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0. Introduction

0.1. Overview.

0.1.1. We present here the second in a sequence of three papers devoted to
the Gromov-Witten theory of nonsingular target curves X. Let ω ∈ H2(X, Q)
denote the Poincaré dual of the point class. In the first paper [24], we consid-
ered the stationary sector of the Gromov-Witten theory of X formed by the
descendents of ω. The stationary sector was identified in [24] with the Hurwitz
theory of X with completed cycle insertions.

The target P1 plays a distinguished role in the Gromov-Witten theory of
target curves. Since P1 admits a C∗-action, equivariant localization may be
used to study Gromov-Witten invariants [12]. The equivariant Poincaré duals,

0,∞ ∈ H2
C∗(P1, Q),

of the C∗-fixed points 0,∞ ∈ P1 form a basis of the localized equivariant
cohomology of P1. Therefore, the full equivariant Gromov-Witten theory of
P1 is quite similar in spirit to the stationary nonequivariant theory. Via the
nonequivariant limit, the full nonequivariant theory of P1 is captured by the
equivariant theory.

The equivariant Gromov-Witten theory of P1 is the subject of the present
paper. We find explicit formulas and establish connections to integrable hi-
erarchies. The full Gromov-Witten theory of higher genus target curves will
be considered in the third paper [25]. The equivariant theory of P1 will play
a crucial role in the derivation of the Virasoro constraints for target curves
in [25].

0.1.2. Our main result here is an explicit operator description of the
equivariant Gromov-Witten theory of P1. We identify all equivariant Gromov-
Witten invariants of P1 as vacuum matrix elements of explicit operators acting
in the Fock space (in the infinite wedge realization).

The result is obtained by combining the equivariant localization formula
with an operator formalism for the Hodge integrals which arise as vertex terms.
The operator formalism for Hodge integrals relies crucially upon a formula
due to Ekedahl, Lando, Shapiro, and Vainstein (see [6], [7], [13] and also [23])
expressing basic Hurwitz numbers as Hodge integrals.

0.1.3. As a direct and fundamental consequence of the operator formal-
ism, we find an integrable hierarchy governs the equivariant Gromov-Witten
theory of P1 — specifically, the 2-Toda hierarchy of Ueno and Takasaki [28].
The equations of the hierarchy, together with the string and divisor equations,
uniquely determine the entire theory.
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A Toda hierarchy for the nonequivariant Gromov-Witten theory of P1 was
proposed in the mid 1990’s in a series of papers by the physicists T. Eguchi,
K. Hori, C.-S. Xiong, Y. Yamada, and S.-K. Yang on the basis of a conjectural
matrix model description of the theory; see [3], [5]. The Toda conjecture was
further studied in [26], [21], [10], [11] and, for the stationary sector, proved
in [24].

The 2-Toda hierarchy for the equivariant Gromov-Witten theory of P1 ob-
tained here is both more general and, arguably, more simple than the hierarchy
obtained in the nonequivariant limit.

0.1.4. The 2-Toda hierarchy governs the equivariant theory of P1 just
as Witten’s KdV hierarchy [29] governs the Gromov-Witten theory of a point.
However, while the known derivations of the KdV equations for the point
require the analysis of elaborate auxiliary constructions (see [1], [14], [16], [22],
[23]), the Toda equations for P1 follow directly, almost in textbook fashion,
from the operator description of the theory.

In fact, the Gromov-Witten theory of P1 may be viewed as a more funda-
mental object than the Gromov-Witten theory of a point. Indeed, the theory
of P1 has a simpler and more explicit structure. The theory of P1 is not based
on the theory of a point. Rather, the point theory is perhaps best understood
as a certain special large degree limit case of the P1 theory; see [23].

0.1.5. The proof of the Gromov-Witten/Hurwitz correspondence in [24]
assumed a restricted case of the full result: the GW/H correspondence for the
absolute stationary nonequivariant Gromov-Witten theory of P1. The required
case is established here as a direct consequence of our operator formalism
for the equivariant theory of P1 — completing the proof of the full GW/H
correspondence.

While the present paper does not rely upon the results of [24], much of
the motivation can be found in the study of the stationary theory developed
there.

0.1.6. We do not know whether the Gromov-Witten theories of higher
genus target curves are governed by integrable hierarchies. However, there exist
conjectural Virasoro constraints for the Gromov-Witten theory of an arbitrary
nonsingular projective variety X formulated in 1997 by Eguchi, Hori, and
Xiong (using also ideas of S. Katz); see [4].

The results of the present paper will be used in [25] to prove the Virasoro
constraints for nonsingular target curves X. Givental has recently announced
a proof of the Virasoro constraints for the projective spaces Pn. These two
families of varieties both start with P1 but are quite different in flavor. Curves
are of dimension 1, but have non-(p, p) cohomology, nonsemisimple quantum
cohomology, and do not, in general, carry torus actions. Projective spaces cover
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all target dimensions, but have algebraic cohomology, semisimple quantum
cohomology, and always carry torus actions. Together, these results provide
substantial evidence for the Virasoro constraints.

0.2. The equivariant Gromov-Witten theory of P1.

0.2.1. Let V = C ⊕ C. Let the algebraic torus C∗ act on V with weights
(0, 1):

ξ · (v1, v2) = (v1, ξ · v2) .

Let P1 denote the projectivization P(V ). There is a canonically induced
C∗-action on P1.

The C∗-equivariant cohomology ring of a point is Q[t] where t is the first
Chern class of the standard representation. The C∗-equivariant cohomology
ring H∗

C∗(P1, Q) is canonically a Q[t]-module.
The line bundle OP1(1) admits a canonical C∗-action which identifies the

representation H0(P1,OP1(1)) with V ∗. Let h ∈ H2
C∗(P1, Q) denote the equiv-

ariant first Chern class of OP1(1). The equivariant cohomology ring of P1 is
easily determined:

H∗
C∗(P1, Q) = Q[h, t]/(h2 + th).

A free Q[t]-module basis is provided by 1, h.

0.2.2. Let Mg,n(P1, d) denote the moduli space of genus g, n-pointed sta-
ble maps (with connected domains) to P1 of degree d. A canonical
C∗-action on Mg,n(P1, d) is obtained by translating maps. The virtual class is
canonically defined in equivariant homology:

[Mg,n(P1, d)]vir ∈ HC∗

2(2g+2d−2+n)(Mg,n(P1, d), Q),

where 2g + 2d − 2 + n is the expected complex dimension (see, for example,
[12]).

The equivariant Gromov-Witten theory of P1 concerns equivariant inte-
gration over the moduli space Mg,n(P1, d). Two types of equivariant cohomol-
ogy classes are integrated. The primary classes are:

ev∗
i (γ) ∈ H∗

C∗(Mg,n(P1, d), Q),

where evi is the morphism defined by evaluation at the ith marked point,

evi : Mg,n(P1, d) → P1 ,

and γ ∈ H∗
C∗(P1, Q). The descendent classes are:

ψk
i ev∗

i (γ),

where ψi ∈ H2
C∗(Mg,n(X, d), Q) is the first Chern class of the cotangent line

bundle Li on the moduli space of maps.
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Equivariant integrals of descendent classes are expressed by brackets of
τk(γ) insertions:〈

n∏
i=1

τki
(γi)

〉◦

g,d

=
∫

[Mg,n(P1,d)]vir

n∏
i=1

ψki

i ev∗
i (γi) ,(0.1)

where γi ∈ H∗
C∗(P1, Q). As in [24], the superscript ◦ indicates the connected

theory. The theory with possibly disconnected domains is denoted by 〈 〉•.
The equivariant integral in (0.1) denotes equivariant push-forward to a point.
Hence, the bracket takes values in Q[t].

0.2.3. We now define the equivariant Gromov-Witten potential F of P1.
Let z, y denote the variable sets,

{z0, z1, z2, . . . }, {y0, y1, y2, . . . }.
The variables zk, yk correspond to the descendent insertions τk(1), τk(h) re-
spectively. Let T denote the formal sum,

T =
∞∑

k=0

zkτk(1) + ykτk(h) .

The potential is a generating series of equivariant integrals:

F =
∞∑

g=0

∞∑
d=0

∞∑
n=0

u2g−2qd

〈
Tn

n!

〉◦

g,d

.

The potential F is an element of Q[t][[z, y, u, q]].

0.2.4. The (localized) equivariant cohomology of P1 has a canonical basis
provided by the classes,

0,∞ ∈ H2
C∗(P1) ,

of Poincaré duals of the C∗-fixed points 0,∞ ∈ P1. An elementary calculation
yields:

0 = t · 1 + h, ∞ = h.(0.2)

Let xi, x�
i be the variables corresponding to the descendent insertions

τk(0), τk(∞), respectively. The variable sets x, x� and z, y are related by the
transform dual to (0.2),

xi =
1
t
zi, x�

i = −1
t
zi + yi.

The equivariant Gromov-Witten potential of P1 may be written in the xi, x�
i

variables as:

F =
∞∑

g=0

∞∑
d=0

u2g−2qd

〈
exp

( ∞∑
k=0

xkτk(0) + x�
kτk(∞)

)〉◦

g,d

.
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0.3. The equivariant Toda equation.

0.3.1. Let the classical series F c be the genus 0, degree 0, 3-point
summand of F (omitting u, q). The classical series generates the equivariant
integrals of triple products in H∗

C∗(P1, Q). We find,

F c =
1
2
z2
0y0 −

1
2
tz0y

2
0 +

1
6
t2y3

0 .

The classical series does not depend upon zk>0, yk>0.
Let F 0 be the genus 0 summand of F (omitting u). The small phase space

is the hypersurface defined by the conditions:

zk>0 = 0, yk>0 = 0 .

The restriction of the genus 0 series to the small phase space is easily calculated:

F 0
∣∣
zk>0=0, yk>0=0

= F c + qey0 .

The second derivatives of the restricted function F 0 are:

F 0
z0z0

= y0, F 0
z0y0

= z0 − ty0, F 0
y0y0

= −tz0 + t2y0 + qey
0.

Hence, we find the equation

tF 0
z0y0

+ F 0
y0y0

= q exp(F 0
z0z0

)(0.3)

is valid at least on the small phase space.

0.3.2. The equivariant Toda equation for the full equivariant potential
F takes a similar form:

tFz0y0 + Fy0y0 =
q

u2
exp(F (z0 + u) + F (z0 − u) − 2F ),(0.4)

where F (z0 ± u) = F (z0 ± u, z1, z2, . . . , y0, y1, y2, . . . , u, q). In fact, the equiv-
ariant Toda equation specializes to (0.3) when restricted to genus 0 and the
small phase space.

0.3.3. In the variables xi, x�
i , the equivariant Toda equation may be

written as:

∂2

∂x0 ∂x�
0

F =
q

u2
exp (∆F ) .(0.5)

Here, ∆ is the difference operator,

∆ = eu∂ − 2 + e−u∂ ,

and

∂ =
∂

∂z0
=

1
t

(
∂

∂x0
− ∂

∂x�
0

)
is the vector field creating a τ0(1) insertion.
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The equivariant Toda equation in form (0.5) is recognized as the 2-Toda
equation, obtained from the standard Toda equation by replacing the second
time derivative by ∂2

∂x0 ∂x�
0
. The 2-Toda equation is a 2-dimensional time ana-

logue of the standard Toda equation.

0.3.4. A central result of the paper is the derivation of the 2-Toda
equation for the equivariant theory of P1.

Theorem. The equivariant Gromov-Witten potential of P1 satisfies the
2-Toda equation (0.5).

The 2-Toda equation is a strong constraint. Together with the equivari-
ant divisor and string equations, the 2-Toda determines F from the degree 0
invariants; see [26].

The 2-Toda equation arises as the lowest equation in a hierarchy of partial
differential equations identified with the 2-Toda hierarchy of Ueno and Takasaki
[28]; see Theorem 7 in Section 4.

0.4. Operator formalism.

0.4.1. The 2-Toda equation (0.5) is a direct consequence of the following
operator formula for the equivariant Gromov-Witten theory of P1:

expF =
〈

e
∑

xiAi eα1

( q

u2

)H
eα−1 e

∑
x�

i A�
i

〉
.(0.6)

Here, Ai, A�
i , and H are explicit operators in the Fock space. The brackets

〈 〉 denote the vacuum matrix element. The operators A, which depend on the
parameters u and t, are constructed in Sections 2 and 3. The exponential eF of
the equivariant potential is called the τ -function of the theory. The operator
formalism for the 2-Toda equations was introduced in [8], [27] (see also e.g. [9])
and has since become a textbook tool for working with Toda equations.

The operator formula (0.6), stated as Theorem 4 in Section 3, is funda-
mentally the main result of the paper.

0.4.2. In our previous paper [24], the stationary nonequivariant Gromov-
Witten theory of P1 was expressed as a similar vacuum expectation. The
equivariant formula (0.6) specializes to the absolute case of the operator for-
mula of [24] when the equivariant parameter t is set to zero. Hence, the
equivariant formula (0.6) completes the proof of the Gromov-Witten/Hurwitz
correspondence discussed in [24].

0.5. Plan of the paper.

0.5.1. In Section 1, the virtual localization formula of [12] is applied to
express the equivariant n+m-point function as a graph sum with vertex Hodge
integrals. Since P1 has two fixed points, the graph sum reduces to a sum over
partitions.
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Next, an operator formula for Hodge integrals is obtained in Section 2.
A starting point here is provided by the Ekedahl-Lando-Shapiro-Vainstein for-
mula expressing the necessary Hodge integrals as Hurwitz numbers. The main
result of the section is Theorem 2 which expresses the generating function for
Hodge integrals as a vacuum matrix element of a product of explicit operators
A acting on the infinite wedge space.

Commutation relations for the operators A are required in the proof of
Theorem 2. The technical derivation of these commutation relations is post-
poned to Section 5.

In Section 3, the operator formula for Hodge integrals is combined with
the results of Section 1 to obtain Theorem 4, the operator formula for the
equivariant Gromov-Witten theory of P1.

The 2-Toda equation (0.5) and the full 2-Toda hierarchy are deduced from
Theorem 4 in Section 4.

0.5.2. We follow the notational conventions of [24] with one important
difference. The letter H is used here to denote the generating function for the
Hodge integral, whereas H was used to denote Hurwitz numbers in [24].

0.6. Acknowledgments. We thank E. Getzler and A. Givental for discus-
sions of the Gromov-Witten theory of P1. In particular, the explicit form of
the linear change of time variables appearing in the equations of the 2-Toda
hierarchy (see Theorem 7) was previously conjectured by Getzler in [11].

A.O. was partially supported by DMS-0096246 and fellowships from the
Sloan and Packard foundations. R.P. was partially supported by DMS-0071473
and fellowships from the Sloan and Packard foundations.

The paper was completed during a visit to the Max Planck Institute in
Bonn in the summer of 2002.

1. Localization for P1

1.1. Hodge integrals.

1.1.1. Hodge integrals of the ψ and λ classes over the moduli space of
curves arise as vertex terms in the localization formula for Gromov-Witten
invariants of P1.

Let Li be the ith cotangent line bundle on Mg,n. The ψ classes are defined
by:

ψi = c1(Li) ∈ H2(Mg,n, Q) .

Let π : C → Mg,n be the universal curve. Let ωπ be the relative dualizing
sheaf. Let E be the rank g Hodge bundle on the moduli space Mg,n,

E = π∗(ωπ).



THE EQUIVARIANT GROMOV-WITTEN THEORY OF P1 569

The λ classes are defined by:

λi = ci(E) ∈ H∗(Mg,n, Q).

Only Hodge integrands linear in the λ classes arise in the localization
formula for P1. Let H◦

g(z1, . . . , zn) be the n-point function of λ-linear Hodge
integrals over the moduli space Mg,n:

H◦
g(z1, . . . , zn) =

∏
zi

∫
Mg,n

1 − λ1 + λ2 − · · · ± λg∏
(1 − ziψi)

.

Note the shift of indices caused by the product
∏

zi.

1.1.2. The function H◦
g(z) is defined for all g, n ≥ 0. Values corresponding

to unstable moduli spaces are set by definition. All 0-point functions H◦
g(), both

stable and unstable, vanish. The unstable 1 and 2-point functions are:

H◦
0(z1) =

1
z1

, H◦
0(z1, z2) =

z1z2

z1 + z2
.(1.1)

1.1.3. Let H◦(z1, . . . , zn, u) be the full n-point function of λ-linear Hodge
integrals:

H◦(z1, . . . , zn, u) =
∑
g≥0

u2g−2 H◦
g(z1, . . . , zn) .

Let H(z1, . . . , zn, u) be the corresponding disconnected n-point function. The
disconnected 0-point function is defined by:

H(u) = 1.

For n > 0, the disconnected n-point function is defined by:

H(z1, . . . , zn, u) =
∑

P∈Part[n]

�(P )∏
i=1

H◦(zPi
, u),

where Part[n] is the set of partitions P of the set {1, . . . , n}. Here, 	(P ) is the
length of the partition, and zPi

denotes the variable set indexed by the part
Pi. The genus expansion for the disconnected function,

H(z1, . . . , zn, u) =
∑
g∈Z

u2g−2 Hg(z1, . . . , zn) ,(1.2)

contains negative genus terms.

1.2. Equivariant n + m-point functions.

1.2.1. Let G◦
g,d(z1, . . . , zn, w1, . . . , wm) be the n + m-point function of

genus g, degree d equivariant Gromov-Witten invariants of P1 in the basis
determined by 0 and ∞:

G◦
g,d(z, w) =

∏
zi

∏
wj

∫
[Mg,n+m(P1,d)]vir

∏ ev∗
i (0)

1 − zi ψi

∏ ev∗
j (∞)

1 − wj ψj
.
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The values corresponding to unstable moduli spaces are set by definition. The
unstable 0-point functions are set to 0:

G◦
0,0() = 0 , G◦

1,0() = 0 .(1.3)

The unstable 1 and 2-point functions are:

G◦
0,0(z1) =

1
z1

, G◦
0,0(w1) =

1
w1

,(1.4)

G◦
0,0(z1, z2) =

tz1z2

z1 + z2
, G◦

0,0(z1, w1) = 0 , G◦
0,0(w1, w2) =

tw1w2

w1 + w2
.

These values will be seen to be compatible with the special values (1.1).

1.2.2. The n+m-point function G◦
g,d(z, w) is defined for all g, d, n, m ≥ 0.

The 0-point function G◦
0,1() is nontrivial since

G◦
0,1() = 〈〉◦0,1 = 1.

In fact, G◦
0,1() is the only nonvanishing 0-point function for P1.

Let G◦
d(z, w, u) be the full n + m-point function for equivariant degree d

Gromov-Witten invariants P1:

G◦
d(z1, . . . , zn, w1, . . . , wm, u) =

∑
g≥0

u2g−2 G◦
g,d(z1, . . . , zn, w1, . . . , wm) .

The only nonvanishing 0-point functions is:

G◦
1() = u−2.

1.2.3. Let Gd(z, w, u) be the corresponding disconnected n + m-point
function. The degree 0, 0-pointed disconnected function is defined by:

G0(u) = 1.

In all other cases,

Gd(z1, . . . , zn, w1, . . . , wm, u) =
∑

P∈Partd[n,m]

1
|Aut(P )|

�(P )∏
i=1

G◦
di

(zPi
, wP ′

i
, u).

An element P ∈ Partd[n, m] consists of the data

{(d1, P1, P
′
1) . . . , (d�, P�, P

′
�)} ,

where di is a nonnegative degree partition,

l∑
i=1

di = d,
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and {Pi} and {P ′
i} are set partitions with the empty set as an allowed part,

l⋃
i=1

Pi = {1, . . . , n},
l⋃

i=1

P ′
i = {1, . . . , m} .

Because of the empty parts, an element P ∈ Partd[n, m] may have a nontrivial
group of automorphisms Aut(P ).

1.2.4. Two remarks about the n + m-point function Gd(z, w, u) are
in order. First, Gd systematically includes the unstable contributions (1.4).
These contributions will later have to be removed to study the true equivariant
Gromov-Witten theory. However, the inclusion of the unstable contributions
here will simplify many formulas. Second, the 0-point function G◦

1() contributes
to all disconnected functions Gd for positive d. For example:

G2(z1) = G◦
2(z1) + G◦

1(z1)G◦
1() + G◦

0(z1)
G◦

1()
2

2
.

These occurrences of G◦
1() provide no difficulty.

1.3. Localization: vertex contributions.

1.3.1. The localization formula for P1 expresses the n+m-point function
Gd(z, w, u) as an automorphism-weighted sum over bipartite graphs with vertex
Hodge integrals. We refer the reader to [12] for a discussion of localization in
the context of virtual classes. The localization formula for P1 is explicitly
treated in [12], [23].

1.3.2. Let Γ be a graph arising in the localization formula for the virtual
class [Mg,n+m(P1, d)]vir. Let v0 be a vertex of Γ lying over the fixed point
0 ∈ P1. We will study the vertex contribution C(v0) to the equivariant integral∏

zi

∏
wj

∫
[Mg,n+m(P1,d)]vir

∏ ev∗
i (0)

1 − zi ψi

∏ ev∗
j (∞)

1 − wj ψj
.(1.5)

For a vertex v∞ lying over ∞ ∈ P1, the vertex contribution C(v∞) is obtained
simply by exchanging the roles of z and w and applying the transformation
t 	→ −t.

Each vertex v0 of the localization graph Γ carries several additional struc-
tures:

• g(v0), a genus assignment,

• e(v0) incident edges of degrees d1, . . . , de(v0),

• n(v0) marked points indexed by I(v0) ⊂ {1, . . . , n}.
The data contribute factors to the vertex contribution C(v0) according to the
following table:
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tg(v0)−1

g(v0)∑
i=1

(−1)i λi

ti

 determined by the genus g(v0)

ddi

i t−di

di!
tdi

t − di ψi
for each edge of degree di

tzi

1 − zi ψi
for each marking i ∈ I(v0)

The vertex contribution C(v0) is obtained by multiplying the above factors
and integrating over the moduli space Mg(v0),val(v0) where

val(v0) = e(v0) + n(v0).

1.3.3. By the dimension constraint for the integrand,

dim Mg(v0),val(v0) = 3g(v0) − 3 + val(v0) ,

the vertex integral is unchanged by the transformation

ψi 	→ tψi , λi 	→ tiλi ,

together with a division by t3g(v0)−3+val(v0). The vertex contribution C(v0)
then takes the following form:∏e(v0)

i=1 ddi

i

/
di!

t2g(v0)−2+d(v0)+val(v0)

×
∫

Mg(v0),val(v0)

g(v0)∑
i=1

(−1)iλi

 e(v0)∏
i=1

di

1 − diψi

∏
i∈I(v0)

tzi

1 − tziψi
,

where d(v0) =
∑e(v0)

i=1 di is the total degree of v0. We may rewrite C(v0) in
terms of H◦

g(v0)
:

C(v0) =
∏e(v0)

i=1 ddi

i

/
di!

t2g(v0)−2+d(v0)+val(v0)
H◦

g(v0)
(d1, . . . , de(v0), . . . , tzi, . . . ).(1.6)

Since the val(v0)-point function H◦
g(v0)

is defined for all g(v0), val(v0) ≥ 0,
we can define the vertex contribution C(v0) by (1.6) in case the moduli space
Mg(v0),val(v0) is unstable. This convention agrees with the treatment of unstable
contributions in the literature [12], [17]. We note C(v0) vanishes if val(v0) = 0.

1.4. Localization: global formulas.

1.4.1. Let Γ be a graph arising in the localization formula for

[Mg,n+m(P1, d)]vir.
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Let
V (Γ) = V0(Γ) ∪ V∞(Γ)

be the vertex set divided by the fixed-point assignment. Let E(Γ) be the edge
set. Let de be the degree of an edge e. The graph Γ satisfies three global
properties:

• a genus condition,
∑

v∈V (Γ)(2g(v) − 2 + e(v)) = 2g − 2,

• a degree condition,
∑

v∈V (Γ) d(v) = 2d,

• a marking condition,
⋃

v0∈V0(Γ) I(v0) = {1, . . . , n} (similarly for ∞).

The contribution of Γ to the integral (1.5) is:

1∏
e∈E(Γ) de

1
|Aut(Γ)|

∏
v∈V (Γ)

C(v).

As the integral (1.5) is over the moduli space of maps with connected domains,
Γ must also be connected. If disconnected domains are allowed for stable maps,
the graphs Γ are also allowed to be disconnected.

1.4.2. The n + m-point functions Gd may now be expressed in terms of
the functions H.

Proposition 1. For d ≥ 0,

(1.7) Gd(z1, . . . , zn, w1, . . . , wm, u) =
1

z(µ)

×
∑
|µ|=d

(u/t)�(µ) (−u/t)�(µ)

td+n(−t)d+m

(∏ µµi

i

µi!

)2

H(µ, tz, u
t )H(µ,−tw,−u

t ) .

The summation in (1.7) is over all partitions µ of d, 	(µ) denotes the
number of parts of µ and

z(µ) = |Aut(µ)|
�(µ)∏
i=1

µi

where Aut(µ) ∼=
∏

i≥1 S(mi(µ)) is the symmetry group permuting equal parts
of the partition µ. The number z(µ) is the order of the centralizer of an element
with cycle type µ in the symmetric group.

Proof. For each degree d, possibly disconnected, localization graph Γ yields
a partition µ of d obtained from the edge degrees. The sum over localization
graphs with a fixed edge degree partition µ can be evaluated by the vertex
contribution formula (1.6) together with the global graph constraints. The
result is exactly the µ summand in (1.7) (the edge and graph automorphisms
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are incorporated in the prefactors). The proposition is then a restatement
of the virtual localization formula: equivariant integration against the virtual
class is obtained by summing over all localization graph contributions.

The degree 0 localization formula is special as the graphs are edgeless.
However, with our conventions regarding 0-pointed functions, Proposition 1
holds without modification. We find, for example,

G0(z1, . . . , zn, u) = t−n H(tz, u
t ) .

In particular, the definitions of the unstable contributions for G and H are
compatible.

2. The operator formula for Hodge integrals

We will express Hodge integrals as matrix elements in the infinite wedge
space. The basic properties of the infinite wedge space and our notational
conventions are summarized in Section 2.0. A discussion can also be found in
Section 2 of [24].

2.0. Review of the infinite wedge space.

2.0.1. Let V be a linear space with basis {k} indexed by the half-integers:

V =
⊕

k∈Z+
1
2

C k.

For each subset S = {s1 > s2 > s3 > . . . } ⊂ Z + 1
2 satisfying:

(i) S+ = S \
(
Z≤0 − 1

2

)
is finite,

(ii) S− =
(
Z≤0 − 1

2

)
\ S is finite,

we denote by vS the following infinite wedge product:

vS = s1 ∧ s2 ∧ s3 ∧ . . . .(2.1)

By definition,
Λ

∞
2 V =

⊕
C vS

is the linear space with basis {vS}. Let ( · , · ) be the inner product on Λ
∞
2 V

for which {vS} is an orthonormal basis.

2.0.2. The fermionic operator ψk on Λ
∞
2 V is defined by wedge product

with the vector k,
ψk · v = k ∧ v .

The operator ψ∗
k is defined as the adjoint of ψk with respect to the inner

product ( · , · ).
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These operators satisfy the canonical anti-commutation relations:

ψiψ
∗
j + ψ∗

i ψj = δij ,(2.2)

ψiψj + ψjψ1 = ψ∗
i ψ

∗
j + ψ∗

j ψ
∗
i = 0.(2.3)

The normally ordered products are defined by:

:ψi ψ
∗
j :=

{
ψi ψ

∗
j , j > 0 ,

−ψ∗
j ψi , j < 0 .

(2.4)

2.0.3. Let Eij , for i, j ∈ Z + 1
2 , be the standard basis of matrix units of

gl(∞). The assignment
Eij 	→ :ψi ψ

∗
j : ,

defines a projective representation of the Lie algebra gl(∞) = gl(V ) on Λ
∞
2 V .

The charge operator C corresponding to the identity matrix of gl(∞),

C =
∑

k∈Z+ 1
2

Ekk,

acts on the basis vS by:

C vS = (|S+| − |S−|)vS .

The kernel of C, the zero charge subspace, is spanned by the vectors

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ . . .

indexed by all partitions λ. We will denote the kernel by Λ
∞
2

0 V .
The eigenvalues on Λ

∞
2

0 V of the energy operator,

H =
∑

k∈Z+ 1
2

k Ekk,

are easily identified:
H vλ = |λ| vλ .

The vacuum vector
v∅ = −1

2 ∧ −3
2 ∧ −5

2 ∧ . . .

is the unique vector with the minimal (zero) eigenvalue of H.
The vacuum expectation 〈A〉 of an operator A on Λ

∞
2 V is defined by the

inner product:
〈A〉 = (Av∅, v∅).

2.0.4. For any r ∈ Z, we define

Er(z) =
∑

k∈Z+ 1
2

ez(k− r

2
) Ek−r,k +

δr,0

ς(z)
,(2.5)
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where the function ς(z) is defined by

ς(z) = ez/2 − e−z/2 .(2.6)

The exponent in (2.5) is set to satisfy:

Er(z)∗ = E−r(z) ,

where the adjoint is with respect to the standard inner product on Λ
∞
2 V .

Define the operators Pk for k > 0 by:
Pk

k!
= [zk] E0(z) ,(2.7)

where [zk] stands for the coefficient of zk. The operator,

F2 =
P2

2!
=

∑
k∈Z+ 1

2

k2

2
Ek,k ,

will play a special role.

2.0.5. The operators E satisfy the following fundamental commutation
relation:

[Ea(z), Eb(w)] = ς (det [ a z
b w ]) Ea+b(z + w) .(2.8)

Equation (2.8) automatically incorporates the central extension of the
gl(∞)-action, which appears as the constant term in E0 when r = −s.

2.0.6. On setting z = 0, the operators E specialize to the standard
bosonic operators on Λ

∞
2 V :

αk = Ek(0) , k �= 0 .

The commutation relation (2.15) specializes to the following equation

[αk, El(z)] = ς(kz) Ek+l(z) .(2.9)

When k + l = 0, equation (2.9) has the following constant term:

ς(kz)
ς(z)

=
ekz/2 − e−kz/2

ez/2 − e−z/2
.

Letting z → 0, we recover the standard relation:

[αk, αl] = k δk+l .

2.1. Hurwitz numbers and Hodge integrals.

2.1.1. Let µ be a partition of size |µ| and length 	(µ). Let µ1, . . . , µ� be
the parts of µ. Let Cg(µ) be the Hurwitz number of genus g, degree |µ|, covers
of P1 with profile µ over ∞ ∈ P1 and simple ramifications over

b = 2g + |µ| + 	(µ) − 2
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fixed points of A1 ⊂ P1. By definition, the Hurwitz number Cg(µ) counts
possibly disconnected covers with weights, where the weight of a cover is the
reciprocal of the order of its automorphism group. Note that the genus of a
disconnected cover may be negative.

The Ekedahl-Lando-Shapiro-Vainstein (ELSV) formula expresses Cg(µ) in
terms of λ-linear Hodge integrals:

Cg(µ) =
b!

z(µ)

(∏ µµi

i

µi!

)
Hg(µ1, . . . , µ�) ,(2.10)

see [6] or [7], [13] for a Gromov-Witten theoretic approach.

2.1.2. The Hurwitz numbers Cg(µ) admit a standard expression in terms
of the characters of the symmetric group. The character formula may be
rewritten as a vacuum expectation in the infinite wedge space:

Cg(µ) =
1

z(µ)

〈
eα1Fb

2

∏
α−µi

〉
.(2.11)

A derivation of (2.11) can be found, for example, in [21], [24]. Using the ELSV
formula (2.10), we find,

H(µ1, . . . , µ�, u) = u−|µ|−�(µ)

(∏ µi!
µµi

i

) 〈
eα1euF2

∏
α−µi

〉
.

2.1.3. Since the operators e−α1 and e−uF2 fix the vacuum vector, we may
rewrite the last equation as:

H(µ1, . . . , µ�, u) = u−|µ|−�(µ)

(∏ µi!
µµi

i

) 〈∏(
eα1euF2α−µi

e−uF2e−α1

)〉
.

(2.12)

Equation (2.12) holds, by construction, for positive integral values of µi. We
will rewrite the right side and reinterpret (2.12) as an equality of analytic
functions of µ.

2.2. The operators A.

2.2.1. The following operators will play a central role in the paper:

A(a, b) = S(b)a
∑
k∈Z

ς(b)k

(a + 1)k
Ek(b) ,(2.13)

where a and b are parameters and

ς(z) = ez/2 − e−z/2 , S(z) =
ς(z)
z

=
sinh z/2

z/2
.
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In (2.13), we use the standard notation:

(a + 1)k =
(a + k)!

a!
=

{
(a + 1)(a + 2) · · · (a + k) , k ≥ 0 ,

(a(a − 1) · · · (a + k + 1))−1 , k ≤ 0 .

If a �= 0, 1, 2, . . . , the sum in (2.13) is infinite in both directions. If a is a
nonnegative integer, the summands with k ≤ −a − 1 in (2.13) vanish.

2.2.2. Definition (2.13) is motivated by the following result.

Lemma 2. For m = 1, 2, 3, . . . , we have

eα1 euF2 α−m e−uF2 e−α1 =
um mm

m!
A(m, um) .

Proof. The conjugation,

euF2 α−m e−uF2 = E−m(um) ,(2.14)

is easily calculated from the definitions since the operator euF2 acts diagonally.
The operators E satisfy the following basic commutation relation:

[Ea(z), Eb(w)] = ς (det [ a z
b w ]) Ea+b(z + w) .(2.15)

From (2.15), we obtain

[α1, E−m(s)] = ς(s) E−m+1(s)

and, therefore,

eα1 E−m(s) e−α1 =
ς(s)m

m!

∑
k∈Z

ς(s)k

(m + 1)k
Ek(s) .(2.16)

Applying (2.16) to (2.14) completes the proof.

2.2.3. Equation (2.12) and Lemma 2 together yield a concise formula for
the evaluations of H(z1, . . . , zn, u) at the positive integers zi = µi:

H(µ1, . . . , µn, u) = u−n

〈
n∏

i=1

A(µi, uµi)

〉
.(2.17)

However, we will require a stronger result. We will prove that the right side of
equation (2.17) is an analytic function of the variables µi and that the n-point
function H(z1, . . . , zn, u) is a Laurent expansion of this analytic function.

2.3. Convergence of matrix elements.

2.3.1. If a �= 0, 1, 2, . . . , the sum in (2.13) is infinite in both directions.
Hence, for general values of µi, the matrix element on the right side of (2.17)
is not a priori well-defined. By expansion of the definition of A(µi, uµi), the
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right side of (2.17) is an n-fold series. We will prove the series converges in a
suitable domain of values of µi.

Let Ω be the following domain in Cn:

Ω =

{
(z1, . . . , zn)

∣∣∣∣∣|zk| >

k−1∑
i=1

|zi|, k = 1, . . . , n

}
.

The constant term of the operator E0(uzi) occurring in the definition of A(zi, uzi)
has a pole at uz = 0. For u �= 0, the coordinates zi are kept away in Ω from
the poles uzi = 0. We will prove the following convergence result.

Proposition 3. Let K be a compact set,

K ⊂ Ω ∩ {zi �= −1,−2, . . . , i = 1, . . . , n}.
For all partitions ν and λ, the series

(A(z1, uz1) · · · A(zn, uzn) vν , vλ)(2.18)

converges absolutely and uniformly on K for all sufficiently small u �= 0.

2.3.2. We will require three lemmas for the proof of Proposition 3.

Lemma 4. Let ν be a partition of k. For any integer l, there exists at
most max(k, l) partitions λ of l satisfying

(A(z, uz) vν , vλ) �= 0 .

Proof. If k = l, then by the definition of A(z, uz), there is exactly one
such partition λ, namely λ = ν.

Next, consider the case k > l. If the matrix element does not vanish, then
the operator Ek−l in (2.13) must act on one of the factors of

vν = ν1 − 1
2 ∧ ν2 − 3

2 ∧ ν3 − 5
2 ∧ . . . ,

and decrease the corresponding part of the partition ν. Since ν has at most
k parts, the above action can occur in at most k ways. The argument in the
l > k case is similar.

Lemma 5. For any two partitions ν and λ satisfying |ν| �= |λ|,∣∣(E|ν|−|λ|(uz) vν , vλ)
∣∣ ≤ exp

( |ν| + |λ|
2

|uz|
)

.

If ν = λ, then ∣∣∣∣(E0(uz) vν , vν) −
1

ς(uz)

∣∣∣∣ ≤ |ν| exp(|ν||uz|) .

Proof. The lemma is obtained from the definition of E|ν|−|λ|(uz).
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Lemma 6. For all fixed k0, kn ∈ Z, the series∑
k1,...,kn−1≥0

n∏
i=1

z
ki−ki−1

i

(di)ki−ki−1

(2.19)

converges absolutely and uniformly on compact subsets of Ω for all values of
the parameters di �= 0,−1,−2, . . . .

By differentiating with respect to the variables zi, we can insert in (2.19)
any polynomial weight in the summation variables ki.

Proof. Consider the factor obtain by summation with respect to k1:∑
k1≥0

(z1/z2)k1

(d1)k1−k0(d2)k2−k1

.(2.20)

The above series converges absolutely and uniformly on compact sets since
|z1/z2| < 1 on the domain Ω. We require a bound on (2.20) considered as a
function of the parameter k2.

The series (2.20) is bounded by a high enough derivative of the series

k2∑
k1≥0

wk1

k1! (k2 − k1)!
+

∑
k1>k2

(k1 − k2)!
k1!

wk1 , w =
∣∣∣∣z1

z2

∣∣∣∣ .(2.21)

The first term of (2.21) can obviously be estimated by

1
k2!

( |z1| + |z2|
|z2|

)k2

,

whereas the second term of (2.21) can be estimated by

1
k2!

|z1/z2|k2+1

1 − |z1|/|z2|
.

Therefore, the sum over both k1 and k2 behaves like the series∑
k2≥0

1
k2! (d3)k3−k2

( |z1| + |z2|
|z3|

)k2

,

which is a sum of the form (2.20). Again, the series converges absolutely and
uniformly on compact sets since |z1| + |z2| < |z3|.

The lemma is proved by iterating the above argument.

2.3.3. Proof of Proposition 3. We first expand (2.18) as a sum over all
intermediate vectors

vν = vµ[0], vµ[1], . . . , vµ[n−1], vµ[n] = vλ.
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Next, using Lemmas 4 and 5, we will bound the summation over all interme-
diate partitions µ by a summation over their sizes,

ki = |µ[i]| , i = 0, . . . , n .

The term max(ki, ki+1) of Lemma 4 can be bounded by ki + ki+1 and, in any
case, amounts to an irrelevant polynomial weight.

We conclude: the proposition will be established if the absolute conver-
gence for z ∈ K and sufficiently small u of the following series is proven:∑

k1,...,kn−1≥0

∏
kmi

i e(ki+ki−1)|uzi|/2 ς(uzi)ki−ki−1

(1 + zi)ki−ki−1

,(2.22)

where the parameters mi are fixed nonnegative integers. Here, we neglect
the prefactors S(uzi)zi of the operators A(zi, uzi) — the functions S(uzi)zi

are analytic and single valued (for the principal branch) on K for sufficiently
small u. Also, we neglect the constant terms of A(zi, uzi) as they do not affect
convergence for u �= 0.

The terms raised to the power ki in (2.22) are(
e(|uzi|+|uzi+1|)/2 ς(uzi)

ς(uzi+1)

)ki

, i = 1, . . . , n − 1 .

Since, for u → 0, we have

e(|uzi|+|uzi+1|)/2 ς(uzi)
ς(uzi+1)

→ zi

zi+1
,

the convergence of the series (2.22) follows from the convergence of the series
(2.19) with values

di = 1 + zi , i = 1, . . . , n .

2.4. Series expansion of matrix elements.

2.4.1. By Proposition 3, the vacuum matrix element

〈A(z1, uz1) · · · A(zn, uzn)〉(2.23)

is an analytic function of the variables z1, . . . , zn, u on a punctured open set
of Ω× 0 in Ω× C∗. Therefore, we may expand (2.23) in a convergent Laurent
power series.

First, viewing u as a parameter, we expand in Laurent series in the vari-
ables z1, . . . , zn in the following manner. For any point (z2, . . . , zn) in the
domain

Ω′ =

{
(z2, . . . , zn)

∣∣∣∣∣|zk| >

k−1∑
i=2

|zi|, k = 2, . . . , n

}
,
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the function (2.23) is analytic and single-valued for z1 in a sufficiently small
punctured neighborhood of the origin. Hence, the function can be expanded
there in a convergent Laurent series. Every coefficient of that Laurent ex-
pansion is an analytic function on the domain Ω′ and, by iterating the same
procedure, can be expanded completely into a Laurent power series. The coef-
ficients of the Laurent expansion in the variables z1, . . . , zn may be expanded
as Laurent series in u.

Alternatively, we may expand the function (2.23) in the variable u first.
Then, the coefficients of the expansion are analytic functions on the domain Ω.

Later, we will identify the Laurent series expansion of (2.23) with the
series un H(z1, . . . , zn, u).

2.4.2. For any ring R, define the ring R((z)) by

R((z)) =

{∑
i∈Z

riz
i

∣∣∣∣∣ ri ∈ R, rn = 0, n � 0

}
.

In other words, R((z)) consists of formal Laurent series in z with coefficients
in R and exponents bounded from below.

Proposition 7.

〈A(z1, uz1) · · · A(zn, uzn)〉 ∈ Q[u±1]((zn)) . . . ((z1)) .

Proof. The result follows by induction on n from the following property
of the operators A: (

A(z, uz) − 1
uz

)∗
vµ = O

(
z−|µ|

)
.

Indeed, with the exception of the term (uz)−1 which appears in the constant
term of operator E0(uz), terms contributing to the coefficient[

z−k
] (

A(z, uz) − 1
uz

)∗

lower the energy by at least k and, since there are no vectors of negative energy,
annihilate vµ if k > |µ| .

2.4.3. Let Ak be the coefficients of the expansion of the operator A(z, uz)
in powers of z:

A(z, uz) =
∑
k∈Z

Ak zk .(2.24)

As observed in the proof of Proposition 7, the operator Ak for k �= −1 involves
only terms of energy ≥ −k. The same is true for A−1 with the exception of
the constant term −u−1.
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In terms of the operators Ak, the Laurent series expansion of (2.23) can
be written as:

〈A(z1, uz1) · · · A(zn, uzn)〉 =
∑

k1,...,kn

〈Ak1 · · · Akn
〉 zk1

1 . . . zkn
n .(2.25)

If kj < −
∑

i<j(ki + 1) for some j, then the corresponding term vanishes by
energy considerations.

2.5. Commutation relations and rationality.

2.5.1. Consider the doubly infinite series:

δ(z,−w) =
1
w

∑
n∈Z

(
− z

w

)n
∈ Q((z, w)).

The above series is the difference between the following two expansions:

1
z + w

=
1
w

− z

w2
+

z2

w3
− . . . , |z| < |w| ,(2.26)

1
z + w

=
1
z
− w

z2
+

w2

z3
− . . . , |z| > |w| .(2.27)

The series δ(z,−w) is a formal δ-function at z + w = 0, in the sense that

(z + w) δ(z,−w) = 0 .

2.5.2. The following basic result will be established in Section 5.

Theorem 1.

[A(z, uz),A(w, uw)] = zw δ(z,−w) ,(2.28)

or equivalently,

[Ak,Al] = (−1)lδk+l−1 .(2.29)

Corollary 8. The series∏
i<j

(zi + zj) 〈A(z1, uz1) · · · A(zn, uzn)〉 ∈ Q[u±1]((zn)) . . . ((z1))(2.30)

is symmetric in z1, . . . , zn and, hence, is an element of∏
z−1
i Q[u±1] [[z1, . . . , zn]] .

Proof. Indeed, the exponents of z1 in (2.30) are bounded below by −1.
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2.5.3. We now deduce the following result from Theorem 1:

Proposition 9. The coefficients,

[um] 〈A(z1, uz1) . . .A(zn, uzn)〉 , m ∈ Z ,(2.31)

of powers of u in the expansion (2.25) are symmetric rational functions in
z1, . . . , zn, with at most simple poles on the divisors zi + zj = 0 and zi = 0.

Proof. By Corollary 8, it suffices to prove the exponents of zn in the
expansion of (2.31) are bounded from above.

The equation,

〈Ek1(uz1) . . . Ekn
(uzn)〉 =

〈Ek1(uz1)
uk1

. . .
Ekn

(uzn)
ukn

〉
,(2.32)

holds since the vacuum expectation vanishes unless
∑

ki = 0. The transfor-
mation Ek → u−kEk applied to the operator A(z, uz) acts as the substitution

ς(uz)k 	→ ς(uz)k

uk
,

which makes all terms regular and nonvanishing at u = 0, except for the simple
pole in the constant term ς(uz)−1.

Since (2.32) vanishes if kn > 0, the vacuum expectation

〈A(z1, uz1) . . .A(zn, uzn)〉

depends on zn only through terms of the form

S(uzn)zn , eauzn , a ∈ 1
2Z ,

as well as

zn(zn − 1) . . . (zn − k + 1)
uk

ς(uzn)k

=
(

1 − 1
zn

)
· · ·

(
1 − k − 1

zn

)
S(uzn)−k , k = 1, 2, . . . .

Because these terms are multiplied by a function of u with a bounded order of
pole at u = 0, the required boundedness of degree in zn for fixed powers of u

is now immediate.

2.6. Identification of H(z, u).

2.6.1. By definition (1.2), H(z1, . . . , zn, u) is a Laurent series in u with
coefficients given by rational functions of z1, . . . , zn which have at most first
order poles at the divisors zi + zj = 0 and zi = 0.

By Proposition 9, the expansion (2.25) has the exact same form. We can
now state the main result of the present section.
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Theorem 2.

H(z1, . . . , zn, u) = u−n 〈A(z1, uz1) . . .A(zn, uzn)〉 .(2.33)

Proof. By Proposition 3, the coefficients (2.31) are analytic functions on
the domain Ω. Moreover, by Proposition 9, these functions are rational. By
(2.17), for positive integral values of zi in the domain Ω, these functions take
the same values as the corresponding coefficients of H. Since positive integral
values of zi inside Ω form a Zariski dense set, the theorem follows.

2.6.2. As an illustration of Theorem 2, we obtain the following result.

Proposition 10. The connected 2-point generating function H◦(z1, z2, u)
for Hodge integrals is given by

(2.34)

H◦(z1, z2, u) =
S(uz1)z1 S(uz2)z2

ς(u(z1 + z2))

×
[

2F1

(
−z2, 1
1 + z1

;
1 − euz1

1 − e−uz2

)
− 2F1

(
−z2, 1
1 + z1

;
1 − e−uz1

1 − euz2

)]
,

where 2F1 is the Gauss hypergeometric function (5.2).

Proof. We first calculate:

(2.35) 〈Ek1(uz1) Ek2(uz2)〉 − 〈Ek1(uz1)〉 〈Ek2(uz2)〉

=


ς(k1u(z1 + z2))
ς(u(z1 + z2))

, 0 < k1 = −k2 ,

0 , otherwise.

The nonzero term in (2.35) arises from the constant term in the commutator
[Ek1(uz1), E−k1(uz2)]. Then, by formula (2.33), we obtain

H◦(z1, z2, u) =
S(uz1)z1 S(uz2)z2

ς(u(z1 + z2))

∑
k>0

ς(ku(z1 + z2))
ς(uz1)k ς(uz2)−k

(1 + z1)k (1 + z2)−k
,

which is equivalent to (2.34) .

The symmetry in z1 and z2 is not at all obvious from formula (2.34).
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3. The operator formula for Gromov-Witten invariants

3.1. Localization revisited.

3.1.1. Propositions 1 and 2 together yield the following localization
formula in terms of vacuum expectations:

Gd(z1, . . . , zn, w1, . . . , wm, u) =
∑
|µ|=d

1
z(µ)

J(z, µ, u, t) J(w, µ, u,−t) ,(3.1)

where the function J(z, µ, u, t) is defined by:

J(z1, . . . , zn, µ1, . . . , µ�, u, t)(3.2)

= t−du−n

(∏ µµi

i

µi!

) 〈∏
A(tzi, uzi)

∏
A(µi,

u
t µi)

〉
= u−d−n

〈∏
A(tzi, uzi) eα1 e

u

t
F2

∏
α−µi

〉
.

3.1.2. For each partition µ, define the vector χµ ∈ Λ
∞
2 V by:

χµ =
�(µ)∏
i=1

α−µi
v∅ .

The expansion of χµ in the standard basis vν is given by the values of the
symmetric group characters χν on the conjugacy class determined by µ:

χµ =
∑

|ν|=|µ|
χν

µ vν .

From the commutation relations

[αk, αl] = k δk+l ,(3.3)

or from the orthogonality relation for characters, we find

(χµ, χν) = z(µ) δµ,ν .

Let P∅ denote the orthogonal projection onto the vector v∅. Since the
vectors {χµ}|µ|=d span the eigenspace of H with eigenvalue d, the operator

Pd =
∑
|µ|=d

1
z(µ)

∏
α−µi

P∅
∏

αµi

is the orthogonal projection onto the d-eigenspace of H.

3.1.3. Using definition (3.2) and the projection P∅, we can write

u2d+n+m J(z, µ, u, t) J(w, µ, u,−t)

=
〈∏

A(tzi, uzi) eα1 e
u

t
F2

∏
α−µi

P∅

×
∏

αµi
e−

u

t
F2 eα−1

∏
A(−twj , uwj)∗

〉
.
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Since F2 commutes with H, F2 also commutes with Pd. Therefore,∑
|µ|=d

1
z(µ)

e
u

t
F2

∏
α−µi

P∅
∏

αµi
e−

u

t
F2 = Pd.(3.4)

After summing (3.1), using (3.4), we find:

(3.5) Gd(z1, . . . , zn, w1, . . . , wm, u)

= u−2d−n−m
〈∏

A(tzi, uzi) eα1 Pd eα−1
∏

A(−twj , uwj)∗
〉

.

3.1.4. Define the n + m-point function G(z, w, u) of equivariant Gromov-
Witten invariants of all degrees by:

G(z, w, u) =
∑
d≥0

qd Gd(z, w, u) .

Since H =
∑

d d Pd, we find:

(3.6) G(z1, . . . , zn, w1, . . . , wm, u)

= u−n−m

〈∏
A(tzi, uzi) eα1

( q

u2

)H
eα−1

∏
A(−twj , uwj)∗

〉
.

Introduce the following operators:

A(z) =
1
u
A(tz, uz),(3.7)

A�(w) =
1
u
A(−tw, uw)∗ .

Recall, by definition,

A(z) = u−1 S(uz)tz
∑
k∈Z

ς(uz)k

(1 + tz)k
Ek(uz) .(3.8)

We obtain the following result by substituting the operators A(z), A�(w) in
equation (3.6).

Theorem 3. The function G(z, w, u) has the following vacuum expecta-
tion:

G(z1, . . . , zn, w1, . . . , wm, u) =
〈∏

A(zi) eα1

( q

u2

)H
eα−1

∏
A�(wj)

〉
.

(3.9)

In particular, for the 0-point function, Theorem 3 yields the following
correct evaluation:

G() =
〈

eα1

( q

u2

)H
eα−1

〉
= eq/u2

.
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3.2. The τ -function.

3.2.1. By definition, G(z, w, u) includes unstable contributions obtained
from (1.4). We will now introduce the τ -function: a generating function for
the true equivariant Gromov-Witten invariants of P1. The τ -function does
not include unstable contributions. In Theorems 5 and 7, we will show that
the τ -function of the equivariant theory of P1 is a τ -function of an integrable
hierarchy, namely, the 2-Toda hierarchy of Ueno and Takasaki.

3.2.2. Let Ak denote the coefficient of zk+1 in the expansion of A:

Ak = [zk+1]A , A�
k = [zk+1]A� , k ∈ Z .

Then, by Theorem 3,

(3.10)
∑
g∈Z

∑
d≥0

u2g−2qd
〈∏

τki
(0)

∏
τlj (∞)

〉•

g,d

=
〈∏

Aki
eα1

( q

u2

)H
eα−1

∏
A�

lj

〉
,

where, the left side consists of the true equivariant Gromov-Witten invariant
(with no unstable contributions). The unstable contributions (1.4) produce
terms of degrees at most 0 in their variables and, therefore, do not contribute
to (3.10).

3.2.3. Let the variable sets xi, x
�
i correspond to the descendents τi(0), τi(∞)

respectively. Define the equivariant τ -function by:

τ(x, x�, u) =
∑
g∈Z

∑
d≥0

u2g−2 qd

〈
exp

∑
i≥0

xi τi(0) + x�
i τi(∞)

〉•

g,d

.

Theorem 4. The equivariant τ -function is a vacuum expectation in Λ
∞
2 V :

τ(x, x�, u) =
〈

e
∑

xiAi eα1

( q

u2

)H
eα−1 e

∑
x�

i A�
i

〉
.(3.11)

Proof. The formula is a restatement of (3.10).

3.3. The GW/H correspondence. The generating function for the absolute
stationary nonequivariant Gromov-Witten theory of P1 is obtained from the
generating function (3.9) by taking

m = 0 , t = 0 , u = 1 .

The operator formula (3.9) then specializes to

G(z, ∅, 1)
∣∣
t=0

=
〈∏

A(0, zi) eα1 qH eα−1

〉
.
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Now,

A(0, z) =
∑
k≥0

ς(z)k

k!
Ek(z)(3.12)

= eα1 E0(z) e−α1 ,

where the second equality follows from (2.16). We obtain the following result.

Proposition 11. The n-point function of absolute stationary nonequiv-
ariant Gromov-Witten invariants of P1 is given by :

G(z, ∅, 1)
∣∣
t=0

=
〈
eα1 qH

∏
E0(zi) eα−1

〉
.(3.13)

Extracting the coefficient of qd in (3.13), we obtain the following equivalent
formula:

Gd(z, ∅, 1)
∣∣
t=0

=
1

(d!)2
〈
αd

1

∏
E0(zi)αd

−1

〉
.(3.14)

This is precisely the special case of the GW/H correspondence [24] required
for the proof of the general GW/H correspondence given there.

4. The 2-Toda hierarchy

4.1. Preliminaries on the 2-Toda hierarchy.

4.1.1. Let M be an element of the group GL(∞) acting in the GL(∞)-
module Λ

∞
2 V . The matrix elements of the operator M ,

(Mv, w) , v, w ∈ Λ
∞
2 V ,

can be viewed as, suitably regularized, ∞
2 × ∞

2 -minors of the matrix M . In
particular, the matrix elements satisfy quadratic Plücker relations.

A concise way to write all the Plücker relations is the following; see for
example [15], [18]. Introduce the following operator on Λ

∞
2 V ⊗ Λ

∞
2 V :

Ω =
∑

k∈Z+ 1
2

ψk ⊗ ψ∗
k .

The operator Ω can be defined GL(∞)-invariantly by taking, instead of {ψk}
and {ψ∗

k}, any linear basis of the space V of creation operators and the cor-
responding dual basis of the space of annihilation operators. The GL(∞)-
invariance implies

[M ⊗ M, Ω] = 0(4.1)

for any operator M in the closure of the image of GL(∞) in the endomorphisms
of Λ

∞
2 V .
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Concretely, for any v, v′, w, w′ ∈ Λ
∞
2 V , we obtain the following quadratic

relation between the matrix coefficients of M :(
[M ⊗ M, Ω] v ⊗ v′, w ⊗ w′) = 0 .(4.2)

4.1.2. For example, consider the following vectors in (4.2):

v = v∅ = −1
2 ∧ −3

2 ∧ −5
2 ∧ −7

2 ∧ . . . ,

v′ = v� = 1
2 ∧ −3

2 ∧ −5
2 ∧ −7

2 ∧ . . . ,

w = v1 = 1
2 ∧ −1

2 ∧ −3
2 ∧ −5

2 ∧ . . . ,

w′ = v−1 = −3
2 ∧ −5

2 ∧ −7
2 ∧ −9

2 ∧ . . . ,

where v∅, v1, v−1 are the vacuums in subspaces of charge 0, 1, and −1, respec-
tively, and v� is the unique charge 0 vector of energy 1, corresponding to the
partition λ = (1).

We find from the definitions,

Ω v∅ ⊗ v� = v1 ⊗ v−1 ,

Ω∗ v1 ⊗ v−1 = v∅ ⊗ v� − v� ⊗ v∅ .

Hence, (4.2) yields the following identity:

(M v1, v1) (M v−1, v−1) = (M v∅, v∅) (M v�, v�) − (M v∅, v�) (M v�, v∅) .

(4.3)

The above identity, which remains valid for matrices of finite size, is often
associated with Lewis Carroll [2], but was first established by P. Desnanot in
1819 (see [19]).

Another way to write identity (4.3) is the following:〈
T−1MT

〉 〈
TMT−1

〉
= 〈M〉 〈α1 M α−1〉 − 〈α1 M〉 〈M α−1〉 ,(4.4)

where T is the translation operator on the infinite wedge space

T ·
∧

si =
∧

si + 1 .

4.1.3. Using the vertex operators

Γ±(t) = exp

(∑
k>0

tk
α±k

k

)
,

we define a sequence of τ -functions corresponding to the operator M ,

τM
n (t, s) =

〈
T−n M̂ Tn

〉
, M̂ = Γ+(t)M Γ−(s) , n ∈ Z .

The derivatives of τM
n with respect to the variables t and s are nothing but

matrix elements of the matrix M̂ ∈ GL(∞). Hence, the functions τM
n satisfy
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a collection of bilinear partial differential equations. This collection is known
as the 2-Toda hierarchy of Ueno and Takasaki; see [28] and also, for example,
the appendix to [20] for a brief exposition.

In particular, the lowest equation of the hierarchy is a restatement of the
equation (4.4):

τn
∂2

∂t1∂s1
τn − ∂

∂s1
τn

∂

∂t1
τn = τn+1 τn−1 , n ∈ Z.(4.5)

We may rewrite (4.5) as:

∂2

∂t1∂s1
log τn =

τn+1 τn−1

τ2
n

.(4.6)

4.2. String and divisor equations.

4.2.1. The equivariant divisor equations describe the effects of insertions
of τ0(0) and τ0(∞). In terms of the disconnected (n + m)-point generating
function Gd(z1, . . . , zn, w1, . . . , wm, u), the divisor equation for τ0(0) insertion
takes the following form.

Proposition 12.

(4.7)
[
z1
0

]
Gd(z0, z1, . . . , zn, w1, . . . , wm, u)

=

(
d − 1

24
+ t

n∑
i=1

zi

)
Gd(z1, . . . , zn, w1, . . . , wm, u) .

Recall that, by construction, the function Gd includes contributions from
unstable moduli spaces. Therefore, the usual geometric proof of the divisor
equation requires a modification. Instead, we will prove the formula (4.7)
using the operator formalism.

The presence of the disconnected and unstable contributions in Gd actually
simplifies the form of the divisor equation — special handling of the exceptional
cases is no longer required.

Proof. Equation (3.9) states:

Gd(z, w, u) = u−2d
〈∏

A(zi) eα1 Pd eα−1
∏

A(wi)�
〉

,

and hence[
z1
0

]
Gd(z0, z1, . . . , zn, w, u) =

〈
A0

∏
A(zi) eα1 Pd eα−1

∏
A(wi)�

〉
.

The operator A0 has the following form

A0 = α1 −
1
24

+ . . . ,(4.8)
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where the dots stand for terms for which the adjoint annihilates the vacuum.
Since the energy operator H also annihilates the vacuum, we can write:

(4.9)
[
z1
0

]
Gd(z0, z1, . . . , zn, w, u)

=
〈(

− 1
24 + α1 + H

) ∏
A(zi) eα1 Pd eα−1

∏
A(wi)�

〉
.

From definition (3.8), we find:

[α1 + H, A(z)] = tz A(z) .(4.10)

Also, we have [H, α1] = −α1 and H Pd = d Pd. Therefore,

(α1 + H) eα1 Pd = eα1 H Pd = d eα1 Pd .

Hence, commuting the operator α1 + H in (4.9) to the middle, we obtain
formula (4.7).

4.2.2. The string equation describes the effect of the insertion of τ0(1),
where 1 is the identity class in the equivariant cohomology of P1. Since

1 =
0 − ∞

t

in the localized equivariant cohomology of P1, the string equation is a lin-
ear combination of the divisor equations associated to two torus fixed points.
The effect of an arbitrary number of the τ0(1)-insertions can be conveniently
described in the following form.

Proposition 13.

(4.11)
〈
eτ0(1)

∏
τki

(0)
∏

τli(∞)
〉•

g,d

=
[∏

zki+1
i

∏
wli+1

i

]
e
∑

zi+
∑

wi Gg,d(z, w, u) .

4.3. The 2-Toda equation.

4.3.1. Let M be the matrix appearing in (3.11),

M = e
∑

xiAi eα1

( q

u2

)H
eα−1 e

∑
x�

i A�
i .(4.12)

In Section 4.4, we will see that for a suitable matrix M , one can conjugate
M to the canonical form Γ+(t)M Γ−(s) required of the 2-Toda hierarchy. Here,
the time variables {ti} and {si} are related to the variables {xi} and {x�

i } by
an explicit linear transformation.

The 2-Toda equation, the lowest equation of the Ueno-Takasaki hierarchy,
is then a consequence of the results in Section 4.4. However, a direct derivation
of the 2-Toda equation, without the full hierarchy, is presented here first.
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4.3.2. From (4.8) we obtain

∂

∂x0
τ(x, x�, u) =

〈
(α1 − 1

24) M
〉

,

and, similarly,
∂

∂x�
0

τ(x, x�, u) =
〈
M (α−1 − 1

24)
〉

.

We therefore find

τ
∂2

∂x0 ∂x�
0

τ − ∂

∂x0
τ

∂

∂x�
0

τ = 〈M〉 〈α1 M α−1〉 − 〈α1 M〉 〈M α−1〉(4.13)

=
〈
T−1 M T

〉 〈
T M T−1

〉
,

where the second equality follows from (4.4) .

4.3.3. We will now study the conjugation of M by the translation opera-
tor T . The result combined with (4.13) will yield the 2-Toda equation.

We first examine the T conjugation of the constituent operators of M. The
conjugation of the operators Ak is best summarized by the equation

T−1 A(z) T = euz A(z) ,(4.14)

which follows directly from definitions. The conjugation equations for A�
k are

identical.
Since T commutes with α±1, the only other conjugation we require is:

T−n H Tn = H + nC +
n2

2
,(4.15)

where C is the charge operator (see Section 2.2.3 of [24]). Since C commutes
with the remaining operators Ak,A

�
k, α±1 and annihilates the vacuum, we may

ignore C.
We now observe that the evolution of the operators Ak,A

�
k under the string

equation in (4.11) has exactly same form as (4.14). Introduce, the following
differential operator

∂ =
1
t

(
∂

∂x0
− ∂

∂x�
0

)
,

the action of which on τ corresponds to the insertion of τ0(1).
Combining (4.14), (4.15), and (4.11), we obtain〈

T−n M Tn
〉

=
qn2/2

un2 enu∂τ ,(4.16)

and therefore, 〈
T−1 M T

〉 〈
T M T−1

〉
=

q

u2
eu∂τ e−u∂τ .

Thus, we have established the following version of the 2-Toda equation for the
function τ(x, x�, u).
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Theorem 5. The function τ(x, x�, u) satisfies the following form of the
2-Toda equation:

∂2

∂x0 ∂x�
0

log τ =
q

u2

eu∂τ e−u∂τ

τ2
.(4.17)

Since the degree variable q appears as a factor on the right side of (4.17),
the equation (4.17) determines all positive degree Gromov-Witten invariants
of P1 from the degree 0 invariants.

4.4. The 2-Toda hierarchy.

4.4.1. Our goal now is to prove that there exists an upper unitriangular
matrix W such that

W−1 exp
(∑

xi Ai

)
W = Γ+(t) ,(4.18)

where the time variables {ti} are obtained from the variables {xi} by certain
explicit linear transformation which will be described below.

Once (4.18) is established, one deduces the 2-Toda hierarchy for the
τ -function (3.11) as follows. First, taking the adjoint of the equation (4.18)
and reversing the sign of the equivariant parameter t, we obtain

W � exp
(∑

x�
i A�

i

)
(W �)−1 = Γ−(s)(4.19)

where
W � = W ∗∣∣

t	→−t
.

The linear transformation
{x�

i } 	→ {si}

is obtained from the linear transformation {xi} 	→ {ti} by reversing the sign
of the equivariant parameter t.

Together, the equations (4.18) and (4.19), give the following formula for
the matrix (4.12)

M = W Γ+(t)M Γ−(s)W � ,(4.20)

where
M = W−1 eα1

( q

u2

)H
eα−1 (W �)−1 .

The unitriangularity of W implies

W ∗ v∅ = W � v∅ = v∅ ,

and, more generally,

W ∗ Tn v∅ = W � Tn v∅ = Tn v∅ , n ∈ Z .
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Therefore, we obtain

qn2/2

un2 enu∂τ =
〈
T−n M Tn

〉
(4.21)

=
〈
T−n Γ+(t)M Γ−(s)Tn

〉
,

where the first equation is copied from (4.16). It then follows that the sequence
(4.21) is a sequence of τ -functions for the full 2-Toda hierarchy of Ueno and
Takasaki.

4.4.2. We now proceed with the realization of the above plan, viewing the
operators Ak as matrices in the associative algebra End(∞). All multiplication
operations in Sections 4.4.2 – 4.4.9 should be interpreted as multiplication in
End(∞), and not in End(Λ

∞
2 V ).

For k ≥ 0, the matrices Ak commute by Theorem 1 and have the form

Ak =
uk

(k + 1)!
αk+1 + . . . ,(4.22)

where the dots stand for term of energy larger than −k − 1.
Since the matrix A0 has form (4.22), there exists an upper unitriangular

matrix W ∈ GL(∞) conjugating A0 to α1:

W−1 A0 W = α1 .

We call the matrix W the dressing operator. The explicit form of W is rather
complicated, unique only up to left multiplication by an element of the cen-
tralizer of α1, and will not be required.

However, the dressed matrices

Ãk = W−1 Ak W, k ≥ 0,

are uniquely defined and can be identified explicitly.
Because the matrices Ãk commute with the matrix Ã0 = α1, the matrices

have the following form:

Ãk =
∑

l≤k+1

ck,l(u, t)αl , k = 0, 1, . . . ,(4.23)

where

ck,k+1 =
uk

(k + 1)!
.

The other coefficients of the expansion are determined by the following result.

Theorem 6. The dressed operators Ãk are determined by a generating
function identity : ∑

k≥0

zk+1 Ãk =
∑
n≥1

un−1 zn

(1 + tz) · · · (n + tz)
αn .(4.24)
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As an immediate consequence of Theorem 6, we see ck,l(u, t) = 0 unless
l > 0.

4.4.3. Equation (4.23) is equivalent to the equation

Ak =
∑

l≤k+1

ck,l(u, t) Al
0 , k = 0, 1, . . . ,(4.25)

where the powers of A0 are taken in the associative algebra End(∞).
The operator A(z) is homogeneous of degree −1 with respect to the fol-

lowing grading:
deg u = deg t = −deg z = 1 .

Therefore, the operator Ak has degree k with respect to the grading. Therefore,
by (4.25), we see

deg ck,l(u, t) = k .(4.26)

Theorem 6 implies ck,l(u, t) is a monomial:

ck,l(u, t) = ck,l u
l−1 tk−l+1 , ck,l ∈ Q ,(4.27)

a nontrivial fact which will play an important role in the proof.
Because of the homogeneity property (4.26), we may set u = 1 in order

to simplify our computations.

4.4.4. Taking the adjoint of equation (4.24) and reversing the sign of t,
we find: ∑

k≥0

zk+1 Ã�
k =

∑
n≥1

un−1 zn

(1 − tz) · · · (n − tz)
α−n ,(4.28)

where
Ã�

k = W � A�
k (W �)−1 ,

and W � = W ∗(u,−t).
Following the discussion of Section 4.4.1, we immediately obtain the fol-

lowing result.

Theorem 7. The triangular linear change of time variables given by (4.24)
and (4.28) makes the sequence of functions,

qn2/2

un2 enu∂ τ(x, x�, u) , n ∈ Z ,

a sequence of τ -functions for the full 2-Toda hierarchy of Ueno and Takasaki.

Our derivation has neglected a minor point: the operators Ak, Ãk have
constant terms when acting on Λ

∞
2 V (and similarly for A�

k, Ã
�
k). However,
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these constants can be removed by further conjugation by operators αn in
Λ

∞
2 V . The constants do not affect Theorem 7.

The explicit form of the linear change of variables from the Gromov-
Witten times to the standard times of the 2-Toda hierarchy was conjectured
by Getzler; see [11].

4.4.5. We now proceed with the proof of Theorem 6 starting with the
following result.

Proposition 14. For k ≥ 0 and l > 0, the coefficient ck,l(u, t) is a mono-
mial in t of degree k − l + 1.

Proof. We set u = 1. By (4.25), we may equivalently prove the coefficient
of Al

0 in the expansion of Ak is a monomial in t of degree k − l + 1. Further,
by induction, it suffices to prove that the coefficients bk,l(t) in the expansion

A0 Ak =
∑

l≤k+1

bk,l(t)Al(4.29)

are monomials in t of degree k + 1 − l for l ≥ 0.
The coefficients bk,l(t) with l ≥ 0 can be determined from the negative

energy matrix elements of the product A0 Ak. The matrix elements of A0 Ak

are obtained as the z wk+1 coefficient of the expansion of A(z)A(w). Since

Ea(z) Eb(w) = e(aw−bz)/2 Ea+b(z + w) ,

we compute

A(z) A(w) =S(z)tz S(w)tw
∑
m∈Z

Em(z + w)(4.30)

× ς(z)m emw/2

(1 + tz)m

(∑
n∈Z

(−tz − m)n

(1 + tw)n

(
1 − e−w

1 − ez

)n
)

.

The summation over n in (4.30) is formally infinite, but only finitely many
terms actually contribute to the z wk+1 coefficient. Indeed, the coefficient of z

vanishes if m > n + 1, while the coefficient of wk+1 vanishes if n > k + 1.
The sum over n in (4.30) can be written as:

2F1

(
−tz − m, 1

1 + tw
;
1 − e−w

1 − ez

)
+ 2F1

(
−tw, 1

1 + m + tz
;

1 − ez

1 − e−w

)
− 1 ,(4.31)

where the hypergeometric function is defined by (5.2). The two series in (4.31)
converge for |w| < |z| � 1 and |z| < |w| � 1, respectively. Therefore, we can
write the coefficient of z wk+1 as a sum of two contour integrals in two different
domains.

We may now deform these contour integrals to integrals over

|z| = |w| = ε � 1 .
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The condition m > 0 is needed for the hypergeometric function to remain
continuous in this limit. On the new contour, which is now common to both
integrals, we can use formula (5.8). After some simplifications, we find:

A0 Ak =
1

(2πi)2

∫∫
|z|=|w|=ε

dz dw

z2 wk+2
(4.32)

×
(
1 + w

z

)tz+tw(
w
z

)tw

Γ(1 + tz) Γ(1 + tw)
Γ(1 + tz + tw)

A(z + w) + . . .

where the dots denote terms of nonnegative energy.
The meaning of formula (4.32) is the following. First, the multivalued

function (
1 + w

z

)tz+tw(
w
z

)tw(4.33)

is defined using the cut
w

z
�= (−∞, 0] .

Because both z and w are small, the function (4.33) is integrable in the neigh-
borhood of the singularity w = −z on the contour of integration. Second, the
negative energy terms in A(z + w) are nonsingular at z + w = 0 and, hence,
their expansion in powers of z and w is unambiguous. Also, these terms do
not spoil the convergence of the integral at w = −z.

From formula (4.32), we deduce, for l ≥ 0,

bk,l(t) =
1

(2πi)2

l+1∑
a=0

(
l + 1

a

) ∫∫
|z|=|w|=ε

dz dw

z2−a wk+a+1−l
(4.34)

×
(
1 + w

z

)tz+tw(
w
z

)tw

Γ(1 + tz) Γ(1 + tw)
Γ(1 + tz + tw)

.

After replacing tz and tw by new variables, we see (4.34) is indeed a monomial
in t of degree k − l + 1.

4.4.6. From Lemma 2, we expect the following heuristic result:

A(z)A(w) “=”
(z + w)tz+tw

ztz wtw

(tz)! (tw)!
(tz + tw)!

A(z + w) ,

which becomes a true equality when both tz and tw are positive integers.
Equation (4.32) is a way to make sense of the heuristic formula.

4.4.7. The next step in the proof of Theorem 6 is the following result.

Proposition 15. For all l, the coefficient ck,l(u, t) is a monomial in t of
degree k − l + 1.
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Proof. By Proposition 14, we need only consider l ≤ 0. Define the operator
D by:

D = W−1 (α1 + H) W .

Equation (4.10) implies: [
D, Ãk

]
= t Ãk−1 .(4.35)

Also, since A0 = α1 + H + . . . ,

D = α1 + . . . ,

where, in both cases, the dots stand for terms with positive energy.
Since the matrix [D, α1] = t Ã−1 commutes with α1, the matrix D has the

form
D = α1 +

∑
n>0

dn(u, t)α−n H + . . . ,

where the dots stand for terms that commute with α1 and the precise form
depends on the ambiguity in the choice of the dressing matrix W . Here, H is
the energy operator and the product is taken in the algebra End(V ).

It is easy to see that equation (4.10) uniquely determines all the coefficients
dn in terms of ck,l(u, t) with l > 0. The coefficients dn, in turn, determine all
remaining coefficients ck,l(u, t). In fact,

dn(u, t) = − tn

un
.

However, for the proof of the proposition, we need only observe that the unique-
ness forces dn have degree n in t. Then, the coefficients ck,l(u, t) must have
degrees k − l + 1 in t.

4.4.8. From the proof of Proposition 15, we see that the matrices Ãk can
be uniquely characterized by the two following conditions:

(i) Ã0 = α1 and Ãk is a linear combination of α1, . . . , αk+1.

(ii) There exists a matrix of the form

D = α1 +
∑
n>0

dn α−n H , d1 = − t

u
,

such that
[
D, Ãk

]
= t Ak−1 for k > 0.

4.4.9. We can now complete the proof of Theorem 6. Since the coefficients
ck,l(u, t) are monomials in t, the coefficients are identical to their leading order
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asymptotics as u → 0. Hence, the operators Ãk can be determined by studying
the u → 0 asymptotics of the operators A(z). In the u → 0 limit, we have

(4.36) A(z) ∼
∑
n≥0

un−1 zn

(1 + tz) · · · (n + tz)
αn

+
∑
n>0

t

un+1

(
t − 1

z

)
· · ·

(
t − n − 1

z

)
α−n .

In the u → 0 limit, the dressing matrix W becomes trivial and the statement
of Theorem 6 can be read off directly from (4.36).

Formula (4.36) also contains the description of the dressed operators Ãk

for k < 0.

5. Commutation relations for operators A

Our goal here is to prove Theorem 1:

[A(z, uz),A(w, uw)] = zw δ(z,−w) .

5.1. Formula for the commutators.

5.1.1. We may calculate [A(z, uz),A(w, uw)] by the commutation rela-
tion (2.15). Now,

[A(z, uz),A(w, uw)] = S(uz)z S(uw)w
∑
m∈Z

cm(z, w) Em(u(z + w))(5.1)

where the functions cm(z, w) are defined by:

cm(z, w) =


ς(uz)s ς(uw)s

(z + 1)s(w + 1)s

[
fs,u(z, w) − fs,u(w, z)

]
, m = 2s ,

ς(uz)s ς(uw)s

(z + 1)s(w + 1)s

[
gs,u(z, w) − gs,u(w, z)

]
, m = 2s − 1 .

Here, fs,u(z, w) and gs,u(z, w) are hypergeometric series which are explicitly
defined below.

We recall the definition of the hypergeometric series which we require:

2F1

(
−ν, 1
µ + 1

; z
)

=
∞∑

k=0

ν(ν − 1) · · · (ν − k + 1)
(µ + 1) · · · (µ + k)

(−z)k , |z| < 1 .(5.2)

Define fs,u(µ, ν) and gs,u(µ, ν) by:

fs,u(µ, ν) = e−suµ
2F1

(
−ν − s, 1
µ + 1 + s

;
1 − euµ

1 − e−uν

)
(5.3)

−e−suν
2F1

(
−ν − s, 1
µ + 1 + s

;
1 − e−uµ

1 − euν

)
+

e−suν − e−suµ

2
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and,

gs,u(µ, ν) =
ν + s

ς(uν)

[
e(1−s)uµ

2F1

(
−ν − s + 1, 1

µ + 1 + s
;

1 − euµ

1 − e−uν

)
(5.4)

− e−suν
2F1

(
−ν − s + 1, 1

µ + 1 + s
;
1 − e−uµ

1 − euν

)]
.

5.1.2. The series fs,u(z, w) and gs,u(z, w) in formula (5.1) are to be
expanded in the ring Q[u±]((w))((z)), that is, expanded in Laurent series of z

with coefficients given by Laurent series in w. Since, for example, the kth term
in

2F1

(
−w − s, 1
z + s + 1

;
1 − euz

1 − e−uw

)
=

∞∑
k=0

(w + s) · · · (w + s − k + 1)
(z + s + 1) · · · (z + s + k)

(
euz − 1

1 − e−uw

)k

(5.5)

is of order zk, the extraction of any given term in these expansions is, in
principle, a finite computation. Similarly, the series fs,u(w, z) and gs,u(w, z) in
formula (5.1) are to be expanded in the ring Q[u±]((z))((w)).

5.1.3. The constant term of E0(u(z + w)) plays a special role in formula
(5.1). The expansion rules for the constant term,

f0,u(z, w)
ς(u(z + w))

− f0,u(w, z)
ς(u(z + w))

,(5.6)

are the following. The first summand is to be expanded in ascending powers
of z whereas the second summand is to be expanded in ascending powers of w.

5.1.4. We will show that the expansions of the two terms of cm(z, w)
exactly cancel each other. The commutator is therefore obtained entirely from
the constant term. We will show that the expansions of the two terms of (5.6)
cancel except for the two different expansions of the simple pole at z + w = 0.

5.2. Some properties of the hypergeometric series.

5.2.1. To proceed, several properties of the hypergeometric series (5.2)
are required. Define the analytic continuation of (5.2) to the complex plane
with a cut along [1,+∞) by the following integral:

2F1

(
−ν, 1
µ + 1

; z
)

= µ

∫ 1

0
(1 − x)µ−1(1 − zx)ν dx , �µ > 0 .(5.7)

The above hypergeometric function is degenerate since the elementary func-
tion,

z−µ (1 − z)µ+ν ,
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is a second solution to the hypergeometric equation and, in addition, is an
eigenfunction of monodromy at {0, 1,∞}. As a consequence, the analytic con-
tinuation of the function (5.7) through the cuts [1,+∞) leads only to the
appearance of elementary terms. In fact, the analytic continuation of (5.7)
through the cut [1,+∞) is given explicitly by the formula (5.8) below.

5.2.2.

Lemma 16. For z /∈ [0,+∞),

2F1

(
−ν, 1
µ + 1

; z
)

= 1 − 2F1

(
−µ, 1
ν + 1

;
1
z

)
+

(1 − z)µ+ν

(−z)µ

Γ(µ + 1) Γ(ν + 1)
Γ(µ + ν + 1)

.(5.8)

Here and in what follows we use the principal branches of the functions
lnw and wa for w /∈ (−∞, 0].

Proof. Integrating by parts and setting y = zx, we see that the integral
(5.7) is transformed to the following form:

1 − ν

∫ 1

0

(
1 − y

z

)µ
(1 − y)ν−1 dy + ν

∫ 1

z

(
1 − y

z

)µ
(1 − y)ν−1 dy .

The last integral here is a standard beta-function integral and, thus, the three
terms in the above formula correspond precisely to the three terms on the right
side of (5.8) .

5.2.3. A similar argument proves the following result.

Lemma 17. For z /∈ [0,+∞),

ν 2F1

(
−ν + 1, 1

µ + 1
; z

)
=

µ

z
2F1

(
−µ + 1, 1

ν + 1
;
1
z

)
+

(1 − z)µ+ν−1

(−z)µ

Γ(µ + 1) Γ(ν + 1)
Γ(µ + ν)

.

5.3. Conclusion of the proof of Theorem 1.

5.3.1.

Lemma 18. The functions fs,u(µ, ν) and gs,u(µ, ν) are analytic in a neigh-
borhood of the origin (µ, ν) = (0, 0) and symmetric in µ and ν .

Proof. We will prove the lemma for fs,u(µ, ν). The argument for gs,u(µ, ν)
is parallel, with Lemma 17 replacing Lemma 16. The proof will show the
neighborhood can be chosen to be independent of the parameter s.
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For simplicity, we will first assume s is not a negative integer. The as-
sumption will be removed at the end of the proof. Using relation (5.8), we
find,

fs,u(µ, ν) = fs,u(ν, µ)(5.9)

on the intersection of the domains of applicability of (5.8).
The possible singularities of fs,u(µ, ν) near the origin are at ν = 0 and

µ + ν = 0, corresponding to the singularities z = ∞ and z = 1 of the hyperge-
ometric function (5.7), respectively. The hypergeometric function is analytic
and single-valued in the complex plane with a cut from 1 to ∞. The function
fs,u(µ, ν) is well-defined if the arguments,

1 − euµ

1 − e−uν
,
1 − e−uµ

1 − euν
≈ −µ

ν
,

do not fall on the cut [1,+∞). Similarly, the function fs,u(ν, µ) is well-defined
if the arguments,

1 − euν

1 − e−uµ
,
1 − e−uν

1 − euµ
≈ −ν

µ
,

do not fall on the cut [1,+∞). By (5.9), the two functions above agree on the
region where both are defined. It follows that fs,u(µ, ν) is single-valued and
analytic near the origin in the complement of the divisor µ+ν = 0. By Lemma
19 below, fs,u(µ, ν) remains bounded as ν → −µ and hence the singularity at
µ + ν = 0 is removable. We conclude that fs,u(µ, ν) is analytic and symmetric
near the origin.

Finally, consider the case when s → −n, where n is a positive integer. The
apparent simple pole of fs,u(µ, ν) at µ = −s − n is, in fact, removable. The
removability follows either from symmetry (because there is no such singularity
in ν) or else can be checked directly using the formula

Resµ=−n 2F1

(
−ν, 1

µ
; z

)
= (−1)n−1 (−ν)n

(n − 1)!
zn (1 − z)ν−n .

5.3.2.

Lemma 19.

fs,u(µ,−µ) = −µ

s
sinh(usµ)(5.10)

and, in particular,

f0,u(µ,−µ) = −uµ2 .(5.11)

Similarly,

gs,u(µ,−µ) =
s2 − µ2

2s − 1
sinh (2s−1)uµ

2

sinh uµ
2

.
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Proof. For �s > 0 we can use the formula

2F1

(
µ − s, 1

µ + 1 + s
; 1

)
=

Γ(µ + 1 + s) Γ(2s)
Γ(µ + s)Γ(2s + 1)

=
µ + s

2s
,

from which (5.10) follows. By analytic continuation, (5.10) holds for all s. The
computation of gs,u(µ,−µ) is identical.

5.3.3. We may now complete the proof of Theorem 1. Since the functions
fs,u(µ, ν) and gs,u(µ, ν) are analytic near the origin and symmetric in µ and ν,
the nonconstant terms of formula (5.1) cancel.

The summands of the constant term (5.6) of formula (5.1) can be analyzed
using (5.11):

f0,u(z, w)
ς(u(z + w))

=
zw

z + w
+ . . . ,

where the dots represent a function analytic at the origin and symmetric in
z and w. Observe that the prefactor in formula (5.1) is identically equal to
1 on the divisor z + w = 0 and does not affect the singularity. The proof of
Theorem 1 is complete.
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