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Runge approximation on convex sets
implies the Oka property

By Franc Forstnerič*

Abstract

We prove that the classical Oka property of a complex manifold Y, con-
cerning the existence and homotopy classification of holomorphic mappings
from Stein manifolds to Y, is equivalent to a Runge approximation property
for holomorphic maps from compact convex sets in Euclidean spaces to Y .

Introduction

Motivated by the seminal works of Oka [40] and Grauert ([24], [25], [26])
we say that a complex manifold Y enjoys the Oka property if for every Stein
manifold X, every compact O(X)-convex subset K of X and every continuous
map f0 : X → Y which is holomorphic in an open neighborhood of K there
exists a homotopy of continuous maps ft : X → Y (t ∈ [0, 1]) such that for every
t ∈ [0, 1] the map ft is holomorphic in a neighborhood of K and uniformly close
to f0 on K, and the map f1 : X → Y is holomorphic.

The Oka property and its generalizations play a central role in analytic
and geometric problems on Stein manifolds and the ensuing results are com-
monly referred to as the Oka principle. Applications include the homotopy
classification of holomorphic fiber bundles with complex homogeneous fibers
(the Oka-Grauert principle [26], [7], [31]) and optimal immersion and embed-
ding theorems for Stein manifolds [9], [43]; for further references see the surveys
[15] and [39].

In this paper we show that the Oka property is equivalent to a Runge-type
approximation property for holomorphic mappings from Euclidean spaces.

Theorem 0.1. If Y is a complex manifold such that any holomorphic
map from a neighborhood of a compact convex set K ⊂ Cn (n ∈ N) to Y can
be approximated uniformly on K by entire maps Cn → Y then Y satisfies the
Oka property.
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The hypothesis in Theorem 0.1 will be referred to as the convex approxi-
mation property (CAP) of the manifold Y . The converse implication is obvious
and hence the two properties are equivalent:

CAP ⇐⇒ the Oka property.

For a more precise result see Theorem 1.2 below. An analogous equivalence
holds in the parametric case (Theorem 5.1), and CAP itself implies the one-
parametric Oka propery (Theorem 5.3).

To our knowledge, CAP is the first known characterization of the Oka
property which is stated purely in terms of holomorphic maps from Euclidean
spaces and which does not involve additional parameters. The equivalence
in Theorem 0.1 seems rather striking since linear convexity is not a biholo-
morphically invariant property and it rarely suffices to fully describe global
complex analytic phenomenona. (For the role of convexity in complex analysis
see Hörmander’s monograph [33].)

In the sequel [19] to this paper it is shown that CAP of a complex mani-
fold Y also implies the universal extendibility of holomorphic maps from closed
complex submanifolds of Stein manifolds to Y (the Oka property with inter-
polation). A small extension of our method show that the CAP property of
Y implies the Oka property for maps X → Y also when X is a reduced Stein
space (Remark 6.6).

We actually show that a rather special class of compact convex sets suffices
to test the Oka property (Theorem 1.2). This enables effective applications of
the rich theory of holomorphic automorphisms of Euclidean spaces developed
in the 1990’s, beginning with the works of Andersén and Lempert [1], [2], thus
yielding a new proof of the Oka property in several cases where the earlier
proof relied on sprays introduced by Gromov [28]; examples are complements
of thin (of codimension at least two) algebraic subvarieties in certain algebraic
manifolds (Corollary 1.3).

Theorem 0.1 partly answers a question, raised by Gromov [28, p. 881,
3.4.(D)]: whether Runge approximation on a certain class of compact sets in
Euclidean spaces, for example the balls, suffices to infer the Oka property.
While it may conceivably be possible to reduce the testing family to balls by
more careful geometric considerations, we feel that this would not substantially
simplify the verification of CAP in concrete examples.

CAP has an essential advantage over the other known sufficient conditions
when unramified holomorphic fibrations π : Y → Y ′ are considered. While it is
a difficult problem to transfer a spray on Y ′ to one on Y and vice versa, lifting
an individual map K → Y ′ from a convex (hence contractible) set K ⊂ Cn to
a map K → Y is much easier — all one needs is the Serre fibration property
of π and some analytic flexibility condition for the fibers (in order to find a
holomorphic lifting). In such case the total space Y satisfies the Oka property if
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and only if the base space Y ′ does; this holds in particular if π is a holomorphic
fiber bundle whose fiber satisfies CAP (Theorems 1.4 and 1.8). This shows the
Oka property for Hopf manifolds, Hirzebruch surfaces, complements of finite
sets in complex tori of dimension > 1, unramified elliptic fibrations, etc.

The main conditions on a complex manifold which are known to imply the
Oka property are complex homogeneity (Grauert [24], [25], [26]), the existence
of a dominating spray (Gromov [28]), and the existence of a finite dominating
family of sprays [13] (Def. 1.6 below). It is not difficult to see that each of them
implies CAP — one uses the given condition to linearize the approximation
problem and thereby reduce it to the classical Oka-Weil approximation theorem
for sections of holomorphic vector bundles over Stein manifolds. (See also [21]
and [23]. An analogous result for algebraic maps has recently been proved in
Section 3 of [18].) The gap between these sufficient conditions and the Oka
property is not fully understood; see Section 3 of [28] and the papers [18], [19],
[37], [38].

Our proof of the implication CAP⇒Oka property (§3 below) is a synthesis
of recent developments from [16] and [17] where similar methods have been em-
ployed in the construction of holomorphic submersions. In a typical inductive
step we use CAP to approximate a family of holomorphic maps A → Y from
a compact strongly pseudoconvex domain A ⊂ X, where the parameter of the
family belongs to Cp (p = dimY ), by another family of maps from a convex
bump B ⊂ X attached to A. The two families are patched together into a
family of holomorphic maps A ∪ B → Y by applying a generalized Cartan
lemma proved in [16] (Lemma 2.1 below); this does not require any special
property of Y since the problem is transferred to the source Stein manifold X.
Another essential tool from [16] allows us to pass a critical level of a strongly
plurisubharmonic Morse exhaustion function on X by reducing the problem
to the noncritical case for another strongly plurisubharmonic function. The
crucial part of extending a partial holomorphic solution to an attached handle
(which describes the topological change at a Morse critical point) does not
use any condition on Y thanks to a Mergelyan-type approximation theorem
from [17].

1. The main results

Let z = (z1, . . . , zn) be the coordinates on Cn, with zj = xj + iyj . Set

P = {z ∈ Cn : |xj | ≤ 1, |yj | ≤ 1, j = 1, . . . , n}. (1.1)

A special convex set in Cn is a compact convex subset of the form

Q = {z ∈ P : yn ≤ h(z1, . . . , zn−1, xn)}, (1.2)

where h is a smooth (weakly) concave function with values in (−1, 1).
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We say that a map is holomorphic on a compact set K in a complex
manifold X if it is holomorphic in an unspecified open neighborhood of K

in X; for a homotopy of maps the neighborhood should not depend on the
parameter.

Definition 1.1. A complex manifold Y satisfies the n-dimensional convex
approximation property (CAPn) if any holomorphic map f : Q → Y on a special
convex set Q ⊂ Cn (1.2) can be approximated uniformly on Q by holomorphic
maps P → Y . Y satisfies CAP = CAP∞ if it satisfies CAPn for all n ∈ N.

Let O(X) denote the algebra of all holomorphic functions on X. A com-
pact set K in X is O(X)-convex if for every p ∈ X\K there exists f ∈ O(X)
such that |f(p)| > supx∈K |f(x)|.

Theorem 1.2 (The main theorem). If Y is a p-dimensional complex
manifold satisfying CAPn+p for some n ∈ N then Y enjoys the Oka prop-
erty for maps X → Y from any Stein manifold with dimX ≤ n. Furthermore,
sections X → E of any holomorphic fiber bundle E → X with such fiber Y

satisfy the Oka principle: Every continuous section f0 : X → E is homotopic to
a holomorphic section f1 : X → E through a homotopy of continuous sections
ft : X → E (t ∈ [0, 1]); if in addition f0 is holomorphic on a compact O(X)-
convex subset K ⊂ X then the homotopy {ft}t∈[0,1] can be chosen holomorphic
and uniformly close to f0 on K.

Note that the Oka property of Y is just the Oka principle for sections of
the trivial (product) bundle X × Y → X over any Stein manifold X.

We have an obvious implication CAPn =⇒ CAPk when n > k (every
compact convex set in Ck is also such in Cn via the inclusion Ck ↪→ Cn), but
the converse fails in general for n ≤ dimY (example 6.1). An induction over
an increasing sequence of cubes exhausting Cn shows that CAPn is equivalent
to the Runge approximation of holomorphic maps Q → Y on special convex
sets (1.2) by entire maps Cn → Y (compare with the definition of CAP in the
introduction).

We now verify CAP in several specific examples. The following was first
proved in [28] and [13] by finding a dominating family of sprays (see Def. 1.6
below).

Corollary 1.3. Let p > 1 and let Y ′ be one of the manifolds Cp, CPp

or a complex Grassmanian of dimension p. If A ⊂ Y ′ is a closed algebraic
subvariety of complex codimension at least two then Y = Y ′\A satisfies the
Oka property.

Proof. Let f : Q → Y be a holomorphic map from a special convex set
Q ⊂ P ⊂ Cn (1.2). An elementary argument shows that f can be approximated
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uniformly on a neighborhood of Q by algebraic maps f ′ : Cn → Y ′ such that
f ′−1(A) is an algebraic subvariety of codimension at least two which is disjoint
from Q. (If Y ′ = Cp we may take a suitable generic polynomial approximation
of f , and the other cases easily reduce to this one by the arguments in [17].)
By Lemma 3.4 in [16] there is a holomorphic automorphism ψ of Cn which
approximates the identity map uniformly on Q and satisfies ψ(P )∩f ′−1(A) = ∅.
The holomorphic map g = f ′ ◦ ψ : Cn → Y ′ then takes P to Y = Y ′\A and it
approximates f uniformly on Q. This proves that Y enjoys CAP and hence
(by Theorem 1.2) the Oka property.

By methods in [18] (especially Corollary 2.4 and Proposition 5.4) one can
extend Corollary 1.3 to any algebraic manifold Y ′ which is a finite union of
Zariski open sets biregularly equivalent to Cp. Every such manifold satisfies an
approximation property analogous to CAP for regular algebraic maps (Corol-
lary 1.2 in [18]).

We now consider unramified holomorphic fibrations, beginning with a re-
sult which is easy to state (compare with Gromov [28, 3.3.C′ and 3.5.B′′], and
Lárusson [37], [38]); the proof is given in Section 4.

Theorem 1.4. If π : Y → Y ′ is a holomorphic fiber bundle whose fiber
satisfies CAP then Y enjoys the Oka property if and only if Y ′ does. This
holds in particular if π is a covering projection, or if the fiber of π is complex
homogeneous.

Corollary 1.5. Each of the following manifolds enjoys the Oka prop-
erty :

(i) A Hopf manifold.

(ii) The complement of a finite set in a complex torus of dimension > 1.

(iii) A Hirzebruch surface.

Proof. (i) A p-dimensional Hopf manifold is a holomorphic quotient of
Cp\{0} by an infinite cyclic group of dilations of Cp [3, p. 225]; since Cp\{0}
satisfies CAP by Corollary 1.3, the conclusion follows from Theorem 1.4. Note
that Hopf manifolds are nonalgebraic and even non-Kählerian.

(ii) Every p-dimensional torus is a quotient Tp = Cp/Γ where Γ ⊂ Cp is a
lattice of maximal real rank 2p. Choose finitely many points t1, . . . , tm ∈ Tp

and preimages zj ∈ Cp with π(zj) = tj (j = 1, . . . , m). The discrete set
Γ′ = ∪m

j=1(Γ + zj) ⊂ Cp is tame according to Proposition 4.1 in [5]. (The cited
proposition is stated for p = 2, but the proof remains valid also for p > 2.)
Hence the complement Y = Cp\Γ′ admits a dominating spray and therefore
satisfies the Oka property [28], [21]. Since π|Y : Y → Tp\{t1, . . . , tm} is a
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holomorphic covering projection, Theorem 1.4 implies that the latter set also
enjoys the Oka property.

The same argument applies if the lattice Γ has less than maximal rank.
(iii) A Hirzebruch surface Hl (l = 0, 1, 2, . . . ) is the total space Y of a

holomorphic fiber bundle Y → P1 with fiber P1 ([3, p. 191]; every Hirzebruch
surface is birationally equivalent to P2). Since the base and the fiber are
complex homogeneous, the conclusion follows from Theorem 1.4.

In this paper, an unramified holomorphic fibration will mean a surjective
holomorphic submersion π : Y → Y ′ which is also a Serre fibration (i.e., it
satisfies the homotopy lifting property; see [45, p. 8]). The latter condition
holds if π is a topological fiber bundle in which the holomorphic type of the
fiber may depend on the base point. (Ramified fibrations, or fibrations with
multiple fibers, do not seem amenable to our methods and will not be discussed;
see example 6.3 and problem 6.7 in [18].) In order to generalize Theorem 1.4 to
such fibration we must assume that the fibers of π over small open subsets of
the base manifold Y ′ satisfy certain condition, analogous to CAP, which allows
holomorphic approximation of local sections. The weakest known sufficient
condition is subellipticity [13], a generalization of Gromov’s ellipticity [28]. We
recall the relevant definitions.

Let π : Y → Y ′ be a holomorphic submersion onto Y ′. For each y ∈ Y

let V TyY = ker dπy ⊂ TyY (the vertical tangent space of Y with respect to
π). A fiber-spray associated to π : Y → Y ′ is a triple (E, p, s) consisting of a
holomorphic vector bundle p : E → Y and a holomorphic spray map s : E → Y

such that for each y ∈ Y we have s(0y) = y and s(Ey) ⊂ Yπ(y) = π−1(π(y)).
A spray on a complex manifold Y is a fiber-spray associated to the trivial
submersion Y → point.

Definition 1.6 ([13, p. 529]). A holomorphic submersion π : Y → Y ′ is
subelliptic if each point in Y ′ has an open neighborhood U ⊂ Y ′ such that the
restricted submersion h : Y |U = h−1(U) → U admits finitely many fiber-sprays
(Ej , pj , sj) (j = 1, . . . , k) satisfying the domination condition

(ds1)0y
(E1,y) + (ds2)0y

(E2,y) + · · · + (dsk)0y
(Ek,y) = V TyY (1.3)

for each y ∈ Y |U ; such a collection of sprays is said to be fiber-dominating.
The submersion is elliptic if the above holds with k = 1. A complex manifold
Y is (sub-)elliptic if the trivial submersion Y → point is such.

A holomorphic fiber bundle Y → Y ′ is (sub-)elliptic when its fiber is such.

Definition 1.7. A holomorphic map π : Y → Y ′ is a subelliptic Serre fi-
bration if it is a surjective subelliptic submersion and a Serre fibration.

The following result is proved in Section 4 below (see also [38]).
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Theorem 1.8. If π : Y → Y ′ is a subelliptic Serre fibration then Y sat-
isfies the Oka property if and only if Y ′ does. This holds in particular if π is
an unramified elliptic fibration (i.e., every fiber π−1(y′) is an elliptic curve).

Organization of the paper. In Section 2 we state a generalized Cartan
lemma used in the proof of Theorem 1.2, indicating how it follows from The-
orem 4.1 in [16]. Theorem 1.2 (which includes Theorem 0.1) is proved in
Section 3. In Section 4 we prove Theorems 1.4 and 1.8. In Section 5 we dis-
cuss the parametric case and prove that CAP implies the one-parametric Oka
property (Theorem 5.3). Section 6 contains a discussion and a list of open
problems.

2. A Cartan type splitting lemma

Let A and B be compact sets in a complex manifold X satisfying the
following:

(i) A ∪ B admits a basis of Stein neighborhoods in X, and

(ii) A\B ∩ B\A = ∅ (the separation property).

Such (A, B) will be called a Cartan pair in X. (The definition of a Cartan
pair often includes an additional Runge condition; this will not be necessary
here.) Set C = A ∩ B. Let D be a compact set with a basis of open Stein
neighborhoods in a complex manifold T . With these assumptions we have the
following.

Lemma 2.1. Let γ(x, t) = (x, c(x, t)) ∈ X × T (x ∈ X, t ∈ T ) be an
injective holomorphic map in an open neighborhood ΩC ⊂ X × T of C × D.
If γ is sufficiently uniformly close to the identity map on ΩC then there exist
open neighborhoods ΩA,ΩB ⊂ X × T of A × D, respectively of B × D, and
injective holomorphic maps α : ΩA → X × T , β : ΩB → X × T of the form
α(x, t) = (x, a(x, t)), β(x, t) = (x, b(x, t)), which are uniformly close to the
identity map on their respective domains and satisfy

γ = β ◦ α−1

in a neighborhood of C × D in X × T .

In the proof of Theorem 1.2 (§3) we shall use Lemma 2.1 with D a cube in
T = Cp for various values of p ∈ N. Lemma 2.1 generalizes the classical Cartan
lemma (see e.g. [29, p. 199]) in which A, B and C = A ∩ B are cubes in Cn

and a, b, c are invertible linear functions of t ∈ Cp depending holomorphically
on the base variable.

Proof. Lemma 2.1 is a special case of Theorem 4.1 in [16]. In that theorem
we consider a Cartan pair (A, B) in a complex manifold X and a nonsingular
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holomorphic foliation F in an open neighborhood of A ∪ B in X. Let U ⊂ X

be an open neighborhood of C = A ∩ B in X. By Theorem 4.1 in [16], every
injective holomorphic map γ : U → X which is sufficiently uniformly close
to the identity map on U admits a splitting γ = β ◦ α−1 on a smaller open
neighborhood of C in X, where α (resp. β) is an injective holomorphic map
on a neighborhood of A (resp. B), with values in X. If in addition γ preserves
the plaques of F in a certain finite system of foliation charts covering U (i.e.,
x and γ(x) belong to the same plaque) then α and β can be chosen to satisfy
the same property.

Lemma 2.1 follows by applying this result to the Cartan pair (A×D, B×D)
in X × T , with F the trivial (product) foliation of X × T with leaves {x}× T .

Certain generalizations of Lemma 2.1 are possible (see [16]). First of all,
the analogous result holds in the parametric case. Secondly, if Σ is a closed
complex subvariety of X ×T which does not intersect C ×D then α and β can
be chosen tangent to the identity map to a given finite order along Σ. Thirdly,
shrinking of the domain is necessary only in the directions of the leaves of F ;
an analogue of Lemma 2.1 can be proved for maps which are holomorphic in
the interior of the respective set A, B, or C and of a Hölder class Ck,ε up to the
boundary. (The ∂-problem which arises in the linearization is well behaved on
these spaces.) We do not state or prove this generalization formally since it
will not be needed in the present paper.

3. Proof of Theorem 1.2

The proof relies on Grauert’s bumping method which has been introduced
to the Oka-Grauert problem by Henkin and Leiterer [31] (their paper is based
on a preprint from 1986), with several additions from [16] and [17].

Assume that Y is a complex manifold satisfying CAP. Let X be a Stein
manifold, K ⊂ X a compact O(X)-convex subset of X and f : X → Y a
continuous map which is holomorphic in an open set U ⊂ X containing K.
We shall modify f in a countable sequence of steps to obtain a holomorphic
map X → Y which is homotopic to f and approximates f uniformly on K.
(In fact, the entire homotopy will remain holomorphic and uniformly close to
f on K.) The goal of every step is to enlarge the domain of holomorphicity
and thus obtain a sequence of maps X → Y which converges uniformly on
compacts in X to a solution of the problem.

Choose a smooth strongly plurisubharmonic Morse exhaustion function
ρ : X → R such that ρ|K < 0 and {ρ ≤ 0} ⊂ U . Set Xc = {ρ ≤ c} for c ∈ R.
It suffices to prove that for any pair of numbers 0 ≤ c0 < c1 such that c0 and
c1 are regular values of ρ, a continuous map f : X → Y which is holomorphic
on (an open neighborhood of) Xc0 can be deformed by a homotopy of maps
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ft : X → Y (t ∈ [0, 1]) to a map f1 which is holomorphic on Xc1 ; in addition we
require that ft be holomorphic and uniformly as close as required to f = f0 on
Xc0 for every t ∈ [0, 1]. The solution is then obtained by an obvious induction
as in [21].

There are two main cases to consider:

The noncritical case. dρ �= 0 on the set {x ∈ X : c0 ≤ ρ(x) ≤ c1}.

The critical case. There is a point p ∈ X with c0 < ρ(p) < c1 such that
dρp = 0. (We may assume that there is a unique such p.)

A reduction of the critical case to the noncritical one has been explained
in Section 6 of [17], based on a technique developed in the construction of
holomorphic submersions of Stein manifolds to Euclidean spaces [16]. It is
accomplished in the following three steps, the first two of which do not require
any special properties of Y .

Step 1. Let f : X → Y be a continuous map which is holomorphic in a
neighborhood of Xc = {ρ ≤ c} for some c < ρ(p) close to ρ(p). By a small
modification we make f smooth on a totally real handle E attached to Xc and
passing through the critical point p. (In suitable local holomorphic coordinates
on X near p, this handle is just the stable manifold of p for the gradient flow
of ρ, and its dimension equals the Morse index of ρ at p.)

Step 2. We approximate f uniformly on Xc ∪ E by a map which is
holomorphic in an open neighborhood of this set (Theorem 3.2 in [17]).

Step 3. We approximate the map in Step 2 by a map holomorphic on Xc′

for some c′ > ρ(p). This extension across the critical level {ρ = ρ(p)} is ob-
tained by applying the noncritical case for another strongly plurisubharmonic
function constructed especially for this purpose.

After reaching Xc′ for some c′ > ρ(p) we revert back to ρ and continue
(by the noncritical case) to the next critical level of ρ, thus completing the
induction step. The details can be found in Section 6 in [16] and [17].

It remains to explain the noncritical case; here our proof differs from the
earlier proofs (see e.g. [21] and [13]).

Let z = (z1, . . . , zn), zj = uj + ivj , denote the coordinates on Cn, n =
dimX. Let P denote the open cube

P = {z ∈ Cn : |uj | < 1, |vj | < 1, j = 1, . . . , n} (3.1)

and P ′ = {z ∈ P : vn = 0}. Let A be a compact strongly pseudoconvex
domain with smooth boundary in X. We say that a compact subset B ⊂ X

is a convex bump on A if there exist an open neighborhood V ⊂ X of B, a
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biholomorphic map φ : V → P onto the set (3.1) and smooth strongly concave
functions h, h̃ : P ′ → [−s, s] for some 0 < s < 1 such that h ≤ h̃, h = h̃ near
the boundary of P ′, and

φ(A ∩ V ) = {z ∈ P : vn ≤ h(z1, . . . , zn−1, un)},
φ((A ∪ B) ∩ V ) = {z ∈ P : vn ≤ h̃(z1, . . . , zn−1, un)}.

We also require that

(i) A\B ∩ B\A = ∅ (the separation condition), and

(ii) C = A∩B is Runge in A, in the sense that every holomorphic function in
a neighborhood of C can be approximated uniformly on C by functions
holomorphic in a neighborhood of A.

Proposition 3.1. Assume that A, B ⊂ X are as above. Let Y be a
p-dimensional complex manifold satisfying CAPn+p. Choose a distance func-
tion d on Y induced by a Riemannian metric. For every holomorphic map
f0 : A → Y and every ε > 0 there is a holomorphic map f1 : A ∪ B → Y sat-
isfying supx∈A d(f0(x), f1(x)) < ε. The analogous result holds for sections of
a holomorphic fiber bundle Z → X with fiber Y which is trivial over the set
V ⊃ B.

If f0 and f1 are sufficiently uniformly close on A, there clearly exists
a holomorphic homotopy from f0 to f1 on A. If Y satisfies CAPN with
N = p + [12(3n + 1)] then we may omit the hypothesis that C is Runge in
A (Remark 3.3).

Assuming Proposition 3.1 we can complete the proof of the noncritical
case (and hence of Theorem 1.2) as follows. By Narasimhan’s lemma on local
convexification of strongly pseudoconvex domains one can obtain a finite se-
quence Xc0 = A0 ⊂ A1 ⊂ . . . ⊂ Ak0 = Xc1 of compact strongly pseudoconvex
domains in X such that for every k = 0, 1, . . . , k0 − 1 we have Ak+1 = Ak ∪Bk

where Bk is a convex bump on Ak (Lemma 12.3 in [32]). Each of the sets
Bk may be chosen sufficiently small so that it is contained in an element of a
given open covering of X. The separation condition (i) for the pair (Ak, Bk),
introduced just before Proposition 3.1, is trivial to satisfy while (ii) is only a
small addition (one can use a local convexification of a strongly pseudoconvex
domain A given by holomorphic functions defined in a neighborhood of A;
see [10, p. 530, Prop. 1], or [30, Prop. 14]). It remains to apply Proposition
3.1 inductively to every pair (Ak, Bk), k = 0, 1, . . . , k0 − 1. A more detailed
exposition of this construction can be found in [21] and [17].

This completes the proof of Theorem 1.2 provided that Proposition 3.1
holds.
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Proof of Proposition 3.1. Choose a pair of numbers r, r′, with 0 < r′ <

r < 1, such that φ(B) ⊂ r′P . The set

Q := φ(A ∩ V ) ∩ rP = {z ∈ rP : vn ≤ h(z′, un)}
is a special convex set in Cn (1.2) with respect to the closed cube rP ⊂ Cn,
and the set C = A ∩ B is contained in Q0 := φ−1(Q) ⊂ X.

By the hypothesis f0 is holomorphic in an open neighborhood U ⊂ X

of A. Set F0(x) = (x, f0(x)) ∈ X × Y for x ∈ U .

Lemma 3.2. There are a neighborhood U1 ⊂ U of A in X, a neighborhood
W ⊂ Cp of 0 ∈ Cp and a holomorphic map F (x, t) = (x, f(x, t)) ∈ X × Y ,
defined for x ∈ U1 and t ∈ W , such that f(· , 0) = f0 and f(x, · ) : W → Y is
injective holomorphic for every x in a neighborhood of C = A ∩ B.

Proof. The set F0(U) is a closed Stein submanifold of the complex manifold
U × Y and hence it admits an open Stein neighborhood in U × Y according
to [44]. Let πX : X × Y → X denote the projection (x, y) → x. The set
E = ker dπX is a holomorphic vector subbundle of rank p = dimY in the
tangent bundle T (X × Y ), consisting of all vectors ξ ∈ T (X × Y ) which are
tangent to the fibers of πX .

Since the set Q0 is contractible, the bundle E is trivial over a neighborhood
of F0(Q0) in X×Y and hence is generated there by p holomorphic sections, i.e.,
vector fields tangent to the fibers of πX . Since C is Runge in A, these sections
can be approximated uniformly on F0(C) by holomorphic sections ξ1, . . . , ξp

of E, defined in a neighborhood of F0(A) in X×Y , which still generate E over
a neighborhood of F0(C). The flow θj

t of ξj is well defined for sufficiently small
t ∈ C. The map

F (x, t1, . . . , tp) = θ1
t1 ◦ · · · ◦ θp

tp
◦ F0(x) ∈ X × Y,

defined and holomorphic for x in a neighborhood of A and for t = (t1, . . . , tp)
in a neighborhood of the origin in Cp, satisfies Lemma 3.2.

Remark 3.3. The restriction of a rank p holomorphic vector bundle E

to an n-dimensional Stein manifold is generated by p + [12(n + 1)] sections
(Lemma 5 in [11, p. 178]). Without assuming that C is Runge in A this gives
a proof of Lemma 3.2 if Y satisfies CAPN with N = p + [12(3n + 1)].

We continue with the proof of Proposition 3.1. Let F and W be as in
Lemma 3.2. Choose a closed cube D in Cp centered at 0, with D ⊂ W . The
set Q̃ := Q×D ⊂ Cn+p is a special convex set of the form (1.2) with respect to
the closed cube P̃ := rP ×D ⊂ Cn+p, and the map f̃(z, t) := f(φ−1(z), t) ∈ Y

is holomorphic in a neighborhood of Q̃.
Since Y is assumed to satisfy CAPn+p, we can approximate f̃ uniformly

on a neighborhood of Q̃ by entire maps g̃ : Cn+p → Y . (This is the only place



700 FRANC FORSTNERIČ

in the proof where CAP is used.) The holomorphic map

g(x, t) := g̃(φ(x), t) ∈ Y, x ∈ V, t ∈ Cp

then approximates f uniformly in a neighborhood of Q0 ×D in X ×Cp. Since
f(x, · ) : W → Y is injective holomorphic for every x in a neighborhood of
C (Lemma 3.2), choosing g to approximate f sufficiently well we obtain a
(unique) injective holomorphic map γ(x, t) = (x, c(x, t)) ∈ X × Cp, defined
and uniformly close to the identity map in an open neighborhood Ω ⊂ X ×Cp

of C × D, such that

f(x, t) = (g ◦ γ)(x, t) = g(x, c(x, t)), (x, t) ∈ Ω. (3.2)

If the approximation of f by g is sufficiently close then γ is so close to the
identity map that we can apply Lemma 2.1 to obtain a decomposition γ =
β ◦ α−1, with α(x, t) = (x, a(x, t)), β(x, t) = (x, b(x, t)) holomorphic and close
to the identity maps in their respective domains ΩA ⊃ A × D, ΩB ⊃ B × D.
From (3.2) we obtain

f(x, a(x, t)) = g(x, b(x, t)), (x, t) ∈ C × D.

When t = 0, the two sides define a holomorphic map f1 : A ∪ B → Y which
approximates f0 = f(· , 0) uniformly on A (since a(x, 0) ≈ 0 for x ∈ A).

This proves Proposition 3.1 for maps X → Y . The very same proof
applies to sections of a holomorphic fiber bundle Z → X with fiber Y which is
trivial over the set V ⊃ B; this is no restriction since all convex bumps in the
inductive construction can be chosen small enough to insure this condition.

4. Proof of Theorems 1.4 and 1.8

We begin by proving Theorem 1.8. Let π : Y → Y ′ be a subelliptic Serre
fibration (Definition 1.7). Assume first that Y ′ satisfies CAP. Let f : U → Y

be a holomorphic map from an open convex subset U ⊂ Cn. Let K ⊂ L be
compact convex sets in U , with K ⊂ IntL. Set g = π ◦ f : U → Y ′.

Since Y ′ satisfies CAP, there is an entire map g1 : Cn → Y ′ which approx-
imates g uniformly on L.

By Lemma 3.4 in [17] there exists for every x ∈ U a holomorphic retraction
ρx of an open neighborhood of the fiber Rx = π−1(g1(x)) ⊂ Y in the manifold
Y onto Rx, with ρx depending holomorphically on x ∈ U . If g1 is sufficiently
uniformly close to g on L then for every x ∈ L the point f(x) belongs to the
domain of ρx, and hence we can define f1(x) = ρx(f(x)) for all x ∈ L. The
map f1 is then holomorphic on a neighborhood of K in X, it approximates f

uniformly on K, and it satisfies π ◦ f1 = g1 (i.e., f1 is a lifting of g1).
Since π : Y → Y ′ is a Serre fibration and the set K ⊂ Cn is convex,

f1|K extends to a continuous map f1 : Cn → Y which is holomorphic in a
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neighborhood of K and satisfies π ◦ f1 = g1 on Cn (hence f1 is a global lifting
of g1).

Since g1 is holomorphic and π is a subelliptic submersion, Theorem 1.3
in [14] shows that we can homotopically deform f1 (through liftings of g1) to
a global holomorphic lifting f̃ : Cn → Y of g1 (i.e., π ◦ f̃ = g1) such that f̃ |K
approximates f1|K , and hence f |K . (In our case π is unramified and the quoted
theorem from [14] is an immediate consequence of Theorem 1.5 in [22].) This
shows that Y satisfies CAP and hence the Oka property.

Conversely, assume that Y satisfies CAP. Choose a holomorphic map
g : K → Y ′ from a compact convex set K ⊂ Cn. Since π is a Serre fibration
and K is contractible, there is a continuous lifting f0 : K → Y with π ◦ f0 = g.
Since π is a subelliptic submersion, Theorem 1.3 in [14] gives a homotopy of
liftings ft : K → Y (t ∈ [0, 1]), with π ◦ ft = g for every t ∈ [0, 1], such that f1

is holomorphic on K.
By CAP of Y we can approximate f1 uniformly on K by entire maps

f̃ : Cn → Y . The map g̃ := π ◦ f̃ : Cn → Y ′ is then entire and it approximates
g uniformly on K. Thus Y ′ satisfies CAP.

Note that contractibility of K was essential in the last part of the proof.
Every unramified elliptic fibration π : Y → Y ′ without exceptional (and

multiple) fibers is elliptic in the sense of Gromov [28] (Definition 1.6 above).
Indeed, every fiber Yy = π−1(y) (y ∈ Y ′) is an elliptic curve, Yy = C/Γy, and
the lattice Γy ⊂ C is defined over every sufficiently small open subset U ⊂ Y ′ by
a pair of generators a(y), b(y) depending holomorphically on y. A dominating
fiber-spray on Y |U is obtained by pushing down to Y |U the Γy-equivariant
spray on U × C defined by ((y, t), t′) ∈ U × C × C → (y, t + t′) ∈ U × C.

The proof of Theorem 1.4 follows the same scheme; in this case we do not
need to refer to [22] but can instead use Theorem 1.2 in this paper.

5. The parametric convex approximation property

We recall the notion of the parametric Oka property (POP) which is es-
sentially the same as Gromov’s Ell∞ property ([28, §3.1]; see also Theorem 1.5
in [22]).

Let P be a compact Hausdorff space (the parameter space) and P0 a
closed subset of P (possibly empty) which is a strong deformation retract of
some neighborhood in P . In applications P is usually a polyhedron and P0 a
subpolyhedron.

Given a Stein manifold X and a compact O(X)-convex subset K in X,
we consider a continuous map f : X × P → Y such that for every p ∈ P the
map fp = f(· , p) : X → Y is holomorphic in an open neighborhood of K in X

(independent of p ∈ P ), and for every p ∈ P0 the map fp is holomorphic on X.
We say that Y satisfies the parametric Oka property (POP) if for all such data
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(X, K, P, P0, f) there is a homotopy ft : X × P → Y (t ∈ [0, 1]), consisting of
maps satisfying the same properties as f0 = f , such that

— the homotopy is fixed on P0 (i.e., fp
t = fp when p ∈ P0 and t ∈ [0, 1]),

— ft approximates f uniformly on K × P for all t ∈ [0, 1], and

— fp
1 : X → Y is holomorphic for every p ∈ P .

Recall that POP is implied by ellipticity [28], [21] and subellipticity [14].
We say that a complex manifold Y satisfies the parametric convex approx-

imation property (PCAP) if the above holds for every special convex set K of
the form (1.2) in X = Cn for any n ∈ N.

Theorem 5.1. If a complex manifold Y satisfies PCAP then it also sat-
isfies the parametric Oka property (and hence PCAP ⇐⇒ POP).

Theorem 5.1 is obtained by following the proof of Theorem 1.2 (§3) but
using the requisite tools with continuous dependence on the parameter p ∈ P .
Precise arguments of this kind can be found in [21], [22] and we leave out the
details. For an additional equivalence involving interpolation conditions see
Theorem 6.1 in [19].

An analogue of Theorem 1.8 holds for ascending/descending of the POP
in a subelliptic Serre fibration π : Y → Y ′. The implication

POP of Y ′ =⇒ POP of Y

holds for any compact Hausdorff parameter space P and is proved as before
by using the parametric versions of the relevant tools. However, we can prove
the converse implication only for a contractible parameter space P , the reason
being that we must lift a map K × P → Y ′ (with K a compact convex set in
Cn) to a map K × P → Y . (See also Corollary 6.2 in [19].)

Question 5.2. To what extent does CAP imply PCAP?

We indicate how CAP⇒PCAP can be proved for sufficiently simple para-
metric spaces. For simplicity let P be a closed cube in Rk and P0 = ∅, al-
though the argument applies in more general situations. We identify Rk with
Rk × {i0}k ⊂ Ck.

Let K ⊂ Cn be a special compact convex set, U ⊂ Cn an open neigh-
borhood of K, and f : U × P → Y a continuous map such that fp = f(· , p)
is holomorphic on U for every fixed p ∈ P . By the assumed CAP property
of Y we can approximate fp for every fixed p ∈ P uniformly on K by a map
with values in Y which is holomorphic in an open neighborhood of K ×{p} in
Cn × Ck. Patching these holomorphic approximations by a smooth partition
of unity in the p-variable we approximate the initial map f by another one,
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still denoted f , which is smooth in all variables and is holomorphic in the x

variable for every fixed p ∈ P .
The graph of f over U × P is a smooth CR submanifold of Cn+k × Y

foliated by n-dimensional complex manifolds, namely the graphs of fp : U → Y

for p ∈ P . By methods similar to those in [20] it can be seen that the graph of
f over K×P admits an open Stein neighborhood Ω in Cn+k×Y . Embedding Ω
into a Euclidean space CN and applying standard approximation methods for
CR functions (and a holomorphic retraction of a tube around the submanifold
Ω ⊂ CN onto Ω) we can approximate f as closely as desired on K × P by a
holomorphic map f̃ , defined in an open neighborhood of K × P in Cn × Cp.

The cube P ⊂ Rk ⊂ Ck admits a basis of cubic neighborhoods in Ck. (By
a ‘cube’ we mean a Cartesian product of intervals in the coordinate axes.) The
product of K with a closed cube in Ck is a special compact convex set in Cn+k.
Applying the CAP property of Y to the map f̃ we see that Y satisfies PCAP
for the parameter space P .

If P = [0, 1] ⊂ R and the maps f0 = f(· , 0) and f1 = f(· , 1) (correspond-
ing to the endpoints of P ) are holomorphic on Cn, the above construction can
be performed so that these two maps remain unchanged, thereby showing that
the basic CAP implies the one-parametric CAP. Joined with Theorem 5.1 this
gives

Theorem 5.3. If a complex manifold Y enjoys the CAP then a homotopy
of maps ft : X → Y (t ∈ [0, 1]) from a Stein manifold X for which f0 and f1

are holomorphic can be deformed with fixed ends to a homotopy consisting of
holomorphic maps.

Theorem 5.3 also follows from Theorem 1.1 in [19] to the effect that CAP
implies the Oka property with interpolation. Indeed, extending the homotopy
ft : X → Y (t ∈ [0, 1]) to all values t ∈ C by precomposing with a retraction
C → [0, 1] ⊂ C we obtain a continuous map F : X × C → Y , F (x, t) = ft(x),
whose restriction to the complex submanifold X0 = X × {0, 1} of X × C
is holomorphic. By [19] there is a homotopy Fs : X × C → Y (s ∈ [0, 1]),
with F0 = F , which remains fixed on X0 and such that F1 is holomorphic.
The restriction of F1 to X × [0, 1] is a homotopy from f0 to f1 consisting of
holomorphic maps F1(· , t) (t ∈ [0, 1]).

6. Discussion, examples and problems

It was pointed out by Gromov [28] that the existence of a dominating
spray on a complex manifold Y is a precise way of saying that Y admits many
holomorphic maps from Euclidean spaces; since every Stein manifold X embeds
into a Euclidean space, this also implies the existence of many holomorphic
maps X → Y and hence it is natural to expect that Y enjoys the Oka property
(and it does).
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The same philosophy justifies CAP which is another way of asserting the
existence of many holomorphic maps CN → Y . Indeed, CAP is the restriction
of the Oka property (which refers to maps from any Stein manifold X to Y ,
with uniform approximation on any holomorphically convex subset K of X) to
model pairs — the special compact convex sets in X = Cn. For a discussion
of this localization principle see Remark 1.10 in [18].

CAP is in a precise sense opposite to the hyperbolicity properties expressed
by nonvanishing of Kobayashi-Eisenman metrics. More precisely, CAP1 is an
opposite property to Kobayashi-Brody hyperbolicity [34], [4] which excludes
nonconstant entire maps C → Y ; more generally, CAPn for n ≤ dimY is
opposite to the n-dimensional measure hyperbolicity [8]. The property CAPp

with p = dimY implies the existence of dominating holomorphic maps Cp → Y ;
if such Y is compact, it is not of Kodaira general type [6], [36], [35]. For a
further discussion see [18].

The property CAPn for n ≥ dimY is also reminiscent of the Property Sn,
introduced in [17], which requires that any holomorphic submersion f : K → Y

from a special compact convex set K ⊂ Cn is approximable by entire sub-
mersions Cn → Y . By Theorem 2.1 in [17], Property Sn of Y implies that
holomorphic submersions from any n-dimensional Stein manifold to Y satisfy
the homotopy principle, analogous to the one which was proved for smooth
submersions by Gromov [27] and Phillips [41]. The similarity is not merely
apparent — our proof of Theorem 1.2 in this paper conceptually unifies the
construction of holomorphic maps with the construction of holomorphic sub-
mersions in [16] and [17].

Example 6.1. For every 1 ≤ k ≤ p there exists a p-dimensional complex
manifold which satisfies CAPk−1 but not CAPk.

Indeed, for k = p we can take Y = Cp\A where A is a discrete subset
of Cp which is rigid in the sense of Rosay and Rudin [42, p. 60], i.e., every
holomorphic map Cp → Cp with maximal rank p at some point intersects
A at infinitely many points. Thus CAPp fails, but CAPp−1 holds since a
generic holomorphic map Cp−1 → Cp avoids A by dimension reasons. For
k < p we take Y = Cp\φ(Cp−k) where φ : Cp−k ↪→ Cp is a proper holomorphic
embedding whose complement is k-hyperbolic (every entire map Ck → Cp

whose range omits φ(Cp−k) has rank < k; such maps were constructed in [12]);
again CAPk fails but CAPk−1 holds by dimension reasons. Another example
is Y = (Ck\A) × Cp−k where A is a rigid discrete set in Ck.

We conclude by mentioning a few open problems.

Problem 6.2. Do the CAPn properties stabilize at some integer, i.e., is
there a p ∈ N depending on Y (or perhaps only on dimY ) such that CAPp =⇒
CAPn for all n > p? Does this hold for p = dimY ?
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Problem 6.3. Let B be a closed ball in Cp for some p ≥ 2. Does Cp\B
satisfy CAP (and hence the Oka property)? Does Cp\B admit any nontrivial
sprays?

The same problem makes sense for every compact convex set B ⊂ Cp.
What makes this problem particularly intriguing is the absence of any obvious
obstruction; indeed, Cp\B is a union of Fatou-Bieberbach domains [42].

Problem 6.4 (Gromov [28, p. 881, 3.4.(D)]). Suppose that every holomor-
phic map from a ball B ⊂ Cn to Y (for any n ∈ N) can be approximated by
entire maps Cn → Y . Does Y enjoy the Oka property?

Problem 6.5. Let π : Y → Y0 be a holomorphic fiber bundle. Does the
Oka property of Y imply the Oka property of the base Y0 and of the fiber?

Remark 6.6 (Mappings from Stein spaces). Although we have stated our
results only for mappings from Stein manifolds, it is not difficult to see that
the CAP property of a complex manifold Y implies the Oka property for maps
X → Y also when X is a (reduced, finite dimensional) Stein space with singu-
larities. To this end we choose a stratification X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0

by a finite descending sequence of closed Stein subspaces Xj ⊂ X such that
dimX0 = 0 and Xj\Xj−1 is nonsingular for j = 1, 2, . . . , n. Assuming that
our map X → Y has already been made holomorphic on Xj−1, the methods
in this paper (and in the sequel [19] where the interpolation is explained more
carefully) allow us to make it holomorphic on Xj by a homotopy that is fixed
on Xj−1. A more precise outline of this proof (in the context of stratified
submersions with sprays) is found in Section 7 of [23].
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[33] L. Hörmander, Notions of Convexity, Birkhäuser, Boston, 1994.
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