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A refined version of the
Siegel-Shidlovskii theorem

By F. BEUKERS

Abstract

Using Y. André’s result on differential equations satisfied by E-functions,
we derive an improved version of the Siegel-Shidlovskii theorem. It gives a
complete characterisation of algebraic relations over the algebraic numbers
between values of F-functions at any nonzero algebraic point.

1. Introduction

In this paper we consider E-functions. An entire function f(z) is called
an F-function if it has a power series expansion of the form

o0

_ Ak K
f(z) = -
k=0

where
(1) ar € Q for all k.

(2) h(ag,ai,...,ar) = O(k) for all kK where h denotes the log of the absolute
height.

(3) f satisfies a linear differential equation Ly = 0 with coefficients in Q[z].

The linear differential equation Ly = 0 of minimal order which is satisfied
by f is called the minimal differential equation of f.

Furthermore, in all of our consideration we take a fixed embedding Q — C.

Siegel first introduced E-functions around 1929 in his work on transcen-
dence of values of Bessel-functions and related functions. Actually, Siegel’s
definition was slightly more general in that condition (3) reads h(ag, a1, ..., ax)
= o(klogk). But until now no E-functions in Siegel’s original definition are
known which fail to satisfy condition (2) above. Around 1955 Shidlovski man-
aged to remove Siegel’s technical normality conditions and we now have the
following theorem (see [Sh, Ch. 4.4], [FN, Th. 5.23]).



370 F. BEUKERS

THEOREM 1.1 (Siegel-Shidlovskii, 1956). Let fi,...,f, be a set of
E-functions which satisfy the system of first order equations

ol Y1
. — A :
Yn Yn

4
dz

where A is an n X n-matriz with entries in Q(z). Denote the common denom-

inator of the entries of A by T(z). Then, for any &€ € Q such that £T(€) # 0,
deg trg(f1(6), . fa(€)) = degtige, (fi(2)s- ., ful2).

In [B1] Daniel Bertrand gives an alternative proof of the Siegel-Shidlovskii
theorem using Laurent’s determinants.

Of course the Siegel-Shidlovskii theorem suggests strongly that all rela-
tions between values of E-functions at algebraic points arise by specialisation of
polynomial relations over Q(z). Using the techniques of Siegel and Shidlovskii
this turns out to be true up to a finite exceptional set of algebraic points.

THEOREM 1.2 (Nesterenko-Shidlovskii, 1996). There exists a finite set S
such that for all € € Q, £ & S the following holds. For any homogeneous poly-
nomial relation P(f1(£),..., fn(€)) = 0 with P € Q[X1,...,X,] there ewists
Q € Q[z, X1,..., X,], homogeneous in X;, such that Q(z, f1(2),..., fa(2)) =0
and P(X1,...,Xp) = Q& X1,...,Xp).

In the statement of the theorem one can drop the word ‘homogeneous’
if one wants, simply by considering the set of E-functions 1, f1(2),..., fn(z)
instead. Loosely speaking, for almost all £ € Q, polynomial relations between
the values of f; at z = £ arise by specialisation of polynomial relations between
the fi(z) over Q(z).

In [NS] it is also remarked that the exceptional set S can be computed in
principle. Although Theorem 1.2 is not stated explicitly in [NS], it is immediate
from Theorem 1 and Lemmas 1, 2 in [NS].

Around 1997 Y. André (see [A1l] and Theorem 2.1 below) discovered that
the nature of differential equations satisfied by FE-functions is very simple.
Their only nontrivial singularities are at 0, 00. Even more astounding is that
this observation allowed André to prove transcendence statements, as illus-
trated in Theorem 2.2. In particular André managed to give a completely new
proof of the Siegel-Shidlovskii theorem using his discovery. In order to achieve
this, a defect relation for linear equations with irregular singularities had to
be invoked. For a survey one can consult [A2] or, more detailed, [B2].

However, it turns out that even more is possible. Theorem 2.1 allows us
to prove the following theorem.

THEOREM 1.3. Theorem 1.2 holds for any & € Q with £T(€) # 0.
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The proof of this theorem will be given in Section 3, after the necessary
preparations. In particular we will use some very basic facts about differen-
tial Galois groups of systems of differential equations. All that we require is
contained in Section 1.4 of the book [PS].

One particular consequence of Theorem 1.3 is the solution of Conjecture A
in [NS]. As pointed out by the referee this conjecture was already alluded to
in S. Lang’s book on transcendental numbers; see [L, p. 100]

COROLLARY 1.4. Let assumptions be as in Theorem 1.1. Suppose that
f1(2), ..., fn(2) are linearly independent over Q(z). Then for any & € Q, with
ET(€) # 0, the numbers f1(£),..., fo(€) are Q-linear independent.

A question that remains is about the nature of relations between values of
E-functions at singular points # 0. The best known example is f(z) = (z—1)e”.
Its minimal differential equation has a singularity at z = 1 and it vanishes at
z = 1, even though f(z) is transcendental over Q(z). Of course the vanishing
of f(z) at z = 1 arises in a trivial way and one would probably agree that
it is better to look at e itself. It turns out that all relations between values
of E-functions at singularities # 0 arise in a similar trivial fashion. This is a
consequence of the following theorem.

THEOREM 1.5. Let fi,...,f, be as above and suppose they are Q(z)-

linear independent. Then there exist E-functions e1(z),...,en(2) and annxn-
matriz M with entries in Q[z] such that
h(z) e1(z)
: =M :
fn(2) en(2)
and where (e1(z), ..., en(2)) is the vector solution of a system of n homogeneous

first order equations with coefficients in Q[z,1/z].

Acknowledgement. At this point I would like to express my gratitude to
Daniel Bertrand who critically read and commented on a first draft of this
paper. His remarks were invaluable to me. I would also like to thank the
anonymous referee who did a lot to improve the paper with a number of expert
comments.

2. André’s theorem and first consequences

Everything we deduce in this paper hinges on the following beautiful the-
orem plus corollary by Yves André.
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THEOREM 2.1 (Y. André). Let f be an E-function and let Ly = 0 be its
minimal differential equation. Then at every point z # 0,00 the equation has
a basis of holomorphic solutions.

All results that follow now, depend on a limited version of Theorem 2.1
where the F-function has rational coefficients. Although the following theorem
occurs in [Al] we want to give a proof of it to make this paper self-contained
to the extent only of accepting Theorem 2.1.

COROLLARY 2.2 (Y. André). Let f be an E-function with rational coef-
ficients and let Ly = 0 be its minimal differential equation. Suppose f(1) = 0.
Then all solutions of Ly = 0 vanish at z = 1 and consequently z = 1 is an
apparent singularity of Ly = 0.

Proof. Suppose
a
f(z) = Z ﬁz”.
n=0

Let g(z) = f(z)/(1 — z). Note that g(z) is also holomorphic in C. Moreover,
g(z) is again an E-function. Write

|
L
where
bn " ay,
n! k!
k=0
Since f(1) = 0 we see that
bn - ag
W2
k=n+1

Since f is an E-function there exist B,C > 0 such that |az| < B - C*. Hence

[bu| < Bnt > T
k=n
c” c C?
—_ i .
SBn.n! <1—|—1!—|—2!+ )
< Be® . C".
Furthermore, the common denominator of by, ..., b, is bounded above by the
common denominator of ag,ai,...,ay, hence bounded by B; - CT for some

B;1,C1 > 0. This shows that f(z)/(z — 1) is an E-function. The minimal
differential operator which annihilates g(z) is simply Lo (z—1). From André’s
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Theorem 2.1 it follows that the kernel of (z —1)"'o Lo (z — 1) around z = 1
is spanned by holomorphic functions. Hence the kernel of L is spanned by
holomorphic solutions times z — 1. In other words, all solutions of Ly = 0
vanish at z = 1 and therefore z = 1 is an apparent singularity. O

LEMMA 2.3. Let f be an E-function with minimal differential equation
Ly = 0 of order n. Let G be its differential Galois group and let G° be the
connected component of the identity in G. Let V' be the vector space spanned by
all images of f(z) under G°. Then V is the complete solution space of Ly = 0.

Proof. The fixed field of G° is an algebraic Galois extension K of Q(z)
with Galois group G/G°. Suppose that V' has dimension m. Then f satisfies
a linear differential equation with coefficients in K of order m. In particular
we have a relation

(1) FO 4 p 1 ()Y 4 pi(2) f 4 po(2) f =0

for some p; € K. We subject this relation to analytic continuation. Since f is
an entire function, it has trivial monodromy. By choosing suitable paths we
obtain the conjugate relations

F 4 0(pm-) f 4+ o) f + o (po) f =0

for all o € G/G°. Taking the sum over all these relations gives us a nontrivial
differential equation for f of order m over Q(z). From the minimality of Ly = 0
we now conclude that m = n; i.e., the dimension of V is n. O

Actually it follows from Theorem 2.1 that the fixed field of G° is of the
form K = @(zl/ ") for some positive integer r. But we do not need that in our
proof. Lemma 2.3 also follows from a lemma of O. Gabber which states that
the monodromy group surjects onto G/G°. See [PS, p. 282].

The following lemma is a straightforward consequence of the general the-
ory of algebraic groups.

LEMMA 2.4. Let Gy,...,G, be linear algebraic groups and denote by GY
their components of the identity. Let H C G1 X Ga X -+ X G, be an algebraic
subgroup such that the natural projection m; : H — G; is surjective for every i.
Let H? be the connected component of the identity in H. Then the natural
projections m; : H° — GY are surjective.

Now we prove a generalisation of André’s Corollary 2.2 to general nonzero
algebraic points.

THEOREM 2.5. Let f be an E-function with minimal differential equation
Ly =0 of order n. Suppose that & € Q" and f(&) = 0. Then all solutions of
Ly vanish at z = &. In particular, Ly = 0 has an apparent singularity at z = €.
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Proof. By replacing f(z) by f(£z) if necessary, we can assume that f
vanishes at z = 1. Let f!(z),..., f7(z) be the Gal(Q/Q)-conjugates of f(z)
where we take f7'(z) = f(z). Let L%y = 0 be the o;-conjugate of Ly = 0.
Note that this is the minimal differential equation satisfied by f?¢(z). Let G; be
the differential Galois group and G¢ the connected component of the identity.
By Lemma 2.3 the images of f7*(z) under G¢ span the complete solution space
of L%y = 0.

The product F(z) = []i_; f7(2) is an E-function having rational coeffi-
cients. Let Ly = 0 be its minimal differential equation. Furthermore, F'(1) = 0.
Hence, from André’s Theorem 2.2 it follows that all solutions of Ly = 0 vanish
at z = 1.

Let H be the differential Galois group of the differential compositum of
the Picard-Vessiot extensions corresponding to L?*y = 0. Note that the image
of F(z) under any h € H is again a solution of Ly = 0. In particular this
image also vanishes at z = 1.

Furthermore, H is an algebraic subgroup of G1 x G X - -+ X G- such that
the natural projections m; : H — G; are surjective. Let H® be the connected
component of the identity of H. Then, by Lemma 2.4, the projections m; :
H° — GY are surjective.

Let V; be the solution space of local solutions at z = 1 of L%y = 0. In view
of Theorem 2.1 all these solutions are holomorphic at z = 1. Let W; be the
linear subspace of solutions vanishing at z = 1. The group H? acts linearly on
each space V;. Let v; € V; be the vector corresponding to the solution f7(z).
Define H; = {h € H°|m;(h)v; € W;}. Then H; is a Zariski closed subset of H®.
Furthermore, because all solutions of Ly = 0 vanish at z = 1, we have that
H° = U]_,H;. Since H° is connected this implies that H; = H? for at least
one i. Hence m;(H;) = mi(H®) = G¢ and we see that gv; € W; for all g € GY.
We conclude that W; = V;. In other words, all local solutions of L%y = 0
around z = 1 vanish in z = 1. By conjugation we now see that the same is
true for Ly = 0. O

3. Independence results

We now consider a set of F-functions fi, ..., f, which satisfy a system of
homogeneous first order equations

y' = Ay
where y is a vector of unknown functions (yi,...,y,)" and A an n X n-matrix

with entries in Q(z). The common denominator of these entries is denoted by
T(z).
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LEMMA 3.1. Let us assume that the Q(2)-rank of fi,..., fn is m. Then
the Q|z]-relations bewteen fi,. .., fn have a basis

(1)
Ci1(2)f1(2) + Ciz(2) fa(z) + -+ Cin(2) fu(2) =0, i=1,2,....,n—m,

such that for any & € Q the matriz
Cri(§) Cr2(§) .. Cul(§)

Coomt(€) Coma(€) ooe Con(€)

has rank precisely n —m.

Proof. The Q(z)-dimension of all relations is n — m. Choose an indepen-
dent set of n — m relations of the form (1) (without the extra specialisation
condition).

Denote the greatest common divisor of the determinants of all (n —m) x
(n — m) submatrices of (Cj;(z)) by D(z). Suppose that D(&) = 0 for some &.
Then the matrix (C;j;(£)) has linearly dependent rows. By taking Q-linear
relations between the rows, if necessary, we can assume that C1;(§) = 0 for
j = 1,...,n. Hence all Cy;(z) are divisible by z — ¢ and the polynomials
C1j(2)/(z — &) are the coefficients of another Q(z)-linear relation. Replace the
first relation by this new relation. The new greatest divisor of all (n —m) X
(n —m)-determinants is now D(z)/(z —&). By repeating this argument we can
find an independent set of n — m relations of the form (1) whose associated
D(z) is a nonzero constant.

But now it is not hard to see that (1) is a Q[z]-basis of all Q[z]-relations.
Furthermore, D(§) # 0 for all & (because D(z) is constant), so all specialisa-
tions have maximal rank. O

THEOREM 3.2. Let fi,..., fn be a vector solution of the system
y' = Ay

consisting of E-functions. Let T(z) be the common denominator of the en-
tries in A. Then, for any ¢ € Q, £T(€) # 0, any Q-linear relation between
F1(6), ..., fa(&) arises by specialisation of a Q(z)-linear relation.

Proof. Suppose there exists a Q-linear relation

a1 f1(§) +aaf2(§) + -+ anfu(§) =0

which does not come from specialisation of a Q(z)-linear relation at z = &.
Consider the function

F(z) = A1(2) f1(2) + A2(2) f2(2) + -+ - + An(2) fu(2)
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where A;(z) € Q[2] to be specified later. Let Ly = 0 be the minimal differential
equation satisfied by F. Suppose that the Q(z)-rank of fi,..., f, is m. Then
the order of Ly = 0 is at most m.

We now show how to choose A;(z),..., Ay(2) such that

(i) Ai(§) =ajfori=1,2,...,n.
(ii) The order of Ly =0 is m.
(iii) ¢ is a regular point of Ly = 0.

By using the system 3y’ = Ay recursively we can find Ag (2) € Q(z) such
that

FUO(2) =Y Al(2) fil2).
=1

In addition we fix a Q(2)-basis of linear relations
Cir(2)fi(2) + -+ Cinfa(2) =0, i=1,....,n—m,

with polynomial coefficients Cj;(z) such that the (n —m) x n-matrix of values
C;; (&) has maximal rank n—m. This is possible in view of Lemma 3.1. Consider
the (n 4+ 1) x n-matrix

CH(Z) ... Cln(2>

i) e Con(2)
M=1"4G . Al
A{’;(z) . Anm‘(z)

where AY(z) = A;(z). We denote the submatrix obtained from M by deleting
the row with A7 (i = 1,...,n) by M,. There exists a Q(z)-linear relation
between the rows of M which explains why the minimal equation Ly = 0 of
F satisfies a differential equation of order < m. Observe that if the order
is < m, then there exists a nontrivial Q(2)-linear relation between the rows
(A1,...,A%(2)) (j = 0,...,m — 1) which gives a vanishing relation between
f—1,..., fn. Hence det(M,,) = 0. So, if the rank of M,, equals n, the order
of Ly = 0 should be m. In that case the minimal differential equation for F' is
given by
ApF 4o A{F 4+ AgF =0

where A; = (—1)7 det(M,).
By induction it is not hard to show that A%(z) = A;(z) and

Al(z) =AY 4 Py(Ar,. o Ay AT AGY)

n
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where

Pz‘j c @[2, 1/T(Z)HX10, e, Xno, .. 7X1,j—17 A ,ij_l]

are linear forms with coefficients in Q[z,1/7'(z)]. In what follows we choose
the A;(z) and their derivatives in such a way that det(M,,) does not vanish
in the point £&. The choice of A;(§) is fixed by taking A4;(§) = «;. Since the
relation Y " | a; fi(€) = 0 does not come from specialisation, the rows of values
(Ci1(&),...,Cin(§)) for i =1,...,n —m and (aq,...,a,) have maximal rank
n —m + 1. We can now choose the derivatives Agj ) recursively with respect
to j such that det(M,,)(§) # 0. With this choice we note that conditions (i),
(ii), (iii) are satisfied.

On the other hand, F'(§) = 0, so it follows from Theorem 2.5 that & is a
singularity of Ly = 0. This contradicts condition (iii). O

Proof of Theorem 1.3. Consider the vector of E-functions given by the
monomials f(2)! := fi(2)"--- f,(2)", i1 + -+ + i, = N of degree N in
f1(2),..., fu(2). This vector again satisfies a system of linear first order equa-
tions with singularities in the set T'(z) = 0. So we now apply Theorem 3.2 to
the set of E-functions f(2)!. The relation P(f1(£),..., fu(£)) is now a Q-linear
relation between the values f(£)!. Hence, by Theorem 3.2, there is a Q[z]-linear
relation between the f(z)! which specialises to the linear relation between the
values at z = £. This proves our theorem. O

4. Removal of nonzero singularities

In this section we prove Theorem 1.5. For this we require the following
proposition.

PROPOSITION 4.1. Let f be an E-function and § € Q* such that f(§) = 0.
Then f(z)/(z — &) is again an E-function.

Proof. By replacing f(z) by f(£z) if necessary, we can restrict our atten-
tion to £ = 1. Write down a basis of local solutions of Ly = 0 around z = 1.
Since f vanishes at z = 1, Theorem 2.5 implies that all solutions of Ly = 0
vanish at z = 1. But then, by conjugation, this holds for the solutions around
z = 1 of the Gal(Q/Q)-conjugates L°y = 0 as well. In particular, the conju-
gate E-function f7(z) vanishes at z = 1 for every o € Gal(Q/Q). Taking up
the notations of the proof of Theorem 2.2 we see that

LA
n! k!
k=n+1
for every o. We can now bound |b7| exponentially in n for every o. Since the
coefficients of an E-function lie in a finite extension of Q, only finitely many
conjugates are involved. So we get our desired bound h(by,...,b,) = O(n). O
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Proof of Theorem 1.5. Denote the column vector (fi(z),..., fa(2))! by
f(2). Let

y'(2) = A(2)y(2)

be the system of equations satisfied by f and let G be its differential Galois
group. Because the f;(z) are Q(z)-linear independent, the images of f under
G span the complete solution set of y’ = Ay. So the images under G give us
a fundamental solution set F of our system. We assume that the first column
is f(z) itself. Since the f;(z) are E-functions, it follows from Theorem 2.1
that the entries of F are holomorphic at every point # 0. Consequently, the
determinant W(z) = det(F) is holomorphic outside 0. Since W(z) satisfies
W'(z) = Trace(A)W (z), we see that W () = 0 implies that « is a singularity
of our system. In particular, o € Q. Let k be the highest order with which
o occurs as a pole in A. Write A(z) = (2 — a)*A(z). Then it follows from
specialisation at z = a of (z — a)*f'(z) = A(2)f(z) that there is a nontrivial
vanishing relation between the components of f(«). By choosing a suitable
M € GL(n, Q) we can see to it that Mf(z) is a vector of E-functions, of which
the first component vanishes at «. But then, by Theorem 2.5, the whole first
row of M F(z) which, by construction, is composed of images under G of its
first element, vanishes at z = a. Hence we can write M F(z) = DF; where

z—a 0 ... O

0 1 ... 0
D=

0 0o ... 1

and F7 has entries holomorphic around z = a. Thanks to Proposition 4.1, the
entries of the first column in F; are again E-functions. Moreover, F; satisfies
the new system of equations

Fi =D 'MAM™'D - D7'D')F.

Notice that the order of vanishing of Wi(z) = det(F1) at z = « is one lower
than the vanishing order of W (z). We repeat our argument when Wi («) = 0.
By using this reduction procedure to all zeros of W (z) we end up with an n xn-
matrix B, with entries in Q[z], and an n x n-matrix of functions £ such that
F = BE, the first column of & consists of E-functions and det(£) is nowhere
vanishing in C*. As a result we have £'(z) = Ag(2)€(z) where Ag(z) is an
n X n-matrix with entries in Q[z,1/z]. O
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