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On a class of type II; factors
with Betti numbers invariants

By SORIN Popa*

Abstract

We prove that a type II; factor M can have at most one Cartan subalgebra
A satisfying a combination of rigidity and compact approximation properties.
We use this result to show that within the class H7 of factors M having such
Cartan subalgebras A C M, the Betti numbers of the standard equivalence
relation associated with A C M ([G2]), are in fact isomorphism invariants for
the factors M, ﬁZT(M ),n > 0. The class H7 is closed under amplifications
and tensor products, with the Betti numbers satisfying 5. (M*) = g5 (M)/t,
Vvt > 0, and a Kiinneth type formula. An example of a factor in the class H7T
is given by the group von Neumann factor M = L(Z? x SL(2,Z)), for which
B (M) = B1(SL(2,Z)) = 1/12. Thus, M* % M,Vt # 1, showing that the
fundamental group of M is trivial. This solves a long standing problem of
R. V. Kadison. Also, our results bring some insight into a recent problem of
A. Connes and answer a number of open questions on von Neumann algebras.
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0. Introduction

We consider in this paper the class of type II; factors with maximal abelian
*-subalgebras satisfying both a weak rigidity property, in the spirit of Kazhdan,
Margulis ([Ka], [Ma]) and Connes-Jones ([CJ]), and a weak amenability prop-
erty, in the spirit of Haagerup’s compact approximation property ([H]). Our
main result shows that a type II; factor M can have at most one such maximal
abelian *-subalgebra A C M, up to unitary conjugacy. Moreover, we prove that
if A C M satisfies these conditions then A is automatically a Cartan subalgebra
of M, i.e., the normalizer of A in N, N(A) ={u € M | uwu* = 1,uldu* = A},
generates all the von Neumann algebra M. In particular, N (A) implements
an ergodic measure-preserving equivalence relation on the standard probability
space (X, pu), with A = L*°(X, ) ([FM]), which up to orbit equivalence only
depends on the isomorphism class of M.

We call HT the Cartan subalgebras satisfying the combination of the
rigidity and compact approximation properties and denote by H7 the class
of factors having HT Cartan subalgebras. Thus, our theorem implies that if
M € HT, then there exists a unique (up to isomorphism) ergodic measure-
preserving equivalence relation RHMT on (X, ) associated with it, implemented
by the HT Cartan subalgebra of M. In particular, any invariant for RHMT is an
invariant for M € HT.

In a recent paper ([G2]), D. Gaboriau introduced a notion of ¢*-Betti
numbers for arbitrary countable measure-preserving equivalence relations R,
{Bn(R)}n>0, starting from ideas of Atiyah ([A]) and Connes ([C4]), and gen-
eralizing the notion of L?-Betti numbers for measurable foliations defined in
[C4]. His notion also generalizes the ¢2-Betti numbers for discrete groups I'g
of Cheeger-Gromov ([ChGr]), {3,(To)}n>0, as Gaboriau shows that (3, (Iy) =
Bn(Rr,), for any countable equivalence relation Rr, implemented by a free,
ergodic, measure-preserving action of the group I'g on a standard probability
space (X, 1) (|G2). -

We define in this paper the Betti numbers {3, (M)},>0 of a factor M in
the class H7 as the ¢2-Betti numbers ([G2]) of the corresponding equivalence
relation Ry, {6n(Ray ) -

Due to the uniqueness of the HT Cartan subalgebra, the general properties
of the Betti numbers for countable equivalence relations proved in [G2] entail
similar properties for the Betti numbers of the factors in the class H7. For
instance, after proving that H7 is closed under amplifications by arbitrary
t > 0, we use the formula £, (R?) = ,(R)/t in [G2] to deduce that 5, (M?) =
BZT(M )/t,Vn. Also, we prove that H7 is closed under tensor products and
that a Kiinneth type formula holds for 38, (M;®Ms) in terms of the Betti
numbers for My, My € HT, as a consequence of the similar formula for groups
and equivalence relations ([B], [ChGr], [Lu], [G2]).
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Our main example of a factor in the class H7 is the group von Neumann
algebra L(Gp) associated with Go = Z? x SL(2,Z), regarded as the group-
measure space construction L>®(T?, u) = Ag C Ag X4, SL(2,Z), where T? is
regarded as the dual of Z? and oy is the action implemented by SL(2,Z) on it.
More generally, since our HT condition on the Cartan subalgebra A requires
only part of A to be rigid in M, we show that any crossed product factor of
the form A x, SL(2,7Z), with A = Ay®A;, 0 = 09 ® 01 and o7 an arbitrary
ergodic action of SL(2,Z) on an abelian algebra Aj, is in the class H7. By a
recent result in [Hj], based on the notion and results on tree-ability in [G1], all
these factors are in fact amplifications of group-measure space factors of the
form L>°(X, pu) x F,, where F, is the free group on n generators, n = 2,3,... .

To prove that M belongs to the class H7, with A its corresponding HT
Cartan subalgebra, we use the Kazhdan-Margulis rigidity of the inclusion Z? C
72 x SL(2,7Z) ([Ka], [Ma]) and Haagerup’s compact approximation property
of SL(2,Z) ([Ha]). The same arguments are actually used to show that if
a € C,|a| =1, and L,(Z?) denotes the corresponding “twisted” group algebra
(or “quantized” 2-dimensional thorus), then M, = L, (Z?) x SL(2,Z) is in the
class H7T if and only if « is a root of unity.

Since the orbit equivalence relation RE implemented by SL(2,Z) on A

has exactly one nonzero Betti number, namely (3, (RLT) = (1(SL(2,Z)) = 1/12
([B], [ChGr], [G2]), it follows that the factors M = A x, SL(2,Z) satisfy
By (M) = 1/12 and 8, (M) = 0,¥n # 1. More generally, if o is an nt®
primitive root of 1, then the factors M, = Lq(Z?)xSL(2, Z) satisfy 8] (M) =
n/l?,ﬁZT(Ma) = 0,Vk # 1. We deduce from this that if a, o’ are primitive
roots of unity of order n respectively n’ then M, ~ M, if and only if n = n'.

Other examples of factors in the class H7 are obtained by taking discrete
groups I'g that can be embedded as arithmetic lattices in SU(n, 1) or SO(m, 1),
together with suitable actions ¢ of I'g on abelian von Neumann algebras A ~
L(ZN). Indeed, these groups I'g have the Haagerup approximation property
by [dCaH], [CowH] and their action o on A can be taken to be rigid by a recent
result of Valette ([Va]). In each of these cases, the Betti numbers have been
calculated in [B]. Yet another example is offered by the action of SL(2,Q) on
Q?: Indeed, the rigidity of the action of SL(2,7Z) (regarded as a subgroup of
SL(2,Q)) on Z? (regarded as a subgroup of Q?), as well as the property H of
SL(2,Q) proved in [CCJJV], are enough to insure that L(Q? x SL(2,Q)) is in
the class HT.

As a consequence of these considerations, we are able to answer a number
of open questions in the theory of type II; factors. Thus, the factors M =
A X5 SL(2,Z) (more generally, A x, Iy with I'g, o as above) provide the first
class of type II; factors with trivial fundamental group, i.e.

FME >0 M ~ M} = {1}.
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Indeed, we mentioned that 3, (M) = G, (M)/t,Vn, so that if 3, (M) # 0
or oo for some n then .Z (M) is forced to be equal to {1}.

In particular, the factors M are not isomorphic to the algebra of n by n
matrices over M, for any n > 2, thus providing an answer to Kadison’s Problem
3 in [K1] (see also Sakai’s Problem 4.4.38 in [S]). Also, through appropriate
choice of actions of the form ¢ = o¢p ® o1, we obtain factors of the form
M = A x, SL(2,7Z) having the property I' of Murray and von Neumann, yet
trivial fundamental group.

The fundamental group .# (M) of a II; factor M was defined by Murray
and von Neumann in the early 40’s, in connection with their notion of contin-
uous dimension. They noticed that .# (M) = R* when M is isomorphic to the
hyperfinite type II; factor R, and more generally when M “splits oft” R.

The first examples of type II; factors M with .7 (M) # R?, and the first
occurrence of rigidity in the von Neumann algebra context, were discovered by
Connes in [C1]. He proved that if Gy is an infinite conjugacy class discrete
group with the property (T) of Kazhdan then its group von Neumann algebra
M = L(Gy) is a type II; factor with countable fundamental group. It was
then proved in [Pol] that this is still the case for factors M which contain
some irreducible copy of such L(Gy). It was also shown that there exist type
IT; factors M with .Z (M) countable and containing any prescribed countable
set of numbers ([GoNe], [Po4]). However, the fundamental group .# (M) could
never be computed exactly, in any of these examples.

In fact, more than proving that .# (M) = {1} for M = A x, SL(2,Z), the
calculation of the Betti numbers shows that M“®@M? ... @M is isomorphic
to M3 @M32 ... @M if and only if n = m and t1to...%, = 5152...5y. In
particular, all tensor powers of M, M @L,n = 1,2,3,..., are mutually noni-
somorphic and have trivial fundamental group. (N.B. The first examples of
factors having nonisomorphic tensor powers were constructed in [C4]; another
class of examples was obtained in [CowH]). In fact, since ﬂZT (M®") # 0 if and
only if k = n, the factors {M @I}nzl are not even stably isomorphic.

In particular, since M! ~ L®(X, u) x F,, for t = (12(n — 1))~ (cf. [Hj]),
it follows that for each n > 2 there exists a free ergodic action o, of IF,, on the
standard probability space (X, u) such that the factors M,, = L*(X, u) X4,
Fn,n = 2,3,..., satisfy My, ®---@My, ~ M;;®...®M,; if and only if p = r
and kika...k, = lily...l.. Also, since ﬁTT(Mn) # 0, the Kiinneth formula
shows that the factors M,, are prime within the class of type II; factors in H7 .

Besides being closed under tensor products and amplifications, the class
HT is closed under finite index extensions/restrictions, i.e., if N C M are type
II; factors with finite Jones index, [M : N| < oo, then M € HT if and only if
N € HT. In fact, factors in the class H7 have a remarkably rigid “subfactor
picture”.
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Thus, if M € H7T and N C M is an irreducible subfactor with [M : N]
< oo then [M : NJ is an integer. More than that, the graph of N C M,
I' = T'yar, has only integer weights {vg}r. Recall that the weights vy of
the graph of a subfactor N C M are given by the “statistical dimensions”
of the irreducible M-bimodules Hj, in the Jones tower or, equivalently, as the
square roots of the indices of the corresponding irreducible inclusions of factors,
M C M(Hy). They give a Perron-Frobenius type eigenvector for I', satisfying
[T = [M : N|&. We prove that if 3, (M) # 0 or co then

vk =B, (M(Hy))/8, (M), Vk;

i.e., the statistical dimensions are proportional to the Betti numbers. As an
application of this subfactor analysis, we show that the non-T' factor L(Z? x
SL(2,Z)) has two nonconjugate period 2-automorphims.

We also discuss invariants that can distinguish between factors in the
class H7 which have the same Betti numbers. Thus, we show that if Ty =
SL(2,Z),F,, or if I'y is an arithmetic lattice in some SU(n,1),SO(n,1), for
some n > 2, then there exist three nonorbit equivalent free ergodic measure-
preserving actions o; of I'g on (X, p), with M; = L®(X,pn) %y To € HT
nonisomorphic for i = 1,2, 3. Also, we apply Gaboriau’s notion of approximate
dimension to equivalence relations of the form RHMT to distinguish between H7T
factors of the form My = L>®(X, pu) xFy, X+ - xFp, X S, with S the infinite
symmetric group and k = 1,2, ..., which all have only 0 Betti numbers.

As for the “size” of the class H7, note that we could only produce ex-
amples of factors M = A x, I'g in H7T for certain property H groups I'g,
and for certain special actions o of such groups. We call H, the groups
I'g for which there exist free ergodic measure-preserving actions ¢ on the
standard probability space (X, u) such that L®(X,u) x, I'o € HT. Be-
sides the examples T'y = SL(2,7Z),SL(2,Q),F,, or 'y an arithmetic lattice
in SU(n,1),S0O(n,1),n > 2, mentioned above, we show that the class of H,
groups is closed under products by arbitrary property H groups, crossed prod-
uct by amenable groups and finite index restriction/extension.

On the other hand, we prove that the class H7 does not contain factors
of the form M ~ M®R, where R is the hyperfinite IT; factor. In particular,
R ¢ HT. Also, we prove that the factors M € H7 cannot contain property (T)
factors and cannot be embedded into free group factors (by using arguments
similar to [CJ]). In the same vein, we show that if & € T is not a root of unity,
then the factors M, = L, (Z*) x SL(2,Z) = R x SL(2,Z) cannot be embedded
into any factor in the class H7 . In fact, such factors M, belong to a special
class of their own, that we will study in a forthcoming paper.

Besides these concrete applications, our results give a partial answer to
a challenging problem recently raised by Alain Connes, on defining a no-
tion of Betti numbers 3, (M) for type II; factors M, from similar conceptual
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grounds as in the case of measure-preserving equivalence relations in [G2] (sim-
plicial structure, #2 homology/cohomology, etc), a notion that should satisfy
Bn(L(Go)) = Bn(Gyp) for group von Neumann factors L(Gp). In this respect,
note that our definition is not the result of a “conceptual approach”, relying
instead on the uniqueness result for the HT Cartan subalgebras, which allows
reduction of the problem to Gaboriau’s work on invariants for equivalence re-
lations and, through it, to the results on #>-cohomology for groups in [ChGr],
[B], [Lu]. Thus, although they are invariants for “global factors” M € HT, the
Betti numbers ﬂ:T (M) are “relative” in spirit, a fact that we have indicated by
adding the upper index "' . Also, rather than satisfying 3,(L(Go)) = Bn(Go),
the invariants 3, satisfy 8. (A x Tg) = B,(I0). In fact, if A x Ty = L(Gy),
where Go = ZN % T, then 3,(Go) = 0, while 3, (L(Go)) = 8,(I¢) may be
different from O.

The paper is organized as follows: Section 1 consists of preliminaries: we
first establish some basic properties of Hilbert bimodules over von Neumann
algebras and of their associated completely positive maps; then we recall the
basic construction of an inclusion of finite von Neumann algebras and study
their compact ideal space; we also recall the definitions of normalizer and quasi-
normalizer of a subalgebra, as well as the notions of reqular, quasi-reqular,
discrete and Cartan subalgebras, and discuss some of the results in [FM] and
[PoSh]. In Section 2 we consider a relative version of Haagerup’s compact
approximation property for inclusions of von Neumann algebras, called relative
property H (cf. also [Bo]), and prove its main properties. In Section 3 we give
examples of property H inclusions and use [PoSh| to show that if a type IIy
factor M has the property H relative to a maximal abelian subalgebra A C M
then A is a Cartan subalgebra of M. In Section 4 we define a notion of
rigidity (or relative property (T)) for inclusions of algebras and investigate its
basic properties. In Section 5 we give examples of rigid inclusions and relate
this property to the co-rigidity property defined in [Zi], [A-De|, [Pol]. We
also introduce a new notion of property (T) for equivalence relations, called
relative property (T), by requiring the associated Cartan subalgebra inclusion
to be rigid.

In Section 6 we define the class H7T of factors M having HT Cartan sub-
algebras A C M, i.e., maximal abelian *-subalgebras A C M such that M
has the property H relative to A and A contains a subalgebra Ay C A with
AGNM = A and Ay C M rigid. We then prove the main technical result of the
paper, showing that HT Cartan subalgebras are unique. We show the stability
of the class H7 with respect to various operations (amplification, tensor prod-
uct), and prove its rigidity to perturbations. Section 7 studies the lattice of
subfactors of H7 factors: we prove the stability of the class H7 to finite index,
obtain a canonical decomposition for subfactors in H7 and prove that the in-
dex is always an integer. In Section 8 we define the Betti numbers {ﬂZT (M)},
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for M € HT and use the previous sections and [G2]| to deduce various prop-
erties of this invariant. We also discuss some alternative invariants for factors
M € HT, such as the outomorphism group OutHT(M)dﬁfAut(RHMT)/Int(RIE),
which we prove is discrete countable, or ad, (M), defined to be Gaboriau’s
approzimate dimension ([G2]) of Ry,;. We end with applications, as well as
some remarks and open questions. We have included an appendix in which we
prove some key technical results on unitary conjugacy of von Neumann sub-
algebras in type II; factors. The proof uses techniques from [Chr|, [Po2,3,6],
[K2].
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1. Preliminaries

1.1. Pointed correspondences. By using the GNS construction as a link, a
representation of a group G can be viewed in two equivalent ways: as a group
morphism from Gy into the unitary group of a Hilbert space U(H), or as a
positive definite function on Gy.

The discovery of the appropriate notion of representations for von Neu-
mann algebras, as so-called correspondences, is due to Connes ([C3,7]). In
the vein of group representations, Connes introduced correspondences in two
alternative ways, both of which use the idea of “doubling” - a genuine concep-
tual breakthrough. Thus, correspondences of von Neumann algebras N can be
viewed as Hilbert N-bimodules H, the quantized version of group morphisms
into U(H); or as completely positive maps ¢ : N — N, the quantized version of
positive definite functions on groups (cf. [C3,7] and [CJ]). The equivalence of
these two points of view is again realized via a version of the GNS construction
([cJ], [C7)).

We will in fact need “pointed” versions of Connes’s correspondences,
adapted to the case of inclusions B C N, as introduced in [Pol] and [Po5].
In this section we detail the two alternative ways of viewing such pointed
correspondences, in the same spirit as [C7]: as “B-pointed bimodules” or as
“B-bimodular completely positive maps”. This is a very important idea, to
appear throughout this paper.
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1.1.1. Pointed Hilbert bimodules. Let N be a finite von Neumann algebra
with a fixed normal faithful tracial state 7 and B C N a von Neumann subal-
gebra of N. A Hilbert (B C N)-bimodule (H,¢) is a Hilbert N-bimodule with
a fixed unit vector ¢ € H satisfying b¢ = £b,Vb € B. When B = C, we simply
call (H,&) a pointed Hilbert N-bimodule.

If H is a Hilbert N-bimodule then £ € H is a cyclic vector if SpNEN = 'H.

To relate Hilbert (B C N)-bimodules and B-bimodular completely posi-
tive maps on N one uses a generalized version of the GNS construction, due
to Stinespring, which we describe below:

1.1.2. From completely positive maps to Hilbert bimodules. Let ¢ be a
normal, completely positive map on N, normalized so that 7(¢(1)) = 1. We
associate to it the pointed Hilbert N-bimodule (Hg, &) in the following way:

Define on the linear space Hy = N ® N the sesquilinear form (x1 @y, z2 ®
y2)¢ = T(P(x521)11Y5), 1,2, y12 € N. The complete positivity of ¢ is easily
seen to be equivalent to the positivity of (-,-)4. Let Hy be the completion of
Ho/ ~, where ~ is the equivalence modulo the null space of (-, )4 in Hy. Also,
let &4 be the class of 1 ® 1 in Hy. Note that [|€]|* = 7(¢(1)) = 1.

If p=3%;x; ® y; € Hop, then by use again of the complete positivity of ¢
it follows that N > z — E”T(tb(ajjmz:l)yly;) is a positive normal functional
on N of norm (p,p)e. Similarly, N 5>y — X ;7(éd(zjz;)yiyy;) is a positive
normal functional on N of norm (p, p),. Note that the latter can alternatively
be viewed as a functional on the opposite algebra N°P (which is the same as
N as a vector space but has multiplication inverted, z - y = yx). Moreover, N
acts on Hy on the left and right by zpy = z(Z;2; ® v;)y = Eizx; ® y;y. These
two actions clearly commute and the complete positivity of ¢ entails:

(zp,ap)y = (x*ap, p)g < |l2* x| (p, p)g = ||z[|* (P, P)s-

Similarly
Py, py)e < Y13 (D, p)s-

Thus, the above left and right actions of N on Hy pass to Ho/ ~ and then
extend to commuting left-right actions on Hy. By the normality of the forms
x — (zp,p)y and y — (py, p)s, these left-right actions of NV on Hg are normal
(i.e., weakly continuous).

This shows that (H, £s) with the above N-bimodule structure is a pointed,
Hilbert N-bimodule, which in addition is clearly cyclic. Moreover, if B C N is
a von Neumann subalgebra and the completely positive map ¢ is B-bimodular,
then it is immediate to check that b, = {»b, Vb € B. Thus, if ¢ is B-bimodular,
then (Hg,&y) is a Hilbert (B C N)-bimodule.

Let us end this paragraph with some useful inequalities which show that
elements that are almost fixed by a B-bimodular completely positive map ¢
on N are almost commuting with the associated vector {4 € Hy:
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LeEMMA. 19 [|¢(z)l]2 < [|¢(1)]l2,Vz € N, [Jzf] < 1.
2. Ifa =1V ¢(l) and ¢'(-) = a=2¢(-)a= 2, then ¢' is completely
positive, B-bimodular and satisfies ¢'(1) < 1, 7o ¢/ < 70 ¢ and the estimate:
1/2
16/ () — zll2 < [p(x) — x|z +2|¢(1) — 1]1}/?|lz], Vo € N.
3°. Assume ¢(1) < 1 and define ¢ (x) = ¢(b~/2xb=Y2), where b =
1V (drog¢/dr) € LY(N,7)s. Then ¢" is completely positive, B-bimodular and
satisfies ¢ (1) < ¢(1) < 1,70 ¢"” < 7, as well as the estimate:

|¢"(2) = 2[3 < 2llé(z) - z[l>+5]b - 11/*, ¥z € N, [|z]| < 1.

4°. [lagy — &l < 2llo(x) — (I3 + 2ll¢(D) 2| 6(2) — z]l2, Yo € N, [l < 1.

Proof. 1°. Since any x € N with ||z|| <1 is a convex combination of two
unitary elements, it is sufficient to prove the inequality for unitary elements
u € N. By continuity, it is in fact sufficient to prove it in the case the unitary
elements u have finite spectrum. If u = ¥;\;p; for some scalars \; with [A;| = 1,
1 <4 < n, and some partition of the identity exists with projections p; € N,
then 7(¢(pi)é(p;)) > 0,Vi,j. Taking this into account, we get:

T(d(u)p(u”)) = Ti A T(6(Pi)d(p;)) < BNkl ((pi)d(p;))
=Xi;7(¢(pi)o(p;)) = T(6(1)o(1)).

2°. Since @ € B' NN, ¢ is B-bimodular. We clearly have ¢/(1) =
a='2¢(1)a=? < 1. Since a™* < 1, for z > 0 we get 7(¢/(x)) = 7(dp(x)a"t) <
T(¢(x)). Also, we have:

16 (@) = 2ll2 < [la™2$(x)a™"? — a™ 2w ||z + [la™ ' aa™ 2 — a2

<|l¢(z) = @ll2 + 2lla™""* = 1]l2]|].

But
la=2 ~ 1)y <[la™t = 11 = [la™* — aa™ s
<lla=1flslla | < lla - 1] < [l6(1) — 1]
Thus,

1/2
16/ () = all2 < [l¢(x) — allz + 2ll6(1) — 11|

3°. The first properties are clear by the definitions. Then note that

19113 < lylllyll and 16" (9)x < llglls. (Indeed, because if ¢ is as defined

in Lemma 1.1.5, then for z € N with ||z|| < 1 we have ||¢""(2)| < 1 so that

16" W)l = sup{[m(¢"(y)2)| | = € N, ||z]| < 1} = sup{|7(y¢""(2))| | = € N,
Izl < 1} < sup{|7(y2))| | 2 € N, [|z[| <1} = [lyl1.) Note also that 7(b) <
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1+ 7(¢p(1)) < 2. Thus, for z € N, ||z|| < 1, we get:

6" () — |5 < 2[|¢" (x) — =[x
<2||¢"(z) — ¢ (b"/2b"/?)||1 + 2| d(x) — |y
<2||lz = 6220 2|y + 2| p(x) — 21
<2||z— xbl/2H1 + 2bel/2 — bl/Q:I:bl/2H1 + 2[|p(x) — z|1.
But [|z]2 < 1 and [|2b"/2||3 < 7(b) < 2, so by the Cauchy-Schwartz
inequality the above is majorized by:
2|zl — Y212 + 2[|1 — b2l ]|wb 2|l + 2l|p(2) — 2|2
<2+ 2012 = 1a + 2]l é(2) — x]l2 < 5]1b— 1}/* + 2|6 () — 2.

4°. Since by the Cauchy-Schwartz inequality we have

£Rer(¢(x)(¢(2)" — 27)) < [|o(@)]2/¢(z") — 272,
it follows that
[¢(x) — 23 =T(¢(x)(x)*) + 1 — 2Rer(¢(x)z")
=Rer(¢(z)z") + Ret(9(2)(¢(2)" — 27)) + 1 — 2Re7(¢(2)z")

)
>1 = Rer(p(z)z") — [[¢(x) — 22l p(2)]2
= lla€s — Eo2l13/2 = ll¢(2) — z||2ll6(2) ]2,

which by part 1° proves the statement. O

The inequalities in the previous lemmas show in particular that if ¢ almost
fixes some u € U(N), then ¢(ux) is close to ug(z), uniformly in z € N, ||z|| < 1,
whenever we have control over ||¢||:

COROLLARY. For any unitary element u € N and x € N,

o (uz) — ud(@) 2 < ol || [u, €112
< [lol" 2|2 (20l (w) — w3 + 2016 (1) |2l é(u) —ull2)*/2.

Proof. By using the fact that
[¢(uz) — ug(x)|l2 = sup{|7((¢(ux) —ud(x))y)| |y € N, [[ylla < 1},

we get:

[p(uz) = up(@)2 =sup{[(uzsy, o) — (x€syu, Eo)| [y € N, |lylla < 1}
=sup{[(z&sy, [u”, &) | y € N, [lyll2 <1}
<sup{[lz§syll2 [ v € N, [lyll2 < 1H[[u”, E]ll2
= llo(z* )|, €5]ll2 < 1812 el [, Eg] - 0
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1.1.3. From Hilbert bimodules to completely positive maps. Conversely,
let (H,&) be a pointed Hilbert (B C N)-bimodule, with (¢-,&) < cr, for some
¢ > 0. Let T : L*(N,7) — H be the unique bounded operator defined by
Tj = &y,y € N. Then (¢y,&y) < er(yy*) = cl|gl|3, so that ||T|| < ¢'/2.

It is immediate to check that if for clarity we denote by L(z) the operator
of left multiplication by = on H, then T satisfies:

(T*L(x)T(InyINn(41)), Y2)r = (L(2)(Ey1y7), §y2)

= (L(x)&y1, Ey2y)n = (INYIN (T L(x)T)y1, Y2) -

This shows that the operator ¢y ¢) (:z)d:efT*L(a:)T commutes with the right
multiplication on L*(N,7) by elements y € N. Thus, ¢¢)(x) belongs to
(JNNJy) NB(L?(N,7)) = N, showing that P(1,¢) defines a map from N into
N, which is obviously completely positive and B-bimodular, by the definitions.
Furthermore, if we denote by H’ the closed linear span of N(N in H, then
U:Hy — H,U(x ®y) = x€y is easily seen to be an isomorphism of Hilbert
(B C N)-bimodules.

The assumption that £ is “bounded from the right” by c¢ is not really a
restriction for this construction, since if we put H® = {£ € H | b¢ = £b,Vb € B,
¢ bounded from the left and from the right }, then it is easy to see that HY is
dense in the Hilbert space Hy C H of all B-central vectors in H. This actually
implies that any (B C N) Hilbert bimodule (H,¢) is a direct sum of some
(B C N) Hilbert bimodules (H;,&;) with & bounded both from left and right
(hint: just use the above density and a maximality argument).

Note that if (H,&) comes itself from a completely positive B-bimodular
map ¢, i.e., (H,§) = (Hy,&g) as in 1.1.2, then @3¢y = ¢. Similarly, if (H,§)
is a cyclic pointed (B C N)-Hilbert bimodule and ¢ = ¢4 ¢), then (Hg,&y) =~
(H.€).

Let us also note a converse to Lemma 1.1.3, showing that if £ almost
commutes with a unitary element u € N then u is almost fixed by ¢ = ¢(31,¢),
provided we have some control over ||¢(1)||2:

LEMMA. Let & € H be a vector bounded from the right and denote
¢ = d0te):-

1°. Let ag,bgp € L'(N, 7). be such that (-£,&) = 7(-by), (£, &) = 7(-ap) and
put a =1V ag,b=1Vby, & =b""/2¢a=V2. Then ¢(1) = ag and

1€ = €)1* < 4lao — 1|1 + 4]|bo — 1]]1.
2°. Ifu e U(N), then

lo(w) = ul3 < [l[u, €113 + (16115 — 1)



820 SORIN POPA

Proof. 1°. We have:

1€ — €12 <2)16 — b + 2|16 — €a™V?
=27((1 = b~?)bg) + 27((1 — a~/?)%ay)
<4|bo — 1|1 + 4[[ao — 1]]1.

2°. By part 1° of Lemma 1.1.2 we have 7(¢(u*)d(u)) < 7(¢p(1)é(1)), so
that:

lo(w) — ull3 =7(d(u)(u*)) + 1 — 2Rer($(u)u”)
<7(¢(D)¢(1) + 1 — 2Rer(p(u)u”)
=2 — 2Re7(o(u)u”) + (T(4(1)9(1)) — 1)
= [, €JII3 + (Io(L)113 - 1). O

1.1.4. Correspondences from representations of groups. Let I'g be a dis-
crete group, (B, 79) a finite von Neumann algebra with a normal faithful tracial
state and o a cocycle action of 'y on (B, 79) by 7p-preserving automorphisms.
Denote by N = B x, I'g the corresponding crossed product algebra and by
{ug}y C N the canonical unitaries implementing the action o on B.

Let (mo, Ho, &) be a pointed, cyclic representation of the group I'y. We
denote by (Hy,,Ex,) the pointed Hilbert space (Ho, &)&(L*(N,7),1). We let
N act on the right on H,, by ({®%)y = £&(2y), x,y € N,& € Hp and on the left
by b(6 ® &) = € @ b, uy(€ ® &) = mo(9)(€) @ ugz,b € B,z € N,g € Ty, & € Ho.

It is easy to check that these are indeed mutually commuting left-right
actions of N on H,,. Moreover, the vector £, = & ® 1 implements the trace 7
on N, both from left and right. Also, &, is easily seen to be B-central. Thus,
(Hry»&r,) is a Hilbert (B C N)-bimodule.

Let now ¢ be a positive definite function on I'y and denote by (74, Hy, &y)
the representation obtained from it through the GNS construction. Let (H,¢)
denote the (B C B x I'p)-Hilbert bimodule constructed out of the representa-
tion 7, as above and ¢ the completely positive B-bimodular map associated
with (H,€) as in 1.1.3. An easy calculation shows that ¢ acts on B x I’y by
P(Egbgug) = Xgp(g)bguy.

Conversely, if (H,£) is a (B C N) Hilbert bimodule, then we can asso-
ciate to it the representation mo on Ho = sp{ugéuy | g € To} by mo(g)¢’ =
ugl’ uy, &' € Hy. Equivalently, if ¢ is the B-bimodular completely positive map
associated with (H, &) then ¢(g) = 7(¢(ug)uy),g € Lo, is a positive definite
function on I'y.

1.1.5.  The adjoint of a bimodule. Let (H,&) be a (B C N) Hilbert
bimodule. Let H be the conjugate Hilbert space of H, i.e., H = H as a set, the
sum of vectors in H is the same as in H, but the multiplication by scalars is
given by A-& = \¢ and (€, M7 = (1, &)1 Denote by £ the element ¢ regarded as

a vector in the Hilbert space H. Define on H the left and right multiplication
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operations by z - £ -y = y*éx*, for x,y € N,& € H. It is easy to see that
they define an N Hilbert bimodule structure on H. Moreover, & is clearly
B-central. We call (H, &) the adjoint of (H,&). Note that we clearly have
(H7§0) = (H,&))

LEMMA. Let ¢ be a normal B-bimodular completely positive map on N.
For each x € N let ¢*(z) € L'(N,7) denote the Radon-Nykodim derivative of
N > y— 7(¢p(y)x) with respect to 7.

1°. ¢*(N) C N if and only if T o ¢ < cr for some ¢ > 0, i.e., if and
only if the Radon-Nykodim derivative by = dr o ¢/d7 is a bounded operator.
Moreover, if the condition is satisfied then ¢* defines a normal, B-bimodular,
completely positive map of N into N with ¢*(1) = by and

llo*|| = llbo|| = inf{c >0 | T70¢ < e}

2°. If ¢ satisfies condition 1° then ¢* also satisfies it, and (¢*)* = ¢.
Also, (H¢*,§¢*) = (H¢,§¢).
3°. If To ¢ < 7 then for any unitary element u € N,

6" (u) = ull3 < 2|6 (w) = ull2.

Proof. Parts 1° and 2° are trivial by the definition of ¢*.
To prove 3°, note that by part 1°, 70 ¢ < 7 implies ¢*(1) < 1 and so by
Lemma 1.1.2 we get:

l¢* (w) — ull3=7(¢" (w)¢" (1)) + 1 — 2Re7 (¢ (u)u")
<7(¢"(1)¢7(1)) + 1 = 2Rer(Pp(u)u”) < 2 — 2Rer(¢(u)u”)
=2Re7((u — ¢(u))u”) < 2[|p(u) — ull2. O

1.2. Completely positive maps as Hilbert space operators. We now show
that if a completely positive map ¢ on the finite von Neumann algebra N
is sufficiently smooth with respect to the normal faithful tracial state 7 on
N, then it can be extended to the Hilbert space L?(N,7). In case ¢ is B-
bimodular, for some von Neumann subalgebra B C N, these operators belong
to the algebra of the basic construction associated with B C N, defined in the
next paragraph.

1.2.1. LEMMA. 1° If there exists ¢>0 such that ||¢p(x)|2 <c||z|/2,Vx € N,
then there exists a bounded operator Ty on L*(N,T) such that Ty(2) = o(x).
The operator Ty, commutes with the canonical conjugation Jy. Also, if B C N
is a von Neumann subalgebra, then T,y commutes with the operators of left and
right multiplication by elements in B (i.e., Ty € B' N (JBJ)') if and only if
the completely positive map ¢ is B-bimodular.

2°. If T o ¢ < coT, for some constant cg > 0, then ¢ satisfies condition 1°
above, and so there exists a bounded operator Ty on the Hilbert space L?(N,7)
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A~

such that Ty(2) = ¢(x), for x € N. Moreover, if ¢* : N — N is the adjoint of
¢, as defined in 1.1.5, then || Ty||? < ||o(1)[||[¢*(1)||. Also, ¢* satisfies T o ¢* <
()| and so Ty- = Tj.

3°. If ¢ is B-bimodular then ¢(1) € B'NN. Thus, if B NN = Z(B) then
#(1) € Z(B), To ¢ < ||¢p(1)||T and the bounded operator T, exists by 2°. If in
addition ¢(1) = 1, then ¢ is trace-preserving as well.

Proof. 1°. The existence of Ty is trivial. Also, for x € N we have

Ts(In(2)) = d(z*) = d(2)* = In(Ts(2)).

If ¢ is B-bimodular and b € B is regarded as an operator of left multiplication
by b on L?(N, ), then

~

bTy(2) = b(x) = d(bx) = Ty(bi).
Thus, T, € B'.
Similarly,
JbJ(Ty(2)) = d(2)b = (ab) = Ty(JbJ(2))

showing that T, € JBJ' as well. Conversely, if Ty € B’ N JBJ', then by
exactly the same equalities, ¢(bx) = bo(x), d(xb) = ¢(x)b,Vz € N,b € B.

2°. By Kadison’s inequality, for x € M,
(Ty(2), Ty(2)) = T(¢(2)"d(x)) < [[O(1)]|7(d(27x)), Vo € N.

Thus, by Lemma 1.1.5 we have ||T4|> < [|¢(1)]|[|¢*(1)]. The last part is now
trivial, by 1.1.5 and the definitions of Ty, ¢* and Tj-.

3°. The B-bimodularity of ¢ implies ugp(1)u* = ¢(1),Vu € U(B); thus
¢(1) € BN N.

Using again the bimodularity, as well as the normality of ¢, for each fixed
x € N we have

7(¢(x)) = T(up(x)u’) = 7(p(uru’)) = 7(¢(y))

for all u € U(B) and all y in the weak closure of the convex hull of {uzu* | u €
U(N)}. The latter set contains Epnn(z) € B'NN C B (see e.g. [Po6]); thus

7(¢(x)) = T(¢(Epnn(z))) = T(Epnn (2)6(1)).

This shows that if x > 0 then 7(¢(z)) < ||¢(1)||7(z). It also shows that in case
6(1) = 1 then 7(6()) = 7(x), Yz € N. -

1.3. The basic construction and its compact ideal space. We now recall
from [Chr], [J1], [P02,3] some well known facts about the basic construction
for an inclusion of finite von Neumann algebras B C N with a normal faithful
tracial state 7 on it. Also, we establish some properties of the ideal generated
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by finite projections in the semifinite von Neumann algebra (N, B) of the basic
construction.

1.3.1. Basic construction for B C N. We denote by (N, B) the von Neu-
mann algebra generated in B(L?(N,7)) by N (regarded as the algebra of left
multiplication operators by elements in N) and by the orthogonal projection
ep of L2(M, ) onto L%(B, 7).

Since eprep = Ep(x)ep,Vx € N, where Ep is the unique 7-preserving
conditional expectation of N onto B, and V{z(eg(L*(N))) | z € N} = L*(N),
it follows that spNegN is a *-algebra with support equal to 1 in B(L?(N,7)).
Thus, (N, B) =sp“{zepy | ,y € N} and ep(N, B, )ep = Bep.

One can also readily see that if J = Jy denotes the canonical conjugation
on the Hilbert space L2(N,7), given on N by J(#) = «*, then (N,B) =
JBJ' N B(L?*(N,7)). This shows in particular that (N, B) is a semifinite von
Neumann algebra. It also shows that the isomorphism of N C (N, B) only
depends on B C N and not on the trace 7 on N (due to the uniqueness of the
standard representation).

As a consequence, if ¢ is a B-bimodular completely positive map on N
satisfying ||¢(z)||2 < c||z]l2,Vx € N, for some constant ¢ > 0, as in Lemma
1.2.1, then the corresponding operator T, on L?(N, ) defined by Ty(#) =
¢(x),z € N belongs to B' N (N, B).

We endow (N, B) with the unique normal semifinite faithful trace Tr sat-
isfying Tr(zepy) = 7(xy),Vx,y € N. Note that there exists a unique N
bimodule map ® from spNegN C (N, B) into N satisfying ®(zey) = xy, Vz,
y € N, and 7 o ® = Tr. In particular this entails ||®(X)|; < || X1 1, VX €
spNepN. Note that the map ® extends uniquely to an N-bimodule map from
LY((N, B), Tr) onto L'(N, ), still denoted ®. This N-bimodule map satisfies
the “pull down” identity eX = e®(eX),VX € (N, B) (see [PiPo], or [Po2]).
Note that ®(eX) actually belongs to L?(N,7) C LY(N, ), for X € (N, B).

1.3.2. The compact ideal space of a semifinite algebra. In order to define
the compact ideal space of the semifinite von Neumann algebra (N, B), it will
be useful to first mention some remarks about the compact ideal space of an
arbitrary semifinite von Neumann algebra N

Thus, we let J(N) be the norm-closed two-sided ideal generated in N
by the finite projections of N, and call it the compact ideal space of N (see
e.g., [KafW], [PoRal]). Note that T € N belongs to J(N) if and only if all
the spectral projections e o) (|T]), s > 0, are finite projections in N'. As a
consequence, it follows that the set J°(N) of all elements supported by finite
projections (i.e., the finite rank elements in J(N)) is a norm dense ideal in
TN).

Further, let e € A/ be a finite projection with central support equal to 1
and denote by J.(N) the norm-closed two-sided ideal generated by e in N. Tt is
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easy to see that an operator T' € N belongs to J(N) if and only if there exists
a partition of 1 with projections {z;}; in Z(N) such that T'z; € J.(N),Vi. In
particular, if p € NV is a finite projection then there exists a net of projections
zi € Z(N) such that z; T 1 and pz; € Je(N),Vi (see e.g., 2.1 in [PoRa]). Also,
T € J.(N) if and only if e o) (IT]) € Je(N),Vs > 0. In turn, a projection
f € N lies in J.(N) if and only if there exists a constant ¢ > 0 such that
Tr(fz) < ¢Tr(ez), for any normal semifinite trace Tr on N and any projection
z € Z(N).

The next result, whose proof is very similar to some arguments in [Po7],
shows that one can “push” elements of J(N) into the commutant of a subal-
gebra B of N, while still staying in the ideal J(N), by averaging by unitaries
in B. We include a complete proof, for convenience.

PROPOSITION. Let B C N be a von Neumann subalgebra of N'. Forxz € N
denote K, = co”{uzu* | u € U(B)}. If v € J(N) then B' N K, consists of
exactly one element, denoted Egnn(x), which belongs to J(N'). Moreover, the
application x — Epnn () is a conditional expectation of J(N') onto B'NT (N).
Also, if v € J(N) for some finite projection e € N of central support 1, then
Eprn () € T.(N).

Proof. If x = f is a projection in J.(N') then there exists ¢ > 0 such that
Tr(fz) < ¢Tr(ez), for any normal semifinite trace Tr on N and any projection
z € Z(N). By averaging with unitaries and taking weak limits, this implies
that Tr(yz) < c¢Tr(ez),Vy € Ky, so that Tr(pz) < s~'cTr(ez), for any spectral
projection p = e[, »)(y), s > 0 and z € Z(N). Thus, Ky C J(N). Since any
x € Je(N) is a norm limit of linear combinations of projections f in J.(N),
this shows that the very last part of the statement follows from the first part.

To prove the first part, consider first the case when N has a normal
semifinite faithful trace Tr. Assume first that z € J(N) actually belongs to
NN LN, Tr) (C J(N)). Note that in this case all K, C A is a subset of
the Hilbert space L?(N,Tr), where it is convex and weakly closed. Let then
xo € K5 be the unique element of minimal Hilbert norm || ||2,1y in K. Since
|luzou*|l2 e = ||zoll2,m, Vo € U(B), it follows that uxou* = xo,Vu € U(B).
Thus, zo € B' NN N L3N, Tr). In particular, xo € B' N J(N).

If we now denote by p the orthogonal projection of L?(N,Tr) onto the
space of fixed points of the representation of U(B) on it given by £ — ulu*,
then xg coincides with p(z). Since p(uzu*) = p(x), this shows that xo = p(x)
is in fact the unique element y in K, with uyu* = y,Vu € U(B). Thus, if

for each z € N'N L2(N, Tr) we put SB/QN(x>(1§fp($), then we have proved the
statement for the subset NN L%(N/, Tr).

Since [|y|| < ||z||,Vy € K., it follows that if {x,}, C N N L*(N,Tr) is a
Cauchy sequence (in the uniform norm), then so is {Epnn(n) }n. Thus, Epnpr
extends uniquely by continuity to a linear, norm one projection from J(N)
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onto B N J(N), which by the above remarks takes the norm dense subspace
N N LA(N, Tr) into itself.

Let us now prove that B' N K, # 0,Vx € J(N). To this end, let 2 be an
arbitrary element in J(A) and £ > 0. Let 21 € N'N L?(N, Tr) with ||z — x|
< e. Write Epnpar(z1) as a weak limit of a net {7}, (x1)}q, for some finite
tuples uq = (uf,...,ul.) C U(B), where T, (y) = ny' > ulyus™, y € N.
By passing to a subnet if necessary, we may assume {7, (z)}, is also weakly
convergent, to some element z’ € K. Since, |1y, (2) =Ty, (z1)| < [|lz—21]| <&,
it follows that |2’ — Egnn(21)]] < e. This shows that the weakly-compact set
K, contains elements which are arbitrarily close to B’ N N. Since there is a
weak limit of such elements it follows that B’ N K, # 0.

Finally, let z € J(N) and assume 2° is an element in B’ N K,. To prove
that 29 = Egrn(z), let € > 0 and 1 € N N L3N, Tr) with ||z — 21| < ¢,

as before. Write 2° as a weak limit of a net {T},(z)}g, for some finite tuples

vg = (vlﬂ, .. .,wﬁnﬁ) C U(B). By passing to a subnet if necessary, we may

assume {7, (z1)}g is also weakly convergent, to some element 29 € K,,. Since,
| T, (2) = T, (z1)]] < [lz — 21]] < &, it follows that ||z — 29| < e. But
p(z9) = p(x1) = Eprw (1), and p(z7) is obtained as a weak limit of averaging

by unitaries in B, which commute with z°. Thus,

o = Eprn (@)l < [la® = Ernc(a)|
+HEsrw (w1) — Eprw (2)]| < €+ ||z — 2| < 2e.

Since ¢ > 0 was arbitrary, this shows that 2 = Egqpr().

This finishes the proof of the case when N has a faithful trace Tr. The
general case follows now readily, because if {z;}; is an increasing net of projec-
tions in Z(N) such that K, , N (Bz;) consists of exactly one element, which
belongs to J(N)zi = J(Nz), Ve € J(N), then the same holds true for the

projection lim z;. O
1—00

1.3.3. The compact ideal space of (N,B). In particular, if B C N is
an inclusion of finite von Neumann algebras as in 1.3.1, then we denote by
J((N, B)) the compact ideal space of (N, B). Noticing that ep has central
support 1 in (N, B), we denote Jp((N, B)) the norm closed two sided ideal
JTe, ((N, B)) generated by ep in (N, B). Note that if B = C then J((N,B)) =
Jo((N, B)) is the usual ideal of compact operators K(L?(N)).

It will be useful to have the following alternative characterizations of the
compact ideal spaces J((N, B)), Jo({(N, B)).

PROPOSITION.  Let N be a finite von Neumann algebra with countably
decomposable center and B C N a von Neumann subalgebra. Let T' € (N, B).
The following conditions are equivalent:

1°. T € J((N, B)).
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2°. For any € > 0 there exists a finite projection p € (N, B) such that
IT(1=p)ll <e.

3°. For any € > 0 there exists z € P(Z(JyBJn)) such that 7(1 — z) < ¢
and Tz € Jo((N, B)).

4°. For any given sequence {n,}n € L*(N) with the properties Eg(nin,)
<1,¥n>1, and lim ||Eg(n;nm)|l2 = 0,Ym, lim || Tn,||2 = 0.
n—00 n—00

5°.  For any given sequence {xp}, € N with the properties Eg(z}xy)
<1,¥n>1, and lim ||Eg(z}zm)|2 = 0,Vm, lim ||Tz,|2 = 0.
n—oo n—oo

Moreover, T € Jo((N, B)) if and only if condition 2° above holds true with
projections p in Jo((N, B)).

Proof. The equivalence of 1° and 2° (resp. the equivalence in the last
part of the statement) is trivial by the following fact, noted in 1.3.2: T €
J(N, B)) (resp. T € Jo((N, B))) if and only if ej; .oy (|T|) € T ((N, B)) (resp.
€ Jo((N, B))), Vs > 0.

3° = 2° is trivial by the general remarks in 1.3.2. To prove 2° — 3°,
for each n > 1 let T}, be a linear combination of finite projections in (N, B) such
that ||T—T,|| < 27". We see that for any finite projection e € (N, B) and § > 0
there exists a projection z € Z((N, B)) = JyZ(B)Jy such that 7(1 —2) <46
and ez € Jp((INV,B)). It follows that for each n there exists a projection
zn € JNZ(B)JN such that 7(1 — z,) < 27" and Tpz, € Jo((IV,B)). Let
z = Azp. Then 7(1 — 2) < %,27" < e, T,z € Jo((N, B)) and |[(T —T,)z|| <
T —T,| <27™,Vn. Thus, Tz € Jo((V, B)) as well.

3° = 4°isjust a particular case of (2.5 in [PoRa]). To prove 4° = 1°,
assume by contradiction that there exists s > 0 such that the spectral pro-
jection e = es(|T]) is properly infinite. It follows that there exist mutu-
ally orthogonal, mutually equivalent projections p1,pe,--- € (N, B) such that
Yinpn < e with p, majorised by ep,Vn. Thus, for each n > 1 there exists
nn € L2(N) such that p, = nn,epn. It then follows that Eg(n)n,) = 0 for
n # m, with Eg(n}n,) mutually equivalent projections in B. In particular,
17113 = 7(ninn) = ¢ > 0 is constant, Vn. Thus,

s Tallz > llema)llz = 1pa(m)ll2 = [Inallz = /2, ¥n,

a contradiction.

4° = 5° is trivial. To prove 5° = 4° assume 5° holds true and
let n, be a sequence satisfying the hypothesis in 4°. For each n let g, be a
spectral projection corresponding to some interval [0,%,] of n,n) (the latter
regarded as a positive, unbounded, summable operator in L!'(N)) such that
1M — guinll2 < 27™. Thus, x, = ¢un, lies in N. One can easily check
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Ep(a}xn) < Ep(n;nn) < 1 and
lim [|Eg(z)xm)|3 = im Tr((gnnmesndn) (@mMmeBn)dm)) = 0.
n—oo n—oo
Thus lim ||Tz,||2 = 0. But
n—oo

[Tl < [[Tznlls + (1T — 2l < | T@nll2 + 27T,

showing that lim || Tn,||2 = 0 as well. O
n—oo

1.4. Discrete embeddings and bimodule decomposition. If B C N is an
inclusion of finite von Neumann algebras with a faithful normal tracial state 7
as before, then we often consider N as an (algebraic) (bi)module over B and
L?(N,7) as a Hilbert (bi)module over B. In fact any vector subspace H of N
which is invariant under left (resp. right) multiplication by B is a left (resp.
right) module over B. Similarly, any Hilbert subspace of L?(N,7) which is
invariant under multiplication to the left (resp. right) by elements in B is a
left (resp. right) Hilbert module. Also, the closure in L?(N,7) of a B-module
H C N is a Hilbert B-module.

1.4.1. Orthonormal basis. An orthonormal basis for a right (respectively
left) Hilbert B-module H C L*(N,7) is a subset {n;}; C L?(N) such that
H = SyneB (respectively H = X Bny) and Eg(niny) = dwpi € P(B),Vi, 7,
(respectively Eg(n;n;) = 6;;q; € P(B),Vj, j"). Note that if this is the case,
then § = X;n, Ep(n;€),VE € H (resp. § = X;Ep(En;)n;, V& € H).

A set {n;}; C L*(N,7) is an orthonormal basis for Hp if and only if the
orthogonal projection f of L?(N,7) on H satisfies f = Ejnjean’f with njean’f
projection Vj. A simple maximality argument shows that any left (resp. right)
Hilbert B-module H C L?(N,7) has an orthonormal basis (see [Po2] for all
this). The Hilbert module Hp (resp. pH) is finitely generated if it has a finite
orthonormal basis.

1.4.2.  Quasi-reqular subalgebras. Recall from [D] that if B C N is an
inclusion of finite von Neumann algebras then the normalizer of B in N is the
set N(B) = N(B) = {u € U(N) | uBu* = B}. The von Neumann algebra B
is called regular in N if N(B)"” = N.

In the same spirit, the quasi-normalizer of B in N is defined to be the set

qN(B)d:ef{x € N |3 uxy,x9,... ,2, € N such that 2B C Y ;" | Bx; and Bz C

oy xiB} (cf. [Po5], [PoSh]). The condition “cB C Y Bx;, Bx C ), x;B”
is equivalent to “BxB C (Y., Bxz;) N (3., z;B)” and also to “spBxB is
finitely generated both as a left and as a right B-module.” It then follows
readily that sp(¢Nn(B)) is a *-algebra. Thus, Pdéf@(qNN(B)) = gNn(B)"
is a von Neumann subalgebra of N containing B. In case the von Neumann
algebra P = gNp(N)” is equal to all N, then B is quasi-regular in N ([Po5]).
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The most interesting case of inclusions B C N for which one considers
the normalizer N'(B) and the quasi-normalizer gNy(B) of B in N is when the
subalgebra B satisfies the condition B'NN C B, or equivalently B'NN = Z(B),
notably when B and N are factors (i.e., when B'N N = C) and when B is a
maximal abelian *-subalgebra (i.e., when B'N N = B).

The next lemma lists some useful properties of ¢NV(B). In particular, it
shows that if a Hilbert B-bimodule H C L?(N,7) is finitely generated both as
a left and as a right Hilbert B module, then it is “close” to a bounded finitely
generated B-bimodule H C P.

LEMMA. (i) Let N be a finite von Neumann algebra with a normal finite
faithful trace T and B C N a von Neumann subalgebra. Letp € B'N(N, B) be a
finite projection such that JypJy is also a finite projection. Let H C L*(N,T)
be the Hilbert space on which p projects (which is thus a Hilbert B-bimodule).
Then there exists an increasing sequence of central projections z, € Z(B) such
that z, T 1 and such that the Hilbert B-bimodules z,Hz, C L*>(N) are finitely
generated both as left and as right Hilbert B-modules.

(i) If B C N are as in (i) and HY C L?(N) is a Hilbert B-bimodule such
that H%, gHC are finitely generated Hilbert modules, with {& | 1 < i < n},
{¢j |1 <j <m} their corresponding orthonormal basis, then for any ¢ > 0
there exists a projection ¢ € B' NN such that 7(1 — q) < € and x; = q&iq
€ N,y; = q(jq € N,Vi,j. In particular, ¥;x; B = X;By; = qH%¢ N N is dense
in qH%q and is finitely generated both as left and right B-module.

(iii) If p is a projection as in (i) then p < ep. Also, B is quasiregular in
N if and only if B is discrete in N, i.e., B'N(N, B) is generated by projections
which are finite in (N, B) ([ILP]).

Proof. (i) and (ii) are trivial consequences of 1.4.1 and of the definitions.

The first part of (iii) is trivial by (i), (ii). Thus, ep is the supremum of all
projections p € B’ N (N, B) such that both p and JypJy are finite in (N, B).
Thus, if ¢ € (N, B) is a nonzero finite projection orthogonal to ep then any
projection ¢’ € B’ N (N, B) with ¢ < JygJny must be infinite (or else the
maximality of ep would be contradicted). But if ¢ satisfies this property then
B’ N (N, B) cannot be generated by finite projections. O

1.4.3.  Cartan subalgebras. Recall from [D] that a maximal abelian
*-subalgebra A of a finite von Neumann factor M is called semiregular if N'(A)
generates a factor, equivalently, if N (A) N M = C. Also, while maximal
abelian *-subalgebras A with N'(A)” = M were called regular in [D], as men-
tioned before, they were later called Cartan subalgebras in [FM], a terminology
that seems to prevail and which we therefore adopt.

By results of Feldman and Moore ([FM]), in case a type II; factor M
is separable in the norm || ||2 given by the trace, to each Cartan subalge-
bra A C M corresponds a countable, measure-preserving, ergodic equivalence
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relation R = R(A C M) on the standard probability space (X, u), where
L>(X, ) =~ (A,74), given by orbit equivalence under the action of N(A).
In fact, N'(A) also gives rise to an A-valued 2-cocycle v = v(A C M), re-
flecting the associativity mod A of the product of elements in the normalizing
pseudogroup Q/\/déf{pu |ueN(A),pe P(A)}.

Conversely, given any pair (R,v), consisting of a countable, measure-
preserving, ergodic equivalence relation R on the standard probability space
(X, 1) and an L (X, p)-valued 2-cocycle v for the corresponding pseudogroup
action (N.B.: v = 1 is always a 2-cocycle, VR), there exists a type II; fac-
tor with a Cartan subalgebra (A C M) associated with it, via a group-
measure space construction “a la” Murray-von Neumann. The association
(AcCc M) — (R,v) — (A C M) is one-to-one, modulo isomorphisms of in-
clusions (A C M) and respectively measure-preserving orbit equivalence of R
with equivalence of the 2-cocycles v (see [FM] for all this).

Examples of countable, measure-preserving, ergodic equivalence relations
R are obtained by taking free ergodic measure-preserving actions o of count-
able groups Iy on the standard probability space (X, u), and letting zRy
whenever there exists g € I'g such that y = o4(x).

If t > 0 then the amplification of a Cartan subalgebra A C M by t is the
Cartan subalgebra A' C M? obtained by first choosing some n > ¢ and then
compressing the Cartan subalgebra A ® D C M @ M,,»x,(C) by a projection
p € A® D of (normalized) trace equal to t/n. (N.B. This Cartan subalgebra is
defined up to isomorphism.) Also, the amplification of a measurable equivalence
relation R by t is the equivalence relation obtained by reducing the equivalence
relation R x D,, to a subset of measure t/n, where D,, is the ergodic equivalence
relation on the n points set. Note that if A C M induces the equivalence
relation R then A* C M? induces the equivalence relation Rf. Also, vacy = 1
implies varcpre = 1,VE > 0.

By using Lemma 1.4.2, we can reformulate a result from [PoSh], based on
prior results in [FM], in a form that will be more suitable for us:

PROPOSITION. Let M be a separable type 111 factor.

(i) A mazimal abelian *-subalgebra A C M is a Cartan subalgebra if and
only if A C M s discrete, i.e., if and only if A’ N (M, A) is generated by
projections that are finite in (M, A).

(ii) Let Ay, Ay C M be two Cartan subalgebras of M. Then A, As are
conjugate by a unitary element of M if and only if A} N (M, As) is generated
by finite projections of (M, As) and Ay N (M, A1) is generated by finite pro-
jections of (M, Ay). FEquivalently, Ai, As are unitary conjugate if and only if
4, L?(M,7) 4, is a direct sum Ay — As Hilbert bimodules that are finite dimen-
sional both as left A1-Hilbert modules and as right As-Hilbert modules.
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Proof. (i) By Lemma 1.4.2, the discreteness condition on A is equivalent
to the quasi-regularity of A in N. By [PoSh], the latter is equivalent to A
being Cartan.

(i) If A} N (JnAjJN) is generated by finite projections of the semifinite
von Neumann algebra (JyA;Jy), for i,j = 1,2, and we denote M = M>(N)
the algebra of 2-by-2 matrices over N and A = A; @ Ay then A'N(JyAdy) is
also generated by finite projections of JyAJys. By part (i), this implies A is
Cartan in M. By [Dy] this implies there exists a partial isometry v € M such
that vv* = eq1,v*v = egn, where {e;;}; j=1,2, is a system of matrix units for
M>5(C). Thus, if u € N is the unitary element with uejo = v then uA u* = As.

O

2. Relative Property H: Definition and examples

In this section we consider a “co-type” relative version of Haagerup’s com-
pact approximation property for inclusions of von Neumann algebras. This
property can be viewed as a “weak co-amenability” property; see the next
section (see 3.5, 3.6). It is a property that excludes “co-rigidity”, as later ex-
plained (see 5.6, 5.7). We first recall the definition for groups and for single
von Neumann algebras, for completeness.

2.0.1. Property H for groups. In [H1] Haagerup proved that the free
groups I'y = F,,2 < n < oo, satisfy the following condition: There exist
positive definite functions ¢, on I'y such that

(2.0.1) lim p,(g) =0, Vn, (equivalently, ¢, € co(Typ)).
g—00

(2.0.17) lim o, (g) =1, VgeTy.
g—00

Many more groups I'g were shown to satisfy conditions (2.0.1) in [dCaH],
[CowH], [CCJJV]. This property is often refered to as Haagerup’s approxi-
mation property, or property H (see e.g., [Cho], [CJ], [CCJJV]). By a result
of Gromov, a group has property H if and only if it satisfies a certain em-
beddability condition into a Hilbert space, a property he called a-T-menability
([Gr]). There has been a lot of interest in studying these groups lately. We
refer the reader to the recent book ([CCJJV]) for a comprehensive account on
this subject. Note that property H is a hereditary property, so if a group I'g
has it, then any subgroup I'y C I'g has it as well.

2.0.2. Property H for algebras. A similar property H, has been considered
for finite von Neumann algebras N ([C3], [Cho], [CJ]): It requires the existence
of a net of normal completely positive maps ¢, on N satisfying the conditions:

(2.0.2") To¢y <7and ¢po({zr € N ||zl <1})is| |[2-precompact, Ve,
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(2.0.2") lim ||po(z) — z||2 =0,V € N,

a—00
with respect to some fixed normal faithful trace 7 on V. The net can of course
be taken to be a sequence in case N is separable in the || ||2-topology.

It was shown in [Cho] that if IV is the group von Neumann algebra L(I'g)
associated to some group I'g, then L(Tg) has the property H (as a von Neumann
algebra) if and only if I'g has the property H (as a group). It was further shown
in [Jol] that the set of properties (2.0.2) does not depend on the normal faithful
trace 7 on N, i.e., if there exists a net of completely positive maps ¢, on
N satisfying conditions (2.0.2), (2.0.2”) with respect to some faithful normal
trace 7, then given any other faithful normal trace 7/ on N there exists a net
of completely positive maps ¢/, on N satisfying the conditions with respect to
7'. Tt was also proved in [Jol] that if N has property H then given any faithful
normal trace 7 on N the completely positive maps ¢, on N satisfying (2.0.2)
with respect to 7 can be taken 7-preserving and unital.

We now extend the definition of the property H from the above single
algebra case to the relative (“co-type”) case of inclusions of von Neumann
algebras, by using a similar strategy to the way the notions of amenabilty and
property (T) were extended from single algebras to inclusions of algebras in
[Pol1,10]; see Remarks 3.5, 3.6, 5.6 hereafter.

2.1. Definition. Let N be a finite von Neumann algebra with countable
decomposable center and B C N a von Neumann subalgebra. N has property
H relative to B if there exists a normal faithful tracial state 7 on N and a
net of normal completely positive B-bimodular maps ¢, on N satisfying the
conditions:

(2.1.0) TO¢a <T;
(2.1.1) Ty, € J((N,B)),Ya;
(2.1.2) lim ||¢a(z) — x|]]2 = 0,Vz € N,

where Tp,, are the operators in the semifinite von Neumann algebra (N, B) C
B(L%*(N,)) defined out of ¢, and 7, as in 1.2.1.

Following [Gr], one can also use the terminology: N is a-T-menable relative
to B.

Note that the finite von Neumann algebra N has the property H as a
single von Neumann algebra if and only if N has the property H relative to
B=C.

Note that a similar notion of “relative Haagerup property” was consid-
ered by Boca in [Bo], to study the behaviour of the Haagerup property under
amalgamated free products. The definition in [Bo] involved a fixed trace and
it required the completely positive maps to be unital and trace preserving.
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The next proposition addresses some of the differences between his definition
and 2.1:

2.2. PROPOSITION. Let N be a finite von Neumann algebra with count-
ably decomposable center and B C N a von Neumann subalgebra.

1°. If N has the property H relative to B and {¢q }o satisfy (2.1.0)—(2.1.2)
with respect to the trace T on N, then there exists a net of completely positive
maps {®, }o on N, which still satisfy (2.1.0)—(2.1.2) with respect to the trace T,
but also Ty, € Jo({N, B)) and ¢;,(1) < 1,Va.

2°. Assume B'N N C B. Then the following conditions are equivalent:
(i) N has the property H relative to B.

(ii) Given any faithful normal tracial state 19 on N, there exists a net of uni-
tal, To-preserving, B-bimodular completely positive maps ¢o on N such
that Ty, € Jo((N, B)), Yo, and such that condition (2.1.2) is satisfied for
the norm || ||2 given by 9.

(ili) There exists a normal faithful tracial state T and a net of normal,
B-bimodular completely positive maps ¢, on N such that ¢, can be ex-
tended to bounded operators Ty, on L*(N,T), such that Ty € J((N, B))
and (2.1.2) is satisfied for the trace T.

Moreover, in case N is countably gemerated as a B-module, i.e., there
exists a countable set S C N such that SpSB = N, the closure being taken in
the norm || |2, then the net ¢o in either 1°, 2° or 3° can be taken to be a
sequence.

Proof. 1°. By part 3° of Proposition 1.3.3, we can replace if necessary ¢,
by ¢a(2a - 2a), for some z, € P(Z(B)) with z, T 1, so that the corresponding
operators on L?(N,7) belong to Jo((N, B)), Va.

By using continuous functional calculus for ¢ (1), let by = (1Veo(1))~1/2 €
B'N N. Then b, < 1,||by — 1|2 — 0 and

(bla(.%') = ba(ba(x)bomx € N:

still defines a normal completely positive map on N with ||¢] (z) — z|2 — 0,
Vx € N. Moreover, if x > 0 then

7(¢a(2)) = 7(da()b7) < T(¢a()).
Also, since Ty, = L(ba)R(ba)Ty, and L(by) € N C (N,B), R(ba) €
J(B'NN)J C (N,B) and Ty, € J((N, B)), it follows that Ty, € J((N,B)).
2°. We clearly have (ii) = (i) = (iii).
Assume now (iii) holds true for the trace 7 and let 79 be an arbitrary
normal, faithful tracial state on N. Thus, 79 = 7(-ap), for some ag € Z(N)+
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with 7(ag) = 1. Since B'N N = Z(B), by part 3° of Lemma 1.2.1 we have
ao = ¢a(l) € Z(B). Also, (2.1.2) implies

(2.2.2)) lim [jaq — 1]|2 =0,
a— 00
where || ||2 denotes the norm given by 7.

Let p, be the spectral projection of a, corresponding to [1/2,00). Since
ao € Z(B), pa € Z(B). Also, condition (2.2.2) implies lim ||pq — 1|2 =
a—00
lim ||a,'pa — Pall2 = 0. Furthermore, by condition 3° of Proposition 1.3.3,
a— 00

there exists p}, € Z(B) with p;, < pa, such that Ty pl, € Jo((N, B)) and
(2.2.2") lim [|p), — 1] =0, lim [la;'pa — Pll2 = 0.
a—0o0 a—0o0
Define ¢/, on N by
O (@) = a3 Pphda(@)phay ' + (1= pl) Ep(z)(1 - p),z € N.

Then we clearly have ¢/,(1) = 1, ¢;, are B-bimodular and Ty, € Jo((N, B)).
Since B'N' N C B, by part 2° in Lemma 1.2.1, this also implies 7 o ¢/, = T,
70 0 ¢!, = T9. Moreover, since a'p, < 2, it follows that for each z € N,

6 () — zll2 < llag " *Phda(@)ag Pl — phapl 2
/ / / /
(1 = pa)zpyllz + lpaz (1 — po)ll2
+[(1 = po) (@ — E(z))(1 — )|l
<2|¢a(x) — zll2 + 2llag " *phrarpl, — phapl2
+3[11 — pgll2llz],

with the latter tending to 0 for all z € N, by (2.2.2”). Since this convergence
holds true for one faithful normal trace, it holds true in the s-topology, thus
for the normal trace 1y as well.

The last part of 2° is trivial. O

We now prove some basic properties of the relative property H, showing
that it is well behaved to simple operations such as tensor products, amplifi-
cations, finite index extensions/restrictions.

2.3. ProroOSITION. 1°. If N has property H relative to B and By C Ny
1s embedded into B C N with commuting squares, i.e., Ng C N, By C B,
By = NoNB and En,oEp = EpoEN, = Ep,, then Ny has property H relative
to BO.

2°. If By C Ny and By C Ny then N1®No has property H relative to
B1®Bs if and only if N; has property H relative to B;,i =1, 2.

3°. Let B C N9 C N. If N has property H relative to B, then Ny has
property H relative to B. Conversely, if No C N has a finite orthonormal basis
{u;}; with uj unitary elements such that u;Bu; = B,Vj, and Ny has property
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H relative to B, with respect to 7y, for some normal faithful trace T on N,
then N has from property H relative to B, with respect to T.

4°. Assume B C By C N and B C By has a finite orthonormal basis. If
N has from property H relative to By then N has property H relative to B. If
in addition By N N C By then, conversely, if N has from property H relative
to B, then N has property H relative to By.

Proof. 1°. If ¢ : N — N are B-bimodular completely positive maps
approximating the identity on NV, then by the commuting square relation Ey, o
Ep = Ego Eyn, = Ep,, it follows that ¢/, = Ey, o <Z5a\No approximate the
identity on Ny and are Bp-bimodular. Moreover, by commuting squares, if
Ty, satisfy condition 5° in 1.3.3 then so do Ty .

2°. The implication from left to right follows by applying 1° to (B C N)
= (Bl@BQ C N1®N2) and (B[) C N()) = (Bl ® C C N; ®(C),Z = 1,2. The
implication from right to left follows from the fact that Ty € J((N;, B;)),
i = 1,2, implies Ty1 g2 € J((N1®N2, Bi1®Bs) (since the tensor product of
finite projections is a finite projection).

3°. For the first implication, let ¢, be completely positive maps on N
that satisfy (2.1.0)—(2.1.2) for B C N and for the trace 7 on N. Define
% (7) = En,(¢al(r)),z € No. Then ¢2 are completely positive, B-bimodular
maps which still satisfy 70 ¢2 < 7. Moreover, since T4, satisfy condition 5° in
Proposition 1.3.3, then clearly gbg do as well.

For the converse, assuming ¢°, are completely positive maps on Ny that
satisfy (2.1.0)~(2.1.2) for B C Ny, define ¢, on (N, ex,) by

Po(Sijuizijen,u)) = S juido (i) en,u),

where z;; € Ny. It is then immediate to check that an are completely positive,
B-bimodular and check (2.1.0)—(2.1.2) with respect to the canonical trace 7
on (N,ep,) implemented by the trace 7 on N (which is clearly Markov by
hypothesis). Thus, (IV, ey, ) has property H relative to B, so that by the first
part N has property H relative to B as well (with respect to N = 7).

4°. For the first implication, note that the condition that By has a fi-
nite orthonormal basis over B implies Jo((N, By)) C Jo({N,B)). Indeed,
this follows by first approximating 7' € Jo((IN, Bp)) by linear combination of
projections in Jo((V, Bp)) then noticing that if dim(p,H) < oo (respectively,
dim(Hp,) < 00), then dim(pH) < oo (respectively, dim(Hp) < 00).

For the opposite implication, let {m; }; be a finite orthonormal basis of By
over B and recall from ([Po2]) that b = Xym/m/" € Z(By) and b > 1. Also,
since for any T' € B’ N (N, B),

SigL(m)R(m;") o T o L(m")R(m;) € By N (N, Bo)
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(cf. [Po2]), it follows that if we put m; = b_1/2m;- then
T° = % jL(m;)R(m}) o T o L(m})R(m;) € By N (N, By).

This shows that if ¢ = ¥; jmjda(m - mi)my, then T° = Ty € By N (N, Bo).
Also, if in the above we take T to be a projection with the property that
H = e(L?(N,7)) is a finitely generated left-right Hilbert B-module, then the
support projection of the corresponding operator 7° is contained in H° =
¥ jmiHm}. To prove that T? is contained in Jo((N, Bo)) it is sufficient to
show that H° is a finitely generated left-right Hilbert By-bimodule.

To do this, write first H as the closure of a finite sum %37, B. Then HY

follows the closure of
i gmi(Zpme B)m}; = X p(mung (3 Bmj) = X gminy Bo.

This shows that dimp, H® < co. Similarly, dimHOBO < 0.
Taking linear combinations and norm limits, we get that T € Jy({N, B))
implies 79 € Jo((N, Bo)).
Finally, since ¥;m;m

*
=
b, implies convergence to idy of ¢Q. By condition (iii) in 2.3.2°, this implies

N has the property H relative to By. O

1, by Corollary 1.1.2 the convergence to idy of

2.4. PROPOSITION. 1°. If N has property H relative to B and p € P(B)
orp € P(B'NN), then pNp has property H relative to pBp.

2°. If {pn}tn C P(B) or {pn}n C P(B' N N) are such that p, T 1 and
PnNpn has property H relative to p,Bpn, Vn, then N has property H relative
to B.

3°. Assume there exist partial isometries {vp}n>0 C N such that v}v, €
pBp, vy} € B, v, B} = v,v) Bogvt,Vn > 0,300 = 1 and B C ({vp}n U
pBp)”. If pNp has property H relative to pBp then N has property H relative
to B.

4°. If BC Ny C Ny C ..., then N = UpN}, has property H relative to B
(with respect to a trace T on N) if and only if Ny has property H relative to B
(with respect to 7y, ), Vk.

Proof. 1°. In both cases, if ¢ is B-bimodular completely positive on N
then po(p - p)p is a pBp-bimodular completely positive map on pNp. Also,
7o ¢ < 7 implies 7, o (pop(p - p)p) < 7, wWhere 7,(x) = 7(x)/7(p),z € pNp.
Finally, if T} satisfies condition 5° in 1.3.3 as an element in (N, B) then clearly
Tp(pp)p Satisties the condition as an element in (pNp, pBp).

The case {pn}n C P(B'N N) of 2° follows because if p € P(B' N N)
and ¢, is Bp-bimodular completely positive map on pNp, with 7, 0 ¢, < 7,
T(1 —p) <9, ||[¢p(z) — z|]2 < I, Yo € pFp, for some finite set ' C N, and

Ty, € Jo((pNp, Bp)), then ¢(y)= ép(pyp) + En((1 — p)y(1 —p)), Yy € N
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is B-bimodular and satisfies 70 ¢ < 7, ||¢(z) — z|2 < £(§),Vz € F and
Ty € Jo((N, B)), where %inée(é) = 0.

To prove 3°, let ¢4 be pBp-bimodular, completely positive maps on pNp
with 7, 0 ¢ < 7, Tz € Jo({(pNp,pBp)) and ¢f — idpnp. Define ¢o on N by
ba(x) = Xj juigh (v zvi)v, 2 € N.

Now, 70 ¢y < 7 and ¢, — idy. Also, if b € pBp or b = Uiv;‘ then
bpo () = ¢a(bz), do(2)b = ¢o(xb),Va € N. Thus, if we denote by B; the von
Neumann algebra generated by pBp and {v,}, then ¢, is Bj-bimodular.

Also, the same argument as in the last part of the proof of 2.3.4° shows
that Tyr € Jo({(pNp,pBp)) implies Ty, .p.) € Jo({PnNpn, pnB1pn)), where
Pn = Xo<k<nVivk. Thus, p,Np, has property H relative to p,Bip,. Since
pnBpn C ppBipn, and p,Bip, has finite orthonormal basis over p,Bp,, by
2.4.1° above and the first implication in 2.3.4°, it follows that p,Np, has
property H relative to p, Bpy,, Vn.

For each n let {2} }1, be a partition of the identity with projections in Z(B)
such that 27’ has a finite partition into projections in B that are majorized by
pnzy. Thus, there exist finitely many partial isometries vy = pp 2y, v7, vy, . ..
in B such that v*vf > v’ ;"0 ;, Vi > 0 and such that ¥;vj'v]"" = z}!. By the
first part of the proof, z;’ Nz} has property H relative to Bz;'. By the case of
2° that we have already proved, it follows that N has property H relative to B.

The case {pn}» C B in 2° now follows by using 3°, to reduce the problem
to the case where p,, are central in B (as in the proof of the last part of 3°).

4°. The implication = follows by condition 2.3.3°. The reverse implica-
tion follows immediately once we note that if ¢ is a completely positive map
on Ny, such that 70 ¢ <7 and Ty, € J((Ng, B)), then the completely positive
map ¢F = ¢o Ey, on N satisfies 7o ¢F < 7 and Ty € J((N, B)) (for instance,
by 5° in 1.3.3). O

2.5. COROLLARY. Let A C M be a Cartan subalgebra of the type 11y
factor M. Ift > 0 then M has property H relative to At if and only if M has
property H relative to A (see 1.4 for the definition of the amplification by t of
a Cartan subalgebra).

Proof. Since the amplification by 1/t of A* ¢ M'is A C M, it is sufficient
to prove one of the implications. Assume M has property H relative to A and
let n > t. By 2.3.2° it follows that M ® My x,(C) has property H relative
to A® D,,, where D,, is the diagonal algebra in M, ,,(C). If p € A® D, is
a projection with 7(p) = t/n then, by 2.4.1°, M' = p(M ® M,x,(C))p has
property H relative to A® = (A ® D,,)p. O

2.6. Remark. We do not know whether the “smoothness” condition (2.1.0)
on the B-bimodular, completely positive, compact maps ¢,, approximating the
identity on IV in Definition 2.1 can be removed. This is not known even in the
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case B = Cly. In this respect, we mention that in fact, for all later applica-
tions, the following weaker “property H”-type condition will be sufficient:

(2.6.1) There exists a net of completely positive B-bimodular maps ¢,
on N which satisfy condition (2.2.2) so that for all {u,}, C U(N) with
lim || Ep(u)um)|l2 = 0,Vm, we have lim ||¢q(up)|j2 = 0.

n—oo n—oo

We do not know whether (2.6.1) implies conditions (2.1.0)—(2.1.2), not
even in the case N is a factor and B = Cly.

We mention however that for type II; factors N without the property
I' of Murray and von Neumann ([MvN]), the smoothness condition (2.1.0) is
automatically satisfied, in case the completely positive map ¢ is sufficiently
close to the identity, thus making condition (2.1.0) redundant. Indeed, we
have the following observation, essentially due to Connes and Jones ([CJ]):

2.7. LEMMA. If N is a non-I" type 11y factor then for any € > 0 there
exist § > 0 and a finite subset F C U(N) such that the following conditions
hold true:

1°. If ¢ is a completely positive map satisfying ||¢(u) — ulle < §,Vu € F,
then there exists a mormal completely positive map ¢" on N such that ¢"(1)
<1l,70¢" <7, |10¢" —7| <&, " < ag®(by - bo)ao, for some 0 < ap,by <1
in N, and ||¢" () — z||2 < ||¢(z) — z||2 + &, Vo € N, ||z|| < 1. Moreover, if ¢
is B-bimodular for some B C N, then ¢" can be taken B-bimodular.

2°. If (H,§) is a (B C N) Hilbert bimodule with ||u§ — &ul| < 6, Yu € F
then [|(-6,8) — 7l <&, (¢ &) — 7] <e.

Proof. 1°. Since N is non-T", by [C2] there exist unitary elements uq, us,
...,up in N such that if a state ¢ € N* satisfies || — p(u - u*)|| < § then
o — 7l < /9.

Let FF = {1} U {u;};. Assume ¢ is a completely positive map on N such
that ||¢(u) — ull2 < 6%/200,Yu € F. Let a = 1V ¢(1) and first define ¢’ on N
as in part 2° of Lemma 1.1.2, i.e., ¢/(z) = a~/2¢(z)a""?,2 € N. By 1.1.2,
¢'(1) <1 and

1/2

1 (z) = ll2 < l¢(z) — zll2 + 2[| (1) — 1l""|l.

Thus, by Corollary 1.1.2 we have for all z € N with ||z|| < 1 the estimates:
16/ (uzu™) — ug ()u* |2 < 2(2[|¢ (w) — ull3 + 2/|¢' (u) — ul2)"/* < 6.
Thus, if p = 70 ¢’ then ¢ — @(u; - u})|| < 4,Vi, implying that || — 7| < £2/9.

Thus, if we now take ¢; to be the normal part of ¢’ then we still have
$1(1) <1, ||[To¢y — 7| <€2/9 and
1/2
61 (2) — zlla < é(x) — 22 + 2l6(1) = 1% < [l6(x) — 2]l2 + 62/6,

for all z € N,||z| < 1. Finally, let by € L'(N,7) be the Radon-Nykodim
derivative of To¢; with respect to 7 and define b = 1Vby, ¢ = ¢ (b~1/2.571/2),
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as in Lemma 1.1.2. Thus, by part 3° of that lemma, all the required conditions
are satisfied, by letting ag = a=/2, by = b=1/2,

2°. This part is now trivial, by part 1° above and 1.1.3. O

3. More on property H

In this section we provide examples of inclusions of finite von Neumann
algebras with property H. We also prove that if a type II; factor N has property
H relative to a maximal abelian *-subalgebra B then B is necessarily a Cartan
subalgebra of N. Finally, we relate relative property H with notions of relative
amenability considered in [Pol,5].

The examples we construct arise from crossed product constructions, be-
ing a consequence of the following relation between groups and inclusions of
algebras with property H:

3.1. PROPOSITION. Let I'g be a discrete group and (B,Ty) a finite von
Neumann algebra with a normal faithful tracial state. Let o be a cocycle action
of Ty on (B,19) by 1o-preserving automorphisms. Then N = B x, Iy has
property H relative to B if and only if the group I'g has property H.

Proof. First assume that I'g has property H and let ¢, : I'g — C be unital
positive definite functions such that ¢, € co(T'o) and p.(g) — 1,Vg € To.
Also, without loss of generality, we may assume ¢, (e) = 1,Va. For each «,
let ¢, be the associated completely positive map on N = B x I'y defined as
in Section 1.4, by ¢(X4bsuy) = Xg0(9)bguy. Note that ¢, are unital, trace-
preserving and B-bimodular (cf. 1.4).

Also, since Ty, = Yp(g)ugepuy, it follows that Ty, € J((N, B)) if and
only if po € co(I'g). Finally, since |1 — po(g9)] = |[o(ug) — ugll2, it fol-
lows that lim po(g) = 1,¥g € T, if and only if lim ||¢a(z) — 2|2 = 0,

a— 00 a— 00
Vr € N.

In particular, this shows that N has property H relative to B.

Conversely, assume N has property H relative to B and let ¢, : N — N be
a net of completely positive maps satisfying (2.3.0)—(2.3.2). Let ¢, : I'o — C
be defined out of ¢, as in Section 1.4, i.e., by pa(g9) = 7(da(ug)uy), Vg € To.
By 2.6.1°,

lim ||pa(ug)|l2 = 0, Vo
g—00
Thus, by the Cauchy-Schwartz inequality,
lim ¢, (g) = 0, Vo
g—00

Similarly, lim||¢q (ug) — ugl|2 = 0 implies limp, (g) = 1, thus showing that
o «
I'p has property H. O
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3.2. Ezamples of groups with property H. The following groups I'y (and
thus, by heredity, any of their subgroups as well) are known to have property H,
thus giving rise to property H inclusions B C B x Ty whenever acting (possibly
with a cocycle) on a finite von Neumann algebra (B, 7y), by trace-preserving
automorphisms, as in 3.1:

3.2.0. Any amenable group Iy (cf. [BCV]; see also 3.5 below).

3.2.1. G =F,, for some 2 < n < oo, more generally Fg, for S an arbitrary
set of generators (cf. [H]).

3.2.2. Ty a discrete subgroup of SO(n, 1), for some n > 2 (cf. [dCaH]).
3.2.3. Ty a discrete subgroup of SU(n, 1), for some n > 2 (cf. [CowH]).

3.2.4. SL(2,Q), more generally SL(2,K) for any field K C R which is a
finite extension over Q (by a result of Jolissaint, Julg and Valette, cf. [CCJJV]).

3.2.5. I'g = G1*pGa, where GGy, G2 have property Hand H C G1, H C Go
is a common finite subgroup (cf. [CCJJV]). In particular I'g = SL(2, Z).

3.2.6. I' = I'oxI'1, with I'g, I'; property H groups. Also, I' = I'g %, I'1, with
Iy a property H group and I'y an amenable group acting on it (cf. [CCJIV]).

We refer the reader to the book ([CCJJV]) for a more comprehensive list of
groups with the property H. As pointed out there, the only known examples of
groups which do not have the Haagerup property are the groups GGy containing
infinite subgroups G C Gy such that (G, G) has the relative property (T) in
the sense of ([Ma, dHVa]; see also the next section).

3.3. Ezamples of actions. We are interested in constructing examples of
cocycle actions o of (property H) groups I'y on finite von Neumann algebras
(B,T) (see e.g. [CJ] for the def. of cocycle actions) that are ergodic (i.e.,
oq(b) = b,Vg € I'g implies b € C1) and properly outer (i.e., o4(b)by = bob,
Vb € B, implies ¢ = e or by = 0). Also, we consider the condition of weak
mizing, which requires that VF C B finite and Ve > 0, dg € I'y such that
|T(0g(x)y) — 7(x)7(y)| < e,Va,y € F. Weakly mixing actions are clearly
ergodic.

Recall that the proper outernes of ¢ is equivalent to the condition B’ N
B x,Tg= Z(B). Also, if o is a properly outer action, then o acts ergodically
on the center of B if and only if B %, Iy is a factor. Finally, weak-mixing
is equivalent to the fact that L?(B,7) has no o-invariant finite dimensional
subspaces other than C1.

Yet another property of actions to be considered is the action o of I'y on
(B,7) which is strongly ergodic if B has no nontrivial approximately
o-invariant sequences; i.e., if (b,), € ¢°°(N, B) satisfies nli_)rglo||ag(bn)—bn”2 =0,
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Vg € T'g then lim ||b, — 7(bs)1|l2 = 0. Note that if we denote N = B x, I'g
n—oo

and take w to be a free ultrafilter on N, then this condition is equivalent to
N' NnBY =C.

3.3.1. Bernoulli shifts. Given any countable discrete group I'g and any
finite von Neumann algebra (By, 79), I'g acts on
(B,7) = (B,7) = & (Bo,70)g
g€l
by Bernoulli shifts o,4; namely, o4(®pxp) = ), where z} = z4-15.
If By has no atoms or if I'g is an infinite group, then o is known to be
properly outer. Also, if 'y is infinite, then ¢ is ergodic, in fact even mixing.

A Bernoulli shift action is strongly ergodic if and only if I'y is nonamenable
(cf. [J2]).

3.3.2. Actions induced by automorphisms of groups. Let v be an action
of an infinite group Iy on a group G, by automorphisms. Let also v be a
(normalized) scalar 2-cocycle on G such that v, (4.} v, (g,) = Vg1.925 V91, 92 € G,
h € T'y. Then v implements an action of I'g on the “twisted” group von
Neumann algebra L,(G), denoted o, defined by o.,(h)(A(g)) = A((9)),
Vg € G, h € T'y. Note that o, preserves the canonical trace 7 of L,(G).

LEMMA. (i) The following conditions are equivalent:
a) o0y 18 ergodic;

(
(b

o, is weakly mizing;

(¢) ~ has no finite invariant subsets # {e};

)
)
)
(d) For any finite subset S C G there exists h € Ty such that v,(S) NS = 0.

(i) If Gy C G is so that {g7 'govn(g1) | 91 € G} is infinite, Vh € T\ {e},
Vgo € G then L,(G1)'NL,(G) %o, Lo C L,(G). In particular, if this holds true
for G1 = G then o, is properly outer. If v =1 then the converse holds true as
well.

(i) Let Ty C To,G1 C G be subgroups of finite index such that Gy is
invariant to the restriction of v to I'y. If v, o, G satisfy either of the conditions
(c), (d) in (i), or (ii) then yr,,['1,G1 satisfy that condition as well.

Proof. (i). (b) = (a) is trivial.

(a) = (c). If y,(S) = S, Vh € Ty for some finite set S C G with e ¢ S,
then © = X,c5A(g) ¢ C1 satisfies o, (h)(x) = x, Vh € 'y, implying that o, is
not ergodic.

(c) = (d). If y,(S)NS # 0, Vh € Ty, for some finite set S C G\{e}, then
denote by f the characteristic function of S regarded as an element of £2(G).
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If we denote by 7 the action (=representation) of 'y on ¢?(G) implemented
by 7, then (4,(f), f) > 1/|S|,Vh € Ty. Thus, the element a of minimal norm
| |l2 in the weak closure of co{7,(f) | h € To} C ¢?(G) is nonzero. But then
any “level set” of a > 0 is invariant to v, showing that (¢) doesn’t hold true.

(d) = (b). Let Ep be a finite set in the unit ball of L,(G), ¢ > 0
and Fy C To\{e} a finite set as well. Let Sy C G\{e} be finite and such
that |[(x — 7(2)1) — zg,|l2 < €/2,Vx € Ey. By applying the hypothesis to
S = U{(So) | h € Fy}, we see that there exists h € Ty such that v,(S)NS = 0.
But then h ¢ Fy and v4(So) N Sp = 0. Also, by Cauchy-Schwartz, for each
z,y € Eo,

|7 (o (h)(x)y) — 7(2z)7(y)]
< (@ —7(2)1) — 25, [l2]lyll2
Iy = 7)) — s ll2llzll2 + [7(0 (R)(z5,)ys, )|
= [z = 7(2)1) — 25, l2llyll2 + [[(y = 7(W)1) = ysll2llz(]2 < e
(ii) If yo € L, (G) x4 Do satisfies yoxr = yox,Va € L,(G1) and yo ¢ L,(G)
then there exists h € T'g,h # e, such that o,(h)(z)a = az,Vz € L,(G), for
some a € L,(G),a # 0. This implies A(y4(g1))ar(g; ') = a,¥g1 € G1. But if
this holds true then {v,(g1)g'9; " | g1 € G1} must be finite, for any ¢’ € G in
the support of a. When G; = G and v = 1, reversing the implications proves
the converse.
(iii) Note first that if S C G; is a finite subset such that v,(S) = S,
Vh € I'1, the set Uper, V4 (5) is finite as well. Thus, if v, o, G check with (c)
in (i) so are yr,,T'1, G1.
Then note that if v, T, G verify (ii) and for some g; € G; the set

{m(9)grg! | g € Gi}
is finite, then the set {y,(g)g19~ ' | g € G} is finite, a contradiction. O

COROLLARY. Let 7 be the action of the group SL(2,R) on R2. For each
a = 2™ € T, let v = (a) be the unique normalized scalar 2-cocycle on R?
satisfying the relation uzv, = exp(2mitzy)vyu,, where uy = (x,0),v, = (0,y)
for x;y € R. Then v is y-invariant. Moreover, the following restrictions
(7, To, G, v) of (7,SL(2,R),R2, %) are strongly ergodic and satisfy conditions
(i), (ii) in the previous lemma (so the corresponding actions 0., of I'y are free
and weakly mizing on L,(G)):

(a) To = SL(2,Z),G = Z2, or any other subgroup G of R? which is
SL(2, Z)-invariant, with ~y the appropriate restriction of 4 (and of 1).

(b) Ty = SL(2,Q), G = Q? (or any other SL(2,Q)-invariant subgroup of
R?), with v the appropriate restriction of 7.

(c) To ~ Fy,, regarded as a subgroup of finite index in SL(2,7Z) (see e.g.,
[dHVa)), and G = L((kZ)?), for some k > 1.
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Proof. Both conditions (i) and (ii) of the lemma are trivial in cases (a)
and (b). Then (c) is just a simple consequence of part (iii) of the lemma. The
strong ergodicity of these actions was proved in [S1]. O

3.3.3. Tensor products of actions. We often need to take tensor products
of actions o; of the same group I'g on (B;,7;), i = 1,2,..., thus getting an
action o =01 ® 02 ® ... of I'gon (B,7) = (B1,71)®(B2, 72)® . .. .

It is easy to see that the tensor product of a properly outer action ¢ of a
group ['g with any other action o of Iy gives a properly outer action. In fact, if
o is an action of I'g on (B, 7) and Ay C B is so that A{NB X,y C B then given
any action oy of I'g on some (By, 79), we have (A9 ® 1) N (B&By Xowoe, Lo) =

While ergodicity does not always behave well with respect to tensor prod-
ucts, weak-mixing does: If o is weakly mixing and o is ergodic then o ® oy is
ergodic. If ;,7 > 1, are weakly mixing then ®;0; is weakly mixing.

If 0 is not strongly ergodic, then o ® og is not strongly ergodic for all o.
Note that by [CW], if Ty is an infinite property H group then there always
exist free ergodic measure-preserving actions og of I'y on L>°(X, ) which are
not strongly ergodic. Thus, given any o, 0 ® g is not strongly ergodic either.

The following combination of Bernoulli shifts and tensor products of ac-
tions will be of interest to us: Let op be an action of Iy on (By, 79). Let also
I"y be another discrete group and 7 an action of I'y on I'g by group automor-
phisms. (N.B. The action v may be trivial.) Let o1 be the Bernoulli shift

action of T'y on (B,7) = ® (By,70)s. Let also o] be the action of T’y on
g€l

(B,T) given by o = ®4,00 ©(g1).

LEMMA.  1°. a1(g1)ag (90)o1(g;1 ) = 03 (v(91)(90)), for any go € To and
g1 € T'1. Thus, (go, 91) — 04 (g0)o1(g1) implements an action o = ¢ X o1 of
FO ><I»y Fl on (B,’T).

2°. If the group 'y is infinite and the action og is properly outer then
the action o defined in 1° is properly outer. Moreover, if By C By satisfies
B{ N (By %4, o) C By, and By is identified with --- @ C® By ® C--- C B,
then Bi N (B P (FO X Fl)) = Bi N B.

3°. If the action og is weakly mizring, or if the group I'y is infinite, then o
is weakly mizing (thus ergodic).

4°. If the group I'1 is nonamenable, then o is strongly ergodic.

Proof. 1° is a straightforward direct calculation.

2° follows once we notice that if I'y is infinite and g is properly outer, it
automatically follows that By has no atomic part. This in turn implies that
the Bernoulli shift of 'y on (Bg, 79)®'" is a properly outer action, even when
I'; is a finite group.
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3°. This follows by the observations at the beginning of 3.3.3 and 3.3.1.

4°. This follows from the properties of the Bernoulli shift listed in 3.3.1
(cf. [J2)). O

3.4. PROPOSITION. If the finite von Neumann algebra N has property H
relative to its von Neumann subalgebra B C N, then B is quasiregular in N.
If in addition N is a type 111 factor M and B = A is mazimal abelian in M,
then A is a Cartan subalgebra of M.

Proof. By Proposition 2.3, given any x1,x2,...,x, € N, with ||z;|2 < 1,
and any e > 0, there exists an operator 7' € B’ N J((N, B)) such that ||T|| <1
and || T(#;) — ;]| < €2/32,Vi. Since ||T|| < 1, this implies

|T* (&) — all5 = | T (£3) 15 — 2Re(T™ (£4), £i) + ||2f3
<2||@;||5 — 2Re(T* (%), #;) = 2Re(@;, (#; — T(#;)))
<2xillall€; — T(2)]2 < £2/16.
As a consequence, we get:
1 TT (&) — Zill2 < ([T T (2:) — Zillz + [|T7(25) — Zill2 < /2.

Thus, if we let e be the spectral projection of T*T' corresponding to [1 — ¢, 1]
then || T*T — T*Te|| <4, yielding

lle(£:) = Zill2 < [ T™T(4:) — Zall2 + le(T T (&) — (&) ||2 + [|[TT — T Te]
<2(T*T(z;) — Zil[2 + 6.

But for § sufficiently small the latter follows less than £, Vi. Since the projection
e lies in B’ N J((N, B)), this proves that V{f | f € P(B'N(N,B)), f finite
projection in (N, B)} = 1. By part (iii) of Lemma 1.4.2; this implies B is
quasiregular in N. If in addition B is a maximal abelian subalgebra then B
follows Cartan by ([PoSh]; see also part (i) in Proposition 1.4.3). O

3.5. Remarks. 0°. It is interesting to note that in most known examples
of groups T'y with property H, the positive definite functions ¢, € co(I'0)
approximating the identity can be chosen in ¢P(T'y), for some p = p(n). This is
the case, for instance, with the free groups Iy, (cf. [H]), the arithmetic lattices
in SO(m,1),SU(m, 1), etc. It is a known fact that if all ¢,, can be taken in the
same P(I'g) (which is easily seen to imply they can be taken in £%(Ig),Vn),
then I'g is amenable. This fact, along with many other similar observations,
justifies regarding Haagerup’s approximating property as a “weak amenability”
property.

1°. The same proof as in [Cho] shows that if G C Gy is an inclusion of
discrete groups with the property that there exists a net of positive definite
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functions ¢, on Gy which are constant on double cosets GgoG,Vgy € Gy (thus
factoring out to bounded functions on G\Go/G) and satisfy

(3.5.1') G is quasi-normal in Gy and ¢, € ¢o(G\Go/G), Va;
(3.5.1")  lim @a(go) = 1,Vgo € Lo,

then L, (Gyo) has property H relative to L, (G) for any scalar 2-cocycle v for Gj.

When G C Gy satisfies the set of conditions (3.5.1) we say that Go has
property H relative to G. Note that in the case GG is normal in Gg this is
equivalent to Go/G having property H as a group. (See 3.18-3.20 in [Bo] for
similar considerations).

2°. The relative property H for inclusions of finite von Neumann algebras
is related to the following notion of relative amenability considered in [Pol,5]:
If B C N is an inclusion of finite von Neumann algebras then N is amenable
relative to B if there exists a norm-one projection of (N, B) = (JyBJyx) N
B(L%*(N)) onto N, where L?(N) is the standard representation of N and Jy
is the corresponding canonical conjugation.

It is easy to see that if B C N is a crossed product inclusion B C B x, 'y
for some cocycle action o of a discrete group I'g on (B, 1), with 7y a faithful
normal trace on B, then N is amenable relative to B in the above sense if and
only if I'y is amenable, a fact that justifies the terminology. Thus, in this case
N amenable relative to B implies N has the property H relative to B.

If N is an arbitrary finite von Neumann algebra with a normal faithful
tracial state 7 and B C N is a von Neumann subalgebra, then the amenability
of N relative to B is equivalent to the existence of an N-hypertrace on (N, B),
i.e., a state ¢ on (N, B) with N in its centralizer: ¢(z7T) = ¢(Tz),Vx € N,
T € (N,B) (cf. [Pol]). It is also easily seen to be equivalent (by using the
standard Day-Namioka-Connes trick) to the following Fglner type condition:
VF C U(N) finite and € > 0, 3 e € P((N, B)) with Tre < oo such that

(3.5.2) |lupe — eugll2m < €lle

Note that in case (B C N) = (L,(G) C L,(Gy)) for some inclusion of
discrete groups G C Gy and a scalar 2-cocycle v on Gy, condition (3.5.2)
amounts to the following: VF C Gy finite and ¢ > 0, 3FE C G/G finite such
that

(3.5.2)) lgoE — E| < €|E|,Vgo € F.

2,Tr) Yug € F.

This condition for inclusions of groups, for which the terminology used is
“G co-Folner in Gy”, was first considered in [Ey]. It has been used in [CCJJV]
to prove that if G C Gy is an inclusion of groups, Gg is amenable relative to
G and G has the Haagerup property, then Gg has Haagerup’s property. It
would be interesting to know whether a similar result holds true in the case of
inclusions of finite von Neumann algebras B C N.
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3°. A stronger version of relative amenability for inclusions of finite von
Neumann algebras B C N was considered in [Po5], as follows: N is s-amenable
relative to B if given any finite set of unitaries F' C U(N) and any € > 0 there
exists a projection e € B’ N (N, B), with Tre < oo, such that e satisfies the
Fglner condition (3.5.2) and ||Tr(-e)/Tr(e) — 7|| < e. (No specific terminology
is in fact used in [Po5] to nominate this amenability property.) Note that in
case B'N N = C, we actually have Tr(-e)/Tr(e) = 7 for any finite projection
e in B’ N (N, B), so the second condition is redundant. The s-amenability
of N relative to B is easily seen to be equivalent to: There exists a net of
B-bimodular completely positive maps ¢, on NN such that 70 ¢, < 7, Ty,
belong to the (algebraic) ideal generated in (N, B) by ep and

lim ||¢a(z) — |2 =0, Vz e N.

Thus, N s-amenable relative to B implies N has property H relative to B.
Also, one can check that if N = B %, I'g for some cocycle action o of a discrete
group I'g on (B,7), then N is s-amenable relative to B if and only if N is
amenable relative to B and if and only if 'y is an amenable group.

4°. Let N C M be an extremal inclusion of type II; factors with finite
Jones index and let T'= MV M°P C M X M°P = S be its associated symmetric

EN
enveloping inclusion, as defined in [Pob]. It was shown in [Po5] that T is

quasiregular in S. It was also shown that S is amenable relative to T if and
only if S is s-amenable relative to T and if and only if N C M has amenable
graph I'y s (or, equivalently, N C M has amenable standard invariant Gy ).

By [Pob, §3], if N C M is the subfactor associated to a properly outer
cocycle action o of a finitely generated group I'g on a factor ~ M, then the
corresponding symmetric enveloping inclusion

T=MVMPCMXM®=S
EN

is isomorphic to
MRM® C MRM°P Xogoor Lo,

so that T is regular in S. But if N C M has index A~ > 4 and Temperley-Lieb-
Jones (TLJ) standard invariant Gy s = G*, then the corresponding symmetric
enveloping inclusion T' C S is quasi-regular but not regular. In particular, if
A7l =4 then [S : T] = co and S has property H relative to T (because Gy s
is amenable by [Po3]), while T is quasi-regular but not regular in S.

5°. By exactly the same arguments as in the case of property (T) for

standard lattices considered in [Po5], it can be shown that for an extremal

standard lattice G the following conditions are equivalent: (i). There exists an

irreducible subfactor N C M with Gy s = G such that M X M°P has property
EN
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H relative to M Vv M°P; (ii). Given any subfactor N C M with Gy = G,
M X M°P has property H relative to M vV M°P. If G satisfies either of these

EN

conditions, we say that the standard lattice G has property H. By 4° above,
any amenable G has property H. We will prove in a forthcoming paper that
TLJ standard lattices G* have the property H, VA~! > 4, while they are known
to be amenable if and only if A=! = 4 ([Po2], [Po5]).

6°. When applied to the case of Cartan subalgebras A C M coming
from standard equivalence relations R (i.e., countable, free, ergodic, measure-
preserving) and having trivial 2-cocycle v = 1, Definition 2.2 gives the follow-
ing: A standard equivalence relation R has property H (or is of Haagerup-type)
if M has property H relative to A. Note that in case R comes from an action
o of a group I'g then property H of the corresponding R depends entirely on
the group I'g, and not on the action (cf. 3.1). Since in addition A x I'g has
property H relative to A if and only if p(A x I'g)p has the property H relative
to Ap, for p € P(A) (cf. 2.5), it follows that property H for groups is invariant
to stable orbit equivalence (this fact was independently noticed by Jolissaint;
see [Fu] for a reformulation of stable orbit equivalence as Gromov’s “measure
equivalence”, abbreviated ME).

4. Rigid embeddings: Definitions and properties

In this section we consider a notion of rigid embeddings for finite von
Neumann algebras, inspired by the Kazhdan-Margulis example of the rigid
embedding of groups Z? C Z? x SL(2,Z) ([Ka], [Ma]). Our definition will be
the operator algebraic version of the notion of property (T) for pairs of groups
in [Ma], in the same spirit Connes and Jones defined property (T) for single
von Neumann algebras starting from property (T) of groups, in [CJ]. Thus, as
in [CJ], to formulate the definition we use Connes’s idea ([C3]) of regarding
Hilbert bimodules as an operator algebra substitute for unitary representations
of groups, and completely positive maps as an operator algebra substitute for
positive definite functions on groups (see Section 1.1). For convenience (and
comparison), we first recall the definition of property (T) for inclusions of
groups and for single II; factors:

4.0.1. Relative property (T) for pairs of groups. The key part in Kazhdan’s
proof that the groups SL(n,R) (resp. SL(n,Z)), n > 3, have the property (T)
consists in showing that representations of R? x SL(2,R) that are close to the
trivial representation contain copies of the trivial representation of R2. This
type of “relative rigidity” property was later emphasized as a notion in its own
right by Margulis ([Mal; see also [dHVal), as follows:

Let G C Gg be an inclusion of discrete groups. The pair (Go,G) has
relative property (T) if the following condition holds true:



BETTI NUMBERS INVARIANTS 847

(4.0.1) There exist finitely many elements g1, 92,...,9, € Gy and € > 0,
such that if 7 : Gy — U(H) is a unitary representation of the group Gy on the
Hilbert space H with a unit vector £ € H satisfying ||7(g;)€ — ]| < €, Vi, then
there exists a nonzero vector §y € H such that 7(h)& = &, Vh € G.

Due to a recent result of Jolissaint ([Jo2]), the above condition is equivalent
to:

(4.0.1") For any € > 0, there exist a finite subset E/ C Gy and ¢ > 0
such that if (7, H) is a unitary representation of Gy on the Hilbert space
H and £ € H is a unit vector satisfying ||w(h) — &|| < ¢',Vh € E’, then
I7(9)§ =€l < e, Vg € G.

Note that the equivalence of (4.0.1) and (4.0.1") is easy to establish in case
G is a normal subgroup of Gy (exactly the same argument as in [DeKi] will
do), but it is less simple in general (cf. [Jo2]). On the other hand, condition
(4.0.1") is easily seen to be equivalent to:

(4.0.1”) For any & > 0, there exist a finite subset E C G and ¢ > 0 such
that if ¢ is a positive definite function on Gy with |¢(h) — 1| < §,Vh € E then
lp(g) =1 <&, Vg €G.

Note that in the case G = Gy, condition (4.0.1) amounts to the usual
property T of Kazhdan for the group Gy ([Kal; see also [DeKi], [Zi]). We will
in fact also use the following alternative terminologies to designate property
(T) pairs: G C Gy is a property (T) (or rigid) embedding, or G is a relatively
rigid subgroup of Gj.

4.0.2. Property (T) for factors. The abstract definition of property (T)
for a single von Neumann factor is due to Connes and Jones ([CJ]): A type II;
factor N has property (T) if the following condition holds true:

(4.0.2) There exist finitely many elements x1,z2,...,2, € N and g > 0
such that if H is an N Hilbert bimodule with a unit vector & € H such that
|lx:i& — &x;|| < €0, Vi, then H contains a nonzero vector & such that x&, =
ox,Vxr € N.

Connes and Jones have also proved that the fixed vector &y can be taken
close to the initial &, if the “critical set” in IV is taken sufficiently large and
the “commutation constant” sufficiently small ([CJ]), by showing that (4.0.2)
is equivalent to the following:

(4.0.2") For any ¢ > 0, there exist a finite subset F/ € N and ¢’ > 0
such that if H is a Hilbert N-bimodule and & € H is a unit vector satisfying
ly€ — €y|| < &',Vy € F’, then there exists £y € H such that x&y = {yz,Vr € N
and [|§ — &l <e.
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For inclusions of finite von Neumann algebras, we first establish the equiv-
alence of several conditions:

4.1. PROPOSITION. Let N be a finite von Neumann algebra with count-
able decomposable center (i.e., with normal faithful tracial states). Let B C N
be a von Neumann subalgebra. The following conditions are equivalent:

1°. There exists a normal faithful tracial state 7 on N such that: Ve > 0,
AF" C N finite and &' > 0 such that if H is a Hilbert N-bimodule with a
vector § € H satisfying the conditions ||(-£,&) — 7| < ', ||(§,§) — 7| < & and
ly€ — &yl| < &,Vy € F' then 3§y € H such that ||§y — &|| < & and by = &b,
Vbe B.

2°. There exists a normal faithful tracial state 7 on N such that: Ye > 0,
dF C N finite and § > 0 such that if ¢ : N — N is a normal, completely
positive map with 7o ¢ < 7,¢(1) < 1 and ||¢p(z) — z||2 < 6,V € F, then
lp(b) — bll2 < e,¥b € B, ||b]| < 1.

3°. Condition 1° above is satisfied for any normal faithful tracial state T
on N.

4°. Condition 2° above is satisfied for any normal faithful tracial state T

on N.

Proof. We first prove that condition 1° holds true for a specific normal
faithful tracial state 7 if and only if condition 2° holds true for that same trace.
Then we prove 1° < 3°, which due to the equivalence of 1° and 2° ends the
proof of the proposition.

2° = 1°. By part 1° of Lemma 1.1.3, we may assume the vectors
¢ € 'H in condition 4.1.1° also satisfy (-£,&) < 7 and (£-,§) < 7, in addition
to the given properties. We take x1,z9,...,z, to be an enumeration of the
finite set F' and for any given ¢ > 0 let & be the § given by condition 2°
for e = 5’2/4. By part 2° of Lemma 1.1.3, such a vector £ gives rise to a
completely positive map ¢ = ¢3¢ on N which satisfies condition 4.1.2°.
Thus, ||¢(b) —bll2 < &,Vb € B,[|b|| < 1. By Lemma 1.1.2, this implies that
¢ (which is equal to &) satisfies |uéu* — &|| < 2e'/2 < &/,Vu € U(B). By
averaging over the unitaries u € U(B), we see that there exists £y € H such
that || — &|| < &’ and & commutes with B.

1° = 2°. Let ¢ > 0. Define F(c) = F'(¢2/8),0(c) = §'(c2/8)?/4. Let
then ¢ : N — N be a completely positive map satisfying the conditions 2°
for this F'(e) and 6(e). Let (Hg,&p) be constructed as in 1.1.2. By part 4° of
Lemma 1.1.2, we have for = € F'(¢) the inequality

265 — €| < 2)|6(x) — x5/ < §'(2/8).

Thus, there exists { € H, such that [|€, — & < €2/8 and by = &ob,
Vb € B. But then, if u € U(B) we get
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l¢(w) — ull3 <2 — 2Re(uéyu*, &)
<2 —2]6o)|* +4llg0 — &l <2 —2(1 - ?/8)? + 4e?/8 < €%

Since any b € B, [|b]| < 1, is a convex combination of unitary elements, we are
done.

3° = 1°is trivial. To prove 1° = 3°, let 79 be a normal faithful
tracial state on N. We have to show that Ve > 0, 3Fy C N finite and §y > 0
such that if H is a Hilbert N-bimodule with n € H satisfying ||(-n,n) — 70| <
b0, 1(n+,m) — 7oll < do and [[yn —ny| < o, Vy € Fo then Iy € H such that
Ino — || < & and by = nob, Vb € B.

By Sakai’s Radon-Nykodim theorem, 7y is of the form 79 = 7(-ap) for
some ag € L'(Z(N), ), with 7(ag) = 1. It is clearly sufficient to prove the
statement in the case ag is bounded and with finite spectrum (thus bounded
away from 0 as well). Also, by taking the spectral projections of ag to be in
Fp and slightly perturbing 1, we may assume 1 commutes with ag. We take
Fy = F'(¢/||ao||) and 6o = &'(¢/|aol|)/llag ||, as given by condition 1° for 7.

Let & = a61/2n = naalﬂ. Then

1(:6,€) = 7ll = lI¢-ag "0, m) = 7o (ag Dl < llag ' 18"/ llag 1) = 4"
Similarly, ||(¢-, &) — 7| < d'. Also, for y € Fp,

1w €1l = llys ag *nlll < lag 218 /llag ) < 8-

Thus, by 1°, there exists {y € H such that by = b, Vb € B and || — & <
g/|lao||- In addition, since £ commutes with ag, we may assume &y also does.
Let ng = a(l)/ 2&). Then ng still commutes with B and we have the estimates:

1/2 1/2 1/2 1/2
o — nll = llag/*€0 — ag ¢l < llag/* 1o — €1l < llag*ll(e/llao])) < e. O

4.2. Definitions. Let N be a countable decomposable finite von Neumann
algebra and B C N a von Neumann subalgebra.

4.2.1. B C N is a rigid (or property (T)) embedding (or, B is a relatively
rigid subalgebra of N, or the pair (N, B) has the relative property (T)) it B C N
satisfies the equivalent conditions 4.1.

4.2.2. If N is a finite factor and g > 0 then B C N is eg-rigid if IF° C N
finite and § > 0 such that if ¢ is a completely positive map on N with ¢(1) < 1,
To¢ <7 and ||¢p(x) — z||2 < 9,Vr € F then ||¢(b) — bll2 < €0,Vb € B, ||b]| < 1.

Note that if N is a finite factor then an embedding B C N is rigid if and
only if it is eg-rigid Veg > 0. We see that if some additional conditions are
satisfied (e.g., B regular, in N, in 4.3.2°; B, N group algebras coming from a
group-subgroup situation, in 5.1) then B C N, g¢p-rigid, for g = 1/3, is in fact
sufficient to insure that B C N is rigid.
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4.3. THEOREM. Let N be a separable type 111 factor and B C N a von
Neumann subalgebra.

1°. Assume B C N is either rigid or gg-rigid, for some g9 < 1, with B
semi-reqular. Then N'NN¥ = N'N(B'NN)¥, for any free ultrafilter w on N.
If in addition to either of the above conditions B also satisfies B'NN = Z(B)
(resp. B'N N = C) then N is non-McDuff (resp. non-T').

2°. Assume that either B is reqular in N or that Ny(B) N N“ = C. Then
B C N s rigid if and only if it is eo-rigid for some g9 < 1/3.

Proof. 1°. Assume first that B C N is rigid. By applying 4.1.2° to the
completely positive maps ¢ = Adu for u € U(N), it follows that for any € > 0
there exist § > 0 and x1,x9,...,z, € N such that if u € U(N) satisfies

|luz; — xul|2 <6, Vi,

then
|lub — bulls < e,Vb € B, ||b|| < 1.

In particular, ||[vuv* — ulls < e,Vv € U(B). Thus, by taking averages over the
unitaries v € B, we see that ||Epnn(u) — ull2 < e. Thus, if (u,) CU(N) is a
central sequence of unitary elements in NV, i.e.,

lim ||[z, u,]||2 = 0,Vz € N,

then
lim Hun - EB/QN(U‘TL)HQ = 0.

n—oo

Assume now that B C N is g¢-rigid, with 9 < 1, and that N'(B)'NN = C.
We proceed by contradiction, assuming there exists u = (uy, ), € U(N' N N¥)
such that v ¢ (B’ N N)“. By taking a suitable subsequence of (u,), we see
that there exists (vp)n, C U(IN) such that nlLIrolOH[vn,a:]Hg =0, Vz € N, and
|Epnn(vn)l2 < ¢,Vn, for some ¢ < 1. It further follows that given any
separable von Neumann subalgebra P C N“ there exist k1 < ko < ... such
that JI_)H;oH[vkﬂn”b =0, Vy = (yn)n € P.

Moreover, if P C Ny« (B%)”, then the subsequence v' = (v, ), can be
taken so that we also have [Eg.nn.(v'),y] =0, Vy € P. To see this, let S C
N (BY) be a countable set such that the von Neumann algebra Py generated by
S contains P. Choose ky, | oo so that lim vk, , wn]ll2 = 0, Yw = (wp)n, € S.
We then have o

wEgeane (V)w* = wEpwqne (WY w)w* = Egeny.(v’), Yw € S.

Thus [Egeane(v),S] = 0, implying [Egean.(v'), Py] = 0 as well.

Now notice that (B'NN)¥ = B*’ N N¥ (see e.g. [Po2]). As a consequence,
since Egonnw(z) is the element of minimal norm || |2 in 0¥ {wzw* | w €
U(B*)}, which in turn can be realized as a || ||2-limit of convex combinations
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of the form wzrw* with w in a suitable countable subset of U(B%), it follows

that for any x € N“ there exists a separable von Neumann subalgebra P € B¥

such that Epnne(x) = Egwnne(z). Also, since Ny« (B¥) D TII Ny(B),
n—oo

N (B¥)" follows a factor and for any 2/ € N“ there exists a separable von
Neumann subalgebra Py generated by a countable subset in A/ (B%) such that
Py D P and Epnne(2') = 7(2")1.

Using all the above, we prove the following statement:

(4.3.1") If z € N then there exists a subsequence (v, )n of (vy,), such that
v = (vg, )n € N¥ satisfies ||Egornne (20)]|2 = |Eernne (z)||2]| Egernne (v)]|2.

To see this, take first a separable von Neumann subalgebra P C B“ such
that Egenne(z) = Epane(x). Then take Py a von Neumann algebra gen-
erated by a countable subset in N'(B“) such that Py D P and Epnn-(2') =
7(2')1 where 2’ = Egunne(2)* Egornye(x). Since B’ N N¥ C P’ N N¥, if the
subsequence (vg, )y, is chosen such that [v/, Py] = 0 then [v/, P] = 0 and

EBwlme (mv/) = EBW/QNW (Ep/me (JS‘U/)) = EBw’me (Eprme (SU)U/)

— EBw'me (EBw/me (x)vl) — EBw’ﬂNw (x)EBw’ﬁNw (1)/).
Also, since y = Eguanye (V') Egunn. (v')* satisfies [y, Py] = 0,
|Eporane (z0') |3 = [|Epernne (2) Epornns (v) |13 = 7(2'y') = 7(Epyan-(2'y"))
= 1(Epyn-(@')y) = 7(a")7(y) = | Eporon (@) 3| Epornne (v')]13.

Now, by applying (4.3.1) recursively, we can choose a subsequence v' of
v = (Un)n, then v? of v!, etc, such that

1Eperane (L0 )ll2 = T2y | Epornne (v7) |2 = | Epernn- ()3 < ™.

Take m so that ¢™ < 1 —gp and put w = v'v?... 0™ w = (wy)n, with
wp, € U(N), and ¢, = Ad(wy,). Then,
(4.3.1") lim || Epan(wy)|l2 <1 —eo, lim ||¢pp(z) — z|]2 = 0,Vz € N.
n—w n—oo

By the g¢-rigidity of B C N the second condition in (4.3.1”) implies that for
large enough n we have

[wwnu™ —wpllz = lwnuwy, — ulls = ll¢n(u) - ull2 < o, Vu € U(B).

After we take convex combinations over u, this yields || Epnn(wy) —wy|l2 < £o.
Thus ||[Epnan(wy)|l2 > 1 — eo for all large enough n, contradicting the first
condition in (4.3.1”).

2°. We need to show that if (¢,), are completely positive maps on N
satisfying

(a) To, <1,9,(1) < 1,Yn, lim ||[¢,(x) — |2 = 0,Vx € N,
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then limsup({||¢n(b) — bll2 | b € B,||b]| < 1}) = 0. Assume by contradiction
that there exist (), satisfying (a) but

(b) in, (sup{[[$(6) — bl> | b € B, ]| < 1}) > 0.
Note that by the gg-rigidity of B C N, (a) implies
(©) tim sup(supd | n(5) — b2 | b € B, [} < 1}) < eo.

n—oo

If (n)n satisfies 701, < 7,9y (1) <1,¥n in (a) then

(d) U((20)n) = (Yn(@n))ns (20)n € N,

gives a well defined completely positive map ¥ on N* with 7o¥ < 7, ¥(1) < 1.
Thus, the fixed point set (N“’)‘I’déf{x € N¥ | ¥(x) = z} is a von Neumann
algebra. If (¢,,), also satisfies the last condition in (a), then N C (N¥)Y.
In particular W(1) = 1 which together with ||Ty| < 1 implies Ty*(1) = 1;
equivalently U*(1) =1, i.e., To ¥ = 7.

If in addition to (a) the sequence (v,), satisfies (b), then B® ¢ (N*)¥.
Let us prove that the eop-rigidity of B C IV entails

(e) B¥ C., (N¥)Y.

For ¢ a map on an algebra denote by Y™ the m-time composition (o) ---o0.
Then note that for each m > 1 the sequence ("), still satisfies (a), and thus,
by eo-rigidity, (c) as well. Thus

[F(b) — bl < 0, Wb e B, [|b]| < 1.
But by von Neumann’s ergodic theorem applied to ¥ and z € N¥, we have

(0 Jim SR W (@) — By (@)]l2 = 0,
which together with the previous estimate shows that for x = b € B“, ||b]| < 1,
we have || E(yeys (b) — bll2 < g0, i.e., (e).

The assumption N (B)' N N¥ = C implies in particular that N' N N¥ =
C C (N¥)¥. We next prove that B regular in N implies N’ N N C (N“)¥ as
well, for any ¥ on N“ associated as in (d) to a sequence (¢,), satisfying (a).
Denote P = (N¥)¥ and assume by contradiction that N’ N N¥ ¢ P. Since
N'NNY and P make a commuting square, this implies there exists x € N'NNY,
x # 0, such that Ep(z) = 0. Moreover, we may assume = = (x,), satisfies
Tn = 5, |zn|l2 = 1, Vn.

By using (f), we can choose “rapidly” increasing k1 < ko < ... and
“slowly” nondecreasing m; < mo < ... such that the sequence of completely

My

positive maps 1], = (mn)*lEFlwi satisfies (a) and lim |[¢] (z),)||2 = 0, with
" n—oo

lim ||[z),,y]|l2 = 0,Yy € N, lim 7((«})*) = 7(2¥), Vk, where z!, = z}, .
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Denote by ¥y the completely positive map on N¥ associated with (¢],),
as in (d), and put X = X; = (z],), € N“. Since each separable von Neumann
subalgebra of N“ is contained in a separable factor and since for each separable
@Q C N there exists j1 < j2 < ... such that X' = (2 ), € Q'NN, it follows
that there exist separable factors Qg = N C @1 C -+ C Qpm-1 in N¥ and
consecutive subsequences of indices (j,1) < (j,2) < ..., for j = 1,2,...,m,
with (1,n) = n, such that X; = (z},), € N* satisfy X1, Xo,...,X; € @y,
Qj, Xj+1] = 0, for 0 < j < m — 1. Denote by ¥; the completely positive
map on N“ associated with ( ;n)n, noticing that each one of these sequences
checks (a). Thus for each j = 1,2,...,m we have ¥;(z) = z,Vo € N and
U;(X;) = 0. Moreover, the von Neumann algebra generated by X, Xo,..., X,
in N“ is isomorphic to the tensor power (A(X), 7)™, where A(X) is the von
Neumann algebra generated by X € N«.

Let X = m™'/29" X; and ¥ = m™ 'S, ¥, Let P; = (N*)%,1 < j

< m,and P = (N*)?. By (a)—(e), P, P; are von Neumann algebras containing
N and B¥ C., Fj, P. Moreover, since by convexity we have ¥(Y) = Y if and
only if ¥;(Y) =Y, Vj, it follows that P = N;P;. Thus, since ¥;(X;) = 0
implies Ep, (X;) = 0, it follows that EP(X) =0. )

But by the central limit theorem, as m — oo, X gets closer and closer
(in distribution) to an element ¥ = Y™* with Gaussian spectral distribution,
independently of X. Let Y = Ye_54(Y) and ||Y||3 = ¢. By using Mathemat-
ica, one finds ¢t > 0.731. Thus, for large enough m, X’ = Xe[_n] (X) satisfies
| X'||3 = t_ with t_ close to t. Let X” = X — X’ and note that X'X"” = 0, so
that |13 + | X713 = | [3 = 1. Also,

Ep(X')=Ep(X — X") = —Ep(X"),
implying that |E5(X’)||2 < || X”||3 =1 —t_. Altogether
IX' = Ep(X)3 = IX']13 — |1 Bp(X)13 > 2¢- — 1.

Since X; € N'NN¥ C B¥ and || X;| = 2, if we take Xo = X’/2 then || Xo| = 1
and || Xo — Ep(Xo)||3 = (2t— — 1)/4 > (1/3)?, this contradicts B Ci/3 P.

This finishes the proof of the fact that N’ N N¥ c (N*)¥, independently
of U, for arbitrary (v,), checking (a). Thus P = n;(N“)¥:, where ¥;,i € Z,
is the family of all completely positive maps on N“ coming from sequences
(tin)n satisfying (a), still satisfies N, N’ N N¥ C P. Let us show that this
newly designated P still satisfies B¥ C., P. To see this, take a finite subset
I C 7 and consider the sequence ¢y, = |I \_lZiwi,n, which clearly satisfies (a).
Thus, the associated completely positive map ¥ on N satisfies

|Ep, (b) — bll2 < £0,¥b € B, |[b]| < 1.
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where P[déf(N“’)\I“. Since |I|713;¥,(z) = = if and only if ¥;(x) = x, Vi € I, we
have Py = 'mI(N“’)‘I’i. But P; | PasI 1 Z, implying that | Ep(b)—b||2 < €0, Vb,
1€

as well.

Denote Uy = N (B) UUN(B)' N (B*)' N N¥), Ny = U} and notice that
o(B*W* = B¥ Vv € Up. Also, if we let M = N¥, Q = B, then by 1° both
the assumption NV (B)' N N¥ = C and Ny(B)” = N imply that Uy C P and
NyNM = Z(Ny), [Z(No), Q] = 0 are satisfied. Thus, A.3 applies and we get a
nonzero projection p € Z(Ny) such that Qp C P. In the case N(B)'NN¥ = C,
this implies p = 1 and we get B¥ C P, a contradiction which finishes the proof
under this assumption.

If B is regular in N, then the group N (B) = N (BV B'N N) generates the
factor N, a fact that is easily seen to imply Ny« (B“)' N N“ = C. This implies
there exists a countable subgroup #; C N(B*) such that 7(p)1 is a limit in the
norm-|| |2 of convex combinations of elements of the form wipuj, ui € U;.
Let then (¢,), be the sequence of completely positive maps satisfying (a) — (b)
at the beginning of the proof, with b, € B, ||b,|| < 1, ||¥n(bn) — bull2 > ¢ > 0,
Vn. If we choose a sufficiently rapidly increasing ky < ko < ..., then the
completely positive map ¥’ associated with (¢ ), as in (d) has both N and
Uy in the fixed point algebra (N¥)¥'. But since P C (N“)¥', it follows that
(N“)Y" contains B“p, and thus ui(B“p)ul = B“(uipul),Yu; € U as well.
This implies B¥ C (N®)¥'| contradicting ||¥'(V/) — /|| > ¢ > 0, where b/ =
(bkn)n € B“. O

4.4. THEOREM. Let N be a type 11y factor and B C N a von Neumann
subalgebra such that B'N N = Z(B) and such that the normalizer of B in N,
N (B), acts ergodically on the center of B. Let Gg C AutN be the group
generated by Int N and by the automorphisms of N that leave all elements of
B fized. If B C N is eg-rigid for some g < 1 then Gp is open and closed in
AutN. Thus, AutN/Gp is countable.

Proof. By applying condition 4.2.2° to the completely positive maps 0 €
AutN, it follows that there exist § > 0 and z1,29,...,2, € N such that if
|0(x;) — xi||2 < d then

16(u) — ulls < 20, Yu € U(B).

Thus, if & denotes the unique element of minimal norm || ||z in K =
co{O(u)u* | u € U(B)} then ||k — 1||2 < go and thus k£ # 0. Also, since
O(u)Ku* C K and ||0(u)ku*||2 = ||k||2, Yu € U(B), by the uniqueness of k it fol-
lows that 0(u)ku* = u, or equivalently 8(u)k = ku, for all u € U(B). By a stan-
dard trick, if v € N is the (nonzero) partial isometry in the polar decomposition
of k, then §(u)v = vu,Yu € U(B), v*v € B NN = Z(B),vw* € §(B) NN =
6(Z(B)). Since N (B) acts ergodically on Z(B) (equivalently, N(B)' NN = C),
there exist finitely many partial isometries vg = v*v,v1,ve,...,v, € N such
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that vfv; = v*'v,0 < i < n—1, viv, € Z(B)v*v and viv} € Z(B),v;Bv} =

Bv;vy, Vi.
If we then define w = X;0(v;)vv}, an easy calculation shows that w is a
unitary element and wbw* = 6(b),Vb € B. O

4.5. PROPOSITION.  Let N be a type 11y factor and B C N a rigid
embedding.

1°. For any g9 > 0 there exist Fy C N and 69 > 0 such that if N9 C N is a
subfactor with B C Ng and Fy Cs, No, then B C Ny is eg-rigid. In particular,
if N C N,k > 1 is an increasing sequence of subfactors such that B C Ny, Vk,
and UyNj, = N, then for any eg > 0 there exists ko such that B C Ny, is
EQ—Tigid Vk > k().

2°. Assume in addition that B is reqular in N and B'N N = Z(B). For
any € > 0 there exist a finite subset F C N and § > 0 such that if No C N is a
subfactor with NyN N = C and F C5 Ny then there exists w € U(N) such that
|lu—1|l2 <e and uBu* C Ny, with uBu* C Ny rigid embedding. If in addition
No D B then one can take w = 1. In particular, if N, C N is an increasing
sequence of subfactors with N[, N N = C and Ny, | N then there exist ko such
that upBuy C Ny rigid, Yk > ko, for some up, € U(N), |lup — 1l — 0, and
such that if N D B,Vk, then B C Ny rigid Vk > kg.

Proof. 1°. With the notation of 4.1.2°, for the critical sets F(¢’) and
constants 6(e’) for B C N, let Fy = F(eg) and dp = d(g9)/2. Let Ng C N be
a von Neumann algebra with B C Ny, ||En,(y) — yll2 < 0o, Yy € Fy. We want
to prove that B C Ny is gg-rigid by showing that if ¢q is a completely positive
map on Ny with ¢o(1) < 1,70 ¢y < 7 and

[¢0(y0) — yoll2 < d(e0)/2, Vyo € En,(Fo),

then ||¢o(b) — b|l2 < €9,Vb € B,||b]] < 1. To this end let ¢ = ¢y o En,,
which we regard as a completely positive map from N into N (D Np). Clearly
?(1) <1,70¢ < 7. Also, for y € F(g9) we have

[6(y) = yll2 < [|do(En, (¥)) — Eng (W)ll2 + 1 En () — yll2 < 6(e0)-
Thus, ||¢(b) — b||2 < £0, Vb € B, ||b|| < 1. Since for b € B we have ¢(b) = ¢¢(b),

we are done.

2°. By application of condition 4.1.2° to the completely positive maps
El,, it follows that if we denote £(NNy) = sup{||En,(b) —b|l2 | b € B, ||b]| < 1},
then e(Np) — 0 as En, — idy. Thus, by Theorem A.2 it follows that there
exist unitary elements u = u(Ny) € N such that uBu* C Ny and ||u—1||2 — 0.
Moreover, by 1° above and 4.3.2°, it follows that uBu* C Ny (equivalently, B C
uNpu*) is a rigid embedding when Nj is close enough to N on an appropriate
finite set of elements. The fact that B is still regular in Ny is a consequence
of ([JPo]). The last part is now trivial. O
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4.6. PROPOSITION. 1°. (B; C N;) are rigid embeddings for i = 1,2 if
and only if (B1®By C N1®N2) is a rigid embedding.

2°. Let BC Ng C N. If B C Ny is a rigid embedding then B C N is a
rigid embedding. Conversely, if we assume Nog C N is a \-Markov inclusion
([Po2]), i.e., N has an orthonormal basis {m;}; with Xm;m} = AL for some
constant X > 0 (e.g., if N, Ng are factors and [N : Ng| < 0o0) then B C N is a
rigid embedding, implies B C Ny is a rigid embedding.

3°. Let B C By C N. If By C N is a rigid embedding, then B C N is a
rigid embedding. Conversely, if By has a finite orthonormal basis with respect
to B and B C N s a rigid embedding, then By C N is a rigid embedding.

Proof. 1°. Assume first that (B; C N;) are rigid embeddings, 7;, for
i=1,2. Let € > 0 and F/(¢/2),0.(¢/2) be the critical sets and constants for
B; C N;, as given by 4.1.1°, for /2. Define F' = F{®1U1®Fy, ¢’ = min{d], 65}.

Put N = Ni®Ny, B = Bi®B>. Let 'H be a Hilbert N-bimodule with a
vector £ € ‘H which satisfies conditions 4.1.1° with respect to the trace 7 ® 7o,
for F’,¢'. In particular, H is a Hilbert IN; bimodule, for i« = 1,2. Thus, if
we denote by p; the orthogonal projection of H onto the Hilbert subspace of
all vectors in H that commute with B;, then [|§ — p;(§)]]2 < €/2,i = 1,2, for
any vector £ € H that satisfies 4.1.1° for the above F’,§. But p; and po are
commuting projections and pipo projects onto the Hilbert subspace of vectors
commuting with both B; and Bs, i.e., onto the Hilbert subspace of vectors
commuting with B. Since

1€ = p1p2(E) | < 1€ = pr ()]l + llp1(E) — pr(p2(E)]
<[1€ =l + 1€ = p2(O)]l < ¢,

it follows that B C N satisfies 4.1.1°.

Assume now that B C N satisfies 4.1.2° for some trace 7. Since N1 ® Ns is
a dense x-subalgebra in N, by using Kaplanski’s density theorem and the fact
that in 4.1.2° we only have to deal with completely positive maps ¢ satisfying
To¢p < 7,¢6(1) <1, it follows that we may assume the critical set F'(e) is
contained in Ny ® Ny (by diminishing if necessary the corresponding §’(¢)).

Let F/ C N; be finite subsets such that F’ C spF| @ Fj. There clearly
exist 8, > 0 such that if ¢; are completely positive maps on N; with 70 ¢; < T,
¢i(1) <1 and ||¢;(z;) — mill2 < 6,V € F,i = 1,2, then ¢ = ¢1 ® ¢ satisfies
lp(z) — z||2 < §,Vo € F'. Thus, ||¢p(b) —b|l2 < &,Vb € B,||b]| < 1. Taking
b € B, we get [|¢i(b) —bll2 < e,Vb € By, [[b]| <1,i=1,2.

2°. The implication = follows by noticing that if ¢ is a completely
positive map on N such that ¢(1) < 1 and 70 ¢ < 7 then for z € Ny we have
|En,(6(z)) — z|l2 < ||¢(x) — z||2 while for b € B, ||b|| < 1, we have

l6(b) = bl13 < || En, (6(b)) — bll3 + 2| En, (6(5)) = bll2.
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Thus, if 4.1.2° is satisfied for B C Ny with critical set Fy(e) and constant
do(e), then 4.1.2° holds true for B C N for the same set Fy but constant
§(e) = do(e)?/3.

To prove the opposite implication, let e = ey, be the Jones projection
corresponding to N9 C N and N; = (N,e) the basic construction. Since
Ny C N is A-Markov, there exists a unique trace 7 on N7 extending the trace
7 of N and such that E},(e) = AL

We may assume 1 belongs to the orthonormal basis {m;}; of N over Nj.
Note that z = ¥;m;Eyx(m;*z),Vz € N. Any element X € N; can be uniquely
written in the form X = Z@jmiwzjem; for some x;; € p;Nopj, where p; =
En,(mim;) € P(Np). Also, if z € N then

(4.6.2") r = (Eimiem;)z(X;miem]) = X; jmi En, (m;zmg)em;”.
For each completely positive map ¢ on Ny define ¢ on N; by
(4.6.2”) QE(Ei,jmixijem’;) = EmmZ-QS(mij)em;f.

Note that if X = Zivjmixijem;f >0and 70 ¢ <7 then

T(3(X) = 7(d(Si ymizijems)) = A j7(mid(ai;)m])
=X ;T(mig(xij)m;) = AZiT(A(2ii)pi)
S )\Eﬂ'((ﬁ(l’“)) S )\Eﬂ'(l'“) = T(X)

Similarly, if ¢(1) < 1 then ¢(1) < 1.

Let now ¢ > 0 be given. Let F = F(\e?/3),8 = §(\e?/3) be the critical
set and constant for B C N, corresponding to Ae?/3. Let Fy = {En, (m}zm;) |
Vi, j,Vo € F}. Formulas (4.6.2"),(4.6.2") above show that there exists dy > 0
such that if ||¢(z) — 2|2 < o, Va € Fy then ||¢(z) — 2|z < 6,Vz € F.

We claim that Fy, §g give the critical set and constant for B C Ny, corre-
sponding to . To see this, note first that by the proof of = above we get
|6(b) — b2 < AY2e,¥b € B, ||| < 1. By (4.6.2") this gives

A2 g(b) — bll2 = [|(3(b) — bel|a
<[|$(b) — bl < A'/e.

3°. The first implication is trivial. The opposite implication is equally
evident, if we take the critical set Fy(e) and constant dy(e) for By C N to
be defined as follows: We first choose 61 > 0 with the property that if ¢ is a
completely positive map on N with 7o¢ < 7,¢(1) < 1 and ||¢(b)—b||2 < 01,V €
B, ||b]| < 1 and [|¢(b9) — 0)||2 < 61, then [[¢(bo) — boll2 < &, Vo € Bo, [|bol < 1
({b?}j denotes here the orthonormal basis of By over B). We then define
F()(E-Z) = F((Sl) @] {b?}] and put 50(6) = 4. O

4.7. PROPOSITION. 1°. If B C N and {pp}n is an increasing sequence
of projections in N, with p, 1 1, which lie either in B or in B'N N, and with
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the property that p,Bpy, C pnlNpn are rigid embeddings, Vn, then B C N is a
rigid embedding. In particular, if B is atomic then B C N is rigid.

2°. If B C N is a rigid embedding and p € P(B) or p € P(B'NN) then
pBp C pNp is a rigid embedding.

3°. Let B C N and p € P(B). Assume there exist partial isometries
{vn}n>0 C N such that v}v, € pBp, v,v} € B, v,Bv;, = v,v} Bu,v},Vn > 0,
Yovpvr =1 and B C ({vn}nUpBp)”. If pBp C pNp is a rigid embedding then
B C N is a rigid embedding.

Proof. 1°. Notice first that if ¢ is completely positive on N and 70 ¢ <
T, (25(1) < 1 then T(pn¢(pnwpn)pn) < T(‘b(!’rﬂﬁn)) < T(pnxpn)7vw > 0, and
Prn®(Pn)Pn < pn. Then we simply take the critical set and constant for B C N
to be the critical set and constant for p,Bp, C pp,Np,, with n sufficiently
large, and apply the above to deduce that for ¢ satisfying the conditions for
this set and constant, p,d(pn - Pn)prn follows uniformly close to the identity on
the unit ball of p, Bp,.

The case when B is atomic is now trivial, when we first apply 4.6.3° and
then the first part of the proof.

2°. The statement is clearly true in case p € Z(N). Assume next that
p € P(B). By part 1° above, we may suppose pBp has some nonatomic part.

Since there exist projections z, € Z(N) with z, T 1 such that each z, is a
sum of finitely many projections in Bz, which are majorized by pz, in B, by
1° above it is sufficient to prove the case when there exist partial isometries
Vg = P, V1,V2,...,V, € B such that vv; < p,Vi, Ev0] = 1.

Let then ¢ > 0. Let F' = F(er(p)) and § = d(e7(p)) be given by 4.1.2°
for the inclusion B C N. Let also Fy = {vjzv; | 1 < 4,5 < n,xz € F}. We
show that Fy and d9 = 9 are good for pBp C pNp. Thus, let ¢ be a completely
positive map on pNp such that ¢(p) < p, 7,0 ¢ < 7, and ||P(y) — yll2 < do,
Vy € Fy. Define (5(:(}) = Ei,jvi(b(vfmvj)v;f. As in the proof of 4.6.1°, we get
To¢(x) <7(x),Vz € N and ¢(1) < 1.

An easy calculation shows that ||¢(z) — z||z < 6 for z € F. Thus,

I6(b) = bll2 < e7(p), Vb€ B, bl <1.

But this implies ||¢(pbp) — pbpll2 < €[|pll2, Vb € B, [|b]| < 1 as well.

If the projection p lies in B’ N N then by the last part of 4.6.3° the
subalgebra By C N generated by B and {1,p} is rigid in N. But then we
apply the first part to get pBp = pByp is rigid in pNp.

3°. By 1° above, it is sufficient to prove the case when the set {v;}; is
finite. Let € > 0 and F), = F(¢'),d, = d(¢’) be given by condition 4.1.2°, for
pBp C pNp and ¢ = e(min;7(v;v})/2)%2. Then define Fy = F, U {v; }o<i<n.
If ¢ is a completely positive map on N such that ||¢(z) — z|2 < Jp with
o < 0,7(p)Y/?,Va € Fy, then in particular we have ||¢(x) — |2, < 6p, V& € F).
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Thus, ||pg(b)p — bll2 < e(min;||v;v}||2/2)%,Vb € pBp, ||pbp|| < 1. This easily
gives [|¢(b) — bll2 < € for all b in the von Neumann algebra By = %; jv; Bv},
generated by pBp and {v; }o<i<n, with ||b]] < 1 (in fact, even for all b € By that
satisfy [|vfbv;|| < 1,V4,7). Thus, By C N is rigid, so that by 4.6.3°, B C N is
rigid as well. O

5. More on rigid embeddings

In this section we produce examples of rigid inclusions of algebras, by
using results of Kazhdan ([Ka]) and Valette ([Va]), which provide examples
of property (T) inclusions of groups, and the result below, which establishes
the link between property (T) for an inclusion of groups and property (T)
(rigidity) for the inclusion of the corresponding group von Neumann algebras
(as defined in (4.2)).

5.1. PROPOSITION. Let G C Gqg be an inclusion of discrete groups
and v a scalar 2-cocycle for Gog. Denote (B C N) = (L,(G) C L,(Gyp)).
Conditions (a)—(d) are equivalent. If in addition L,(Gp) is a factor then
(a)—(e) are equivalent.

(a) (Go, Q) is a property (T) pair, i.e., G C Gy satisfies the equivalent
conditions (4.0.1), (4.0.1"), (4.0.1").

(b) B C N is a rigid embedding of algebras.

(¢) For any € > 0 there exist a finite set F' C N and §' > 0 such that if H
is a Hilbert N-bimodule with a unit vector & € H satisfying ||z;& — Exs|| < &, Vi
then there exists a vector &y € H such that ||§o — &|| < € and b&y = &yb, Vb € B.

(d) For any e > 0 there exist a finite set F C N and 6 > 0 such that if
¢: N — N is a normal completely positive map with ||¢(x) —x|2 < 6,Vz € F,
then ||o(b) — bl|la < e,Vb € B, ||b|| < 1.

(e) L,(G) C L,(Gy) is eo-rigid for some gy < 1.

Proof. To prove (a) = (c), we prove (4.0.1') = (c¢). Let € > 0 and let
E C Gy, & > 0 be given by (4.0.1"), for this . Let H be a Hilbert N bimodule
with § € H, [[£]] = 1, [|upé — §unl| < 0',Vh € E'. Taking 7(g9)n = ugnuy,
n € H, g € Gy, gives a representation of Gy on H, with ||7(h){ —&| =
lupé — Eupll < 6'. Thus, there exists § € H fixed by 7(G) (equivalently,
ug€o = &oug, Vg € G) and such that ||§ — &[] < e.

(b) = (a). We prove that 4.1.1° implies (4.0.1"). Let £ > 0. By part 1° in
Lemma 1.1.3 and by Kaplanski’s density theorem (which implies that the unit
ball of the group algebra C, G is dense in the unit ball of L, (Gp) in the norm
|| |l2), it follows that given any e there exist a finite set Ey C Gy and dp > 0,
do < e, such that if H is an L, (Gop) Hilbert bimodule with £ € H a unit vector
which is left and right dp-tracial and satisfies ||up& — &up|| < do, Vh € Ep, then
there exists £ € H such that || —¢|| < e/2 and b&; = £1b,Vb € L, (G), ||b]| < 1.
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Let then (mo, Ho, &) be a cyclic representation of Gy such that ||mo(h)&o —
ol| < 00,Vh € Ey. Let (Hr,,&x,) be the pointed Hilbert L, (Go) bimodule, as
defined in 1.4. We clearly have ||up&r, —E&rounll = ||m0(h)Eo—&ol| < do, VR € Ey,
by the definitions. Thus, there exists & € Hy, such that ||{; — &x, || < /2 and
&1 commutes with L, (G). But this implies that for all g € G

1m0 (9)&0 — &oll = l[ugéry — &motygll
< [ug: (&mo = EIN + llug, &1l < 2¢/2 = .

Taking the element of minimal norm &; in the weak closure of co{my(g)&1 |
g € G}, it follows that & is fixed by 7y and [|{2 — &f| < e.

The implications (¢) = (b), (d) = (b), (b) = (e) (the latter for
factorial L,(Gp)) are trivial.

To prove (a) = (d), we prove (4.0.1') = (d). Let ¢ > 0 and let
E' C Go, &' > 0 be given by (4.0.1"), for £/2. Also, we take E’ to contain the
unit e of the group Gy.

Let ¢ be a completely positive map on L, (Go) such that ||¢(up) — upl|2
< ¢', Vh € E’, where the norm || || is given by some trace 7 on L,(Gp). Let
F={u,|heFrr}

Let (Hg,&p) be the pointed Hilbert N-bimodule defined out of ¢ as in
1.1.2. Let 7 be the associated representation of G on Hy, as in the last part
of 1.1.4. It follows that there exists &y € Hy such that by = b, Vb € L, (G)
and ||y — &o|| < €/2. Since 1 € F, part 2° of Lemma 1.1.2 shows that we
may assume ¢(1) < 1. By part 1° of Lemma 1.1.2 it then follows that for any
u € U(B)

lp(u) — ull3 <2 — 2Rer(p(u)u*) = [luéy — Eyull?
= |lu(€s — &) — (& — &o)ull* < 4]1& — &)* < €.

(e) = (a). Asin the proof of (b) = (a), by Kaplanski’s density theorem,
there exists § > 0 and E C Gy such that if ¢ is completely positive on N =
L,(Go), with ¢(1) < 1,70¢ < 7 and [|¢(up) — uplle < 6,Vh € E, then
lp(b) — b||2 < €g, for all b in the unit ball of B = L,(G).

Let (g, Ho,&o) be a cyclic representation of G such that ||7mo(h)& — &ol|
< 4§, Vh € E. Define ¢g on N by ¢g(Xga4uy) = X4(mo(9)&0, o) gug. We
clearly have ¢o(1) = 1, 1o ¢g = 7, ||[po(un) — unlla < 8, Yh € E. Thus,
[po(ug) — ugll2 < c0, Vg € G, yielding [(m0(9)&0,80) — 1| < €0 < 1,Vg € G.
Taking the vector ¢ of minimal norm in ¢o6{m(g) | ¢ € G} C Ho, it follows
that £ # 0 and mo(g)(&) = &, Vg € G. This shows that the pair (Go, G) satisfies
(4.0.1), i.e., it has relative property (T). O

For the first part of the next corollary recall that any (normalized, unitary,
multiplicative) scalar 2-cocycle v on Z? is given by a bicharacter, and it is
uniquely determined by a relation of the form uv = avu between the generators
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u = (1,0),v = (0,1) of Z2, where « is some scalar with |a| = 1. We already
considered such 2-cocycles in Corollary 3.3.2, where we pointed out that they
are SL(2, Z)-invariant. Thus, if we denote by L, (Z?) the twisted group algebra
L,(Z?), then the action o of SL(2,Z) on Z? induces an action still denoted o
of SL(2,Z) on L,(Z?), preserving the canonical trace (cf. 3.3.2). We have:

5.2. COROLLARY. 1°. The inclusion Z* C Z? x SL(2,Z) is rigid. Thus,
given any o € T, Lo(Z?) C Lo(Z?) x SL(2,Z) is a rigid embedding of algebras.
Moreover, if a is not a root of unity, then the “2-dimensional noncommutative
torus” La(Z2) is isomorphic to the hyperfinite 11y factor R, thus giving rigid
embeddings R C R %, SL(2,Z). If « is a primitive oot of unity of order n,
then

(La(Z?) C Lo(Z?) » SL(2, 7))

(L((nZ)?) € L((nZ)?) x SL(2,Z)) @ Myxn(C)
(L(Z*) € L(Z*) x SL(2,Z)) ® My, (C)
(L®(T?,\) € L*®(T?,\) x SL(2,Z)) ® Myxn(C).

| Z

2°. If n > 2 and F,, C SL(2,Z) has finite index, then the restriction to
F,, of the canonical action of SL(2,Z) on T? = 72 (resp. on Lo(Z?) ~ R,
for a not a root of unity) is free, weakly mizing, measure-preserving, with
L>®(T?, ) € L*>®(T?,\) x F,, rigid (resp. R C R x F,, rigid).

3°. For each n > 2 and each arithmetic lattice Ty in SO(n, 1) (resp. in
SU(n, 1)) there exist free weakly mizing, measure-preserving actions of 'y on
A ~ L*™(X,pu) such that the corresponding crossed product inclusions A C
A xTq are rigid.

4°. Let oy be a properly outer, weakly mixing action of some group I'y on
(Bo, 10) such that By C By Xg, I'g is rigid (e.g., as in 1°, 2° or 3°). Let o1
be any action of Ty on some finite von Neumann algebra (B1,71), which acts
ergodically on the center of By. If B = By®B; and M = (By®B1) Xsy0e, L0,
then M is a factor, ByN M C B, and By C M is a rigid embedding.

Proof. 1°. The rigidity of Z2 C Z? x SL(2,7Z) is a well known result

n [Kal, [Ma]; (see also [Bu], [Sha] for more elegant proofs). The fact that

Lo(Z*) ~ R if a is not a root of unity and that Ly (Z?) ~ A ® M xn(C), with

A = Z(Lo(Z?)) ~ L((nZ)?), if a is a primitive root of order n, are folklore
type results (see [Ri] and [HkS]).

In the latter case, if p € 1 ® Myuxn(C) C Lo(Z?) is a projection of
central trace 1/n then o4(p) has central trace 1/n as well, so there exists
vy € U(L(Z?)) such that vgo4(p)vy, = p. Thus, since v; commutes with the
center A, if we denote by a; the action implemented by the restriction of
Advg 0 04 to p(La(Z?))p = Ap ~ A ~ L((nZ)?), then o} coincides with the
restriction of o, to A ~ L((nZ)?).



862 SORIN POPA

Moreover, if u; € Lo(Z?) x SL(2,Z) are the canonical unitaries imple-
menting o, on L, (Z?), then u’g = vgugp implement the action a; =04 0on 4,
but with an A-valued 2-cocycle v, i.e., p(Lo(Z?) C Lo(Z?) x5 SL(2,Z))p ~
(A C Axgy v SL(2,Z)). But by [Hj], A C A X4, SL(2,Z) is the amplification
by 12 of an inclusion of the form Ay C Ay x Fs, for some free ergodic action of
Fy on Ag. Since any action by the free group has trivial cocycle, Ag C Ag x Fo
is associated with the bare equivalence relation it induces on the probability
space, with trivial cocycle. Thus, so does its 1/12 reduction (see 1.4); i.e.,
(A C Axg SL(2,7Z)) = (L*®(T2,\) € L*®(T?,\) %, SL(2,7Z)).

The rest of the statement follows from part (a) of Corollary 3.3.2°.

2° follows from part 1° above, Proposition 4.6.2° and part (c) of Corollary
3.3.2°.

3° follows by a recent result in [Va], showing that there exist actions
v of such Ty on some appropriate Z~ which give rise to rigid embeddings
ZN c ZN x Ty. It is easy to see that the actions v in [Va] can be taken to
satisfy conditions (i), (ii) in Lemma 3.3.2.

4°. By 3.3.3, since oy is properly outer, it follows that oy ® o7 is properly
outer and By N M = Z(By) ® By. Also, since oq is weakly mixing and oy is
ergodic, o9 ® o1 is ergodic and M is a factor. O

5.3. COROLLARY. 1°. Let I'g be an arbitrary discrete, countable group.
Denote by o1 the Bernoulli shift action of Ty on (A1, 1) = ®ger, (L>®(T, A))g
and let o9 be an ergodic action of I'y on an abelian von Neumann algebra
(Ag,10). If A = Ag®A1,0 = 09 ® 01 then o is free ergodic and the inclusion
A C A x, Ty is not rigid.

2°. L(Q?%) = A C M = L(Q?) x SL(2,Q) is not a rigid inclusion but
Ay = L(Z?) C A satisfies Ag C M rigid and Ay N M = A.

3°. If Ty is equal to SL(2,7Z), or to Fy,, for some n > 2, or to an arith-
metic lattice in some SO(n,1), SU(n,1), n > 2, then there exist three non
orbit equivalent free ergodic measure-preserving actions o;,1 < i < 3, of I'g
on the probability space (X,u). Moreover, each o; can be taken such that
A = L>®(X,p) contains a subalgebra A; with A; C A X4, T'g rigid and A N
A Ao, Fo = A.

Proof. 1°. Write L>®(T,)\) = U,A", with A" an increasing sequence
of finite dimensional subalgebras and denote A} = ®4(A")y C Ai. Then
AT 1 Ay and o4(A}) = AT, Vg € To,Vn. Thus, if N, = (Ao®AT U {ug}y)”
then N, T N = A x, I'g. So if we assume A C N is rigid, then by 4.5 there
exists n such that ||En, (a) —all2 < 1/2,Va € A, ||a]] < 1. Butifa € 1 ® A;
then Ey, (a) = E4n(a). Or, since A" is finite dimensional and L*°(T, \) is
diffuse, there exists a unitary element ug € L*(T, ) such that E4»(ug) = 0.
Taking u = -+ - ®1®@uy®1--- € A, it follows that F4 (u) = 0, so that
1 = ||Ear(u) — ull2 = || En, (v) — ul]2 < 1/2, a contradiction.
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2°. For each n let @, be the ring of rationals with the denominator
having prime decomposition with only the first n prime numbers appearing.
Then A D A, = L(Q,) C L(Q,) x SL(2,Q,) = M, C M and we have
Ey oEjg = FEy,,Yn. If A C M were rigid, then by 4.5 there would exist n
such that ||En, (a) —all2 < 1/2,Va € A,|ja| < 1. But any unitary element
u € A = L(Q?) corresponding to a group element in Q\Q,, satisfies F4, (u) = 0,
a contradiction.

3°. We take o1 to be the action of Iy on A = L (X, u) given by 5.2.1°—
5.2.3° and o9 to be the tensor product of o1 with the Bernoulli shift action of
Ty on ®gery (L2(T, A))g.

Finally, we take o3 to be the tensor product of o1 with a free ergodic
measure-preserving action of I'y which is not strongly ergodic, as provided by
the Connes-Weiss Theorem ([CW]; this is possible because I'y has property H,
so it does not have property (T)).

By part 1° we have (A C A x4, I'g) %2 (A C Axg, o). By results of Klaus
Schmidt ([Sc]; see also [J2]), 01, 092 are strongly ergodic, while o3 is not. Thus,
(A cA Ny Fo) i (A cA N, Fo),i =1,2.

Since all these Cartan subalgebras have trivial 2-cocycle by construction,
their nonisomorphism implies the nonequivalence of the corresponding orbit
equivalence relations.

The existence of “large” subalgebras A; C A with 4; C A x,, I'g rigid
follows by construction and by 3.3.3. O

5.4. THEOREM. 1°. If N is a type 11y factor with property H (as defined
in 2.0.2), then N contains no diffuse relatively rigid subalgebras B C N.

2°. If N has property H relative to a type I von Neumann algebra By C N
then N contains no relatively rigid type 111 von Neumann subalgebras B C N.

Proof. 1°. Let ¢, be completely positive maps on N such that ¢, — idy,
To¢, < 1and Ty, € K(L*(N,7)). If B C N is arigid inclusion then by 4.1.2°,
there exists n such that ¢ = ¢, satisfies ||¢p(u) — ull2 < 1/2,YVu € U(B). If
in addition B has no atoms, then any maximal abelian subalgebra A of B is
diffuse. Thus, such A contains unitary elements v with 7(v™) = 0,¥Ym # 0.
Since the sequence {v},, C L%*(N,7) is weakly convergent to 0 and T} is
compact, ||¢p(v™)|2 = |T(v™)||2 — 0. Thus,

lim p(0™) = v™[l2 = lim_[[v™]2 =1,
m—o0 m—0o0

contradicting [|¢(v"™) — v™|2 < 1/2,Vm.

2°. Assume N does contain a relatively rigid type II; von Neumann sub-
algebra B C N. Let ¢, contain completely positive By bimodular maps on N
such that ¢, — idy, 70 ¢, < 7 and Ty, € Jo((INV, By)). By the rigidity of



864 SORIN POPA
B C N it follows that &, = sup{||¢n(u) —ull2 | v € U(B)} — 0. Since

lu* Ty, u(1) = 1ll2 = u*¢n(u) = |2 = [[én(w) — ull2,

by taking convex combinations and weak limits of elements of the form w7y, u*,
by Proposition 1.3.2 we see that there exists T, € K7, N(B'NJ({N, B))) such
that ||T;,(1) — 1|l — 0. Thus, T}, # 0 for n large enough, so that B’ N (N, By)
contains nonzero projections of finite trace. By [Chr], this implies there exist
nonzero projections p € B,q € By and a unital isomorphism 6 of pBp into
qBoq. But ¢Byq is type I and pBp is not, a contradiction. O

5.5. COROLLARY. 1°. If N has a diffuse relatively rigid subalgebra B C N
then N cannot be embedded into a free group factor L(F,). In particular, the
factors constructed in Corollary 5.2 cannot be embedded into L(IF,,).

2°. The factors Lo (Z*) x SL(2,Z), constructed in 5.2.1° for « irrational,
cannot be embedded into Lo (Z%) x SL(2,Z) for o/ rational.

Proof. Part 1° is a consequence of 5.4.1, while part 2° follows trivially
from 5.4.2. O

5.6. Remarks. 1°. In the case when N is a finite factor, a different notion
of “relative property T” for inclusions B C N, was considered in [A-De], [Pol],
as follows:

(5.6.1). N has property T relative to B (or B is co-rigid in N) if there
exists a finite set F1 C N and ¢; > 0 such that if (H,{) is a (B C N)
Hilbert bimodule (recall that by definition this requires [B, ] = 0) such that
|z — &x|| < e,Va € F, then there exists & € H,& # 0, with &y = &z,
Vo € N.

In the case B is a Cartan subalgebra A of a type II; factor N = M,
this definition is easily seen to be equivalent to Zimmer’s property (T) ([Zi2])
for the countable, measurable, measure-preserving equivalence relation R acay,
which it thus generalizes to the case of arbitrary inclusions of von Neumann
algebras (cf. Section 4.8 in [Pol]). Thus, in this re-formulation, a standard
equivalence relation R satisfies Zimmer’s relative property (T) if and only if
the Cartan subalgebra A C M, constructed as in [FM] out of R and the trivial
2-cocycle v = 1, is co-rigid in the sense of [Pol], [A-De]. We will in fact call
such equivalence relations R co-rigid.

2°. It is easy to see that in case (B C N) = (B C B x, I'y), for some
cocycle action o of a group I'g on (B, 7) then N has property (T) relative to
B (i.e., B is co-rigid in N) if and only if I'y has the property (T) of Kazhdan
(cf. [A-De], [Pol]; also [Zi] for the Cartan subalgebra case). In particular, if
H C Gy is a normal subgroup of Gy then L(Gg) has property (T) relative to
L(H) if and only if the quotient group Go/H has property (T). In fact, it is
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easy to see that if H C Gy is an inclusion of discrete groups then L(Gy) has
property (T) relative to L(H) if and only if the following holds true:

(5.6.2). There exist a finite set £ C Gp and € > 0 such that if 7 is a
unitary representation of Gy on a Hilbert space H with a unit vector £ € H
such that m(h){ = &,Vh € H and ||7(9)¢ — &|| < e,Vg € E, then H contains a
nonzero vector & such that 7(g)& = &, Vg € Gy.

A sufficient condition for an inclusion of groups H C Gy to satisfy 5.6.2°
exists when Gg has finite length over H, i.e., when the following holds true:

(5.6.2"). There exist n > 1 and a finite set E C Gy such that any element
g € Gg can be written as g = hy fihafa ... hy fpn, for some f; € E,hj € H.

Indeed, because then mw(h)§ = £,Vh € H and ¢ is almost fixed by w(f),
f € E, implies that £ is almost fixed by 7(g), uniformly for all ¢ € Gy. This, of
course, shows that H has a nonzero vector fixed by 7(Go). (N.B. Finite length
was exploited in relation to rigidity in [Shal.)

An example of inclusion of groups H C Gy satisfying (5.6.2") is obtained
by taking Gy to be the group of all affine transformations of Q and H to be
the subgroup of all homotheties of Q. Indeed, because if we take E to be
the single element set consisting of the translation by 1 on @Q, then we clearly
have Gy = HEH. Thus, L(Gp), which is isomorphic to the hyperfinite type
II; factor R, has property (T) relative to L(H), which is a singular maximal
abelian subalgebra in L(Gg) (cf. [D]).

5.7. PROPOSITION. Let N be a finite factor and B C N a von Neumann
subalgebra.

1°. If (N, B) is finite then N has both property (T) relative to B (in the
sense of (5.6.1)) and property H relative to B.

2°. If N has both property (T) and H relative to B then there exists a
nonzero q € P(B'NN) such that ¢Nq is a finitely generated Bq-module. Thus,
if in addition B is a subfactor with B'N N = C then [N : B] < co and if B is
a maximal abelian von Neumann subalgebra in N then dimN < oo.

Proof. 1°. If (N, B) is finite, then there exists a sequence of projections
pn € Z(B),pn T 1, such that p, Np, has finite orthonormal basis over Bp,,.
By 2.3.4°, this implies p, Np, has property H relative to Bp,, and by 4.6.3°,
Bp, C ppNp, is rigid. By 2.4.2° this implies N has property H relative to B
and by 4.7.1°, B C N is rigid.

2°. Note first that if there exist no ¢ € P(B' N N) such that ¢Ng¢ is a
finitely generated Bg-module, then N’ N (N, B) contains no finite projections
of (N, B).

On the other hand, if N has property H relative to B then by 2.2.1°
there exist unital completely positive, B-bimodular maps ¢, on N such that
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Tody <7, 0n(1) <1, ¢, — idy and Ty, € Jo((N, B)). If in addition IV has the
property (T) relative to B, then 3n such that ||¢,(u) —ull2 < 1/4,Vu € U(N).
By 1.3.3, 3 a spectral projection p € B’ N Jo((N, B)) of T} T, such that
| Ty, (1 —p)|| < 1/4. If we now assume N’ N (N, B) has no finite projections,
then there exists a unitary element u € U(N) such that Tr(puepu*) < 1/4. But
Tr(puepu*) = ||p()||3 (see the proof of 6.2 in the next section). Altogether,
since [p(@)ll2 > [Ty (@)> — Ty, (1~ p)(@)ll2 > 1/2, it follows that 1/4 >
Tr(puepu®) > 1/4, a contradiction. The last part of 2° follows trivially from
[PiPo]. O

5.8. Remarks. 1°. Both the notion 4.2 considered here and the notion
considered in [A-De|, [Pol] are in some sense “relative property (T)” notions
for an inclusion B C N; but while the notion in [A-De|, [Pol] means “N has the
property (T) relative to B”, thus being a “co”-type property (T), the notion
considered in this paper is a “property (T) of B relative to its embedding into
N”. The two notions are complementary, and together they imply (and are
implied by) property (T) of the global factor (see Proposition 5.9 below).

2°. An interesting relation between these two complementary notions of
property (T) is the following: If a group I'g acts on (B, 7) such that B C N =
B % Ty is a rigid embedding, then N has property (T) relative to its group
von Neumann subalgebra L(T'y) (i.e., L(I'g) is co-rigid in N). Indeed, because
if (H,&) is an (L(I'y) C N)-Hilbert bimodule with £ almost commuting with
all u € U(B), uniformly, then £ almost commutes with the group of elements
G ={uuy | v € U(B),g € T'o}. Thus ¢ is close to a vector commuting with
all v € G, thus with all z € N. For instance, the factor L(Z? x SL(2,7Z)) has
property T relative to its subalgebra L(SL(2,Z)) (in the sense of definition
(5.6.1)).

5.9. PROPOSITION. Let N be a type 117 factor and B C N a von
Neumann subalgebra. The following conditions are equivalent:

1°. N has property (T) in the sense of Connes and Jones (i.e., of the
equivalent conditions (4.0.2),(4.0.2")).

2°. The identity embedding N C N is rigid, i.e., for any € > 0 there exists
a finite subset x1,x2,...,2n, € N and 6 > 0 such that if H is a Hilbert N-bi-
module with a unit vector & € H satisfying ||(-£,£) — 7| < 9, [[(§,&) — 7] < ¢
and ||x;§ — Ex;|| < 0,Vi, then there exists a vector § € H such that || — &l <
and €y = oz, Vo € N.

3°. B C N is a rigid embedding (in the sense of Definition 4.2) and N
has property (T) relative to B (in the sense of (5.6.1)).

Proof. 1° = 3° and 1° = 2° are trivial, by the characterization
(4.0.2") of property (T) for N.
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To prove 3° = 1° let F1 C N and €1 give the critical set and constant
for property (T) of N relative to B and F/ C N,§ > 0 be the critical set and
constant for the rigidity of B C N, corresponding to £1/4. Let F = F'UF} and
let H be a Hilbert N bimodule with a unit vector £ which is left and right ¢’-
tracial and satisfies ||y —&y|| < ¢, Vy € F. By the rigidity of B C N it follows
that there exists &y € H such that by = &b, Vb € B and || — & < e1/4.
Thus, if we assume 1 < 1/4 from the beginning and denote & = &y/|£o]|, then
Il = 1, b&1 = £1b,¥0 € B, and ||y&1 — &1yl| < e1,Vy € F, in particular for
all y € Fy. Thus, by the property (T) of N relative to B, H has a nonzero
N-central vector.

2° = 1°. By part 1° of Theorem 4.3, N follows non-I'. Thus, by
Lemma 2.9 it is sufficient to check that any Hilbert N bimodule with a vector
that is almost left-right tracial and almost central has a nonzero central vector
for N. But this does hold true by the fact that N satisfies condition 2°. O

5.10. Remark. When applied to the case of Cartan subalgebras coming
from standard equivalence relations with trivial 2-cocycle, the definition of rigid
embeddings 4.2 gives the following new property for equivalence relations:

5.10.1. Definition. A countable, ergodic, measure-preserving equivalence
relation R has the relative property (T) if its associated Cartan subalgebra
A C M, constructed out of R and the trivial 2-cocycle v = 1 as in [FM], is a
rigid embedding (Definition 4.2).

Since the rigidity for Cartan subalgebras is an invariant for the isomor-
phism class of A C M, this relative property (T) is an orbit equivalence in-
variant for equivalence relations R. Also, when applied to the particular case
of Cartan subalgebras with trivial 2-cocycle, all the results on rigid embed-
dings of algebras in Sections 4 and 5 translate into corresponding results about
standard equivalence relations R. For instance, by 4.6, 4.7, if R has relative
property (T) then R! has relative property (T), Vt > 0, and if Ry, R2 have
relative property (T) then so does Ry x Ra. Also, if R has relative property
(T) then Out(R)défAut(R)/Int(R) is discrete (cf. 4.4) and if we further have
R = U,R,, for some increasing sequence of ergodic sub-equivalence relations,
then R,, have relative property (T) for all large enough n.

We have proved that equivalence relations implemented by Bernoulli shift
actions of a group I'g cannot have relative property (T), no matter the group
[y (cf. 5.3). Thus, equivalence relations coming from actions of the same group
I'p may or may not have relative property (T), depending on the action. While
by [Zi] (see also [A-De]|, [Pol]), A x, I'g has property (T) relative to A, in the
sense of definition (5.6.1) if and only if I'y has Kazhdan’s property (T), thus
being a property entirely depending on the group. Even more: since by [Pol]
if A C M is a Cartan subalgebra in a II; factor and p € P(A) then pMp has
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property (T) relative to Ap if and only if M has property (T) relative to A, it
follows that property (T) for groups is invariant to stable orbit equivalence, or
equivalently, it is an ME invariant (see [Fu] for an “ergodic theory” proof of
this fact).

Proposition 5.9 shows that when the relative property (T) (5.10.1) for R
is combined with the co-rigidity property (5.6.1) for R they imply, and are
implied by, the “full” property T of R, which by definition requires that the
finite factor M = M(R) have property (T) in the sense (4.0.2), of Connes-
Jones. It is thus of great interest to answer the following;:

5.10.2. Problem. Characterize the countable discrete groups I'g that can
act rigidly on the probability space, i.e., for which there exist free ergodic
measure-preserving actions o on (X, ) such that L> (X, u) C L®(X, ) X,
Iy is a rigid embedding. Do all property (T) groups I'y admit such rigid
actions (i.e., in view of the above, actions ¢ with property that the II; factor
L>®(X, 1) X5 'y has property (T) in the sense of (4.0.2))?

6. HT subalgebras and the class H7T

6.1. Definition. Let N be a finite von Neumann algebra with a normal
faithful tracial state and B C N a von Neumann subalgebra. B is an HT
subalgebra of N (or B C N is an HT inclusion) if the following two conditions
are met:

(6.1.1). N has property H relative to B (as defined in Section 2).

(6.1.2). There exists a von Neumann subalgebra By C B such that BN
N C B and By C N is a rigid (or property (T)) embedding.

Also, B is an HT, subalgebra of N if conditions (6.1.1) and (6.1.2) hold
true with By = B, i.e., if N has the property H relative to B and B C N is
itself a rigid embedding.

If A C M is a Cartan subalgebra of a finite factor M and A C M satisfies
the conditions (6.1.1) and (6.1.2), then we call it an HT Cartan subalgebra.
Similarly, if a Cartan subalgebra A C M satisfies (6.1.1) and is a rigid embed-
ding then it is called an HT_ Cartan subalgebra.

Note that condition (6.1.2) implies that BN N C B and (6.1.1) implies B
is quasi-regular in N (cf. 3.4). In particular, by Proposition 3.4, for A C M a
maximal abelian *-subalgebra of type I factor M, the condition that A is an
HT (resp. HT,) subalgebra of M is sufficient to insure that A is an HT (resp.
HT,) Cartan subalgebra of M.

6.2. THEOREM. Let M be a type Il factor with two abelian von Neumann
subalgebras A, Ay such that A, Aj, N M are maximal abelian in M. Assume
that M has property H relative to A and that Ag C M is a rigid inclusion.
Then both A and Ay N M are HT Cartan subalgebras of M and there exists a
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unitary element w in M such that uAou* C A, and thus u(Aj N M)u* = A.
In particular, if Ay, As are HT Cartan subalgebras of a type 111 factor M then
there exists a unitary element uw € U(M) such that uAju* = As.

Proof. We first prove that there exists a nonzero partial isometry v €
M such that v*v € Aj N M, vv* € A and vApv* C Avv*. If we assume
by contradiction that this is not the case, then Theorem A.1 implies 0 €
Ky(a,)(ea) C (M, A). This in turn implies that given any finite projection
f e (M,A), with Tr(f) < oo, and any € > 0, there exists a unitary element
u € U(Ap) such that Tr(fuesu*) < e. Indeed, if for some ¢y > 0 we had
Tr(fuequ®) > co,Vu € U(Ap), then by taking appropriate convex combinations
and weak limits, we would get that 0 = Tr(f0) > ¢¢ > 0, a contradiction.

By property H of M relative to A, there exist completely positive, unital,
A-bimodular maps ¢,, : M — M which tend strongly to the identity and satisfy
bn(1) < 1,70n <7, Ty, € Jo((M, A)).

Let 0 < g9 < 1. By the rigidity of the embedding Ay C M, there exists n
large enough such that ¢ = ¢,, satisfies

(6.2.1) l6(v) — v]|2 < €0, Yo € U(Ay).

On the other hand, since T, € Jo((M, A)), it follows that there exists a finite
projection f € Jo({M, A)) such that Tr(f) < co and

(6.2.2) [T (1 = NI < (1 —20)/2.
Let then u € U(Ap) satisty the condition
(6.2.3) Tr(fuequ®) < (1 —e0)?/4.

Let {m;}; C L?*(M,7) be such that Yjmjeam; = f. Equivalently,
@;L*(m;A) = f(LA(M,7)). Thus, if 2 € N = N C L*(M,7) then f(2) =
Sjm;Ea(mjz) and || f(2)[I3 = 3;[lm;Ea(m;z)]3.

It follows that

Tr(fueau™) =Tr(fuesu™f)
=Tr((Sjmjeam} ) uequ*(Simieams))
7 (my Ea(mi) Eauma)md) = | £(@)]2

By (6.2.3) this implies
(6.2.4) IF @)z < (1 —e0)/2.

Thus, since ||Ty|| < 1, (6.2.2) and (6.2.4) entail:

1T (@)]|2 < T ((1 = f)@)llz2 + [1f(@)]2
<1 —e0)/2+[[f(@)]]2 <1—eo.
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But by (6.2.1), this implies:

[ulla < [T (@)l2 + [lp(w) — ull2
<1l—¢g9g+¢eg=1.

Thus 1 = 7(uu*) < 1, a contradiction.

Let now (V, <) denote the set of partial isometries v € M with v*v €
AN M, vv* € A and vAgv* C Avv*, endowed with the order < given by
restriction, i.e., v < v’ if v = vo*v'. (V, <) is clearly inductively ordered. Let
v € V be a maximal element. Assume vy is not a unitary element.

By 2.4.1°, (1—wvovy) M (1—wvovy) has property H relative to A(1—wvgv() and
by 4.7.2° the inclusion Ag(1—vivg) C (1—vive)M (1—v§vy) is rigid. Let ug € M
be a unitary element extending vy and denote MY = (1 — vovd) M (1 — vou),
A = up(Ao(1—vivo))ug, A° = A(1—vgvg). Thus, MO has property H relative
to A and AJ C My is rigid. By the first part it follows that there exists a
nonzero partial isometry v € MY such that v*v € (A3) N M, vv* € A and
vAJv* C A%w*. But then v/ = vo+vu € V, v > vy and v’ # v, contradicting
the maximality of vg.

We conclude that vg is a unitary element, so that A, Ajy N M are conjugate
in M. The last part follows now by Proposition 3.4. O

6.3. Remarks. 1°. If in the last part of Theorem 6.2 we restrict ourselves
to the case where A, Ay are HT Cartan subalgebras of the type II; factor M,
then we can give the following alternative proof of the statement, by using part
(ii) of Proposition 1.4.3 in lieu of Theorem A.1 and an argument similar to the
proof of 5.4.2°: By property H of M relative to A; there exists completely
positive A; bimodular trace-preserving unital maps ¢, on M such that ¢, —
idy and Ty, € Jo((M, Ay)). By the rigidity of Ay C M it follows that &, =
sup{||¢n(u) — ull2 | v € U(A2)} — 0. Fix x € M and note that by Corollary
1.1.2,

[Ty, w(Z) = &ll2 = |fn(ur) — uzlly < [[¢n(ur) — upn(z)ll2
Hlon(@) = allz < 26)/% + | ¢n (@) — 2.

Thus, by taking weak limits of appropriate convex combinations of elements
of the form u*Ty v with v € U(A2), and using Proposition 1.3.2 we see that
T, = gAéﬁ(M,Al) (T(bn) € KTdm ﬂ(AlzﬂJO«M, A1>)) satisfy nh_}II;O”Tn(:%)*i‘”Q =0.
But x € M was arbitrary. This shows that the right supports of 7;, span
the identity of (M, Ay). Since T,, are compact, this shows that A, N (M, A;)
is generated by finite projections of (M, A;). Thus, Ay is discrete over Aj.
Similarly, A; is discrete over As and A; is conjugate to As by a result in
[PoSh]; see part (ii) of Proposition 1.4.3.

2°. The above argument uses the fact that two Cartan subalgebras Ay, As
in M are unitarily equivalent in M if and only if the A; — Ay Hilbert bimod-
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ule L?(M,7) is a direct sum of Hilbert bimodules that are finite dimensional
both as left A; modules and as right As modules. The proof of Theorem
6.2 uses, instead, Theorem A.1, which shows that in order for an abelian von
Neumann algebra Ag C M to be unitarily conjugate to a subalgebra of a semi-
regular maximal abelian *-subalgebra A of M it is sufficient that Af N M be
semi-regular abelian and that 4,L?(M,T)4 contain a nonzero Ay — A Hilbert
bimodule which is finite dimensional as a right A-module (a much weaker re-
quirement).

3°. Note that by 3.4 and 4.3.2°, A C M is HT, Cartan if and only if
A C M is maximal abelian, M has property H relative to A and A C M is
go-rigid for some g9 < 1/3.

4°. Note that the proof of Theorem 6.2 shows in fact that if A, Ag are
abelian von Neumann subalgebras of a finite factor M such that A is maximal
abelian, M has property H relative to A, Aj N M is semi-regular abelian and
Ay C M is ep-rigid, for some g9 < 1, then there exists u € U(M) such that
u(Ay N M)u* = A. In particular, if one calls HT,, the Cartan subalgebras
A C M with the properties that M has property H relative to A and there
exists Ag C A with AjN M = A, Ay C M gp-rigid, for some ¢y < 1, then any
two HT,, Cartan subalgebras of a II; factor are unitary conjugate.

6.4. Notation. We denote by H7 the class of finite separable (in norm
|| ll2) factors with HT Cartan subalgebras and by H7. the class of finite
separable factors with HT_, Cartan subalgebras. Note that H7, C H7 and
that Theorem 6.2 shows the uniqueness up to unitary conjugacy of HT Cartan
subalgebras in factors M € HT.

6.5. COROLLARY. IfA; C M;,i = 1,2, are HT Cartan subalgebras and
0 is an isomorphism from My onto My then there exists a unitary element
u € My such that uf(Ai)u* = As. Thus, there exists a unique (up to isomor-
phism) standard equivalence relation RHMT on the standard probability space,
implemented by the normalizer of the HT Cartan subalgebra of M.

The next result shows that H7 is closed to amplifications and tensor
products and that it has good “continuity” properties. The proof of part 3°
below, like the proof of 4.5.2° uses A.2 and is inspired by the proofs of 4.5.1,
4.5.6 in [Pol].

6.6. THEOREM. 1°. If M € HT (resp. M € HT.) and t > 0 then
M' € HT (resp. M € HT)).

2°. If My, My € HT (resp. My, My € HT.) then M1®@Ms € HT (resp.
Mi@M, € H’Z:)

3°. If M € 'HT, then there exist a finite set F' C M and 6 > 0 such that if
N C M is a subfactor with F Cs N then N € HT.. In particular, if N, C M
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are subfactors with Ny T M, then there exists ko such that Ny € HT.,Vk > k.
If in addition Nj, "M = C, then all the Ny, k > ko, contain the same HT
Cartan subalgebra of M .

Proof. 1°. Let A C M be an HT Cartan subalgebra and Ag C A be so
that Ag C M is a rigid embedding and Aj N M = A. Choose some integer
n > t. By 2.3.2° it follows that if D denotes the diagonal of My = M« (C)
then A® D C M, (M) has property H. Also, (Ag®@ D) NM @ M,,xn(C) = A® D
and by 4.6.1°, Ag® D C M ® My« (C) is a rigid embedding.

If we now take p € Ay ® D to be a projection of trace 7(p) = t/n, then by
2.4.1° and 4.7.2°, it follows that A} = (Ay ® D)p C M' = pM,,»,(C)p is rigid
and M? has property H relative to A*. Thus, M* € H7. In case Ay = A, then
Al = A, so that M* is in HT,.

2°. This follows trivially by application of 2.3.2° and 4.6.1°, once we
notice that if A; C M; are maximal abelian *-subalgebras and A} C A; satisfy
(AZ), N M; = A;, then (A(%@A(Q))/ N MMy = A1RAs.

3°. Let A C M be a fixed HT_, Cartan subalgebra of M. By 4.5.2° it
follows that there exist a finite subset F' in the unit ball of M and ¢ > 0 such
that if a subfactor Ny C M satisfies F C. Ny and N) N M = C then Ny
contains a unitary conjugate Ag = uAu* of A with Ay C Ny rigid and Cartan.
Moreover, Ny has property H relative to Ap by 2.3.3° (since M has property
H relative to Ag). Thus, Ag C Ny is HT, Cartan, proving the statement in the
case of subfactors with trivial relative commutant.

To prove the general case, note first that by Step 1 in the proof of A.2, for
the above given € > 0 there exists dyp > 0, with d9 < /4, such that if N ¢ M
is a subfactor with A Cs, IV then there exist projections p € A, ¢ € N, a
unital isomorphism 6 : Ap — ¢N¢ and a partial isometry v € M such that
T(p) > 1—¢/4, v*v = p, vv* = q¢, for some projection ¢’ € §(Ap)' NgMgq, and
va = 0(a)v,Va € Ap.

Since Ap is maximal abelian in pMp, by spatiality it follows that 6(Ap)q’
is maximal abelian in ¢'¢Mq’'q. Thus, if x € 0(Ap) N gMq then ¢'zq €
0(Ap)q’ ~ 0(Ap). Thus, there exists a unique normal conditional expectation
E of 0(Ap)' N qMgq onto 6(Ap) satistying ¢'xq' = E(x)q',Va € 0(Ap) N qMgq.

Let ¢j, € N' N M be the support projection of Enqpr(q’). Thus, ¢) > ¢
and if b € ¢{(N' N M)q( is so that ¢'b = 0 then b = 0. Since E is implemented
by ¢, E is faithful on ¢j(N' N M)q(q, implying that if b € ¢{(N' N M)q(q and
a € 0(Ap) are positive elements with E(b)a = 0 then ba = 0. But if ba = 0
then 0 = En(ba) = En(b)a = (7(b)/7(q))a (because b commutes with the
factor ¢N¢). This shows that E(b) € §(Ap) must have support equal to ¢ for
any b € ¢,(N' N M)qpq, with b > 0,b # 0. Thus, if f is a nonzero projection
in ¢(N' N M)q)q then ¢’ f¢' = E(f)q’ has support ¢’. This implies that any
projection f # 0 in gj(N' N M)qq must have trace 7(f) > 7(¢') > 1 — ¢/4,
showing that N’ N M has an atom ¢ of trace 7(¢}) > 1 —¢/4.
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An easy calculation shows that if we denote by N C M a unital subfactor
with ¢f € N and ¢/N¢, = N¢, (N.B.: N is obtained by amplifying N¢| by
1/7(q})), then F C. N. Also, N' N M = C by construction. Thus, by the first
part of the proof, N € H7,. Since N is isomorphic to a reduction of N by a
projection, by part 1° it follows that N € H7; as well. O

6.7. COROLLARY. 1°. If A C M is an HT Cartan subalgebra then
any automorphism of M can be perturbed by an inner automorphism to an
automorphism that leaves A invariant; i.e.,

AutM/IntM = Aut(M, A)/Int(M, A).

2°. Let M € HT, with A C M its HT_ Cartan subalgebra. Denote by
G (M) the subgroup of Aut(M) generated by the inner automorphisms and
by the automorphisms leaving all elements of A fized. Then G, (M) is an
open-closed normal subgroup of Aut(M), the quotient group

def

Out,.(M)=Aut(M)/G,. (M)

HT

is countable and is naturally isomorphic to the group of outer automorphisms
T

of Ryp, Out(Ry; )L Aut(Ry,)/Int(Ry; ).
Proof. 1°. If  €Aut(M) then #(A) is HT Cartan, so by Theorem 6.2
there exists a unitary element u € M such that uf(A)u* = A.

2°. This is trivial by 4.4. O

6.8. COROLLARY. If M € HT then any central sequence of M is
contained in the HT Cartan subalgebra of M. Thus, M' N MY is always abelian

and M is non-U if and only if the equivalence relation RHMT is strongly ergodic.
In particular, M 2 MQR.

Proof. If A C M is the HT Cartan subalgebra of M and Ag C A is so
that Ag C M is rigid and Aj N M = A then by 4.3.1° we have M' N M¥ =
M N (AyNM)Y =M N A~. O

6.9. Ezamples. We now give a list of examples of HT inclusions of the
form B C B x, Iy and of factors in the class H7 of the form L*°(X, u) x Io,
based on the examples in 5.2, 5.3.2°, 5.3.3°. Note that if B C Bx,['gisan HT
inclusion then I'g must have the property H (cf. 3.1), but that in Section 5 we
were able to provide examples of inclusions B C B X, I'g satisfying the rigidity
condition (6.1.2) only for certain property H groups I'g and for certain actions
of such groups (see Problem 6.12 below). Note also that by Theorem 6.2 if
M = L*(X, u) ¥, I'g belongs to the class H7 and I'g is a property H group
then A = L*°(X, u) is automatically the (unique) HT Cartan subalgebra of
M; ie., A C M must satisfy the rigidity condition (6.1.2) as well.
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6.9.1. Let I'g = SL(2,Z), By = Lu(Z?), for some o € T C C, and oy

be the action of the group SL(2,Z) on By induced by its action on Z2. Then

By C Mad:EfBg Xgy SL(2,7) is an HT, inclusion with M, a type II; factor.

In case « is not a root of 1, this gives HT_ inclusions R = By C M, and
when « is a n'' primitive root of 1, this gives HT, inclusions By C M, with
By homogeneous of type I, and diffuse center. Indeed, in all these examples
the property (6.1.1) is satisfied by 3.2, and property (6.1.2) is satisfied by 5.1.
Moreover, by the isomorphism in 5.2.1°, if « is a root of 1 then M, € H7. and
any maximal abelian subalgebra of By = L,(Z?) is Cartan in M,

6.9.1". If we take the inclusion A = L(Z?) C L(Z?*) x SL(2,Z) = M from
the previous example, which we regard as the group measure space construction
L>®(T2,\) C L>®(T?,\) x SL(2,Z), through the usual identification of T? with
the dual of Z2 and of L®(T?,\) with L(Z?), and we “cut it in half” with a
projection p € A of trace 1/2, then we obtain the inclusion (Ap C pMp) ~
(L*°(S?,\) € L*(S?,\) x PSL(2,7)), where S? is the 2-sphere. Thus, by 6.9.1
and Theorem 6.6, it follows that L>(S?, \) x PSL(2,Z) € H7T..

6.9.2. If F,, C SL(2,Z) is an embedding with finite index and oy is the
restriction to F,, of the action oo on By = Lo(Z?) considered in 1°, then
By C By X4, Fy, is an HT | inclusion, which in case a = 1 is an HT, Cartan
subalgebra. Also, if p € L(Z?) has trace (12(n — 1))~! then the inclusion
(L(Z*p C p(L(Z? = SL(2,Z))p) is an HT, Cartan subalgebra of the form
(A C AxF,). In all these cases, again, property (6.1.1) is satisfied by 3.2, and
property (6.1.2) is satisfied by 5.2.2°.

6.9.3. If I'g is an arithmetic lattice in SU(n, 1), SO(n,1),n > 2, then there
exist free weakly mixing trace-preserving actions op of I'o on A = L*°(X, p)
such that A C M = A x4, g is HT, Cartan (cf. 3.2 and 5.2.3°).

6.9.4. If Ty = SL(2,Q), A = L(Q?) and M = L(Q? x SL(2,Q)) = A x
SL(2,Q), then A C M is HT Cartan but not HT, Cartan (cf. 3.2 and 5.3.2°).

6.9.5. Let I'o,00,(Bo,7) be as in 6.9.1, 6.9.2 or 6.9.3. Let n > 1 and
B = Bgzm,a = 089". Then B C B X, Iy is an HT, inclusion (cf. 3.2, 3.3.3
and 5.2). Moreover, if By = Ay is abelian, then A%zm =ACAx,Tyis HT,
Cartan.

6.9.6. Let I'y, 09, (Bo, ) be any of the actions considered above. Let o1
be an ergodic action of I'y on a von Neumann algebra B; ~ L>®(X,pu). If
B = By®B; and M = B X426, Lo, then B C M is an HT inclusion (cf. 3.2
and 5.2.4°). In particular, if By = Ap, B = A are abelian and A = Ay®A4,,
then A C M is an HT Cartan subalgebra. If o; is taken to be a Bernoulli
shift, then A C M is not HT_ Cartan. For any such group I'y the action o;
can be taken nonstrongly ergodic by ([CW]). In this case, the resulting factor
M has the property I' of Murray and von Neumann, with M'NM¥ = M'N A%
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abelian. Note that for each of the groups I'y this gives three distinct HT Cartan
subalgebras of the form A C A x T’y (cf. 5.3.3°).

6.9.7. Let I'o, 00, (Bo, T) be any of the actions considered above (so that
By C By X4, I'g is an HT inclusion). Let also I'; be a property H group and
v an action of I'y on I'g such that I' = I'g % I'y has property H (for instance,
if T’y is amenable or if « is the trivial action, giving I' = T’y x I'1). Let o
denote the I'-action o¢ x 01 on B = ®ger, (Bo, 70)4 constructed in 3.3.3. Then
B C B %, ' is an HT inclusion, which follows an HT Cartan subalgebra in
case By is abelian (cf. 3.1, 3.3.3, and the definitions).

6.10. COROLLARY. 1°. If M is a McDuff factor, i.e., M ~ M®R, then
M ¢ HT. In particular, R ¢ HT.

2°. If M contains a relatively rigid type 111 von Neumann subalgebra then
M ¢ HT. In particular, if M contains L(G) for some infinite property T
group G, or if M contains a property T factor, then M ¢ HT.

3°. If M contains a copy of some Lo (Z?) x5 'y, with Ty a subgroup of
finite index in SL(2,Z) and « an irrational rotation, then M ¢ HT .

4°. If M has property H (e.g., M ~ L(F,,) for some 2 < n < oo) then
M ¢ HT. In fact such factors do not even contain subfactors in the class HT .

Proof. 1° is trivial by 6.8, 2° and 3° are clear by 5.4.2° and 4° follows
from 5.4.1°. O

6.11. Definition. A countable discrete group I is an H, (resp. H, )
group if there exists a free ergodic measure-preserving action oy of I'g on the
standard probability space (X, u) such that L>(X,u) C L®(X,u) X4, Lo is
an HT (resp. HT ) Cartan subalgebra. Note that an H, group has property
H but is not amenable.

6.12. Problems. 1°. Characterize the class of all H,. (resp. H,. ) groups.

2°. Construct examples of free ergodic measure-preserving actions o of
I’y = F, (or of any other noninner amenable property H group I'g) on A =
L>(X, p) such that A C M = A x, Iy is not HT Cartan. Is this the case if o
is a Bernoulli shift?

6.13. COROLLARY. 1°. SL(2,Z),F,,n > 2, as well as any arithmetic
lattice in SU(n, 1) or SO(n,1),n > 2, are Ht, groups.

2°. Let I C Ty be an inclusion of groups with [I'g : T'] < co. Then Ty is
an Hy (resp. Hy,) group if and only if T is an Hy (resp. Hyp_) group.

3°. If Ty is an Hy group and 'y has the property H (for instance, if T'y is
amenable) then I'g x 'y is an Ht group.

4°. If Ty is an Hp group and I'y is amenable and acts on I'g then ' x I'y
1s an Hr group.
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Proof. Part 1° follows from 6.9.1° — 3°, while parts 3° and 4° follow from
6.9.7.

To prove 2° note first that by 3.1 and 2.3.3°, I'g has the property H if and
only if I" has the property H (this result can be easily proved directly, see e.g.
[CCJIV]).

IfT'gisan H, group and A C Ax,Igis HT Cartan and Ay C A is so that
Ap C M is rigid and Ay N M = A then Ay C A x, I is also rigid, by 4.6.2°.
Moreover, the fixed point algebra A" is atomic (because [['g : I'] < o0), so if p is
any minimal projection in A" then p(A x, T')p is a factor and Ap C p(Ax,)p
is an HT Cartan subalgebra. Thus, I' is an H,. group.

Conversely, if I' is an H,, group, then let I'y C I' be a subgroup of finite
index so that I'y C I'g is normal. By the first part, I'; is an H,. group. By part
4°, it follows that I'g is an H,. group. O

7. Subfactors of an H7 factor

In this section we prove that the class H7 is closed under extensions and
restrictions of finite Jones index. More than that, we show that the lattice of
subfactors of finite index of a factor in the class H7T is extremely rigid.

7.1. LEMMA. Let N C M be an irreducible inclusion of factors with
[M : N] < oo and A C N a Cartan subalgebra of N. Denote by N' = Ny (A)
the normalizer of A in N. Then

1°. A’ N M is a homogeneous type 1,, algebra, for some 1 < m < oo, and
if A1 = Z(A' N M) then there exists a partition of the identity q1,q2,--.,qn €
P(A1) such that Ay = X;Aq; and En(q;) = Ea(q;) = 1/n,Vi.

2°. N normalizes Ay and QdéfspAlN = spA1N is a type 11y factor con-
taining N, with [Q : N] = n. Moreover, A1 C Q is a Cartan subalgebra and
the following is a nondegenerate commuting square:

N Cc @
U U
A C A

3°. N normalizes ANM = A\NM ~ M, xm(A1) and Pdéfsp(AllﬂM)N =
sp(A} N M)N is a type 11y factor containing Q, with [P : Q] = m?. Moreover,
the following is a nondegenerate commuting square

Q C P

U U
A C AllﬂM

4°. Any mazimal abelian x-subalgebra Ay of AA\NM = A\ NM is a Cartan
subalgebra in P, with Asp C pPp implementing the same equivalence relation
as A1 C Q, Vp € P(Az), 7(p) = 1/m; i.e., Ra,pcpprp = Ra,cq (equivalently,
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Ra,cp =~ (Ra,cQ)™), but with the two Cartan subalgebras possibly differing
by their 2-cocycles.

Proof. Since N normalizes A, it also normalizes A’ N M, and thus
Z(A'N M) = Ay as well. In particular, 4N = NA; and (A N M)N =
N(A" N M), showing that spA; N and sp(A’ N M)N are x-algebras. Since
N' MM = N' NnM = C, this implies that Q, P are factors. In particular,
this shows that the squares of inclusions in 2° and 3° are commuting and
nondegenerate. Also, by definitions, A; is Cartan in Q.

Since N C @ is a A-Markov inclusion, for A=t = [Q : N] (see e.g., [Po2]
for the definition), it follows that A C Aj, with the trace 7 inherited from
M, is A>-Markov. Thus, e = e% implements the conditional expectation Eﬁl
and Ay C B = (A1, A) = (Ai,e) gives the basic construction for A C Aj.
Moreover, since A, A; are abelian, it follows that Z(B) = A = J4, AJa, and
that

AN B =Ja,A1Ja, N (Ja, Ada,) = Ja, (AN ANTa, = Ja, A1Ja, = Ay

Thus, A; is maximal abelian in B, implying that the Markov expectation of
B onto A; given by E(xzey) = Azxy, for x,y € Aj, is the unique expectation of
B onto Aj.

Also, for each u € N, Adu acts on A C A; 7-preservingly. Thus, Adu
extends uniquely to an automorphism 6, on B = <A1,6ﬁ1> = <A1,€%> by
HU(eﬁl) = eﬁl. This automorphism leaves invariant the Markov trace on B.
Also, since 0,,u € N, act ergodically on A = Z(B), it follows that B is
homogeneous of type I, for some n. By [K2|, it follows that there exists
a matrix units system {e;;j}i<ij<n in B such that B = A V sp{e;;};; with
Al = EZAGM

By the uniqueness of the conditional expectation E of B onto Aj, if we
put ¢; = e; then E(X) = %,¢;X¢q;, VX € B. In particular, the index of
Ay C Bis given by A= = n = 7(e)~! and by the Markov property we have
1/n = E(e) = Sigieq;. Thus, gieq; = n~'q;, and so egie = n~le = E(q)e as
well, since 7(e) = 7(g;). This ends the proof of 1° and 2°.

Now, since A; is the center of By = AN M = A) N M and Adu,u € N,
act ergodically on Aj, it also follows that B; is homogeneous of type I,,, for
some m > 1. This clearly implies 3°.

To prove 4°, let {fij}1<ij<m C Bi be a matrix units system in B; such
that Ay = ¥;A;fj; and By = X, jA; fij (cf. [K2]). Ap is Cartan in P because
by construction f;; are in the normalizing pseudogroup of Ay in P.

For each u € N let v(u) be a unitary element in By such that

v(u)(ufjjut)o(u)” = fi5, Vj

(this is possible because wfjju* and f;; have the same central trace 1/m
in By). Since v(u) commute with A1 = Z(By), Yu € N, it follows that
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Aj f11 with the action implemented on it by {v(u)u | u € N'} is isomorphic to
A7 with the action implemented on it by N. Thus, the equivalence relation
RA,fircfiaMfr, 1s the same as the equivalence relation R, c¢q, but with the
2-cocycle coming from the multiplication between the unitaries v(u)u,u € N
(for Ajfi11 C fi1M f11) possibly differing from the 2-cocycle given by the mul-
tiplication of the corresponding u € N (for A; C Q). O

7.2. LEMMA. 1°. Let A' C My be a mazimal abelian *-subalgebra in the
type 111 factor My. If there exists a von Neumann subalgebra A° C Al such
that A° C My is rigid and A ¢ A% N My has finite index (in the sense of
[PiPo]), then Al contains a von Neumann subalgebra A} such that A§ C My is
rigid and A(l)/ NM; = Al

2°. Let My C My be a subfactor of finite index with an HT (resp. HT )
Cartan subalgebra A C My. If A C My is a mazimal abelian x-subalgebra of
M, such that A* > A and M, has property H relative to A' then A' C M, is
an HT (resp. HT,) Cartan subalgebra.

Proof. 1°. Since A1 ¢ A%’ NM has finite index, it follows that A’ MM, is a
type Ig, von Neumann algebra and A is maximal abelian in it (see e.g., [PoT7]).
It follows that there exists a finite partition of the identity with projections
{fx}x in Al such that {f}, N A N My c Al Thus, if we let AlcﬁfEkAOfk,
then A(l)/ N M; C A'. By 4.6.3° it follows that Ay C M is a rigid embedding.

2°. This is an immediate application of 1°, once we notice that if A° C A
is so that A% C My is rigid and A% N My = A then A C AY N M has index
majorized by [M; : My], implying that A ¢ A% N M, has finite index as
well. O

7.3. THEOREM. Let N C M be an inclusion of type 11y factors with
[M : N] < oo. Then

1°. N € HT (resp. N € HT,) if and only if M € HT (resp. M € HT).

2°. Assume N'NM = C and N,M € HT. If Q,P C M are the inter-
mediate subfactors constructed out of an HT Cartan subalgebra of N, as in
7.1, then Q,P € HT and the triple inclusion N C Q C P C M is canonical.
Moreover, the HT Cartan subalgebra of P is an HT Cartan subalgebra in M.

3°. If M € HT and N C M is an irreducible subfactor then [M : N] is

an integer. Moreover, the canonical weights of the graph I'n ar of N C M are
integers.

Proof. 1°. Since the algebra (M, N) in the basic construction N C M C
(M, N) is an amplification of N, by Theorem 6.6 it follows that it is sufficient
to prove that if N € HT (resp. N € H7,) then M € HT (resp. M € HT,). By
6.6.1°, it is in fact sufficient to prove this implication in the case N'N M = C.
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Let A C N be an HT Cartan subalgebra and A; = Z(A' N M) C Q
be constructed out of A C N as in Lemma 7.1. We begin by showing that
A; C Q is an HT Cartan subalgebra. Let ¢1,q92,...,q, € A1 C Q be so that
Ay = ¥;Aq;, En(q;) = Ea(q;)) = 1/n, as in Lemma 7.1. By the last part of
2.3.3°, it follows that @ has property H relative to A. But by the last part of
2.3.4° this implies @ has property H relative to A;. Also, A1 C @ satisfies the
conditions in part 2° of Lemma 7.2, implying that it is HT Cartan.

Next we prove that if Ao is constructed as in part 3° of Lemma 7.1,
then Ay C P is an HT Cartan subalgebra. Let {e;j}1<ij<m C A7 N M be a
matrix units system which together with A; generates A7 N M and such that
Ay = XA ej;. Since P has an orthonormal basis made up of unitary elements
commuting with Ai, by the last part of 2.3.3° it follows that P has property H
relative to A;. By applying the last part of 2.3.4°, we see that P has property
H relative to As. Then 7.2.2° applies and we deduce that As C P is an HT
Cartan subalgebra, which is even HT, when A C N (and thus 4; C Q) is HT .

Having proved that A, C P is an HT Cartan subalgebra, we now prove
that Ay is HT Cartan in M as well. Since As is maximal abelian in M, 7.2.2°
shows that it is sufficient to prove that M has property H relative to As. To
do this, we prove that if A3 is any maximal abelian subalgebra in A} N Mj,
where My = (M, P), then A3 C M; is HT Cartan. This would finish the proof,
because by the first part of 2.3.4° M; would have the property H relative to
Ao, and then by the first part of 2.3.3° this would imply M has the property
H relative to As.

Since Mj is an amplification of P € H7, by Theorem 6.6 it follows that
M, as well as any reductions of M7 by projections in My, belong to H7. Let
N1 be the normalizer of Ay in P. Since Ap is regular in P, N{ = P and
N{N M, = P'n M. Let {p}}+ be a partition of the identity with minimal
projections in P’ N Mj. For each t, the inclusion Asp, C Pp) C p,Mp] satisfies
the hypothesis of Lemma 7.1. Thus, if A} is a maximal abelian *-subalgebra
of (Asp}) N piMip}, then Agp} is included in A% and by 7.1.4°, A% is semi-
regular in pjMip,. In addition, by 7.2.1° it follows that A} contains a von
Neumann subalgebra A4 with A} N p,Mip, = AL and A} C pjMip, rigid.
Since p;Mip, € HT, by Theorem 6.2 it follows that A, C pjMip] is HT
Cartan. Moreover, M € HT implies A3 = ¥; A} is HT Cartan in M, while
clearly Ay C As, by construction.

2°. The triple inclusion (N C @ C P C M) depends on the choice of the
Cartan subalgebra A C N. But such A is unique up to conjugacy by unitaries
in N, which leave @) and P fixed. The fact that the HT Cartan subalgebra of
P is HT Cartan in M was proved in part 1°.

3°. With the notation in 1°, we have [M : N] = nm?[M : P], with [M : P]
being itself an integer, since P contains a Cartan subalgebra of M (see e.g.,
[Pog]).
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The weights v, of I' = 'y as are square roots of indices of irreducible
subfactors appearing in the Jones tower for N C M. Thus, v, are square
roots of integers. Since v, = 1, [M : N] € N and T is irreducible and has
nonnegative integral entries, by the relations coming from I'T*% = [M : N]|7,
it follows recursively that all vy must be integers. O

7.4. Definitions. Let N C M be an irreducible inclusion of factors in the
class HT with [M : N] < co and let N C Q C P C M be the canonical triple
inclusion defined in part 2° of Theorem 7.3.

74.1. N CQ C P C M is called the canonical decomposition of N C M.

74.2. If M = @, i.e., if the HT Cartan subalgebra A of N is so that
A'N M is abelian (thus HT Cartan in M) and M = spAN = M, then N C M
is a type C_ inclusion (or subfactor). If N = P, i.e., if AN M = A (so that
A is Cartan in both N and M) then N C M is of type Cy. If P = Q, i.e., if
A’ N M is abelian, then N C M is of type C4.

743. f N =Q,P = M then N C M is of type Cy. More generally, an
extremal inclusion N C M of factors in the class H7T is of type Cy if the HT
Cartan subalgebra A of N satisfies A/NM = AV Py, with Py ~ M5, (C),m =
[M : N]'/2 and M = sp(A' N M)N = spPyN.

7.5. THEOREM. 1°. Let N C M be an irreducible inclusion of factors in
the class HT, with [M : N] < co. N C M 1is of type C_ (resp. C4,Cx,Cp) if
and only if its dual inclusion M C (M, N) is of type Cy+ (resp. C—,Cy,C).

2°. If N C M and M C L are irreducible inclusions of factors in the
class HT with finite index and both of type C_ (resp. Cy.), then N C L is an
irreducible inclusion of type C_ (resp. Cy.).

3°. If N C M and M C L are extremal inclusions of factors in the class
HT, both of type Cy, then N C L is of type Cy and so are all subfactors of the
form Np C pLp, withp € P(N'NL).

4°, Let N C M and M C L be irreducible inclusions of factors in the
class HT with finite index and such that N C M is of type Cy and M C L is
of type C_. If A C N is an HT Cartan subalgebra then A’ N L is abelian and
each irreducible inclusion Np C pLp for p minimal projection in N' N L is of
type Cx. In particular this is the case if (M C L) = (M C (M, N)).

5°. Let N C M be an inclusion of factors in the class HT with
[M : N] < oco. If N C M is either irreducible of type C_ or extremal of
type Co then N C (M, N) is a type Cy inclusion, and so are all subfactors of
the form Np C p(M, N)p, for p projection in N' N (M, N).

Proof. 1°. Let A C N be an HT Cartan subalgebra of N. If N C M is
of type C_ then let A’N M = %, Aq;, where {¢;}1<i<n C A’ N M is a partition
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of the identity with projections satisfying En(g;) = 1/n,Vi. Let a = e2™/"
and denote u = nX¥;gengi+1. We clearly have [u, A] = 0, ugu* = gi+1 and
En(w) =0,¥j <n —1. Thus, the HT Cartan subalgebra A; = A'N M of M
is maximal abelian in (M, N) and is normalized by u/, with (M, N) = S;u/ M;
i.e., A; is the HT Cartan subalgebra in (M, N) as well, showing that M C
(M, N) is of type Cy.

If N C M is of type Cy, A C N C M is HT Cartan in both factors
and uy,usg, ..., u, € Njy(A) are unitary elements such that M = ¥;u; N and
En(ufu;) = 0;; then ¢; = ujeNuj is a partition of the identity with projections
in (M, N) and we have A’ N (M,N) = ¥;q;A, (M,N) = X;q;M. Thus, M C
(M, N) is of type C_.

If NCPC Missothat N C Pis C_, P C M is Ci then we have
the irreducible inclusions M C (M, P), which is C_, and (M, P) C (M,N),
which is an amplification of P C (P, N), thus of type Cy. This shows that
M C (M,N)is Cy.

If N C M is of type Cyp and A C N is an HT Cartan subalgebra with
A'NM =3 je;;A for some matrix units system {e;; }1<ij<m C A’ N M, then
denote e;j = mYiegienejr, 1 < 1,7 < m. It is immediate to show that {e;j}m is
a matrix units system which commutes with A and with {eg; }x, that {e;j}m- is
an orthonormal basis of (M, N') over M and that {e] jekl}iyj,k,l is an orthonormal
basis of (M, N) over N. It follows that A'N (M, N) = sp{e;ex}ijr1A. Thus,
if Ay C A'NM is a maximal abelian subalgebra, then A5N (M, N) = ¥; je;; Ao.
This shows that M C (M, N) is of type Cj.

2°. By duality in the Jones tower ([PiPo]) and part 1°, it is sufficient to
prove that if N C M, M C L are of type C, then so is N C L. But this is
trivial, since if A C N is HT Cartan in N then it first follows that N is Cartan
in M, then in L.

3°. Let {ei;}i<ij<m C A'NM be a matrix units system such that A’'NM =
¥;j€ijA, as in the proof of the last part of 1° (thus, [M : N] = m?). Let
Ay = Yjej; A, which is HT Cartan in M. Let {f};}1<ki<m C A5 N L be a
matrix units system such that A5 N L = Xy f;, A2, with m'? = [L : M]. Then
{fistt,s = {eafier; |1 < 4,5 <m,1 < k,l < m'} is a matrix units system
in AN L and if we denote Py =~ My xmm/(C) the algebra it generates, then
clearly En(fs) = ds¢/mm/. Since [L : N] = (mm’)?, and since we have the
commuting square

N C L

U U

A c AnNL
as well as

N C L

U U

A C AVPEF
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with AV Py € AN L and with Py containing an orthonormal system of L over
N made up of mm’ elements, it follows that AV Py = A’ N L, thus showing
that N C L is of type Cj.

Finally, if p € P(N' N L) then in particular p € AV Py. By the above
commuting squares, we have F4x(p) = En(p) = 7(p)l. But A = Z(AV Fy),
implying that p has scalar central trace in A V Py. Thus, (Ap) N pLp =
p(AV Py)p is homogeneous of type 1. Since we also have pLp = p(spPyN)p =
p(spPo)pNp, this shows that Np C pLp is of type Cp.

4°. Let A C N be the HT Cartan subalgebra of N, which is thus HT
Cartan in M as well. Thus A; = A’NL is abelian with L = spA; M. Since any
irreducible projection p € N'NL lies in Ay, by cutting these relations with p we
obtain that (Ap)' NpLp is abelian, which by Lemma 7.1 means that Np C pLp
has only type C_ and C; components in its canonical decomposition.

5°. This is immediate from the proofs in 1° and the last part of 3°. O

7.6. Examples. 1°. Let I'g be a property H group and o a free, weakly
mixing measure-preserving action of I'g on the probability space (X, u) such
that the Cartan subalgebra L (X, u) = A C N = L>®(X, u) %, I'o contains a
von Neumann subalgebra A; C A with A{ NN = A and A; C N rigid. Let
I'1 € Iy be a subgroup of finite index and o the left action of I'g on I'y/I';.
Let Ag = £°°(1“0/1“1) and M = A® Ay Xo@o, L0-

Then N, M € H7T and if we identify IV with the subfactor of M generated
by A = A® C and by the canonical unitaries {uy}, C M implementing the
action 0 ® og on A ® Ay, then N C M is an irreducible type C_ inclusion.
Moreover, if we denote N1 = AV {ug}ger, @ A X I't C N then Ny C N is a
type C4 inclusion and Ny C N C M is a basic construction.

We have [M : N] = [N : Nj] = [[p : I'1], the standard invariant of
N1 C N coincides with the standard invariant Gr,cr, of R x I'y C R x Iy
studied in [KoYa] and the standard invariant of N C M is the dual of Gr,cr,.
In particular, Ny C N C M are finite depth inclusions.

2°. Let I'g, 0, A be as in example 1° above and let 7y be a finite-dimensional
irreducible projective representation of I'g on the Hilbert space H, with scalar
2-cocycle v. Let By = B(Hp) and o¢(g9) = Admo(g) be the action of I'y on
By implemented by 7. Denote M = M,;, = A® By Xsgo, Lo and let N be
the subfactor of M generated by A ® 1 = Z(A ® By) and by the canonical
unitaries {ug}ger, C M implementing the action o ® 9. Thus, N ~ A x, Iy,
M ~ Mpxn(A X5, I'g) and both belong to the class H7.

Moreover, N C M is an irreducible type Cj inclusion and its standard
invariant coincides with the standard invariant of the generalized Wassermann-
type subfactor corresponding to the projective representation mg, i.e.:
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C C End(Hp)% C End(Ho® Hp)?°®% C
U U
C C C®End(Hp) C

3°. Let o be the action of SL(2,7Z) on L4 (Z?) implemented by the action
of SL(2,Z) on Z2, as in 5.2.1° and 6.9.1°, for a a primitive root of 1 of order
n. Let My = Lo(Z?) %, SL(2,Z), A = Z(L,(Z*)) and N = AV {uy}, be
the von Neumann algebra generated by A and the canonical unitaries in M,
implementing the action o. Then N, M, € H7. and N C M, is an irreducible
inclusion of type Cy with [M, : N] = n?. Indeed, we have already noticed in
6.9.1° that N € H7_, so that by 7.3 we have M, € H7_. Also, by construction
we have A’ N M, = Lo(Z%) = A ® By, with By ~ M,x,(C), and M, =
spLa(Z?)N.

One can show that N C M, is isomorphic to a type Cj inclusion N C M,
as in example 2°, when taking I'g = SL(2,Z), with o, 0g the actions of SL(2,Z)
on A = Z(Lo(Z?)) ~ L((nZ)?), By = Lo((Z/nZ)?) ~ My, (C). Note that
the standard invariant ([Po3]) of N C M, depends only on the order n of «,
because if 7y, 7, are representations corresponding to primitive roots a, a’ of
order n then there exists an automorphism v of the group (Z/nZ)? such that
7’ = mo~. But we do not know whether the isomorphism class of N C M,
depends only on n.

We now reformulate the results in Theorem 7.5 in terms of correspon-
dences. For the definition of Connes’ general N — M correspondences (or
N — M Hilbert bimodules) H =n Has, of the adjoint H =x; Hy of H, as well
as for the definition of the composition H o K (also called tensor product, or
fusion) of correspondences H =y Has, K = Kp see [CT], [Pol], [Sa].

7.7.  Definition. Let NyM € HT and K be an N — M correspon-

dence, viewed as a Hilbert N — M bimodule. Assume that dimpy/C MdéfdileC-
dim/Cp; < oo and that K is irreducible, i.e., N V (M°P) = B(K). We say that
K is of type C_ (resp. C4,Cy,Cp) if the inclusion N C (M°P) is of type C_
(resp. Cy,Cx,Cp), in the sense of Definitions 7.4.

Finite index correspondences (resp. bimodules) between factors in the class
HT will also be called HT correspondences (resp. HT bimodules).

7.8. COROLLARY. Let NHyr,m Kp, be irreducible HT bimodules.

1°. H is of type C_ (resp. Cy,Cx,Cy) if and only if H is of type Cy
(resp. C_,C4,Ch).

2°. If both H, K are of type C_ (resp. C, resp. Cy) then HoK is irreducible
of type C_ (resp. irred. Cy, resp. a sum of irreducible Cy). In particular, the
class of HT bimodules (or correspondences) of type Cy over an HT factor forms
a selfadjoint tensor category.



884 SORIN POPA

3°. If H s of type Cy and IC is of type C_ then H o K is a direct sum
of irreducible type C+ bimodules. Also, K o IC is a direct sum of irreducible Cy
bimodules.

Proof. Part 1° is a reformulation of 7.5.1°, while 2° and 3° are direct
consequences of 7.5.2° — 5°. O

7.9. Definition. Let M € HT and 6§ €AutM be a periodic automorphism
of M, with 6" = id and 6% outer VO < k < n. Then 6 is of type C_ (resp. C4)
if the inclusion M C M xg Z/nZ is of type C_ (resp. Cy). By the uniqueness

of the HT Cartan subalgebra, this property is clearly a conjugacy invariant
for 6.

7.10. COROLLARY. The factor N = L(Z? x SL(2,7Z)) has two noncon-
jugate, period-two automorphisms, one of type C_ and one of type C,.

Proof. In example 7.6.1°, take I'y C T'g = SL(2,Z) a subgroup of index 2
and (X, p) = (T?, ) with SL(2,Z) acting on it in the usual way. Then N =
L(7Z? x SL(2,7Z)) and the resulting type C_ inclusion N C M given by the
construction 7.6.1° is of index 2. Thus, by Goldman’s theorem, it is given
by a period 2 automorphism 6_, which is thus of type C'_. Alternatively, we
can take 6_ to be the automorphism given by the nontrivial character + of
72 x SL(2,Z) with 42 = 1, defined by v(a) = —a, v(b) = b, on the generators
a,b of period 4, resp. 6 of SL(2,7Z), and v(Z?) = 1.

Now take 6 to be the automorphism of N implemented by (é 01) €
GL(2,Z). Thus, N C M = N xg, Z/2Z coincides with L(Z* x SL(2,Z)) C
L(Z* x GL(2,Z)), and since GL(2,Z) acts freely on Z? it follows that L(Z?)' N
M = L(Z?), so that N C M is of type C. O

7.11. Question. Let N ~ L(Z? x SL(2,7Z)). Is, then, any irreducible type
C_,C4 or Cy inclusion of factors N C M isomorphic to a “model” inclusion

7.6.1°-7.6.2°7

8. Betti numbers for H7 factors

8.1. Definition. Let M € H7T and RHMT be the standard equivalence
relation implemented by the normalizer of the HT Cartan subalgebra of M, as
in Corollary 6.5. Let {3,(R};)}n>0 be the £2-Betti numbers of R}, as defined

by Gaboriau in [G2]. For each n = 0,1,2,..., we denote 3, (M)d:efﬁn(RHMT)
and call it the n'™® ¢2 -Betti number (or simply the n'® Betti number) of M.
By 6.5, 3, (M) are isomorphism invariants for M.

From the results in Section 6 and the properties proved by Gaboriau for

(2-Betti numbers of standard equivalence relations, one immediately gets:
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8.2. COROLLARY. 0°. If M is of type 11y then ﬁgT(M) =0 and if
M = My (C) then Gy (M) =1/n.

1°. IfAC M = A x,Tgis a HT Cartan subalgebra, for some countable
discrete group Tg acting freely and ergodically on A ~ L™(X, 1), then 3, (M)
is equal to the n™ (2-Betti number of Tg, Bn(To), as defined in [ChG]).

2°. If M € HT and t > 0 then 3, (M") = B(M)/t,¥n.

3°. If My,My € HT then for each n > 0 the following Kiinneth-type
formula holds:

By (MiBMz) = > B (M1)B; (M),
i+j=n

where 0-00 =0 and b- 0o = oo if b # 0.
4°. Let M € HT, and let N, C M,k > 1, be an increasing sequence
of subfactors with N, T M (so that N € HT., for k large enough, by 6.8.3°).

Then lim inf3, (Ng) > 3, (M).

Proof. 0°. This is trivial by the definitions and [G2].

1°. By 8.1, we have 8, (M) = (.(Ry;). But Ry, = Rr,, and by
Gaboriau’s theorem the latter has Betti numbers (3, (Rr,) equal to the Cheeger-
Gromov /2-Betti numbers 3, (Tg) of the group I'g.

2°. By Section 6 we know that the class H7 is closed under amplifications
and tensor products. Moreover, by 1.4.3 the “amplification” by ¢ of a Cartan
subalgebra A C M has a normalizer that gives rise to the standard equivalence
relation (R, )t. Then formula 2° is a consequence of Gaboriau’s similar result
for standard equivalence relations.

Part 3° follows similarly, by taking into account that if Ay C My, Ay C My
are Cartan subalgebras then N (A; ® A2)" = (N (41) @ N(Az))".

4°. By 6.8.3°, there exists kg and an HT | Cartan subalgebra A of M such
that A C Ni,Vk > ko. Then the statement follows from Theorem 5.13 in [G2].

O

8.3. COROLLARY. 1°. If M € HT has at least one monzero, finite
Betti number then F (M) = {1} and in fact MY @ --- @ M is isomorphic to
M52®--- @ M3 if and only if n = m and t1...t, = 81...8m. FEquivalently,
{M@n}le are stably nonisomorphic and all the tensor powers M®™ have
trivial fundamental group, F(M®™) = {1},Ym > 1.

2. If M € HT and 3] (M) # 0 or oo, then M is not the tensor product
of two factors My, Ms in the class HT . More generally if BZT (M) is the first

nonzero finite Betti number for M, then M®™ cannot be expressed as the tensor
product of km + 1 or more factors in the class HT .
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Proof. 1°. First note that if M has ﬂZT (M) as first nonzero Betti number,
then the formula BZT(Mt) = ﬂ,}:T (M) /t implies that M ¢ M? if t # 1. Thus,
F (M) ={1}. .

Also, by the Kiinneth formula 8.2.2°, if 3, (M;) is the first nonzero fi-
nite Betti number for M; € H7,i = 1,2, and we put n = n; + no, then
B (M ®Ma) = B, (My)f, (Ms), is the first nonzero finite Betti number for
M@ M.

Thus, ﬂ;:n (M @") is the first nonzero finite Betti number for M®™ m > 1,
showing that {M ®m}m21 are stably nonisomorphic.

2°. This is trivial by the first part of the proof and the Kiinneth formula
8.2.2°. O

8.4. COROLLARY. 1°. Let N C M be an irreducible inclusion of factors
in the class HT with [M : N] < oo. If N C M s of type C_ then 3, (M) =
B (N),¥Yn. If N C M is of type Cy then (3, (M) =[M : N]G, (N).

2°. Let N C M be an extremal inclusion of factors in the class HT . If
N C M s of type Cy then B8, (M) =[M : N]*/23," (N),¥n.

3°. If N C Q C P C M is the canonical decomposition of an irreducible
inclusion of factors N C M in the class HT , then 8, (Q) = 8, (N), B (P) =
[P QI"2B," (N) and B," (M) = [M : P|B," (P).

4°. Let M € HT, N C M be a subfactor of finite index, (I'n ar, (vk)k) be
the graph of N C M, with its standard weights. Let also {Hy} be the list of
irreducible Hilbert M -bimodules appearing in some L*(M,,T),n = 0,1,2,...,
with {M C M(Hg)}x the corresponding irreducible inclusions of factors. If

HT HT

B (M) # 0 or oo for some n > 1 then vy = 3, (M(Hy))/Bn (M),Vk. Thus,
N (B (M () = (M = NY(B, (M (M)

Proof. 1°. If N C M is of type C then RHNT is a subequivalence relation
of index [M : N] in R}, so that by [G2] we have

HT

B, (M) = B,(Ry) = [M : N]Bo(Ry ) = [M : NIB," (N).
If N C M is of type C_ then by part 1° of Theorem 7.5, M C (M, N) is

of type C4. Since (M, N) is the [M : N]-amplification of N, by the first part
and by formula 8.2.2, we get:

Ba (N)=[M: NJ7'6," ((M,N)) = [M : N]"}[M : N8, (M).
2°. If N C M is of type Cy then by 7.1 the equivalence relation RHMT is an
[M : N]Y/2-amplification of Ry . Thus, 3, (M) = [M : N]'/23," (N).
3°. This is just a combination of 1° and 2°.

4°. Note that all subfactors M C M (H},) appear as irreducible inclusions
of factors in some M C Ma,. By Jones’ formula for the local indices ([J1]), if
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p is a minimal projection in M’ N My, with (Mp C pMa,p) ~ (M C M(Hy))
then [M(Hy) : M]/7(p)? = [Ma, : M]. On the other hand, since My, is the
[M : N]"-amplification of M and since M (Hy) ~ pMa,p, it follows that M (Hy,)
is the 7(p)[M : N]"- amplification of M. By 8.2.2°, this yields 3, (M(H})) =
[M(Hy) : M]M28," (M) = o3, (M). O

Using the inventory of examples 6.9 of factors in the class H7, and the
calculations of ¢2-Betti numbers for groups in [ChGr], [B], from 8.2.1° above
we get the following list of Betti numbers for factors:

8.5. COROLLARY. 1°. If a € T is a primitive root of unity of order n,
then My = Lo(Z?) xSL(2,Z) € HT. (cf. 6.9.1) and 3, (M) = (12n)~", while
B, (M) = 0,Vk # 1.

2°. If a,d are primitive roots of unity of order n respectively n' then
My, ~ My if and only if n = n'.

Proof. 1°. By 5.2.1°, 8.2.1° and 8.2.2°, B, (M,) = Bx(SL(2,Z))/n. But
by [B] we have 3;(SL(2,Z)) = 1/12, 5x(SL(2,Z)) = 0 if k # 1.

2°. By 5.2.1°, if n = n’ then M, ~ M, while if n. # n/ then 3, (M,) #
ﬁfT(Ma/), and so My 2 M. O

8.6. COROLLARY. 1°. If M = L*(S?,\) x PSL(2,7Z) as in 6.9.1 then
By (M) =1/6 and 8, (M) =0,Yn #1.

2°. Let o be any of the actions 6.9.2 or 6.9.6 of the free group F,, on the
diffuse abelian von Neumann algebra (A, 1), and M = A x,F, the correspond-
ing factor in the class HT. Then (3, (M) = (n — 1), ﬁZT(M) =0,Vk # 1.

3°. Let T'g be an arithmetic lattice in SU(n,1),n > 2, or in SO(2n,1),
n > 1, and o a free ergodic trace-preserving action of I'g on the diffuse abelian
von Neumann algebra A as in 6.9.3 or 6.9.6. Let M = A x,1'g € HT be the
corresponding HT factor. Then 3, (M) # 0 and ﬂZT (M) =0,Vk # n. Also, if
Ty is an arithmetic lattice in some SO(2n+1,1),n > 1, then the corresponding
HT factors constructed in 6.9.3 satisfy ﬁzT(M) =0,Vk > 0.

4°. Let Ty be an Hy group (in the sense of Definition 6.11; e.g., any of the
groups listed in 6.13) and 'y an infinite amenable group. Let M € HT be of
the form M = L=(X, ) x (Tg x T'1) (cf. 6.13.3°). Then 83, (M) = 0,Vk > 0.

Proof. For each of the groups in 1°,2° the ¢?-Betti numbers for certain
specific co-compact actions were calculated in [B]. Then the statements follow
by [G2], [ChGr| and 8.2.1°, similarly for 3°. O

8.7. COROLLARY. IfT'g = SL(2,Z),F, or if Ty is an arithmetic lattice
in SU(n,1),S0(n, 1), for some n > 2, then there exist three nonisomorphic
factors M; = L>=°(X,u) X5, To,1 < i < 3, in the class HT, with M; € HT_,
Msys ¢ HT., My non-I' and Mz with the property T
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Proof. All the groups mentioned have property H (see 3.2). The statement
then follows from the last part of 5.3.3°. O

8.8. COROLLARY. There exist both property I' and non-I' type 11 fac-
tors M with trivial fundamental group, F (M) = {1}. Moreover, such factors
M can be taken to have non stably-isomorphic tensor powers, all with trivial
fundamental group.

8.9. Definition. Let M € H7. The HT-approximate dimension of M,
denoted ad,, (M), is by definition Gaboriau’s approximate dimension ([G2])
of the equivalence relation RHMT associated with the HT Cartan subalgebra of
M. Note that ad,,.(M?) = ad,,,.(M),Vt > 0.

8.10. COROLLARY. Let M € HT be of the form My = L>®(X,u) x I'y,
where Ty, = To X Fp, x -+ X Fp, for some 2 < n; < 0o0,V1 < ¢ < k, with
Iy an increasing union of finite groups. Then ad,..(My) = k, so the factors
My, k > 1, are non stably-isomorphic.

Proof. By 5.17, 5.13 and 5.16 in [G2], the approximate dimension of the
group I'g, and thus of RHMTk, is equal to k. O

8.11. Definition. Let M € HT, and Out,.. (M) be the countable discrete
group defined in Corollary 6.7.2°. We call it the HT-outomorphism group of
M. As noted in 6.7, Out,,, (M) can be identified with the outer automorphism
group of the equivalence relation R, , Out(R;,) = Aut(R,,)/Int(R,, ). Note
that Out,,,.(M?') =Out,,.(M),Vt > 0. The outer automorphism group of an
equivalence relation R was first considered by I. M. Singer in [Si], and was also
studied in [FM]. By 6.7 this group is discrete (with the quotient topology) and
countable. Thus, it seems likely that Out,,.(M) can be computed in certain
specific examples. In this respect we mention the following:

8.12. Problem. Calculate Out,, (M) for M = L(Z* x SL(2,Z)), more
generally for M,, = L((Z?)" x SL(2,7Z)), with SL(2,Z) acting diagonally on
(2> = 7*2@- - -®Z2. Let G, be the normalizer of SL(2,Z) in GL(2n, Z), where
SL(2,Z) is embedded in GL(2n,Z) block-diagonally. Is Out,,.(My) equal to
the quotient group G,,/SL(2,Z), in particular is Out,, (M;) equal to {0,id},
for 64 the C'y period 2 automorphism in Corollary 7.77

8.13. Remarks. 1°. Note that the above Corollary 8.8 (and also 8.5-8.7)
solves Problem 3 from Kadison’s Baton Rouge list, providing lots of examples
of factors M with the property that the algebra of n by n matrices over M is
not isomorphic to M, for any n > 2.

2°. We could extend the definition of ﬁZT(M ) to arbitrary II; factors M,
by simply letting ﬁ:T (M) = 0,V¥n, whenever M does not belong to the class
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‘HT. This definition would still be consistent with the property ﬂZT(M Y =

B, (M)/t,Vt > 0. However, in order for this definition to also satisfy the
Kiinneth formula (an imperative!), one needs to solve the following:

8.13.2. Problem. Does M1®@My € HT imply My, My € HT?

Note that if this problem were to have an affirmative answer, our factors
AxTF, € HT would be prime, i.e., A x[F,, would not be expressible as a tensor
product of type II; factors M;®Ms. Indeed, this is because BTT (Mi®Ms) =0
for My, My € HT, by the Kiinneth formula, while 8, (4 x F,) =n — 1 # 0.

3°. It would be interesting to extend the class of factors in the “good
class” for which a certain uniqueness result can be proved for some special
type of Cartan subalgebras, beyond the HT factors considered here. Such
generalizations can go two ways: by either extending the class of groups I'g for
which A C A x, I'g works, for certain o, or by showing that for the groups I'g
already considered here (e.g., the free groups) any action o works (see Problems
6.12.1° and respectively 6.12.2°, in this respect).

4°. During a conference at MSRI in May 2001 ([C6]), Alain Connes
posed the problem of constructing ¢>-type Betti number invariants g (M)
for type II; factors M, building on similar conceptual grounds as in [A],
[C4], [ChGr], [G2,3], through appropriate definitions of simplicial complexes,
¢>-homology /cohomology for M, which should satisfy S (L(Go)) = Bk(Go) for
von Neumann factors M = L(Gy) associated to discrete groups Gg. Thus,
since (1 (Z? x SL(2,Z)) = 0,Vk (cf. [ChGr]), such Betti numbers would give
Br(L(Z% x SL(2,7Z))) = 0, Vk.

Instead, our approach to defining ¢2-Betti number invariants was to re-
strict our attention to a class of factors M having a special type of Cartan
subalgebras A, the HT ones, for which we could prove a uniqueness result,
thus being able to use the notion of Betti numbers for equivalence relations
in [G2]. Thus, our Betti numbers are defined “relative” to HT Cartan subal-
gebras, a fact we emphasized by using the terminology “EiT—Betti numbers”
and the notation “3, (M)”. When M = A x Gy these 2 -Betti numbers
satisfy B, (M) = Br(Go). In particular, if M = L(Z* x SL(2,Z)) then
B (M) = pi(SL(2,Z)) # 0. Thus 8 (M) # (M), if B(M) could be
defined as asked in [C6].

Moreover, if such (M) are possible, then according to Voiculescu’s for-
mula ([V1]) for the number of generators of the amplifications/compressions
M? of the free group factors M = L(F,) (cf. also [Ra], [Dy], [Sh]), the first
Betti number (3;(M?) (= (number of generators of M') —1) should satisfy a
formula of the type 81 (M*) = (1(M)/t?, rather than 3, (M?') = 38, (M)/t,
as we have in this paper!
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Appendix: Some conjugacy results

We prove here several conjugacy results for subalgebras in type II; factors.
The first one, Theorem A.1l, plays a key role in the proof of 6.2. The start-
ing point in its proof is the following simple observation: If By, B are finite
von Neumann algebras for which there exists a By — B Hilbert bimodule H
with dimHp < oo then a suitable reduction algebra of By is isomorphic to a
subalgebra of some reduced of B. In the context of C*-algebras, this is reminis-
cent of the fact that imprimitivity bimodules entail Morita equivalence. In the
von Neumann context, if both By, B are subalgebras in some finite factor M
then existence of Hilbert By — B bimodules H C L?(M, 1) with dimHp < oo
amounts to existence of finite projections in Bj N (M, B) ((M, B) being the
basic construction algebra) and the corresponding isomorphism of By into B
is implemented by an element in M.

The basic construction was first used in conjugacy problems by
Christensen ([Chr]), to study “small perturbations” of subalgebras of type
II; factors. Although in A.1 we deal with conjugacy of subalgebras for which
no “small distance” assumption is made, we still use the basic construction
as a set-up for the proof. This framework allows us to use a trick inspired
from [Chr|, and then to utilize techniques from “subfactor theory”, notably
the pull down identity ([PiPo], [P02,3]). We also use von Neumann algebra
analysis of projections, with repeated use of results from [K2]. For notation
and elementary properties of the basic construction, see Section 1.3 and [J1],
[PiPo], [Po2,3].

To state A.1, let M be a finite factor, B C M a von Neumann subalgebra
and Uy C M be a subgroup of unitary elements. Let By = U}/ be the von
Neumann algebra it generates in M. For each b € (M, B), Tr(b*b) < oo, we
denote by Ky, (b) the weak closure of the convex hull of {upbug | uo € Uo},
i.e., Ky, (b) =co"{upbug | up € Up}. Note that Ky, (b) is also contained in the
Hilbert space L%((M, B), Tr), where it is still weakly closed.

Let h = hy, (b) € Ky, (b) be the unique element of minimal norm || ||2 v in
Ky, (b). Since uKy, (b)u* = Ky, (b) and ||uhu*||2 1 = [|h|2,1r, Vu € Uy, by the
uniqueness of h it follows that whu* = h,Vu € Uy. Thus h € Uy N (M, B) =
B{, N (M,B). Moreover, by the definitions, we see that if 0 < b < 1 then
0 <k <1and Tr(k) < Tr(b), for all k € Ky, (b).

A.1. THEOREM. Let M, B, By,Uy be as above. Assume the von Neumann
subalgebra B C M is maximal abelian in M and By is abelian with BgldéfB{)ﬂM
still abelian (thus mazximal abelian in M). Then the following conditions are

equivalent:

1°. There exists a nonzero projection ey € B{ N (M, B) with Tr(ep) < oc.
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2°. There exist nonzero projections qo € By, N M, g € B and a partial
isometry v € M such that v*v = qo,vv* = q and vByv* C Byg.

Proof. 2° = 1°. If v satisfies condition 3° then Byqqy is contained in
v*Bv. Since eg commutes with B, it follows that ey = v*epv commutes with
By, i.e., eg € BN (M, B). Also, Treg = Tr(v*epv) < Tr(eg) = 1.

1° = 2°. Denote M; = (M, B). Since Byey is abelian, it is contained in
a maximal abelian subalgebra By of egMjeq. Since My = (JBJ) N B(L*M),
it is a type I von Neumann algebra. Thus, by a result of Kadison ([K2]), B;
contains a nonzero abelian projection ey of M; (i.e., e;Mie; is abelian). Since
ep is a maximal abelian projection in M; and has central support 1 in M, it
follows that ep majorizes e;. Thus, e satisfies e;(L?(M, 7)) = £B for some
e L*(M,T).

Let V € M be a partial isometry such that V*V =e; < epand VV* < ep.
It follows that V Bie1V* is a subalgebra of eg Miep = Bepg. Since e; commutes
with By, if we denote by f’ the maximal projection in By such that f'e; =0
and let fo =1 — f’, then there exists a unique isomorphism « from By fy into
B such that a(b)egp = VbV*,Vb € By fo. Let f = a(fy) € B.

Then «a(b)egV = epVb,Vb € Byfy. By applying ® to both sides and
denoting a the square integrable operator a = ®(egV) € L?*(M,7), we see
that a(b)a = ab,Vb € By. Since epa = egV =V, it follows that a # 0.

By the usual trick, if we denote by vg € M the unique partial isometry in
the polar decomposition of a such that the right supports of @ and vy coincide,
then pp = vjvy belongs to the algebra B N M = By, which is abelian by
hypothesis, p = vov§ belongs to (a(By) f)' N fM f and a(b)vyg = vob, Vb € By fo.

But By; = B)N M maximal abelian in M implies By fy maximal abelian
in foM fo. Moreover, since vgBovg = a(Bo)p, if we denote B1; = voBovg,
then by spatiality,

B11 :’U()B(HUS = Uo(B(l) N M)US = UoBoUS, NpMp
= (a(Bo)p)' N pMp = p((a(Bo)f)' N fM f)p.

This implies that p is an abelian projection in (a(Byg)f) N fM f. Thus, if 2
is the central projection of p in (a(By)f) N fMf then ((a(Bo)f) N fMf)z =
((a(Bo)z)' N zMz is finite of type I
Since Bf is maximal abelian in fM f it follows that z € Bf and Bz
is maximal abelian in the type I, algebra ((a(Bp)z)' N zMz. By [K2], there
exists a projection f1; € Bz such that f11 is equivalent to p in (a(By)z)' NzM z.
Let v; € (a(Bo)z)' N zMz be such that v1v] = fi1, vjv; = p and denote v =
v1vg € M. Then v*v = py € B{,vv* = f11 € B and vByv* = «(By) fi1 C Bfi1.
O

Our second conjugacy result, A.2, is a “small perturbation”-type result,
needed in the proofs of 4.5 and 6.6.3°. The starting point in its proof is a trick
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from [Chr]. Then, as in A.1, we use techniques from [P02,3,7], [PiPo]. Note
that the proof of Step 1 below is a refinement of the proof of 4.4.2 in [Pol],
while the proof of Step 2 is a refinement of an argument used in proving 4.5.1,
4.5.6 and 4.7.3 in [Pol].

A.2. THEOREM. For any €9 > 0 there exists § > 0 such that of M is
a type 11y factor, B C M is a subfactor with BP0 M = C, By C M 1is a von
Neumann subalgebra with ByN M = Z(By), Nar(Bo)” = M and By Cs B then
there exists a unitary element w € M such that ||u—1||2 < &¢ and uBou* C B.

Proof. Step 1. Let ¢ = 5%/4. We first prove that 36 > 0 such that if
By, B C M satisfy BynM = Z(By) and By Cs B then 3pg € P(By),p € P(B),
a unital isomorphism 6 of pyBopg into pBp, a projection q € 6(poBopo)' NpMp
and a partial isometry v € M such that v*v = pg,vv* = q < p, |[v — 1|2 < ¢,
7(q) > 1 — e and vby = 0(bo)v, Vby € poBopo.

To do this note first that if ug € U(Bp) then ||upepul — eB||%’Tr/2 =
1—Tr(egupepel) = ||uo — Ep(uo)|3 (see e.g., line 17 on page 322 in [Po9]). So
if |lup — Ep(uo)|l2 < 9, Yug € Uy = U(By), then with the notation in A.1 we get
h = hy,(eg) € Byn (M, B), with h < 1, Tr(h) < 1 and ||h — eg|am < 2/26.
Thus, by (1.1 in [C2]) there exists s > 0 such that the spectral projection e
of h corresponding to the interval [s, c0) satisfies [|e — eg|lam < (26)'/2. Note
that e € ByN (M, B) as well. We next want to show that by slightly shrinking
e we may assume in addition (Bpe)' Ne(M, B)e = Z(By)e.

So let uw € U(C), where C' = (Bge)' N e(M, B)e. Since eg(M, B)eg =
Bepg and e is (25)1/2—close to ep in the norm || |21, if we denote by b the
unique element in B with beg = epuep, then w is close to ebe in the norm
| [l24» implemented by the normalized trace tr = Tr(e)™'Tr on e(M, B)e.
This implies that ||[ebe,v]||24 < €(0), Yv € U(Boe), in which £(d) denotes
from now on a constant depending on J, with %%5(5) = 0 (but £(d) possibly

changing in each of the subsequent estimates). Since By N M = Z(By), if we
average ebe by unitaries in Bye, we see that u is €(d)-close to an element in
Z(Bo)e. Thus C' C.5) Ao, where Ag = Z(Bp)e. Noticing that Ay C Z(C),
we infer that this implies 3¢’ € Z(C), with tr(e’) > 1 — &(d) and Ce’ = Age’;
ie., (Boe) Ne(M,B)e = Z(Byg)e. Indeed, for if ¢ € Z(C) is the maximal
projection with C¢’ abelian and A C C' is a maximal abelian *-subalgebra
with Ag C A then ¢’ € A and there exists u € U(B(1 — ¢')) with E4(u) = 0.
Since ¢ + u € U(C') we have:

tr(1 —¢) = ul3 = (@ +u) = Bald + )3
<|(d" +u) = Bay(d + w3 < e(8)*

This reduces the problem to the case C' is abelian, which is an easy exercise
(e.g., use the argument on page 745 in [Po7]).
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Taking ¢’ for e in the above, this shows that if By Cs B then Jde €
B{N (M, B) finite projection with ||e —eg||2 1 < €(d) and (Boe)' Ne(M, B)e =
Z(Bp)e. But by ([Po6]) the latter condition implies there exists A; C By
abelian such that Aje is maximal abelian in e(M, B)e. By [K2] there exists a
projection P € A; = Aje such that P is equivalent to the support projection
of eege € e(M, B)e. In particular, P is majorized by eg. Also, P, e and ep are
g(9)-close one to another. By 1.2 in [C2], there exists a partial isometry V €
(M, B) such that V is e(d)-close to ep, V*V = P € A; C B} and VV* < ep.
As in [Chr] and in the proof of A.1, if pg € By and p € B denote the support
projections of V*V in By and respectively VV™* in B then there exists a unital
isomorphism € of pyBypg into pBp such that Vby = 0(bo)V, Vby € poBopo. If we
now take the partial isometry v = ®(V)|®(V)|~! € M, then we still have vby =
6(bo)v, Vby € poBopo and v is £(d)-close to 1 (using ||®(V)—1|1 < [|[V —epl1,m
and applying 2.1 in [C2]). Since v*v € (poBopo) N poMpy = Z(By)pog and
vv* € 0(poBopo)’ N pMp, letting ¢ = vv*, we are done.

Step 2. If po,p,q,v,0 are as in Step 1, then vByv* = 0(poBopo)q, so by
spatiality we have:

q(0(poBopo)' N pMp)q = (vBov*)' N qMgq
=v(poBopy N poMpo)v* = vZ(Bo)v* = Z(6(poBopo))q-

In particular, ¢(6(poBopo)’ N pBp)q = Z(8(poBopo))g. Since Z(0(poBopo)) C
0(poBopo)' N pBp this implies that there exists a normal conditional expecta-
tion E of 6(poBopo)' N pBp onto Z(6(poBopo)) such that qrqg = E(x)q,Vx €
0(poBopo)’ N pBp.

Let p’ € 0(poBopo)' NpBp be the minimal projection such that gp’ = ¢q. By
replacing if necessary 6 by ()¢’ (while leaving v unchanged), we may assume
p = p. Thus, if a € 6(poBopo) N pBp satisfies ag = 0 then the support of
a*a is majorized by p — p’ = 0, implying that ¢ = 0 and showing that E is
faithful. Since ¢ implements the normal faithful conditional expectation F
of O(poBopo)' N pBp onto Z(0(poBopo)), the weak closure of sp{zqy | z,y €
0(poBopo)' N pBp} is a finite von Neumann subalgebra @ of pMp with ¢Qq ~
Z(0(poBopo)). Since ¢ has support 1 in @, this shows that @ is type Ig,. But
@ contains (6(poBopo)’ N pBp)lg, which is isomorphic to 6(poBopo) N pBp.
Thus, the latter follows type I, as well.

Let ¢’ € Z(6(poBopo))(C Z(6(poBopo)' NpBp)) be the maximal projection
with

q'Z(6(poBopo)) = ¢'(6(poBopo)’ N pBp).
It follows that there exists b € L?(6(poBopo)’ N pBp)(p — ¢') with E(b) = 0

and E(b*b) = p — ¢’ (see e.g., [Po2]). This shows that bgb* is a projection
orthogonal to ¢(p — ¢') and equivalent to ¢(p — ¢’), while still under p — ¢'.
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Thus

m(q(p—¢') =71(bg(p — ¢)0*) < T7(A1—q)(p—¢') <7(1 —¢q) <e.

Thus, 1 — e — 7(¢) < 7(p — ¢) < 2¢, implying that 7(¢’) > 1 — 3e. This
shows that by “cutting everything” by ¢ we may assume 6(poBopo)’ N pBp =
Z(0(poBopo))-

Since By is regular in M, poBopo is regular in pgMpg (see e.g. [JPo]) and
thus, by spatiality, 6(poBopo)q is regular in ¢Mgq. Since 6(poBopo) 2 b — bg €
0(poBopo)q is an isomorphism, for each u € Nyaq(6(poBopo)gq) there exists
an automorphism o, of 6(pgBopg) such that ubqu* = o4(b)q, Vb € 6(poBopo)-
Thus, ub = o, (b)u, Vb € 0(poBopo)-

By applying Ep to both sides of this equality, it follows that Ep(u)b =
ou(b)Ep(u),Vb € 6(poBopo). By also taking into account that 6(pgBopg) N
pBp C 0(poBopop), we see that if By C pBp denotes the von Neumann algebra
generated by the normalizer of §(poBopo) in pBp then E(Ngarq(0(poBopo)q) C
Bj. By the regularity of 0(poBopo)g in ¢Mgq, this entails Eg(¢gMq) C B as
well. Since ¢ < p and 7(q) > 1—¢, we thus have pBp C. By C pBp. Since pBp
is a factor, this implies there exists a projection p” € Z(By) with 7(p”) > 1—2¢
such that B1p” = p" Bp".

By cutting with p” we may thus also assume 6(pyBopo) is regular in
pBp. Since pBp' N pMp = Cp, this implies N7 = N,p,(0(poBopo)) satis-
fies N{ N pMp = Cp. Since N; also normalizes the algebras Z(6(poBopo)) =
6(poBopo)' N pBp and 6(poBopo)' N pMp, it acts ergodically on both. By er-
godicity, 0(poBopo)’ N pMp is either homogeneous of type Ig, or of type II;.
Since q(0(poBopo)' NpMp)q = Z(0(poBopo))q is abelian and 7(q) > 1/2 (for ¢
chosen sufficiently small), 6(poBopo)’ N pMp is abelian.

Denote Ag = Z(0(poBopo)), A1 = 0(poBopo)’ N pMp, No = pBp and Qo
the factor generated by N7 and A; in pMp. Thus, we have NN Qo = C and
the nondegenerate commuting square

No C Qo
U @]
Ay C A

(Recall that we also have ¢ € A1, A1g = Apg and 7(¢) > 1 —¢.)

Thus, if e = e%z denotes the Jones projection corresponding to the inclu-
sion Ny C Qo then Ay C Ay C (Aj,e) is the basic construction for Ay C Aj;.
Since Z({A1,€)) = Ag and since N7 acts on Ay C Ay with the action on Ay be-
ing ergodic, it follows that (A1, e) is homogeneous of type I. But q(A1eAq)q =
Ap(geq)Ap, and since [Ag,geq] = 0 this implies ¢(A;1,e)qg = Apgeq. Thus,
q(Aj,e)q is abelian. Equivalently, ¢ is an abelian projection in (Aq,e). But
then ¢ is majorised by e in (A1, e). Thus ¢ is majorised by e in (Qo, e) as well,
showing that ¢ is finite in (Qo,e).
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But g enters finitely many times in 1¢, in the factor Q)g, which is a subal-
gebra of (Qo, e). Thus (Qo, e) is a finite factor and 7(e) > 7(¢) > 1 —¢ > 1/2.
By Jones’ theorem, e = 1 and Ny = Qo. In particular, ¢ € 6(poBopo), so that
q = p. Thus, v*v = pg € By, vv* = p € B and v(pgBopo)v* C pBp. Since the
normalizer of By acts ergodically on the center of By and B is a factor, there
exists a unitary element u € M such that upy = v and uByu* C B. But then
11— ulla < 11— vlla + v —ulls < 22 = . O

Our last conjugacy result, somewhat technical, is needed in the proof of
4.3.2°.

A.3. THEOREM. Let M be a type 11y factor and P,Q C M wvon Neumann
subalgebras. Assume there exists a group of unitary elements Uy C P that
normalizes Q and satisfies Ny N M = Z(Ny) and [Z2(Ny), Q] = 0, where Ny =
Uj. If Q Cg, P, for some gy < 1/2, then there exists a nonzero projection
p € Z(Ny) such that Qp C P.

Proof. Let M C®? (M, ep) be the basic construction for P C M, with Tr
and ® the canonical trace and weight, respectively, as in 1.3.1. The statement
is equivalent to proving that there exists p € Q' N Z(Ny), p # 0, such that
[@p,ep] = 0.

Let k be the unique element of minimal norm || ||2, 1y in K = c6”{uepu* |
u € U(Q)}. Note that 0 < k < 1,Tr(k) < 1. Also, since for u € U(Q) we have

lep — uepu*|3 1 =2 = 2| Ep(u) |3 = 2|lu — Ep(u)|3 < 25,

by taking convex combinations and weak limits ||k — e pH%m <263 < 1/2.

Since uKu* = K and |Juku*|2mr = [|k||2,1r, Yu € U(Q), by the uniqueness
of k as the element of minimal norm | |j21 in K, it follows that uku* =
k,Yu € U(Q). Thus [k, Q] = 0. Moreover, if v € Uy C P then [v,ep] = 0 and
vQu* = @, implying that v(uepu*)v* = (vuv*)ep(vu*v*) C K, Yu € U(Q).
Thus, vKv* = K and so, by the uniqueness of k, [k, v] = 0. Since Uy generates
Ny, it follows that k and all its spectral projections commute with both @ and
No=U].

Together with [ep, Ng] = 0 this yields [kep, No] = 0 and further on, by
applying the operator valued weight ® of (M, ep) on M (which is M-bimodular,
thus Np-bimodular as well) and letting a = ®(kep), we see that [a, Ng] = 0.
Equivalently, a € N) N M = Z(Np). Since Z(Ny) C No C P, a € P and so
[a,ep] = 0. Together with aep = kep, this entails aep = epaep = epkep > 0,
and so a > 0. In particular, a = a*. Thus, kep = aep = (aep)* = (kep)* =
epk, showing that [k,ep] = 0.

Let now e; be the spectral projection of k corresponding to the set {1}.
Thus e; = e1k € c0¥{u(erep)u* | u € Up}, showing that e; < ep. Thus, if
p = ®(e1) then p is a projection in P with e; = pep, [p,@ V No] = 0 and
[ep, @p] = 0. Thus, we are done, provided we can show that p # 0.
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Assume by contradiction that e; = 0. We show that this implies that
for any spectral projection e of k, eep is majorized by e(1 — ep) in (M, ep).
Indeed, for if this is not the case then there exists a projection z in Z((M, ep))
and a partial isometry w € (M, ep) such that w*w < zeep, ww* = ze(1 —ep).
If we denote b = ®(w), then bep = w and so

bb* = (ww*) = ®(ze(l —ep)) € NNN M = Q' N Z(Ny).

Similarly, ¢ = ®(ezep) is a projection in P which commutes with Ny, thus
lying in Z(Ny) C P. Since bb* > bepb* = ze(l — ep) and the morphism
Z(No) > = +— zze(1 — ep) has support ¢ (because e; = 0), it follows that
bb* > q. Thus

7(q) = Tr(zeep) = Tr(ww) = Tr(ww®) = 7(bb*) = 7(q),
a contradiction.
In particular, since eep < e(1 — ep) for any spectral projection e of k, we
have ||k(1 —ep)|l2m > ||kep|l2 . By Pythagoras, this gives
T((1=k)*) +7(k%) < [[kep — ep|3m + k(L = ep)l3 1 = |k —ep|3m < 1/2.

Thus 0 > 7(2(1 — k)% 4 2k? — 1) = 7(1 — 4k + 4k?) = 7((1 — 2k)?). This final
contradiction ends the proof of the theorem. O
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