M is semi-regular abelian and
A0 ⊂ M is ε0-rigid, for some ε0 < 1, then there exists u ∈ U(M) such that
u(A′

0 ∩ M)u∗ = A. In particular, if one calls HTw the Cartan subalgebras
A ⊂ M with the properties that M has property H relative to A and there
exists A0 ⊂ A with A′

0 ∩ M = A, A0 ⊂ M ε0-rigid, for some ε0 < 1, then any
two HTw Cartan subalgebras of a II1 factor are unitary conjugate.

6.4. Notation. We denote by HT the class of finite separable (in norm
‖ ‖2) factors with HT Cartan subalgebras and by HT

s
the class of finite

separable factors with HT
s

Cartan subalgebras. Note that HT
s
⊂ HT and

that Theorem 6.2 shows the uniqueness up to unitary conjugacy of HT Cartan
subalgebras in factors M ∈ HT .

6.5. Corollary. If Ai ⊂ Mi, i = 1, 2, are HT Cartan subalgebras and
θ is an isomorphism from M1 onto M2 then there exists a unitary element
u ∈ M2 such that uθ(A1)u∗ = A2. Thus, there exists a unique (up to isomor-
phism) standard equivalence relation RHT

M on the standard probability space,
implemented by the normalizer of the HT Cartan subalgebra of M .

The next result shows that HT is closed to amplifications and tensor
products and that it has good “continuity” properties. The proof of part 3◦

below, like the proof of 4.5.2◦, uses A.2 and is inspired by the proofs of 4.5.1,
4.5.6 in [Po1].

6.6. Theorem. 1◦. If M ∈ HT (resp. M ∈ HT
s
) and t > 0 then

M t ∈ HT (resp. M t ∈ HT
s
).

2◦. If M1, M2 ∈ HT (resp. M1, M2 ∈ HT
s
) then M1⊗M2 ∈ HT (resp.

M1⊗M2 ∈ HT
s
).

3◦. If M ∈ HT
s

then there exist a finite set F ⊂ M and δ > 0 such that if
N ⊂ M is a subfactor with F ⊂δ N then N ∈ HT

s
. In particular, if Nk ⊂ M



872 SORIN POPA

are subfactors with Nk ↑ M , then there exists k0 such that Nk ∈ HT
s
,∀k ≥ k0.

If in addition N ′
k ∩ M = C, then all the Nk, k ≥ k0, contain the same HT

s

Cartan subalgebra of M .

Proof. 1◦. Let A ⊂ M be an HT Cartan subalgebra and A0 ⊂ A be so
that A0 ⊂ M is a rigid embedding and A′

0 ∩ M = A. Choose some integer
n ≥ t. By 2.3.2◦ it follows that if D denotes the diagonal of M0 = Mn×n(C)
then A⊗D ⊂ Mn(M) has property H. Also, (A0⊗D)′∩M⊗Mn×n(C) = A⊗D

and by 4.6.1◦, A0 ⊗ D ⊂ M ⊗ Mn×n(C) is a rigid embedding.
If we now take p ∈ A0 ⊗D to be a projection of trace τ(p) = t/n, then by

2.4.1◦ and 4.7.2◦, it follows that At
0 = (A0 ⊗ D)p ⊂ M t = pMn×n(C)p is rigid

and M t has property H relative to At. Thus, M t ∈ HT . In case A0 = A, then
At

0 = At, so that M t is in HT
s
.

2◦. This follows trivially by application of 2.3.2◦ and 4.6.1◦, once we
notice that if Ai ⊂ Mi are maximal abelian ∗-subalgebras and Ai

0 ⊂ Ai satisfy
(Ai

o)
′ ∩ Mi = Ai, then (A1

0⊗A2
0)

′ ∩ M1⊗M2 = A1⊗A2.
3◦. Let A ⊂ M be a fixed HT

s
Cartan subalgebra of M . By 4.5.2◦, it

follows that there exist a finite subset F in the unit ball of M and ε > 0 such
that if a subfactor N0 ⊂ M satisfies F ⊂ε N0 and N ′

0 ∩ M = C then N0

contains a unitary conjugate A0 = uAu∗ of A with A0 ⊂ N0 rigid and Cartan.
Moreover, N0 has property H relative to A0 by 2.3.3◦ (since M has property
H relative to A0). Thus, A0 ⊂ N0 is HT

s
Cartan, proving the statement in the

case of subfactors with trivial relative commutant.
To prove the general case, note first that by Step 1 in the proof of A.2, for

the above given ε > 0 there exists δ0 > 0, with δ0 ≤ ε/4, such that if N ⊂ M

is a subfactor with A ⊂δ0 N then there exist projections p ∈ A, q ∈ N , a
unital isomorphism θ : Ap → qNq and a partial isometry v ∈ M such that
τ(p) ≥ 1− ε/4, v∗v = p, vv∗ = qq′, for some projection q′ ∈ θ(Ap)′ ∩ qMq, and
va = θ(a)v,∀a ∈ Ap.

Since Ap is maximal abelian in pMp, by spatiality it follows that θ(Ap)q′

is maximal abelian in q′qMq′q. Thus, if x ∈ θ(Ap)′ ∩ qMq then q′xq′ ∈
θ(Ap)q′ � θ(Ap). Thus, there exists a unique normal conditional expectation
E of θ(Ap)′ ∩ qMq onto θ(Ap) satisfying q′xq′ = E(x)q′,∀x ∈ θ(Ap)′ ∩ qMq.

Let q′0 ∈ N ′ ∩ M be the support projection of EN ′∩M (q′). Thus, q′0 ≥ q′

and if b ∈ q′0(N
′ ∩ M)q′0 is so that q′b = 0 then b = 0. Since E is implemented

by q′, E is faithful on q′0(N
′ ∩ M)q′0q, implying that if b ∈ q′0(N

′ ∩ M)q′0q and
a ∈ θ(Ap) are positive elements with E(b)a = 0 then ba = 0. But if ba = 0
then 0 = EN (ba) = EN (b)a = (τ(b)/τ(q))a (because b commutes with the
factor qNq). This shows that E(b) ∈ θ(Ap) must have support equal to q for
any b ∈ q′0(N

′ ∩ M)q′0q, with b ≥ 0, b �= 0. Thus, if f is a nonzero projection
in q′0(N

′ ∩ M)q′0q then q′fq′ = E(f)q′ has support q′. This implies that any
projection f �= 0 in q′0(N

′ ∩ M)q′0q must have trace τ(f) ≥ τ(q′) ≥ 1 − ε/4,
showing that N ′ ∩ M has an atom q′1 of trace τ(q′1) ≥ 1 − ε/4.
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An easy calculation shows that if we denote by Ñ ⊂ M a unital subfactor
with q′1 ∈ Ñ and q′1Ñq′1 = Nq′1 (N.B.: Ñ is obtained by amplifying Nq′1 by
1/τ(q′1)), then F ⊂ε Ñ . Also, Ñ ′ ∩M = C by construction. Thus, by the first
part of the proof, Ñ ∈ HTs. Since N is isomorphic to a reduction of Ñ by a
projection, by part 1◦ it follows that N ∈ HTs as well.

6.7. Corollary. 1◦. If A ⊂ M is an HT Cartan subalgebra then
any automorphism of M can be perturbed by an inner automorphism to an
automorphism that leaves A invariant ; i.e.,

AutM/IntM = Aut(M, A)/Int(M, A).

2◦. Let M ∈ HT
s

with A ⊂ M its HT
s

Cartan subalgebra. Denote by
GHT(M) the subgroup of Aut(M) generated by the inner automorphisms and
by the automorphisms leaving all elements of A fixed. Then GHT(M) is an
open-closed normal subgroup of Aut(M), the quotient group

OutHT(M)def=Aut(M)/GHT(M)

is countable and is naturally isomorphic to the group of outer automorphisms
of RHT

M , Out(RHT

M )def=Aut(RHT

M )/Int(RHT

M ).

Proof. 1◦. If θ ∈Aut(M) then θ(A) is HT Cartan, so by Theorem 6.2
there exists a unitary element u ∈ M such that uθ(A)u∗ = A.

2◦. This is trivial by 4.4.

6.8. Corollary. If M ∈ HT then any central sequence of M is
contained in the HT Cartan subalgebra of M . Thus, M ′∩Mω is always abelian
and M is non-Γ if and only if the equivalence relation RHT

M is strongly ergodic.
In particular, M �� M⊗R.

Proof. If A ⊂ M is the HT Cartan subalgebra of M and A0 ⊂ A is so
that A0 ⊂ M is rigid and A′

0 ∩ M = A then by 4.3.1◦ we have M ′ ∩ Mω =
M ′ ∩ (A′

0 ∩ M)ω = M ′ ∩ Aω.

6.9. Examples. We now give a list of examples of HT inclusions of the
form B ⊂ B �σ Γ0 and of factors in the class HT of the form L∞(X, µ) � Γ0,
based on the examples in 5.2, 5.3.2◦, 5.3.3◦. Note that if B ⊂ B�σ Γ0 is an HT
inclusion then Γ0 must have the property H (cf. 3.1), but that in Section 5 we
were able to provide examples of inclusions B ⊂ B �σ Γ0 satisfying the rigidity
condition (6.1.2) only for certain property H groups Γ0 and for certain actions
of such groups (see Problem 6.12 below). Note also that by Theorem 6.2 if
M = L∞(X, µ) �σ Γ0 belongs to the class HT and Γ0 is a property H group
then A = L∞(X, µ) is automatically the (unique) HT Cartan subalgebra of
M ; i.e., A ⊂ M must satisfy the rigidity condition (6.1.2) as well.
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6.9.1. Let Γ0 = SL(2, Z), B0 = Lα(Z2), for some α ∈ T ⊂ C, and σ0

be the action of the group SL(2, Z) on B0 induced by its action on Z2. Then
B0 ⊂ Mα

def=B0 �σ0 SL(2, Z) is an HT
s

inclusion with Mα a type II1 factor.
In case α is not a root of 1, this gives HT

s
inclusions R = B0 ⊂ Mα and

when α is a nth primitive root of 1, this gives HT
s

inclusions B0 ⊂ Mα, with
B0 homogeneous of type In and diffuse center. Indeed, in all these examples
the property (6.1.1) is satisfied by 3.2, and property (6.1.2) is satisfied by 5.1.
Moreover, by the isomorphism in 5.2.1◦, if α is a root of 1 then Mα ∈ HT

s
and

any maximal abelian subalgebra of B0 = Lα(Z2) is Cartan in Mα.

6.9.1′. If we take the inclusion A = L(Z2) ⊂ L(Z2) � SL(2, Z) = M from
the previous example, which we regard as the group measure space construction
L∞(T2, λ) ⊂ L∞(T2, λ) � SL(2, Z), through the usual identification of T2 with
the dual of Z2 and of L∞(T2, λ) with L(Z2), and we “cut it in half” with a
projection p ∈ A of trace 1/2, then we obtain the inclusion (Ap ⊂ pMp) �
(L∞(S2, λ) ⊂ L∞(S2, λ)�PSL(2, Z)), where S2 is the 2-sphere. Thus, by 6.9.1
and Theorem 6.6, it follows that L∞(S2, λ) � PSL(2, Z) ∈ HT

s
.

6.9.2. If Fn ⊂ SL(2, Z) is an embedding with finite index and σ0 is the
restriction to Fn of the action σ0 on B0 = Lα(Z2) considered in 1◦, then
B0 ⊂ B0 �σ0 Fn is an HT

s
inclusion, which in case α = 1 is an HT

s
Cartan

subalgebra. Also, if p ∈ L(Z2) has trace (12(n − 1))−1 then the inclusion
(L(Z2)p ⊂ p(L(Z2 � SL(2, Z))p) is an HT

s
Cartan subalgebra of the form

(A ⊂ A�Fn). In all these cases, again, property (6.1.1) is satisfied by 3.2, and
property (6.1.2) is satisfied by 5.2.2◦.

6.9.3. If Γ0 is an arithmetic lattice in SU(n, 1),SO(n, 1), n ≥ 2, then there
exist free weakly mixing trace-preserving actions σ0 of Γ0 on A = L∞(X, µ)
such that A ⊂ M = A �σ0 Γ0 is HT

s
Cartan (cf. 3.2 and 5.2.3◦).

6.9.4. If Γ0 = SL(2, Q), A = L(Q2) and M = L(Q2 � SL(2, Q)) = A �
SL(2, Q), then A ⊂ M is HT Cartan but not HT

s
Cartan (cf. 3.2 and 5.3.2◦).

6.9.5. Let Γ0, σ0, (B0, τ) be as in 6.9.1, 6.9.2 or 6.9.3. Let n ≥ 1 and
B = B⊗n

0 , σ = σ⊗n
0 . Then B ⊂ B �σ Γ0 is an HT

s
inclusion (cf. 3.2, 3.3.3

and 5.2). Moreover, if B0 = A0 is abelian, then A⊗n
0 = A ⊂ A �σ Γ0 is HT

s

Cartan.

6.9.6. Let Γ0, σ0, (B0, τ) be any of the actions considered above. Let σ1

be an ergodic action of Γ0 on a von Neumann algebra B1 � L∞(X, µ). If
B = B0⊗B1 and M = B �σ0⊗σ1 Γ0, then B ⊂ M is an HT inclusion (cf. 3.2
and 5.2.4◦). In particular, if B0 = A0, B1 = A1 are abelian and A = A0⊗A1,
then A ⊂ M is an HT Cartan subalgebra. If σ1 is taken to be a Bernoulli
shift, then A ⊂ M is not HT

s
Cartan. For any such group Γ0 the action σ1

can be taken nonstrongly ergodic by ([CW]). In this case, the resulting factor
M has the property Γ of Murray and von Neumann, with M ′∩Mω = M ′∩Aω
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abelian. Note that for each of the groups Γ0 this gives three distinct HT Cartan
subalgebras of the form A ⊂ A � Γ0 (cf. 5.3.3◦).

6.9.7. Let Γ0, σ0, (B0, τ) be any of the actions considered above (so that
B0 ⊂ B0 �σ0 Γ0 is an HT inclusion). Let also Γ1 be a property H group and
γ an action of Γ1 on Γ0 such that Γ = Γ0 �γ Γ1 has property H (for instance,
if Γ1 is amenable or if γ is the trivial action, giving Γ = Γ0 × Γ1). Let σ

denote the Γ-action σ0 � σ1 on B = ⊗g∈Γ1(B0, τ0)g constructed in 3.3.3. Then
B ⊂ B �σ Γ is an HT inclusion, which follows an HT Cartan subalgebra in
case B0 is abelian (cf. 3.1, 3.3.3, and the definitions).

6.10. Corollary. 1◦. If M is a McDuff factor, i.e., M � M⊗R, then
M /∈ HT . In particular, R /∈ HT .

2◦. If M contains a relatively rigid type II1 von Neumann subalgebra then
M /∈ HT . In particular, if M contains L(G) for some infinite property T
group G, or if M contains a property T factor, then M /∈ HT .

3◦. If M contains a copy of some Lα(Z2) �σ Γ1, with Γ1 a subgroup of
finite index in SL(2, Z) and α an irrational rotation, then M /∈ HT .

4◦. If M has property H (e.g., M � L(Fn) for some 2 ≤ n ≤ ∞) then
M /∈ HT . In fact such factors do not even contain subfactors in the class HT .

Proof. 1◦ is trivial by 6.8, 2◦ and 3◦ are clear by 5.4.2◦ and 4◦ follows
from 5.4.1◦.

6.11. Definition. A countable discrete group Γ0 is an H
T

(resp. H
T s

)
group if there exists a free ergodic measure-preserving action σ0 of Γ0 on the
standard probability space (X, µ) such that L∞(X, µ) ⊂ L∞(X, µ) �σ0 Γ0 is
an HT (resp. HT

s
) Cartan subalgebra. Note that an H

T
group has property

H but is not amenable.

6.12. Problems. 1◦. Characterize the class of all H
T

(resp. H
T s

) groups.
2◦. Construct examples of free ergodic measure-preserving actions σ of

Γ0 = Fn (or of any other noninner amenable property H group Γ0) on A =
L∞(X, µ) such that A ⊂ M = A �σ Γ0 is not HT Cartan. Is this the case if σ

is a Bernoulli shift?

6.13. Corollary. 1◦. SL(2, Z), Fn, n ≥ 2, as well as any arithmetic
lattice in SU(n, 1) or SO(n, 1), n ≥ 2, are HTs

groups.
2◦. Let Γ ⊂ Γ0 be an inclusion of groups with [Γ0 : Γ] < ∞. Then Γ0 is

an HT (resp. HTs
) group if and only if Γ is an HT (resp. HTs

) group.
3◦. If Γ0 is an HT group and Γ1 has the property H (for instance, if Γ1 is

amenable) then Γ0 × Γ1 is an HT group.
4◦. If Γ0 is an HT group and Γ1 is amenable and acts on Γ0 then Γ0 � Γ1

is an HT group.
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Proof. Part 1◦ follows from 6.9.1◦ − 3◦, while parts 3◦ and 4◦ follow from
6.9.7.

To prove 2◦ note first that by 3.1 and 2.3.3◦, Γ0 has the property H if and
only if Γ has the property H (this result can be easily proved directly, see e.g.
[CCJJV]).

If Γ0 is an H
T

group and A ⊂ A�σ Γ0 is HT Cartan and A0 ⊂ A is so that
A0 ⊂ M is rigid and A′

0 ∩ M = A then A0 ⊂ A �σ Γ is also rigid, by 4.6.2◦.
Moreover, the fixed point algebra AΓ is atomic (because [Γ0 : Γ] < ∞), so if p is
any minimal projection in AΓ then p(A�σ Γ)p is a factor and Ap ⊂ p(A�σ Γ)p
is an HT Cartan subalgebra. Thus, Γ is an H

T
group.

Conversely, if Γ is an H
T

group, then let Γ1 ⊂ Γ be a subgroup of finite
index so that Γ1 ⊂ Γ0 is normal. By the first part, Γ1 is an H

T
group. By part

4◦, it follows that Γ0 is an H
T

group.

7. Subfactors of an HT factor

In this section we prove that the class HT is closed under extensions and
restrictions of finite Jones index. More than that, we show that the lattice of
subfactors of finite index of a factor in the class HT is extremely rigid.

7.1. Lemma. Let N ⊂ M be an irreducible inclusion of factors with
[M : N ] < ∞ and A ⊂ N a Cartan subalgebra of N . Denote by N = NN (A)
the normalizer of A in N . Then

1◦. A′ ∩ M is a homogeneous type Im algebra, for some 1 ≤ m < ∞, and
if A1 = Z(A′ ∩ M) then there exists a partition of the identity q1, q2, . . . , qn ∈
P(A1) such that A1 = ΣiAqi and EN (qi) = EA(qi) = 1/n,∀i.

2◦. N normalizes A1 and Q
def=spA1N = spA1N is a type II1 factor con-

taining N , with [Q : N ] = n. Moreover, A1 ⊂ Q is a Cartan subalgebra and
the following is a nondegenerate commuting square:

N ⊂ Q

∪ ∪
A ⊂ A1.

3◦. N normalizes A′∩M = A′
1∩M � Mm×m(A1) and P

def=sp(A′
1∩M)N =

sp(A′
1 ∩M)N is a type II1 factor containing Q, with [P : Q] = m2. Moreover,

the following is a nondegenerate commuting square

Q ⊂ P

∪ ∪
A1 ⊂ A′

1 ∩ M.

4◦. Any maximal abelian ∗-subalgebra A2 of A′∩M = A′
1∩M is a Cartan

subalgebra in P , with A2p ⊂ pPp implementing the same equivalence relation
as A1 ⊂ Q, ∀p ∈ P(A2), τ(p) = 1/m; i.e., RA2p⊂pPp � RA1⊂Q (equivalently,
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RA2⊂P � (RA1⊂Q)m), but with the two Cartan subalgebras possibly differing
by their 2-cocycles.

Proof. Since N normalizes A, it also normalizes A′ ∩ M , and thus
Z(A′ ∩ M) = A1 as well. In particular, A1N = NA1 and (A′ ∩ M)N =
N (A′ ∩ M), showing that spA1N and sp(A′ ∩ M)N are ∗-algebras. Since
N ′ ∩ M = N ′ ∩ M = C, this implies that Q, P are factors. In particular,
this shows that the squares of inclusions in 2◦ and 3◦ are commuting and
nondegenerate. Also, by definitions, A1 is Cartan in Q.

Since N ⊂ Q is a λ-Markov inclusion, for λ−1 = [Q : N ] (see e.g., [Po2]
for the definition), it follows that A ⊂ A1, with the trace τ inherited from
M , is λ-Markov. Thus, e = eQ

N implements the conditional expectation EA1
A

and A1 ⊂ B = 〈A1, A〉 = 〈A1, e〉 gives the basic construction for A ⊂ A1.
Moreover, since A, A1 are abelian, it follows that Z(B) = A = JA1AJA1 and
that

A′
1 ∩ B = JA1A1JA1 ∩ (JA1AJA1)

′ = JA1(A1 ∩ A′)JA1 = JA1A1JA1 = A1.

Thus, A1 is maximal abelian in B, implying that the Markov expectation of
B onto A1 given by E(xey) = λxy, for x, y ∈ A1, is the unique expectation of
B onto A1.

Also, for each u ∈ N , Adu acts on A ⊂ A1 τ -preservingly. Thus, Adu

extends uniquely to an automorphism θu on B = 〈A1, e
A1
A 〉 = 〈A1, e

Q
N 〉 by

θu(eA1
A ) = eA1

A . This automorphism leaves invariant the Markov trace on B.
Also, since θu, u ∈ N , act ergodically on A = Z(B), it follows that B is
homogeneous of type In, for some n. By [K2], it follows that there exists
a matrix units system {eij}1≤i,j≤n in B such that B = A ∨ sp{eij}i,j with
A1 = ΣiAeii.

By the uniqueness of the conditional expectation E of B onto A1, if we
put qi = eii then E(X) = ΣiqiXqi,∀X ∈ B. In particular, the index of
A1 ⊂ B is given by λ−1 = n = τ(e)−1 and by the Markov property we have
1/n = E(e) = Σiqieqi. Thus, qieqi = n−1qi, and so eqie = n−1e = E(qi)e as
well, since τ(e) = τ(qi). This ends the proof of 1◦ and 2◦.

Now, since A1 is the center of B1 = A′ ∩ M = A′
1 ∩ M and Adu, u ∈ N ,

act ergodically on A1, it also follows that B1 is homogeneous of type Im, for
some m ≥ 1. This clearly implies 3◦.

To prove 4◦, let {fij}1≤i,j≤m ⊂ B1 be a matrix units system in B1 such
that A2 = ΣjA1fjj and B1 = Σi,jA1fij (cf. [K2]). A2 is Cartan in P because
by construction fij are in the normalizing pseudogroup of A2 in P .

For each u ∈ N let v(u) be a unitary element in B1 such that

v(u)(ufjju
∗)v(u)∗ = fjj , ∀j

(this is possible because ufjju
∗ and fjj have the same central trace 1/m

in B1). Since v(u) commute with A1 = Z(B1), ∀u ∈ N , it follows that
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A1f11 with the action implemented on it by {v(u)u | u ∈ N} is isomorphic to
A1 with the action implemented on it by N . Thus, the equivalence relation
RA1f11⊂f11Mf11 is the same as the equivalence relation RA1⊂Q, but with the
2-cocycle coming from the multiplication between the unitaries v(u)u, u ∈ N
(for A1f11 ⊂ f11Mf11) possibly differing from the 2-cocycle given by the mul-
tiplication of the corresponding u ∈ N (for A1 ⊂ Q).

7.2. Lemma. 1◦. Let A1 ⊂ M1 be a maximal abelian ∗-subalgebra in the
type II1 factor M1. If there exists a von Neumann subalgebra A0 ⊂ A1 such
that A0 ⊂ M1 is rigid and A1 ⊂ A0′ ∩ M1 has finite index (in the sense of
[PiPo]), then A1 contains a von Neumann subalgebra A1

0 such that A1
0 ⊂ M1 is

rigid and A1
0
′ ∩ M1 = A1.

2◦. Let M0 ⊂ M1 be a subfactor of finite index with an HT (resp. HT
s
)

Cartan subalgebra A ⊂ M0. If A1 ⊂ M1 is a maximal abelian ∗-subalgebra of
M1 such that A1 ⊃ A and M1 has property H relative to A1 then A1 ⊂ M1 is
an HT (resp. HT

s
) Cartan subalgebra.

Proof. 1◦. Since A1 ⊂ A0′∩M1 has finite index, it follows that A0′∩M1 is a
type Ifin von Neumann algebra and A1 is maximal abelian in it (see e.g., [Po7]).
It follows that there exists a finite partition of the identity with projections
{fk}k in A1 such that {fk}′k ∩ A0′ ∩ M1 ⊂ A1. Thus, if we let A1

0
def=ΣkA

0fk,
then A1

0
′ ∩ M1 ⊂ A1. By 4.6.3◦ it follows that A0 ⊂ M1 is a rigid embedding.

2◦. This is an immediate application of 1◦, once we notice that if A0 ⊂ A

is so that A0 ⊂ M0 is rigid and A0′ ∩ M0 = A then A ⊂ A0′ ∩ M1 has index
majorized by [M1 : M0], implying that A1 ⊂ A0′ ∩ M1 has finite index as
well.

7.3. Theorem. Let N ⊂ M be an inclusion of type II1 factors with
[M : N ] < ∞. Then

1◦. N ∈ HT (resp. N ∈ HT
s
) if and only if M ∈ HT (resp. M ∈ HT

s
).

2◦. Assume N ′ ∩ M = C and N, M ∈ HT . If Q, P ⊂ M are the inter-
mediate subfactors constructed out of an HT Cartan subalgebra of N , as in
7.1, then Q, P ∈ HT and the triple inclusion N ⊂ Q ⊂ P ⊂ M is canonical.
Moreover, the HT Cartan subalgebra of P is an HT Cartan subalgebra in M .

3◦. If M ∈ HT and N ⊂ M is an irreducible subfactor then [M : N ] is
an integer. Moreover, the canonical weights of the graph ΓN,M of N ⊂ M are
integers.

Proof. 1◦. Since the algebra 〈M, N〉 in the basic construction N ⊂ M ⊂
〈M, N〉 is an amplification of N , by Theorem 6.6 it follows that it is sufficient
to prove that if N ∈ HT (resp. N ∈ HT

s
) then M ∈ HT (resp. M ∈ HT

s
). By

6.6.1◦, it is in fact sufficient to prove this implication in the case N ′ ∩M = C.
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Let A ⊂ N be an HT Cartan subalgebra and A1 = Z(A′ ∩ M) ⊂ Q

be constructed out of A ⊂ N as in Lemma 7.1. We begin by showing that
A1 ⊂ Q is an HT Cartan subalgebra. Let q1, q2, . . . , qn ∈ A1 ⊂ Q be so that
A1 = ΣiAqi, EN (qi) = EA(qi) = 1/n, as in Lemma 7.1. By the last part of
2.3.3◦, it follows that Q has property H relative to A. But by the last part of
2.3.4◦ this implies Q has property H relative to A1. Also, A1 ⊂ Q satisfies the
conditions in part 2◦ of Lemma 7.2, implying that it is HT Cartan.

Next we prove that if A2 is constructed as in part 3◦ of Lemma 7.1,
then A2 ⊂ P is an HT Cartan subalgebra. Let {eij}1≤i,j≤m ⊂ A′

1 ∩ M be a
matrix units system which together with A1 generates A′

1 ∩ M and such that
A2 = ΣjA1ejj . Since P has an orthonormal basis made up of unitary elements
commuting with A1, by the last part of 2.3.3◦ it follows that P has property H
relative to A1. By applying the last part of 2.3.4◦, we see that P has property
H relative to A2. Then 7.2.2◦ applies and we deduce that A2 ⊂ P is an HT
Cartan subalgebra, which is even HT

s
when A ⊂ N (and thus A1 ⊂ Q) is HT

s
.

Having proved that A2 ⊂ P is an HT Cartan subalgebra, we now prove
that A2 is HT Cartan in M as well. Since A2 is maximal abelian in M , 7.2.2◦

shows that it is sufficient to prove that M has property H relative to A2. To
do this, we prove that if A3 is any maximal abelian subalgebra in A′

2 ∩ M1,
where M1 = 〈M, P 〉, then A3 ⊂ M1 is HT Cartan. This would finish the proof,
because by the first part of 2.3.4◦ M1 would have the property H relative to
A2, and then by the first part of 2.3.3◦ this would imply M has the property
H relative to A2.

Since M1 is an amplification of P ∈ HT , by Theorem 6.6 it follows that
M1, as well as any reductions of M1 by projections in M1, belong to HT . Let
N1 be the normalizer of A2 in P . Since A2 is regular in P , N ′′

1 = P and
N ′

1 ∩ M1 = P ′ ∩ M1. Let {p′t}t be a partition of the identity with minimal
projections in P ′∩M1. For each t, the inclusion A2p

′
t ⊂ Pp′t ⊂ p′tM1p

′
t satisfies

the hypothesis of Lemma 7.1. Thus, if At
2 is a maximal abelian ∗-subalgebra

of (A2p
′
t)
′ ∩ p′tM1p

′
t, then A2p

′
t is included in At

2 and by 7.1.4◦, At
2 is semi-

regular in p′tM1p
′
t. In addition, by 7.2.1◦ it follows that At

2 contains a von
Neumann subalgebra At

0 with At
0
′ ∩ p′tM1p

′
t = At

2 and At
0 ⊂ p′tM1p

′
t rigid.

Since p′tM1p
′
t ∈ HT , by Theorem 6.2 it follows that At

2 ⊂ p′tM1p
′
t is HT

Cartan. Moreover, M1 ∈ HT implies A3 = ΣtA
t
2 is HT Cartan in M1, while

clearly A2 ⊂ A3, by construction.
2◦. The triple inclusion (N ⊂ Q ⊂ P ⊂ M) depends on the choice of the

Cartan subalgebra A ⊂ N . But such A is unique up to conjugacy by unitaries
in N , which leave Q and P fixed. The fact that the HT Cartan subalgebra of
P is HT Cartan in M was proved in part 1◦.

3◦. With the notation in 1◦, we have [M : N ] = nm2[M : P ], with [M : P ]
being itself an integer, since P contains a Cartan subalgebra of M (see e.g.,
[Po8]).
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The weights vk of Γ = ΓN,M are square roots of indices of irreducible
subfactors appearing in the Jones tower for N ⊂ M . Thus, vk are square
roots of integers. Since v∗ = 1, [M : N ] ∈ N and Γ is irreducible and has
nonnegative integral entries, by the relations coming from ΓΓt�v = [M : N ]�v,
it follows recursively that all vk must be integers.

7.4. Definitions. Let N ⊂ M be an irreducible inclusion of factors in the
class HT with [M : N ] < ∞ and let N ⊂ Q ⊂ P ⊂ M be the canonical triple
inclusion defined in part 2◦ of Theorem 7.3.

7.4.1. N ⊂ Q ⊂ P ⊂ M is called the canonical decomposition of N ⊂ M .

7.4.2. If M = Q, i.e., if the HT Cartan subalgebra A of N is so that
A′ ∩M is abelian (thus HT Cartan in M) and M = spAN = M , then N ⊂ M

is a type C− inclusion (or subfactor). If N = P , i.e., if A′ ∩ M = A (so that
A is Cartan in both N and M) then N ⊂ M is of type C+. If P = Q, i.e., if
A′ ∩ M is abelian, then N ⊂ M is of type C±.

7.4.3. If N = Q, P = M then N ⊂ M is of type C0. More generally, an
extremal inclusion N ⊂ M of factors in the class HT is of type C0 if the HT
Cartan subalgebra A of N satisfies A′∩M = A∨P0, with P0 � Mm×m(C), m =
[M : N ]1/2, and M = sp(A′ ∩ M)N = spP0N .

7.5. Theorem. 1◦. Let N ⊂ M be an irreducible inclusion of factors in
the class HT , with [M : N ] < ∞. N ⊂ M is of type C− (resp. C+, C±, C0) if
and only if its dual inclusion M ⊂ 〈M, N〉 is of type C+ (resp. C−, C±, C0).

2◦. If N ⊂ M and M ⊂ L are irreducible inclusions of factors in the
class HT with finite index and both of type C− (resp. C+), then N ⊂ L is an
irreducible inclusion of type C− (resp. C+).

3◦. If N ⊂ M and M ⊂ L are extremal inclusions of factors in the class
HT , both of type C0, then N ⊂ L is of type C0 and so are all subfactors of the
form Np ⊂ pLp, with p ∈ P(N ′ ∩ L).

4◦. Let N ⊂ M and M ⊂ L be irreducible inclusions of factors in the
class HT with finite index and such that N ⊂ M is of type C+ and M ⊂ L is
of type C−. If A ⊂ N is an HT Cartan subalgebra then A′ ∩ L is abelian and
each irreducible inclusion Np ⊂ pLp for p minimal projection in N ′ ∩ L is of
type C±. In particular this is the case if (M ⊂ L) = (M ⊂ 〈M, N〉).

5◦. Let N ⊂ M be an inclusion of factors in the class HT with
[M : N ] < ∞. If N ⊂ M is either irreducible of type C− or extremal of
type C0 then N ⊂ 〈M, N〉 is a type C0 inclusion, and so are all subfactors of
the form Np ⊂ p〈M, N〉p, for p projection in N ′ ∩ 〈M, N〉.

Proof. 1◦. Let A ⊂ N be an HT Cartan subalgebra of N . If N ⊂ M is
of type C− then let A′ ∩ M = ΣiAqi, where {qi}1≤i≤n ⊂ A′ ∩ M is a partition
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of the identity with projections satisfying EN (qi) = 1/n,∀i. Let α = e2πi/n

and denote u = nΣiqieNqi+1. We clearly have [u, A] = 0, uqiu
∗ = qi+1 and

EN (uj) = 0,∀j ≤ n − 1. Thus, the HT Cartan subalgebra A1 = A′ ∩ M of M

is maximal abelian in 〈M, N〉 and is normalized by uj , with 〈M, N〉 = Σju
jM ;

i.e., A1 is the HT Cartan subalgebra in 〈M, N〉 as well, showing that M ⊂
〈M, N〉 is of type C+.

If N ⊂ M is of type C+, A ⊂ N ⊂ M is HT Cartan in both factors
and u1, u2, . . . , un ∈ NM (A) are unitary elements such that M = ΣiuiN and
EN (u∗

i uj) = δij then qj = ujeNu∗
j is a partition of the identity with projections

in 〈M, N〉 and we have A′ ∩ 〈M, N〉 = ΣjqjA, 〈M, N〉 = ΣjqjM . Thus, M ⊂
〈M, N〉 is of type C−.

If N ⊂ P ⊂ M is so that N ⊂ P is C−, P ⊂ M is C+ then we have
the irreducible inclusions M ⊂ 〈M, P 〉, which is C−, and 〈M, P 〉 ⊂ 〈M, N〉,
which is an amplification of P ⊂ 〈P, N〉, thus of type C+. This shows that
M ⊂ 〈M, N〉 is C±.

If N ⊂ M is of type C0 and A ⊂ N is an HT Cartan subalgebra with
A′ ∩ M = Σi,jeijA for some matrix units system {eij}1≤i,j≤m ⊂ A′ ∩ M , then
denote e′ij = mΣkekieNejk, 1 ≤ i, j ≤ m. It is immediate to show that {e′ij}i,j is
a matrix units system which commutes with A and with {ekl}k,l, that {e′ij}i,j is
an orthonormal basis of 〈M, N〉 over M and that {e′ijekl}i,j,k,l is an orthonormal
basis of 〈M, N〉 over N . It follows that A′ ∩ 〈M, N〉 = sp{e′ijekl}i,j,k,lA. Thus,
if A2 ⊂ A′∩M is a maximal abelian subalgebra, then A′

2∩〈M, N〉 = Σi,je
′
ijA2.

This shows that M ⊂ 〈M, N〉 is of type C0.

2◦. By duality in the Jones tower ([PiPo]) and part 1◦, it is sufficient to
prove that if N ⊂ M, M ⊂ L are of type C+ then so is N ⊂ L. But this is
trivial, since if A ⊂ N is HT Cartan in N then it first follows that N is Cartan
in M , then in L.

3◦. Let {eij}1≤i,j≤m ⊂ A′∩M be a matrix units system such that A′∩M =
Σi,jeijA, as in the proof of the last part of 1◦ (thus, [M : N ] = m2). Let
A2 = ΣjejjA, which is HT Cartan in M . Let {f ′

kl}1≤k,l≤m′ ⊂ A′
2 ∩ L be a

matrix units system such that A′
2 ∩ L = Σk,lf

′
klA2, with m′2 = [L : M ]. Then

{fts}t,s = {ei1f
′
kle1j | 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ m′} is a matrix units system

in A′ ∩ L and if we denote P0 � Mmm′×mm′(C) the algebra it generates, then
clearly EN (fst) = δst/mm′. Since [L : N ] = (mm′)2, and since we have the
commuting square

N ⊂ L

∪ ∪
A ⊂ A′ ∩ L

as well as
N ⊂ L

∪ ∪
A ⊂ A ∨ P0
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with A∨P0 ⊂ A′ ∩L and with P0 containing an orthonormal system of L over
N made up of mm′ elements, it follows that A ∨ P0 = A′ ∩ L, thus showing
that N ⊂ L is of type C0.

Finally, if p ∈ P(N ′ ∩ L) then in particular p ∈ A ∨ P0. By the above
commuting squares, we have EA(p) = EN (p) = τ(p)1. But A = Z(A ∨ P0),
implying that p has scalar central trace in A ∨ P0. Thus, (Ap)′ ∩ pLp =
p(A ∨ P0)p is homogeneous of type I. Since we also have pLp = p(spP0N)p =
p(spP0)pNp, this shows that Np ⊂ pLp is of type C0.

4◦. Let A ⊂ N be the HT Cartan subalgebra of N , which is thus HT
Cartan in M as well. Thus A1 = A′∩L is abelian with L = spA1M . Since any
irreducible projection p ∈ N ′∩L lies in A1, by cutting these relations with p we
obtain that (Ap)′∩pLp is abelian, which by Lemma 7.1 means that Np ⊂ pLp

has only type C− and C+ components in its canonical decomposition.

5◦. This is immediate from the proofs in 1◦ and the last part of 3◦.

7.6. Examples. 1◦. Let Γ0 be a property H group and σ a free, weakly
mixing measure-preserving action of Γ0 on the probability space (X, µ) such
that the Cartan subalgebra L∞(X, µ) = A ⊂ N = L∞(X, µ) �σ Γ0 contains a
von Neumann subalgebra A1 ⊂ A with A′

1 ∩ N = A and A1 ⊂ N rigid. Let
Γ1 ⊂ Γ0 be a subgroup of finite index and σ0 the left action of Γ0 on Γ0/Γ1.
Let A0 = �∞(Γ0/Γ1) and M = A ⊗ A0 �σ⊗σ0 Γ0.

Then N, M ∈ HT and if we identify N with the subfactor of M generated
by A = A ⊗ C and by the canonical unitaries {ug}g ⊂ M implementing the
action σ ⊗ σ0 on A ⊗ A0, then N ⊂ M is an irreducible type C− inclusion.
Moreover, if we denote N1 = A ∨ {ug}g∈Γ1 � A �σ Γ1 ⊂ N then N1 ⊂ N is a
type C+ inclusion and N1 ⊂ N ⊂ M is a basic construction.

We have [M : N ] = [N : N1] = [Γ0 : Γ1], the standard invariant of
N1 ⊂ N coincides with the standard invariant GΓ1⊂Γ0 of R � Γ1 ⊂ R � Γ0

studied in [KoYa] and the standard invariant of N ⊂ M is the dual of GΓ1⊂Γ0 .
In particular, N1 ⊂ N ⊂ M are finite depth inclusions.

2◦. Let Γ0, σ, A be as in example 1◦ above and let π0 be a finite-dimensional
irreducible projective representation of Γ0 on the Hilbert space H0, with scalar
2-cocycle v. Let B0 = B(H0) and σ0(g) = Adπ0(g) be the action of Γ0 on
B0 implemented by π0. Denote M = Mπ0 = A ⊗ B0 �σ⊗σ0 Γ0 and let N be
the subfactor of M generated by A ⊗ 1 = Z(A ⊗ B0) and by the canonical
unitaries {ug}g∈Γ0 ⊂ M implementing the action σ ⊗ σ0. Thus, N � A �σ Γ0,
M � Mn×n(A �σ,v Γ0) and both belong to the class HT .

Moreover, N ⊂ M is an irreducible type C0 inclusion and its standard
invariant coincides with the standard invariant of the generalized Wassermann-
type subfactor corresponding to the projective representation π0, i.e.:
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C ⊂ End(H0)σ0 ⊂ End(H0 ⊗H0)σ0⊗σ0 ⊂ . . .

∪ ∪
C ⊂ C ⊗ End(H0)σ0 ⊂ . . . .

3◦. Let σ be the action of SL(2, Z) on Lα(Z2) implemented by the action
of SL(2, Z) on Z2, as in 5.2.1◦ and 6.9.1◦, for α a primitive root of 1 of order
n. Let Mα = Lα(Z2) �σ SL(2, Z), A = Z(Lν(Z2)) and N = A ∨ {ug}g be
the von Neumann algebra generated by A and the canonical unitaries in Mα

implementing the action σ. Then N, Mα ∈ HT
s

and N ⊂ Mα is an irreducible
inclusion of type C0 with [Mα : N ] = n2. Indeed, we have already noticed in
6.9.1◦ that N ∈ HT

s
, so that by 7.3 we have Mα ∈ HT

s
. Also, by construction

we have A′ ∩ Mα = Lα(Z2) = A ⊗ B0, with B0 � Mn×n(C), and Mα =
spLα(Z2)N .

One can show that N ⊂ Mα is isomorphic to a type C0 inclusion N ⊂ Mπ0

as in example 2◦, when taking Γ0 = SL(2, Z), with σ, σ0 the actions of SL(2, Z)
on A = Z(Lα(Z2)) � L((nZ)2), B0 = Lα((Z/nZ)2) � Mn×n(C). Note that
the standard invariant ([Po3]) of N ⊂ Mα depends only on the order n of α,
because if π0, π

′
0 are representations corresponding to primitive roots α, α′ of

order n then there exists an automorphism γ of the group (Z/nZ)2 such that
π′ = π ◦ γ. But we do not know whether the isomorphism class of N ⊂ Mα

depends only on n.

We now reformulate the results in Theorem 7.5 in terms of correspon-
dences. For the definition of Connes’ general N − M correspondences (or
N − M Hilbert bimodules) H =N HM , of the adjoint H =M HN of H, as well
as for the definition of the composition H ◦ K (also called tensor product, or
fusion) of correspondences H =N HM ,K =M KP see [C7], [Po1], [Sa].

7.7. Definition. Let N, M ∈ HT and K be an N − M correspon-
dence, viewed as a Hilbert N −M bimodule. Assume that dimNKM

def=dimNK·
dimKM < ∞ and that K is irreducible, i.e., N ∨ (Mop)′ = B(K). We say that
K is of type C− (resp. C+, C±, C0) if the inclusion N ⊂ (Mop)′ is of type C−
(resp. C+, C±, C0), in the sense of Definitions 7.4.

Finite index correspondences (resp. bimodules) between factors in the class
HT will also be called HT correspondences (resp. HT bimodules).

7.8. Corollary. Let NHM ,M KL be irreducible HT bimodules.
1◦. H is of type C− (resp. C+, C±, C0) if and only if H is of type C+

(resp. C−, C±, C0).
2◦. If both H,K are of type C− (resp. C+, resp. C0) then H◦K is irreducible

of type C− (resp. irred. C+, resp. a sum of irreducible C0). In particular, the
class of HT bimodules (or correspondences) of type C0 over an HT factor forms
a selfadjoint tensor category.
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3◦. If H is of type C+ and K is of type C− then H ◦ K is a direct sum
of irreducible type C± bimodules. Also, K ◦K is a direct sum of irreducible C0

bimodules.

Proof. Part 1◦ is a reformulation of 7.5.1◦, while 2◦ and 3◦ are direct
consequences of 7.5.2◦ − 5◦.

7.9. Definition. Let M ∈ HT and θ ∈AutM be a periodic automorphism
of M , with θn = id and θk outer ∀0 < k < n. Then θ is of type C− (resp. C+)
if the inclusion M ⊂ M �θ Z/nZ is of type C− (resp. C+). By the uniqueness
of the HT Cartan subalgebra, this property is clearly a conjugacy invariant
for θ.

7.10. Corollary. The factor N = L(Z2 � SL(2, Z)) has two noncon-
jugate, period-two automorphisms, one of type C− and one of type C+.

Proof. In example 7.6.1◦, take Γ1 ⊂ Γ0 = SL(2, Z) a subgroup of index 2
and (X, µ) = (T2, µ) with SL(2, Z) acting on it in the usual way. Then N =
L(Z2 � SL(2, Z)) and the resulting type C− inclusion N ⊂ M given by the
construction 7.6.1◦ is of index 2. Thus, by Goldman’s theorem, it is given
by a period 2 automorphism θ−, which is thus of type C−. Alternatively, we
can take θ− to be the automorphism given by the nontrivial character γ of
Z2 � SL(2, Z) with γ2 = 1, defined by γ(a) = −a, γ(b) = b, on the generators
a, b of period 4, resp. 6 of SL(2, Z), and γ(Z2) = 1.

Now take θ+ to be the automorphism of N implemented by
(

1 0
0 −1

)
∈

GL(2, Z). Thus, N ⊂ M = N �θ+ Z/2Z coincides with L(Z2 � SL(2, Z)) ⊂
L(Z2 �GL(2, Z)), and since GL(2, Z) acts freely on Z2, it follows that L(Z2)′∩
M = L(Z2), so that N ⊂ M is of type C+.

7.11. Question. Let N � L(Z2 � SL(2, Z)). Is, then, any irreducible type
C−, C+ or C0 inclusion of factors N ⊂ M isomorphic to a “model” inclusion
7.6.1◦–7.6.2◦?

8. Betti numbers for HT factors

8.1. Definition. Let M ∈ HT and RHT

M be the standard equivalence
relation implemented by the normalizer of the HT Cartan subalgebra of M , as
in Corollary 6.5. Let {βn(RHT

M )}n≥0 be the �2-Betti numbers of RHT

M , as defined

by Gaboriau in [G2]. For each n = 0, 1, 2, . . . , we denote β
HT

n (M)def=βn(RHT

M )
and call it the nth �2

HT
-Betti number (or simply the nth Betti number) of M .

By 6.5, β
HT

n (M) are isomorphism invariants for M .
From the results in Section 6 and the properties proved by Gaboriau for

�2-Betti numbers of standard equivalence relations, one immediately gets:
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8.2. Corollary. 0◦. If M is of type II1 then β
HT

0 (M) = 0 and if
M = Mn×n(C) then β

HT

0 (M) = 1/n.
1◦. If A ⊂ M = A �σ Γ0 is a HT Cartan subalgebra, for some countable

discrete group Γ0 acting freely and ergodically on A � L∞(X, µ), then β
HT

n (M)
is equal to the nth �2-Betti number of Γ0, βn(Γ0), as defined in [ChG]).

2◦. If M ∈ HT and t > 0 then β
HT

n (M t) = β(M)/t,∀n.
3◦. If M1, M2 ∈ HT then for each n ≥ 0 the following Künneth-type

formula holds:

β
HT

n (M1⊗M2) =
∑

i+j=n

β
HT

i (M1)β
HT

j (M2),

where 0 · ∞ = 0 and b · ∞ = ∞ if b �= 0.
4◦. Let M ∈ HT

s
and let Nk ⊂ M, k ≥ 1, be an increasing sequence

of subfactors with Nk ↑ M (so that Nk ∈ HT
s
, for k large enough, by 6.8.3◦).

Then lim inf
k→∞

β
HT

n (Nk) ≥ β
HT

n (M).

Proof. 0◦. This is trivial by the definitions and [G2].
1◦. By 8.1, we have β

HT

n (M) = βn(RHT

M ). But RHT

M = RΓ0 , and by
Gaboriau’s theorem the latter has Betti numbers βn(RΓ0) equal to the Cheeger-
Gromov �2-Betti numbers βn(Γ0) of the group Γ0.

2◦. By Section 6 we know that the class HT is closed under amplifications
and tensor products. Moreover, by 1.4.3 the “amplification” by t of a Cartan
subalgebra A ⊂ M has a normalizer that gives rise to the standard equivalence
relation (RHT

M )t. Then formula 2◦ is a consequence of Gaboriau’s similar result
for standard equivalence relations.

Part 3◦ follows similarly, by taking into account that if A1 ⊂ M1, A2 ⊂ M2

are Cartan subalgebras then N (A1 ⊗ A2)′′ = (N (A1) ⊗N (A2))′′.
4◦. By 6.8.3◦, there exists k0 and an HT

s
Cartan subalgebra A of M such

that A ⊂ Nk,∀k ≥ k0. Then the statement follows from Theorem 5.13 in [G2].

8.3. Corollary. 1◦. If M ∈ HT has at least one nonzero, finite
Betti number then F (M) = {1} and in fact M t1⊗ · · · ⊗ M tn is isomorphic to
M s1⊗ · · · ⊗ M sm if and only if n = m and t1 . . . tn = s1 . . . sm. Equivalently,
{M⊗m}m≥1 are stably nonisomorphic and all the tensor powers M⊗m have
trivial fundamental group, F (M⊗m) = {1},∀m ≥ 1.

2◦. If M ∈ HT and β
HT

1 (M) �= 0 or ∞, then M is not the tensor product
of two factors M1, M2 in the class HT . More generally if β

HT

k (M) is the first
nonzero finite Betti number for M , then M⊗m cannot be expressed as the tensor
product of km + 1 or more factors in the class HT .
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Proof. 1◦. First note that if M has β
HT

k (M) as first nonzero Betti number,
then the formula β

HT

k (M t) = β
HT

k (M)/t implies that M �� M t if t �= 1. Thus,
F (M) = {1}.

Also, by the Künneth formula 8.2.2◦, if β
HT

ni
(Mi) is the first nonzero fi-

nite Betti number for Mi ∈ HT , i = 1, 2, and we put n = n1 + n2, then
β

HT

n (M1⊗M2) = β
HT

n (M1)β
HT

n (M2), is the first nonzero finite Betti number for
M1⊗M2.

Thus, β
HT

km(M⊗m) is the first nonzero finite Betti number for M⊗m, m ≥ 1,
showing that {M⊗m}m≥1 are stably nonisomorphic.

2◦. This is trivial by the first part of the proof and the Künneth formula
8.2.2◦.

8.4. Corollary. 1◦. Let N ⊂ M be an irreducible inclusion of factors
in the class HT with [M : N ] < ∞. If N ⊂ M is of type C− then β

HT

n (M) =
β

HT

n (N),∀n. If N ⊂ M is of type C+ then β
HT

n (M) = [M : N ]β
HT

n (N).

2◦. Let N ⊂ M be an extremal inclusion of factors in the class HT . If
N ⊂ M is of type C0 then β

HT

n (M) = [M : N ]1/2β
HT

n (N),∀n.

3◦. If N ⊂ Q ⊂ P ⊂ M is the canonical decomposition of an irreducible
inclusion of factors N ⊂ M in the class HT , then β

HT

n (Q) = β
HT

n (N), β
HT

n (P ) =
[P : Q]1/2β

HT

n (N) and β
HT

n (M) = [M : P ]β
HT

n (P ).

4◦. Let M ∈ HT , N ⊂ M be a subfactor of finite index, (ΓN,M , (vk)k) be
the graph of N ⊂ M , with its standard weights. Let also {Hk}k be the list of
irreducible Hilbert M -bimodules appearing in some L2(Mn, τ), n = 0, 1, 2, . . . ,
with {M ⊂ M(Hk)}k the corresponding irreducible inclusions of factors. If
β

HT

n (M) �= 0 or ∞ for some n ≥ 1 then vk = β
HT

n (M(Hk))/β
HT

n (M),∀k. Thus,

ΓN,MΓt
N,M (β

HT

n (M(Hk)))k = [M : N ](β
HT

n (M(Hk)))k.

Proof. 1◦. If N ⊂ M is of type C+ then RHT

N is a subequivalence relation
of index [M : N ] in RHT

M , so that by [G2] we have

β
HT

n (M) = βn(RHT

M ) = [M : N ]βn(RHT

N ) = [M : N ]β
HT

n (N).

If N ⊂ M is of type C− then by part 1◦ of Theorem 7.5, M ⊂ 〈M, N〉 is
of type C+. Since 〈M, N〉 is the [M : N ]-amplification of N , by the first part
and by formula 8.2.2, we get:

β
HT

n (N) = [M : N ]−1β
HT

n (〈M, N〉) = [M : N ]−1[M : N ]β
HT

n (M).

2◦. If N ⊂ M is of type C0 then by 7.1 the equivalence relation RHT

M is an
[M : N ]1/2-amplification of RHT

N . Thus, β
HT

n (M) = [M : N ]1/2β
HT

n (N).
3◦. This is just a combination of 1◦ and 2◦.
4◦. Note that all subfactors M ⊂ M(Hk) appear as irreducible inclusions

of factors in some M ⊂ M2n. By Jones’ formula for the local indices ([J1]), if
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p is a minimal projection in M ′ ∩ M2n with (Mp ⊂ pM2np) � (M ⊂ M(Hk))
then [M(Hk) : M ]/τ(p)2 = [M2n : M ]. On the other hand, since M2n is the
[M : N ]n-amplification of M and since M(Hk) � pM2np, it follows that M(Hk)
is the τ(p)[M : N ]n- amplification of M . By 8.2.2◦, this yields β

HT

n (M(Hk)) =
[M(Hk) : M ]1/2β

HT

n (M) = vkβ
HT

n (M).

Using the inventory of examples 6.9 of factors in the class HT , and the
calculations of �2-Betti numbers for groups in [ChGr], [B], from 8.2.1◦ above
we get the following list of Betti numbers for factors:

8.5. Corollary. 1◦. If α ∈ T is a primitive root of unity of order n,
then Mα = Lα(Z2)�SL(2, Z) ∈ HT

s
(cf. 6.9.1) and β

HT

1 (Mα) = (12n)−1, while
β

HT

k (Mα) = 0,∀k �= 1.
2◦. If α, α′ are primitive roots of unity of order n respectively n′ then

Mα � Mα′ if and only if n = n′.

Proof. 1◦. By 5.2.1◦, 8.2.1◦ and 8.2.2◦, β
HT

k (Mα) = βk(SL(2, Z))/n. But
by [B] we have β1(SL(2, Z)) = 1/12, βk(SL(2, Z)) = 0 if k �= 1.

2◦. By 5.2.1◦, if n = n′ then Mα � Mα′ , while if n �= n′ then β
HT

1 (Mα) �=
β

HT

1 (Mα′), and so Mα �� Mα′ .

8.6. Corollary. 1◦. If M = L∞(S2, λ) � PSL(2, Z) as in 6.9.1′ then
β

HT

1 (M) = 1/6 and β
HT

n (M) = 0,∀n �= 1.
2◦. Let σ be any of the actions 6.9.2 or 6.9.6 of the free group Fn on the

diffuse abelian von Neumann algebra (A, τ), and M = A�σ Fn the correspond-
ing factor in the class HT . Then β

HT

1 (M) = (n − 1), β
HT

k (M) = 0,∀k �= 1.
3◦. Let Γ0 be an arithmetic lattice in SU(n, 1), n ≥ 2, or in SO(2n, 1),

n ≥ 1, and σ a free ergodic trace-preserving action of Γ0 on the diffuse abelian
von Neumann algebra A as in 6.9.3 or 6.9.6. Let M = A �σ Γ0 ∈ HT be the
corresponding HT factor. Then β

HT

n (M) �= 0 and β
HT

k (M) = 0,∀k �= n. Also, if
Γ0 is an arithmetic lattice in some SO(2n+1, 1), n ≥ 1, then the corresponding
HT factors constructed in 6.9.3 satisfy β

HT

k (M) = 0,∀k ≥ 0.
4◦. Let Γ0 be an HT group (in the sense of Definition 6.11; e.g., any of the

groups listed in 6.13) and Γ1 an infinite amenable group. Let M ∈ HT be of
the form M = L∞(X, µ) � (Γ0 × Γ1) (cf. 6.13.3◦). Then β

HT

k (M) = 0,∀k ≥ 0.

Proof. For each of the groups in 1◦, 2◦ the �2-Betti numbers for certain
specific co-compact actions were calculated in [B]. Then the statements follow
by [G2], [ChGr] and 8.2.1◦, similarly for 3◦.

8.7. Corollary. If Γ0 = SL(2, Z), Fn or if Γ0 is an arithmetic lattice
in SU(n, 1),SO(n, 1), for some n ≥ 2, then there exist three nonisomorphic
factors Mi = L∞(X, µ) �σi

Γ0, 1 ≤ i ≤ 3, in the class HT , with M1 ∈ HT
s
,

M2,3 /∈ HT
s
, M1,2 non-Γ and M3 with the property Γ.
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Proof. All the groups mentioned have property H (see 3.2). The statement
then follows from the last part of 5.3.3◦.

8.8. Corollary. There exist both property Γ and non-Γ type II1 fac-
tors M with trivial fundamental group, F (M) = {1}. Moreover, such factors
M can be taken to have non stably-isomorphic tensor powers, all with trivial
fundamental group.

8.9. Definition. Let M ∈ HT . The HT-approximate dimension of M ,
denoted adHT(M), is by definition Gaboriau’s approximate dimension ([G2])
of the equivalence relation RHT

M associated with the HT Cartan subalgebra of
M . Note that adHT(M t) = adHT(M),∀t > 0.

8.10. Corollary. Let M ∈ HT be of the form Mk = L∞(X, µ) � Γk,
where Γk = Γ0 × Fn1 × · · · × Fnk

, for some 2 ≤ ni < ∞,∀1 ≤ i ≤ k, with
Γ0 an increasing union of finite groups. Then adHT(Mk) = k, so the factors
Mk, k ≥ 1, are non stably-isomorphic.

Proof. By 5.17, 5.13 and 5.16 in [G2], the approximate dimension of the
group Γk, and thus of RHT

Mk
, is equal to k.

8.11. Definition. Let M ∈ HT
s

and OutHT(M) be the countable discrete
group defined in Corollary 6.7.2◦. We call it the HT-outomorphism group of
M . As noted in 6.7, OutHT(M) can be identified with the outer automorphism
group of the equivalence relation RHT

M , Out(RHT

M ) = Aut(RHT

M )/Int(RHT

M ). Note
that OutHT(M t) =OutHT(M),∀t > 0. The outer automorphism group of an
equivalence relation R was first considered by I. M. Singer in [Si], and was also
studied in [FM]. By 6.7 this group is discrete (with the quotient topology) and
countable. Thus, it seems likely that OutHT(M) can be computed in certain
specific examples. In this respect we mention the following:

8.12. Problem. Calculate OutHT(M) for M = L(Z2 � SL(2, Z)), more
generally for Mn = L((Z2)n � SL(2, Z)), with SL(2, Z) acting diagonally on
(Z2)n = Z2⊕· · ·⊕Z2. Let Gn be the normalizer of SL(2, Z) in GL(2n, Z), where
SL(2, Z) is embedded in GL(2n, Z) block-diagonally. Is OutHT(Mn) equal to
the quotient group Gn/SL(2, Z), in particular is OutHT(M1) equal to {θ+, id},
for θ+ the C+ period 2 automorphism in Corollary 7.7?

8.13. Remarks. 1◦. Note that the above Corollary 8.8 (and also 8.5–8.7)
solves Problem 3 from Kadison’s Baton Rouge list, providing lots of examples
of factors M with the property that the algebra of n by n matrices over M is
not isomorphic to M , for any n ≥ 2.

2◦. We could extend the definition of β
HT

n (M) to arbitrary II1 factors M ,
by simply letting β

HT

n (M) = 0,∀n, whenever M does not belong to the class
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HT . This definition would still be consistent with the property β
HT

n (M t) =
β

HT

n (M)/t,∀t > 0. However, in order for this definition to also satisfy the
Künneth formula (an imperative!), one needs to solve the following:

8.13.2. Problem. Does M1⊗M2 ∈ HT imply M1, M2 ∈ HT ?

Note that if this problem were to have an affirmative answer, our factors
A�Fn ∈ HT would be prime, i.e., A�Fn would not be expressible as a tensor
product of type II1 factors M1⊗M2. Indeed, this is because β

HT

1 (M1⊗M2) = 0
for M1, M2 ∈ HT , by the Künneth formula, while β

HT

1 (A � Fn) = n − 1 �= 0.

3◦. It would be interesting to extend the class of factors in the “good
class” for which a certain uniqueness result can be proved for some special
type of Cartan subalgebras, beyond the HT factors considered here. Such
generalizations can go two ways: by either extending the class of groups Γ0 for
which A ⊂ A �σ Γ0 works, for certain σ, or by showing that for the groups Γ0

already considered here (e.g., the free groups) any action σ works (see Problems
6.12.1◦ and respectively 6.12.2◦, in this respect).

4◦. During a conference at MSRI in May 2001 ([C6]), Alain Connes
posed the problem of constructing �2-type Betti number invariants βk(M)
for type II1 factors M , building on similar conceptual grounds as in [A],
[C4], [ChGr], [G2,3], through appropriate definitions of simplicial complexes,
�2-homology/cohomology for M , which should satisfy βk(L(G0)) = βk(G0) for
von Neumann factors M = L(G0) associated to discrete groups G0. Thus,
since βk(Z2 � SL(2, Z)) = 0,∀k (cf. [ChGr]), such Betti numbers would give
βk(L(Z2 � SL(2, Z))) = 0,∀k.

Instead, our approach to defining �2-Betti number invariants was to re-
strict our attention to a class of factors M having a special type of Cartan
subalgebras A, the HT ones, for which we could prove a uniqueness result,
thus being able to use the notion of Betti numbers for equivalence relations
in [G2]. Thus, our Betti numbers are defined “relative” to HT Cartan subal-
gebras, a fact we emphasized by using the terminology “�2

HT
-Betti numbers”

and the notation “β
HT

n (M)”. When M = A � G0 these �2
HT

-Betti numbers
satisfy β

HT

k (M) = βk(G0). In particular, if M = L(Z2 � SL(2, Z)) then
β

HT

1 (M) = β1(SL(2, Z)) �= 0. Thus β
HT

1 (M) �= β1(M), if βk(M) could be
defined as asked in [C6].

Moreover, if such βk(M) are possible, then according to Voiculescu’s for-
mula ([V1]) for the number of generators of the amplifications/compressions
M t of the free group factors M = L(Fn) (cf. also [Ra], [Dy], [Sh]), the first
Betti number β1(M t) (= (number of generators of M t) −1) should satisfy a
formula of the type β1(M t) = β1(M)/t2, rather than β

HT

1 (M t) = β
HT

1 (M)/t,
as we have in this paper!
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Appendix: Some conjugacy results

We prove here several conjugacy results for subalgebras in type II1 factors.
The first one, Theorem A.1, plays a key role in the proof of 6.2. The start-
ing point in its proof is the following simple observation: If B0, B are finite
von Neumann algebras for which there exists a B0 − B Hilbert bimodule H
with dimHB < ∞ then a suitable reduction algebra of B0 is isomorphic to a
subalgebra of some reduced of B. In the context of C∗-algebras, this is reminis-
cent of the fact that imprimitivity bimodules entail Morita equivalence. In the
von Neumann context, if both B0, B are subalgebras in some finite factor M

then existence of Hilbert B0 − B bimodules H ⊂ L2(M, τ) with dimHB < ∞
amounts to existence of finite projections in B′

0 ∩ 〈M, B〉 (〈M, B〉 being the
basic construction algebra) and the corresponding isomorphism of B0 into B

is implemented by an element in M .
The basic construction was first used in conjugacy problems by

Christensen ([Chr]), to study “small perturbations” of subalgebras of type
II1 factors. Although in A.1 we deal with conjugacy of subalgebras for which
no “small distance” assumption is made, we still use the basic construction
as a set-up for the proof. This framework allows us to use a trick inspired
from [Chr], and then to utilize techniques from “subfactor theory”, notably
the pull down identity ([PiPo], [Po2,3]). We also use von Neumann algebra
analysis of projections, with repeated use of results from [K2]. For notation
and elementary properties of the basic construction, see Section 1.3 and [J1],
[PiPo], [Po2,3].

To state A.1, let M be a finite factor, B ⊂ M a von Neumann subalgebra
and U0 ⊂ M be a subgroup of unitary elements. Let B0 = U ′′

0 be the von
Neumann algebra it generates in M . For each b ∈ 〈M, B〉, Tr(b∗b) < ∞, we
denote by KU0(b) the weak closure of the convex hull of {u0bu

∗
0 | u0 ∈ U0},

i.e., KU0(b) = cow{u0bu
∗
0 | u0 ∈ U0}. Note that KU0(b) is also contained in the

Hilbert space L2(〈M, B〉,Tr), where it is still weakly closed.
Let h = hU0(b) ∈ KU0(b) be the unique element of minimal norm ‖ ‖2,Tr in

KU0(b). Since uKU0(b)u∗ = KU0(b) and ‖uhu∗‖2,Tr = ‖h‖2,Tr,∀u ∈ U0, by the
uniqueness of h it follows that uhu∗ = h,∀u ∈ U0. Thus h ∈ U ′

0 ∩ 〈M, B〉 =
B′

0 ∩ 〈M, B〉. Moreover, by the definitions, we see that if 0 ≤ b ≤ 1 then
0 ≤ k ≤ 1 and Tr(k) ≤ Tr(b), for all k ∈ KU0(b).

A.1. Theorem. Let M, B, B0,U0 be as above. Assume the von Neumann
subalgebra B ⊂ M is maximal abelian in M and B0 is abelian with B01

def=B′
0∩M

still abelian (thus maximal abelian in M). Then the following conditions are
equivalent:

1◦. There exists a nonzero projection e0 ∈ B′
0 ∩ 〈M, B〉 with Tr(e0) < ∞.
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2◦. There exist nonzero projections q0 ∈ B′
0 ∩ M , q ∈ B and a partial

isometry v ∈ M such that v∗v = q0, vv∗ = q and vB0v
∗ ⊂ Bq.

Proof. 2◦ =⇒ 1◦. If v satisfies condition 3◦ then B0q0 is contained in
v∗Bv. Since eB commutes with B, it follows that e0 = v∗eBv commutes with
B0, i.e., e0 ∈ B′

0 ∩ 〈M, B〉. Also, Tre0 = Tr(v∗eBv) ≤ Tr(eB) = 1.
1◦ =⇒ 2◦. Denote M1 = 〈M, B〉. Since B0e0 is abelian, it is contained in

a maximal abelian subalgebra B1 of e0M1e0. Since M1 = (JBJ)′ ∩ B(L2M),
it is a type I von Neumann algebra. Thus, by a result of Kadison ([K2]), B1

contains a nonzero abelian projection e1 of M1 (i.e., e1M1e1 is abelian). Since
eB is a maximal abelian projection in M1 and has central support 1 in M1, it
follows that eB majorizes e1. Thus, e1 satisfies e1(L2(M, τ)) = ξB for some
ξ ∈ L2(M, τ).

Let V ∈ M1 be a partial isometry such that V ∗V = e1 ≤ e0 and V V ∗ ≤ eB.
It follows that V B1e1V

∗ is a subalgebra of eBM1eB = BeB. Since e1 commutes
with B0, if we denote by f ′ the maximal projection in B0 such that f ′e1 = 0
and let f0 = 1 − f ′, then there exists a unique isomorphism α from B0f0 into
B such that α(b)eB = V bV ∗,∀b ∈ B0f0. Let f = α(f0) ∈ B.

Then α(b)eBV = eBV b, ∀b ∈ B0f0. By applying Φ to both sides and
denoting a the square integrable operator a = Φ(eBV ) ∈ L2(M, τ), we see
that α(b)a = ab,∀b ∈ B0. Since eBa = eBV = V , it follows that a �= 0.

By the usual trick, if we denote by v0 ∈ M the unique partial isometry in
the polar decomposition of a such that the right supports of a and v0 coincide,
then p0 = v∗0v0 belongs to the algebra B′

0 ∩ M = B01, which is abelian by
hypothesis, p = v0v

∗
0 belongs to (α(B0)f)′∩fMf and α(b)v0 = v0b,∀b ∈ B0f0.

But B01 = B′
0 ∩M maximal abelian in M implies B01f0 maximal abelian

in f0Mf0. Moreover, since v0B0v
∗
0 = α(B0)p, if we denote B11 = v0B01v

∗
0,

then by spatiality,

B11 = v0B01v
∗
0 = v0(B′

0 ∩ M)v∗0 = v0B0v
∗
0
′ ∩ pMp

= (α(B0)p)′ ∩ pMp = p((α(B0)f)′ ∩ fMf)p.

This implies that p is an abelian projection in (α(B0)f)′ ∩ fMf . Thus, if z

is the central projection of p in (α(B0)f)′ ∩ fMf then ((α(B0)f)′ ∩ fMf)z =
((α(B0)z)′ ∩ zMz is finite of type I.

Since Bf is maximal abelian in fMf it follows that z ∈ Bf and Bz

is maximal abelian in the type Ifin algebra ((α(B0)z)′ ∩ zMz. By [K2], there
exists a projection f11 ∈ Bz such that f11 is equivalent to p in (α(B0)z)′∩zMz.
Let v1 ∈ (α(B0)z)′ ∩ zMz be such that v1v

∗
1 = f11, v∗1v1 = p and denote v =

v1v0 ∈ M . Then v∗v = p0 ∈ B′
0, vv∗ = f11 ∈ B and vB0v

∗ = α(B0)f11 ⊂ Bf11.

Our second conjugacy result, A.2, is a “small perturbation”-type result,
needed in the proofs of 4.5 and 6.6.3◦. The starting point in its proof is a trick
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from [Chr]. Then, as in A.1, we use techniques from [Po2,3,7], [PiPo]. Note
that the proof of Step 1 below is a refinement of the proof of 4.4.2 in [Po1],
while the proof of Step 2 is a refinement of an argument used in proving 4.5.1,
4.5.6 and 4.7.3 in [Po1].

A.2. Theorem. For any ε0 > 0 there exists δ > 0 such that if M is
a type II1 factor, B ⊂ M is a subfactor with B′ ∩ M = C, B0 ⊂ M is a von
Neumann subalgebra with B′

0∩M = Z(B0), NM (B0)′′ = M and B0 ⊂δ B then
there exists a unitary element u ∈ M such that ‖u− 1‖2 ≤ ε0 and uB0u

∗ ⊂ B.

Proof. Step 1. Let ε = ε2
0/4. We first prove that ∃δ > 0 such that if

B0, B ⊂ M satisfy B′
0∩M = Z(B0) and B0 ⊂δ B then ∃p0 ∈ P(B0), p ∈ P(B),

a unital isomorphism θ of p0B0p0 into pBp, a projection q ∈ θ(p0B0p0)′∩pMp

and a partial isometry v ∈ M such that v∗v = p0, vv∗ = q ≤ p, ‖v − 1‖2 ≤ ε,
τ(q) ≥ 1 − ε and vb0 = θ(b0)v,∀b0 ∈ p0B0p0.

To do this note first that if u0 ∈ U(B0) then ‖u0eBu∗
0 − eB‖2

2,Tr/2 =
1−Tr(eBu0eBe∗0) = ‖u0−EB(u0)‖2

2 (see e.g., line 17 on page 322 in [Po9]). So
if ‖u0−EB(u0)‖2 ≤ δ, ∀u0 ∈ U0 = U(B0), then with the notation in A.1 we get
h = hU0(eB) ∈ B′

0 ∩ 〈M, B〉, with h ≤ 1, Tr(h) ≤ 1 and ‖h − eB‖2,Tr ≤ 21/2δ.
Thus, by (1.1 in [C2]) there exists s > 0 such that the spectral projection e

of h corresponding to the interval [s,∞) satisfies ‖e − eB‖2,Tr ≤ (2δ)1/2. Note
that e ∈ B′

0 ∩ 〈M, B〉 as well. We next want to show that by slightly shrinking
e we may assume in addition (B0e)′ ∩ e〈M, B〉e = Z(B0)e.

So let u ∈ U(C), where C = (B0e)′ ∩ e〈M, B〉e. Since eB〈M, B〉eB =
BeB and e is (2δ)1/2-close to eB in the norm ‖ ‖2,Tr, if we denote by b the
unique element in B with beB = eBueB, then u is close to ebe in the norm
‖ ‖2,tr implemented by the normalized trace tr = Tr(e)−1Tr on e〈M, B〉e.
This implies that ‖[ebe, v]‖2,tr ≤ ε(δ), ∀v ∈ U(B0e), in which ε(δ) denotes
from now on a constant depending on δ, with lim

δ→0
ε(δ) = 0 (but ε(δ) possibly

changing in each of the subsequent estimates). Since B′
0 ∩ M = Z(B0), if we

average ebe by unitaries in B0e, we see that u is ε(δ)-close to an element in
Z(B0)e. Thus C ⊂ε(δ) A0, where A0 = Z(B0)e. Noticing that A0 ⊂ Z(C),
we infer that this implies ∃e′ ∈ Z(C), with tr(e′) ≥ 1 − ε(δ) and Ce′ = A0e

′;
i.e., (B0e)′ ∩ e〈M, B〉e = Z(B0)e. Indeed, for if q′ ∈ Z(C) is the maximal
projection with Cq′ abelian and A ⊂ C is a maximal abelian ∗-subalgebra
with A0 ⊂ A then q′ ∈ A and there exists u ∈ U(B(1 − q′)) with EA(u) = 0.
Since q′ + u ∈ U(C) we have:

tr(1 − q′) = ‖u‖2
2,tr = ‖(q′ + u) − EA(q′ + u)‖2

2,tr

≤‖(q′ + u) − EA0(q
′ + u)‖2

2,tr ≤ ε(δ)2.

This reduces the problem to the case C is abelian, which is an easy exercise
(e.g., use the argument on page 745 in [Po7]).
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Taking e′ for e in the above, this shows that if B0 ⊂δ B then ∃e ∈
B′

0∩〈M, B〉 finite projection with ‖e−eB‖2,Tr ≤ ε(δ) and (B0e)′∩e〈M, B〉e =
Z(B0)e. But by ([Po6]) the latter condition implies there exists A1 ⊂ B0

abelian such that A1e is maximal abelian in e〈M, B〉e. By [K2] there exists a
projection P ∈ A1 = A1e such that P is equivalent to the support projection
of eeBe ∈ e〈M, B〉e. In particular, P is majorized by eB. Also, P , e and eB are
ε(δ)-close one to another. By 1.2 in [C2], there exists a partial isometry V ∈
〈M, B〉 such that V is ε(δ)-close to eB, V ∗V = P ∈ A1 ⊂ B′

0 and V V ∗ ≤ eB.
As in [Chr] and in the proof of A.1, if p0 ∈ B0 and p ∈ B denote the support
projections of V ∗V in B0 and respectively V V ∗ in B then there exists a unital
isomorphism θ of p0B0p0 into pBp such that V b0 = θ(b0)V,∀b0 ∈ p0B0p0. If we
now take the partial isometry v = Φ(V )|Φ(V )|−1 ∈ M , then we still have vb0 =
θ(b0)v,∀b0 ∈ p0B0p0 and v is ε(δ)-close to 1 (using ‖Φ(V )−1‖1 ≤ ‖V −eB‖1,Tr

and applying 2.1 in [C2]). Since v∗v ∈ (p0B0p0)′ ∩ p0Mp0 = Z(B0)p0 and
vv∗ ∈ θ(p0B0p0)′ ∩ pMp, letting q = vv∗, we are done.

Step 2. If p0, p, q, v, θ are as in Step 1, then vB0v
∗ = θ(p0B0p0)q, so by

spatiality we have:

q(θ(p0B0p0)′ ∩ pMp)q = (vB0v
∗)′ ∩ qMq

= v(p0B0p
′
0 ∩ p0Mp0)v∗ = vZ(B0)v∗ = Z(θ(p0B0p0))q.

In particular, q(θ(p0B0p0)′ ∩ pBp)q = Z(θ(p0B0p0))q. Since Z(θ(p0B0p0)) ⊂
θ(p0B0p0)′ ∩ pBp this implies that there exists a normal conditional expecta-
tion E of θ(p0B0p0)′ ∩ pBp onto Z(θ(p0B0p0)) such that qxq = E(x)q, ∀x ∈
θ(p0B0p0)′ ∩ pBp.

Let p′ ∈ θ(p0B0p0)′∩pBp be the minimal projection such that qp′ = q. By
replacing if necessary θ by θ(·)q′ (while leaving v unchanged), we may assume
p′ = p. Thus, if a ∈ θ(p0B0p0)′ ∩ pBp satisfies aq = 0 then the support of
a∗a is majorized by p − p′ = 0, implying that a = 0 and showing that E is
faithful. Since q implements the normal faithful conditional expectation E

of θ(p0B0p0)′ ∩ pBp onto Z(θ(p0B0p0)), the weak closure of sp{xqy | x, y ∈
θ(p0B0p0)′ ∩ pBp} is a finite von Neumann subalgebra Q of pMp with qQq �
Z(θ(p0B0p0)). Since q has support 1 in Q, this shows that Q is type Ifin. But
Q contains (θ(p0B0p0)′ ∩ pBp)1Q, which is isomorphic to θ(p0B0p0)′ ∩ pBp.
Thus, the latter follows type Ifin as well.

Let q′ ∈ Z(θ(p0B0p0))(⊂ Z(θ(p0B0p0)′∩pBp)) be the maximal projection
with

q′Z(θ(p0B0p0)) = q′(θ(p0B0p0)′ ∩ pBp).

It follows that there exists b ∈ L2(θ(p0B0p0)′ ∩ pBp)(p − q′) with E(b) = 0
and E(b∗b) = p − q′ (see e.g., [Po2]). This shows that bqb∗ is a projection
orthogonal to q(p − q′) and equivalent to q(p − q′), while still under p − q′.
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Thus

τ(q(p − q′)) = τ(bq(p − q′)b∗) ≤ τ((1 − q)(p − q′)) ≤ τ(1 − q) ≤ ε.

Thus, 1 − ε − τ(q′) ≤ τ(p − q′) ≤ 2ε, implying that τ(q′) ≥ 1 − 3ε. This
shows that by “cutting everything” by q′ we may assume θ(p0B0p0)′ ∩ pBp =
Z(θ(p0B0p0)).

Since B0 is regular in M , p0B0p0 is regular in p0Mp0 (see e.g. [JPo]) and
thus, by spatiality, θ(p0B0p0)q is regular in qMq. Since θ(p0B0p0) � b → bq ∈
θ(p0B0p0)q is an isomorphism, for each u ∈ NqMq(θ(p0B0p0)q) there exists
an automorphism σu of θ(p0B0p0) such that ubqu∗ = σu(b)q, ∀b ∈ θ(p0B0p0).
Thus, ub = σu(b)u, ∀b ∈ θ(p0B0p0).

By applying EB to both sides of this equality, it follows that EB(u)b =
σu(b)EB(u),∀b ∈ θ(p0B0p0). By also taking into account that θ(p0B0p0)′ ∩
pBp ⊂ θ(p0B0p0), we see that if B1 ⊂ pBp denotes the von Neumann algebra
generated by the normalizer of θ(p0B0p0) in pBp then EB(NqMq(θ(p0B0p0)q) ⊂
B1. By the regularity of θ(p0B0p0)q in qMq, this entails EB(qMq) ⊂ B1 as
well. Since q ≤ p and τ(q) ≥ 1−ε, we thus have pBp ⊂ε B1 ⊂ pBp. Since pBp

is a factor, this implies there exists a projection p′′ ∈ Z(B1) with τ(p′′) ≥ 1−2ε

such that B1p
′′ = p′′Bp′′.

By cutting with p′′ we may thus also assume θ(p0B0p0) is regular in
pBp. Since pBp′ ∩ pMp = Cp, this implies N1 = NpBp(θ(p0B0p0)) satis-
fies N ′

1 ∩ pMp = Cp. Since N1 also normalizes the algebras Z(θ(p0B0p0)) =
θ(p0B0p0)′ ∩ pBp and θ(p0B0p0)′ ∩ pMp, it acts ergodically on both. By er-
godicity, θ(p0B0p0)′ ∩ pMp is either homogeneous of type Ifin or of type II1.
Since q(θ(p0B0p0)′ ∩ pMp)q = Z(θ(p0B0p0))q is abelian and τ(q) > 1/2 (for ε

chosen sufficiently small), θ(p0B0p0)′ ∩ pMp is abelian.
Denote A0 = Z(θ(p0B0p0)), A1 = θ(p0B0p0)′ ∩ pMp, N0 = pBp and Q0

the factor generated by N1 and A1 in pMp. Thus, we have N ′
0 ∩ Q0 = C and

the nondegenerate commuting square

N0 ⊂ Q0

∪ ∪
A0 ⊂ A1.

(Recall that we also have q ∈ A1, A1q = A0q and τ(q) ≥ 1 − ε.)
Thus, if e = eQ0

N0
denotes the Jones projection corresponding to the inclu-

sion N0 ⊂ Q0 then A0 ⊂ A1 ⊂ 〈A1, e〉 is the basic construction for A0 ⊂ A1.
Since Z(〈A1, e〉) = A0 and since N1 acts on A0 ⊂ A1 with the action on A0 be-
ing ergodic, it follows that 〈A1, e〉 is homogeneous of type I. But q(A1eA1)q =
A0(qeq)A0, and since [A0, qeq] = 0 this implies q〈A1, e〉q = A0qeq. Thus,
q〈A1, e〉q is abelian. Equivalently, q is an abelian projection in 〈A1, e〉. But
then q is majorised by e in 〈A1, e〉. Thus q is majorised by e in 〈Q0, e〉 as well,
showing that q is finite in 〈Q0, e〉.
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But q enters finitely many times in 1Q, in the factor Q0, which is a subal-
gebra of 〈Q0, e〉. Thus 〈Q0, e〉 is a finite factor and τ(e) ≥ τ(q) ≥ 1 − ε > 1/2.
By Jones’ theorem, e = 1 and N0 = Q0. In particular, q ∈ θ(p0B0p0), so that
q = p. Thus, v∗v = p0 ∈ B0, vv∗ = p ∈ B and v(p0B0p0)v∗ ⊂ pBp. Since the
normalizer of B0 acts ergodically on the center of B0 and B is a factor, there
exists a unitary element u ∈ M such that up0 = v and uB0u

∗ ⊂ B. But then
‖1 − u‖2 ≤ ‖1 − v‖2 + ‖v − u‖2 ≤ 2ε1/2 = ε0.

Our last conjugacy result, somewhat technical, is needed in the proof of
4.3.2◦.

A.3. Theorem. Let M be a type II1 factor and P, Q ⊂ M von Neumann
subalgebras. Assume there exists a group of unitary elements U0 ⊂ P that
normalizes Q and satisfies N ′

0 ∩ M = Z(N0) and [Z(N0), Q] = 0, where N0 =
U ′′

0 . If Q ⊂ε0 P , for some ε0 < 1/2, then there exists a nonzero projection
p ∈ Z(N0) such that Qp ⊂ P .

Proof. Let M ⊂eP 〈M, eP 〉 be the basic construction for P ⊂ M , with Tr
and Φ the canonical trace and weight, respectively, as in 1.3.1. The statement
is equivalent to proving that there exists p ∈ Q′ ∩ Z(N0), p �= 0, such that
[Qp, eP ] = 0.

Let k be the unique element of minimal norm ‖ ‖2,Tr in K = cow{ueP u∗ |
u ∈ U(Q)}. Note that 0 ≤ k ≤ 1,Tr(k) ≤ 1. Also, since for u ∈ U(Q) we have

‖eP − ueP u∗‖2
2,Tr = 2 − 2‖EP (u)‖2

2 = 2‖u − EP (u)‖2
2 ≤ 2ε2

0,

by taking convex combinations and weak limits ‖k − eP ‖2
2,Tr ≤ 2ε2

0 < 1/2.
Since uKu∗ = K and ‖uku∗‖2,Tr = ‖k‖2,Tr,∀u ∈ U(Q), by the uniqueness

of k as the element of minimal norm ‖ ‖2,Tr in K, it follows that uku∗ =
k,∀u ∈ U(Q). Thus [k, Q] = 0. Moreover, if v ∈ U0 ⊂ P then [v, eP ] = 0 and
vQv∗ = Q, implying that v(ueP u∗)v∗ = (vuv∗)eP (vu∗v∗) ⊂ K, ∀u ∈ U(Q).
Thus, vKv∗ = K and so, by the uniqueness of k, [k, v] = 0. Since U0 generates
N0, it follows that k and all its spectral projections commute with both Q and
N0 = U ′′

0 .
Together with [eP , N0] = 0 this yields [keP , N0] = 0 and further on, by

applying the operator valued weight Φ of 〈M, eP 〉 on M (which is M -bimodular,
thus N0-bimodular as well) and letting a = Φ(keP ), we see that [a, N0] = 0.
Equivalently, a ∈ N ′

0 ∩ M = Z(N0). Since Z(N0) ⊂ N0 ⊂ P , a ∈ P and so
[a, eP ] = 0. Together with aeP = keP , this entails aeP = eP aeP = eP keP ≥ 0,
and so a ≥ 0. In particular, a = a∗. Thus, keP = aeP = (aeP )∗ = (keP )∗ =
eP k, showing that [k, eP ] = 0.

Let now e1 be the spectral projection of k corresponding to the set {1}.
Thus e1 = e1k ∈ cow{u(e1eP )u∗ | u ∈ U0}, showing that e1 ≤ eP . Thus, if
p = Φ(e1) then p is a projection in P with e1 = peP , [p, Q ∨ N0] = 0 and
[eP , Qp] = 0. Thus, we are done, provided we can show that p �= 0.
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Assume by contradiction that e1 = 0. We show that this implies that
for any spectral projection e of k, eeP is majorized by e(1 − eP ) in 〈M, eP 〉.
Indeed, for if this is not the case then there exists a projection z in Z(〈M, eP 〉)
and a partial isometry w ∈ 〈M, eP 〉 such that w∗w � zeeP , ww∗ = ze(1− eP ).
If we denote b = Φ(w), then beP = w and so

bb∗ = Φ(ww∗) = Φ(ze(1 − eP )) ∈ N ′
0 ∩ M = Q′ ∩ Z(N0).

Similarly, q = Φ(ezeP ) is a projection in P which commutes with N0, thus
lying in Z(N0) ⊂ P . Since bb∗ ≥ beP b∗ = ze(1 − eP ) and the morphism
Z(N0) � x �→ xze(1 − eP ) has support q (because e1 = 0), it follows that
bb∗ ≥ q. Thus

τ(q) = Tr(zeeP ) � Tr(w∗w) = Tr(ww∗) = τ(bb∗) ≥ τ(q),

a contradiction.
In particular, since eeP ≺ e(1− eP ) for any spectral projection e of k, we

have ‖k(1 − eP )‖2,Tr ≥ ‖keP ‖2,Tr. By Pythagoras, this gives

τ((1 − k)2) + τ(k2) ≤ ‖keP − eP ‖2
2,Tr + ‖k(1 − eP )‖2

2,Tr = ‖k − eP ‖2
2,Tr < 1/2.

Thus 0 > τ(2(1 − k)2 + 2k2 − 1) = τ(1 − 4k + 4k2) = τ((1 − 2k)2). This final
contradiction ends the proof of the theorem.
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[K1] R. V. Kadison, Problems on von Neumann algebras, Baton Rouge Conference,
1967.

[K2] ———, Diagonalizing matrices, Amer. Math. J . 106 (1984), 1451–1468.

[KafW] V. Kaftal and G. Weiss, Compact derivations relative to semifinite von Neumann
algebras, J. Funct. Anal . 62 (1985), 202–220.

[Ka] D. Kazhdan, Connection of the dual space of a group with the structure of its
closed subgroups, Funct. Anal. Appl . 1 (1967), 63–65.

[KoY] H. Kosaki and S. Yamagami, Irreducible bimodules associated with crossed product
algebras, Internat. J. Math. 3 (1992), 661–676.

[Lu] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras
and L2-Betti numbers II. Applications to Grothendieck groups, L2-Euler charac-
teristics and Burnside groups, J. Reine Angew. Math. 496 (1998), 213–236.

[Ma] G. Margulis, Finitely-additive invariant measures on Euclidian spaces, Ergodic
Theory Dynam. Systems 2 (1982), 383–396.

[McD] D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc.
21 (1970), 443–461.

[MvN] F. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. 44
(1943), 716–808.

[PiPo] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm.
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