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Logarithmic singularity of the

Szegö kernel and a global invariant
of strictly pseudoconvex domains

By Kengo Hirachi*

1. Introduction

This paper is a continuation of Fefferman’s program [7] for studying the
geometry and analysis of strictly pseudoconvex domains. The key idea of
the program is to consider the Bergman and Szegö kernels of the domains as
analogs of the heat kernel of Riemannian manifolds. In Riemannian (or confor-
mal) geometry, the coefficients of the asymptotic expansion of the heat kernel
can be expressed in terms of the curvature of the metric; by integrating the co-
efficients one obtains index theorems in various settings. For the Bergman and
Szegö kernels, there has been much progress made on the description of their
asymptotic expansions based on invariant theory ([7], [1], [15]); we now seek
for invariants that arise from the integral of the coefficients of the expansions.

We here prove that the integral of the coefficient of the logarithmic sin-
gularity of the Szegö kernel gives a biholomorphic invariant of a domain Ω, or
a CR invariant of the boundary ∂Ω, and moreover that the invariant is un-
changed under perturbations of the domain (Theorem 1). We also show that
the same invariant appears as the coefficient of the logarithmic term of the
volume expansion of the domain with respect to the Bergman volume element
(Theorem 2). This second result is an analogue of the derivation of a conformal
invariant from the volume expansion of conformally compact Einstein mani-
folds which arises in the AdS/CFT correspondence — see [10] for a discussion
and references.

The proofs of these results are based on Kashiwara’s microlocal analysis
of the Bergman kernel in [17], where he showed that the reproducing prop-
erty of the Bergman kernel on holomorphic functions can be “quantized” to
a reproducing property of the microdifferential operators (i.e., classical ana-
lytic pseudodifferential operators). This provides a system of microdifferential
equations that characterizes the singularity of the Bergman kernel (which can
be formulated as a microfunction) up to a constant multiple; such an argument
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can be equally applied to the Szegö kernel. These systems of equations are used
to overcome one of the main difficulties, when we consider the analogy to the
heat kernel, that the Bergman and Szegö kernels are not defined as solutions
to differential equations.

Let Ω be a relatively compact, smoothly bounded, strictly pseudoconvex
domain in a complex manifold M . We take a pseudo Hermitian structure θ,
or a contact form, of ∂Ω and define a surface element dσ = θ ∧ (dθ)n−1. Then
we may define the Hardy space A(∂Ω, dσ) consisting of the boundary values
of holomorphic functions on Ω that are L2 in the norm ‖f‖2 =

∫
∂Ω |f |2dσ.

The Szegö kernel Sθ(z, w) is defined as the reproducing kernel of A(∂Ω, dσ),
which can be extended to a holomorphic function of (z, w) ∈ Ω × Ω and has a
singularity along the boundary diagonal. If we take a smooth defining function
ρ of the domain, which is positive in Ω and dρ �= 0 on ∂Ω, then (by [6] and [2])
we can expand the singularity as

Sθ(z, z) = ϕθ(z)ρ(z)−n + ψθ(z) log ρ(z),(1.1)

where ϕθ and ψθ are functions on Ω that are smooth up to the boundary.
Note that ψθ|∂Ω is independent of the choice of ρ and is shown to gives a local
invariant of the pseudo Hermitian structure θ.

Theorem 1. (i) The integral

L(∂Ω, θ) =
∫

∂Ω
ψθ θ ∧ (dθ)n−1

is independent of the choice of a pseudo Hermitian structure θ of ∂Ω. Thus
L(∂Ω) = L(∂Ω, θ).

(ii) Let {Ωt}t∈R be a C∞ family of strictly pseudoconvex domains in M .
Then L(∂Ωt) is independent of t.

In case n = 2, we have shown in [13] that

ψθ|∂Ω =
1

24π2
(∆bR − 2 Im A11,

11),

where ∆b is the sub-Laplacian, R and A11,
11 are respectively the scalar curva-

ture and the second covariant derivative of the torsion of the Tanaka-Webster
connection for θ. Thus the integrand ψθ θ ∧ dθ is nontrivial and does depend
on θ, but it also turns out that L(∂Ω) = 0 by Stokes’ theorem. For higher di-
mensions, we can still give examples of (∂Ω, θ) for which ψθ|∂Ω �≡ 0. However,
the evaluation of the integral is not easy and, so far, we can only give examples
with trivial L(∂Ω) — see Proposition 3 below.

We were led to consider the integral of ψθ by the works of Branson-Ørstead
[4] and Parker-Rosenberg [20] on the constructions of conformal invariants from
the heat kernel kt(x, y) of the conformal Laplacian, and their CR analogue
for CR invariant sub-Laplacian by Stanton [22]. For a conformal manifold
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of even dimension 2n (resp. CR manifold of dimension 2n − 1), the integral
of the coefficient an of the asymptotic expansion kt(x, x) ∼ t−n

∑∞
j=0 aj(x)tj

is shown to be a conformal (resp. CR) invariant, while the integrand andvg

does depend on the choice of a scale g ∈ [g] (resp. a contact form θ). This is
a natural consequence of the variational formula for the kernel kt(x, y) under
conformal scaling, which follows from the heat equation. Our Theorem 1 is also
a consequence of a variational formula of the Szegö kernel, which is obtained as
a part of a system of microdifferential equations for the family of Szegö kernels
(Proposition 3.4).

We next express L(∂Ω) in terms of the Bergman kernel. Take a C∞

volume element dv on M . Then the Bergman kernel B(z, w) is defined as the
reproducing kernel of the Hilbert space A(Ω, dv) of L2 holomorphic functions
on Ω with respect to dv. The volume of Ω with respect to the volume element
B(z, z)dv is infinite. We thus set Ωε = {z ∈ Ω : ρ(z) > ε} and consider the
asymptotic behavior of

Vol(Ωε) =
∫

Ωε

B(z, z) dv

as ε → +0.

Theorem 2. For any volume element dv on M and any defining function
ρ of Ω, the volume Vol(Ωε) admits an expansion

Vol(Ωε) =
n−1∑
j=0

Cj εj−n + L(∂Ω) log ε + O(1),(1.2)

where Cj are constants, L(∂Ω) is the invariant given in Theorem 1 and O(1)
is a bounded term.

The volume expansion (1.2) can be compared with that of conformally
compact Einstein manifolds ([12], [10]); there one considers a complete Ein-
stein metric g+ on the interior Ω of a compact manifold with boundary and
a conformal structure [g] on ∂Ω, which is obtained as a scaling limit of g+.
For each choice of a preferred defining function ρ corresponding to a conformal
scale, we can consider the volume expansion of the form (1.2) with respect to
g+. If dimR ∂Ω is even, the coefficient of the logarithmic term is shown to be
a conformal invariant of the boundary ∂Ω. Moreover, it is shown in [11] and
[8] that this conformal invariant can be expressed as the integral of Branson’s
Q-curvature [3], a local Riemannian invariant which naturally arises from con-
formally invariant differential operators. We can relate this result to ours via
Fefferman’s Lorentz conformal structure defined on an S1-bundle over the CR
manifold ∂Ω. In case n = 2, we have shown in [9] that ψθ|∂Ω agrees with the
Q-curvature of the Fefferman metric; while such a relation is not known for
higher dimensions.
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So far, we have only considered the coefficient L(∂Ω) of the expansion
(1.2). But other coefficients may have some geometric meaning if one chooses
ρ properly; here we mention one example. Let E → X be a positive Hermitian
line bundle over a compact complex manifold X of dimension n − 1; then the
unit tube in the dual bundle Ω = {v ∈ E∗ : |z| < 1} is strictly pseudoconvex.
We take ρ = − log |z|2 as a defining function of Ω and fix a volume element dv

on E∗ of the form dv = i ∂ρ ∧ ∂ρ ∧ π∗dvX , where π∗dvX is the pullback of a
volume element dvX on X.

Proposition 3. Let B(z, z) be the Bergman kernel of A(Ω, dv). Then
the volume of the domain Ωε = {v ∈ E∗|ρ(z) > ε} with respect to the volume
element Bdv satisfies

Vol(Ωε) =
∫ ∞

0
e−ε tP (t)dt + f(ε).(1.3)

Here f(ε) is a C∞ function defined near ε = 0 and P (t) is the Hilbert polyno-
mial of E, which is determined by the condition P (m) = dimH0(M, E⊗m) for
m � 0.

This formula suggests a link between the expansion of Vol(Ωε) and index
theorems. But in this case the right-hand side of (1.3) does not contain a log ε

term and hence L(∂Ω) = 0. (Note that dv is singular along the zero section,
but we can modify it to a C∞ volume element without changing (1.3).)

Finally, we should say again that we know no example of a domain with
nontrivial L(∂Ω) and need to ask the following:

Question. Does there exist a strictly pseudoconvex domain Ω such that
L(∂Ω) �= 0?

This paper is organized as follows. In Section 2, we formulate the Bergman
and Szegö kernels as microfunctions. We here include a quick review of the
theory of microfunctions in order for the readers to grasp the arguments of
this paper even if they are unfamiliar with the subject. In Section 3 we recall
Kashiwara’s theorem on the microlocal characterization of the Bergman and
Szegö kernels and derive a microdifferential relation between the two kernels
and a first variational formula of the Szegö kernel. After these preparations, we
give in Section 4 the proofs of the main theorems. Finally in Section 5, we prove
Proposition 3 by relating Vol(Ωε) to the trace of the operator with the kernel
B(λz, w), |λ| ≤ 1. This proof, suggested by the referee, utilizes essentially only
the fact that dv is homogeneous of degree 0, and one can considerably weaken
the assumption of the proposition — see Remark 5.1. We also derive here, by
following Catlin [5] and Zelditch [24], an asymptotic relation between the fiber
integral of Bdv and the Bergman kernel of H0(M, E⊗m); this is a localization
of (1.3).

I am very grateful to the referee for simplifying the proof of Proposition 3.
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2. The Bergman and Szegö kernels as microfunctions

In this preliminary section, we explain how to formulate the theorems in
terms of microfunctions, which are the main tools of this paper. We here recall
all the definitions and results we use from the theory of microfunctions, with
an intention to make this section introductory to the theory. A fundamental
reference for this section is Sato-Kawai-Kashiwara [21], but a concise review
of the theory by Kashiwara-Kawai [18] will be sufficient for understating the
arguments of this paper. For comprehensive introductions to microfunctions
and microdifferential operators, we refer to [19], [23] and [16].

2.1. Singularity of the Bergman kernel. We start by recalling the form of
singularity of the Bergman kernel, which naturally lead us to the definition of
homomorphic microfunctions.

Let Ω be a strictly pseudoconvex domain in a complex manifold M with
real analytic boundary ∂Ω. We denote by MR the underlying real manifold and
its complexification by X = M ×M with imbedding ι : MR → X, ι(z) = (z, z).
We fix a real analytic volume element dv on M and define the Bergman kernel
as the reproducing kernel of A(Ω, dv) = L2(Ω, dv) ∩ O(Ω), where O denotes
the sheaf of holomorphic functions. Clearly we have B(z, w) ∈ O(Ω×Ω), while
we can also show that B(z, w) has singularity on the boundary diagonal. If we
take a defining function ρ(z, z) of ∂Ω, then at each boundary point p ∈ ∂Ω, we
can write the singularity of B(z, w) as

B(z, w) = ϕ(z, w)ρ(z, w)−n−1 + ψ(z, w) log ρ(z, w).

Here ρ(z, w) is the complexification of ρ(z, z) and ϕ, ψ ∈ OX,p, where p is
identified with ι(p) ∈ X. Moreover it is shown that this singularity is locally
determined: if Ω and Ω̃ are strictly pseudoconvex domains that agree near a
boundary point p, then BΩ(z, w) − BΩ̃(z, w) ∈ OX,p. See [17] and Remark
3.2 below. Such an OX modulo class plays an essential role in the study of
the system of differential equations and is called a holomorphic microfunction,
which we define below in a more general setting.

2.2. Microfunctions: a quick review. Microfunctions are the “singular
parts” of holomorphic functions on wedges at the edges. To formulate them,
we first introduce the notion of hyperfunctions, which are generalized functions
obtained by the sum of “ideal boundary values” of holomorphic functions.

For an open set V ⊂ Rn and an open convex cone Γ ⊂ Rn, we denote by
V + iΓ0 ⊂ Cn an open set that asymptotically agrees with the wedge V + iΓ
at the edge V . The space of hyperfunctions on V is defined as a vector space
of formal sums of the form

f(x) =
m∑

j=1

Fj(x + iΓj0),(2.1)
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where Fj is a holomorphic function on V + iΓj0, that allow the reduction
Fj(x + iΓj0) + Fk(x + iΓk0) = Fjk(x + iΓjk0), where Γjk = Γj ∩ Γk �= ∅
and Fjk = Fj |Γjk

+ Fk|Γjk
, and its reverse conversion. We denote the sheaf

of hyperfunctions by B. Note that if each Fj is of polynomial growth in y at
y = 0 (i.e., |Fj(x+ iy)| ≤ const.|y|−m), then

∑
j limΓj�y→0 Fj(x+ iy) converges

to a distribution f̃(x) on V and such a hyperfunction f(x) can be identified
with the distribution f̃(x). When n = 1, we only have to consider two cones
Γ± = ±(0,∞) and we simply write (2.1) as f(x) = F+(x + i0) + F−(x − i0).
For example, the delta function and the Heaviside function are given by

δ(x) = (−2πi)−1
(
(x + i0)−1 − (x − i0)−1

)
and

H(x) = (−2πi)−1
(
log(x + i0) − log(x − i0)

)
,

where log z has slit along (0,∞).
We next define the singular part of hyperfunctions. We say that a hyper-

function f(x) is micro-analytic at (x0; iξ0) ∈ iT ∗Rn \ {0} if f(x) admits, near
x0, an expression of the form (2.1) such that 〈ξ0, y〉 < 0 for any y ∈ ∪jΓj . The
sheaf of microfunctions C is defined as a sheaf on iT ∗Rn \ {0} with the stalk
at (x0; iξ0) given by the quotient space

C(x0;iξ0) = Bx0/{f ∈ Bx0 : f is micro-analytic at (x0; iξ0)}.
Since the definition of C is given locally, we can also define the sheaf of micro-
functions CM on iT ∗M \ {0} for a real analytic manifold M .

We now introduce a subclass of microfunctions that contains the Bergman
and Szegö kernels. Let N ⊂ M be a real hypersurface with a real analytic
defining function ρ(x) and let Y be its complexification given by ρ(z) = 0
in X. Then, for each point p ∈ N , we consider a (multi-valued) holomorphic
function of the form

u(z) = ϕ(z)ρ(z)−m + ψ(z) log ρ(z),(2.2)

where ϕ, ψ ∈ OX,p and m is a positive integer. A class modulo OX,p of u(z)
is called a germ of a holomorphic microfunction at (p; iξ) ∈ iT ∗

NM \ {0} =
{(z;λdρ(z)) ∈ T ∗M : z ∈ N, λ ∈ R \ {0}}, and we denote the sheaf of holo-
morphic microfunctions on iT ∗

NM \ {0} by CN |M . For a holomorphic micro-
function u, we may assign a microfunction by taking the “boundary values”
from ± Im ρ(z) > 0 with signature ±1, respectively, as in the expression of
δ(x) above, which corresponds to (−2πi z)−1. Thus we may regard CN |M as a
subsheaf of CM supported on iT ∗

NM \ {0}. With respect to local coordinates
(x′, ρ) of M , each u ∈ CN |M admits a unique expansion

u(x′, ρ) =
−∞∑
j=k

aj(x′)Φj(ρ),(2.3)
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where aj(x′) are real analytic functions and

Φj(t) =

{
j! t−j−1 for j ≥ 0,

(−1)j

(−j−1)! t−j−1 log t for j < 0.

If u �= 0 we may choose k so that ak(x′) �≡ 0 and call k the order of u; moreover,
if ak(x′) �= 0 then we say that u is nondegenerate at (x′, 0) ∈ N .

A differential operator

P (x, Dx) =
∑

aα(x)Dα
x , where Dα

x = (∂/∂x1)α1 · · · (∂/∂xn)αn ,

with real analytic coefficients acts on microfunctions; it is given by the appli-
cation of the complexified operator P (z, Dz) to each Fj(z) in the expression
(2.1). Moreover, at (p; i(1, 0, . . . , 0)) ∈ iT ∗Rn, we can also define the inverse
operator D−1

x1
of Dx1 by taking indefinite integrals of each Fj in z1. The

microdifferential operators are defined as a ring generated by these operators.
A germ of a microdifferential operator of order m at (x0; iξ0) ∈ iT ∗Rn is a
series of holomorphic functions {Pj(z, ζ)}−∞

j=m defined on a conic neighborhood
U of (x0; iξ0) in T ∗Cn satisfying the following conditions:

(1) Pj(z, λζ) = λjP (z, ζ) for λ ∈ C \ {0};
(2) For each compact set K ⊂ U , there exists a constant CK > 0 such

that supK |P−j(z, ζ)| ≤ j!Cj
K for any j ∈ N = {0, 1, 2, . . . }.

The series {Pj} is denoted by P (x, Dx), and the formal series P (z, ζ) =∑
Pj(z, ζ) is called the total symbol, while σm(P ) = Pm(z, ζ) is called the

principal symbol. The product and adjoint of microdifferential operators can
be defined by the usual formulas of symbol calculus:

(PQ)(z, ζ) =
∑

α∈Nn

1
α!

(Dα
ζ P (z, ζ))Dα

z Q(z, ζ),

P ∗(z, ζ) =
∑

α∈Nn

(−1)|α|

α!
Dα

z Dα
ζ P (z,−ζ).

It is then shown that P is invertible on a neighborhood of (x0; iξ0) if and only
if σm(P )(x0, iξ0) �= 0.

While these definitions based on the choice of coordinates, we can in-
troduce a transformation law of microdifferential operators under coordinate
changes and define the sheaf of the ring microdifferential operators EM on
iT ∗M for real analytic manifolds M . It then turns out that the adjoint de-
pends only on the choice of volume element dx = dx1 ∧ · · · ∧ dxn.

The action of differential operators on microfunctions can be extended to
the action of microdifferential operators so that CM is a left EM -module. This
is done by using the Laurent expansion of P (z, ζ) in ζ and then substituting
Dz and D−1

z1
, or by introducing a kernel function associated with the symbol

(analogous to the distribution kernel of a pseudodifferential operator). Then
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CN |M becomes an EM -submodule of CM . We can also define the right action of
EM on CM⊗π−1vM , where vM is the sheaf of densities on M and π : iT ∗M → M

is the projection. It is given by (udx)P = (P ∗u)dx, where the adjoint is taken
with respect to dx (here P ∗ depends on dx, but (P ∗u)dx is determined by
udx).

We also consider microdifferential operators with a real analytic para-
meter, that is, a P = P (x, t, Dx, Dt) ∈ EM×R that commutes with t. This
is equivalent to saying that the total symbol of P is independent of the dual
variable of t; so we denote P by P (x, t, Dx). Note that P (x, t, Dx), when t is
regarded as a parameter, acts on CM ⊗ π−1vM from the right.

2.3. Microfunctions associated with domains. Now we go back to our
original setting where M is a complex manifold and N = ∂Ω. We have already
seen that the Bergman kernel determines a section of C∂Ω|M , which we call
the local Bergman kernel B(x). Here x indicates a variable on MR. Note
that the local Bergman kernel is defined for a germ of strictly pseudoconvex
hypersurfaces. Similarly, we can define the local Szegö kernel : if we fix a
real analytic surface element dσ on ∂Ω and define the Szegö kernel, then the
coefficients of the expansion (1.1) are shown to be real analytic and to define
a section S(x) of C∂Ω|M ; see Remark 3.2 below. We sometimes identify the
surface element dσ with the delta function δ(ρ(x)), or δ(ρ(x))dv, normalized
by dρ ∧ dσ = dv. Note that the microfunction δ(ρ(x)) corresponds to the
holomorphic microfunction (−2πiρ(z, w))−1 mod OX , which we denote by δ[ρ].
Similarly, the Heaviside function H(ρ(x)) corresponds to a section H[ρ] of
C∂Ω|M , which is represented by (−2πi)−1 log ρ(z, w).

Our main object Vol(Ωε) can also be seen as a holomorphic microfunction.
In fact, since u(ε) = Vol(Ωε) is a function of the form u(ε) = ϕ(ε)ε−n +
ψ(ε) log ε, where ϕ and ψ are real analytic near 0, we may complexify u(ε) and
define a germ of a holomorphic microfunction u(ε̃) ∈ C{0}|R at (0; i). Note that
Vol(Ωε) ∈ C{0}|R is expressed as an integral of the local Bergman kernel:∫

B(x)H[ρ − ε](x)dv(x).(2.4)

Here H[ρ − ε](x) is a section of C
∂Ω̃|M̃ , where

Ω̃ = {(x, ε) ∈ M̃ = M × R : ρ(x) > ε}.

See Remark 2.2 for the definition of this integral.
More generally, for a section u(x, ε) of C

∂Ω̃|M̃ defined globally in x for small
ε and a global section w(x)dx of C∂Ω|M ⊗ π−1vM , we can define the integral of
microfunction ∫

u(x, ε)w(x)dx
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at (0; i) ∈ iT ∗R, which takes values in C{0}|R. For such an integral, we have a
formula of integration by parts, which is clear from the definition of the action
of microdifferential operators in terms of kernel functions [19].

Lemma 2.1. If P (x, ε, Dx) is a microdifferential operator defined on a
neighborhood of the support of u(x, ε), then∫ (

Pu
)
wdx =

∫
u
(
wdx P

)
.(2.5)

Remark 2.2. We here recall the definition of the integral (2.4) and show
that it agrees with Vol(Ωε). For a general definition of the integral of mi-
crofunctions, we refer to [19]. Write dv = λdρ ∧ dσ and complexify λ(x′, ρ)
to λ(x′, ρ̃) for ρ̃ ∈ C near 0. Then, define a holomorphic function f(ε̃) on
Im ε̃ > 0, |ε̃| � 1, by the path integral

f(ε̃) =
∫

∂Ω

∫
γ1

B(x′, ρ̃)
1

2πi
log(ρ̃ − ε̃)λ(x′, ρ̃) dρ̃dσ(x′),(2.6)

where γ1 is a path connecting a and b, with a < 0 < b, such that the image
is contained in 0 < Im ρ̃ < Im ε̃ except for both ends. Then (2.4) is given by
f(ε + i0) ∈ CR, (0;i), which is independent of the choice of a, b and γ. We now
show f(ε+ i0) = Vol(Ωε) as a microfunction. For each ε̃ with Im ε̃ > 0, choose
another path connecting b and a so that γ2γ1 is a closed path surrounding ε̃

in the positive direction. Since the integral along γ2 gives a function that can
be analytically continued to 0, we may replace γ1 in (2.6) by γ2γ1 without
changing its OC,0 modulo class. Now restricting ε̃ to the positive real axis, and
letting the path γ2γ1 shrink to the line segment [ε, b], we see that f(ε) agrees
with Vol(Ωε) modulo analytic functions at 0.

2.4. Quantized contact transformations. We finally recall a property
of holomorphic microfunctions that follows from the strictly pseudoconvex-
ity of ∂Ω. Let z be local holomorphic coordinates of M . Then we write
P (x, Dx) = P (z, Dz) (resp. P (z, Dz)) if P commutes with zj and Dzj

(resp. zj

and Dzj
). Similarly for P (x, t, Dx, Dt) ∈ EM×R we write, e.g., P (x, t, Dx, Dt) =

P (z, t, Dz) if P commutes with zj , Dzj
and t. Clearly, the class of operators

P (z, Dz) and P (z, Dz) is determined by the complex structure of M .

Lemma 2.3. Let N be a strictly pseudoconvex hypersurface in M with a
defining function ρ. Then for each section u of CN |M , there exists a unique
microdifferential operator R(z, Dz) such that u = R(z, Dz)δ[ρ]. Moreover, u

and R have the same order, and u is nondegenerate if and only if R is invertible.

Note that the same lemma holds when δ[ρ] is replaced by H[ρ], or more
generally, by a nondegenerate section u of CN |M , except for the statement
about the order.
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The strictly pseudoconvexity of N implies that the projection p1 : T ∗
Y X ⊂

T ∗(M ×M) → T ∗M is a local biholomorphic map, where Y is the complexifi-
cation of N in X. The surjectivity and the injectivity of p1 imply the existence
and uniqueness of R(z, Dz), respectively. If we apply the same argument for
z, we obtain a local biholomorphic map p2 : T ∗

Y X → T ∗M and a contact (or
homogeneous symplectic) transformation φ(z, ζ) = p1 ◦ p−1

2 (z,−ζ). Then, for
each nondegenerate u, the lemma above gives a map Φ : P (z, Dz) �→ Q(z, Dz)
such that (P −Q∗)u = 0, where the adjoint is taken with respect to |dz|2. This
is an isomorphism of the rings and satisfies σm(Φ(P )) ◦ φ = σm(P ) if P has
order m; hence Φ is called a quantized contact transformation with a generating
function u. It is shown that a quantization of φ determines a generating func-
tion uniquely up to a constant multiple. Chapter 1 of [23] is a good reference
for this subject.

3. Kashiwara’s analysis of the kernel functions

In this section we recall Kashiwara’s analysis of the Bergman kernel and its
analogy to the Szegö kernel. Then we derive some microdifferential equations
satisfied by these kernels.

3.1. A relation between the local Bergman and Szegö kernels. Under the
formulation of the previous section, Kashiwara’s theorem [17] for the Bergman
kernel and its analogy to the Szegö kernel can be stated as follows:

Theorem 3.1. (i) The local Bergman kernel satisfies(
P (z, Dz) − Q(z, Dz)

)
B = 0

for any pair of microdifferential operators P (z, Dz) and Q(z, Dz) such that

(H[ρ]dv)(P (z, Dz) − Q(z, Dz)) = 0.(3.1)

Moreover, the local Bergman kernel is uniquely determined by this property up
to a constant multiple.

(ii) The local Szegö kernel satisfies(
P (z, Dz) − Q(z, Dz)

)
S = 0

for any pair of microdifferential operators P (z, Dz) and Q(z, Dz) such that

(δ[ρ]dv)(P (z, Dz) − Q(z, Dz)) = 0.(3.2)

Moreover, the local Szegö kernel is uniquely determined by this property up to
a constant multiple.
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Remark 3.2. In [17], Kashiwara stated (i) and gave its heuristic proof,
which can be equally applied to (ii). Also, as a premise for this theorem, he
stated the real analyticity of the coefficients of the asymptotic expansion of
the Bergman kernel, though the proof was not published. Now a proof of this
theorem and claim, based on Kashiwara’s lectures, is available in Kaneko’s
lecture notes [16]; the arguments there can also be applied to the case of the
Szegö kernel.

Take holomorphic coordinates z and write dv = ϕ|dz|2. Then (3.1) can
be rewritten as

(P ∗ − Q∗)ϕH[ρ] = 0,

where the adjoint is taken with respect to |dz|2. It follows that the maps
P ∗(z, Dz) �→ Q(z, Dz) and Q(z, Dz) �→ P ∗(z, Dz) are the quantized contact
transformations generated by ϕH[ρ] and B, respectively, and are the inverse
of each other. Thus we can say that the theorem states the reproducing prop-
erty of the kernel on microdifferential operators. In particular, we see that
the uniqueness statement of the theorem follows from that of the generating
function.

From Theorem 3.1, we can easily derive a microdifferential relation be-
tween the local Bergman and Szegö kernels.

Proposition 3.3. Let R(z, Dz) be the microdifferential operator such that
(H[ρ]dv)R = δ[ρ]dv. Then RS = B.

Proof. We first show that (P (z, Dz) − Q(z, Dz))RS = 0 for any pair P

and Q satisfying (H[ρ]dv)(P − Q) = 0. Noting that Q(z, Dz) commutes with
R(z, Dz), we see from H[ρ]dv = (δ[ρ]dv)R−1 that (δ[ρ]dv)(R−1PR − Q) = 0.
Since R−1PR is an operator of a z-variable, Theorem 3.1 implies

(R−1PR − Q)S = 0

and thus (P − Q)RS = 0. Now by the uniqueness statement of Theorem 3.1,
we have B = c RS for a constant c.

It remains to show that c = 1. This can be done by computing explicitly
the leading term of these kernels. Take local coordinates z = (z′, zn) such that
the boundary ∂Ω is locally given by the defining function

ρ0(z, z) = zn + zn − z′ · z′ + F (z, z), F = O(|z|3).

Then write ρ = e−f(z,z)ρ0 and dv = eg(z,z)dV , where dV is the standard
volume element on Cn. Since Ω is osculated at 0 to the third order by the
Siegel domain, we see that

B =
n!
πn

e−gρ−n−1
0

(
1 + O(|z|)

)
and S =

(n − 1)!
πn

e−f−gρ−n
0

(
1 + O(|z|)

)
.
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On the other hand, setting f0 = f(0, 0) and g0 = g(0, 0), we have ef0Dzn
egH[ρ]

= egδ[ρ] + u for a degenerate germ u ∈ C∂Ω|M at (0; idρ). Thus R(z, Dz) =
−ef0Dzn

+ P (z, Dz), where P has order at most 1 and σ1(P )(z, ζ) vanishes at
(0; idρ). Using the expression of S above, we have

RS = −ef0Dzn
S + PS =

n!
πn

e−gρ−n−1
0

(
1 + O(|z|)

)
,

which implies c = 1.

3.2. Variational formula of the local Szegö kernel. Let {Ωt}t∈I be a real
analytic family of strictly pseudoconvex domains, where I ⊂ R is an open
interval. Here a real analytic family means that Ω̃ = {(x, t) ∈ M̃ = M × I :
x ∈ Ωt} admits a real analytic defining function ρt(x) such that dxρt(x) �= 0 on
∂Ω̃. If we fix ρt, we can assign for each ∂Ωt a surface element dσt by δ[ρt]dv.
We here consider the microdifferential equations for the family of the local
Szegö kernels of (∂Ωt, dσt).

Proposition 3.4. There exists a section St(x) of C
∂Ω̃|M̃ such that, for

each t, St(x) gives the local Szegö kernel of (∂Ωt, dσt). Moreover, St(x) satisfies(
P (z, t, Dz) − Q(z, Dz, Dt)

)
St(x) = 0(3.3)

for any pair of microdifferential operators P (z, t, Dz) and Q(z, Dz, Dt) such
that

(δ[ρt]dṽ)
(
P (z, t, Dz) − Q(z, Dz, Dt)

)
= 0,

where dṽ = dv ∧ dt is a volume element on M̃ . In particular, if R(z, t, Dz)
satisfies Dtδ[ρt]dv = (δ[ρt]dv)R(z, t, Dz), then

−DtSt = R(z, t, Dz)St.(3.4)

An analogous proposition for the local Bergman kernel was given in [14],
where we considered the family of local Bergman kernels Bt(x) of (Ωt, |dz|2) for
domains in Cn and obtained exactly the same statement for Bt with H[ρt]|dz|2
in place of δ[ρt]dv. In particular, we have

−DtBt = R̃(z, t, Dz)Bt(3.5)

for R̃ satisfying DtH[ρt]|dz|2 = (H[ρt]|dz|2)R̃(z, t, Dz). We here use Proposi-
tion 3.3 to translate this formula into the one for St.

Proof. First note that the ring of operators of the form Q(z, Dz, Dt)
is the ring generated by z1, . . . , zn, Dz1 , . . . , Dzn

, Dt, and hence it suffices to
prove (3.3) when Q is one of these generators. For zj and Dzj

, this is clear
from Theorem 3.1. To prove the case Q = Dt, take A(z, t, Dz) such that
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δ[ρt]dv = (H[ρt]dv)A and compute

(δ[ρt]dṽ)Dt = (H[ρt]dṽ)ADt

= (H[ρt]dṽ)[A, Dt] + (H[ρt]dṽ)DtA

= (H[ρt]dṽ)([A, Dt] − R̃A)

= (δ[ρt]dṽ)A−1([A, Dt] − R̃A).

Since [t, [Dt, A]] = 0, we have R(z, t, Dz) = A−1(R̃A − [A, Dt]). On the other
hand, Proposition 3.3 implies Bt = ASt and thus

RSt = A−1(R̃A − [A, Dt])St

= (A−1R̃A + A−1DtA − Dt)St

= A−1(R̃ + Dt)Bt − DtSt.

Therefore, by (3.5), we get RSt = −DtSt.

4. Proofs of the main theorems

Now we are ready to prove the main theorems. We first note that the
theorems can be reduced to the ones in the real analytic category by approx-
imations. The key fact is that the asymptotic expansions up to each fixed
order of the Bergman and Szegö kernels are determined by the finite jets of ρ,
dσ and dv at each boundary point. Thus, for a domain Ω with C∞ defining
function ρ and the contact form θ = i(∂ρ−∂ρ) on ∂Ω, by taking a series of real
analytic functions ρj that converge to ρ in Ck-norm for any k, we may express
L(∂Ω, θ) as the limit of L(∂Ωj , θj), where Ωj = {ρj > 0}. To reduce Theorem
1 (i) to the real analytic case, we only have to take another sequence of real
analytic contact forms {efjθj} approximating a given contact form efθ so that
L(∂Ωj , e

fjθj) = L(∂Ωj , θj) implies L(∂Ω, efθ) = L(∂Ω, θ). Similar arguments
of approximation can be applied to the other cases.

In the following we prove the theorems in the real analytic category.

4.1. Proof of Theorem 1. Taking a real analytic family of defining func-
tions ρt(x), we define St(x) to be the local Szegö kernel for the surface element
given by δ[ρt]dv. Let Ω̃ = {(x, ε, t) ∈ M̃ = M ×R2 : ρt(x) > ε} so that δ[ρt−ε]
defines a section of C

∂Ω̃|M̃ and consider the integral

A(ε, t) =
∫

St(x)δ[ρt − ε](x)dv(x),

which is well-defined as a germ of C{0}×R|R2 at (0, 0; i(1, 0)). Write

A(ε, t) = ϕ(ε, t)ε−n + ψ(ε, t) log ε

and set Lt = ψ(0, t), which we call the coefficient of ε0 log ε. Then our goal is
to prove the independence of Lt from t, because it contains the theorem: For
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the statement (i), we take ρt = etfρ so that δ[ρ0]dv and δ[ρ1]dv correspond to
θ∧(dθ)n−1 and θ̃∧(dθ̃)n−1 respectively; then L0 = L(∂Ω, θ) and L1 = L(∂Ω, θ̃)
agree. For the statement (ii), we have Lt = L(∂Ωt), which is independent of t.

Take a microdifferential operator R(z, t, Dz) such that

Dtδ[ρt]dv = (δ[ρt]dv)R.

Then Proposition 3.4 implies −DtSt = RSt. Using this and (2.5), we have

DtA(t, ε) = Dt

∫
St δ[ρt − ε]dv

=
∫

(DtSt)δ[ρt − ε] + StDtδ[ρt − ε]dv

=
∫

(−RSt)δ[ρt − ε] + StDtδ[ρt − ε]dv

=
∫

St

(
− (δ[ρt − ε]dv)R + Dtδ[ρt − ε]dv

)
.

Since Dtδ[ρt − ε]dv − (δ[ρt − ε]dv)R vanishes at ε = 0, we may take, by using
Lemma 4.1 below, a section u of C

∂Ω̃|M̃ such that

Dtδ[ρt − ε]dv − (δ[ρt − ε]dv)R = ε udv.

Hence we have
DtA(t, ε) = ε

∫
St(x)u(x, t, ε)dv(x).

The integral on the right-hand side takes value in C{0}×R|R2 ; thus the right-hand
side does not contain an ε0 log ε term. This implies DtLt = 0.

Lemma 4.1. Let {Ωε} be a real analytic family of domains in M and
ρ(x, ε) be the defining function of Ω̃ = {(x, ε) ∈ M × R : x ∈ Ωε} such
that dxρ(x, ε) �= 0 on the boundary. If u(x, ε) ∈ C

∂Ω̃|M̃ satisfies u(x, 0) = 0 in
C∂Ω0|M , then there exists a germ v ∈ C

∂Ω̃|M̃ such that u = ε v.

Proof. Take coordinates (x′, ρ, ε) for M̃ and expand u as in (2.3) with
coefficients aj(x′, ε). Then u(x′, ρ, 0) = 0 implies aj(x′, 0) = 0 so that aj = εa′j
for real analytic functions a′j(x, ε). Thus we may set v =

∑
a′j(x

′, ε)Φj(ρ).

4.2. Proof of Theorem 2. Take a microdifferential operator R(z, ε, Dz)
such that

(H[ρ − ε]dv)R = δ[ρ − ε]dv.(4.1)

Then (H[ρ]dv)R(z, 0, Dz) = δ[ρ]dv and hence R(z, 0, Dz)S = B by Proposition
3.3. So, applying Lemma 4.1 for Ωε = Ω, we have

R(z, ε, Dz)S(x) = B(x) + ε B′(x, ε),(4.2)
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where B′ is a section of C∂Ω×R|M×R. Using (4.1) and (4.2), we compute∫
Sδ[ρ − ε]dv =

∫
S

(
(H[ρ − ε]dv)R

)
=

∫
(RS)H[ρ − ε]dv

= Vol(Ωε) + ε

∫
B′H[ρ − ε]dv.

Since the integral on the right-hand side takes value in C{0}|R, its ε multi-
ple cannot contain an ε0 log ε term. Therefore the coefficients of ε0 log ε of∫

S δ[ρ − ε]dv and Vol(Ωε) agree; the former gives L(∂Ω) and the theorem
follows.

5. Proof of Proposition 3

Let Am(Ω) be the subspace of A(Ω) = A(Ω, dv) consisting of homogeneous
functions of degree m (i.e., ϕ(λz) = λmϕ(z) for any λ ∈ C with |λ| ≤ 1).
Then, except for the case A0(Ω) = {0}, each Am(Ω) can be identified with
H0(X, E⊗m) and hence has finite dimension dm. We take, for each m, an
orthonormal basis ϕ1,m, . . . , ϕdm,m of Am(Ω) and form a complete orthonormal
system {ϕj,m}j,m of A(Ω), so that

B(z, w) =
∑
j,m

ϕj,m(z)ϕj,m(w).(5.1)

It is then clear that B(λz, w) = B(
√

λ z,
√

λ w) for 0 < λ < 1 and thus, using
the homogeneity of dv, we get

Vol(Ωε) =
∫

Ω
B(

√
λ z,

√
λ z)dv =

∫
Ω

B(λz, z)dv, with λ = e−ε.

Again by (5.1), we see that the integral on the right-hand side is given by the
power series F (λ) =

∑∞
m=1 dmλm. Since dm = P (m) for m � 0, we have,

modulo holomorphic functions at ε = 0,

F (e−ε) = P (−Dε)((1 − e−ε)−1) = P (−Dε)(ε−1).

The final formula is the Laplace transform of P (t).

Remark 5.1. In the proof above, we have only used the facts that Ω is
bounded, that we have λΩ ⊂ Ω if |λ| ≤ 1, and that dv is homogeneous of
degree 0. The result still holds if Ω is not pseudoconvex or smooth; ρ does not
even need to be continuous.

With the assumption of strictly pseudoconvexity, we can further express
the asymptotic expansion as ε → 0 of the integration of B(z, z) on each fiber
Ωε(x) of π : Ωε → X in terms of the Bergman kernel on the diagonal Bm(x) of
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H0(X, E⊗m). The formulas (5.3) and (5.4) below can be seen as a localization
of Proposition 3.

First note that the L2-inner product on the space H0(X, E⊗m), defined
with respect to the fiber metric and a volume element dvX on X, is the (1/2π)-
multiple of that on the subspace Am(∂Ω) ⊂ A(∂Ω, dσ) consisting of functions
of homogeneous degree m, where dσ = i∂ρ ∧ π∗dvX . Thus using the Szegö
kernel of A(∂Ω), we may write the Bergman kernels Bm(x) as Fourier series

Bm(x) =
∫ 2π

0
e−imφS(eiφz, z)dφ, z ∈ ∂Ω ∩ π−1(x).

On the other hand, since
∫
∂Ωε

f fdσ =
∫
Ωε

f V fdv for f ∈ A(∂Ω), where V is
the vector field that generates the C-action, we have B(z, z) = V S(z, z) and
thus ∫

Ωε(x)
B(z, z)i∂ρ ∧ ∂ρ =

∫
∂Ωε(x)

S(z, z)i∂ρ.

Now we use the strictly pseudoconvexity of Ω and write S(z, z) as the Laplace
transform

S(z, z) =
∫ ∞

0
e−tρa(x, t)dt(5.2)

of a classical symbol a(x, t) ∈ Sn(X×R+) with asymptotic expansion a(x, t) ∼∑−∞
j=n−1 aj(x)tj at t = ∞ (this is another formulation of the expansion (2.3);

cf. [2]). Then we have∫
Ωε(x)

B(z, z)i∂ρ ∧ ∂ρ = 2π

∫ ∞

0
e−εta(x, t)dt(5.3)

and

Bm(x) ∼ 2πa(x, m) as m → ∞.(5.4)

The latter is just an application of Fourier’s inversion formula to the complex-
ification of (5.2):

S(eiφz, z) =
∫ ∞

0
eitφa(x, t)dt,

where we have used the fact that ρ(eiφz, z) = −iφ for small φ.
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