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Decay of geometry for unimodal maps:
An elementary proof

By Weixiao Shen

Abstract

We prove that a nonrenormalizable smooth unimodal interval map with
critical order between 1 and 2 displays decay of geometry, by an elementary
and purely “real” argument. This completes a “real” approach to Milnor’s
attractor problem for smooth unimodal maps with critical order not greater
than 2.

1. Introduction

The dynamical properties of unimodal interval maps have been extensively
studied recently. A major breakthrough is a complete solution of Milnor’s
attractor problem for smooth unimodal maps with quadratic critical points.

Let f be a unimodal map. Following [19], let us define a (minimal)
measure-theoretical attractor to be an invariant compact set A such that
{x : ω(x) ⊂ A} has positive Lebesgue measure, but no invariant compact
proper subset of A has this property. Similarly, we define a topological attrac-
tor by replacing “has positive Lebesgue measure” with “is a residual set”. By
a wild attractor we mean a measure-theoretical attractor which fails to be a
topological one. In [19], Milnor asked if wild attractors can exist.

For smooth unimodal maps with nonflat critical points, this problem was
reduced to the case that f is a nonrenormalizable map with a nonperiodic
recurrent critical point, by a purely real argument. Furthermore, in [8], [12],
it was shown that such a map f does not have a wild attractor if it displays
decay of geometry.

A smooth unimodal map f with critical order � sufficiently large may have
a wild attractor. See [2]. But in the case � ≤ 2, it was expected that f would
have the decay of geometry property and thus have no wild attractor; this has
been verified in the case � = 2 so far. In fact, in [8], [12], it was proved that
for S-unimodal maps with critical order � ≤ 2, the decay of geometry property
follows from a “starting condition”. Kozlovski [11] allowed one to get rid of
the negative Schwarzian condition in this argument. The verification of the
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starting condition is more complicated, and it has only been done in the case
� = 2. The first proof was given by Lyubich [12] with a gap fulfilled in [14].
(The argument in [12] is complete for quadratic maps, and more generally, for
real analytic maps in the “Epstein class”. The gap only appears in the passage
to the smooth case.) More recently, Graczyk-Sands-Świa̧tek [3], [4] gave an
alternative proof of this result, using the method of “asymptotically conformal
extension” which goes back to Dennis Sullivan and was discussed earlier in
Section 3.1 of [9] (under the name of “tangent extension”) and in Section 12.2
of [13]. We note that these proofs of the starting condition make elaborate use
of “complex” methods and do not seem to work for the case � < 2.

In this paper, we shall prove the decay of geometry property for all critical
order � ≤ 2, which includes a new proof for the case � = 2. The proof is very
elementary, where no complex analysis is involved. We shall only use the
standard cross-ratio technique and the real Koebe principle. This completes
a “real” attempt for the attractor problem for unimodal interval maps with
critical order 1 < � ≤ 2.

Let us state the result more precisely. By a unimodal map, we mean
a C1 map f : [−1, 1] → [−1, 1] with a unique critical point 0, such that
f(−1) = f(1) = −1. We shall assume that f is C3 except at 0, and there
are C3 local diffeomorphisms φ, ψ such that f(x) = ψ(|φ(x)|�) for x close to 0,
where � > 1 is a constant, called the critical order. We shall refer to such a map
as a C3 unimodal map with critical order �. Recall that f is renormalizable
if there exist an interval I which contains the critical point 0 in its interior,
and a positive integer s > 1, such that the intervals I, f(I), · · · , fs−1(I) have
pairwise disjoint interiors, fs(I) ⊂ I, and fs(∂I) ⊂ ∂I.

Main Theorem. Let f : [−1, 1] → [−1, 1] be a nonrenormalizable C3

unimodal map with critical order � ∈ (1, 2]. Assume that f has a nonperiodic
recurrent critical point. Then f displays decay of geometry.

Corollary 1.1. A C3 unimodal map with critical order � ∈ (1, 2] does
not have a wild attractor.

To explain the meaning of decay of geometry, we follow the notation ac-
cording to Lyubich [12]. Let q denote the unique orientation-reversing fixed
point of f , and let q̂ be the other preimage of q. The principal nest is the
sequence of nested neighborhoods of the critical point

I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · · ,

where I0 = (q, q̂), and In+1 is the critical return domain to In for all n ≥ 0.
Let m(1) < m(2) < · · · be all the noncentral return moments, that is, these
are all the positive integers such that the first return of the critical point to
Im(k)−1 is not contained in Im(k).
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Definition. We say that f displays decay of geometry if there are constants
C > 0 and λ > 1 such that

|Im(k)|
|Im(k)+1| ≥ Cλk.

According to [8], [12], for any 1 < � ≤ 2, there is a constant ε = ε(�) > 0,
such that f displays decay of geometry if

lim inf
n

|In+1|
|In| ≤ ε.

The last inequality is called the starting condition.
Prior to this work, real methods were known to work for some special ex-

amples. The so-called “essentially unbounded” combinatorics admits a rather
simple argument ([8], [12]). The more difficult cases, namely the Fibonacci
combinatorics and the so-called “rotation-like” combinatorics, are also resolved
in [10] and [5] respectively. Those arguments are again complicated and seem
difficult to generalize to cover all combinatorics.

Let us say a few words on our method. As in [10], we shall look at the
closest critical return times s1 < s2 < · · · , and find a geometric parameter for
each n which monotonically increases exponentially fast. The parameters used
here are, however, very different from those therein: we consider the location
of the closest critical returns in the principal nest. For each closest return time
sn (with n sufficiently large), let k be such that fsn(0) ∈ Im(k)−Im(k+1). Note
that fsn(0) must be contained in Im(k+1)−1 − Im(k+1). Set

An =
|f(b)| − |f(fsn+1(0))|
|f(b)| − |f(fsn(0))| , Bn =

( |fsn(0)|
|fsn+1(0)|

)�/2

,

where b is an endpoint of Im(k+1)−1. It is not difficult to show that the Main
Theorem follows from the following:

Main Lemma. There exists a universal constant σ > 0 such that for all
n sufficiently large,

|(fsn+1)′(f(0))|Bn

An
≥ (1 + σ)|(fsn)′(f(0))|Bn−1

An−1
.

To prove the Main Lemma, we use the standard cross-ratio distortion
estimate. For any two intervals J � T , define as usual the cross-ratio

C(T, J) =
|T ||J |
|L||R| ,

where L, R are the components of T − J . We shall apply the following funda-
mental fact: if T ⊂ (−1, 1) and n ∈ N are such that fn|T is a diffeomorphism,
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and if fn(T ) is contained in a small neighborhood of the critical point, then
for any interval J � T , C(fn(T ), fn(J))/C(T, J) is bounded from below by a
constant close to 1. (See §2.4.) In particular, for any x ∈ T , this gives us a
lower bound on |(fn)′(x)| in terms of the length of the intervals T − {x} and
their images under fn.

We shall choose an appropriate neighborhood Tn of fsn(0), such that
fsn+1−sn |Tn is a diffeomorphism. Using the argument described above, we
obtain lower bounds on |(fsn+1−sn−1)′(fsn+1(0))|, as desired. We should note
that we do not choose Tn to be the maximal interval on which fsn+1−sn is
monotone, but require fsn+1−sn(Tn) not to exceed Im(k)−1.

Our proof can be modified to deal with a nonrenormalizable C3 uni-
modal map with critical order 2 + ε, with ε > 0 sufficiently small. In gen-
eral, the decay of geometry property does not hold, but we can show that
lim inf |Im(k)|/|Im(k)+1| is bounded from below by a universal constant C(ε),
and C(ε) → ∞ as ε → 0. The argument in [12] is still valid to show that such
a map does not have a wild attractor as well. It is also possible to weaken
the smoothness condition to be C2. These (minor) issues will not be discussed
further in this paper.

In Section 2, we shall give the necessary definitions and recall some known
facts which will be used in our argument. These facts include Martens’ real
bounds ([16]) and Kozlovski’s result on cross-ratio distortion ([11]). We shall
deduce the Main Theorem from the Main Lemma. In Section 3, we shall
define the intervals Tn and investigate the location of the boundary points
of Tn and fsn+1−sn(Tn) in the principal nest. In Section 4, we shall prove the
Main Lemma by means of cross-ratio, and complete our argument. As we shall
see, the argument is particularly simple if there is no central low return in the
principal nest in which case all the closest return sn are of type I (defined in
Section 3).

Throughout this paper, f is a unimodal map as in the Main Theorem.
Note that by means of a C3 coordinate change, we may assume that

• f is an even function,

• f(x) = −|x|� + f(0) on a neighborhood of 0,

and we shall do so from now on. We use (a, b) to denote the open interval with
endpoints a, b, not necessarily with a < b.
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the Bai Ren Ji Hua program of the CAS.
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2. Preliminaries

2.1. Pull back, nice intervals. Given an open interval I ⊂ [−1, 1], and an
orbit x, f(x), · · · , fn(x) with fn(x) ∈ I, by pulling back I along {f i(x)}n

i=0, we
get a sequence of intervals Ii � f i(x) such that In = I, and Ii is a component
of f−1(Ii+1) for each 0 ≤ i ≤ n − 1. The interval I0 is produced by this pull
back procedure, and will be denoted by I(n;x). The pull back is monotone if
none of these intervals Ii, 0 ≤ i ≤ n − 1 contains the critical point, and it is
unimodal if Ii, 1 ≤ i ≤ n − 1, does not contain the critical point but I0 does.

Following [16], an open interval I ⊂ [−1, 1] is called nice if fn(∂I)∩ I = ∅
for all n ∈ N. Given a nice interval, let

DI = {x ∈ [−1, 1] : there exists k ∈ N such that fk(x) ∈ I}.
A component J of DI is an entry domain to I. If J ⊂ I, then we shall also
call it a return domain to I. For any x ∈ DI , the minimal positive integer
k = k(x) with fk(x) ∈ I is the entry time of x to I. This integer will also be
called the return time of x to I if x ∈ I. Note that k(x) is constant on any
entry domain. The first entry map to I is the map RI : DI → I defined by
x �→ fk(x)(x). The first return map to I is the restriction of RI on DI ∩ I.

For any given x ∈ DI , the pull back of I along the orbit x, f(x), . . . , fk(x)(x)
is either unimodal or monotone, according to whether I(k(x);x) � 0 or not.
This follows from the basic property of a nice interval that any two intervals
obtained by pulling back this interval are either disjoint, or nested, i.e., one
contains the other.

2.2. The principal nest. Let q denote the orientation-reversing fixed point
of f . Let I0 = (−q, q), and for all n ≥ 1, let In be the return domain to In−1

which contains the critical point. All these intervals In are nice. The sequence

I0 ⊃ I1 ⊃ I2 ⊃ · · · ,

is called the principal nest. Let gn denote the first return map to In. Let
m(0) = 0, and let m(1) < m(2) < · · · be all the noncentral return moments;
i.e., these are positive integers such that

gm(k)−1(0) �∈ Im(k).

Note that
⋂

n In = {c} since we are assuming that f is nonrenormalizable and
since f does not have a wandering interval ([17]).

Lemma 2.1. For any z ∈ (Im(k) − Im(k+1)) ∩ DIm(k) , if |gm(k)(z)| ≤ |z|,
then z ∈ Im(k) − Im(k)+1.

Proof. If z ∈ Im(k)+i−Im(k)+i+1 for some 1 ≤ i ≤ m(k+1)−m(k)−1, then
gm(k)(z) ∈ Im(k)+i−1 − Im(k)+i, and hence |gm(k)(z)| > |z|, which contradicts
the hypothesis of this lemma.
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Lemma 2.2. Let J ⊂ Im(k)−1 − Im(k) be a return domain to Im(k)−1 with
return time s. Then there is an interval J ′ with J ⊂ J ′ ⊂ Im(k)−1− Im(k) such
that fs : J ′ → Im(k−1) is a diffeomorphism.

Proof. Assume gm(k)−1|J = gp
m(k−1)|J . Then

gp−1
m(k−1)(J) ⊂ Im(k−1) − Im(k−1)+1

by Lemma 2.1. For any 0 ≤ i ≤ p − 1, let 0 ≤ ji ≤ m(k) − m(k − 1) − 1 be
such that gi

m(k−1)(J) ⊂ Im(k−1)+ji − Im(k−1)+ji+1 and let Pi be the component

of Im(k−1)+ji − Im(k−1)+ji+1 which contains gi
m(k−1)(J). Then it is easy to see

that for any 0 ≤ i ≤ p − 2, gm(k−1) maps a neighborhood of gi
m(k−1)(J) in Pi

onto Pi+1, diffeomorphically. Since there is a neighborhood of gp−1
m(k−1)(J) in

Pp−1 which is mapped onto Im(k−1) by gm(k−1) diffeomorphically as well, the
lemma follows.

Corollary 2.3. Let s be the return time of 0 to Im(k). Then there is
an interval J � f(0) with f−1(J) ⊂ Im(k), such that fs−1 : J → Im(k−1) is a
diffeomorphism.

Proof. Let s′ be the return time of 0 to Im(k−1). We pull back the nice
interval Im(k−1) along {f i(0)}s

i=s′ and denote by P � fs′
(0) the interval pro-

duced. By the previous lemma, this pull back is monotone and P is contained
in Im(k)−1. The pull back of P along {f i(0)}s′

i=0 is certainly unimodal, and the
interval produced is contained in DIm(k)−1 , and hence in Im(k). The corollary
follows.

2.3. Martens’ real bounds. The following result was proved by Martens
[16] in the case that f has negative Schwarzian, and extended to general smooth
unimodal maps in [20], [11].

Lemma 2.4. There exists a constant ρ > 1 which depends only on the
critical order of f , such that for all k sufficiently large,

|Im(k)| ≥ ρ|Im(k)+1|.(2.1)

Moreover, if gm(k)(Im(k)+1) �� 0, then

|Im(k+1)−1| ≥ ρ|Im(k+1)|.

2.4. Cross ratio distortion. For any two intervals J � T , we define the
cross-ratio

C(T, J) =
|T ||J |
|L||R| ,
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where L, R are the components of T − J . If h : T → R is a homeomorphism
onto its image, we write

C(h;T, J) =
C(h(T ), h(J))

C(T, J)
.

A diffeomorphism with negative Schwarzian always expands the cross-ratio. In
general, a smooth map does not expand the cross-ratio, but in small scales,
cross-ratios are still “almost expanded” by the dynamics of f .

Lemma 2.5 (Theorem C, [11]). For each k sufficiently large, there is a
positive number Ok, with Ok → 1 as k → ∞ and with the following property.
Let T ⊂ [−1, 1] be an interval and let n be a positive integer. Assume that
fn|T is monotone and fn(T ) ⊂ Im(k−1). Then for any interval J � T ,

C(fn;T, J) ≥ Ok.

Note that even when J = {z} consists of one point, the left-hand side of
the above inequality makes sense. In fact, it gives

|fn(T )|
|T | |(fn)′(z)| ≥ Ok

|fn(T+)|
|T+|

|fn(T−)|
|T−| ,

where T+, T− are the components of T − {z}. To see this, we just apply the
lemma to Jε = (z − ε, z + ε), and let ε go to 0.

The estimate on cross-ratio distortion enables us to apply the following
lemma, called the real Koebe principle. This lemma is well-known, and a proof
can be found, for example, in [18].

Lemma 2.6. Let τ > 0 and 0 < C ≤ 1 be constants. Let I be an interval,
and let h : I → h(I) = (−τ, 1 + τ) be a diffeomorphism. Assume that for
any intervals J � T ⊂ I, there exists C(h;T, J) ≥ C. Then for any x, y ∈
h−1([0, 1]),

h′(x)
h′(y)

≤ 1
C6

(1 + τ)2

τ2
.

2.5. Closest returns and proof of main theorem.

Definition. For any k ≥ 0, denote ck = fk(0). A closest (critical) return
time is a positive integer s such that ck �∈ (cs,−cs) for all 1 ≤ k ≤ s. The point
fs(c) will be called a closest (critical) return.

Let us now deduce the Main Theorem from the Main Lemma.

Proof of Main Theorem. By Main Lemma, there exist C ∈ (0, 1) and
λ > 1 such that

|(fsn)′(c1)|Bn−1 ≥ |(fsn)′(c1)|Bn−1/An−1 ≥ Cλn,

where we use the fact An−1 > 1.
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For any k ≥ 0, consider the first return of the critical point to Im(k), which
is a closest return, denoted by fsnk (0). Obviously, nk ≥ k, and thus

|(fsnk )′(c1)|Bnk−1 ≥ Cλk.

We claim that there are constants C ′ > 0 and λ′ > 1 such that

|Im(k−1)|
|Im(k+1)| ≥ C ′λ′k.

By Corollary 2.3, there is an interval J � f(0) with f−1(J) ⊂ Im(k)

and such that fsnk
−1 : J → Im(k−1) is a diffeomorphism. By Lemma 2.4,

fsnk (Im(k)+1) ⊂ Im(k) is well inside Im(k−1), and so by Lemmas 2.5 and 2.6,
the map fsnk

−1|f(Im(k)+1) has uniformly bounded distortion. In particular,
there is a universal constant K such that

|(fsnk
−1)′(c1)| ≤ K

|Im(k)|
|f(Im(k)+1)| ≤ K

|Im(k)|
|f(Im(k+1))| ,

and hence for k sufficiently large,

|(fsnk )′(c1)| ≤ K
|Im(k)|

|f(Im(k+1))|�|csnk
|�−1.

Since csnk
∈ Im(k), this implies

|(fsnk )′(c1)| ≤ K�

(
|Im(k)|
|Im(k+1)|

)�

.(2.2)

On the other hand, csnk−1 ∈ Im(k−1), and csnk
�∈ Im(k+1), and thus

Bnk−1 ≤
(
|Im(k−1)|
|Im(k+1)|

)�/2

.(2.3)

These inequalities (2.2) and (2.3) imply the claim.
Let us consider again the map fsnk

−1|J as above. Applying Lemma 2.5,
we have

C(J, f(Im(k)+1))−1 ≥ OkC(Im(k−1), fsnk (Im(k)+1))−1 ≥ OkC(Im(k−1), Im(k))−1,

which implies that

|Im(k)|
|Im(k)+1| ≥ C ′′

(
|Im(k−1)|
|Im(k)|

)1/�

.

This inequality, together with the claim above, implies that |Im(k)|/|Im(k)+1|
grows exponentially fast. The proof of the Main Theorem is completed.

2.6. Two elementary lemmas. We shall need the following two elementary
lemmas to deal with the case � < 2.



DECAY GEOMETRY 391

Lemma 2.7. For any α ∈ (0, 1), the function

� �→ φ(α, �) = α1− �

2

∫ 1

α
t�−1dt

is a monotone increasing function on (0,∞).

Proof. Direct computation shows:

∂φ(α, �)
∂�

= α1− �

2

∫ 1

α
t�−1(log t − log

√
α)dt

= α�/2

∫ − log
√

α

log
√

α
e�ttdt

= α�/2

∫ − log
√

α

0
t(e�t − e−�t)dt

> 0.

Lemma 2.8. For any 1 > a > b, and any 1 ≤ � ≤ 2,

1 − b�

1 − a�
≥ 1 − b2

1 − a2
.

Proof. By a continuity argument, it suffices to prove the lemma when � is
rational. Let � = m/n, with m, n ∈ N, and let x = b1/n, y = a1/n. Then

1 >
x

y
≥

(
x

y

)2

≥ · · · ≥
(

x

y

)2n−1

,

which implies that

1 + x + x2 + · · · + xm−1

1 + y + y2 + · · · + ym−1
≥ 1 + x + x2 + · · · + x2n−1

1 + y + y2 + · · · + y2n−1
.

Multiplying by (1− x)/(1− y) on both sides, we obtain the desired inequality.

3. The closest critical returns

Let s1 < s2 < · · · be all the closest return times. Let n0 be such that
sn0 is the return time of 0 to Im(1). For any n ≥ n0, let k = k(n) be so that
csn

∈ Im(k) − Im(k+1). Note that we have csn
∈ Im(k+1)−1 − Im(k+1), because

the first return of 0 to Im(k) lies in Im(k+1)−1 − Im(k+1) and it is a closest
return. Let Tn � csn

be the maximal open interval such that the following two
conditions are satisfied:

• fsn+1−sn |Tn is monotone,

• fsn+1−sn(Tn) ⊂ Im(k)−1.
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We shall use the cross-ratio estimate to get a lower bound for

|(fsn+1−sn−1)′(f(csn
))|.

To do this, it will be necessary to know the location of the boundary points of
Tn and their images under fsn+1−sn .

Note. Let un be the endpoint of Tn which is closer to the critical point 0,
and vn the other one. Also, let Ln = (un, csn

), and Rn = (vn, csn
). Let xn, yn

denote the endpoints of fsn+1−sn(Tn), so organized that |xn| ≤ |yn|.

Lemma 3.1. Tn ⊂ Im(k+1)−1.

Proof. Arguing by contradiction, assume Tn �⊂ Im(k+1)−1. Then there
exists z ∈ Tn ∩ ∂Im(k+1)−1. Clearly, gi

m(k)(z) ∈ ∂Im(k+1)−i−1 for all 0 ≤ i ≤
m(k + 1) − m(k) − 1. In particular,

w = g
m(k+1)−m(k)−1
m(k) (z) ∈ ∂Im(k).

Now let ν ∈ N be such that gν
m(k) = fsn+1−sn near csn

. Since gi
m(k)(csn

) ∈
Im(k+1)−i−1 − Im(k+1)−i for all 0 ≤ i ≤ m(k + 1)−m(k)− 1, and gν

m(k)(csn
) ∈

(csn
,−csn

), we have ν ≥ m(k +1)−m(k). So the forward orbit of w intersects
Im(k)−1, i.e., w ∈ DIm(k)−1 . But this is absurd since Im(k) is a return domain
to the nice interval Im(k)−1.

Definition. We say that sn is of type I if fsn+1−sn(Tn) ⊃ (csn−1 ,−csn−1).
Otherwise, we say that sn is of type II.

The following lemma contains the combinatorial information which we are
going to use.

Lemma 3.2. Let n ≥ n0, and let k ∈ N be such that csn
∈ Im(k)−Im(k+1).

Let p = m(k + 1) − m(k). Then yn ∈ ∂Im(k)−1, xn �∈ Im(k), and (xn, yn) � 0.
Moreover, if sn is of type II, then

• p ≥ 2 and gm(k)(Im(k)+1) �� 0,

• csn
is the first return of 0 to Im(k),

• If q ∈ N is minimal such that gq
m(k)−1(0) ∈ Im(k), then there exist 1 ≤

q′ < q, 1 ≤ p′ ≤ p − 1 such that xn = gq′

m(k)−1(g
p′

m(k)(0)), and csn−1 =

gq′

m(k)−1(0).

Remark 3.1. Let us see what happens if f has the so called Fibonacci
combinatorics, i.e., the closest critical return times exactly form the Fibonacci
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sequence: s1 = 1, s2 = 2, and sn+1 = sn + sn−1 for all n ≥ 2. In this case, csn

is the first return of the critical point to In−3, and

csn+1 = gn−2(c) = g2
n−3(c) = gn−3(csn

),

for all n ≥ 3. Thus for all n ≥ 4, Tn is the component of In−3 − {c} which
contains csn

, and fsn−1 = fsn+1−sn maps Tn diffeomorphically onto the interval
bounded by csn−1 and an endpoint of In−4. In particular, all sn are of type I.

To prove this lemma, let us first do some preparation. Let z ∈ DIm(k) ∩
(Im(k) − Im(k)+1), and let r be the return time of z to Im(k). Consider the
pull back of Im(k)−1 along the orbit {f i(z)}r

i=0, and denote by Ji � f i(z) the
intervals obtained. Then this pull back is unimodal or monotone according to
J = J0 � 0 or not. We say that z is good if 0 �∈ J , and bad otherwise.

Lemma 3.3. Let z, r, J , and J1 be as above. Then the following hold.

1) If z is good, then J ∩ Im(k)+1 = ∅;

2) If z is bad, then f r is monotone on (0, z), and f i(0) �∈ Im(k) for all
1 ≤ i ≤ r.

Moreover, in either case, there is a closest return cs ∈ Im(k)−1 − Im(k)

such that (cs,−cs) ⊂ f r(J).

Proof. Since both J and Im(k)+1 are produced by pull back of the nice
interval Im(k)−1, either J ∩ Im(k)+1 = ∅, or J ⊃ Im(k)+1. (Note that J ⊂
Im(k)+1 cannot happen.) If J �� 0, then J ∩ Im(k)+1 = ∅. This proves 1). In
this case, we take cs to be the first return of the critical point to Im(k)−1, which
is necessarily not in Im(k), to verify the last statement of the lemma.

Assume now that z is bad. As f r is monotone on each component of
J − {0} and (0, z) ⊂ J , f r|(0, z) is monotone. As we noted above, f i(J1) is
disjoint from Im(k) for all 0 ≤ i ≤ r − 2, which proves that f i(0) �∈ Im(k) for
all 1 ≤ i ≤ r − 1. The statement f r(0) �∈ Im(k) is obvious. We proved 2). To
verify the last statement of the lemma in this case, we just take cs to be the
point in {f i(0)}r

i=1 which is closest to the critical point.

Proof of Lemma 3.2. Let ν ∈ N be such that fsn+1−sn = gν
m(k) on a

neighborhood of csn
. By Lemma 2.1, z := gν−1

m(k)(csn
) ∈ Im(k) − Im(k)+1. Let

r be the return time of z to Im(k). As above, let J � z denote the interval
obtained by pulling back Im(k)−1 along {f i(z)}r

i=0, and let J ′ be the component
of J −{0} which contains z. Then J ′ ⊂ Im(k), f r|J ′ is monotone, and f r(J ′) ⊃
(csn−1 ,−csn−1) ∪ Im(k). Moreover, f r(J ′) contains a component of Im(k)−1 −
Im(k). If z is good, then J ′ ⊂ Im(k) − Im(k)+1, and if z is bad, then J ′ contains
0 in its closure.
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For each 1 ≤ i ≤ ν − 1, let γi be the maximal interval which contains csn

such that

• gi
m(k)|γi is well-defined and monotone,

• gi
m(k)(γi) ⊂ Im(k) − {0}.

Moreover, let 0 ≤ ji ≤ p−1 be such that gi
m(k)(csn

) ∈ Im(k)+ji−Im(k)+ji+1.
Note that Tn is equal to (gν−1

m(k)|γν−1)−1(J ′) and that if gν−1
m(k)(γν−1) ⊃ J ′, then

fsn+1−sn(Tn) = f r ◦ gν−1
m(k)(Tn) = f r(J ′) ⊃ (csn−1 ,−csn−1),

and sn is of type I. In particular, this is the case if gν−1
m(k)(γν−1) is a component

of Im(k) − {0}.
If p = 1 or gm(k)(Im(k)+1) � 0, then for each 0 ≤ i ≤ ν − 2, gm(k) maps a

neighborhood Ki(⊂ Im(k)) of gi
m(k)(csn

) diffeomorphically onto a component of

Im(k)−{0}, and thus gi
m(k)(γi) is a component of Im(k)−{0} for all 1 ≤ i ≤ ν−1.

By the above remark, sn is of type I. The statements about the positions of
xn and yn are also clear.

Now we assume that p ≥ 2 and gm(k)(Im(k)+1) �� 0. We claim that for
each 1 ≤ i ≤ ν − 1, there is 0 ≤ pi ≤ p − 1 with gpi

m(k)(0) ∈ Im(k)+ji+1, such

that gi
m(k)(γi) is the component of Im(k) − {gpi

m(k)(0)} which does not contain
the critical point.

Let us prove this claim by induction on i. For i = 1, the claim is true with
p1 = 1 because γ1 is a component of Im(k)+1−{0} and j1 = m(k+1)−m(k)−2.
Now assume that the claim holds for i ≤ ν − 2 and let us prove it for i + 1. To
this end, we distinguish two cases. If ji > 0, then gi

m(k)(csn
) ∈ Im(k)+1 which

implies γi+1 = (gi
m(k)|γi)−1Im(k)+1; so the claim is true with pi+1 = pi + 1.

If ji = 0, then gi
m(k)(γi) contains a component Im(k) − Im(k)+1, and thus it

contains the return domain to Im(k) which contains gi
m(k)(csn

). Therefore,

gi+1
m(k)(γi+1) is a component of Im(k) −{0}, and the claim is true with pi+1 = 0.

This completes the induction.
The statements about the positions of xn and yn follow immediately from

this claim. Let us assume that sn is of type II, and prove the other terms. It
is clear that csn

is the first return of 0 to Im(k) since fsn+1−sn(Tn) ⊃ Im(k). To
prove the last term of the lemma, we first notice that p′ := pν−1 �= 0 and that
z = gν−1

m(k)(csn
) is bad, for otherwise, gν−1

m(k)(γν−1) ⊃ J ′ which implies that sn is

of type I by our previous remark. Let q′ ∈ N be such that gq′

m(k)−1 = f r near z.

As Tn = (gν−1
m(k)|γν−1)−1(J ′), we have xn = gq′

m(k)−1(g
p′

m(k)(0)). By Lemma 3.3,

gi
m(k)−1(0) �∈ Im(k) for all 1 ≤ i ≤ q′. In particular, q′ < q. Since csn−1 is exactly
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the point in {gi
m(k)−1(0), 1 ≤ i ≤ q − 1} which is closest to the critical point

and since the intervals gi
m(k)−1(0, gp′

m(k)(0)), 1 ≤ i ≤ q, are pairwise disjoint, we

have csn−1 = gq′

m(k)−1(0).

Remark 3.2. In the case that p = 1, we see from the above proof that
fsn+1−sn(Tn) = f r(J ′)(= f r(J)). In particular, if z is good, then yn, xn are the
endpoints of Im(k)−1; and if z is bad, then xn = f r(0). We shall make use of
this fact in the proof of Lemma 4.1.

4. Proof of the Main Lemma

For any n ≥ n0, let k be such that csn
∈ Im(k) − Im(k+1), and let bn be an

endpoint of Im(k+1)−1. Recall that

An =
|bn|� − |csn+1 |�
|bn|� − |csn

|� , Bn =
( |csn

|
|csn+1 |

)�/2

.

The goal of this section is to prove the following:

Main Lemma. There exists a universal constant σ > 0 such that for all
n sufficiently large,

|(fsn+1−sn)′(f(csn
))| ≥ (1 + σ)

An

An−1

Bn−1

Bn
.

The proof is organized as follows. First of all, by means of cross-ratio, we
prove

|(fsn+1−sn)′(f(csn
))|An−1Bn

AnBn−1
≥ OkAn−1VnWn,(4.1)

where

Vn =
2|xn|(|yn| + |csn

|)
(|yn| + |xn|)(|xn| + |csn

|) = 1 +
|yn| − |xn|
|yn| + |xn|

|xn| − |csn
|

|xn| + |csn
| ,

and

Wn =
( |xn|
|csn−1 |

)�/2

.

Then we distinguish three cases to check that the left-hand side of (4.1) is
bounded from below by a constant greater than 1. Note that An−1 > 1 and
Vn ≥ 1 for all n, and that Wn ≥ 1 if and only if sn is of type I.

Case 1. sn is of type I, and |Im(k)−1|/|Im(k)| is bounded from below by a
constant greater than 1. In this case, we prove that |xn|/|csn

| is strictly bigger
than 1, and then the desired estimate follows from easy observations.
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Case 2. sn is of type I, and |Im(k)−1|/|Im(k)| is close to 1. In this case, by
Martens’ real bounds, we have m(k − 1)−m(k) > 1 and that gm(k−1) displays
a high return, i.e., gm(k−1)(Im(k−1)+1) � 0. According to the relative position
of csn

with the orientation-preserving fixed point of gm(k−1)|Im(k−1)+1, two
subcases will be considered.

Case 3. sn is of type II. In this case, Wn is smaller than 1. Using the
combinatorial information given by Lemma 3.2, we shall show that this loss
can be compensated by the gain from An−1Vn.

Remark 4.1. It has been noticed by Martens [16], using the distortion
control of the first return maps, that if |Im(k)−1|/|Im(k)| is very close to 1,
then gm(k)−1|Im(k) has a high return and |Im(k)|/|Im(k)+1| is very big. As we
mentioned in the introduction, decay of geometry follows from the starting
condition. Therefore arguing by contradiction the Main Theorem follows if
we can prove the Main Lemma under the assumption that f does not satisfy
the starting condition. From this point of view, the second case above is not
necessary. We include an argument for this case as well so that we can prove
the decay of geometry property without reference to the starting condition.

4.1. Proof of (4.1). Applying Lemma 2.5 to the map fsn+1−sn−1 : f(Tn) →
(xn, yn), we obtain

C(fsn+1−sn−1; f(Tn), {f(csn
)}) ≥ Ok,

which means

|(fsn+1−sn−1)′(f(csn
))| ≥ Ok

|yn − csn+1 ||xn − csn+1 |
|yn − xn|

|f(Ln)| + |f(Rn)|
|f(Ln)||f(Rn)| .(4.2)

By Lemma 3.1, Tn is contained in a component of Im(k+1)−1 − {0}. So for all
n sufficiently large, we have

|f(Ln)| ≤ |csn
|�, |f(Rn)| ≤ |bn|� − |csn

|�,

which implies

|f(Ln)| + |f(Rn)|
|f(Ln)||f(Rn)| ≥ |bn|�

(|bn|� − |csn
|�)|csn

|� ≥ An
|bn|�

(|bn|� − |csn+1 |�)|csn
|� .(4.3)

Since |xn| ≥ |bn|, this implies

|f(Ln)| + |f(Rn)|
|f(Ln)||f(Rn)| ≥ An

|xn|�
(|xn|� − |csn+1 |�)|csn

|� .(4.4)

Since |yn| ≥ |xn|, we have

|yn − csn+1 ||xn − csn+1 | ≥ (|yn| + |csn+1 |)(|xn| − |csn+1 |).(4.5)
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Recall that φ(α, �) = α1−�/2
∫ 1
α t�−1dt is a monotone increasing function

with respect to � (Lemma 2.7). Now,

|(fsn+1−sn)′(f(csn
))|

= |(fsn+1−sn−1)′(f(csn
))|�|csn+1 |�−1

≥ Ok
(|yn| + |csn+1 |)(|xn| − |csn+1 |)

|yn| + |xn|
An

|xn|�
(|xn|� − |csn+1 |�)|csn

|� �|csn+1 |�−1

= OkAn

( |xn||csn+1 |
|csn

|2
)�/2 (|yn| + |csn+1 |)(|xn| − |csn+1 |)

(|yn| + |xn|)|xn|
1

φ(|csn+1/xn|, �)

≥ OkAn

( |xn||csn+1 |
|csn

|2
)�/2 (|yn| + |csn+1 |)(|xn| − |csn+1 |)

(|yn| + |xn|)|xn|
1

φ(|csn+1/xn|, 2)

= OkAn

( |xn||csn+1 |
|csn

|2
)�/2 2|xn|(|yn| + |csn+1 |)

(|yn| + |xn|)(|xn| + |csn+1 |)

≥ OkAn

( |xn||csn+1 |
|csn

|2
)�/2 2|xn|(|yn| + |csn

|)
(|yn| + |xn|)(|xn| + |csn

|)

= OkAn

( |xn|
|csn−1 |

)�/2 Bn−1

Bn
Vn,

which implies (4.1)

4.2. Case 1. In this case, we assume that sn is of type I, and that
|Im(k)−1|/|Im(k)| is bounded from below by some constant ρ1 > 1.

Lemma 4.1. There exists a constant ρ2 > 1, such that |xn|/|csn
| > ρ2.

Proof. First notice that

|yn|
|csn

| ≥
|Im(k)−1|
|Im(k)| ≥ ρ1,

and thus if |yn|/|xn| ≤ √
ρ1, then |xn|/|csn

| ≥ √
ρ1, and we are done. So

assume that |yn|/|xn| ≥
√

ρ1. In particular, |xn| is strictly smaller than |yn| so
that xn ∈ Im(k)−1.

As before, let ν ∈ N be such that csn+1 = gν
m(k)(csn

), and let z = gν−1
m(k)(csn

).

Then |z| ≥ |csn
|. If m(k + 1) > m(k) + 1, then csn

∈ Im(k)+1, and thus

|xn|
|csn

| ≥
|Im(k)|
|Im(k)+1| ≥ ρ

by Lemma 2.4. So we may assume that m(k + 1) = m(k) + 1. Let r be the
return time of z to Im(k). By Lemma 2.2, there is an interval J1 � f(z), with
f−1(J1) ⊂ Im(k), such that f r−1 : J1 → Im(k)−1 is a diffeomorphism. From
the fact xn ∈ Im(k)−1, by Remark 3.2, it follows that z is bad (so J1 � c1), and
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that xn = f r−1(c1). Since f r−1(f(0, z)) = (xn, csn+1) is well inside Im(k)−1, it
follows from Lemma 2.5 that |f(Im(k))|/|f(0, z)| is uniformly bounded away
from 1. In particular, so is |xn|/|csn

|(≥ |Im(k)|/2|z|).

Let us prove the right-hand side of (4.1) is strictly greater than 1 (for
large n). It suffices to show that max(An−1, Vn, Wn) is uniformly bounded
from 1, since each of these three terms is not less than 1. Here we use the
assumption that sn is of type I.

Assume that Vn is close to 1. Then either |yn|/|xn| or |xn|/|csn
| is close

to 1. Lemma 4.1 shows that we are in the former case. If Wn is also close
to 1, then so is |yn|/|csn−1 |. As |Im(k)−1|/|Im(k)| ≥ ρ1, it follows that csn−1 ∈
Im(k)−1 − Im(k) and An−1 is uniformly bigger than 1.

4.3. Case 2. In this case, we assume that sn is of type I and that
|Im(k)−1|/|Im(k)| < ρ1, where ρ1 > 1 is a constant close to 1. In particu-
lar, we assume that ρ1 is less than the constant ρ in Lemma 2.4. Then we
have

m(k − 1) − m(k) ≥ 2, and gm(k−1)(I
m(k−1)+1) � 0.

Let ζ denote the orientation-preserving fixed point of gm(k−1)|Im(k−1)+1 which
is farthest from the critical point. (In fact, there is only one orientation-
preserving fixed point of the map.) Note that ζ ∈ Im(k) − Im(k)+1.

Lemma 4.2. |g′m(k−1)(ζ)| > 1 is uniformly bounded from above, and uni-
formly bounded away from 1.

Proof. Let s be the return time of 0 to Im(k)−1. Let M be the component
of Im(k−1)+1−{0} containing ζ. By Lemma 2.5, C(fs, M, {ζ}) ≥ Ok. Observe
that for each component J of M − {ζ}, |gm(k−1)(J)|/|J | is uniformly bounded
below from 1. It follows that |g′m(k−1)(ζ)| is bounded below from 1. Since the

pull back of Im(k−1) along the orbit {f i(0)}s
i=1 is monotone, fs−1|f(Im(k)) has

uniformly bounded distortion. Thus, there exists a universal constant C > 1
such that

|(fs)′(ζ)|= |(fs−1)′)(f(ζ))|�|ζ|�−1

≤C
|Im(k)−1|
|f(Im(k))|�|I

m(k)|�−1 ≤ C�

(
|Im(k)−1|
|Im(k))|

)�

,

and hence the derivative is uniformly bounded.

Case 2.1. csn
�∈(ζ,−ζ). Since csn

∈Im(k+1)−1 − Im(k+1), we have m(k + 1)
= m(k) + 1. We claim that there is an interval T ′

n with Im(k) ⊃ T ′
n � csn

and
such that fsn+1−sn : T ′

n → Im(k−1) is a diffeomorphism. Once this is proved,
we can then repeat the above argument by using T ′

n instead of Tn to conclude
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that the left side of (4.1) is uniformly bounded from 1. To prove the claim,
let ν ′ ∈ N be such that gν′

m(k)−1(csn
) = csn+1 . Since gm(k)−1 pushes points in

Im(k) − (−ζ, ζ) farther away from 0, gν′−1
m(k)−1(csn

) is contained in a component

P of Im(k)−1− Im(k). Note that gν′−1
m(k)−1 maps a neighborhood of csn

(in Im(k))
diffeomorphically onto P . Thus the existence of T ′

n is guaranteed by Lemma
2.2. The claim is proved.

Case 2.2. csn
∈ (ζ,−ζ). In this case, our strategy is to assume that

max(An−1, Vn, |xn|/|csn−1 |) is close to 1, and prove that the left-hand side of
(4.1) is bounded from below by a constant greater than 1.

Let b be the endpoint of Im(k) which is on the same side of 0 as ζ. By
Lemma 2.5 and Lemma 2.6, it is easy to see that gm(k−1) has uniformly bounded
distortion on [ζ, b], and thus by Lemma 4.2, |g′m(k−1)| is uniformly bounded
from above on [ζ, b]. Consequently, (|b| − |ζ|)/(|yn| − |b|) is bounded from
zero. Since An−1 is close to 1 and |csn

| < |ζ|, it follows that csn−1 ∈ Im(k)

and (|csn−1 | − |csn
|)/(|b| − |csn−1 |) is very small. Since we are also assuming

that |xn|/|csn−1 | is close to 1, it follows that |b|/|csn
| is very close to 1. This

implies that gm(k−1)(csn
) is closer to the critical point than csn

, and hence
it is csn+1 . Let ξ ∈ (0, ζ) be such that gm(k)−1(ξ) = csn

; then |ζ| − |ξ| �
|csn

| − |csn+1 |. Note that |csn−1 | ≥ |ξ|, and hence |csn−1 | − |csn
| is not much

smaller than |csn
| − |csn+1 |. Therefore, An and Bn/Bn−1 are both close to 1 as

well. Moreover, |(fsn+1−sn)′(f(csn
))| is almost equal to |g′m(k−1)(ζ)|, and hence

uniformly bounded away from 1. All these imply the left-hand side of (4.1) is
bounded from below by a constant greater than 1.

4.4. Case 3. We assume now that sn is of type II. Let p, p′, q, q′ be as in
Lemma 3.2, and let wn = gp

m(k)(0). As csn
∈ Im(k+1)−1 − Im(k+1) and gm(k)

displays a low return, gm(k)(Im(k)+1) �� 0, the following hold:

• |csn
| < |wn| < |xn| < |yn|;

• the points gi
m(k)(0), 1 ≤ i ≤ p, lie on the same side of the critical point.

We no longer have Wn ≥ 1, but instead, Lemma 3.2 provides more com-
binatorial information to apply. We claim( |xn|

|csn−1 |

)�/2

≥ |xn|
|csn−1 |

≥ Ok
|yn| − |wn| + 2|wn|2/|csn−1 |

|yn| + |wn|
.(4.6)

To see this, let J be the entry domain to Im(k) which contains csn−1 =
gq′

m(k)−1(0). Then gq−q′

m(k)−1|J : J → Im(k) is a diffeomorphism and

Im(k)−1 − Im(k) ⊃ J ⊃ gq′

m(k)−1(I
m(k)+1) � gq′

m(k)−1(g
p′

m(k)(0)) = xn.
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Since gq−q′

m(k)−1((xn, csn−1)) is contained in (csn
, wn) which does not contain 0,

and since |wn| < |xn|, we have by Lemma 2.5 that

|xn| − |wn|
|csn−1 | − |xn|

≥ C(J, (xn, csn−1))
−1 ≥ OkC(gq−q′

m(k)−1(J), gq−q′

m(k)−1((xn, csn−1)))
−1

≥ Ok
(|yn| − |wn|)(|yn| + |csn

|)
(|wn| − |csn

|)2|yn|

≥ Ok
|yn| − |wn|

2|wn|
,

which implies (4.6) by rearranging.

Note. Set

Un = An−1Wn =
(

xn

csn−1

)�/2 |yn|� − |csn
|�

|yn|� − |csn−1 |�
,

and

λ =
|yn|

|csn−1 |
, µ =

|csn−1 |
|wn|

.

Then, (4.1) becomes

|(fsn+1−sn)′(f(csn
))|An−1

An

Bn

Bn−1
≥ OkUnVn,

where Vn = 2|xn|(|yn| + |csn
|)/{(|yn| + |xn|)(|xn| + |csn

|)} is as before.
By Lemma 2.8,

|yn|� − |csn
|�

|yn|� − |csn−1 |�
≥ |yn|2 − |csn

|2
|yn|2 − |csn−1 |2

≥ |yn|2 − |wn|2
|yn|2 − |csn−1 |2

,

and by (4.6), this implies

Un ≥ |yn|2 − |wn|2
|yn|2 − |csn−1 |2

|yn| − |wn| + 2|wn|2/|csn−1 |
|yn| + |wn|

=
(λµ − 1)(λµ2 − µ + 2)

µ3(λ2 − 1)
.

Let us first prove the Main Lemma in the case that Vn is close to 1. In
fact, by Lemma 2.4, |xn|/|csn

| ≥ |Im(k)|/|Im(k)+1| is bounded away from 1, and
thus |yn|/|xn| is close to 1. This implies that Wn = (|xn|/|csn−1 |)�/2 is close to
1, and An−1 = (|yn|� − |csn

|�)/(|yn|� − |csn−1 |�) is very big. The Main Lemma
follows.

Let us assume that Vn > 1 is uniformly bounded away from 1. To show
that UnVn is bounded from below by a constant greater than 1, we may assume
that Un < 1. Write P = (λµ − 1)(λµ2 − µ + 2) and Q = µ3(λ2 − 1). Then

Q − P = µ3(λ2 − 1) − (λµ − 1)(λµ2 − µ + 2) = (µ − 1)(2λµ − µ2 − µ − 2) ≥ 0.

Since µ > 1, this implies

λ ≥ µ2 + µ + 2
2µ

≥ 2
√

2 + 1
2

> 1.9.(4.7)
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Moreover,

1
1 − Un

≥ Q

Q − P
≥ µ3(λ2 − 1)

(µ − 1)(2λµ − µ2 − µ − 2)
.(4.8)

Let θ = 2λµ − (µ2 + µ + 2). Then λ = (µ2 + µ + 2 + θ)/2µ. Substituting
this equality to (4.8), we obtain

1
1 − Un

≥ θ2 + 2(µ2 + µ + 2)θ + (µ2 + 3µ + 2)(µ2 − µ + 2)
θ

µ

4(µ − 1)
.(4.9)

Lemma 4.3. Let α = |xn|/|csn
|. Then

α2 ≥ λµ − 1
2

α

α − 1
Ok + 1.(4.10)

Proof. By Lemma 3.2, csn
is the first return of 0 to Im(k). So there

is an interval J � c1 such that fsn−1 : J → Im(k)−1 is a diffeomorphism, and
f−1(J) ⊂ Im(k). As fsn((0, csn

)) ⊂ (csn
, wn), and xn �∈ Im(k), applying Lemma

2.5, we obtain

|xn|�
|csn

|� = 1 +
|xn|� − |csn

|�
|csn

|� ≥ 1 + C(J, (f(0), f(csn
)))−1

≥ 1 + C(Im(k)−1, fsn((0, csn
)))−1Ok

≥ 1 + C(Im(k)−1, (csn
, wn))−1Ok

= 1 +
|yn| − |wn|
|wn| − |csn

|
|yn| + |csn

|
2|yn|

Ok

≥ 1 +
|yn| − |wn|

2|wn|
|wn|

|wn| − |csn
|Ok

≥ 1 +
λµ − 1

2
|xn|

|xn| − |csn
|Ok

≥ 1 +
λµ − 1

2
α

α − 1
Ok.

Since the left-hand side of this inequality is less than or equal to α2, the lemma
follows.

Completion of the Main Lemma in the type II case. In the following, we
distinguish two cases. In each case, we estimate Un and Vn to check that UnVn

is greater than 1 by a definite amount.
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Case 3.1. θ ≤ 1. By (4.9),

1
1 − Un

≥ (1 + 2(µ2 + µ + 2) + (µ2 + 3µ + 2)(µ2 − µ + 2))
µ

4(µ − 1)

=
(µ − 1)5 + 7(µ − 1)4 + 21(µ − 1)3 + 37(µ − 1)2 + 43(µ − 1) + 21

4(µ − 1)

≥ 37(µ − 1)2 + 43(µ − 1) + 21
4(µ − 1)

≥ 2
√

37 × 21 + 43
4

≥ 24,

which implies Un ≥ 23/24.
Since λµ = (µ2 + µ + 2 + θ)/2 ≥ 2, we have α2 ≥ 1 + Ok0.5α/(α − 1),

which implies α > 3/2 (provided that k is sufficiently large). Thus,

Vn − 1 =
|yn| − |xn|
|yn| + |xn|

|xn| − |csn
|

|xn| + |csn
| ≥

λ − 1
λ + 1

α − 1
α + 1

≥ 0.9
2.9

· 0.5
2.5

>
1
20

,

and consequently,

UnVn >
23
24

· 21
20

> 1.

Case 3.2. θ > 1. By (4.9),

1
1 − Un

≥ θ2 + 2(µ2 + µ + 2)θ + (µ2 + 3µ + 2)(µ2 − µ + 2)
θ

µ

4(µ − 1)

≥ µ

2(µ − 1)
(
√

(µ2 + 3µ + 2)(µ2 − µ + 2) + µ2 + µ + 2)

≥ µ

2(µ − 1)
{µ2 + (1 +

√
5 + 4

√
2)µ + 2}

≥ µ(µ2 + 4.2µ + 2)
2(µ − 1)

≥ 7.2(µ − 1)2 + 13.4(µ − 1) + 7.2
2(µ − 1)

≥ 13.

Thus, Un ≥ 12/13. Moreover,

λ =
µ2 + µ + 2 + θ

2µ

≥ µ2 + µ + 3
2µ

≥
√

3 +
1
2

> 2.2.

λµ =
µ2 + µ + 2 + θ

2
≥ 2.5.
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By Lemma 4.3, α2 ≥ 1 + 0.75α/(α − 1)Ok, and hence α > 1.6. Therefore,

Vn − 1 ≥ 1.2
3.2

· 0.6
2.6

>
1
12

,

which implies that UnVn is bounded from below by a constant greater than 1.
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