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The resolution of the
Nirenberg-Treves conjecture

By Nils Dencker

Abstract

We give a proof of the Nirenberg-Treves conjecture: that local solvability
of principal-type pseudo-differential operators is equivalent to condition (Ψ).
This condition rules out sign changes from − to + of the imaginary part of
the principal symbol along the oriented bicharacteristics of the real part. We
obtain local solvability by proving a localizable a priori estimate for the adjoint
operator with a loss of two derivatives (compared with the elliptic case).

The proof involves a new metric in the Weyl (or Beals-Fefferman) calculus
which makes it possible to reduce to the case when the gradient of the imagi-
nary part is nonvanishing, so that the zeroes form a smooth submanifold. The
estimate uses a new type of weight, which measures the changes of the distance
to the zeroes of the imaginary part along the bicharacteristics of the real part
between the minima of the curvature of the zeroes. By using condition (Ψ)
and the weight, we can construct a multiplier giving the estimate.

1. Introduction

In this paper we shall study the question of local solvability of a classical
pseudo-differential operator P ∈ Ψm

cl (M) on a C∞ manifold M . Thus, we
assume that the symbol of P is an asymptotic sum of homogeneous terms,
and that p = σ(P ) is the homogeneous principal symbol of P . We shall also
assume that P is of principal type, which means that the Hamilton vector field
Hp and the radial vector field are linearly independent when p = 0; thus dp �= 0
when p = 0.

Local solvability of P at a compact set K ⊆ M means that the equation

Pu = v(1.1)

has a local solution u ∈ D′(M) in a neighborhood of K for any v ∈ C∞(M)
in a set of finite codimension. We can also define microlocal solvability at any
compactly based cone K ⊂ T ∗M , see [9, Def. 26.4.3]. Hans Lewy’s famous
counterexample [19] from 1957 showed that not all smooth linear differential
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operators are solvable. It was conjectured by Nirenberg and Treves [21] in
1970 that local solvability of principal type pseudo-differential operators is
equivalent to condition (Ψ), which means that

(1.2) Im(ap) does not change sign from − to +

along the oriented bicharacteristics of Re(ap)

for any 0 �= a ∈ C∞(T ∗M). The oriented bicharacteristics are the positive
flow-outs of the Hamilton vector field HRe(ap) �= 0 on Re(ap) = 0 (also called
semi-bicharacteristics). Condition (1.2) is invariant under multiplication of p

with nonvanishing factors, and conjugation of P with elliptic Fourier integral
operators; see [9, Lemma 26.4.10]. Thus, it suffices to check (1.2) for some
a ∈ C∞(T ∗M) such that HRe(ap) �= 0.

The necessity of (Ψ) for local solvability of pseudo-differential opera-
tors was proved by Moyer [20] in 1978 for the two dimensional case, and by
Hörmander [8] in 1981 for the general case. In the analytic category, the suffi-
ciency of condition (Ψ) for solvability of microdifferential operators acting on
microfunctions was proved by Trépreau [22] in 1984 (see also [10, Ch. VII]).
The sufficiency of condition (Ψ) for solvability of pseudo-differential opera-
tors in two dimensions was proved by Lerner [13] in 1988, leaving the higher
dimensional case open.

For differential operators, condition (Ψ) is equivalent to condition (P ),
which rules out any sign changes of Im(ap) along the bicharacteristics of Re(ap)
for nonvanishing a ∈ C∞(T ∗M). The sufficiency of (P ) for local solvability of
pseudo-differential operators was proved in 1970 by Nirenberg and Treves [21]
in the case when the principal symbol is real analytic. Beals and Fefferman
[1] proved the general case in 1973, by using a new calculus that was later
developed by Hörmander into the Weyl calculus.

In all these solvability results, one obtains a priori estimates for the adjoint
operator with loss of one derivative (compared with the elliptic case). In 1994
Lerner [14] constructed counterexamples to the sufficiency of (Ψ) for local
solvability with loss of one derivative in dimensions greater than two, raising
doubts on whether the condition really was sufficient for solvability. But it
was proved in 1996 by the author [4] that Lerner’s counterexamples are locally
solvable with loss of at most two derivatives (compared with the elliptic case).
There are other results giving local solvability with loss of one derivative under
conditions stronger than (Ψ), see [5], [11], [15] and [17].

In this paper we shall prove local and microlocal solvability of principal
type pseudo-differential operators satisfying condition (Ψ); this resolves the
Nirenberg-Treves conjecture. To get local solvability at a point x0 we shall
also assume a strong form of the nontrapping condition at x0:

p = 0 =⇒ ∂ξp �= 0.(1.3)
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This means that all semi-bicharacteristics are transversal to the fiber T ∗
x0

M ,
which originally was the condition for the principal type of Nirenberg and
Treves [21]. Microlocally, we can always obtain (1.3) after a canonical trans-
formation.

Theorem 1.1. If P ∈ Ψm
cl (M) is of principal type and satisfies condi-

tion (Ψ) given by (1.2) microlocally near (x0, ξ0) ∈ T ∗M , then

‖u‖ ≤ C(‖P ∗u‖(2−m) + ‖Ru‖ + ‖u‖(−1)), u ∈ C∞
0 (M).(1.4)

Here R ∈ Ψ1
1,0(M) such that (x0, ξ0) /∈ WFR, which gives microlocal solv-

ability of P at (x0, ξ0) with a loss of at most two derivatives. If P satisfies
conditions (Ψ) and (1.3) locally near x0 ∈ M , then (1.4) holds with x �= x0 in
WFR, which gives local solvability of P at x0 with a loss of two derivatives.

Thus, we lose at most two derivatives in the estimate of the adjoint, which
is one more compared to the condition (P ) case.

Most of the earlier results on local solvability have relied on finding a
factorization of the imaginary part of the principal symbol; see for example [5]
and [17]. We have not been able to find a factorization in terms of sufficiently
good symbol classes in order to prove local solvability. The best result seems
to be given by Lerner [16], who obtained a factorization showing that every
first order principal type pseudo-differential operator satisfying condition (Ψ)
is a sum of a solvable operator and an L2-bounded operator. But the bounded
perturbation has a very bad symbol, and the solvable operator is solvable with
a loss of more than one derivative, so that this does not imply solvability.

This paper is a shortened and simplified version of [6], and the plan is
as follows. In Section 2 we reduce the proof of Theorem 1.1 to an estimate
for a microlocal normal form for the adjoint operator P ∗ = Dt + iF (t, x, Dx).
Here F has real principal symbol f ∈ C∞(R, S1

1,0(R
n)), and P0 satisfies the

corresponding condition (Ψ): t �→ f(t, x, ξ) does not change sign from + to −
with increasing t for any (x, ξ). In Corollary 2.7 we shall for any T > 0 prove
the estimate

‖u‖2 ≤ T Im (P ∗u, BT u) + C‖〈Dx〉−1u‖2(1.5)

for u ∈ S(Rn+1) having support where |t| ≤ T . Here ‖u‖ is the L2 norm
on Rn+1, (u, v) the corresponding sesquilinear inner product, 〈Dx〉 = 1 + |Dx|
and BT (t, x, Dx) ∈ Ψ1

1/2,1/2(R
n) is symmetric, with symbol having homoge-

neous gradient

∇BT = (∂xBT , |ξ|∂ξBT ) ∈ S1
1/2,1/2(R

n).

This gives local solvability by the Cauchy-Schwarz inequality after microlo-
calization. Since Re P ∗ = Dt is solvable and ∇BT ∈ S1

1/2,1/2(R
n), the esti-

mate (1.5) is localizable and independent of lower order terms in the expansion
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of F (see Lemma 2.6). Clearly, the estimate (1.5) follows if we have suitable
lower bounds on 2 Im(BT P ∗) = ∂tBT + 2 Re(BT F ).

Let g1,0(dx, dξ) = |dx|2+|dξ|2/|ξ|2 be the homogeneous metric and g1/2,1/2

= |ξ|g1,0. The symbol BT of the multiplier is essentially a lower order pertur-
bation of the signed g1/2,1/2 distance δ0 to the sign changes of f in T ∗Rn for
fixed t. Then δ0f ≥ 0 and we find from condition (Ψ) that ∂tδ0 ≥ 0.

In Section 3 we shall make a second microlocalization with a new met-
ric G1

∼= H1g1/2,1/2, where c|ξ|−1 ≤ H1 ≤ 1 so that cg1,0 ≤ G1 ≤ g1/2,1/2 (see

Definition 3.4). This metric has the property that if H1 � 1 at f−1(0), then

|∇f | �= 0 and f−1(0) is a C∞ surface with curvature bounded by CH
1/2
1 . The

implicit function theorem then gives f =αδ0 where |∂x,ξδ0| �=0, α �=0, and these
factors are in suitable symbol classes in the Weyl calculus by Proposition 3.9.

In Section 5 we introduce the weight, which for fixed (x, ξ) is defined by

m1(t0) = inf
t1≤t0≤t2

{
δ0(t2) − δ0(t1) + max(H1/2

1 (t1)〈δ0(t1)〉, H1/2
1 (t2)〈δ0(t2)〉)

}(1.6)

where 〈δ0〉 = 1 + |δ0| (see Definition 5.1). This is a weight for the metric
g1/2,1/2 by Proposition 5.4, such that c|ξ|−1/2 ≤ m1 ≤ 1. The weight m1

essentially measures how much the signed distance δ0 changes between the
minima of H

1/2
1 . From (1.6) we immediately obtain the convexity property of

t �→ m1(t, x, ξ) given by Proposition 5.7:

sup
I

m1 ≤ |∆Iδ0| + 2 sup
∂I

m1, I = [a, b] × (x, ξ)

where |∆Iδ0| = |δ0(b, x, ξ) − δ0(a, x, ξ)| is the variation of δ0 on I. This makes
it possible to add a perturbation �T so that |�T | ≤ m1 and

∂t(δ0 + �T ) ≥ m1/2T in |t| ≤ T

by Proposition 5.8. Using the Wick quantization BT = (δ0 + �T )Wick in Sec-
tion 6 we obtain that positive symbols give positive operators, and

∂tBT ≥ mWick
1 /2T ≥ c|Dx|−1/2/2T in |t| ≤ T .

Now if m1 � 1 at (t0, x0, ξ0), then we obtain that |δ0|�H
−1/2
1 and H

1/2
1 � 1

at both (t1, x0, ξ0) and (t2, x0, ξ0) for some t1 ≤ t0 ≤ t2. We also find that

∆Iδ0 = O(m1(t0, x, ξ)), I = [t1, t2] × (x0, ξ0)

and because of condition (Ψ) the sign changes of (x, ξ) �→ f(t0, x, ξ) are lo-
cated in the set where δ0(t1, x, ξ)δ0(t2, x, ξ) ≤ 0. This makes it possible to
estimate ∇2f in terms of m1 (see Proposition 5.5), and we obtain the lower
bound: Re(BT F ) ≥ −C0m

Wick
1 in Section 7. By replacing BT with |Dx|1/2BT

we obtain for small enough T the estimate (1.5) and the Nirenberg-Treves
conjecture.
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referee for valuable comments leading to corrections and significant simplifica-
tions of the proof.

2. The multiplier estimate

In this section we shall microlocalize and reduce the proof of Theorem 1.1
to the semiclassical multiplier estimate of Proposition 2.5 for a microlocal
normal form of the adjoint operator. We shall consider operators

P0 = Dt + iF (t, x, Dx)(2.1)

where F ∈ C∞(R,Ψ1
1,0(R

n)) has real principal symbol σ(F ) = f . In the
following, we shall assume that P0 satisfies condition (Ψ):

f(t, x, ξ) > 0 and s > t =⇒ f(s, x, ξ) ≥ 0(2.2)

for any t, s ∈ R and (x, ξ) ∈ T ∗Rn. This means that the adjoint P ∗
0 satisfies

condition (Ψ). Observe that if χ ≥ 0 then χf also satisfies (2.2), thus the
condition can be localized.

Remark 2.1. We shall also consider symbols f ∈ L∞(R, S1
1,0(R

n)), that
is, f(t, x, ξ) ∈ L∞(R × T ∗Rn) is bounded in S1

1,0(R
n) for almost all t. Then

we say that P0 satisfies condition (Ψ) if for every (x, ξ), condition (2.2) holds
for almost all s, t ∈ R. Since (x, ξ) �→ f(t, x, ξ) is continuous for almost all t

it suffices to check (2.2) for (x, ξ) in a countable dense subset of T ∗Rn. Then
we find that f has a representative satisfying (2.2) for any t, s and (x, ξ) after
putting f(t, x, ξ) ≡ 0 for t in a countable union of null sets.

In order to prove Theorem 1.1 we shall make a second microlocalization
using the specialized symbol classes of the Weyl calculus, and the Weyl quan-
tization of symbols a ∈ S ′(T ∗Rn) defined by:

(awu, v) = (2π)−n

∫∫
exp (i〈x − y, ξ〉)a

(x+y
2 , ξ

)
u(y)v(x) dxdydξ,

u, v ∈ S(Rn).

Observe that Re aw = (Re a)w is the symmetric part and i Im aw = (i Im a)w

the antisymmetric part of the operator aw. Also, if a ∈ Sm
1,0(R

n) then aw(x, Dx)
= a(x, Dx) modulo Ψm−1

1,0 (Rn) by [9, Th. 18.5.10].
We recall the definitions of the Weyl calculus: let gw be a Riemannean

metric on T ∗Rn, w = (x, ξ), then we say that g is slowly varying if there exists
c > 0 so that gw0(w−w0) < c implies gw

∼= gw0 ; i.e., 1/C ≤ gw/gw0 ≤ C. Let σ

be the standard symplectic form on T ∗Rn, and let gσ(w) ≥ g(w) be the dual



410 NILS DENCKER

metric of w �→ g(σ(w)). We say that g is σ temperate if it is slowly varying
and

gw ≤ Cgw0(1 + gσ
w(w − w0))N , w, w0 ∈ T ∗Rn.

A positive real-valued function m(w) on T ∗Rn is g continuous if there exists
c > 0 so that gw0(w − w0) < c implies m(w) ∼= m(w0). We say that m is σ,
g temperate if it is g continuous and

m(w) ≤ Cm(w0)(1 + gσ
w(w − w0))N , w, w0 ∈ T ∗Rn.

If m is σ, g temperate, then m is a weight for g and we can define the symbol
classes: a ∈ S(m, g) if a ∈ C∞(T ∗Rn) and

|a|gj (w) = sup
Ti �=0

|a(j)(w, T1, . . . , Tj)|∏j
1 gw(Ti)1/2

≤ Cjm(w), w ∈ T ∗Rn for j ≥ 0,

(2.3)

which gives the seminorms of S(m, g). If a ∈ S(m, g) then we say that the
corresponding Weyl operator aw ∈ OpS(m, g). For more on the Weyl calculus,
see [9, §18.5].

Definition 2.2. Let m be a weight for the metric g. Then a ∈ S+(m, g) if
a ∈ C∞(T ∗Rn) and |a|gj ≤ Cjm for j ≥ 1.

Observe that by Taylor’s formula we find that

|a(w) − a(w0)| ≤ C1 sup
θ∈[0,1]

gwθ
(w − w0)1/2m(wθ)

≤ CNm(w0)(1 + gσ
w0

(w − w0))N

where wθ = θw+(1−θ)w0, which implies that m+|a| is a weight for g. Clearly,
a ∈ S(m + |a|, g), so the operator aw is well-defined.

Lemma 2.3. Assume that mj is a weight for gj = hjg
� ≤ g� = (g�)σ and

aj ∈ S+(mj , gj), j = 1, 2. Let g = g1 + g2 and h2 = sup g1/gσ
2 = sup g2/gσ

1 =
h1h2, then

aw
1 aw

2 − (a1a2)w ∈ OpS(m1m2h, g),(2.4)

and we have the usual expansion of (2.4) with terms in S(m1m2h
k, g), k ≥ 1.

This result is well known, but for completeness we give a proof.

Proof. As shown after Definition 2.2 we have that mj + |aj | is a weight
for gj and aj ∈ S(mj + |aj |, gj), j = 1, 2. Thus

aw
1 aw

2 ∈ OpS((m1 + |a1|)(m2 + |a2|), g)
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is given by Proposition 18.5.5 in [9]. We find that aw
1 aw

2 − (a1a2)w = aw with

a(w) = E( i
2σ(Dw1 , Dw2))

i
2σ(Dw1 , Dw2)a1(w1)a2(w2)

∣∣
w1=w2=w

where E(z) = (ez−1)/z =
∫ 1
0 eθz dθ. We have that σ(Dw1 , Dw2)a1(w1)a2(w2) ∈

S(M, G) where

M(w1, w2) = m1(w1)m2(w2)h
1/2
1 (w1)h

1/2
2 (w2)

and Gw1,w2(z1, z2) = g1,w1(z1) + g2,w2(z2). Now the proof of Theorem 18.5.5
in [9] works when σ(Dw1 , Dw2) is replaced by θσ(Dw1 , Dw2), uniformly in 0 ≤
θ ≤ 1. By integrating over θ ∈ [0, 1] we obtain that a(w) has an asymptotic
expansion in S(m1m2h

k, g), which proves the lemma.

Remark 2.4. The conclusions of Lemma 2.3 also hold if a1 has values in
L(B1, B2) and a2 in B1 where B1 and B2 are Banach spaces (see §18.6 in [9]).

For example, if { aj }j ∈ S(m1, g1) with values in 
2, and bj ∈ S(m2, g2)

uniformly in j, then
{

aw
j bw

j

}
j
∈ Op(m1m2, g) with values in 
2. In the proof of

Theorem 1.1 we shall microlocalize near (x0, ξ0) and put h−1 = 〈ξ0〉 = 1+ |ξ0|.
Then after a symplectic dilation: (x, ξ) �→ (h−1/2x, h1/2ξ), we find that Sk

1,0 =
S(h−k, hg�) and Sk

1/2,1/2 = S(h−k, g�), (g�)σ = g�, k ∈ R. Therefore, we shall
prove a semiclassical estimate for a microlocal normal form of the operator.

Let ‖u‖ be the L2 norm on Rn+1, and (u, v) the corresponding sesquilinear
inner product. As before, we say that f ∈ L∞(R, S(m, g)) if f(t, x, ξ) is
measurable and bounded in S(m, g) for almost all t. The following is the main
estimate that we shall prove.

Proposition 2.5. Assume that P0 = Dt + ifw(t, x, Dx), with real f ∈
L∞(R, S(h−1, hg�)) satisfying condition (Ψ) given by (2.2); here 0 < h ≤ 1
and g� = (g�)σ are constant. Then there exists T0 > 0 and real-valued symbols
bT (t, x, ξ) ∈ L∞(R, S(h−1/2, g�)

⋂
S+(1, g�)) uniformly for 0 < T ≤ T0, so that

h1/2‖u‖2 ≤ T Im (P0u, bw
T u)(2.5)

for u(t, x) ∈ S(R×Rn) having support where |t| ≤ T . The constant T0 and the
seminorms of bT only depend on the seminorms of f in L∞(R, S(h−1, hg�)).

It follows from the proof (see the end of Section 7) that |bT | ≤ CH
−1/2
1 ,

where H1 is a weight for g� such that h ≤ H1 ≤ 1, and G1 = H1g
� is σ

temperate (see Proposition 6.3 and Definition 3.4).
There are two difficulties present in estimates of the type (2.5). The first

is that bT is not C∞ in the t variables. Therefore one has to be careful not
to involve bw

T in the calculus with symbols in all the variables. We shall avoid
this problem by using tensor products of operators and the Cauchy-Schwarz
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inequality. The second difficulty lies in the fact that |bT | � h1/2, so it is not
obvious that lower order terms and cut-off errors can be controlled.

Lemma 2.6. The estimate (2.5) can be perturbed with terms in
L∞(R, S(1, hg�)) in the symbol of P0 for small enough T , by changing bT

(satisfying the same conditions). Thus it can be microlocalized : if φ(w) ∈
S(1, hg�) is real-valued and independent of t, then

Im (P0φ
wu, bw

T φwu) ≤ Im (P0u, φwbw
T φwu) + Ch1/2‖u‖2(2.6)

where φwbw
T φw satisfies the same conditions as bw

T .

Proof. It is clear that the estimate (2.5) can be perturbed with terms in
L∞(R, S(h, hg�)) in the symbol expansion of P0 for small enough T . Now, we
can also perturb with symmetric terms rw ∈ L∞(R,OpS(1, hg�)). In fact, if
r ∈ S(1, hg�) is real and b ∈ S+(1, g�) is real modulo S(h1/2, g�), then

| Im (rwu, bwu) | ≤ | ([(Re b)w, rw]u, u) |/2 + | (rwu, (Im b)wu) | ≤ Ch1/2‖u‖2,

(2.7)

since [(Re b)w, rw] ∈ OpS(h1/2, g�) by Lemma 2.3. Now assume P1 = P0 +
rw(t, x, Dx) with complex-valued r ∈ L∞(R, S(1, hg�)), and let

E(t, x, ξ) = exp
(
−

∫ t

0
Im r(s, x, ξ) ds

)
∈ C(R, S(1, hg�)

⋂
S+(T, hg�)), |t| ≤ T

since ∂wE = −E
∫ t
0 Im ∂wr ds. Then E is real and we have by Lemma 2.3 that

Ew(E−1)w = 1 = (E−1)wEw modulo OpS(T 2h, hg�)

uniformly when |t| ≤ T . Thus, for small enough T we obtain that ‖u‖ ∼=
‖Ewu‖. We also find that

(E−1)wP0E
w = P0 + i Im rw + (E−1 { f, E })w = P1

modulo L∞(R,OpS(h, hg�)) and symmetric terms in L∞(R,OpS(1, hg�)).
Thus we obtain the estimate with P0 replaced with P1 by substituting Ewu

in (2.5) and using (2.7) to perturb with symmetric terms in L∞(R,OpS(1,hg�)).
We find that bw

T is replaced with Bw
T = Ewbw

T Ew which is symmetric, satisfying
the same conditions as bw

T by Lemma 2.3, since E ∈ S(1, hg�) is real so that
BT = bT E2 modulo S(h, g�) for almost all t.

If φ(w) ∈ S(1, hg�) then we find that [P0, φ
w] = { f, φ }w modulo

L∞(R,OpS(h, hg�)) where { f, φ } ∈ L∞(R, S(1, hg�)) is real-valued. By us-
ing (2.7) with rw = { f, φ }w and bw = bw

T φw, we obtain (2.6) since bw
T φw ∈

OpS+(1, g�) is symmetric modulo Op S(h1/2, g�) for almost all t by Lemma 2.3.
We find that φwbw

T φw is symmetric, and as before φwbw
T φw = (bT φ2)w modulo

L∞(R,OpS(h, g�)), which satisfies the same conditions as bw
T .
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Next, we shall prove an estimate for the microlocal normal form of the
adjoint operator.

Corollary 2.7. Assume that P0 = Dt + iFw(t, x, Dx), with Fw ∈
L∞(R,Ψ1

1,0(R
n)) having real principal symbol f satisfying condition (Ψ) given

by (2.2). Then there exists T0 > 0 and real-valued symbols bT (t, x, ξ) ∈
L∞(R, S1

1/2,1/2(R
n)) with homogeneous gradient

∇bT = (∂xbT , |ξ|∂ξbT ) ∈ L∞(R, S1
1/2,1/2(R

n))

uniformly for 0 < T ≤ T0, such that

‖u‖2 ≤ T Im (P0u, bw
T u) + C0‖〈Dx〉−1u‖2(2.8)

for u ∈ S(Rn+1) having support where |t| ≤ T . The constants T0, C0 and the
seminorms of bT only depend on the seminorms of F in L∞(R, S1

1,0(R
n)).

Since ∇bT ∈ L∞(R, S1
1/2,1/2) we find that the commutators of bw

T with
operators in L∞(R,Ψ0

1,0) are in L∞(R,Ψ0
1/2,1/2). This will make it possible to

localize the estimate.

Proof of Corollary 2.7. Choose real symbols {φj(x, ξ) }j , {ψj(x, ξ) }j and
{Ψj(x, ξ) }j ∈ S0

1,0(R
n) having values in 
2, such that

∑
j φ2

j = 1, ψjφj = φj ,
Ψjψj = ψj and ψj ≥ 0. We may assume that the supports are small enough
so that 〈ξ〉 ∼= 〈ξj〉 in supp Ψj for some ξj . Then, after doing a symplectic
dilation (y, η) = (x〈ξj〉1/2, ξ/〈ξj〉1/2) we obtain that Sm

1,0(R
n) = S(h−m

j , hjg
�)

and Sm
1/2,1/2(R

n) = S(h−m
j , g�) in supp Ψj , m ∈ R, where hj = 〈ξj〉−1 ≤ 1 and

g�(dy, dη) = |dy|2 + |dη|2.
By using the calculus in the y variables we find φw

j P0 = φw
j P0j modulo

OpS(hj , hjg
�), where

P0j = Dt + i(ψjF )w(t, y, Dy) = Dt + ifw
j (t, y, Dy) + rw

j (t, y, Dy)

with
fj = ψjf ∈ L∞(R, S(h−1

j , hjg
�))

satisfying (2.2), and rj ∈ L∞(R, S(1, hjg
�)) uniformly in j. Then, by us-

ing Proposition 2.5 and Lemma 2.6 for P0j , we obtain real-valued symbols
bj,T (t, y, η) ∈ L∞(R, S(h−1/2

j , g�)
⋂

S+(1, g�)) uniformly for 0 < T � 1, such
that

‖φw
j u‖2 ≤ T (h−1/2

j Im
(
P0u, φw

j bw
j,T φw

j u
)

+ C0‖u‖2) ∀ j(2.9)

for u(t, y) ∈ S(R × Rn) having support where |t| ≤ T . Here and in the
following, the constants are independent of T .

By substituting Ψw
j u in (2.9) and summing up we obtain

‖u‖2 ≤ T (Im (P0u, bw
T u) + C1‖u‖2) + C2‖〈Dx〉−1u‖2(2.10)



414 NILS DENCKER

for u(t, y) ∈ S(R × Rn) having support where |t| ≤ T . Here

bw
T =

∑
j

h
−1/2
j Ψw

j φw
j bw

j,T φw
j Ψw

j ∈ L∞(R,Ψ1
1/2,1/2)

is symmetric. In fact,
∑

j φ2
j = 1 so that

∑
j φw

j φw
j = 1 modulo Ψ−1(Rn),

and since φjΨj = φj we have
{

φw
j [Fw,Ψw

j ]
}

j
∈ Ψ−1

1,0(R
n) with values in


2 for almost all t. We find the homogeneous gradient ∇bT ∈ S1
1/2,1/2 since

bT =
∑

j h
−1/2
j bj,T φ2

j ∈ S1
1/2,1/2 modulo S0

1/2,1/2, where φj ∈ S(1, hjg
�) and

bj,T ∈ S+(1, g�) for almost all t. For small enough T we obtain (2.8) and the
corollary.

Proof that Corollary 2.7 gives Theorem 1.1. We shall prove that there
exist φ and ψ ∈ S0

1,0(T
∗M) such that φ = 1 in a conical neighborhood of

(x0, ξ0), ψ = 1 on suppφ, and for any T > 0 there exists RT ∈ S1
1,0(M) with

the property that WFRw
T

⋂
T ∗

x0
M = ∅ and

‖φwu‖ ≤ C1

(
‖ψwP ∗u‖(2−m) + T‖u‖

)
+ ‖Rw

T u‖ + C0‖u‖(−1), u ∈ C∞
0 (M).

(2.11)

Here ‖u‖(s) is the Sobolev norm and the constants are independent of T . Then
for small enough T we obtain (1.4) and microlocal solvability, since (x0, ξ0) /∈
WF(1−φ)w. In the case that P satisfies condition (Ψ) and ∂ξp �= 0 near x0 we
may choose finitely many φj ∈ S0

1,0(M) such that
∑

φj ≥ 1 near x0 and ‖φw
j u‖

can be estimated by the right-hand side of (2.11) for some suitable ψ and RT .
By elliptic regularity, we then obtain the estimate (1.4) for small enough T .

By multiplying with an elliptic pseudo-differential operator, we may as-
sume that m = 1. Let p = σ(P ), then it is clear that it suffices to consider
w0 = (x0, ξ0) ∈ p−1(0); otherwise P ∗ ∈ Ψ1

cl(M) is elliptic near w0 and we easily
obtain the estimate (2.11). It is clear that we may assume that ∂ξ Re p(w0) �= 0,
in the microlocal case after a conical transformation. Then, we may use
Darboux’ theorem and the Malgrange preparation theorem to obtain micro-
local coordinates (t, y; τ, η) ∈ T ∗Rn+1 so that w0 = (0, 0; 0, η0), t = 0 on T ∗

x0
M

and p = q(τ + if) in a conical neighborhood of w0, where f ∈ C∞(R, S1
1,0) is

real and homogeneous satisfying condition (2.2), and 0 �= q ∈ S0
1,0; see Theo-

rem 21.3.6 in [9]. By conjugation with elliptic Fourier integral operators and
using the Malgrange preparation theorem successively on lower order terms,
we obtain that

P ∗ = Qw(Dt + i (χF )w) + Rw(2.12)

microlocally in a conical neighborhood Γ of w0 (see the proof of Theorem 26.4.7′

in [9]). Here Q ∈ S0
1,0(R

n+1) and R ∈ S1
1,0(R

n+1), such that Qw has principal
symbol q �= 0 in Γ and Γ

⋂
WFRw = ∅. Moreover, χ(τ, η) ∈ S0

1,0(R
n+1) is

equal to 1 in Γ, |τ | ≤ C|η| in suppχ(τ, η), and Fw ∈ C∞(R,Ψ1
1,0(R

n)) has
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real principal symbol f satisfying (2.2). By cutting off in the t variable we
may assume that f ∈ L∞(R, S1

1,0(R
n)). We shall choose φ and ψ so that

suppφ ⊂ suppψ ⊂ Γ and

φ(t, y; τ, η) = χ0(t, τ, η)φ0(y, η)

where χ0(t, τ, η) ∈ S0
1,0(R

n+1), φ0(y, η) ∈ S0
1,0(R

n), t �= 0 in supp ∂tχ0, |τ | ≤
C|η| in suppχ0 and |τ | ∼= |η| in supp ∂τ,ηχ0.

Since q �= 0 and R = 0 on suppψ it is no restriction to assume that
Q ≡ 1 and R ≡ 0 when proving the estimate (2.11). Now, by Theorem 18.1.35
in [9] we may compose C∞(R,Ψm

1,0(R
n)) with operators in Ψk

1,0(R
n+1) having

symbols vanishing when |τ | ≥ c(1 + |η|), and we obtain the usual asymptotic
expansion in Ψm+k−j

1,0 (Rn+1) for j ≥ 0. Since |τ | ≤ C|η| in suppφ and χ = 1
on suppψ, it thus suffices to prove (2.11) for P ∗ = P0 = Dt + iFw.

By using Corollary 2.7 on φwu, we obtain that

‖φwu‖2 ≤ T (Im (φwP0u, bw
T φwu) + Im ([P0, φ

w]u, bw
T φwu)) + C0‖u‖2

(−1)

(2.13)

where bw
T ∈L∞(R,Ψ1

1/2,1/2(R
n)) is symmetric with ∇bT ∈L∞(R, S1

1/2,1/2(R
n)).

We find [P0, φ
w] = −i∂tφ

w + { f, φ }w ∈ Ψ0
1,0(R

n+1) modulo Ψ−1
1,0(R

n+1) by
Theorem 18.1.35 in [9]. We have that

| (v, bw
T u) | = |

(
〈Dy〉v, 〈Dy〉−1bw

T u
)
| ≤ C(‖v‖2

(1) + ‖u‖2) ∀ u, v ∈ S(Rn)
(2.14)

since ‖〈Dy〉v‖ ≤ ‖v‖(1) and 〈Dy〉−1bw
T ∈ L∞(R,Ψ0

1/2,1/2(R
n)), 〈Dy〉 = 1+|Dy|.

Now φw = φwψw modulo Ψ−2
1,0(R

n+1). Thus we find from (2.14) that

| (φwP0u, bw
T φwu) | ≤ C(‖φwP0u‖2

(1) + ‖φwu‖2) ≤ C ′(‖ψwP0u‖2
(1) + ‖u‖2).

(2.15)

We also have to estimate the commutator term Im ([P0, φ
w]u, bw

T φwu) in (2.13).
Since φ = χ0φ0 we find that

{ f, φ } = φ0 { f, χ0 } + χ0 { f, φ0 } ,

where φ0 { f, χ0 } = R0 ∈ S0
1,0(R

n+1) is supported when |τ | ∼= |η| and ψ = 1.
Now (τ + if)−1 ∈ S−1

1,0(Rn+1) when |τ | ∼= |η|, thus by [9, Th. 18.1.35] we
find that Rw

0 = Aw
1 ψwP0 modulo Ψ−1

1,0(R
n+1) where A1 = R0(τ + if)−1 ∈

S−1
1,0(Rn+1). As before, we find from (2.14) that

| (Rw
0 u, bw

T φwu) | ≤ C(‖Rw
0 u‖2

(1) + ‖φwu‖2) ≤ C0(‖ψwP0u‖2 + ‖u‖2)(2.16)

and | (∂tφ
wu, bw

T φwu) | ≤ ‖Rw
1 u‖2 + C‖u‖2 by (2.14), where Rw

1 = 〈Dy〉∂tφ
w ∈

Ψ1
1,0(R

n+1); thus t �= 0 in WFRw
1 .
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It remains to estimate the term Im (({ f, φ0 }χ0)wu, bw
T φwu), where

({ f, φ0 }χ0)w = { f, φ0 }w χw
0 and φw = φw

0 χw
0 modulo Ψ−1

1,0(R
n+1). By (2.14)

we find | (Rwu, bw
T v) | ≤ C(‖u‖2 + ‖v‖2) for R ∈ S−1

1,0(Rn+1), thus we find

| Im (({ f, φ0 }χ0)wu, bw
T φwu) | ≤ | Im ({ f, φ0 }w χw

0 u, bw
T φw

0 χw
0 u) | + C‖u‖2.

The calculus gives bw
T φw

0 = (bT φ0)w and

2i Im ((bT φ0)w { f, φ0 }w) = { bT φ0, { f, φ0 } }w = 0

modulo L∞(R,Ψ0
1/2,1/2(R

n)) since ∇(bT φ0) ∈ L∞(R, S1
1/2,1/2(R

n)). We ob-
tain

| Im ({ f, φ0 }w χw
0 u, bw

T φw
0 χw

0 u) | ≤ C‖χw
0 u‖2 ≤ C ′‖u‖2(2.17)

and the estimate (2.11), which completes the proof of Theorem 1.1.

It remains to prove Proposition 2.5, which will be done at the end of
Section 7. The proof involves the construction of a multiplier bw

T , and it will
occupy most of the remaining part of the paper. In the following, we let
‖u‖(t) be the L2 norm of x �→ u(t, x) in Rn for fixed t, and (u, v) (t) the
corresponding sesquilinear inner product. Let B = B(L2(Rn)) be the set of
bounded operators L2(Rn) �→ L2(Rn). We shall use operators which depend
measurably on t.

Definition 2.8. We say that t �→ A(t) is weakly measurable if A(t) ∈ B
for all t and t �→ A(t)u is weakly measurable for every u ∈ L2(Rn), i.e., t �→
(A(t)u, v) is measurable for any u, v ∈ L2(Rn). We say that A(t) ∈ L∞

loc(R,B)
if t �→ A(t) is weakly measurable and locally bounded in B.

If A(t) ∈ L∞
loc(R,B), then we find that the function t �→ (A(t)u, v) ∈

L∞
loc(R) has weak derivative d

dt (Au, v) ∈ D′(R) for any u, v ∈ S(Rn) given by

d
dt (Au, v) (φ) = −

∫
(A(t)u, v)φ′(t) dt, φ(t) ∈ C∞

0 (R).

If u(t), v(t) ∈ L∞
loc(R, L2(Rn)) and A(t) ∈ L∞

loc(R,B), then we find t �→
(A(t)u(t), v(t)) ∈ L∞

loc(R) is measurable. We shall use the following multi-
plier estimate (see also [13] and [15] for similar estimates):

Proposition 2.9. Let P0 = Dt + iF (t) with F (t) ∈ L∞
loc(R,B). Assume

that B(t) = B∗(t) ∈ L∞
loc(R,B), such that

d
dt (Bu, u) + 2 Re (Bu, Fu) ≥ (mu, u) in D′(I) ∀ u ∈ S(Rn)(2.18)

where m(t) = m∗(t) ∈ L∞
loc(R,B) and I ⊆ R is open. Then∫
(mu, u) dt ≤ 2

∫
Im (Pu, Bu) dt(2.19)

for u ∈ C1
0 (I,S(Rn)).
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Proof. Since B(t) ∈ L∞
loc(R,B), we may for u, v ∈ S(Rn) define the

regularization

(Bε(t)u, v) = ε−1

∫
(B(s)u, v)φ((t − s)/ε) ds = (Bu, v) (φε,t), ε > 0,

where φε,t(s) = ε−1φ((t − s)/ε) with 0 ≤ φ ∈ C∞
0 (R) satisfying

∫
φ(t) dt = 1.

Then t �→ (Bε(t)u, v) is in C∞(R) with derivative equal to d
dt (Bu, v) (φε,t) =

− (Bu, v) (φ′
ε,t). Let I0 be an open interval such that I0 � I. Then for small

enough ε > 0 and t ∈ I0 we find from condition (2.18) that
d
dt (Bε(t)u, u) + 2 Re (Bu, Fu) (φε,t) ≥ (mu, u) (φε,t), u ∈ S(Rn).(2.20)

In fact, φε,t ≥ 0 and suppφε,t ∈ C∞
0 (I) for small enough ε when t ∈ I0.

Now for u(t) ∈ C1
0 (I0,S(Rn)) and ε > 0 we define

Mε,u(t) = (Bε(t)u(t), u(t)) = ε−1

∫
(B(s)u(t), u(t))φ((t − s)/ε) ds.(2.21)

For small enough ε we obtain Mε,u(t) ∈ C1
0 (I0), with derivative

d
dtMε,u =

(
( d

dtBε)u, u
)

+ 2 Re (Bεu, ∂tu)

since B(t) ∈ L∞
loc(R,B). By integrating with respect to t, we obtain the van-

ishing average

0 =
∫

d
dtMε,u(t) dt =

∫ (
( d

dtBε)u, u
)

dt +
∫

2 Re (Bεu, ∂tu) dt(2.22)

when u ∈ C1
0 (I0,S(Rn)). We obtain from (2.20) and (2.22) that

0 ≥
∫∫ (

(m(s)u(t), u(t))+2 Re (B(s)u(t), ∂tu(t) − F (s)u(t))
)
φ((t−s)/ε) dsdt.

By letting ε → 0, we find by dominated convergence that

0 ≥
∫

(m(t)u(t), u(t)) + 2 Re (B(t)u(t), ∂tu(t) − F (t)u(t)) dt

since u ∈ C1
0 (I0,S(Rn)) and m(t), B(t), F (t) ∈ L∞

loc(R,B). Here ∂tu − Fu =
iPu and 2 Re (Bu, iPu) = −2 Im (Pu, Bu); thus we obtain (2.19) for u ∈
C1

0 (I0,S(Rn)). Since I0 is an arbitrary open subinterval with compact closure
in I, this completes the proof of the proposition.

3. The symbol classes

In this section we shall define the symbol classes to be used. Assume that
f ∈ L∞(R, S(h−1, hg�)) satisfies (2.2). Here 0 < h ≤ 1 and g� = (g�)σ are
constant. The results are uniform in the usual sense; they only depend on the
seminorms of f in L∞(R, S(h−1, hg�)). Let

X+(t) = {w ∈ T ∗Rn : ∃ s ≤ t, f(s, w) > 0 } ,(3.1)

X−(t) = {w ∈ T ∗Rn : ∃ s ≥ t, f(s, w) < 0 } .(3.2)
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Clearly, X±(t) are open in T ∗Rn, X+(s) ⊆ X+(t) and X−(s) ⊇ X−(t) when
s ≤ t. By condition (Ψ) we obtain that X−(t)

⋂
X+(t) = ∅ and ±f(t, w) ≥ 0

when w ∈ X±(t), ∀ t. Let X0(t) = T ∗Rn \ (X+(t)
⋃

X−(t)) which is closed in
T ∗Rn. By the definition of X±(t) we have f(t, w) = 0 when w ∈ X0(t). Let

d0(t0, w0) = inf
{

g�(w0 − z)1/2 : z ∈ X0(t0)
}

(3.3)

be the g� distance in T ∗Rn to X0(t0) for fixed t0. It is equal to +∞ in the
case that X0(t0) = ∅.

Definition 3.1. We define the signed distance function δ0(t, w) by

δ0 = sgn(f) min(d0, h
−1/2),(3.4)

where d0 is given by (3.3) and

sgn(f)(t, w) =

{
1, w ∈ X±(t)

0, w ∈ X0(t)
(3.5)

so that sgn(f)f ≥ 0.

Definition 3.2. We say that w �→ a(w) is Lipschitz continuous on T ∗Rn

with respect to the metric g� if

sup
w �=z∈T ∗Rn

|a(w) − a(z)|/g�(w − z)1/2 = ‖a‖Lip < ∞

where ‖a‖Lip is the Lipschitz constant of a.

Proposition 3.3. The signed distance function w �→ δ0(t, w) given by
Definition 3.1 is Lipschitz continuous with respect to the metric g� with
Lipschitz constant equal to 1, for all t. We also find that t �→ δ0(t, w) is
nondecreasing, 0 ≤ δ0f , |δ0| ≤ h−1/2 and |δ0| = d0 when |δ0| < h−1/2.

Proof. Clearly, it suffices to show the Lipschitz continuity of w �→ δ0(t, w)
on �X±(t), and thus of w �→ d0(t, w) when d0 < ∞. In fact, if w1 ∈ X−(t) and
w2 ∈ X+(t) then we can find w0 ∈ X0(t) on the line connecting w1 and w2. By
using the Lipschitz continuity of d0 and the triangle inequality we then find
that

|δ0(t, w2) − δ0(t, w1)| ≤ |w2 − w0| + |w0 − w1| = |w2 − w1|.
The triangle inequality also shows that w �→ g�(w−z)1/2 is Lipschitz continuous
with Lipschitz constant equal to 1. By taking the infimum over z we find that
w �→ d0(t, w) is Lipschitz continuous when d0 < ∞, which gives the Lipschitz
continuity of w �→ δ0(t, w).

Clearly δ0f ≥ 0, and by the definition |δ0| = min(d0, h
−1/2) ≤ h−1/2 so

that |δ0| = d0 when |δ0| < h−1/2. Since X+(t) is nondecreasing and X−(t) is
nonincreasing when t increases, we find that t �→ δ0(t, w) is nondecreasing.
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In the following, we shall treat t as a parameter which we shall suppress,
and we shall denote f ′ = ∂wf and f ′′ = ∂2

wf . Also, in the following, assume
that we have choosen g� orthonormal coordinates so that g�(w) = |w|2.

Definition 3.4. Let

H
−1/2
1 = 1 + |δ0| +

|f ′|
|f ′′| + h1/4|f ′|1/2 + h1/2

(3.6)

and G1 = H1g
�.

Remark 3.5. We have that

1 ≤ H
−1/2
1 ≤ 1 + |δ0| + h−1/4|f ′|1/2 ≤ Ch−1/2(3.7)

since |f ′| ≤ C1h
−1/2 and |δ0| ≤ h−1/2. Moreover,

|f ′| ≤ H
−1/2
1 (|f ′′| + h1/4|f ′|1/2 + h1/2)

so that by the Cauchy-Schwarz inequality,

|f ′| ≤ 2|f ′′|H−1/2
1 + 3h1/2H−1

1 ≤ C2H
−1/2
1 .(3.8)

Definition 3.6. Let

M = |f | + |f ′|H−1/2
1 + |f ′′|H−1

1 + h1/2H
−3/2
1 ;(3.9)

then h1/2 ≤ M ≤ C3h
−1.

Proposition 3.7. We find that G1 is σ temperate, such that G1 = H2
1Gσ

1

and

H1(w) ≤ C0H1(w0)(1 + H1(w)g�(w − w0)).(3.10)

Also, M is a weight for G1 such that f ∈ S(M, G1) and

M(w) ≤ C1M(w0)(1 + H1(w0)g�(w − w0))3/2.(3.11)

In the case when 1 + |δ0(w0)| ≤ H
−1/2
1 (w0)/2, we have |f ′(w0)| ≥ h1/2,

|f (k)(w0)| ≤ Ck|f ′(w0)|H
k−1
2

1 (w0), k ≥ 1,(3.12)

and 1/C ≤ |f ′(w)|/|f ′(w0| ≤ C when |w − w0| ≤ cH
−1/2
1 (w0) for some c > 0.

Since G1 ≤ g� ≤ Gσ
1 we find that the conditions (3.10) and (3.11) are

stronger than the property of being σ temperate (in fact, strongly σ temperate
in the sense of [2, Def. 7.1]). When 1 + |δ0| < H

−1/2
1 /2 we find that f ′ ∈

S(|f ′|, G1), f−1(0) is a C∞ hypersurface, and then H
1/2
1 gives an upper bound

on the curvature of f−1(0) by (3.12). Proposition 3.8 shows that (3.12) also
holds for k = 0 when 1 + |δ0| � H

−1/2
1 .
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Proof. If H1(w0)g�(w − w0) ≥ c > 0 then we immediately obtain (3.10)
with C0 = c−1. Thus, in order to prove (3.10), it suffices to prove that H1(w) ≤
C0H1(w0) when H1(w0)g�(w − w0) � 1, i.e., that G1 is slowly varying.

First we consider the case 1 + |δ0(w0)| ≥ H
−1/2
1 (w0)/2. Then we find by

the uniform Lipschitz continuity of w �→ |δ0(w)| that

H
−1/2
1 (w) ≥ 1 + |δ0(w)| ≥ 1 + |δ0(w0)| − H

−1/2
1 (w0)/6 ≥ H

−1/2
1 (w0)/3

when |w−w0| ≤ H
−1/2
1 (w0)/6, which gives the slow variation in this case with

C0 = 9.
In the case 1 + |δ0(w0)| ≤ H

−1/2
1 (w0)/2 we have that H

1/2
1 (w0) ≤ 1/2 and

|f ′′(w0)| + h1/4|f ′(w0)|1/2 + h1/2 ≤ 2H
1/2
1 (w0)|f ′(w0)| ≤ |f ′(w0)|.(3.13)

Let H1 = H1(w0) and F (z) = f ′(w0 + zH
−1/2
1 )/|f ′(w0)| ∈ C∞. Then we

find |F (0)| = 1, |F ′(0)| ≤ 2 and |F ′′(z)| ≤ C, ∀ z, since h1/2 ≤ 4H1|f ′(w0)|
by (3.13). Taylor’s formula gives that 1/C1 ≤ |F (z)| ≤ C1 and |F ′(z)| ≤ C2

when |z| ≤ ε is sufficiently small, depending on the seminorms of f . Thus
when |w − w0| ≤ εH

−1/2
1 for ε � 1, we have 1/C1 ≤ |f ′(w)|/|f ′(w0| ≤ C1 and

|f ′′(w)| ≤ C2H
1/2
1 |f ′(w0|; thus (3.13) gives

H
1/2
1 (w) ≤ |f ′′(w)||f ′(w)|−1 + h1/4|f ′(w)|−1/2 + h1/2|f ′(w)|−1 ≤ C3H

1/2
1

and the slow variation. Observe that (3.12) follows from (3.13) for k = 2.
When k ≥ 3 we have

|f (k)(w0)| ≤ Ckh
k−2
2 ≤ 4CkC

k−3|f ′(w0)|H
k−1
2

1 ,

since h1/2 ≤ 4H1|f ′(w0)| by (3.13) and h(k−3)/2 ≤ Ck−3H
(k−3)/2
1 by (3.7).

Next, we shall prove that M is a weight for G1. By Taylor’s formula,

|f (k)(w)| ≤ C4

2−k∑
j=0

|f (k+j)(w0)||w − w0|j + C4h
1/2|w − w0|3−k, 0 ≤ k ≤ 2,

(3.14)

thus

M(w) ≤ C5

2∑
k=0

|f (k)(w0)|(|w−w0|+H
−1/2
1 (w))k+C5h

1/2(|w−w0|+H
−1/2
1 (w))3.

By interchanging w and w0 in (3.10) we find

H
−1/2
1 (w) + |w − w0| ≤ C0(H

−1/2
1 (w0) + |w − w0|).
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Thus

M(w)≤C6

2∑
k=0

|f (k)(w0)|H−k/2
1 (w0)(1 + H

1/2
1 (w0)|w − w0|)k

+C6h
1/2H

−3/2
1 (w0)(1 + H

1/2
1 (w0)|w − w0|)3

≤C6M(w0)(1 + H
1/2
1 (w0)|w − w0|)3

which gives (3.11). It is clear from the definition of M that |f (k)| ≤ MH
k/2
1

when k ≤ 2, and when k ≥ 3 we have |f (k)| ≤ Ckh
k−2
2 ≤ CkC

k−3MH
k

2
1 since

h1/2 ≤ MH
3/2
1 and h(k−3)/2 ≤ Ck−3H

(k−3)/2
1 . This completes the proof of

Proposition 3.7.

Note that f ∈ S(M, H1g
�) for any choice of H1 ≥ h in Definition 3.6. We

shall compare our metric with the Beals-Fefferman metric G = Hg� for f on
T ∗Rn, where

H−1 = 1 + |f | + |f ′|2 ≤ Ch−1.(3.15)

This metric is σ temperate on T ∗Rn, supG/Gσ = H2 ≤ 1 and f ∈ S(H−1, G)
(see for example the proof of Lemma 26.10.2 in [9]).

Proposition 3.8. We have H−1 ≤ CH−1
1 and M ≤ CH−1

1 , which im-
plies that f ∈ S(H−1

1 , G1) and

1/C ≤ M/(|f ′′|H−1
1 + h1/2H

−3/2
1 ) ≤ C.(3.16)

When |δ0| ≤ κ0H
−1/2
1 and H

1/2
1 ≤ κ0 for 0 < κ0 sufficiently small, then

1/C1 ≤ M/|f ′|H−1/2
1 ≤ C1.(3.17)

Thus, we find that the metric G1 gives a coarser localization than the
Beals-Fefferman metric G and smaller cut-off errors.

Proof. First note that by the Cauchy-Schwarz inequality

M = |f | + |f ′|H−1/2
1 + |f ′′|H−1

1 + h1/2H
−3/2
1 ≤ C(H−1 + H−1

1 ).

Thus, M ≤ CH−1
1 if H−1 ≤ CH−1

1 . Observe that we only have to do this
when |δ0| � H−1/2, since otherwise H−1/2 ≤ C|δ0| ≤ CH

−1/2
1 .

If |δ0(w0)| ≤ κH−1/2(w0) ≤ Cκh−1/2 and Cκ < 1, then there exists
w ∈ f−1(0) such that |w − w0| = |δ0(w0)|. Since f(w) = 0, Taylor’s formula
gives that

|f(w0)| ≤ |f ′(w0||δ0(w0)| + |f ′′(w0)||δ0(w0)|2/2 + Ch1/2|δ0(w0)|3.(3.18)
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We find from (3.18) and (3.15) that |f(w0)| ≤ C0κH−1(w0) when |δ0(w0)| ≤
κH−1/2(w0). When C0κ < 1 we obtain

H−1(w0) ≤ (1 − Cκ)−1(1 + |f ′(w0)|2) ≤ C ′H−1
1 (w0)

by (3.8).
Observe that when |δ0| ∼= h−1/2 we have H

−1/2
1

∼= h−1/2, which gives
M ∼= h−1 and proves (3.16) in this case. If |δ0(w0)| < h−1/2, then as before
there exists w ∈ f−1(0) such that |w−w0| = |δ0(w0)| ≤ H

−1/2
1 (w0). We obtain

from (3.18) and (3.8) that

M ≤ C
(
|f ′|H−1/2

1 +|f ′′|H−1
1 +h1/2H

−3/2
1

)
≤ C ′

(
|f ′′|H−1

1 + h1/2H
−3/2
1

)
at w0,

which gives (3.16). If |δ0| � H
−1/2
1 ≤ Ch−1/2 and H

1/2
1 � 1, then we obtain

by (3.18) and (3.12) that

M ≤ C
(
|f ′|H−1/2

1 + |f ′′|H−1
1 + h1/2H

−3/2
1

)
≤ C ′|f ′|H−1/2

1 at w0.

This gives (3.17) and completes the proof of the proposition.

Proposition 3.9. Let H
−1/2
1 be given by Definition 3.4 for f ∈ S(h−1, hg�).

There exists κ1 > 0 so that if 〈δ0〉 = 1 + |δ0| ≤ κ1H
−1/2
1 then

f = α0δ0(3.19)

where κ1MH1/2 ≤ α0 ∈ S(MH
1/2
1 , G1), which implies that δ0 = f/α0 ∈

S(H−1/2
1 , G1).

Proof. We choose g� orthonormal coordinates so that w0 = 0, put H
1/2
1 =

H
1/2
1 (0) and M = M(0). Let κ0 > 0 be given by Proposition 3.8; then if κ1 ≤

κ0 we find |f ′(0)| ∼= MH
1/2
1 . Next, we change coordinates, letting w = H

−1/2
1 z

and
F (z) = H

1/2
1 f(H−1/2

1 z)/|f ′(0)| ∼= f(H−1/2
1 z)/M ∈ C∞.

Now δ1(z) = H
1/2
1 δ0(H

−1/2
1 z) is the signed distance to F−1(0) in the z coordi-

nates. We have |F (0)| ≤ C0, |F ′(0)| = 1, |F ′′(0)| ≤ C2 and |F (3)(z)| ≤ C3, for
all z. It is no restriction to assume that ∂z′F (0) = 0, and then |∂z1F (z)| ≥ c > 0
in a fixed neighborhood of the origin. If |δ1(0)| = |δ0(0)H1/2

1 | ≤ κ1 � 1 then
F−1(0) is a C∞ manifold in this neighborhood, δ1(z) is uniformly C∞ and
∂z1δ1(z) ≥ c0 > 0 in a fixed neighborhood of the origin. By choosing (F (z), z′)
as local coordinates and using Taylor’s formula we find that δ1(z) = α1(z)F (z),
where 0 < c1 ≤ α1 ∈ C∞ in a fixed neighborhood of the origin. Thus, we obtain
the proposition with α0(w) = |f ′(0)|/α1(H

1/2
1 w) ∈ S(MH

1/2
1 , G1).
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The denominator D = |f ′′| + h1/4|f ′|1/2 + h1/2 in the definition of H
−1/2
1

may seem strange, but it has the following explanation which we owe to Nicolas
Lerner [18].

Remark 3.10. If f ∈ S(h−1, hg�) we find that F = h−1/2f ′ ∈ S(h−1, hg�).
The Beals-Fefferman metric for F is G2 = H2g

� where H−1
2 = 1+ |F ′|2 + |F | =

1 + h−1|f ′′|2 + h−1/2|f ′|. Thus, we obtain that D = |f ′′|+ h1/4|f ′|1/2 + h1/2 ∼=
H

−1/2
2 h1/2 and

H
−1/2
1

∼= 1 + |δ0| + |F |H1/2
2 ≤ CH

−1/2
2 when |δ0| ≤ CH

−1/2
2(3.20)

which gives that H
−1/2
2

∼= H
−1/2
1 + |F ′| when |δ0| ≤ CH

−1/2
2 (or else H

−1/2
1

∼=
|δ0| ≥ CH

−1/2
2 ). We find that |f ′′| ≤ C(h1/4|f ′|1/2 + h1/2) if and only if

H
−1/2
2

∼= 1 + |F |1/2. Thus G1 is equivalent to the Beals-Fefferman metric G2

for F = h−1/2f ′ in a G2 neighborhood of f−1(0) if and only if

|f ′′| ≤ C(h1/4|f ′|1/2 + h1/2).

In fact, the condition |f ′′| ≤ C(h1/4|f ′|1/2 + h1/2) means that H
−1/2
2

∼=
1 + h−1/4|f ′|1/2 = 1 + |F |1/2. Now the Cauchy-Schwarz inequality gives that

1 + |F |1/2 ≤ 1 + εH
−1/2
2 + Cε|F |H1/2

2 .

Thus, H
−1/2
1

∼= H
−1/2
2 when |δ0| ≤ CH

−1/2
2 . Observe that we can define the

metric G2 with h replaced by any constant H0 such that ch ≤ H0 ≤ CH1,
since H

−1/2
0 f ′ ∈ S(H−1

0 , H0g
�) by (3.8) (see Remark 5.6).

4. Properties of the symbol

In this section we shall study the properties of the symbol near the sign
changes. We start with a one dimensional result.

Lemma 4.1. Assume that f(t) ∈ C3(R) such that ‖f (3)‖∞ = supt |f (3)(t)|
is bounded. If

sgn(t)f(t) ≥ 0 when �0 ≤ |t| ≤ �1(4.1)

for �1 ≥ 3�0 > 0, then

|f(0)| ≤ 3
2

(
�0f

′(0) + �3
0‖f (3)‖∞/2

)
,(4.2)

|f ′′(0)| ≤ f ′(0)/�0 + 7�0‖f (3)‖∞/6.(4.3)

Proof. By Taylor’s formula,

0 ≤ sgn(t)f(t) = |t|f ′(0) + sgn(t)(f(0) + f ′′(0)t2/2) + R(t), �0 ≤ |t| ≤ �1,
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where |R(t)| ≤ ‖f (3)‖∞|t|3/6. This gives∣∣f(0) + t2f ′′(0)/2
∣∣ ≤ f ′(0)|t| + ‖f (3)‖∞|t|3/6(4.4)

for any |t| ∈ [�0, �1]. By choosing |t| = �0 and |t| = 3�0, we obtain that

4�2
0|f ′′(0)| ≤ 4f ′(0)�0 + 28‖f (3)‖∞�3

0/6

which gives (4.3). By letting |t| = �0 in (4.4) and substituting (4.3), we
obtain (4.2).

Proposition 4.2. Let f(w) ∈ C∞(T ∗Rn) such that ‖f (3)‖∞ < ∞. As-
sume that there exists 0 < ε ≤ r/5 such that

sgn(w1)f(w) ≥ 0 when |w1| ≥ ε + |w′|2/r and |w| ≤ r(4.5)

where w = (w1, w
′). Then

|f ′′(0)| ≤ 33(|∂w1f(0)|/� + �‖f (3)‖∞)(4.6)

for any ε ≤ � ≤ r/
√

10.

Proof. We shall consider the function t �→ f(t, w′) which satisfies (4.1) for
fixed w′ with

ε + |w′|2/r = �0(w′) ≤ |t| ≤ �1 ≡ 3r/
√

10

and |w′| ≤ r/
√

10 which we assume in what follows. In fact, then t2+|w′|2 ≤ r2

and 3�0(w′) ≤ 9r/10 ≤ 3r/
√

10 = �1. We obtain from (4.2) and (4.3) that

|f(0, w′)| ≤ 3
2
∂w1f(0, w′)� + 3�3‖f (3)‖∞/4,(4.7)

|∂2
w1

f(0, w′)| ≤ ∂w1f(0, w′)/� + 7�‖f (3)‖∞/6(4.8)

for ε + |w′|2/r ≤ � ≤ r/
√

10 and |w′| ≤ r/
√

10. By letting w′ = 0 in (4.8) we
find that

|∂2
w1

f(0)| ≤ ∂w1f(0)/� + 7�‖f (3)‖∞/6(4.9)

for ε ≤ � ≤ r/
√

10. By letting � = �0(w′) in (4.7) and dividing by 3�0(w′)/2,
we obtain

0 ≤ ∂w1f(0, w′) + 2‖f (3)‖∞|w′|2(4.10)

when ε ≤ |w′| ≤ r/
√

10 since then �0(w′) ≤ ε + |w′| ≤ 2|w′|. By using Taylor’s
formula for w′ �→ ∂w1f(0, w′) in (4.10), we find that

0 ≤ ∂w1f(0) + 〈w′, ∂w′(∂w1f)(0)〉 +
5
2
‖f (3)‖∞|w′|2

when ε ≤ |w′| ≤ r/
√

10. Thus, by optimizing over fixed |w′|, we obtain

|w′||∂w′(∂w1f)(0)| ≤ ∂w1f(0) +
5
2
‖f (3)‖∞|w′|2 when ε ≤ |w′| ≤ r/

√
10.

(4.11)
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By again putting � = �0(w′) in (4.7), using Taylor’s formula for w′ �→ ∂w1f(0, w′)
but this time substituting (4.11), we obtain

|f(0, w′)| ≤ 6∂w1f(0)|w′| + 15‖f (3)‖∞|w′|3 when ε ≤ |w′| ≤ r/
√

10.
(4.12)

We may also estimate the even terms in Taylor’s formula by (4.12):

|f(0) + 〈∂2
w′f(0)w′, w′〉/2| ≤ 1

2
|f(0, w′) + f(0,−w′)| + ‖f (3)‖∞|w′|3/6

≤ 6∂w1f(0)|w′| + 91
6
‖f (3)‖∞|w′|3

when ε ≤ |w′| ≤ r/
√

10. Thus, by using (4.7) with � = ε and w′ = 0 to
estimate |f(0)| and optimizing over fixed |w′|, we obtain that

|∂2
w′f(0)||w′|2/2 ≤ 15

2
|∂w1f(0)||w′| + 16‖f (3)‖∞|w′|3(4.13)

when ε ≤ |w′| ≤ r/
√

10. Thus we obtain (4.6) by taking ε ≤ |w′| = � ≤ r/
√

10
in (4.9)–(4.13).

As before, if f ∈ C∞(Rn) then we define the signed distance function of
f as δ = sgn(f)d where d is the Euclidean distance to f−1(0).

Proposition 4.3. Let fj(w) ∈ C∞(Rn), j = 1, 2, such that f1(w) >

0 =⇒ f2(w) ≥ 0. Let δj(w) be the signed distance functions of fj(w), for
j = 1, 2. There exists c0 > 0, such that if |f ′

j(w0)| ≥ 1, |δj(w0)| ≤ c0 for
j = 1, 2, and

|δ1(w0) − δ2(w0)| = ε,(4.14)

then there exist g� orthonormal coordinates w = (w1, w
′) so that w0 = (x1, 0)

with x1 = δ1(w0) and

sgn(w1)fj(w) ≥ 0 when |w1| ≥ (ε + |w′|2)/c0 and |w| ≤ c0,(4.15)

|δ2(w) − δ1(w)| ≤ (ε + |w − w0|2)/c0 when |w| ≤ c0.(4.16)

The constant c0 only depends on the seminorms of f1 and f2 in a fixed neigh-
borhood of w0.

Proof. Observe that the conditions get stronger and the conclusions
weaker when c0 decreases. Assume that f1 and f2 are uniformly bounded
in C∞ near w0. We find that |f ′

j(w)| > 0 for |w − w0| ≤ c1 � 1; thus f−1
j (0)

is a C∞ hypersurface in |w − w0| ≤ c1 when |δj(w0)| ≤ c0 � 1, j = 1, 2.
By decreasing c0 we obtain (as in the proof of Proposition 3.9) that there
exists c2 > 0 so that w �→ δj(w) ∈ C∞(Rn) uniformly in |w − w0| ≤ c2,
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j = 1, 2. We may also choose z0 ∈ f−1
1 (0) so that |δ1(w0)| = |w0 − z0|, and

then choose g� orthonormal coordinates so that z0 = 0, w0 = (δ1(w0), 0) and
∂w′δ1(0) = ∂w′δ1(w0) = 0, w = (w1, w

′). If c0 ≤ c2/3 we find that δj ∈ C∞ in
|w| ≤ c3 = 2c2/3. Since sgn(f1(w0)) = sgn(δ1(w0)) we find that ∂w1f1(0) > 0.

Now, |∂2
wδj(w)| ≤ C0 for |w| ≤ c3, j = 1, 2, and ∆(w) = δ2(w) − δ1(w)

≥ 0 by the sign condition. By [9, Lemma 7.7.2] and (4.14), we obtain that
|∂w∆(w)|2 ≤ C1∆(w) ≤ C1ε when w = w0. This gives

|∆(w)| ≤ |∆(w0)| + |∂w∆(w0)||w − w0| + C2|w − w0|2(4.17)

≤C3(ε + |w − w0|2) for |w| ≤ c3,

which proves (4.16). Since |∂w′δ1(w0)| = 0 we find that

|∂w′δ2(w)| ≤ C4(
√

ε + |w − w0|) � 1

when |w − w0| � 1 and ε ≤ 2c0 � 1. Now f2(w) = 0 for some |w| ≤ 2c0.
Thus for c0 � 1 we obtain |∂w′δ2(w)| � 1, which gives that |∂w1f2(w)| ≥
c4|∂wf2(w)| ≥ c2

4 > 0 for some c4 > 0. Since sgn(f2(w1, 0)) = 1 when w1 > 0,
we obtain that ∂w1f2(w) ≥ c5|∂wf2(w)| ≥ c2

5 when |w| ≤ c5 for some c5 > 0.
By using the implicit function theorem, we obtain bj(w′) ∈ C∞(Rn−1),

so that ±fj(w) > 0 if and only if ±(w1 − bj(w′)) ≥ 0 when |w| ≤ c6,
j = 1, 2. Since f1(0) = |∂w′f1(0)| = 0 we obtain that b1(0) = |b′1(0)| = 0.
This gives |b1(w′)| ≤ C5|w′|2 and proves the positive part of (4.15) by the sign
condition. Observe that the sign condition is equivalent to f2(w) < 0 =⇒
f1(w) ≤ 0, which gives b1(w′) ≥ b2(w′). Now |δ2(w0)| ≤ |δ1(w0)| + ε, thus we
find −ε ≤ b2(w′) ≤ b1(w′) for some |w′| ≤ C

√
ε. This gives b2(w′) ≤ C5C

2ε

and |b′1(w′)| ≤ C6
√

ε, and we obtain as before that |b′1(w′) − b′2(w
′)| ≤ C7

√
ε.

As in (4.17), we obtain

|b2(w′)| ≤ C8(ε + |w′ − w′|2) ≤ C9(ε + |w′|2)

which proves the negative part of (4.15) and the proposition.

5. The weight function

In this section, we shall define the weight m	 to be used; for technical
reasons it will depend on a parameter 0 < � ≤ 1. Let δ0(t, w) and H

−1/2
1 (t, w)

be given by Definitions 3.1 and 3.4 for f ∈ L∞(R, S(h−1, hg�)) satisfying
condition (Ψ) given by (2.2). The weight m	 will essentially measure how
much t �→ δ0(t, w) changes between the minima of t �→ H

1/2
1 (t, w)〈δ0(t, w)〉,

which will give restrictions on the sign changes of the symbol. As before, we
assume that we have chosen g� orthonormal coordinates so that g�(w) = |w|2,
and the results will only depend on the seminorms of f in L∞(R, S(h−1, hg�)).
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Definition 5.1. For 0 < � ≤ 1 and (t, w) ∈ R × T ∗Rn we let m	 =
min(M	, �

2) with

(5.1) M	(t, w) = inf
t1≤t≤t2

{
�2|δ0(t1, w) − δ0(t2, w)|

+ max
(
H

1/2
1 (t1, w)〈�δ0(t1, w)〉, H1/2

1 (t2, w)〈�δ0(t2, w)〉
) }

where 〈δ0〉 = 1 + |δ0|.

Remark 5.2. When t �→ δ0(t, w) is constant for fixed w, we find
that t �→ m1(t, w) is equal to the largest quasi-convex minorant of t �→
H

1/2
1 (t, w)〈δ0(t, w)〉; i.e., supI m1 = sup∂I m1 for compact intervals I ⊂ R;

see [10, Def. 1.6.3].

We shall use the parameter � to obtain suitable norms in Section 6, but
this is just a technicality: all m	 are equivalent according to the following
proposition.

Proposition 5.3. We have m	 ∈ L∞(R × T ∗Rn),

min(ch1/2, �2) ≤ m	 ≤ min(H1/2
1 〈�δ0〉, �2) ≤ �2(5.2)

where c−1 = C is given by (3.7), and

�2
1/�2

2 ≤ m	1/m	2 ≤ 1(5.3)

when 0 < �1 ≤ �2 ≤ 1. If m	(t0, w0) < �2, then there exist t1 ≤ t0 ≤ t2 so that
H

1/2
0 = max(H1/2

1 (t1, w0), H
1/2
1 (t2, w0)) < 2m	(t0, w0) satisfies

H
1/2
0 < 4m	(t0, w0)/〈�δ0(tj , w0)〉 for j = 0, 1, 2,(5.4)

this implies that H
1/2
0 < 4H

1/2
1 (t0, w0) by (5.2). When m	(t0, w0) < �2

� 1, g� orthonormal coordinates may be chosen so that w0 = (x1, 0), |x1| <

|δ0(t0, w0)| + 1 < 4�H
−1/2
0 , and

sgn(w1)f(t0, w) ≥ 0 when |w1| ≥ (1 + H
1/2
0 |w′|2)/c0,(5.5)

|δ0(t1, w) − δ0(t2, w)| ≤ (�−2m	(t0, w0) + H
1/2
0 |w − w0|2)/c0(5.6)

when |w| ≤ c0H
−1/2
0 for some constant c0, which only depends on the semi-

norms of f .

Observe that condition (5.5) is not empty when � is sufficiently small since
H

1/2
0 < 4�2.

Proof. We obtain the first statement and (5.2) by taking the infimum,
since ch1/2 ≤ M	 ≤ H

1/2
1 〈�δ0〉 by (3.7). Next, we put

F	(s, t, w) = �2|δ0(s, w) − δ0(t, w)|
+ max(H1/2

1 (s, w)〈�δ0(s, w)〉, H1/2
1 (t, w)〈�δ0(t, w)〉).
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Then we have F	1 ≤ F	2 and �2
1F	2 ≤ �2

2F	1 when �1 ≤ �2. Since these
estimates are preserved when taking the infimum, we obtain (5.3).

Next assume that m	(t0, w0) < �2; then m	(t0, w0) = M	(t0, w0). By
approximating the infimum, we may choose t1 ≤ t0 ≤ t2 so that F	(t1, t2, w0) <

m	(t0, w0) + ch1/2, which gives

|δ0(t1, w0) − δ0(t2, w0)| < �−2m	(t0, w0) < 1 and(5.7)

H
1/2
1 (tj , w0)〈�δ0(tj , w0)〉 < 2m	(t0, w0) < 2�2 for j = 1 and 2.(5.8)

We obtain that H
1/2
0 = max(H1/2

1 (t1, w0), H
1/2
1 (t2, w0)) < 2m	(t0, w0) < 2�2

and

1/2 < 〈�δ0(tj , w0)〉/〈�δ0(tk, w0)〉 < 2 when j, k = 0, 1, 2(5.9)

by the monotonicity of t �→ δ0(t, w0); thus (5.8) gives (5.4). We obtain
from (5.4) that

1 + |δ0(tj , w0)| < 4�H
−1/2
0 when j = 0, 1, 2.(5.10)

Next, choose g� orthonormal coordinates so that w0 = 0. Since H
1/2
1 (tj , 0) <

2�2 and |δ0(tj , 0)| < 2�H
−1/2
1 (tj , 0) by (5.8), we find from Proposition 3.7 for

� � 1 that

h1/2 ≤ |∂wf(tj , 0)| ∼= |∂wf(tj , w)|
when

|w| ≤ cH
−1/2
0 ≤ cH

−1/2
1 (tj , 0), j = 1, 2.

Now f(tj , w̃j) = 0 for some |w̃j | < 4�H
−1/2
0 by (5.10) when � � 1 and j = 1, 2.

Thus, when 4� ≤ c we obtain that

|f(tj , w)| ≤ C|∂wf(tj , 0)|H−1/2
0 when |w| < cH

−1/2
0

and then (3.12) gives f(tj , w) ∈ S(|∂wf(tj , 0)|H−1/2
0 , H0g

�) since H
1/2
1 (tj , 0) ≤

H
1/2
0 , j = 1, 2. Choosing coordinates z = H

1/2
0 w, we shall use Proposition 4.3

with

fj(z) = H
1/2
0 f(tj , H

−1/2
0 z)/|∂wf(tj , 0)| ∈ C∞ for j = 1, 2.

Let δj(z) = H
1/2
0 δ0(tj , H

−1/2
0 z) be signed distance functions to f−1

j (0); then
|f ′

j(0)| = 1, |δj(0)| ≤ 4� and

|δ1(0) − δ2(0)| = ε ≤ H
1/2
0 m	(t0, 0)/�2

by (5.7). Thus, for sufficiently small � we may use Proposition 4.3 to obtain
g� orthogonal coordinates so that w0 = (x1, 0) where

|x1| = |δ0(t1, 0)| < |δ0(t0, 0)| + 1 < 4�H
−1/2
0

by (5.10). We then obtain (5.5) and (5.6) from (4.15) and (4.16) for some
c0 > 0.
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Proposition 5.4. There exists C > 0 such that

m	(t0, w) ≤ Cm	(t0, w0)(1 + �2g�(w − w0))(5.11)

uniformly when 0 < � ≤ 1, thus m	 is a weight for g	 = �2g� uniformly in �.

Proof. The weights m	 are equivalent when � ≥ �0 > 0 by (5.3), so it
suffices to consider the case when � ≤ �0 � 1. In fact, if (5.11) holds for m	0

then it holds for m	 when �0 ≤ � ≤ 1, with C replaced by C/�2
0. Since m	 ≤ �2

we only have to consider the case when

m	(t0, w0) < �2.(5.12)

Now, for fixed w0 and � it suffices to prove (5.11) when |w−w0| ≤ �/m	, where
m	 = m	(t0, w0) < �2. In fact, when |w − w0| > �/m	 we obtain that

�2|w − w0|2 > �4/m2
	 > m	(t0, w)/m	

by (5.12). In that case (5.11) is satisfied with C = 1; thus in the following we
shall only consider w such that |w − w0| ≤ �/m	 for m	 < �2 � 1. Then we
may use Proposition 5.3 to obtain t1 ≤ t0 ≤ t2 such that (5.6) and (5.4) hold
with H

1/2
0 = max(H1/2

1 (t1, w0), H
1/2
1 (t2, w0)) < 2m	. Thus

�2|δ0(t1, w) − δ0(t2, w)| ≤C2(m	 + H
1/2
0 �2|w − w0|2)(5.13)

≤ 2C2m	(1 + �2|w − w0|2)

when |w − w0| ≤ �/m	 < 2�H
−1/2
0 ≤ c0H

−1/2
0 for � ≤ c0/2. Now G1 is slowly

varying, uniformly in t. Thus we find for small enough � > 0 that

H
1/2
1 (tj , w) ≤ C3H

1/2
1 (tj , w0) when |w − w0| ≤ 2�H

−1/2
0 ≤ 2�H

−1/2
1 (tj , w0)

for j = 1, 2. By the uniform Lipschitz continuity we find that

〈�δ0(t, w)〉 ≤ 〈�δ0(t, w0)〉(1 + �|w − w0|)(5.14)

which implies that

(5.15) H
1/2
1 (tj , w)〈�δ0(tj , w)〉

≤ C3H
1/2
1 (tj , w0)〈�δ0(tj , w0)〉(1 + �|w − w0|), j = 1, 2,

when |w − w0| ≤ 2�H
−1/2
0 . Now H

1/2
1 (tj , w0)〈�δ0(tj , w0)〉 < 4m	 by (5.4) for

j = 1, 2. Thus, by using (5.13), (5.15) and taking the infimum we obtain

m	(t0, w) ≤ C4m	(1 + �2|w − w0|2)

when |w − w0| ≤ �/m	 ≤ 2�H
−1/2
0 for � ≤ �0 � 1.
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In Section 6, we shall choose a fixed � � 1 in order to get suitable function
spaces. In the following, we shall for simplicity only consider m1, since all the
m	 are equivalent, this is really no restriction: the results also holds for any
m	, but with constants depending on �. The following result will be important
for the proof of Proposition 2.5 in Section 7.

Proposition 5.5. Let M be given by Definition 3.6 and m1 by Defini-
tion 5.1. Then there exists C0 > 0 such that

MH
3/2
1 ≤ C0m1/〈δ0〉.(5.16)

Proof. We shall omit the dependence on t in the proof and put m1 =
m1(w0). First we observe that if m1 ≥ c > 0, then MH

3/2
1 〈δ0〉 ≤ C ≤ Cm1/c

at w0 since 〈δ0〉 ≤ H
−1/2
1 and M ≤ CH−1

1 by Proposition 3.8.
Thus, we only have to consider the case m1 < �2 at w0 for some � > 0

to be chosen later. Since m	 ≤ m1 we may use Proposition 5.3 for � � 1 to
choose g� orthonormal coordinates so that |w0| ≤ |δ0(w0)| + 1 ≤ 4�H

−1/2
0 and

f satisfies (5.5) with

ch1/2 ≤ H
1/2
0 < 4m	(w0)/〈�δ0(w0)〉 ≤ 4�2(5.17)

by (5.4). Observe that H
1/2
0 ≤ 4H

1/2
1 (w0) by (5.2). Thus it suffices to prove

the estimate
MH

3/2
1 ≤ CH

1/2
0 at w0

for this choice of �. Since ch1/2 ≤ H
1/2
0 , we find from Proposition 3.8 that

this is equivalent to

|f ′′|H1/2
1 ≤ CH

1/2
0(5.18)

at w0. Now it actually suffices to prove (5.18) at w = 0. In fact, (3.10) gives
H

1/2
1 (w0) ≤ CH

1/2
1 (0) since |w0| ≤ |δ0(w0)| + 1 ≤ H

−1/2
1 (w0). Thus Taylor’s

formula gives

|f ′′(w0)|H1/2
1 (w0)≤

(
|f ′′(0)| + C3h

1/2|w0|
)

H
1/2
1 (w0)

≤C1(|f ′′(0)|H1/2
1 (0) + h1/2)

since |f (3)| ≤ C3h
1/2. By Definition 3.4 we find that

H
−1/2
1 ≥ 1 + |f ′|/(|f ′′| + h1/4|f ′|1/2 + h1/2)

≥ (|f ′| + |f ′′| + h1/2)/(|f ′′| + h1/4|f ′|1/2 + h1/2).

Thus (5.18) follows if we prove

|f ′′|(|f ′′| + h1/4|f ′|1/2 + h1/2) ≤ C
(
|f ′| + |f ′′| + h1/2

)
H

1/2
0 at 0.(5.19)
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Since ch1/2 ≤ H
1/2
0 we obtain (5.19) by the Cauchy-Schwarz inequality, if we

prove that

|f ′′(0)| ≤ C(H1/4
0 |f ′(0)|1/2 + h1/2).(5.20)

Because of (5.5) we can use Proposition 4.2 on F (z) = H0f(H−1/2
0 z) with

r = c0 and ε = H
1/2
0 /c0 ≤ 4�2/c0 ≤ c0/5 by (5.17) when � ≤ c0/

√
20. Observe

that |F ′(0)| ≤ C0 since H
1/2
0 ≤ 4H

1/2
1 (w0) ≤ 4CH

1/2
1 (0). We obtain from

Proposition 4.2 that

|F ′′(0)| ≤ C1

(
|F ′(0)|/�0 + H

−1/2
0 h1/2�0

)
, H

1/2
0 /c0 ≤ �0 ≤ c0/

√
10

since ‖F (3)‖∞ ≤ C3H
−1/2
0 h1/2. By choosing �0 = λ|F ′(0)|1/2 + H

1/2
0 /c0 ≤

c0/
√

10 for λ = c0(
√

10 − 2)/10
√

C0, we obtain that |F ′′(0)| ≤ C ′(|F ′(0)|1/2 +
h1/2) since H

−1/2
0 ≤ Ch−1/2. Now F ′ = H

1/2
0 f ′ and F ′′ = f ′′; thus we ob-

tain (5.20) for this choice of �, which completes the proof of the proposition.

If m1
∼= 1 then we find that the estimate (5.16) is trivial, and when m1 � 1

we have the following interpretation of (5.20).

Remark 5.6. If |f ′| ≤ CH
−1/2
1 ≤ C0H

−1/2
0 ≤ C1h

−1/2 we find that F =
H

−1/2
0 f ′ ∈ S(H−1

0 , H0g
�). If we take the corresponding Beals-Fefferman met-

ric G3 = H3g
� for F , H−1

3
∼= 1 + H−1

0 |f ′′|2 + H
−1/2
0 |f ′| (see Remark 3.10),

then (5.20) means that H−1
3

∼= 1 + H
−1/2
0 |f ′| in a G3 neighborhood of 0. By

replacing h1/2 by H
1/2
0 in the definition of H

−1/2
1 , we find that (5.20) means

that G1 is equivalent to G3, in a G3 neighborhood of f−1(0) by Remark 3.10.

Next, we shall prove a convexity property of t �→ m1(t, w), which will be
essential for the proof.

Proposition 5.7. Let m1 be given by Definition 5.1. Then

sup
t1≤t≤t2

m1(t, w) ≤ δ0(t2, w) − δ0(t1, w) + m1(t1, w) + m1(t2, w) ∀w.

(5.21)

Proof. Since t �→ δ0(t, w) is monotone, we find that

inf
±(t−t0)≥0

(
|δ0(t, w) − δ0(t0, w)| + H

1/2
1 (t, w)〈δ0(t, w)〉

)
≤ m1(t0, w).(5.22)
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Let t ∈ [t1, t2]; then by using (5.22) for t0 = t1, t2, and taking the infima, we
obtain that

m1(t, w)≤ inf
r≤t1<t2≤s

(
δ0(s, w) − δ0(r, w)

+ H
1/2
1 (s, w)〈δ0(s, w)〉 + H

1/2
1 (r, w)〈δ0(r, w)〉

)
≤ δ0(t2, w) − δ0(t1, w) + m1(t1, w) + m1(t2, w)

which gives (5.21) after we take the supremum.

Next, we shall construct the pseudo-sign B = δ0 + �0, which we shall use
in Section 7 to prove Proposition 2.5 with the multiplier bw = BWick.

Proposition 5.8. Assume that δ0 is given by Definition 3.1 and m1 is
given by Definition 5.1. Then for T > 0 there exists real-valued �T (t, w) ∈
L∞(R × T ∗Rn) with the property that

|�T | ≤m1(5.23)

∂t(δ0 + �T )≥m1/2T in D′(R)(5.24)

when |t| < T .

Proof. (We owe this argument to Lars Hörmander [12].) Let

�T (t, w) = sup
−T≤s≤t

(
δ0(s, w) − δ0(t, w) +

1
2T

∫ t

s
m1(r, w) dr − m1(s, w)

)(5.25)

for |t| ≤ T , then

δ0(t, w) + �T (t, w) = sup
−T≤s≤t

(
δ0(s, w) − 1

2T

∫ s

0
m1(r, w) dr − m1(s, w)

)
+

1
2T

∫ t

0
m1(r, w) dr

which immediately gives (5.24) since the supremum is nondecreasing. We find
from Proposition 5.7 that

δ0(s, w) − δ0(t, w)

+
1

2T

∫ t

s
m1(r, w) dr − m1(s, w) ≤ m1(t, w) − T ≤ s ≤ t ≤ T.

By taking the supremum, we obtain that −m1(t, w) ≤ �T (t, w) ≤ m1(t, w)
when |t| ≤ T , which proves the result.
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6. The Wick quantization

In order to define the multiplier we shall use the Wick quantization, and
also define the function spaces to be used, following [2]. As before, we shall
assume that g� = (g�)σ and that the coordinates are chosen so that g�(w) =
|w|2. For a ∈ L∞(T ∗Rn) we define the Wick quantization:

aWick(x, Dx)u(x) =
∫

T ∗Rn

a(y, η)Σw
y,η(x, Dx)u(x) dydη, u ∈ S(Rn)

using the projections Σw
y,η(x, Dx) with the Weyl symbol

Σy,η(x, ξ) = π−n exp(−g�(x − y, ξ − η))

(see [5, App. B] or [15, §4]). We find that aWick: S(Rn) �→ S ′(Rn) is symmetric
on S(Rn) if a is real-valued,

a ≥ 0 =⇒
(
aWick(x, Dx)u, u

)
≥ 0, u ∈ S(Rn)(6.1)

and ‖aWick(x, Dx)‖L(L2(Rn)) ≤ ‖a‖L∞(T ∗Rn), which is the main advantage with
the Wick quantization (see [15, Prop. 4.2]). Now if at(x, ξ) ∈ L∞(R × T ∗Rn)
depends on a parameter t, then we find that∫

R

(
aWick

t u, u
)

φ(t) dt =
(
AWick

φ u, u
)

, u ∈ S(Rn),(6.2)

where Aφ(x, ξ) =
∫
R at(x, ξ)φ(t) dt. We obtain from the definition that aWick =

aw
0 where

a0(w) = π−n

∫
T ∗Rn

a(z) exp(−|w − z|2) dz(6.3)

is the Gaussian regularization. Thus Wick operators with real symbols have
real Weyl symbols.

In the following, we shall assume that G = Hg� ≤ g� is a slowly varying
metric satisfying

H(w) ≤ C0H(w0)(1 + |w − w0|)N0(6.4)

and m is a weight for G satisfying (6.4) with H replaced by m. This means
that G and m are strongly σ temperate in the sense of [2, Def. 7.1]. Recall the
symbol class S+(1, g�) given by Definition 2.2.

Proposition 6.1. Assume that a ∈ L∞(T ∗Rn) such that |a| ≤ m; then
aWick = aw

0 where a0 ∈ S(m, g�) is given by (6.3). If a ≥ m then a0 ≥ c0m

for a fixed constant c0 > 0, and if a ∈ S(m, G), then a0 = a modulo symbols
in S(mH, G). If |a| ≤ m and a = 0 in a fixed G ball with center w, then
a ∈ S(mHN , G) at w for any N . If ∂wa ∈ L∞(T ∗Rn) then a0 ∈ S+(1, g�).
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By localization we find, for example, that if |a| ≤ m and a ∈ S(m, G) in
a G neighborhood of w0, then a0 = a modulo S(mH, G) in a smaller G neigh-
borhood of w0. The results are well known, but for completeness we give a
proof. Observe that the results are uniform in the metrics and weights.

Proof. Since a is measurable satisfying |a| ≤ m, where

m(z) ≤ C0m(w)(1 + |z − w|)N0

by (6.4), we find that aWick = aw
0 where a0 = O(m) is given by (6.3). By

differentiating on the exponential factor, we find a0 ∈ S(m, g�), and similarly
we find that a0 ≥ m/C if a ≥ m.

If a = 0 in a G ball of radius ε > 0 and center at w, then we can write

πna0(w) =
∫
|z−w|≥εH−1/2(w)

a(z) exp(−|w − z|2) dz = O(m(w)HN (w))

for any N even after repeated differentiation. If a ∈ S(m, G) then Taylor’s
formula gives

a0(w) = a(w) + π−n

∫ 1

0

∫
T ∗Rn

(1 − θ)〈a′′(w + θz)z, z〉e−|z|2 dzdθ

where a′′ ∈ S(mH, G) since G = Hg�. Because m(w+θz) ≤ C0m(w)(1+|z|)N0

and H(w + θz) ≤ C0H(w)(1 + |z|)N0 when |θ| ≤ 1, we find that a0(w) = a(w)
modulo S(mH, G). Since ∂wa0(w) = π−n

∫
T ∗Rn ∂wa(z) exp(−|w − z|2) dz, we

obtain the proposition.

Lemma 6.2. If a(t, w) and µ(t, w) ∈ L∞(R × T ∗Rn) and ∂ta(t, w) ≥
µ(t, w) in D′(R) for almost all w ∈ T ∗Rn, then

(
∂t(aWick)u, u

)
≥

(
µWicku, u

)
in D′(R) when u ∈ S(Rn).

Proof. The condition means that −
∫

a(t, w)φ′(t) dt ≥
∫

µ(t, w)φ(t) dt for
all 0 ≤ φ ∈ C∞

0 (R) and almost all w ∈ T ∗Rn, which by (6.1) and (6.2) gives

−
∫ (

aWick(t, x, Dx)u, u
)

φ′(t) dt

≥
∫ (

µWick(t, x, Dx)u, u
)

φ(t) dt 0 ≤ φ ∈ C∞
0 (R)

for u ∈ S(Rn).

We shall compute the Weyl symbol for the Wick operator (δ0 + �T )Wick,
where �T is as given by Proposition 5.8. In the following we shall suppress the
t variable.

Proposition 6.3. Let B = δ0 + �0, where δ0 is given by Definition 3.1
and �0 is real-valued satisfying |�0| ≤ m1, with m1 given by Definition 5.1.
Then

BWick = bw
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where b = δ1 + �1 is real-valued, δ1 ∈ S(H−1/2
1 , g�)

⋂
S+(1, g�), and �1 ∈

S(m1, g
�). Also, there exists κ2 > 0 with the following properties: If 〈δ0〉 ≤

κ2H
−1/2
1 then δ1 = δ0 +�2 ∈ S(H−1/2

1 , G1) with �2(w) ∈ S(H1/2
1 , G1). For any

λ > 0, there exists cλ > 0 such that |δ0| ≥ λH
−1/2
1 and H

1/2
1 ≤ cλ gives

|b| ≥ κ2λH
−1/2
1 .(6.5)

Proof. Let δWick
0 = δw

1 and �Wick
0 = �w

1 . Since |δ0| ≤ H
−1/2
1 , |�0| ≤ m1

and the symbols are real-valued, we obtain from Proposition 6.1 that δ1 ∈
S(H−1/2

1 , g�) and �1 ∈ S(m1, g
�) are real-valued. Since |δ′0| ≤ 1 almost every-

where, we find that δ1 ∈ S+(1, g�) by Proposition 6.1.
If 〈δ0〉 ≤ κH

−1/2
1 at w0 for sufficiently small κ > 0, then we find by

Lipschitz continuity and slow variation that 〈δ0〉 ≤ C0κH
−1/2
1 in a fixed G1

neighborhood ωκ of w0 (depending on κ). Then we find that δ0 ∈ S(H−1/2
1 , G1)

in ωκ by Proposition 3.9, which implies that δ1 − δ0 ∈ S(H1/2
1 , G1) at w0 by

Proposition 6.1 after localization.
When |δ0| ≥ λH

−1/2
1 ≥ λ > 0 at w0, then by Lipschitz continuity and

slow variation we find that |δ0| ≥ λH
−1/2
1 /C0 in a G1 neighborhood ωλ of w0

(depending on λ). Since |�0| ≤ H
1/2
1 〈δ0〉 ≤ CλH

1/2
1 |δ0| in ωλ by (5.2), we find

by the slow variation that

|δ0 + �0| ≥ |δ0|/2 ≥ λH
−1/2
1 /2C0 in ωλ

when H
1/2
1 (w0) � 1. Proposition 6.1 then gives after localization that

|b| ≥ c0λH
−1/2
1 /2C0 − CλH

1/2
1 ≥ c0λH

−1/2
1 /3C0 at w0

when H
1/2
1 (w0) ≤ cλ � 1, which completes the proof.

Let m	 be given by Definition 5.1; then m	 is a weight for g	 = �2g�

uniformly in 0 < � ≤ 1 according to Proposition 5.4. We are going to use the
symbol classes S(mk

	, g	), k ∈ R. Observe that S(mk
	, g	) = S(mk

1, g
�) for all

0 < � ≤ 1 (but not uniformly), since g	
∼= g� and m	

∼= m1 by Proposition 5.3.

Definition 6.4. Let H(mk
1, g

�), be the Hilbert space given by [2, Def. 4.1]
so that

u ∈ H(mk
1, g

�) ⇐⇒ awu ∈ L2 ∀ a ∈ S(mk
1, g

�), k ∈ R.(6.6)

We let ‖u‖k be the norm of H(mk
1, g

�).

This Hilbert space has the following properties: S is dense in H(mk
1, g

�),
the dual of H(mk

1, g
�) is naturally identified with H(m−k

1 , g�), and if u ∈
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H(mk
1, g

�) then u = aw
0 v for some v ∈ L2(Rn) and a0 ∈ S(m−k

1 , g�) (see [2,
Cor. 6.7]). It follows that aw ∈ OpS(mk

1, g
�) is bounded:

u ∈ H(mj
1, g

�) �→ awu ∈ H(mj−k
1 , g�)(6.7)

with bound only depending on the seminorms of a.
Now m	 is not necessarily a symbol, but by (5.11) we can define the

equivalent weight

m̃	(t, w) =
∑

j

φj,	(w)m	(t, wj) ∈ S(m	, g	),(6.8)

by using a partition of unity {φj,	 } = {φj(�w) } ∈ S(1, g	) uniformly in �.
Then m̃	

∼= m	, and we let µw
	 = m̃Wick

	 , i.e.,

µ	(t, w) = π−n

∫
T ∗Rn

m̃	(t, w − z) exp(−|z|2) dz.(6.9)

Since m	 satisfies (5.11) and m	
∼= m̃	 ∈ S(m	, g	) uniformly in �, we find

by using Proposition 6.1 (with G = g	) that m	/c ≤ µ	 ∈ L∞(R, S(m	, g	))
uniformly for 0 < � ≤ 1 and some c > 0.

The following proposition shows that the topology in H(m1/2
1 , g�) can be

defined by the operator µw
1 .

Proposition 6.5. Assume that µ1 ∈ L∞(R, S(m1, g
�)) such that µw

1 =
m̃Wick

1 with m̃1 ∈ L∞(R, S(m1, g
�)) given by (6.8). Then there exist positive

constants c1, c2 and C0 such that

c1h
1/2‖u‖2 ≤ c2‖u‖2

1/2 ≤ (µw
1 u, u) ≤ C0‖u‖2

1/2, u ∈ S(Rn).(6.10)

The constants only depend on the seminorms of f in L∞(R, S(h−1, hg�)).

Proof. Let a	 = µ
−1/2
	 ∈ S(m−1/2

	 , g	) with 0 < � ≤ 1 to be chosen
later. Since g	 = �2g� is uniformly σ temperate, g	/gσ

	 = �4, m	 is uniformly

σ, g	 temperate, and µ
±1/2
	 ∈ S(m±1/2

	 , g	) uniformly, the calculus gives that
(a−1

	 )waw
	 = 1 + rw

	 where r	/�2 ∈ S(1, g�) uniformly for 0 < � ≤ 1. Similarly,
we find that aw

	 µw
	 aw

	 = 1 + sw
	 where s	/�2 ∈ S(1, g�) uniformly. We obtain

that the L2 operator norms

‖rw
	 ‖L(L2) + ‖sw

	 ‖L(L2) ≤ C0�
2 ≤ 1/2

for sufficiently small �. By fixing such a value of � we find that 1/2 ≤ aw
	 µw

	 aw
	

≤ 2 and

‖u‖0 ≤ 2‖(a−1
	 )waw

	 u‖0 ≤ C1‖aw
	 u‖1/2 ≤ C2‖u‖0.(6.11)

Thus u �→ aw
	 u is a homeomorphism between L2 and H(m1/2

1 , g�). Since the
constant metric g� is trivially strongly σ temperate in the sense of [2, Def. 7.1]
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and a	 ∈ S(m−1/2
1 , g�), we find from [2, Cor. 7.7] that there exists b	 ∈

S(m1/2
1 , g�) such that aw

	 bw
	 = bw

	 aw
	 = 1. Then we obtain that

‖u‖1/2 = ‖aw
	 bw

	 u‖1/2 ≤ C3‖bw
	 u‖0 ≤ C4‖u‖1/2

and
1
2
‖bw

	 u‖2
0 ≤

(
µw

	 aw
	 bw

	 u, aw
	 bw

	 u
)

=
(
µw

	 u, u
)
≤ 2‖bw

	 u‖2
0

which gives ‖bw
	 u‖2

0
∼=

(
µw

	 u, u
)
. Since ch1/2 ≤ m1

∼= m̃	 and µw
	 = m̃Wick

	 we
find c1h

1/2‖u‖2 ≤
(
µw

	 u, u
)
, which completes the proof of the proposition.

7. The lower bounds

In this section we shall obtain a proof of Proposition 2.5 by giving lower
bounds on Re bw

T fw, where bw
T = BWick

T is given by Proposition 6.3. In the
following, we shall omit the t variable and assume the coordinates chosen so
that g�(w) = |w|2. The results will hold for almost all |t| ≤ T and only depend
on the seminorms of f in L∞(R, S(h−1, hg�)).

Proposition 7.1. Assume that b = δ1+�1 is as given by Proposition 6.3.
Then

Re (bwfwu, u) ≥ (Cwu, u) ∀ u ∈ S(Rn)(7.1)

where C ∈ S(m1, g
�).

Proof. We shall localize in T ∗Rn with respect to the metric G1 = H1g
�,

and estimate the localized operators. We shall use the neighborhoods

ωw0(ε) =
{

w : |w − w0| < εH
−1/2
1 (w0)

}
for w0 ∈ T ∗Rn.(7.2)

We may in the following assume that ε is small enough so that w �→ H1(w)
and w �→ M(w) only vary with a fixed factor in ωw0(ε). Then by the uniform
Lipschitz continuity of w �→ δ0(w) we can find κ0 > 0 with the following
property: for 0 < κ ≤ κ0 there exist positive constants cκ and εκ so that for
any w0 ∈ T ∗Rn,

|δ0(w)| ≤ κH
−1/2
1 (w), w ∈ ωw0(εκ) or(7.3)

|δ0(w)| ≥ cκH
−1/2
1 (w), w ∈ ωw0(εκ).(7.4)

In fact, we have by the Lipschitz continuity that |δ0(w)−δ0(w0)| ≤ εκH
−1/2
1 (w0)

when w ∈ ωw0(εκ). Thus, if εκ � κ, then (7.3) holds when |δ0(w0)| �
κH

−1/2
1 (w0) and (7.4) holds when |δ0(w0)| ≥ cκH

−1/2
1 (w0).

By shrinking κ0 we may assume that M ∼= |f ′|H−1/2
1 when |δ0| ≤ κ0H

−1/2
1

and H
1/2
1 ≤ κ0 according to Proposition 3.8. Let κ1 be given by Proposi-

tion 3.9, κ2 by Proposition 6.3, and let εκ and cκ be given by (7.3)–(7.4) for
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κ = min(κ0, κ1, κ2)/2. Using Proposition 6.3 with λ = cκ gives κ3 > 0 such
that

|b| ≥ κ2cκH
−1/2
1 in ωw0(εκ)(7.5)

if H
1/2
1 ≤ κ3 and (7.4) holds in ωw0(εκ).
Choose real symbols {ψj(w) }j , {Ψj(w) }j and {Φj(w) }j ∈ S(1, G1) with

values in 
2, such that
∑

k ψ2
j ≡ 1, ψjΨj = ψj , ΨjΦj = Ψj , Ψj = φ2

j ≥ 0 for
some {φj(w) }j ∈ S(1, G1) with values in 
2 so that

suppφj ⊆ ωj = ωwj
(εκ).

Since b ∈ S(H−1/2
1 , g�)

⋂
S+(1, g�) we find that

Aj = Ψjbf ∈ S(MH
−1/2
1 , g�)

⋂
S+(M, g�) uniformly in j.

We have
∑

j ψ2
j Aj =

∑
j ψ2

j Ψjbf = bf , and we shall show that

Re(bwfw) = (bf)w =
∑

j

ψw
j Aw

j ψw
j modulo OpS(m1, g

�).(7.6)

In order to estimate these localized operators, we shall use the following:

Lemma 7.2. Let b = δ1 + �1 be as given by Proposition 6.3, and let Ψj =
φ2

j with φj ∈ S(1, G1) uniformly with suppφj ⊆ ωwj
(εκ) so that (7.3) or (7.4)

holds for κ = min(κ0, κ1, κ2)/2. If Aj = Ψjbf then there exists Cj ∈ S(m1, g
�)

uniformly, such that(
Aw

j u, u
)
≥

(
Cw

j u, u
)
, u ∈ S(Rn).(7.7)

We postpone the proof of Lemma 7.2 until later. We obtain from (7.6)
that

Re (bwfwu, u) ≥
∑

j

(
ψw

j Cw
j ψw

j u, u
)

+ (Rwu, u) , u ∈ S(Rn)

where
∑

j ψw
j Cw

j ψw
j and Rw ∈ OpS(m1, g

�), which gives Proposition 7.1.
It remains to prove (7.6). Proposition 5.5 gives that

MH
3/2
1 〈δ0〉 ≤ Cm1;(7.8)

thus we may ignore terms in OpS(MH
3/2
1 〈δ0〉, g�). Observe that since b ∈

S(H−1/2
1 , g�) and Ak ∈ S(MH

−1/2
1 , g�) we find that the symbols of bwfw and∑

k ψw
k Aw

k ψw
k have expansions in S(MH

j/2
1 , g�). Thus, we only have to compute

the first terms in these expansions. Also observe that in the domains ωj where
H

1/2
1 ≥ c > 0, we find from Remark 2.4 that the symbols of

∑
k ψw

k Aw
k ψw

k and
bwfw are in S(MH

3/2
1 , g�) giving the result in this case. Thus, in the following,
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we shall assume that H
1/2
1 � 1, and we shall consider the neighborhoods

where (7.3) or (7.4) hold.
If (7.4) holds then we find that 〈δ0〉 ∼= H

−1/2
1 so that S(MH1, g

�) ⊆
S(m1, g

�) in ωj by (7.8). Since b ∈ S+(1, g�) we find from Lemma 2.3 that
the symbol of bwfw is equal to bf + 1

2i { b, f } modulo S(MH1, g
�). Thus,

we find that the symbol of Re(bwfw) is equal to bf modulo S(m1, g
�) in ωj .

Similarly, since ψw
k Aw

k ψw
k is symmetric, {ψk }k ∈ S(1, G1) has values in 
2

and Aj ∈ S+(M, g�) uniformly, we find from Remark 2.4 that the symbol of∑
k ψw

k Aw
k ψw

k is equal to
∑

k ψ2
kAk = bf modulo S(MH1, g

�) ⊆ S(m1, g
�) in ωj ,

which proves the result in this case.
Next, we consider the case when (7.3) holds with κ = min(κ0, κ1, κ2)/2

and H
1/2
1 ≤ κ2/2 in ωj . Then 〈δ0〉 ≤ κ2H

−1/2
1 so b = δ1 +�1 ∈ S(H−1/2

1 , G1)+
S(m1, g

�) in ωj by Proposition 6.3. By taking the symmetric part of bwfw =
δw
1 fw +�w

1 fw we obtain from Lemma 2.3 that the symbol of Re(bwfw − (bf)w)
is in S(MH

3/2
1 , G1) + S(MH1m1, g

�) ⊆ S(m1, g
�) in ωj since M ≤ CH−1

1 .
Similarly, since Aj ∈ S(MH

−1/2
1 , G1) + S(Mm1, g

�) uniformly, we find from
Remark 2.4 that the symbol of

∑
k ψw

k Aw
k ψw

k is equal to bf modulo S(m1, g
�)

in ωj , which proves (7.6) and Proposition 7.1.

In order to simplify the computations of the symbols, we shall use the
following result.

Lemma 7.3. Assume that M1 is a weight for G1 = H1g
�, m1 is a weight

for g�, p1 ∈ S(M1, G1) and p2 ∈ S(m1, g
�). Then pw

1 pw
2 and pw

2 pw
1 have symbols

which have expansions with terms in S(M1m1H
j/2
1 , g�), j ≥ 0. Let pw

3 =
pw
2 pw

2 ∈ OpS(m2
1, g

�) then

(p1 + p2)w(p1 + p2)w = (p2
1 + 2p1p2 + p3)w(7.9)

modulo OpS(M2
1 H2

1 , G1) + OpS(M1m1H1, g
�). If p = p1p2, then we find

pwpw = (p2
1p3)w modulo OpS(M2

1 m2
1H

1/2
1 , g�).

Proof. Since g�/Gσ
1 = H1, we obtain the expansions of pw

1 pw
2 and pw

2 pw
1

from Lemma 2.3. We also find that pw
1 pw

2 = (p1p2 + 1
2i { p1, p2 })w and pw

2 pw
1 =

(p2p1 − 1
2i { p1, p2 })w modulo S(M1m1H1, g

�). Since pw
1 pw

1 = (p2
1)

w modulo
OpS(M2

1 H2
1 , G1) we obtain (7.9). Similarly, pwpw = pw

1 pw
2 pw

1 pw
2 = pw

1 pw
1 pw

3 =
(p2

1p3)w modulo OpS(M2
1 m2

1H
1/2
1 , g�) by the expansion.

Proof of Lemma 7.2. As before we are going to consider the cases when
H

1/2
1

∼= 1 or H
1/2
1 � 1, and when (7.3) or (7.4) holds in ωj = ωwj

(εκ) for
κ = min(κ0, κ1, κ2)/2. When H

1/2
1 ≥ c > 0 we find that Aj ∈ S(MH

3/2
1 , g�) ⊆

S(m1, g
�) uniformly by (7.8) which gives the lemma with Cj = Aj in this case.
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Thus, we may assume that

H
1/2
1 ≤ κ4 = min(κ0, κ1, κ2, κ3)/2 in ωj(7.10)

so that (7.5) follows from (7.4).
Next, we consider the case when (7.3) holds with κ = min(κ0, κ1, κ2)/2 and

H
1/2
1 ≤ κ4 ≤ κ in ωj . Then 〈δ0〉 ≤ 2κH

−1/2
1 so we obtain from Proposition 3.8

that M ∼= |f ′|H−1/2
1 in ωj . Similarly we find from Proposition 6.3 that b =

δ0 + �1 + �2 = δ0 + �3 in ωj , where �1 ∈ S(m1, g
�) and �2 ∈ S(H1/2

1 , G1);
thus �3 ∈ S(H1/2

1 〈δ0〉, g�) by (5.2). Also, we find from Proposition 3.9 that
f = α0δ0, where κ1MH

1/2
1 ≤ α0 ∈ S(MH

1/2
1 , G1) and δ0 ∈ S(H−1/2

1 , G1)
in ωj . Since Ψj = φ2

j , we find that

Aj = Ψjbf = φ2
jα0

(
δ2
0 + �3δ0

)
is real, and we shall construct an approximate square root γw

j so that

Aw
j = γw

j γw
j ≥ 0 modulo OpS(m1, g

�).(7.11)

In the following, we shall suppress the index j, and let φ(w) = φj(w) and
γ(w) = γj(w). By taking real-valued γ(w) = φ(w)(µ1δ0 + µ0), we see in the
first approximation that µ1 =

√
α0 ∈ S(M1/2H

1/4
1 , G1) and µ0 = �3

√
α0/2 ∈

S(M1/2H
3/4
1 〈δ0〉, g�). Then Lemma 7.3 gives

γwγw =
(
φ2(µ2

1δ
2
0 + 2µ1µ0δ0)

)w + (φµ0)w(φµ0)w(7.12)

modulo OpS(MH
3/2
1 〈δ0〉, g�) ⊆ OpS(m1, g

�) by (7.8). By Lemma 7.3 we also
have

(φµ0)w(φµ0)w = (φ2ν0)w mod OpS(MH2
1 〈δ0〉2, g�) ⊆ OpS(m1, g

�)
(7.13)

where νw
0 = µw

0 µw
0 ∈ OpS(MH

3/2
1 〈δ0〉2, g�) is symmetric. Observe that adding

terms in S(M1/2H
5/4
1 〈δ0〉, g�) to µ0 only give terms in S(m1, g

�) in (7.13). By
using χ(δ0) ∈ S(1, g�) for χ ∈ C∞

0 (R) such that χ(t) = 1 for |t| ≤ c we find
that

ν0 = (1 − χ(δ0))ν0 = ν1δ0 modulo S(MH
3/2
1 , g�),(7.14)

where ν1 = (1 − χ(δ0))ν0/δ0 ∈ S(MH
3/2
1 〈δ0〉, g�). By using (7.12)–(7.14) we

obtain (7.11) if

µ2
1δ

2
0 + (2µ1µ0 + ν1)δ0 = α0δ

2
0 + α0�3δ0 modulo S(m1, g

�)(7.15)

in ωj . Subtracting ν1/2µ1 ∈ S(M1/2H
5/4
1 〈δ0〉, g�) from µ0 does not change

(7.13); thus we obtain (7.11) and the lemma in this case.
Finally, we consider the case when H

1/2
1 ≤ κ4 and (7.4) holds in ωj . We

shall use the uniform Fefferman-Phong estimate for Ψj |f |. Since |δ0(w)| ≥
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cκH
−1/2
1 (w), we find 〈δ0〉 ∼= H

−1/2
1 in ωj . Thus, we may ignore terms in

S(MH1, g
�) ⊆ S(MH

3/2
1 〈δ0〉, g�) supported in ωj by (7.8). Since H

1/2
1 ≤ κ4 ≤

κ3/2 and |δ0| ≥ cκH
−1/2
1 in ωj , we find from (7.5) that |b| ≥ κ2cκH

−1/2
1 in ωj .

Since b ∈ S+(1, g�), we find by the chain rule that

|b|λ ∈ S(H−λ/2
1 , g�)

⋂
S+(H(1−λ)/2

1 , g�) in ωj ∀λ.

In fact, we have ∂w|b|λ = sgn(b)λ|b|λ−1∂wb ∈ S(H(1−λ)/2
1 , g�) in ωj since ∂wb ∈

S(1, g�). Let Φj ∈ S(1, G1) uniformly such that ΨjΦj = Ψj and supp Φj ⊆ ωj

as in the proof of Proposition 7.1. Since Φj ∈ S(1, G1) we obtain that

βj = Φj |b|1/2 ∈ S(H−1/4
1 , g�)

⋂
S+(H1/4

1 , g�).(7.16)

Letting 0 ≤ aj = Ψj |f | ∈ S(M, G1), we find that Aj = Ψjbf = ajβ
2
j since

ΨjΦj = Ψj . In order to estimate Aw
j we shall use the following lemma.

Lemma 7.4. Let a ∈ S(M, G1) and β ∈ S(H−1/4
1 , g�)

⋂
S+(H1/4

1 , g�) be
real-valued symbols. Then there exists a real-valued symbol r ∈ S(H1/2

1 , g�)
such that

βwawβw =
(
a(β2 + r)

)w(7.17)

modulo OpS(MH1, g
�).

Thus, we find that

Aw
j = βw

j aw
j βw

j − (ajrj)w modulo OpS(MH1, g
�)(7.18)

where rj ∈ S(H1/2
1 , g�) is real. Now we take the real symbol γj = Φjrj |b|−1/2/2 ∈

S(H3/4
1 , g�) and define

λj = βj + γj ∈ S(H−1/4
1 , g�)

⋂
S+(H1/4

1 , g�).(7.19)

Then 2ajβjγj = ajrj , and we shall show that

λw
j aw

j λw
j = Aw

j modulo OpS(MH1, g
�).(7.20)

We obtain from Lemma 2.3 that that aw
j γw

j = (ajγj)w ∈ OpS(MH
3/4
1 , g�)

modulo OpS(MH
5/4
1 , g�). By Lemma 2.3,

2βw
j aw

j γw
j = 2βw

j (ajγj)w = 2(βjajγj)w = (ajrj)w

modulo OpS(MH1, g
�). Because γw

j aw
j γw

j ∈ OpS(MH
3/2
1 , g�) we obtain (7.20)

from (7.18). By multiplying with Φw
j ∈ OpS(1, G1) we find from Lemma 2.3

that

Φw
j λw

j aw
j λw

j Φw
j = Aw

j modulo OpS(m1, g
�)(7.21)

since Aw
j = Φw

j Aw
j Φw

j modulo OpS(m1, g
�).
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Because 0 ≤ aj ∈ S(M(wj), H1(wj)g�), the uniform Fefferman-Phong
estimate (see [9, Lemma 18.6.10]) gives a constant C0 > 0 so that(

aw
j u, u

)
≥ −C0M(wj)H2

1 (wj)‖u‖2 ∀ u ∈ S(Rn).

Since λj ∈ S(H−1/4
1 , g�) and Φj ∈ S(1, G1) are real-valued this gives(

Φw
j λw

j aw
j λw

j Φw
j u, u

)
≥ −C0M(wj)H2

1 (wj)‖λw
j Φw

j u‖2 =
(
cw
j u, u

)
where cw

j = −C0M(wj)H2
1 (wj)Φw

j λw
j λw

j Φw
j ∈ OpS(MH

3/2
1 , g�) uniformly in j.

By (7.21) this completes the proof of Lemma 7.2.

Proof of Lemma 7.4. We have that βwawβw is symmetric since a and β

are real. Thus

βwawβw = Re ([βw, aw]βw + awBw) =
1
2

[[βw, aw], βw] +
1
2

(awBw + Bwaw)

where Bw = βwβw ∈ OpS(H−1/2
1 , g�) is symmetric. From Lemma 2.3

B = β2 + r

with real r ∈ S(H1/2
1 , g�) and β2 ∈ S(H−1/2

1 , g�)
⋂

S+(1, g�), since ∂β2 = 2β∂β

where ∂β ∈ S(H1/4
1 , g�). Since a ∈ S(M, G1) and B ∈ S+(1, g�), we find from

Lemma 2.3 that
1
2

(awBw + Bwaw) = (aB)w = (a(β2 + r))w

modulo OpS(MH1, g
�). Lemma 2.3 also gives [βw, aw] ∈ OpS(MH

3/4
1 , g�)

and then [[βw, aw], βw] ∈ OpS(MH1, g
�), which completes the proof of the

lemma.

We shall finish the paper by giving a proof of Proposition 2.5.

Proof of Proposition 2.5. We have assumed that f ∈ L∞(R, S(h−1, hg�))
satisfies condition (Ψ) given by (2.2). Let BT = δ0 + �T , where δ0 + �T is the
pseudo-sign for f given by Proposition 5.8 for 0 < T ≤ 1, so that |�T | ≤ m1

and

∂t(δ0 + �T ) ≥ m1/2T in D′(]−T , T [
)
.(7.22)

Putting BT ≡ 0 when |t| > T , we find that BWick
T = bw

T where

bT (t, w) ∈ L∞(R, S(H−1/2
1 , g�)

⋂
S+(1, g�))

uniformly by Proposition 6.3. Let cm1 ≤ m̃1 ∈ S(m1, g
�) be given by (6.8)

and let µ1 ∈ L∞(R, S(m1, g
�)) be defined by (6.9) so that µw

1 = m̃Wick
1 . By

Lemma 6.2 and (7.22),

T∂t (bw
T u, u) = T

(
(∂tBT )Wicku, u

)
≥ C0 (µw

1 u, u) in D′(]−T , T [
)

(7.23)
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when u ∈ S(Rn). We obtain from Proposition 6.5 that there exist positive
constants c1 and c2 so that

(µw
1 u, u) ≥ c2‖u‖2

1/2 ≥ c1h
1/2‖u‖2, u ∈ S(Rn).(7.24)

Here ‖u‖1/2 is the norm of the Hilbert space H(m1/2
1 , g�) given by Defini-

tion 6.4. By Proposition 7.1, we find for almost all t ∈ [−T, T ] that

Re
(
(BWick

T fw)
∣∣
t
u, u

)
= Re

(
(bw

T fw)
∣∣
t
u, u

)
≥ (Cw(t)u, u) , u ∈ S(Rn)

(7.25)

with C(t) ∈ S(m1, g
�) uniformly. We obtain from (6.7), (7.24) and duality that

there exists a positive constant c3 such that

| (Cw(t)u, u) | ≤ ‖u‖1/2‖Cw(t)u‖−1/2 ≤ c3‖u‖2
1/2 ≤ c3 (µw

1 u, u) /c2(7.26)

for u ∈ S(Rn) and |t| ≤ T . We obtain from (7.23)–(7.26) the estimate

(∂tb
w
T u, u) + 2 Re (fwu, bw

T u) ≥ (C0/T − 2c3/c2) (µw
1 u, u) in D′(]−T , T [

)
for u ∈ S(Rn). By using Proposition 2.9 with P0 = Dt + ifw(t, x, Dx), B = bw

T

and m = C0µ
w
1 /2T we obtain that

c1h
1/2

∫
‖u‖2 dt ≤

∫
(µw

1 u, u) dt ≤ 4T

C0

∫
Im (P0u, bw

T u) dt

if u ∈ S(R × Rn) has support where |t| < T ≤ c2C0/4c3. Replacing bw
T with

4bw
T /C0c1 we get a proof of Proposition 2.5, which completes the proof of the

Nirenberg-Treves conjecture.
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[7] L. Hörmander,The Weyl calculus of pseudo-differential operators, Comm. Pure Appl.
Math. 32 (1979), 359–443.

[8] ———, Pseudo-differential operators of principal type, in Singularities in Boundary
Value Problems Proc. NATO Adv. Study Inst . (Maratea, 1980), 69–96, NATO Adv.
Study Inst. Ser . C: Math. Phys. Sci . 65, Reidel, Dordrecht, Boston, MA, 1981.

[9] ———, The Analysis of Linear Partial Differential Operators, vol. I–IV, Springer-
Verlag, New York, 1983–1985.

[10] ———, Notions of Convexity , Progress in Math. 127, Birkhäuser, Boston, MA, 1994.
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différentiels de type principal, Ph.D. thesis, Université de Reims, 1984.
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