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The number of extensions of a number field
with fixed degree and bounded discriminant

By Jordan S. Ellenberg and Akshay Venkatesh*

Abstract

We give an upper bound on the number of extensions of a fixed number
field of prescribed degree and discriminant ≤ X; these bounds improve on work
of Schmidt. We also prove various related results, such as lower bounds for the
number of extensions and upper bounds for Galois extensions.

1. Introduction

Let K be a number field, and let NK,n(X) be the number of number
fields L (always considered up to K-isomorphism) such that [L : K] = n and
NK

Q DL/K < X. Here DL/K is the relative discriminant of L/K, and NK
Q is

the norm on ideals of K, valued in positive integers. DL = |DL/Q| will refer to
discriminant over Q.

A folk conjecture, possibly due to Linnik, asserts that

NK,n(X) ∼ cK,nX (n fixed, X → ∞).

This conjecture is trivial when n = 2; it has been proved for n = 3 by
Davenport and Heilbronn [7] in case K = Q, and by Datskovsky and Wright in
general [6]; and for n = 4, 5 and K = Q by Bhargava [3], [2]. A weaker version
of the conjecture for n = 5 was also recently established by Kable and Yukie
[11]. These beautiful results are proved by methods which seem not to extend
to higher n. The best upper bound for general n is due to Schmidt [18], who
showed

NK,n(X) � X(n+2)/4

where the implied constant depends on K and n. We refer to [4] for a survey
of results.

In many cases, it is easy to show that NK,n(X) is bounded below by a
constant multiple of X; for instance, if n is even, simply consider the set of
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quadratic extensions of a fixed L0/K of degree n/2. For the study of lower
bounds it is therefore more interesting to study the number of number fields L

such that [L : K] = n, NK
Q DL/K < X and the Galois closure of L has Galois

group Sn over K. Denote this number by N ′
K,n(X). Malle showed [14, Prop.

6.2] that

N ′
Q,n(X) > c′nX1/n

for some constant c′n.
The main result of this paper is to improve these bounds, with particular

attention to the “large n limit.” The upper bound lies much deeper than the
lower bound.

Throughout this paper we will use � and � where the implicit constant
depends on n; we will not make this n-dependency explicit (but see our ap-
pendix to [1] for results in this direction).

Theorem 1.1. For all n > 2 and all number fields K, we have

NK,n(X) � (XDn
KA[K:Q]

n )exp(C
√

log n)

where An is a constant depending only on n, and C is an absolute constant.
Further,

X1/2+1/n2 �K N ′
K,n(X).

In particular, for all ε > 0

lim sup
X→∞

log NK,n(X)
log X

�ε nε, lim inf
X→∞

log N ′
K,n(X)

log X
≥ 1

2
+

1
n2

.(1.1)

Linnik’s conjecture claims that the limit in (1.1) is equal to 1; thus, despite its
evident imprecision, the upper bound in Theorem 1.1 seems to offer the first
serious evidence towards this conjecture for large n. It is also worth observing
that de Jong and Katz [9] have studied a problem of a related nature where
the number field K is replaced by the function field Fq(T ); even here, where
much stronger geometric techniques are available, they obtain an exponent of
the nature c log(n); a proof of this bound can be found in [8, Lemma 2.4]. This
suggests that replacing nε in (1.1) by a constant will be rather difficult.

We will also prove various related results on the number of number fields
with certain Galois-theoretic properties. For instance, if G≤Sn, let NK,n(X;G)
be the number of number fields L such that [L : K] = n, NK

Q DL/K < X, and
the action of Gal(K̄/K) on embeddings K ↪→ C is conjugate to the G-action
on {1, . . . , n}. We describe how one can obtain upper bounds on NK,n(X;G)
using the invariant theory of G. A typical example is:

Proposition 1.2. Let G ≤ S6 be a permutation group whose action is
conjugate to the PSL2(F5)-action on P1(F5). Then NQ,6(X;G) �ε X8/5+ε.
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Specializing further, let NK,n(X; Gal) be the number of Galois extensions
among those counted by NK,n(X); we prove the following upper bound.

Proposition 1.3. For each n > 4, one has NK,n(X; Gal) �K,n,ε X3/8+ε.

In combination with the lower bound in Theorem 1.1, this shows that if
one orders the number fields of fixed degree over Q by discriminant, a random
one is not Galois.

Although we will use certain ad hoc tools, the central idea will always
be to count fields by counting integral points on certain associated varieties,
which are related to the invariant theory of the Galois group. These varieties
must be well-chosen to obtain good bounds. In fact, the varieties we use are
birational to the Hilbert scheme of r points in Pn, suggesting the importance
of a closer study of the distribution of rational points on these Hilbert schemes.

The results can perhaps be improved using certain techniques from the
study of integral points, such as the result of Bombieri-Pila [15]. However,
the proof of Theorem 1.1 turns out, somewhat surprisingly, to require only
elementary arguments from the geometry of numbers and linear algebra.

Acknowledgments. The authors are grateful for the hospitality of the
American Institute of Mathematics, where the first phase of this work was
undertaken. We also thank Hendrik Lenstra for useful comments on an earlier
draft.

2. Proof of upper bound

The main idea of Schmidt’s proof is as follows: by Minkowski’s theorem,
an extension L/K contains an integer α whose archimedean valuations are all
bounded by a function of ∆L = NK

Q DL/K . Since all the archimedean absolute
values are bounded in terms of ∆L, so are the symmetric functions of these
absolute values; in other words, α is a root of a monic polynomial in Z[x] whose
coefficients have (real) absolute value bounded in terms of ∆L. There are only
finitely many such polynomials, and counting them gives the theorem of [18].

The main idea of Theorem 1.1 is to count r-tuples of integers in L instead
of single integers.

Let An = Spec(Z[x1, x2, . . . , xn]) denote affine n-space, which we regard
as being defined over Z. We fix an algebraic closure K̄ of K. Let ρ1, . . . , ρn

be the embeddings of L into K̄. Then the map φL = ρ1 ⊕ · · · ⊕ ρn embeds OL

in K̄n = An(K̄), and the direct sum of r copies of this map is an embedding
Or

L → (K̄n)r = (An)r(K̄) (which map we also, by abuse of notation, call φL).
The affine variety (An)r is naturally coordinatized by functions

{xj,k}1≤j≤n,1≤k≤r. The symmetric group Sn acts on (An)r by permuting
x1,k, . . . , xn,k for each k. The Sn-invariants in the coordinate ring of (An)r
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are called multisymmetric functions. If f is a multisymmetric function, the
composition f ◦ φL : Or

L → K̄ takes image in OK . It follows that if R ⊂
Z[{xj,k}1≤j≤n,1≤k≤r]Sn is a subring of the ring of multisymmetric functions
and A = Spec(R), there is a map of sets

F :
⋃
L

Or
L → A(OK)

where the union is over all number fields L with [L : K] = n.
Our overall strategy can now be outlined as follows. If x is algebraic over

K, write ||x|| for the maximum of the archimedean absolute values of x. For
a positive real number Y , let B(Y ) be the set of algebraic integers x in K

with degree n over K and ||x|| < Y . Let f1, . . . , fs ∈ Z[{xj,k}1≤j≤n,1≤k≤r]Sn

be multisymmetric functions with degrees d1, . . . , ds. Put R = Z[f1, . . . , fs],
and set A = Spec(R). Then there is a constant c such that (for any Y ) one
has ||fi(φL(α1, α2, . . . , αr))|| < cY di whenever αj ∈ B(Y ) (1 ≤ j ≤ r) and the
αj all belong to some subextension L ⊂ K̄, [L : K] = n. Let A(OK)Y be the
subset of A(OK) consisting of points P such that ||fi(P )|| < cY di . Then for
any subset SY of B(Y )r, we have a diagram of sets

(2.1)
{(L, α1, α2, . . . , αr) : [L : K] = n, ∆L < X, (α1, . . . , αr) ∈ (OL)r ∩ SY } F−−−−→A(OK)Y�

{L : [L : K] = n, ∆L < X}.
The cardinality of the lower set is precisely NK,n(X). Our goal is to choose
A = Spec(R), Y, and SY in such a way that that the vertical map in (2.1)
is surjective (by Minkowski’s theorem), while the horizontal map F has finite
fibers whose cardinality we can bound. This will yield the desired bound on
NK,n(X). Since |A(OK)Y | �K (csY

∑
i di)[K:Q], it should be our aim to choose

f1, . . . , fs whose total degree is as low as possible.
We begin with a series of lemmas about polynomials over an arbitrary

characteristic-0 field F .
Let S be any test ring. We give An the structure of a ring scheme so

that the ring structure on An(S) = Sn is the natural one. Let Tr be the
map An → A1 which, on S-points, induces the map (z1, . . . , zn) ∈ Sn 
→
z1 + · · · + zn ∈ S. Given an element x = (xj,k)1≤j≤n,1≤k≤r ∈ (Sn)r, we denote
by xk ∈ Sn the k-th “row” (x1,k, x2,k, . . . , xn,k), and by x(j) ∈ Sr the j-th
“column” (xj,1, xj,2, . . . , xj,r). These correspond to maps x 
→ xk : (An)r →
An,x 
→ x(j) : (An)r → Ar.

Let σ = (i1, . . . , ir) be an element of Zr
≥0; we will think of Zr

≥0 as an
additive semigroup, operations being defined pointwise. Then σ defines a
Sn-equivariant map χσ : (An)r → An by the rule

χσ(x) = xi1
1 xi2

2 . . .xir
r .
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Here xi1
1 denotes x1 raised to the i1-th power, i.e. xi1

1 = x1 × x1 · · · · ×x1

(i times), the “multiplication” being taken with respect to ring-scheme struc-
ture on An.

In particular, Fn = An(F ) has a ring structure, and Tr, χσ induce maps on
F -points, namely Tr : Fn → F, χσ : (Fn)r → Fn; we abuse notation and use
the same symbols for these maps. The map (x, y) 
→ Tr(xy) is a nondegenerate
pairing on Fn, with respect to which we can speak of “orthogonal complement”.

Lemma 2.1. Let x ∈ (Fn)r, and let Σ0 be a subset of Zr
≥0 such that the

|Σ0| vectors χσ(x)σ∈Σ0
generate a subspace of Fn (considered as an F -vector

space) of dimension greater than n/2.
Denote by Σ1 = Σ0 + Σ0 the set of sums of two elements of Σ0. Let

W ⊂ Fn be the subspace of Fn spanned by χσ(x)σ∈Σ1
. Then the orthogonal

complement of W is contained in a coordinate hyperplane xj = 0 for some j.

Proof. Write m for |Σ0| and let v1, . . . , vm be the vectors χσ(x) as σ ranges
over Σ0. Then W is the space spanned by the products vavb (the algebra
structure on Fn being as noted above). Suppose w is orthogonal to W . Then

Tr(vavbw) = 0(2.2)

for all a, b; if V is the space spanned by the {va}, then (2.2) implies that wV

and V are orthogonal. This implies in turn that dimwV ≤ n−dimV < dimV ,
so multiplication by w is not an automorphism of Fn; in other words, w lies on
a coordinate hyperplane. A subspace of Fn contained in a union of coordinate
hyperplanes is contained in a single coordinate hyperplane; this completes the
proof.

For each σ ∈ Zr
≥0, let fσ : (An)r → A1 be the composition Tr ◦ χσ. Then

fσ is a multisymmetric function. When Σ is a subset of Zr
≥0, we denote by RΣ

the subring of functions on (An)r generated by {fσ}σ∈Σ. One has a natural
map of affine schemes

FΣ : (An)r → Spec RΣ.(2.3)

The goal of the algebro-geometric part of our argument is to show that, by
choosing Σ large enough, we can guarantee that FΣ is generically finite, and
even place some restrictions on the locus in (An)r where FΣ has positive-
dimensional fibers.

Lemma 2.2. Let x be a point of (An)r(F ), and let Σ1 be a subset of Zr
≥0

such that the |Σ1| vectors χσ(x)σ∈Σ1
span Fn as an F -vector space. For each k

between 1 and r let ek ∈ Zr
≥0 be the vector with a 1 in the k-th coordinate and

0’s elsewhere. Let Σ be a set which contains Σ1 + Σ1, and Σ1 + ek for all k.
Then the preimage F−1

Σ (FΣ(x)) ⊂ (An)r(F ) is finite, of cardinality at most
(n!)r.
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Proof. Let y be FΣ(x). Let m = |Σ1|. As in the proof of Lemma 2.1,
let v′1, . . . , v

′
m be the image of x under the {χσ}σ∈Σ1 . We may suppose by

relabeling that v′1, . . . , v
′
n form a basis for Fn (as an F -vector space). Since

Σ contains Σ1 + Σ1, the determination of y fixes Tr(v′av
′
b) for all a, b; and

since Σ contains Σ1 + ek, we also know the traces Tr(v′axk) for all a and k. It
follows that, for each k, we can represent the action of multiplication by xk

on the F -vector space spanned by v′1, . . . , v
′
n by a matrix whose coefficients are

determined by y. But such a matrix evidently determines xk up to permutation
of coordinates; this proves the desired result.

In the proof of Proposition 2.5 below, we will need to show that, by
allowing x to vary over certain subspaces of (Fn)r, we can ensure that x can
be chosen in order to verify the hypothesis of Lemma 2.1.

Lemma 2.3. Let V be a F -subspace of Fn of dimension m, and let Σ0 ⊂
Zr
≥0 be a subset of size m. Let Z ⊂ V r be the subset of points x ∈ V r such that

the m vectors χσ(x)σ∈Σ0 are not linearly independent (over F ) in Fn. Then
Z is not the whole of V r. If one identifies V r with Fmr, Z is contained in
the F -points of a hypersurface, defined over F , whose degree is bounded by a
constant depending only on n and Σ0.

Proof. We may assume (by permuting coordinates) that the map “projec-
tion onto the first m coordinates,” which we denote π : Fn → Fm, induces an
isomorphism V ∼= Fm. Suppose there is a nontrivial linear relation∑

σ∈Σ

cσχσ(x) = 0 ∈ Fn,(2.4)

that is, suppose x ∈ Z. Each σ ∈ Σ0 also defines a map F r → F (derived from
the map χσ : (An)r → An with n = 1) so we may speak of χσ(x(j)) ∈ F for
1 ≤ j ≤ n. By abuse of notation we also use π to denote the projection of (Fn)r

onto (Fm)r. Then the restriction of π to V r is an isomorphism V r ∼= Fmr.
Any nontrivial linear relation between the χσ(x) yields a nontrivial rela-

tion between the m vectors χσ(π(x)) in Fm. This in turn implies vanishing of
the determinant

D =

∣∣∣∣∣∣∣
χσ1(x(1)) · · · χσ1(x(m))

...
...

χσm
(x(1)) · · · χσm

(x(m))

∣∣∣∣∣∣∣ .

The contribution of each m × m permutation matrix to D is a distinct
monomial in the mr variables, so D is not identically 0 in F [x1,1, . . . , xm,r].
Evidently the degree of D is bounded in terms of n and Σ0. Let V (D) be the
vanishing locus of D in (Fm)r. Now the locus in Z is contained in π−1(V (D)),
which yields the desired result.
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Finally, we need a straightforward fact about points of low height on the
complements of hypersurfaces.

Lemma 2.4. Let f be a polynomial of degree d in variables x1, . . . , xn.
Then there exist integers a1, . . . , an such that max1≤i≤n |ai| ≤ (1/2)(d+1) and
f(a1, . . . , an) �= 0.

Proof. There are at most d hyperplanes on which f vanishes, which means
that the function g(x2, . . . , xn) := f(a1, x2, . . . , xn) is not identically 0 for some
a1 with absolute value at most (1/2)(d + 1). Now proceed by induction on n.

Now we are ready for the key point in the proof of Theorem 1.1. The
point is to use the lemmas above to construct Σ which is small enough that
Spec RΣ has few rational points of small height, but which is large enough so
that FΣ does not have too many positive-dimensional fibers.

Proposition 2.5. Let Σ0 be a subset of Zr
≥0 of size m > n/2; let Σ1 ⊂

Zr
≥0 contain Σ0 + Σ0; and let Σ ⊂ Zr

≥0 contain Σ1 + Σ1 and Σ1 + ek for all k.
Let L be a finite extension of K with [L : K] = n. Then there is an r-tuple

(α1, . . . , αr) ∈ Or
L such that

• For every k,

||αk|| �Σ D1/d(n−2)
L ,

where d = [K : Q].

• The set F−1
Σ (FΣ((φL(α1, . . . , αr)))) ⊂ (An)r(K̄) has cardinality at most

(n!)r.

• The elements α1, . . . , αr generate the field extension L/K.

Proof. First of all, note that if (α1, . . . , αr),Σ0,Σ1,Σ satisfy the conditions
above, then so do (α1, . . . , αr),Σ′

0,Σ1,Σ for any subset Σ′
0 ⊂ Σ0 with |Σ′

0| >

n/2. So it suffices to prove the theorem in case n/2 < m ≤ (n/2 + 1).
Let 1 = β1, . . . , βnd be a Q-linearly independent set of integers in OL

such that ||βi|| is the i-th successive minimum of || · || on OL, in the sense
of Minkowski’s second theorem [20, III, §3]. The K-vector space spanned by
β1, . . . , βmd has K-dimension at least m, so we may choose γ1, . . . , γm among
the βi which are linearly independent over K.

Let V ⊂ K̄n be the K̄-vector space spanned by {φL(γi)}1≤i≤m. Then by
Lemma 2.3 there is a constant Cn,Σ0 and a hypersurface Z ⊂ V r of degree
Cn,Σ0 such that, for all x not in Z(K̄), the m vectors χσ(x)σ∈Σ0

are K̄-linearly
independent in K̄n.
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For every field M strictly intermediate between K and L, we let VM ⊂ K̄n

be the K̄-vector subspace φL(M) ⊂ K̄n. Each (V ∩ VM )r is a certain linear
subspace of V r; note that, since m > n/2, no subspace VM contains V . Let Z ′

be the union of Z(K̄) with (V ∩ VM )r, as M ranges over all fields between K

and L.
Now let Y be a hypersurface of V r so that Y (K̄) contains Z ′; one may

choose Y so that the degree of Y is bounded in terms of n and Σ0. By
Lemma 2.4, there is a constant H, depending only on n and Σ0, so that, for
any lattice ι : Zmr ↪→ V r (i.e. we require ι(Zmr) spans V r over K̄) there is a
point p ∈ Zmr, with ι(p) /∈ Y (K̄), whose coordinates have absolute value at
most H.

It follows that there exists a set of mr integers c1,1, . . . , cm,r with |cj,k|
≤ H, such that

x = (φL(c1,1γ1 + · · · + cm,1γm), . . . , φL(c1,rγ1 + · · · + cm,rγm))

is not in Y (K̄). For each k between 1 and r define αk ∈ OL via

αk = c1,kγ1 + · · · + cm,kγm.

Let W ⊂ L be the K-subspace spanned by χσ(α1, . . . , αr) as σ ranges over
Σ1 (here we regard χσ as a map Lr → L, cf. remarks after (2.4)). Suppose
W is not the whole of L. Then there is a nonzero element t ∈ L such that
TrL

Ktw = 0 for all w ∈ W . It follows that φL(t) ∈ K̄ lies in the orthogonal
complement (w.r.t. the form Tr on K̄n) of φL(W ) ⊂ K̄n. But the orthogonal
complement to the K̄-span of φL(W ) is contained in a coordinate hyperplane
by Lemma 2.1. Since ρj(t) cannot be 0 for any j and any nonzero t, this is a
contradiction; we conclude that W = L, and thus that the vectors {χσ(x)}σ∈Σ1

span L as a K-vector space.
The bound on the size of the fiber F−1

Σ (FΣ(x)) follows from Lemma 2.2,
and the fact that x /∈ V r

M for any M implies that α1, . . . , αr generate the
extension L/K.

It remains to bound the archimedean absolute values of the αi. The image
of OL in OL ⊗Z R is a lattice of covolume D1/2

L , so by Minkowski’s second
theorem [20, Th. 16],

nd∏
i=1

||βi|| ≤ D1/2
L .

The ||βi|| form a nondecreasing sequence, so for m < n, we have

||βmd||(n−m)d ≤
nd∏

i=md+1

||βi|| ≤ D1/2
L .

Since m ≤ (1/2)n + 1, we get

||βi|| < (DL)1/d(n−2)
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for all i ≤ m. It follows that all archimedean absolute values of γi for i ≤ m

are bounded by a constant multiple of D1/d(n−2)
L , the implicit constant being

absolute. The result follows, since each αk is an integral linear combination of
the γi with coefficients bounded by H.

We are now ready to prove the upper bound in Theorem 1.1; what remains
is merely to make a good choice of Σ and apply Proposition 2.5. Let r and c

be positive integers such that
(
r+c
r

)
> n/2, and let Σ0 be the set of all r-tuples

of nonnegative integers with sum at most c. We shall choose r, c in the end;
but r, c,Σ0,Σ will all depend only on n, so that all constants that depend on
them in fact depend only on n.

Now take Σ to be the set of all r-tuples of nonnegative integers with sum
at most 4c, and consider the map

FΣ : (An)r → Spec RΣ.

By Proposition 2.5, to every field L with [L : K] = n we can associate an
r-tuple (α1, . . . , αr) of integers satisfying the three conditions in the statement
of the proposition. Define QL ∈ (An)r(K̄) to be φL(α1, . . . , αr), and let PL ∈
Spec RΣ(OK) be the point FΣ(QL).

By the second condition on α1, . . . , αr, there are at most (n!)r points in
F−1

Σ (PL). By the third condition, QL = QL′ only if L and L′ are isomorphic
over K. We conclude that at most (n!)r fields L are sent to the same point in
Spec RΣ(OK).

We now restrict our attention to those fields L satisfying

NK
Q DL/K < X.

In this case, for every archimedean valuation | · | of L and every k ≤ r we have
the bound

|αk| � D1/d(n−2)
L � (XDn

K)1/d(n−2).(2.5)

Now, fσ being as defined prior to (2.3), fσ(QL) is an element of OK ,
which (by choice of Σ) we can express as a polynomial of degree at most 4c

(and absolutely bounded coefficients) in the numbers ρj(αk) ∈ K̄. If | · | is any
archimedean absolute value on K, we can extend | · | to a archimedean absolute
value on L, and by (2.5) we have

|fσ(QL)| � (XDn
K)4c/d(n−2).

The number of elements of OK with archimedean absolute values at most
B is ≤ (2B + 1)d. (For large enough B, one can save an extra factor of
D1/2

K ; this is not necessary for our purpose.) In view of the above equation,
the number of possibilities for fσ(QL) is � (XDn

KAd
n)4c/(n−2) where An is a

constant depending only on n.



732 JORDAN S. ELLENBERG AND AKSHAY VENKATESH

Now the point PL ∈ Spec RΣ(OK) is determined by fσ(QL) (σ ∈ Σ)
and we have |Σ| =

(
r+4c

r

)
. The number of possibilities for PL is therefore

� (XDn
KAd

n)(4c/(n−2))(r+4c

r ).
Since each number field L contributes a point to this count, and since no

point is counted more than (n!)r times, we have

NK,n(X) � (XDn
KAd

n)(4c/(n−2))(r+4c

r ).(2.6)

Now is a suitable time to optimize r and c. We may assume n ≥ 3. Take
r to be the greatest integer ≤

√
log(n), and choose c to be the least integer

≥ (nr!)1/r. Note that c ≥ n1/r ≥ e
√

log(n) ≥ er ≥ r and c ≤ 2(nr!)1/r. Then(
r+c
r

)
> cr/r! ≥ n whereas

(
r+4c

r

)
≤

(
5c
r

)
≤ (5c)r

r! ≤ 10rn. Substituting these
values of r, c into (2.6) yields the upper bound of Theorem 1.1.

In the language of the beginning of this section, we have taken A to
be Spec RΣ and the map F to be FΣ. The set SY can be taken to be the
set of r-tuples of integers α1, . . . , αr so that αj ∈ B(Y )(1 ≤ j ≤ r), and
so that there exists a subextension L ⊂ K, [L : K] = n with αj ∈ L and
such that φL(α1, . . . , αr) ∈ V r − Z ′ (notation of proof of Proposition 2.5).
Minkowski’s theorem guarantees that each number field L contains an r-tuple
of integers in SY for some reasonably small Y , while the lemmas leading up
to Proposition 2.5 show that the fibers of F containing a point of SY have
cardinality at most (n!)r.

Another way to think of the method is as follows: we can factor FΣ as

(An)r → X = (An)r/Sn → A = SpecRΣ

where the intervening quotient is just the affine scheme associated to the ring
of multisymmetric functions. Every r-tuple of integers in OL corresponds to
an integral point of X; however, the fact that X fails to embed naturally in
a low-dimensional affine space makes it difficult to count points of X(Z) with
bounded height. The method used here identifies a locus W ⊂ X which is
contracted in the map to SpecRΣ, and shows that the map X(Z) → A(Z)
has fibers of bounded size away from W ; this gives an upper bound on the
number of integral points on X\W of bounded height. One might ask whether
the estimates on rational points of bounded height predicted by the Batyrev-
Manin conjecture could be applied to X. Any such prediction would lead to a
refinement of our upper bound on the number of number fields.

2.1. Improvements, invariant theory, and the large sieve.

Remark 2.6. The method we have used above may be optimized in various
ways: by utilizing more of the invariant theory of Sn, and by using results
about counting integral points on varieties. These techniques may be used,
for any fixed n, to improve the exponent in the upper bound of Theorem 1.1.
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(The invariant theory, however, becomes more computationally demanding as
n increases.) However, they do not change the limiting behavior as n → ∞.
We have therefore chosen to present a different example of this optimization:
giving good bounds on NK,n(X;G) for G �= Sn. For simplicity of exposition
we take K = Q.

Example 2.7. Let G = 〈(1, 6, 2)(3, 4, 5), (5, 6)(3, 4)〉; it is a primitive per-
mutation group on {1, 2, 3, 4, 5, 6} whose action is conjugate to the action of
PSL2(F5) on P1(F5).

We will show NQ,6(X;G) �ε X8/5+ε, a considerable improvement over
Schmidt’s bound of X2 (over which, in turn, Theorem 1.1 presents no im-
provement for n = 6).

Let G act on monomials x1, x2, . . . , x6 by permutation of the indices. Set
fi =

∑6
j=1 xi

j for 1 ≤ i ≤ 5, and f6 = x1x2(x3+x4)+x1x3x5+x1x4x6+x1x5x6+
x2x3x6 + x2x4x5 + x2x5x6 + x3x4(x5 + x6). Set A = C[f1, f2, . . . , f6]. Then
R = C[x1, . . . , x6]G is a free A-module of degree 6; indeed R = ⊕6

i=1A · gi,
where g1 = 1 and g2, g3, . . . , g6 can be chosen to be homogeneous of degree
5, 6, 6, 7, 12. (This data was obtained with the commands InvariantRing,
PrimaryInvariants, and SecondaryInvariants in Magma.) One checks that
R = R/f1R is an integral domain.

Let S be the subring of R generated by f2, . . . , f6 and g2, and let Z =
Spec(S). S is an integral domain since R is; thus Z is irreducible. The map
C[f2, f3, f4, f5, f6] → S induces a finite projection Z

Π→ A5 (it is finite since R

is finite over A, so R is finite over C[f2, f3, . . . , f6]). Also g2 /∈ C[f2, . . . , f6], as
follows from the fact that R = ⊕6

i=1Agi; thus the degree of Π is at least 2.
Suppose L is a number field with [L : Q] = 6 with Galois group G and

DL < X. Minkowski’s theorem implies there exists x ∈ OL with TrL
Q(x) = 0

and ||x|| � X1/10; here ||x|| is defined as in the proof of Proposition 2.5. The
element x ∈ OL gives rise to a point x ∈ Z(Z) whose projection Π(x) =
(y1, y2, y3, y4, y5) ∈ Z5 satisfies:

|y1| � X2/10, |y2| � X3/10, |y3| � X4/10, |y4| � X5/10, |y5| � X3/10.(2.7)

We must count integral points on Z whose projection to A5 belong to the skew-
shaped box defined by (2.7). It is clear that the number of points on Z(Z)
projecting to the box (2.7) is at most X17/10, but applying the large sieve to the
map Z

Π→ A5 (cf. [5] or [19]) one obtains the improved bound X8/5+ε. (Note
that the results, for example in [19], are stated only for a “square” box (all
sides equal) around the origin — but indeed they apply, with uniform implicit
constant, to a square box centered at any point. Now we tile the skew box
(2.7) by square boxes of side length X2/10 to obtain the claimed result.)

One expects that one can quite considerably improve this bound given
more explicit understanding of the variety Z; ideally speaking one would like
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to slice it, show that most slices are geometrically irreducible, and apply the
Bombieri-Pila bound [15]. It is the intermediate step — showing that very
few slices have irreducible components of low degree — which is difficult. This
seems like an interesting computational question.

We remark that this particular example can also be analyzed by con-
structing an associated quintic extension (using the isomorphism of PSL2(F5)
with A5) and counting these quintic extensions. This is close in spirit to the
idea of the next section; in any case the method outlined above should work
more generally.

2.2. Counting Galois extensions. In this section, we give bounds on the
number of Galois extensions of Q with bounded discriminant. In combination
with the lower bound in Theorem 1.1 for the total number of extensions, this
yields the fact that “most number fields, counted by discriminant, are not
Galois.”

Let K be a number field of degree d over Q and G a finite group; we
denote by NK(X, G) the number of Galois extensions of K with Galois group
G such that

NK
Q DL/K < X.

Proposition 2.8. If |G| > 4, then NK(X, G) �K,G,ε X3/8+ε.

Remark 2.9. Proposition 2.8 is not meant to be sharp; our aim here is
merely to show that most fields are not Galois, so we satisfy ourselves with giv-
ing a bound smaller than X1/2. In fact, according to a conjecture of Malle [14],
NK(X, G) should be bounded between X

�

(�−1)|G| and X
�

(�−1)|G|+ε, where � is the
smallest prime divisor of |G|. This conjecture is true for all abelian groups G

by a theorem of Wright [21], and is proved for all nilpotent groups in a paper
of Klüners and Malle [13].

Remark 2.10. The proof of the proposition depends on the fact that any
finite simple group S has a proper subgroup H with |H| >

√
|S|. This may be

verified directly from the classification of finite simple groups. A much weaker
result would also suffice if we used Theorem 1.1 in place of Schmidt’s result in
the argument.

Proof. We proceed by induction on |G|. In this proof, all implicit constants
in �,� depend on K, ε and G, although we do not always explicitly note this.

Write an exact sequence

1 → H → G → Q → 1

where H is a minimal normal subgroup of G. Then H is a direct sum of copies
of some simple group [16, 3.3.15].
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Suppose that L/K is a Galois extension with GL/K
∼= G and NK

Q DL/K

< X. Fixing an isomorphism of GL/K with G, let M be the subfield of L fixed
by H. Then M/K is a Galois extension with Galois group Q and NK

Q DM/K <

X1/|H|. The number of such extensions M/K is NK(X1/|H|, Q), which by the
induction hypothesis is �Q X3/8|H|+ε in case |Q| > 4. If |Q| ≤ 4, then Q is
abelian and by Wright’s result [21] NK(X1/|H|, Q) � X1/|H|+ε.

Now take M/K to be fixed; then the number of choices for L is bounded
above by NM (X, H).

First, suppose H is not abelian. Let H0 be a proper subgroup of H that
does not contain any normal subgroups of H and is of maximal cardinality
subject to this restriction.

If L is any H-extension of M , fix an isomorphism of GL/M with H and
set L′ = LH0 ; then L is the normal closure of L′ over M . Further, DL′ ≤
(DL)1/|H0| �K (NK

Q DL/K)1/|H0|. It follows from the main theorem of [18] that
the number of possibilities for L′ (and hence the number of possibilities for L),

given M , is � X
(|H|/|H0|+2)

4|H0| , where the implicit constant is independent of M .
The group H0 can be chosen to have size at least

√
|H| (cf. [12], comments

after 5.2.7) so summing over all choices of M , we find

NK(X, G) �G X1/4+1/(2
√

|H|)+1/|H|+ε

which, since |H| ≥ 60, proves Proposition 2.8 in case H is non-abelian.
Now, suppose H is abelian; so H = (Z/pZ)r for some prime p and some

positive integer r. By [21] we may assume |Q| ≥ 2.
Let bM (Y ) be the number of H-extensions of M such that NM

Q DL/M = Y .
Let S be the set of primes of Q dividing Y , let GS(M) be the Galois group
of the maximal extension of M unramified away from primes dividing S, and
for each prime λ of M let Iλ be the inertia group at λ. Then bM (Y ) ≤
|Hom(GS(M), H)|. Moreover, the kernel of the map

Hom(GS(M), H) →
⊕
λ|S

Hom(Iλ, H)

is isomorphic to a subgroup of the r-th power of the class group of M , and as
such has cardinality �ε Dr/2+ε

M/Q , by the easy part of the Brauer-Siegel theorem.
On the other hand, the number of primes λ is � |S|, and |Hom(Iλ, H)| is
bounded by some constant C depending only on [M : Q]; so the image of the
map above has cardinality at most

(C ′)|S| �ε,K,G Y ε.

We conclude that

bM (Y ) � Dr/2+ε
M/Q Y ε.(2.8)
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Let µ be a prime of K such that µ does not divide |G|DM/K and primes
of M above µ ramify in L. Then the image of Iµ ⊂ Gal(K̄/K) in G is a cyclic
subgroup whose order is a multiple of p; it follows that (p − 1)|G|/p divides
ordµDL/K . So NM

Q DL/M lies in one of a finite set of cosets of Q∗/(Q∗)(p−1)|G|/p.
Let Σ be this union of cosets. Since the valuation of NM

Q DL/M is divisible by
(p−1)|G|

p at primes not dividing |G|NK
Q DM/K , it follows that we may take Σ so

that the number of cosets in Σ is �ε,G (NK
Q DM/K)ε.

When M is a Q-extension of K, we write N1 for NK
Q DM/K . Then

NK(X, G) ≤
∑

M :N1≤X1/|H|

∑
N2<XN

−|H|
1 ,N2∈Σ

bM (N2).

The inner sum has length �ε N ε
1 (XN

−|H|
1 )p/(p−1)|G|, which, combined

with (2.8), gives

NK(X, G)�ε

∑
M :N1≤X1/|H|

Xp/(p−1)|G|+εN
r/2−p/(p−1)|Q|+ε
1

≤ NK(X1/|H|, Q)Xp/(p−1)|G|+ε max
N1<X1/|H|

N
r/2−p/(p−1)|Q|+ε
1

= NK(X1/|H|, Q)Xα+ε

where α = max( r
2|H| ,

p
(p−1)|G|).

By the induction hypothesis, NK(X1/|H|, Q) � X3/8|H|+ε when |Q| ≥ 5,
while NK(X1/|H|, Q) is asymptotic to X1/2|H| if |Q| = 3, 4 and to X1/|H| when
|Q| = 2. Define

β(Q) =


3/8 |Q| ≥ 5;
1/2 |Q| = 3, 4;
1 |Q| = 2.

Then

NK(X1/|H|, Q)Xr/2|H| � X(r/2+β)/|H|+ε

and the exponent r/2+β
|H| is at most 3/8 unless either |H| = 2, or |Q| = 2

and |H| = 3, 4. In case |Q| = 2, |H| = 4, the group G is nilpotent and
Proposition 2.8 is proved by Klüners and Malle.

On the other hand,

NK(X1/|H|, Q)Xp/(p−1)|G| � X(p/(p−1)|Q|+β)/|H|+ε.

Here, the exponent is once again at most 3/8 unless either |H| = 2, or |Q| = 2
and |H| = 3, 4.

We have thus proven Proposition 2.8 unless G = S3 or H = Z/2Z. In
the former case, the proposition follows from the theorem of Datskovsky and
Wright [6] on the number of cubic extensions of number fields. (More precisely,
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one may count Galois S3-extensions by controlling the 3-class numbers of the
quadratic subextensions; this can be done using the results of [6].) In the
latter case, we can refine the argument above; let b′M (Y ) be the number of
quadratic extensions L/M which are preserved by the action of Q and so
that NM

Q DL/M = Y . Choosing S to consist of all divisors of Y NK
Q DM/K and

utilising the inflation-restriction sequence

Hom(GS(K), Z/2Z) → Hom(GS(M), Z/2Z)Q → H2(Q, Z/2Z)

we see that b′M (Y ) � (Y · NK
Q DM/K)ε. (Here GS(K) is defined analogously

to GS(M).) This saves a factor of N
r/2
1 throughout the rest of the argument,

and in particular we have

NK(X, G) �ε NK(X1/2, Q)X2/|G|+ε.

Since we may assume G non-nilpotent, we can take |Q| ≥ 6, which yields

NK(X, G) �ε X3/16X1/6+ε

which again yields the desired result.

3. Proof of lower bound for Sn extensions

We now turn to the (easier) question of proving the lower bounds for
N ′

K,n(X) asserted in Theorem 1.1, and finish with a brief discussion of some
related issues.

We make some preliminary remarks. Firstly, as was discussed in the in-
troduction, this question is often much easier if one is counting extensions for
G a proper subgroup of Sn (see Malle [14] for some examples). On the other
hand, the general question of lower bounds subsumes the inverse Galois prob-
lem over Q. The method we give can be generalized to G-extensions, so long
as one can construct a family of polynomials with generic Galois group G (i.e.
an element p ∈ K[t1, . . . , tk, X] such that K(t1, . . . , tn)[X]/(p) is a G-extension
of K(t1, . . . , tn); of course the bound will depend on p).

As before, let K be a fixed extension of Q of degree d. We also set
∆L = NK

Q (DL/K) and O0
L = {x ∈ OL : TrL

K(x) = 0}. In this section, we will
not aim for any uniformity in K; the implicit constants in this section will
always depend on K and n. As before, for x an algebraic number, we denote
by ||x|| the largest archimedean valuation of x.

Lemma 3.1. Let [L : K] = n be so that L/K has no proper subextensions.

Then ||x|| � ∆
1

n(n−1)d

L for all x ∈ O0
L, x �= 0.

Proof. If x ∈ O0
L, then OK [x] is a subring of OL which generates OL

as a K-vector-space, since L/K has no proper subextensions and x is not in
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K; in particular, the discriminant D(OK [x]) of OK [x] over OK is divisible by
DL/K . In particular, NK

Q (DL/K) ≤ NK
Q D(OK [x]). D(OK [x]) is the same as the

discriminant of the characteristic polynomial of x; from this, one deduces that
D(OK [x]) is a principal ideal of OK , generated by a polynomial of degree n(n−
1) in the Galois conjugates of x. In particular, one deduces NK

Q (D(OK [x])) �
||x||n(n−1)d, whence the assertion.

See Remark 3.2 for generalizations.
In the lower bound proved below, we have not aimed to optimize the

exponent 1/2+1/n2. It will be obvious from the proof that it can be improved
somewhat, both by replacing Schmidt’s upper bound with that of Theorem 1.1,
and by utilizing successive maxima and Remark 3.2 rather than just Lemma
3.1. This seems like an interesting optimization question; the gain for small n

can be significant although one does not obtain an exponent near 1.

Proof (of lower bound N ′
K,n(X) �K,n X1/2+1/n2

in Theorem 1.1). We fix
as before an algebraic closure K̄. Consider the set S(Y ) of algebraic integers
x ∈ K̄ so that [K(x) : K] = n, TrK(x)

K (x) = 0 and ||x|| ≤ Y . Let S(Y ;Sn)
be the subset of those x so that the Galois closure of K(x) over K has Galois
group Sn.

Then, by considering the characteristic polynomial, we see that |S(Y )| �
Y d(n(n+1)/2−1). Considering (the proof of) Hilbert’s irreducibility theorem, we
see that the same bound holds for S(Y ;Sn) ⊂ S(Y ):

|S(Y ;Sn)| � Y d( n(n+1)
2

−1) = Y
(n−1)(n+2)d

2 .(3.1)

Indeed one may put a congruence constraint on the characteristic polynomial
to guarantee that the Galois closure has group Sn (cf. [17]).

Suppose L is an Sn-extension of K (i.e. [L : K] = n and the Galois closure
of L/K has Galois group Sn). O0

L is a free Z-module of rank (n − 1)d; then
Lemma 3.1 guarantees that the number of x ∈ S(Y ;Sn) such that K(x) ∼= L

is � ( Y
∆

1/n(n−1)d
L

)(n−1)d; in particular if there is at least one such x, one must

have ∆L � Y n(n−1)d. Combining these comments with (3.1) we find that for
some constant c: ∑

L:∆L≤cY n(n−1)d

L/K Sn−extension

(
1

∆L

) 1
n

� Y dn(n−1)/2.(3.2)

However, Schmidt’s upper bound NK,n(X) � X(n+2)/4 easily shows that

∑
L:∆L<Y d(n−1)

[L:K]=n

(
1

∆L

) 1
n

� Y
dn(n−1)

2
−δ
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for some δ > 0; thus one can replace the range of summation in (3.2)
by Y d(n−1) < ∆L ≤ cY dn(n−1) without changing the result. In particular
N ′

K,n(cY dn(n−1)) � Y dn(n−1)( 1
2
+ 1

n2 ), which implies the result.

Remark 3.2 (Shape of number field lattices). Lemma 3.1 emphasizes the
importance of understanding the shape of number field lattices. For clarity, fix
attention on totally real number fields of degree n ≥ 3 over Q with no proper
subfields; one can formulate similar ideas in the general case.

Let L be such a number field. Then O0
L is a lattice endowed with a natural

quadratic form, namely x 
→ tr(x2); as such, it defines an element [L] of the
moduli space S of homothety classes of positive definite quadratic forms. S

can be identified with PGLn−1(Z)\PGLn−1(R)/POn−1(R). It is reasonable to
ask about the distribution of [L], as L varies, in the finite volume space S.

Hendrik Lenstra has informed us that David Terr has proven the equidis-
tribution of a closely related set in the case n = 3 in his Ph.D. thesis.

General results in this direction seem out of reach; one can at least prove,
however, mild constraints on [L] that show it does not lie too far into the
cusp. Let a1 ≤ a2 ≤ · · · ≤ an−1 be the successive minima (in the sense of
Minkowski) of O0

L. Then one has automatically a1a2 . . . an−1 �
√
DL; however,

on account of the assumption that K has no proper subfield, one further has for
1 ≤ j ≤ n − 2 that a1aj � aj+1 (indeed, were this not so, the lattice spanned
by a1, a2, . . . , aj would be stable under multiplication by a1, and so Q(a1) is
a proper subfield of L). Finally one evidently has aj � 1. Combining these
constraints gives nontrivial constraints on the ai; for example, one recovers

Lemma 3.1, and one obtains an−1 � D
1

2([
√

2n]−1)

L , where [α] is the greatest
integer ≤ α. One may use this type of result to further improve the exponents
in Theorem 1.1 for specific n.

Remark 3.3 (Alternate ways of ordering number fields). There are many
ways to order lattices of rank > 1; the ordering by volume is completely dif-
ferent than that by shortest vector.

We continue to work over the base field Q. Given a number field L, we
define s(L) = inf(||x|| : x ∈ OL, Q(x) = L). It is then immediate that, for
any C > 0, the number of number fields L with [L : Q] = n and s(L) ≤ C is
finite; indeed one may verify that s(L) is “comparable” to the discriminant:

D
1

n(n−1)

L � s(L) � D
1

2[(n−1)/2]

L .
Let Nn,s(Y ) be the number of L with [L : Q] = n and s(L) ≤ Y .

Then one may show quite easily that Y
(n−1)n

2 � Nn,s(Y ) � Y
(n−1)(n+2)

2 ; in
particular, the discrepancy between upper and lower bounds is much better
than when counting by discriminant. Further, the (approximate) asymptotic
Nn,s(Y ) � Y

(n−1)(n+2)
2 follows from Hypothesis 3.4 below, which seems very

difficult (Granville [10] and Poonen have proved versions of this — too weak
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for our purposes — using the ABC conjecture). The idea is to use Hypothesis
3.4 to construct many polynomials with square-free discriminant.

Hypothesis 3.4. Let f ∈ Z[x1, . . . , xn]. Then, if Bi is any sequence of
boxes all of whose side lengths go to infinity, one has:

lim
i

#{x ∈ Bi : f(x) squarefree}
#{x ∈ Bi}

= Cf

where Cf is an appropriate product of local densities.
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