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Abstract

After gluing foliated complex manifolds, we derive a preparation-like the-
orem for singularities of codimension-one foliations and planar vector fields (in
the real or complex setting). Without computation, we retrieve and improve
results of Levinson-Moser for functions, Dufour-Zhitomirskii for nondegenerate
codimension-one foliations (proving in turn the analyticity), Stróżyna-Żo�ladek
for non degenerate planar vector fields and Bruno-Écalle for saddle-node foli-
ations in the plane.

Introduction

We denote by (z, w) the variable of Cn+1, z = (z1, . . . , zn), for n ≥ 1.
Recall that a germ of (non-identically vanishing) holomorphic 1-form

Θ = f1(z, w)dz1 + · · · + fn(z, w)dzn + g(z, w)dw

f1, . . . , fn, g ∈ C{z, w}, defines a codimension-1 singular foliation F (regular
outside the zero-set of Θ) if, and only if, it satisfies the Frobenius integrability
condition Θ ∧ dΘ = 0. Maybe after division of coefficients of Θ by a common
factor, the zero-set of Θ has codimension-2 and the foliation F extends as a
regular foliation outside this sharp singular set.

Our main result is

Theorem 1. Let Θ and F be as above and assume that g(0, w) vanishes
at the order k ∈ N∗ at 0. Then, up to analytic change of the w-coordinate
w := φ(z, w), the foliation F is also defined by a 1-form

Θ̃ = P1(z, w)dz1 + · · · + Pn(z, w)dzn + Q(z, w)dw

for w-polynomials P1, . . . , Pn, Q ∈ C{z}[w] of degree ≤ k, Q monic.

*The preliminary version [9] of this work was written during a visit at C.R.M.
(Barcelona); we thank Marcel Nicolau and the C.R.M. for hospitality.
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In new coordinates given by Theorem 1, the singular foliation F extends
analytically along some infinite cylinder {|z| < r} × C (where C = C ∪ {∞}
stands for the Riemann sphere). To prove this theorem, we just do the con-
verse. Given a germ of foliation, we force its endless analytic continuation in
one direction by constructing it in the simplest way, gluing foliated manifolds
into a foliated C-bundle. This is done in Section 1. The huge degree of freedom
encountered during our construction can be used to preserve additional struc-
ture equipping the foliation. For instance, starting with the complexification of
a real analytic foliation, our gluing construction can be carried out preserving
the anti-holomorphic involution (z, w) �→ (z, w) so that our statement agrees
with the real setting. In the same way, if one starts with a closed meromorphic
1-form Θ, one can arrange so that Θ extends meromorphically as well along the
infinite cylinder (see Section 2) and becomes itself rational in w. In particular,
in the case Θ = df is exact, we derive a short proof of the following alternate
Preparation Theorem.

Theorem 2 (Levinson). Let f(z, w) be a germ of holomorphic function
at (0, 0) in Cn+1 and assume that f(0, w) vanishes at the order k ∈ N∗ at
w = 0. Then, up to an analytic change of coordinates, the function germ f

becomes a monic w-polynomial of degree k,

f(z, w) = wk + fk−1(z)wk−1 + · · · + f0(z),

where f0, . . . , fk−1 ∈ C{z}.

The difference from the Weierstrass Preparation Theorem lies in the fact
that the usual invertible factor term (in variables (z, w)) is normalized to 1
here; the counterpart is that a change of coordinates is needed. This result
was previously obtained by N. Levinson in [8] after an iterative procedure
and proved again by J. Moser in [15] as an example illustrating KAM fast
convergence. Similarly, we obtain that any germ of a meromorphic function is
conjugated to a quotient of Weierstrass w-polynomials (see Theorem 2.1).

For k = 1, Theorem 1 reads as follows.

Corollary 3. Let Θ and F be as in Theorem 1 and assume that the
linear part of Θ is not tangent to the radial vector field

∑n
i=1 zi∂zi

+ w∂w.
Then, there exist local analytic coordinates (z, w) in which the foliation F is
defined by

Θ̃ = df0 + wdf1 + wdw

where f0, f1 ∈ C{z} satisfy df0 ∧ df1 = 0.

Following [12], the functions fi factor into a primitive function f and the
foliation F is actually the lifting of a foliation in the plane by the holomor-
phic map Φ : (Cn+1, 0) → (C2, 0); (z, w) �→ (f(z), w). This normal form was
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obtained in [3] by J.-P. Dufour and M. Zhitomirskii after a formal change of
coordinates but the convergence was not proved.

In Theorem 1, the C-fibration is constructed simultaneously with the ex-
tension of the foliation F by gluing bifoliated manifolds. In dimension 2,
when F is defined by a vector field X, it is still possible to extend X on a
2-dimensional tubular neighborhood M of an embedded sphere C but it is
not possible to construct the C-fibration at the same time. Here, we need
the Rigidity Theorem of V. I. Savelev [17] (see also [21]): the germ of a
2-dimensional neighborhood of an embedded sphere having zero self-intersection
is a trivial C-bundle over the disc. In Section 3, we derive, for nondegenerate
singularities of vector fields

Theorem 4. Let X be a germ of an analytic vector field vanishing at the
origin of R2 (resp. of C2). Assume that its linear part is not radial, i.e. not
of the form λ(x∂x + y∂y), λ ∈ C. Then, there exist local analytic coordinates
(x, y) in which

X = (y + f(x))∂x + g(x)∂y

where f, g ∈ R{x} (resp. f, g ∈ C{x}) vanish at 0.

Denote by λ1, λ2 ∈ C the eigenvalues of the vector field X: we have
λ1 + λ2 = f ′(0) and λ1 · λ2 = −g′(0). In the case λ2 = −λ1 (including
the nilpotent case λi = 0), Theorem 4 was obtained by E. Stróżyna and
H. Żo�ladek [19]. They proved the convergence of an explicit iterative reduction
process after long and technical estimates. In the case λ2/λ1 	∈ R−, Theorem 4
becomes just useless since H. Poincaré and H. Dulac gave a unique and very
simple polynomial normal form. In the remaining case, taking into account
the invariant curve of the vector field X, we can specify our normal form as
follows (see Section 3 for a statement including nilpotent singularities).

Corollary 5. Let X be a germ of an analytic vector field in the real or
complex plane with eigenratio λ2/λ1 ∈ R−. Then, there exist local analytic
coordinates in which the vector field X takes the forms:

(1) In the saddle case λ2/λ1 ∈ R−
∗ (with λ1, λ2 ∈ R in the real case),

X = f(x + y) {(λ1x∂x + λ2y∂y) + g(x + y)(x∂x + y∂y)} .

(2) In the saddle-node case, say λ2 = 0, λ1 	= 0,

X = f(x) {(λ1x + y)∂x + g(x)y∂y} .

(3) In the real center case λ2 = −λ1 = iλ, λ ∈ R,

X = f(x) {(−λy∂x + λx∂y) + g(x)(x∂x + y∂y)} .

In each case, f(0) = 1 and g(0) = 0.
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The orbital normal form (i.e. the normal form for the induced foliation)
can be immediately derived just by setting f ≡ 1: coefficient g stands for the
moduli of the foliation. The normal form (3) was also derived in [19].

In case (1), A. D. Bruno proved in [1] that the vector field X is actually
analytically linearisable for generic eigenratio λ2/λ1 ∈ R− (in the sense of
the Lebesgue measure). In this case, normal form (1) of Corollary 5 becomes
just useless. For the remaining exceptional values, the respective works of
J.-C. Yoccoz in the diophantine case (see [22] and [16]) and J. Martinet with
J.-P. Ramis in the resonant case λ2/λ1 ∈ Q− (see [11]) derive a huge moduli
space for the analytic classification of the induced foliations. This suggests
that most of the vector fields having such eigenvalues are not polynomial in
any analytic coordinates. Moreover, at least in the resonant case, the analytic
classification of all vector fields inducing a given foliation gives rise to functional
moduli as well (see [7], [13] and [20]). Thus, the functional parameters f and
g appearing in our normal form seem necessary in many cases.

Finally, one can shortly derive from (2) a versal deformation

Xf = x∂x + y2∂y + yf(x)∂x, f ∈ C{x},

of the saddle-node foliation F0 defined by X0 = x∂x + y2∂y (see [10]). In
other words, any germ of analytic deformation of X0 without bifurcation of
the saddle-node point factor into the family above after analytic change of
coordinates and renormalization. Moreover, the derivative of Martinet-Ramis’
moduli map at X0 (see [5]) is bijective. When f(0) = 0, one can even show
that the form above is unique. This result was announced by A. D. Bruno in
[2] and proved by J. Écalle at the end of [4] using mould theory in the particular
case f ′(0) = 0. We will detail it in a forthcoming paper [10].

1. Preparation theorem for codimension-1 foliations

We first prove Theorem 1. Let F0 denote the germ of singular foliation
defined by an integrable holomorphic 1-form at (0, 0) ∈ Cn+1:

Θ0 = f1(z, w)dz1 + · · · + fn(z, w)dzn + g(z, w)dw, Θ0 ∧ dΘ0 = 0,

f1, . . . , fn, g ∈ C{z, w} and assume g(0, w) 	≡ 0. In particular, for r > 0
small enough, the foliation F0 is well-defined on the vertical disc ∆0 = {0} ×
{|w| < r}, regular and transversal to ∆0 outside w = 0.

Consider in Cn×C the vertical line L = {0}×C together with the covering
given by ∆0 and another disc, say ∆∞ = {0} × {|w| > r/2}. Denote by
C = ∆0 ∩ ∆∞ the intersection corona. By the flow-box theorem, there exists
a unique germ of a diffeomorphism of the form

Φ : (Cn+1, C) → (Cn+1, C) ; (z, w) �→ (z, φ(z, w)), φ(0, w) = w
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conjugating F0 to the horizontal foliation F∞ (defined by Θ∞ = dw) at the
neighborhood of the corona C. Therefore, after gluing the germs of complex
manifolds (Cn × C, ∆0) and (Cn × C, ∆∞) along the corona by means of Φ,
we obtain a germ of a smooth complex manifold M , dim(M) = n + 1, along a
rational curve L equipped with a singular holomorphic foliation F . Moreover,
the coordinate z, which is invariant under the gluing map Φ, defines a germ of
a rational fibration z : (M, L) → (Cn, 0). By [6], there exists a germ of submer-
sion w : (M, L) → L � C completing z into a system of trivializing coordinates
(z, w) : (M, L) → (Cn, 0)×C. This system is unique up to permissible change

(z̃, w̃) =
(

φ(z),
a(z)w + b(z)
c(z)w + d(z)

)
where a, b, c, d ∈ C{z}, ad − bc 	≡ 0, and φ ∈ Diff(Cn, 0).

In the neighborhood of any point p ∈ L, the foliation F is defined by
a (nonunique) germ of a holomorphic 1-form (respectively Θ0 or Θ∞). After
division by the coefficient of dw, F is equivalently defined by a germ of a
meromorphic 1-form

Θ = R1(z, w)dz1 + · · · + Rn(z, w)dzn + dw,

where Ri are meromorphic at p. This normal form is unique and Θ is therefore
globally defined on the neighborhood of L. In restriction to each rational fiber
{z = constant}, Ri is a global meromorphic function, thus a rational function
by Chow’s theorem. In other words, the functions Ri are actually rational in
the variable w; i.e. all coefficients Ri are quotients of Weierstrass polynomials.

Choose trivializing coordinates (z, w) so that the singular point of F is
still located at w = 0. The poles of Θ correspond to tangencies between the
foliation F and the rational fibration (counted with multiplicity). Denote by
Σ this divisor. Since F∞ is transversal to the rational fibration, those poles
come from the first chart, namely from the corresponding tangency divisor

Σ0 = {g(z, w) = 0}.
By assumption, the total number of tangencies between F (or F0) and a fibre
(close to L) is k. It follows that the w-rational coefficients Ri have exactly k

poles (counted with multiplicity) in restriction to each fiber. Therefore, if Q

denotes the monic w-polynomial of degree k defining Σ and if one lets Ri = Pi

Q

for w-polynomials Pi, the transversality of F with the fibration at {w = ∞}
implies that the Pi’s have at most degree k+2 in the variable w. Equivalently,
F is defined by

Θ̃ = θ0 + θ1w + · · · + θk+2w
k+2 + Q(z, w)dw

for evident 1-forms θ0, θ1, . . . , θk on (Cn, 0) (depending only on z).
After a permissible change of the w-coordinate, one may assume that

the line {w = ∞} at infinity is a leaf of the foliation (just straighten one
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Figure 1: Gluing construction

leaf); i.e., θk+2 = 0. In fact, one may furthermore assume that the con-
tact between F and the horizontal fibration {w = constant} along the line
{w = ∞} has multiplicity 2 (there is no linear holonomy along this leaf in the
w-coordinate). Indeed, the change of coordinate w̃ = e−

∫
θk+1w (θk+1 is closed

by the integrability condition Θ̃ ∧ dΘ̃ = 0). In new coordinates, θk+1 = 0 and
Theorem 1 is proved. Notice that we can further simplify the form Θ̃ by using
the remaining possible changes of coordinates z̃ = φ(z) and w̃ = w + b(z).

We now prove Corollary 3. According to the begining of the proof above,
if the linear part of Θ0 is not tangent to the radial vector field, up to a
linear change of coordinates, one may assume that the tangency set Σ0 =
{g(z, w) = 0} between the foliation F0 and the vertical fibration {z = constant}
is smooth and transverse to the fibration. By the assumption of Theorem 1
with k = 1, up to a change of the w-coordinate, one may assume that F is
defined by Θ̃ = θ0 + wθ1 + (w + f(z))dw where θ0 and θ1 are holomorphic
1-forms depending only on the z-variable and f ∈ C{z}. After translation
w := w + f(z) (notice that f(0) = 0), one may assume furthermore that f ≡ 0
and the integrability condition Θ̃ ∧ dΘ̃ = 0 yields

θ0 ∧ θ1 = 0, dθ0 = 0 and dθ1 = 0.

After integration, we obtain θi = dfi for functions fi ∈ C{z} with the tangency
condition df0 ∧ df1 = 0; Corollary 3 is proved. By [12], there exists a prim-
itive function f ∈ C{z} (with connected fibres) through which f0 and f1 factor:
fi = f̃i ◦ f with f̃i ∈ C{z}, z a single variable. Notice that we can further
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L ∼ C

F
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Figure 2: Uniformisation

simplify the form Θ̃ by using the remaining possible changes of coordinate
z̃ = φ(z).

If we start with a real analytic foliation F0, then its complexification is
invariant under the anti-holomorphic involution (z, w) �→ (z, w). This involu-
tion obviously commutes with F∞ and with the gluing map Φ, defining, this
way, a germ of anti-holomorphic involution Ψ : (M, L) → (M, L) on the re-
sulting manifold preserving F . By restriction to the coordinate z, which is
invariant under Φ and well defined on M , Ψ induces the standard involution
z �→ z. Therefore, Ψ(z, w) = (z, ψ(z, w)) where ψ(z, w) is, for fixed z, a reflec-
tion with respect to a real circle. After a holomorphic change of w-coordinate,
ψ(z, w) = w and the constructed foliation F is actually invariant by the stan-
dard involution. The unique meromorphic 1-form defining F ,

Θ = R1(z, w)dz1 + · · · + Rn(z, w)dzn + dw,

satisfies Ψ∗Θ = Θ and its coefficients are actually real: Ri ∈ R{z}(w). This
real form is obtained up to a global change of coordinates commuting with the
standard involution; that is,

(z̃, w̃) =
(

φ(z),
a(z)w + b(z)
c(z)w + d(z)

)
where a, b, c, d ∈ R{z}, ad − bc 	≡ 0, and φ ∈ Diff(Rn, 0).
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2. Preparation theorem for closed meromorphic 1-forms

For simplicity, we start with the case of (meromorphic) functions:

Theorem 2.1. Let f be a germ of a meromorphic function at (0, 0) in
Cn+1 and assume that f(0, w) is a well-defined and non constant germ of a
meromorphic function. Then, up to analytic change of the w-coordinate w :=
φ(z, w), the function f becomes a w-rational function

f(z, w) =
f0(z) + f1(z)w + · · · + fk0−1(z)wk0−1 + wk0

g0(z) + g1(z)w + · · · + gk∞−1(z)wk∞−1 + wk∞

where k0, k∞ ∈ N and fi, gj ∈ C{z}.

Proof. Denote by f0(z, w) the germ of a meromorphic function above
and make a preliminary change of coordinate w̃ := ϕ(w) such that f0(0, w) =
wl, l ∈ Z∗, or 1 + wl, l ∈ N∗. Then, proceed with the underlying foliation
F0 (defined by f0 = constant) as in the proof of Theorem 1 in Section 1.
By construction, the function f0 will glue automatically with the respective
function f∞(z, w) = wl or 1 + wl defining F∞. Therefore, the global foliation
F is actually defined by a global meromorphic function f on M . Again, f is
a quotient of Weierstrass polynomials. In the case f0(0, w) = wl, choose the
w-coordinate such that the zero or pole of f∞(z, w) = wl still coincides with
{w = ∞}. Therefore, k0 and k∞ respectively coincide with the number of
zeroes and poles of f0 restricted to a generic vertical line (close to L). In the
other case f0(0, w) = 1 + wl, we add l simple zeroes in the finite part and a
pole of order l that can be straightened to {w = ∞} as before. In this latter
case, l = k0 − k∞ > 0 and k∞ is the number of (zeroes or) poles of f0(z, w)
restricted to a generic vertical line. In any case, the leading terms fk0 and gk∞

are nonvanishing at z = 0 and can be normalized to 1 by division and a further
change of coordinate w̃ = a(z)w.

The proof of Theorem 2 immediately follows when we set k = k0 > 0 and
k∞ = 0 in the proof above.

Proposition 2.2. Let Θ be a germ of a closed meromorphic 1-form at
(0, 0) ∈ Cn+1 and assume that the vertical line {z = 0} is not invariant by
the induced foliation. Then, up to analytic change of the w-coordinate w :=
φ(z, w), the closed form Θ takes the form

Θ =
P1(z, w)dz1 + · · · + Pn(z, w)dzn + P (z, w)dw

Q(z, w)

for w-polynomials P, Q, P1, . . . , Pn ∈ C{z}[w].
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Proof. By a preliminary change of the w-coordinate, one can normalize
the restriction of Θ to the vertical line into one of the models

Θ|L = wkdw if k ≥ 0,

Θ|L = λ
dw

w
if k = −1,

Θ|L = λ
dw

wk(1 − w)
if k < −1,

where k ∈ Z stands for the order of Θ|L at w = 0 and λ ∈ C denotes the residue
when k ≤ −1. Then, defining the horizontal foliation F∞ by the corresponding
model Θ∞ above (viewed as a 1-form in variables (z, w)), we proceed gluing the
foliations and the 1-forms as we did with functions in the previous proof. If k0

and k∞ denote the respective number of zeroes and poles of Θ0 in restriction
to a generic vertical line, then the numerator and denominator have respective
degrees k0 and k∞ if k0 − k∞ ≥ −1 and k0 and k∞ + 1 if k0 − k∞ < −1.

3. Nondegenerate vector fields in the plane

We prove Theorem 4 and deduce Corollary 5. Let X0 be a germ of an
analytic vector field at (0, 0) ∈ C2,

X0 = f(z, w)∂z + g(z, w)∂w,

vanishing at (0, 0) with a nonradial linear part:

lin(X0) = (az + bw)∂z + (cz + dw)∂w =
(

a b

c d

)
	=

(
λ 0
0 λ

)
(in particular, it is assumed that the linear part is not the zero matrix). One
can find linear coordinates in which

lin(X0) =
(

0 1
α β

)
+ · · ·

where −α and β respectively stand for the product and the sum of the eigen-
values λ1 and λ2. The eigenvector corresponding to λi is (1, λi); in the case
λ1 = λ2, we note that the matrix above is not diagonal. After a change of the
w-coordinate of the form w := ϕ(w), we may assume that restriction of f(z, w)
to the vertical line {z = 0} takes the form f(0, w) = w. Similarly, to the proof
of Theorem 1 in Section 1, we consider in C × C the vertical line L = {0} × C
together with the covering given by

∆0 = {0} × {|w| < r} and ∆∞ = {0} × {|w| > r/2}.

Also we denote by C = ∆0 ∩ ∆∞ the intersection corona.
If r > 0 is small enough, the vector field X0 is well defined on the neigh-

borhood of the closed disc ∆0 and transverse to it outside w = 0. By the
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rectification theorem, there exists a unique germ of a diffeomorphism of the
form

Φ : (C2, C) → (C2, C), Φ(0, w) = (0, w)

conjugating X0 to the horizontal vector field X∞ = w∂z. After gluing the
germs of complex surfaces (C × C, ∆0) and (C × C, ∆∞) along the corona by
means of Φ, we obtain a germ of smooth complex surface M along a rational
curve L equipped with a meromorphic vector field X. Since the ∂z-component
of X0 agrees with w∂z along L, it follows that the Jacobian of the gluing map
Φ takes the form

D(0,w)Φ =
(

1 0
∗ 1

)
and the embedded rational curve L has zero self-intersection. Following [17],
we see that L is the regular fiber of a germ of a trivial fibration on M , i.e. there
exist global coordinates (z, w) : (M, L) → (C, 0) × C sending L onto {z = 0}.
The vector field X has exactly one isolated zero, say (z, w) = (0, 0), and a
simple pole along a trajectory (given by X∞ = w∂z in the second chart) that
we may assume still given by {w = ∞}. The tangency divisor Σ between the
induced foliation F and the fibration {z = constant} still is a smooth curve
intersecting the fiber {z = 0} at the singular point (z, w) = (0, 0) without
multiplicity. Indeed, the Jacobian of the change of coordinates (from the first
chart to the global coordinates) at the singular point fixes the w-direction, so
that the linear part of the vector field takes the form

X =
(

a b

c d

)
+ · · · , b 	= 0.

As in the proof of Theorem 1, one may choose the (global) w-coordinate
so that the foliation has a contact of order 2 with the horizontal foliation
{w = constant} along the polar trajectory {w = ∞} and the tangency set
Σ = {w = 0} is horizontal as well. Therefore, the vector field X is written

X = f(z)w∂z + (g0(z) + wg1(z))∂w

for germs f, g0, g1 ∈ C{z}. Indeed, the coefficients of X = P (z, w)∂z +
Q(z, w)∂w become automatically rational in the w-variable. Since the unique
pole of X is simple and located at {w = ∞}, P and Q are in fact polynomials
of maximal degree 1 and 3 (notice that ∂w has a double zero at {w = ∞}).
Finally, conditions on tangency and polar sets imply the special form above.

By a change of z-coordinate, we may furthermore assume f(z) ≡ 1 (f(0) =
1 	= 0). Automatically, the linear part of X in the new coordinates is

X =
(

0 1
α β

)
+ · · ·
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L ∼ C

Σ = {w = 0}

{w = 0}

Figure 3: Normalisation

i.e. g0(z) = αz + · · · and g1(z) = β + · · · where dots mean higher order terms.
Finally, the form X = (w + f(z))∂z + g(z)∂w is derived after the last change
of coordinate w̃ := w − f where f ′(z) = g1(z), f(0) = 0.

If we start with a real vector field X0, then the anti-holomorphic involution
(z, w) �→ (z, w) commutes with the gluing map Φ (mind that X∞ = w∂z is also
real) and induces a germ of anti-holomorphic involution Ψ : (M, L) → (M, L)
on the resulting surface satisfying Ψ∗X = X. By Blanchard’s argument, Ψ
permutes the rational fibration: for any line L′ close to L, the restriction of y

along the image Ψ(L′) is an anti-holomorphic map from a compact manifold
into a bounded domain; therefore, y|Ψ(L′) is constant and Ψ(L′) is actually a
fiber of y. In restriction to the coordinate z, Ψ is a regular anti-holomorphic
involution and is obviously holomorphically conjugated to the standard one
z �→ z. Finally, after holomorphic change of w-coordinate, Ψ(z, w) = (z, w)
and X has real coefficients.

Corollary 3.1. Let X be a germ of an analytic vector field as in The-
orem 4. Then, by a further change of (complex or real) analytic coordinates,
one of the following cases holds:

(1) X has an invariant curve of the form C : {w2 − zk = 0} and

X = f(z)(2w∂z + kzk−1∂w) + g(z)zl(2z∂z + kw∂w), l + 1 ≥ k

2
≥ 1,

(2) X has an invariant curve of the form C : {w = 0} and

X = f(z)(w + zk)∂z + g(z)zlw∂w, l + 1 ≥ k ≥ 1,
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(3) X is a real center or focus and

X = f(z)(−w∂z + kz2k−1∂w) + g(z)zl(z∂z + kw∂w), l + 1 ≥ k ≥ 1,

where, in every case, f(0) 	= 0.

Saddles and saddle-nodes respectively correspond to cases 1 and 2. For a
complete discussion on the possible invariant curve, we refer to the preliminary
version [9, §7] of this paper.

Proof of Corollaries 5 and 3.1. We go back to the preliminary form

X = w∂z + (g0(z) + g1(z)w)∂w

(see proof of Theorem 4). Following [14] (see also [9]), the foliation F either
admit an invariant curve of the form C : {w2 + a(x)w + b(x) = 0}, where a(z)
and b(z) are (real or complex) analytic functions vanishing at 0, or admit a
smooth (real or complex) analytic invariant curve transversal to the fibration
{w = constant}. We want to simplify this invariant curve by a change of
coordinates of the form (z, w) := (ϕ(z), w+φ(z)). The vector field will therefore
take the more general form

X = (f0(z) + f1(z)w)∂z + (g0(z) + g1(z)w)∂w.

In the former case, the invariant curve is a 2-fold covering of the z-variable.
One can use a vertical translation w := w + φ(z) so that C becomes invariant
by the involution (z, w) �→ (z,−w), i.e. C = {w2 = b̃(z)}. Then, by a change
of the z-coordinate, one can normalize b̃(z) = zk (or b̃(z) = −zk when k is
even in the real setting). In these new coordinates, letting each of the vector
fields X±i∗X vanish identically along the curve t �→ (tk, t2), we deduce that X

takes the form (1) (or (3) when k is even in the real setting) of Corollary 3.1.
In the saddle case, we have k = 2. We set f(z) := g0(z)

g0(0)
and g(z) :=

g1(z) − g1(0)
g0(0)

g0(z) so that f(0) = 1, g(0) = 0 and the vector field X is written

X = f(z)X1 + g(z)(z∂z + w∂w) with X1 =
(

g1(0) g0(0)
g0(0) g1(0)

)
(g0(0) = ±(λ2 − λ1) 	= 0). Finally, after a rotation (z, w) := (z −w, z + w), we
obtain normal form (1) of Corollary 5 for saddles.

In the case F admits a smooth analytic invariant curve transverse to the
fibration {w = constant}, we first use a vertical translation w := w + φ(z) to
straighten it onto the horizontal axis and then use a change of z-coordinate
to send the tangency set Σ between the foliation F and the vertical fibration
onto the line {w = z}. We immediately obtain normal form (2) of Corollary
3.1 (resp. of Corollary 5 in the saddle-node case k = 1).
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