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Abstract

In this paper I will show that it is relatively consistent with the usual ax-
ioms of mathematics (ZFC) together with a strong form of the axiom of infinity
(the existence of a supercompact cardinal) that the class of uncountable linear
orders has a five element basis. In fact such a basis follows from the Proper
Forcing Axiom, a strong form of the Baire Category Theorem. The elements
are X, ω1, ω∗

1, C, C∗ where X is any suborder of the reals of cardinality ℵ1 and
C is any Countryman line. This confirms a longstanding conjecture of Shelah.

1. Introduction

Our focus in this paper will be to show that the Proper Forcing Axiom
(PFA) implies that any uncountable linear order must contain an isomorphic
copy of one of the following five orders: X, ω1, ω∗

1, C, and C∗. Here X is any
fixed set of reals of cardinality ℵ1 and C is any fixed Countryman line. Such
a list is called a basis.

The simplest example of an uncountable linear order is R, the real line.
This object serves as the prototype for the class of linear orders and as the
canonical example of an uncountable set. Early on in modern set theory,
Baumgartner proved the following deep result which suggested that it might
be possible to prove more general classification results for uncountable linear
orders.

*Revisions and updates to the paper were supported by NSF grant DMS-0401893. Travel
support to present these results in Kobe, Japan was provided by Grant-in-aid for Scientific
Research (C)(2)15540120, Japanese Society for the Promotion of Science.
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Theorem 1.1 (PFA, [3]). If two sets of reals are ℵ1-dense,1 then they
are isomorphic. In particular if X is a set of reals of cardinality ℵ1, then X

serves as a single-element basis for the class of uncountable separable linear
orders.

PFA is a strengthening of the Baire Category Theorem and is independent
of the usual axioms of set theory. Frequently, as in Baumgartner’s result
above, this axiom can be used to find morphisms between certain structures
or to make other combinatorial reductions (see [1], [3], [7], [24], [25], [27]).
An additional assumption is necessary in Baumgartner’s result because of the
following classical construction of Sierpiński.

Theorem 1.2 ([19]). There is a set of reals X of cardinality continuum
such that if f ⊆ X2 is a continuous injective function, then f differs from the
identity function on a set of cardinality less than continuum.

From this it is routine to prove that under the Continuum Hypothesis
there is no basis for the uncountable separable linear orders of cardinality less
than |P(R)|. This gives a complete contrast to the conclusion of Baumgartner’s
result.

The simplest example of a linear order which is separable only in the triv-
ial instances is a well order. The uncountable well orders have a canonical
minimal representative, the ordinal ω1.2 Similarly, the converse ω∗

1 of ω1 ob-
tained by reversing the order relation forms a single-element basis for all of the
uncountable converse well orders.

Those uncountable linear orders which do not contain uncountable sep-
arable suborders or copies of ω1 or ω∗

1 are called Aronszajn lines.3 They are
classical objects considered long ago by Aronszajn and Kurepa who first proved
their existence. Some time later Countryman made a brief but important con-
tribution to the subject by asking whether there is an uncountable linear order
C whose square is the union of countably many chains.4 Such an order is nec-
essarily Aronszajn. Furthermore, it is easily seen that no uncountable linear
order can embed into both a Countryman line and its converse. Shelah proved
that such orders exist in ZFC [16] and made the following conjecture:

Shelah’s Conjecture [16] (PFA). Every Aronszajn line contains a
Countryman suborder.

This soon developed into the following equivalent basis conjecture; see [22].

1I.e. every interval meets them at a set of cardinality ℵ1.
2The canonical representation of well orders mentioned here is due to von Neumann.
3Or Specker types.
4Here chain refers to the coordinate-wise partial order on C2.
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Conjecture (PFA) [4]. The orders X, ω1, ω∗
1, C and C∗ form a five

element basis for the uncountable linear orders whenever X is a set of reals of
cardinality ℵ1 and C is a Countryman line.

Notice that by our observations such a basis is necessarily minimal.
This problem was exposited, along with some other basis problems for

uncountable structures, in Todorčević’s [21]. It also appears as Question 5.1
in Shelah’s problem list [18]. A related and inspirational analysis of Aronszajn
trees was also carried out in [22].

In this paper I will prove Shelah’s conjecture. In doing so, I will introduce
some new methods for applying PFA which may be relevant to solving other
problems. I would like to thank Ilijas Farah, Jean Larson, Paul Larson, Bill
Mitchell, and Boban Veličković for carefully reading the paper and offering
their suggestions and comments. I would also like to thank Jörg Brendle for
supporting my visit to Japan where I presented the results of this paper in a
series of lectures at Kobe University in December 2003.

2. Background

This paper should be readily accessible to anyone who is well versed in set
theory and the major developments in the field in the 70s and 80s. The reader
is assumed to have proficiency in the areas of Aronszajn tree combinatorics,
forcing axioms, the combinatorics of [X]ℵ0 , and Skolem hull arguments. Jech’s
[12] and Kunen’s [14] serve as good references on general set theory. They
both contain some basic information on Aronszajn trees; further reading on
Aronszajn trees can be found in [5], [20], and [26]. The reader is referred to
[6], [16], [22], [23], or [26] for information on Countryman lines. It should be
noted, however, that knowledge of the method of minimal walks will not be
required.

The set theoretic assumption we will be working with is the Proper Forcing
Axiom. We will be heavily utilizing Todorcevic’s method of building proper
forcings using models as side conditions. Both [25] and the section on PFA in
[24] serve as good concise references on the subject. See [15] for information on
the Mapping Reflection Principle. For basic forcing technology, the reader is
referred to [11] and [14]. Part III of Jech’s [11] gives a good exposition on the
combinatorics of [X]ℵ0 , the corresponding closed unbounded (or club) filter,
and related topics.

The notation in this paper is mostly standard. If X is an uncountable set,
then [X]ℵ0 will be used to denote the collection of all countable subsets of X.
All ordinals are von Neumann ordinals — they are the set of their predecessors
under the ∈ relation. The collections H(θ) for regular cardinals θ consist of
those sets of hereditary cardinality less than θ. Hence H(2θ+) contains H(θ+)
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as an element and P(H(θ+)) as a subset. Often when I refer to H(θ) in this
paper I will really be referring to the structure (H(θ),∈, �) where � is some
fixed well ordering of H(θ) which can be used to generate the Skolem functions.

3. The axioms

The working assumption in this paper will be the Proper Forcing Axiom
introduced by Shelah and proved to be relatively consistent from a supercom-
pact cardinal. We will often appeal to the bounded form of this axiom isolated
by Goldstern and Shelah [9]. We will use an equivalent formulation due to
Bagaria [2]:

BPFA: If φ is a formula in language of H(ℵ+
1 ) with only bounded quantifiers

and there is a proper partial order which forces ∃Xφ(X), then H(ℵ+
1 )

already satisfies ∃Xφ(X).

At a crucial point in the proof we will also employ the Mapping Reflection
Principle introduced recently in [15]. In order to state it we will need the
following definitions.

Definition 3.1. If X is an uncountable set, then there is a natural topology
— the Ellentuck topology — on [X]ℵ0 defined by declaring

[x, N ] = {Y ∈ [X]ℵ0 : x ⊆ Y ⊆ N}
to be open whenever N is in [X]ℵ0 and x is a finite subset of N .

This topology is regular and 0-dimensional. Moreover, the closed and
cofinal sets generate the club filter on [X]ℵ0 .

Definition 3.2. If M is an elementary submodel of some H(θ) and X is
in M , then we say a subset Σ ⊆ [X]ℵ0 is M -stationary if whenever E ⊆ [X]ℵ0

is a club in M , the intersection Σ ∩ E ∩ M is nonempty.

Definition 3.3. If Σ is a set mapping defined on a set of countable ele-
mentary submodels of some H(θ) and there is an X such that Σ(M) ⊆ [X]ℵ0

is open and M -stationary for all M , then we say Σ is an open stationary set
mapping.

The Mapping Reflection Principle is defined as follows:

MRP: If Σ is an open stationary set mapping defined on a club of models, then
there is a continuous ∈-chain 〈Nξ : ξ < ω1〉 in the domain of Σ such that
for every ν > 0 there is a ν0 < ν such that Nξ ∩X is in Σ(Nν) whenever
ν0 < ξ < ν.

The sequence 〈Nξ : ξ < ω1〉 postulated by this axiom will be called a reflecting
sequence for the set mapping Σ.
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4. A combinatorial reduction

Rather than prove Shelah’s basis conjecture directly, I will appeal to the
following reduction.

Theorem 4.1 (BPFA). The following are equivalent :

(a) The uncountable linear orders have a five element basis.

(b) There is an Aronszajn tree T such that for every K ⊆ T there is an
uncountable antichain X ⊆ T such that ∧(X)5 is either contained in or
disjoint from K.

Remark. This result seems essentially to be folklore; the reader interested
in the historical aspects of this are referred to [1, p. 79], [4], [16]. A detailed
proof of this theorem can be found in the last section of [22]. I will sketch the
proof for completeness.

The implication (a) implies (b) does not require BPFA and in fact (a)
implies that the conclusion of (b) holds for an arbitrary Aronszajn tree T . To
see why it is true, suppose that (T,≤) is an Aronszajn tree equipped with a
lexicographical order and suppose that K ⊆ T witnesses a failure of (b). If
(T,≤) does not contain a Countryman suborder, then (a) must fail. So without
loss of generality, we may assume that (T,≤) is Countryman.

Define s ≤′ t if and only if s ∧ t is in K and s ≤ t or s ∧ t is not in K

and t ≤ s. It is sufficient to check that neither (T,≤) nor its converse (T,≥)
embeds an uncountable suborder of (T,≤′). This is accomplished with two
observations. First, since (T,≤) and its converse are Countryman, any such
embedding can be assumed to be the identity map. Second, if ≤ and ≤′ agree
on X ⊆ T , then ∧(X) ⊆ K; disagreement on X results in ∧(X) ∩ K = ∅.

For the implication (b) implies (a) we first observe that, by Baumgartner’s
result mentioned above, it suffices to show that the Aronszajn lines have a two
element basis. Fix a Countryman line C which is a lexicographical order ≤ on
an Aronszajn tree T . The club isomorphism of Aronszajn trees under BPFA
[1] together with some further appeal to MAℵ1 implies that any Aronszajn line
contains a suborder isomorphic to some (X,≤′) where X ⊆ T is uncountable
and binary and ≤′ is a — possibly different — lexicographical order on T .
Statement (b) is used to compare ≤ and ≤′ and to find an uncountable Y ⊆ X

on which these orders always agree or always disagree. Applying MAℵ1 , we see
that C embeds into all its uncountable suborders, thus finishing the proof.

5This will be defined below.
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5. The proof of the main result

In this section we will prove the basis conjecture of Shelah by proving the
following result and appealing to Theorem 4.1.

Theorem 5.1 (PFA). There is an Aronszajn tree T such that if K ⊆ T ,
then there is an uncountable antichain X ⊆ T such that ∧(X) is either con-
tained in or disjoint from K.

The proof will be given as a series of lemmas. In each case, I will state any
set theoretic hypothesis needed to prove a lemma. This is not to split hairs
but because I feel that it will help the reader better understand the proof.

For the duration of the proof, we will let T be a fixed Aronszajn tree which
is contained in the complete binary tree, coherent, closed under finite changes,
and special.6 It will be convenient to first make some definitions and fix some
notation.

Definition 5.2. If s and t are two elements of T , then diff(s, t) is the set of
all ξ such that s(ξ) and t(ξ) are defined and not equal. If F ⊆ T , then diff(F )
is the union of all diff(s, t) such that s and t are in F . The coherence of T is
the assertion that diff(s, t) is a finite set for all s, t in T .

Definition 5.3. If X is a subset of T and δ < ω1, then X � δ is the set of
all t � δ such that t is in X. Here t � δ is just functional restriction.

Definition 5.4. If s and t are in T , then ∆(s, t) is the least element of
diff(s, t). If s and t are comparable, we leave ∆(s, t) undefined.7 If Z ⊆ T and
t is in T , then ∆(Z, t) = {∆(s, t) : s ∈ Z}.

Definition 5.5. If X is a finite subset of T , then X(j) will denote the jth

least element of X in the lexicographical order inherited from T .

Definition 5.6. If s, t are incomparable in T , then the meet of s and t —
denoted s ∧ t — is the restriction s � ∆(s, t) = t � ∆(s, t). If X is a subset
of T , then ∧(X) = {s ∧ t : s, t ∈ X}.8

The following definition provides a useful means of measuring subsets of
an elementary submodel’s intersection with ω1.

6The tree T (ρ3) of [23] is such an example. Coherence is defined below.
7This is somewhat nonstandard but it will simplify the notation at some points. For

example, in the definition of ∆(Z, t) we only collect those values where ∆ is defined.
8The domain of ∧ is the same as the domain of ∆: the set of all incomparable pairs of

elements of T .
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Definition 5.7. If P is a countable elementary submodel of H(ℵ+
1 ) con-

taining T as an element, define IP (T ) to be the collection of all I ⊆ ω1 such
that for some uncountable Z ⊆ T in P and some t of height P ∩ ω1 which is
in the downward closure of Z, the set ∆(Z, t) is disjoint from I.

The following propositions are routine to verify using the coherence of T

and its closure under finite changes (compare to the proof that U(T ) is a filter
in [22] or [26]).

Proposition 5.8. If I is in IP (T ) and t is in T with height P ∩ω1, then
there is a Z ⊆ T in P such that t is in the downward closure9 of Z and ∆(Z, t)
is disjoint from I.

Proposition 5.9. If I is in IP (T ), Z0 is a subset of T in P and t is an
element of the downward closure of Z0 of height P ∩ω1, then there is a Z ⊆ Z0

in P which also contains t in its downward closure and satisfies the fact that
∆(Z, t) ∩ I is empty.

Proposition 5.10. IP (T ) is a proper ideal on ω1 which contains I ⊆ ω1

whenever I ∩ P is bounded in ω1 ∩ P .

Proposition 5.11. Suppose P is a countable elementary submodel of
H(ℵ+

1 ) such that Z ⊆ T is an element of P , and there is a t ∈ T of height
P ∩ ω1 in the downward closure of Z. Then Z is uncountable.

Let K ⊆ T be given. The following definitions will be central to the proof.
The first is the näıve approach to forcing an uncountable X such that ∧(X) is
contained in K.

Definition 5.12. H(K) is the collection of all finite X ⊆ T such that ∧(X)
is contained in K.10

It is worth noting that H(K) is the correct forcing to work with if K is
a union of levels of T ; this is demonstrated in [22]. This and other ideas and
proofs in [22] emboldened me to attempt the more general case in which K is
an arbitrary subset of T .

Also, the notion of rejection will be central in the analysis of H(K). For
convenience we will let E denote the collection of all clubs E ⊆ [H(ℵ+

1 )]ℵ0

which consist of elementary submodels which contain T and K as elements.
Let E0 denote the element of E which consists of all such submodels.

9The downward closure of Z is the collection of all s such that s ≤ s∗ for some s∗ in Z.
10A collection of finite sets such as this becomes a forcing notion when given the order of

reverse inclusion (q ≤ p means that q is stronger than p). A collection of ordered pairs of
finite sets becomes a forcing by coordinate-wise reverse inclusion.
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Definition 5.13. If X is a finite subset of T , then let K(X) denote the set
of all γ < ω1 such that for all t in X, if γ is less than the height of t, then t � γ

is in K.

Definition 5.14. If P is in E0 and X is a finite subset of T , then we say
that P rejects X if K(X) is in IP (T ).

The following trivial observations about P in E0 and finite X ⊆ T are
useful and will be used tacitly at times in the proofs which follow.

Proposition 5.15. If P does not reject X, then it does not reject any of
its restrictions X � γ.

Proposition 5.16. P rejects X if and only if it rejects X � (P ∩ ω1) if
and only if it rejects X \ P .

Proposition 5.17. If X is in P , then P does not reject X.

The forcing notion ∂(K) which we are about to define seeks to add a
subset of T in which rejection is rarely encountered.11

Definition 5.18. ∂(K) consists of all pairs p = (Xp,Np) such that:

(a) Np is a finite ∈-chain such that if N is in N, then T and K are in N and
N is the intersection of a countable elementary submodel of H(22ℵ1 +

)
with H(2ℵ1

+).

(b) Xp ⊆ T is a finite set and if N is in Np, then there is an E in E∩N such
that Xp is not rejected by any element of E ∩ N .

We will also be interested in the suborder

∂H(K) = {p ∈ ∂(K) : Xp ∈ H(K)}
which seems to be the correct modification of H(K) from the point of view of
forcing the conclusion of the main theorem.

In order to aid in the presentation of the lemmas, I will make the following
definition.

Definition 5.19. ∂(K) is canonically proper if whenever M is a countable
elementary submodel of H

(
|2∂(K)|+

)
and ∂(K) is in M , any condition p which

satisfies the fact that M∩H(2ℵ1
+) is in Np is (M, ∂(K))-generic. An analogous

definition is made for ∂H(K).

11The symbol ∂ is being used here because there is a connection to the notion of a Cantor-
Bendixon derivative. In a certain sense we are removing the parts of the partial order H(K)
which are causing it to be improper.
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Assuming the Proper Forcing Axiom, we will eventually prove that ∂H(K)
is canonically proper. The following lemma shows that this is sufficient to finish
the argument.

Lemma 5.20 (BPFA). If ∂H(K) is canonically proper, then there is an
uncountable X ⊆ T such that ∧(X) is either contained in K or disjoint from K.

Remark. This conclusion is sufficient since the properties of T imply that
X contains an uncountable antichain.

Proof. Let M be a countable elementary submodel of H
(
|2∂H(K)|+

)
con-

taining ∂H(K) as an element. Let t be an element of T of height M ∩ ω1.
If

p =
(
{t}, {M ∩ H(2ℵ1

+
)}

)
is a condition in ∂H(K), then it is (M, ∂H(K))-generic by assumption. Con-
sequently p forces the interpretation of

Ẋ = {s ∈ T : ∃q ∈ Ġ(s ∈ Xq)}

as uncountable. Since Ẋ will then be forced to have the property that ∧(Ẋ) ⊆
Ǩ, we can apply BPFA to find such an X in V .

Now suppose that p is not a condition. It follows that there is a countable
elementary submodel P of H(ℵ+

1 ) in M such that T is in P and K({t}) is
in IP (T ). Therefore there is a Z ⊆ T in P such that t � (P ∩ ω1) is in the
downward closure of Z and for all s in Z, s∧ t is not in K. Let Y consist of all
those w in ∧(Z) such that if u, v are incomparable elements of Z and u∧v ≤ w,
then u∧ v is not in K. Notice that Y is an element of P and Y is uncountable
since it contains s ∧ t for every s in P ∩ Z which is incomparable with t. The
heights of elements of this set are easily seen to be unbounded in P ∩ ω1. We
are therefore finished once we see that ∧(Y ) is disjoint from K. To this end,
suppose that w0 and w1 are incomparable elements of Y . Let u0, u1, v0, v1 be
elements of Z such that ui and vi are incomparable and wi = ui ∧ vi. Since w0

and w1 are incomparable,

u0

(
∆(w0, w1)

)
= w0

(
∆(w0, w1)

)
�= w1

(
∆(w0, w1)

)
= v1

(
∆(w0, w1)

)
.

It follows that u0 ∧ v1 = w0 ∧w1. Since w0 extends u0 ∧ v1 and is in Y , it must
be that u0 ∧ v1 is not in K. Hence w0 ∧ w1 is not in K. This completes the
proof that ∧(Y ) is disjoint from K.

The following lemma is the reason for our definition of rejection. It will
be used at crucial points in the argument.

Lemma 5.21. Suppose that E is in E and 〈Xξ : ξ < ω1〉 is a sequence
of disjoint n-element subsets of T so that no element of E rejects any Xξ for
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ξ < ω1. Then there are ξ �= η < ω1 such that Xξ(j) ∧ Xη(j) is in K for all
j < n.

Proof. By the pressing down lemma we can find a ζ < ω1 and a stationary
set Ξ ⊆ ω1 such that:

(1) For all ξ in Ξ, Xξ contains only elements of height at least ξ.

(2) Xξ(j) � ζ = Xη(j) � ζ for all j < n and ξ, η ∈ Ξ.

(3) For all ξ in Ξ the set diff(Xξ � ξ) is contained in ζ.

Now let P be an element of E which contains 〈Xξ : ξ ∈ Ξ〉. Let η be an element
of Ξ outside of P and pick a ξ in Ξ ∩ P such that Xξ(0) � ξ and Xη(0) � η are
incomparable and for all j < n

Xη(j) � ∆
(
Xη(0), Xξ(0)

)
is in K. This is possible since otherwise Z = {Xξ(0) � ξ : ξ ∈ Ξ} and
t = Xη(0) � (P ∩ ω1) would witness K(Xη) is in IP (T ) and therefore that P

rejects Xη.
Notice that if j < n, then

∆
(
Xη(j), Xξ(j)

)
= ∆

(
Xη(0), Xξ(0)

)
since

diff(Xξ � ξ) ∪ diff(Xη � η) ⊆ ζ,

Xη(j) � ζ = Xξ(j) � ζ.

Hence the meets

Xξ(j) ∧ Xη(j) = Xη(j) � ∆
(
Xξ(0), Xη(0)

)
are in K for all j < n.

The next lemma draws the connection between ∂H(K) and the forcing
∂(K). We will then spend the remainder of the paper analyzing ∂(K).

Lemma 5.22 (BPFA). If ∂(K) is canonically proper, so is ∂H(K).

Proof. We will show that otherwise the forcing ∂(K) introduces a coun-
terexample to Lemma 5.21 which would then exist in V by an application of
BPFA. Let M be a countable elementary submodel of H

(
|2∂(K)|+

)
which con-

tains K as an element and let r ∈ ∂H(K) be such that M ∩ H(2ℵ1
+) is in

Nr and yet r is not (M, ∂H(K))-generic. By extending r if necessary, we may
assume that there is a dense open set D ⊆ ∂H(K) in M which contains r such
that if q is in D ∩ M , then q is ∂H(K)-incompatible with r.

Let E ∈ E ∩ M be such that no element of E ∩ M rejects Xr and let E′

be the elements of E which are the union of their intersection with E. Put
Yr = (Xr \ M) � (M ∩ ω1).
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Claim 5.23. No element of E′ rejects Yr.
Proof. First observe that no element of E′ ∩ M rejects Yr; the point is to

generalize this to arbitrary elements of E′. Let P be an element of E′. We
need to verify that K(Yr) is not in IP (T ). If P ∩ ω1 is greater than M ∩ ω1,
then Yr ⊆ P and this is trivial. Now suppose that Z ⊆ T is in P and t is an
element of T of height P ∩ ω1 which is in the downward closure of Z. Let P0

be an element of E ∩ P which contains Z as a member. Such a P0 will satisfy

P0 ∩ ω1 < P ∩ ω1 ≤ M ∩ ω1.

Let ν = P0 ∩ ω1. If ∆
(
Z, t � (P ∩ ω1)

)
is disjoint from K(Yr), then it shows

that K(Yr � ν) is in IP0(T ). But then we could use the elementarity of M

to find such a P0 in M ∩ E, which is contrary to our choice of E. Hence no
element of E′ rejects Yr.

Let ζ ∈ M ∩ ω1 be an upper bound for diff(Yr) and let n = |Yr|. If
j < n, let Aj ⊆ T be an antichain in M which contains Yr(j).12 Let D∗ be the
collection of all q in D such that:

(4) Xr ∩M = Xq ∩N(q) where N(q) is the least element of Nq which is not
in Nr ∩ M .

(5) Yq � ζ = Yr � ζ where Yq =
(
Xq \ N(q)

)
�

(
N(q) ∩ ω1

)
.

(6) No element of E′ rejects Yq.

(7) Yq(j) is in Aj whenever j < n.

Note that D∗ is in M .
Let G be a ∂(K)-generic filter which contains r. Notice that r is (M, ∂(K))-

generic. Working in V [G], let F be the collection of all Yq where q is in D∗∩G.
Now M [G∩M ] is an elementary submodel of H

(
|2∂(K)|+

)
[G]13 which contains

F as an element but not as a subset (since Yr is in F). Therefore F is uncount-
able. Notice that every element of F has the property that it is in H(K) but
that for every countable F0 ⊆ F there is a Yq in F \F0 such that Yq ∪Yq0 is not
in H(K) for any Yq0 in F0. This follows from the elementarity of M [G ∩ M ]
and from the fact that Yr ∪ Yq is not in H(K) for any Yq in F ∩ M [G ∩ M ].
Now it is possible to build an uncountable sequence 〈Xξ : ξ ∈ Ξ〉 of elements
of F such that:

(8) Xξ has size n for all ξ ∈ Ξ and is a subset of the ξth level of T .

(9) Xξ ∪ Xη is not in H(K) whenever ξ �= η are in Ξ.

(10) There is a ζ < ω1 such that Xξ � ζ = Xη � ζ has size n for all ξ, η < ω1.

12Here we are using that T is special.
13By Theorem 2.11 of [17].
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It follows from (9) that if ξ < η < ω1, then there are j, j′ < n such that
Xξ(j) ∧ Xη(j′) is not in K. By (10), it must be the case that j = j′ since this
condition ensures that

Xξ(j) ∧ Xη(j′) = Xξ(j) ∧ Xξ(j′)

whenever j �= j′ < n and hence this meet would be in K by virtue of Xξ

being in H(K). Applying BPFA we get a sequence of sets satisfying (8)–(10)
in V and therefore a contradiction to Lemma 5.21 since no elements of F are
rejected by any member of E′. Hence ∂H(K) must also be canonically proper.

Next we have a typical “models as side conditions” lemma.

Lemma 5.24. If ∂(K) is not canonically proper, then there are disjoint
sets A, B and a function Y : A ∪ B → [T ]<ℵ0 such that :

(a) A ⊆ [H(2ℵ1
+)]ℵ0 and {N ∩ H(ℵ+

1 ) : N ∈ A} is stationary.

(b) B ⊆ [H(22ℵ1 +
)]ℵ0 is stationary.

(c) If M is in A ∪ B, then
(
Y (M), {M ∩ H(2ℵ1

+)}
)

is in ∂(K).

(d) For every M in B and N in A ∩ M ,
(
Y (N) ∪ Y (M), {N}

)
is not a

condition in ∂(K).

Proof. Let M be a countable elementary submodel of H
(
|2∂(K)|+

)
and r

in ∂(K) be a condition which is not (M, ∂(K))-generic such that M ∩H(2ℵ1
+)

is in Nr. By extending r if necessary, we can find dense open D ⊆ ∂(K) in
M which contains r such that no element of D ∩ M is compatible with r.
Furthermore we may assume that if q is in D, N is in Nq, and t is in Xq, then
t � (N ∩ ω1) is also in Xq.

Define r0 = (Xr∩M,Nr∩M). If q is in D, let N(q) be the ∈-least element
of Nq \ Nr0 . Let k = |Nr \ Nr0 | and ζ be the maximum of all ordinals of the
forms ht(s) + 1 for s ∈ Xr0 and N ∩ ω1 for N ∈ Nr0 . Let Tk be the set of all
q ≤ r0 in D such that:

(11) Xq ∩ N(q) = Xr0 and Nq ∩ N(q) = Nr0 .

(12) Xq � ζ = Xr � ζ.

(13) |Xq| = |Xr| = m and |Nq \ Nr0 | = k.

Let Ni(q) denote the ith ∈-least element of Nq \N(q) and define Ti recursively
for i ≤ k. Given Ti+1, define Ti to be the collection of all q such that

{Ni+1(q∗) ∩ H(ℵ+
1 ) : q∗ ∈ Ti+1 and q = q∗ � Ni+1(q∗)}
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is stationary where

q∗ � Ni+1(q∗) =
(
Xq∗ ∩ Ni+1(q∗),Nq∗ ∩ Ni+1(q∗)

)
.

Let T be the collection of all q in
⋃
i≤k

Ti such that if q is in Ti, then q � Ni′+1(q)

is in Ti′ for all i′ < i.

Claim 5.25. r is in T.

Proof. If q is in ∂(K), define

q̃ =
(
Xq, {N ∩ H(ℵ+

1 ) : N ∈ Nq}
)
.

While elements of Nr \M need not contain Ti as an element for a given i ≤ k,
they do contain T̃i = {q̃ ∈ Ti} as an element for each i ≤ k. Define rk = r

and ri = ri+1 � Ni+1(r). Suppose that ri+1 is in Ti+1. Since T̃i+1 and ri are in
Ni+1(r) = Ni+1(ri+1) and since Ni+1(r)∩H(ℵ+

1 ) is in every club in E∩Ni+1(r),
it follows by elementarity of Ni+1(r) that the set

{Ni+1(q∗) ∩ H(ℵ+
1 ) : q∗ ∈ Ti+1 and ri = q∗ � Ni+1(q∗)}

= {Ni+1(q̃∗) : q̃∗ ∈ T̃i+1 and r̃i = q̃∗ � Ni+1(q̃∗)}
is stationary. Hence ri is in Ti.

Notice that T is in M . T has a natural tree order associated with it induced
by restriction. Since no element of Tk ∩M is compatible with r and since r0 is
in T ∩M , there is a q in T ∩M which is maximal in the tree order such that q

is compatible with r but such that none of q’s immediate successors in T ∩ M

are compatible with r. Let l denote the height of q in T and let A be equal to
the set of all Nl+1(q∗) such that q∗ is an immediate successor of q in T. Notice
that if q∗ is in Tl+1 and q is a restriction of q∗, then q∗ is in T. Hence we have
arranged that {N ∩ H(ℵ+

1 ) : N ∈ A} be stationary. For each N in A, select
a fixed q∗ which is an immediate successor of q in T such that Nl+1(q∗) = N

and put
Y (N) = Xq∗ \ Xq.

Claim 5.26. For all N in A ∩ M the pair
(
Xr ∪ Y (N), {N}

)
is not a

condition in ∂(K).

Proof. Let N be in A ∩ M and fix an immediate successor q∗ of q in T

such that Nl+1(q∗) = N and Y (N) = Xq∗ \ Xq. Observe that

(Xr ∪ Xq∗ ,Nq∗ ∪ Nr)

is not a condition in ∂(K) but that

(Xr ∪ Xq,Nq ∪ Nr)
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is a condition. Furthermore, (Xr ∪ Xq∗ ,Nq∗ ∪ Nr) fails to be a condition
only because it violates item 5.18(b) in the definition of ∂(K). Observe that
Nq∗ \ Nq = {N}. If N ′ is an element of Nr ∪ Nq, then the sets of restrictions

{t � (N ′ ∩ ω1) : t ∈ Xr ∪ Xq∗},

{t � (N ′ ∩ ω1) : t ∈ Xr ∪ Xq}

are equal by definitions of Tl and q and by our initial assumptions about the
closure of Xq for q in D under certain restrictions. Since (Xr ∪ Xq,Nr ∪ Nq)
is a condition, such an N ′ cannot witness the failure of 5.18(b). Therefore it
must be the case that the reason (Xr ∪ Xq∗ ,Nq∗ ∪ Nr) is not in ∂(K) is that
N witnesses a failure of item 5.18(b). Now, the elements of Xq∗ which have
height at least N ∩ω1 are exactly those in Y (N) = Xq∗ \Xq. This finishes the
claim.

Notice that by elementarity of M , Y � A can be chosen to be in M . Now
M satisfies “There is a stationary set of countable elementary submodels M∗
of H(22ℵ1 +

) such that for some Y (M∗) with
(
Y (M∗), {M∗∩H(2ℵ1

+)}
)

in ∂(K)
we have that for every N in A ∩ M∗ the pair

(
Y (N) ∪ Y (M∗), {N}

)
is not a

condition in ∂(K).” By elementarity of M , we are finished.

The following definition will be useful.

Definition 5.27. A function h is a level map if its domain is a subset of
ω1 and h(δ) is a finite subset of the δth level of T whenever it is defined.

The next proposition is useful and follows easily from the fact that all levels
of T are countable.

Proposition 5.28. If N ∩H(ℵ+
1 ) is in E0, δ = N ∩ω1, and X is a finite

subset of the δth level of T , then there is a level map h in N such that h(δ) = X.

The next lemma will represent the only use of MRP in the proof.

Lemma 5.29 (MRP). Suppose that M is a countable elementary sub-
model of H(22ℵ1 +

) which contains T and K as members. If X is a finite
subset of T , then there is an E in E ∩ M such that either every element of
E ∩ M rejects X or no element of E ∩ M rejects X.

Remark. Notice that the latter conclusion is just a reformulation of the
statement that

(
X, {M ∩ H(2ℵ1

+)}
)

is a condition in ∂(K).

Proof. Let δ = M ∩ ω1. Without loss of generality, we may assume that
X = X � δ. Applying Proposition 5.28, select a level map g in M such that
g(δ) = X. If N is a countable elementary submodel of H(2ℵ1

+) with T and
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K as members, define Σ(N) as follows. If the set of all P in E0 which reject
g(N ∩ω1) is N -stationary, then put Σ(N) equal to this set in a union with the
complement of E0. If Σ(N) is defined in this way, it will be said to be defined
nontrivially. Otherwise let Σ(N) be the interval [∅, N ∩ H(ℵ+

1 )].
Observe that Σ is an open stationary set mapping which is moreover an

element of M . Applying MRP and the elementarity of M , it is possible to find
a reflecting sequence 〈Nξ : ξ < ω1〉 for Σ which is an element of M . Let E be
the collection of all P in E0 which contain

(14) the sequence 〈Nξ ∩ H(ℵ+
1 ) : ξ < ω1〉 and

(15) some δ0 < N ∩ ω1 such that Nξ ∩ H(ℵ+
1 ) is in Σ(Nδ) whenever ξ is in

(δ0, δ).

Notice that E is in M ∩ E.
To finish the proof, suppose that the set of all P in M ∩ E0 which reject

X is M -stationary (i.e. the second conclusion does not hold).

Claim 5.30. Σ(Nδ) is defined nontrivially.

Proof. Suppose that E′ ⊆ E0 is a club in Nδ. Since the reflecting sequence
is continuous, Nδ is a subset of M and therefore E′ is also in M . By assumption,
there is a P in E′ ∩ M such that P rejects X. Let ν = P ∩ ω1 and note that
ν < δ. Applying elementarity of Nδ, Proposition 5.16, and the fact that X � ν

is in Nδ, it is possible to find such a P in E′ ∩ Nδ which rejects X � ν — and
hence X. It follows that Σ(Nδ) is defined nontrivially.

Now suppose that P is in E ∩ M . We are finished once we see that P

rejects X. Let ν = P ∩ ω1. Since δ0 < ν < δ, Pν = Nν ∩ H(ℵ+
1 ) is in

Σ(Nδ). So Pν rejects X or — equivalently — K(X) is in IPν
(T ). Observe that

Pν ∩ ω1 = P ∩ ω1 and Pν ⊆ P by continuity of the reflecting sequence. Hence
IP (T ) ⊆ IP (T ). It follows that P rejects X.

The next lemma finishes the proof of the main theorem.

Lemma 5.31 (MRP + MAℵ1). There are no A, B, and Y which satisfy
the conclusion of Lemma 5.24. In particular, ∂(K) is canonically proper.

Proof. We will assume that there are such A, B, and Y and derive a
contradiction by violating Lemma 5.21. Without loss of generality we may
suppose that elements of B contain A as a member. By modifying Y we may
assume that all elements of Y (M) have height M ∩ω1 whenever M is in A∪B.
Further, we may assume that Y (M) has the same fixed size n for all M in B

and that are a ζ0 and E∗ ∈ E such that:

(16) If M is in B, then diff(Y (M)) ⊆ ζ0.
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(17) If M, M ′ are in B, then Y (M) � ζ0 = Y (M ′) � ζ0.

(18) If M is in B, then E∗ is in M and no element of E∗ rejects Y (M).

This is achieved by the pressing down lemma and the proof of Claim 5.23.14

Let F be the collection of all finite X ⊆ T such that all elements of X have
the same height γ > ζ0 and the set

{M ∈ B : Y (M) � γ = X}

is stationary. Notice that, for a fixed γ, we can define B to be a union over
the finite subsets X of Tγ of the collection

B[X] = {M ∈ B : Y (M) � γ = X}

and hence at least one such B[X] must be stationary. Consequently F must be
uncountable. Also, no element of E∗ rejects any element of F. Now define Q

to be the collection of all finite F ⊆ F such that if X �= X ′ are in F , then the
heights of elements of X and X ′ are different and there is a j < n such that
X(j) ∧ X ′(j) is not in K.

Claim 5.32 (MRP). Q satisfies the countable chain condition.

Proof. Suppose that 〈Fξ : ξ < ω1〉 is a sequence of distinct elements of Q.
We will show that {Fξ : ξ < ω1} is not an antichain in Q. By a ∆-system
argument, we may assume that the sequence consists of disjoint sets of the
same cardinality m. Let Fξ(i) denote the ith-least element of Fξ in the order
induced by T ’s height function. If j < n, let Fξ(i, j) denote the jth element of
Fξ(i) in the lexicographical order on Fξ(i) (i.e. Fξ(i, j) = Fξ(i)(j)).

Let N be an element of A which contains ζ0 and 〈Fξ : ξ < ω1〉 as members.
Put δ = N ∩ ω1 and fix a β in ω1 \ N . Let E be a club in N such that Y (N)
is not rejected by any element of E ∩ N .

For each i < m, pick an Mi in B such that N ∈ Mi and Fβ(i) is a
restriction of Y (Mi). Let M be a countable elementary submodel of H(22ℵ1 +

)
such that N = M ∩H(2ℵ1

+). Applying Lemma 5.29 to M for each i < m and
intersecting clubs,15 it is possible to find a P in E ∩ N such that

I =
⋃
i<m

K
(
Y (N) ∪ Y (Mi)

)
∈ IP (T ).

Put ν = P ∩ ω1. Pick a ζ < ν such that diff(∪Fβ � ν) is contained in ζ and if
u, v are distinct elements of ∪Fβ � ν, then u � ζ and v � ζ are distinct.

14To get the last item, find an E1 in E such that no element of E1 ∩ M rejects Y (M) for
stationary many M in B, let E∗ be the elements P of E1 which are equal to the union of
their intersection with E1.

15This is the only place where Lemma 5.29 (and hence MRP) is applied.



UNCOUNTABLE LINEAR ORDERS 685

Subclaim 5.33. There is a sequence 〈αξ : ξ < ω1〉 in P such that for
each ξ < ω1 the following conditions hold :

(a) ξ ≤ αξ,

(b) ∪Fαξ
� ζ = ∪Fβ � ζ,

(c) diff(∪Fαξ
� ξ) = diff(∪Fβ � ν), and

(d) ∪Fαν
� ν = ∪Fβ � ν.

Proof. The only part of the proof which is nontrivial is getting the sequence
to be a member of P and to satisfy item (d). By Proposition 5.28, there is a
level map g in P such that g(ν) = ∪Fβ � ν. Now working in P , we can define
αξ to be an ordinal such that ∪Fαξ

� ξ = g(ξ) if g(ξ) is defined, is a restriction
of this form, and satisfies diff(g(ξ)) = diff(∪Fβ � ν) and g(ξ) � ζ = ∪Fβ � ζ. If
αξ is left undefined, then we simply select an αξ with the necessary properties.
Notice that αν is defined using g.

Subclaim 5.34. There is an uncountable Ξ ⊆ ω1 in P such that if

Z = {Fαξ
(0, 0) � ξ : ξ ∈ Ξ}

and t = Fβ(0, 0) � ν, then t is in the downwards closure of Z and ∆(Z, t) is
disjoint from

I =
⋃
i<m

K
(
Y (N) ∪ Y (Mi)

)
.

Proof. By Proposition 5.9 there is a Ξ0 ⊆ ω1 such that for some t0 in T

of height ν in the downward closure of Z0 = {Fαξ
(0, 0) � ξ : ξ ∈ Ξ0} the set

∆(Z0, t0) is disjoint from I. Let Z1 be all elements s in T obtained from some
Fαξ

(0, 0) � ξ by changing its values on the finite set

diff
(
Fαν

(0, 0) � ν, t0
)
∩ ξ.

Let Ξ be the collection of all ξ such that Fαξ
(0, 0) � ξ is an initial part of some

element of Z1. Notice that Ξ is in P and is uncountable since it contains ν.
Furthermore, if t = Fαν

(0, 0) � ν = Fβ(0, 0) � ν, then ∆(Z, t) is contained in

∆(Z1, t) = ∆(Z0, t0)

and hence is disjoint from I.

The key observation — and the reason why the main theorem goes through
— is the following. Since P is in E ∩N , it does not reject Y (N) and therefore
there is a ξ in Ξ ∩ P such that for all j < |Y (N)| the restriction

Y (N)(j) � ∆
(
Fαξ

(0, 0), t
)
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is in K where t = Fβ(0, 0) � ν. By the choice of Ξ this means that for all i < m

there is a j < n such that

Fβ(i, j) � ∆
(
Fαξ

(0, 0), t
)

= Fβ(i, j) ∧ Fαξ
(i, j)

is not in K. Let α = αξ.
Now we claim that Fα ∪ Fβ is in Q. To see this, suppose that i, i′ < m. If

Fβ(i) � ν �= Fβ(i′) � ν, then pick a j < n such that Fα(i, j) ∧ Fα(i′, j) is not in
K. Since

∆
(
Fα(i′, j), Fβ(i′, j)

)
≥ ζ > ∆

(
Fα(i, j), Fα(i′, j)

)
it must be the case that

∆
(
Fα(i, j), Fβ(i′, j)

)
= ∆

(
Fα(i, j), Fα(i′, j)

)
and so

Fα(i, j) ∧ Fβ(i′, j) = Fα(i, j) ∧ Fα(i′, j)

is not in K.
If Fβ(i) � ν = Fβ(i′) � ν, then we have that for all j < n,

∆
(
Fα(i, j), Fβ(i′, j)

)
= ∆

(
Fα(i, j), Fβ(i, j)

)
= ∆

(
Fα(0, 0), Fβ(0, 0)

)
.

By arrangement there is a j such that

Fα(i, j) ∧ Fβ(i, j) = Fβ(i, j) � ∆
(
Fα(0, 0), Fβ(0, 0)

)
is not in K. Hence for all i, i′ < m, there is a j < n such that

Fα(i, j) ∧ Fβ(i′, j)

is not in K and therefore we have that Fα ∪ Fβ is in Q.

Applying MAℵ1 to the forcing Q it is possible to find an uncountable
F0 ⊆ F such that whenever X �= X ′ are in F0, there is a j < n such that
X(j)∧X ′(j) is not in K. This contradicts Lemma 5.21 since no element of E∗
rejects any element of F.

6. Closing remarks

The use of MRP in the argument above is restricted to proving Lemma
5.29. Working from a stronger assumption, we can deduce the following ab-
stract form of the lemma. The interested reader is encouraged to supply a
proof and see why a stronger assumption is apparently needed for the abstract
statement while MRP suffices in the proof of Lemma 5.29.
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0-1 law for open set mappings (SMRP16). Suppose that Σ is an open
set mapping defined on a club and that Σ has the following properties:

(1) If N is in the domain of Σ, then Σ(N) is closed under end extensions.17

(2) If N and N are in the domain of Σ and N is an end extension of N ,
then Σ(N) = Σ(N) ∩ N .

Then for a closed unbounded set of N in the domain of Σ, there is a club
E ⊆ [XΣ]ℵ0 in N such that E ∩ N is either contained in or disjoint from
Σ(N).

It seems quite possible that this 0-1 law will be useful in analyzing related
problems such as Fremlin’s problem on perfectly normal compacta (see [10],
[21]).

The conventional wisdom had been that if it were possible to prove the
consistent existence of a five element basis for the uncountable linear orders,
then such a basis would follow from BPFA. MRP has considerable consistency
strength [15], while BPFA can be forced if there is a reflecting cardinal [9].
The following is left open.

Question 6.1. Does BPFA imply Shelah’s conjecture?

Recently König, Larson, Veličković, and I have shown that a certain satu-
ration property of Aronszajn trees taken together with BPFA implies Shelah’s
conjecture [13]. This saturation property can be forced if there is a Mahlo car-
dinal. This considerably reduces the upper bound on the consistency strength
of Shelah’s conjecture to that of a reflecting Mahlo cardinal. It is possible, how-
ever, that Shelah’s conjecture cannot follow from BPFA simply on grounds of
its consistency strength. It should be remarked though that Shelah’s conjec-
ture is not known to have any large cardinal strength.

Boise State University, Boise, Idaho
E-mail address: justin@math.boisestate.edu
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