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The Parisi formula
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Abstract

Using Guerra’s interpolation scheme, we compute the free energy of the
Sherrington-Kirkpatrick model for spin glasses at any temperature, confirming
a celebrated prediction of G. Parisi.

1. Introduction

The Hamiltonian of the Sherrington-Kirkpatrick (SK) model for spin glasses
[10] is given at inverse temperature β by

HN (σ) = − β√
N

∑
i<j

gijσiσj .(1.1)

Here σ = (σ1, . . . , σN ) ∈ ΣN = {−1, 1}N , and (gij)i<j are independent and
identically distributed (i.i.d.) standard Gaussian random variable (r.v.). It
is unexpected that the simple, basic formula (1.1) should give rise to a very
intricate structure. This was discovered over 20 years ago by G. Parisi [8]. The
predictions of Parisi became the starting point of a whole theory, the breadth
and the ambitions of which can be measured in the books [6] and [9]. Literally
hundreds of papers of theoretical physics have been inspired by these ideas.

The SK model is a purely mathematical object, but the methods by which
it has been studied by Parisi and followers are not likely to be recognized as
legitimate by most mathematicians. The present paper will correct this dis-
crepancy and will make one of the central predictions of Parisi, the computa-
tion of the “free energy” of the SK model appear as a consequence of a general
mathematical principle. This general principle will also apply for even p to
the “p-spin” generalization of (1.1), where the Hamiltonian is given at inverse
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temperature β by

HN (σ) = −β
( p!

2Np−1

)1/2 ∑
i1<...<ip

gi1,... ,ip
σi1 · · ·σip

.(1.2)

We consider for each N a Gaussian Hamiltonian HN on ΣN , that is a
jointly Gaussian family of r.v. indexed by ΣN . (Here, as everywhere in the
paper, by Gaussian r.v., we mean that the variable is centered.) We assume
that for a certain sequence c(N) → 0 and a certain function ξ : R → R, we
have

∀σ1, σ2 ∈ ΣN ,
∣∣∣ 1
N

EHN (σ1)HN (σ2) − ξ(R1,2)
∣∣∣ ≤ c(N),(1.3)

where

R1,2 = R1,2(σ1, σ2) =
1
N

∑
i≤N

σ1
i σ

2
i(1.4)

is called the overlap of the configurations σ1 and σ2. A simple computation
shows that for the Hamiltonian (1.2), we have (1.3) for ξ(x) = β2xp/2 and
c(N) ≤ K(p)/N , where K(p) depends on p only.

When ξ is three times continuously differentiable, and satisfies

ξ(0) = 0, ξ(x) = ξ(−x), ξ′′(x) > 0 if x > 0 ,(1.5)

we will compute the asymptotic free energy of Hamiltonians satisfying (1.3).
We fix once and for all a number h (that represents the strength of an

“external field”).
Consider an integer k ≥ 1 and numbers

0 = m0 ≤ m1 ≤ · · · ≤ mk−1 ≤ mk = 1(1.6)

and

0 = q0 ≤ q1 ≤ · · · ≤ qk+1 = 1.(1.7)

It helps to think of m� as being a parameter attached to the interval [q�, q�+1[.
To lighten notation, we write

m = (m0, . . . , mk−1, mk) ; q = (q0, . . . , qk, qk+1).(1.8)

Consider independent Gaussian r.v. (zp)0≤p≤k with

Ez2
p = ξ′(qp+1) − ξ′(qp).(1.9)

We define the r.v.
Xk+1 = log ch

(
h +

∑
0≤p≤k

zp

)
and recursively, for � ≥ 0

X� =
1

m�
log E� exp m�X�+1,(1.10)
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where E� denotes expectation in the r.v. zp, p ≥ �. When m� = 0 this means
X� = E�X�+1. Thus X0 = E0X1 is a number. We set

Pk(m, q) = log 2 + X0 −
1
2

∑
1≤�≤k

m�

(
θ(q�+1) − θ(q�)

)
(1.11)

where

θ(q) = qξ′(q) − ξ(q).(1.12)

We define

P(ξ, h) = inf Pk(m, q),(1.13)

where the infimum is over all choices of k and all choices of the sequences m

and q as above.
One might notice that giving sequences m and q as in (1.8) is the same

as giving a probability measure µ on [0, 1] that charges at most k points (the
points q� for 1 ≤ � ≤ k, the mass of q� being m� − m�−1). One can then write
P(µ) rather than Pk(m, q). Moreover Guerra [3] proves that this definition
can be extended by a continuity argument to any probability measure µ on
[0, 1], and the distribution function of such a probability is the “functional
order parameter” of the theoretical physicists. We do not adopt this point of
view since an essential ingredient of our approach is that we need only consider
discrete objects rather than continuous ones. We refer the reader to [18] for
further results in this direction.

Theorem 1.1 (The Parisi formula). We have

lim
N→∞

1
N

E log
∑
σ

exp
(
HN (σ) + h

∑
i≤N

σi

)
= P(ξ, h).(1.14)

The summation is of course over all values of σ ∈ ΣN . To lighten the
exposition, we do not follow the convention of physics to put a minus sign in
front of the Hamiltonian.

We learned the present formulation in Guerra’s work [3], to which we refer
for further discussion of its connections with Parisi’s original formulation. In
this truly remarkable paper Guerra proves that the left-hand side of (1.14) is
bounded by the right-hand side, using an interpolation scheme that is the back-
bone of the present work. Guerra and Toninelli [5] had previously established
the existence of the limit in (1.14).

Even in concrete cases, the computation of the quantity P(ξ, h) is certainly
a nontrivial issue. In fact, it is possibly a difficult problem. This problem
however is of a different nature, and we will not investigate it. It should be
pointed out that one of the reasons that make our proof of Theorem 1.1 possible
is that we have succeeded in separating the proof of this theorem from the issue
of computing P(ξ, h).
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When the infimum in (1.13) is a minimum, and if k ≥ 1 is the smallest
integer for which P(ξ, h) = Pk(m, q) for a certain choice of m and q, one says
in physics that the system exhibits “k−1 steps of replica symmetry breaking”.
Only the case k = 1 (“high temperature behavior”) and k = 2 (as in the p-spin
interaction model for p ≥ 3 at suitable temperatures) have been described in
the physics literature but it is possible (elaborating on the ideas of [14]) to
show that suitable choices of ξ can produce situations where k is any integer.
The most interesting situation is however when the infimum is not attained in
(1.13), which is expected to be the case for the SK model (where ξ(x) = βx2/2)
when β is large enough.

The Parisi formula can be seen as a theorem of mathematical analysis.
The proof we present is self-contained, and requires no knowledge whatso-
ever of physics. It could however be of some interest to briefly discuss some
of the results and of the ideas that led to this proof. This discussion, that
occupies the rest of the present paragraph, assumes that the reader is some-
what familiar with the area and its recent history, and understands it is in
no way a prerequisite to read the rest of the paper. We will discuss only
the history of the SK model (where ξ(x) = βx2/2). In that case, at given
h, for β small enough, the infimum in (1.13) is obtained for k = 1, and the
corresponding value is known as the “replica-symmetric solution”. The re-
gion of parameters β, h where this occurs is known as the “high-temperature
region”. For sufficiently small β, (say, β ≤ 1/10), and any value of h, the
author [21] first proved in 1996 the validity of (1.14) using the so-called “cav-
ity method” (which is developed at length in his book [16]). Soon after, and
independently, M. Shcherbina [11] produced a proof using somewhat different
ideas, valid in a larger region of parameters and, in particular, for all h and all
β ≤ 1. It became soon apparent however that the cavity method is powerless
to obtain (1.14) in the entire high-temperature region.

One of the key ideas of our approach is the observation (to be detailed
later) that, in order to prove lower bounds for the left-hand side of (1.14), it is
sufficient to prove upper bounds on similar quantities that involve two copies
of the system (what is called real replicas in physics). The author observed
this in 1998 while writing the paper [13]. This observation was not very useful
at that time, since there was no method to prove upper bounds. In 2000, F.
Guerra [2] invented an interpolation method (which he later improved in his
marvelous paper [3] that plays an essential role in our approach) to prove such
upper bounds, and soon after the author [15] attempted to combine Guerra’s
method of proving upper bounds with his method to turn upper bounds into
lower bounds to try to prove (1.14) in the entire high temperature region.

The main difficulty is that when one tries to use Guerra’s method for two
replicas, some terms due to the interaction between these replicas have the
wrong sign. The device used by the author [15] in an attempt to overcome this
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difficulty unfortunately runs into intractable technical problems. The paper
[15] inspired in turn a work by Guerra and Toninelli [4], with a more straight-
forward approach, but that also fails to reach the entire high-temperature
region. The author then improved in [16, Th. 2.9.10], the result of Guerra
and Toninelli [4], and it was at this time that he made the simple, yet critical,
observation that the difficulties occurring when one attempts to use Guerra’s
scheme of [2] for two replicas largely disappear when, rather than considering
the system consisting of two replicas, one considers instead the subsystem of
the set of pairs of configurations with a given overlap. The region reached by
this theorem still seems smaller than the high-temperature region. The au-
thor obtained somewhat later, in spring 2003, the proof of (1.14) in the entire
high-temperature region, and presented it in [16, Th. 2.11.16]. Even though
our proof of Theorem 1.1 is self-contained, to penetrate the underlying ideas,
the reader might find it useful to look first at this simpler use of our main
techniques.

The basic mechanism of the proof extracts crucial information from the
fact that one cannot improve the bound obtained for k = 1 when one uses
instead k = 2. This mechanism is simpler to describe in the case of the control
of the high-temperature region than in the general case, which involves more
details. It should be stressed however that the conventional wisdom, that
asserted that the proof of (1.14) would be much easier in the high-temperature
region than in general, turned out to be completely wrong. Rather surprisingly,
the main ideas of our proof of the Parisi formula seem already required to
prove it in the entire high temperature region. A crucial difficulty in the
control of this region is that in some sense low temperature behavior seems to
occur earlier when one considers two replicas rather than one. Even to control
the high temperature region, our proof uses one idea of the type “symmetry
breaking” (as inspired by Guerra [3]). Thus, unexpectedly, while it took many
years to prove the Parisi formula in the entire high-temperature region, it took
only a few weeks more to prove it for all values of the parameters.

Interestingly, and despite Theorem 1.1, it is still not known exactly what
is the high temperature region of the SK model. This is due to the difficulty
of computing P(ξ, h). F. Guerra proved that for any values of β and h, if the
r.v. z is standard Gaussian, the equation q = Eth2(βz

√
q + h) has a unique

solution, and F. Toninelli [22] deduced from Guerra’s upper bound of [3] that,
if q is this unique solution, in the high temperature region one has

β2 E
1

ch4(βz
√

q + h)
≤ 1.(1.15)

It seems possible that the region where Condition (1.15) holds is exactly the
high temperature region, but this has not been proved yet. (This question
boils down to a nasty calculus problem, see [16, p. 154].)
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It seems of interest to mention some of the developments that occurred
during the rather lengthy interval that separated the submission of this work
from its revision. The author [19] extended Theorem 1.1 to the case of the
spherical model and obtained some information on the physical meaning of
the parameters occurring in P(ξ, h) [18], [21]. Moreover, D. Panchenko [7]
extended Theorem 1.1 to the case where the spins can take more general values
than −1 and 1 .

The Parisi conjecture (1.14) was probably the most widely known open
problem about “spin glasses”, and it is certainly nice to have been able to
prove it. The author would like however to stress that, when seen as part of
the global area of spin glass models, this is a rather limited progress. It is not
more than a very first step in a very rich area. Many of the most fundamental
and fascinating predictions of the Parisi theory remain conjectures, even in the
case of the SK model. This is in particular the case of ultrametricity and of the
so-called chaos problem. These problems apparently cannot be solved using
only the techniques of the present paper, or simple modifications of these. It is
even conceivable that they will turn out to be very difficult. In fact, very little
is presently known about the structure of the Gibbs measure. Moreover, the
techniques of the present paper rely on rather specific arguments, namely using
the convexity of ξ, to ensure that certain remainder terms are nonnegative. It is
not known at this time how to use a similar approach for any of the important
spin glass models other than the class described here (and variations of it). A
detailed description in mathematical terms of some of the most blatant open
problems on spin glasses can be found in [20].

Acknowledgment. I am grateful to WanSoo Rhee for having typed this
manuscript and to Dmitry Panchenko for a careful reading.

2. Methodology

To lighten notation, we will not indicate the dependence in N , so that
our basic Hamiltonian is denoted by H. Central to our approach is the inter-
polation scheme recently discovered by F. Guerra [3]. Consider an integer k

and sequences m, q as above. Consider independent copies (zi,p)0≤p≤k of the
sequence (zp)0≤p≤k of (1.9), that are independent of the randomness of H. We
denote by E� expectation in the r.v. (zi,p)i≤N,p≥�. We consider the Hamiltonian

Ht(σ) =
√

tH(σ) +
∑
i≤N

σi

(
h +

√
1 − t

∑
0≤p≤k

zi,p

)
.(2.1)

We define

Fk+1,t = log
∑
σ

exp Ht(σ),(2.2)
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and, for � ≥ 1, we define recursively

F�,t =
1

m�
log E� exp m�F�+1,t.(2.3)

When m� = 0 this means that F�,t = E�F�+1,t. We set

ϕ(t) =
1
N

EF1,t.(2.4)

The expectation here is in both the randomness of H and the r.v. (zi,0)i≤N .
We write, for 1 ≤ � ≤ k,

W� = exp m�(F�+1,t − F�,t).(2.5)

(To lighten notation, the dependence in t is kept implicit.) We denote by Ξ�

the σ-algebra generated by H and the variables (zi,p)i≤N,p<� so that F�,t is
Ξ�-measurable, and

W� is Ξ�+1-measurable.(2.6)

Since E�(·) = E(·|Ξ�), it follows from (2.3) that

E�(W�) = 1.(2.7)

Using (2.6), and since E� = E�E�+1, we see inductively from (2.7) that

E�(W� · · ·Wk) = E�(W�)E�+1(W�+1 · · ·Wk) = 1.(2.8)

Let us denote by 〈f〉t the average of a function f for the Gibbs measure
with Hamiltonian Ht, i.e.

〈f〉t exp Fk+1,t =
∑
σ

f(σ) exp Ht(σ).

We then see from (2.8) that the functional

f 	→ E�

(
W� · · ·Wk〈f〉t

)
is a probability γ� on ΣN . We denote by γ⊗2

� its product on Σ2
N , and for a

function f : Σ2
N → R we set

µ�(f) = E
(
W1 · · ·W�−1γ

⊗2
� (f)

)
.(2.9)

Theorem 2.1 (Guerra’s identity [3]). For 0 < t < 1 we have

ϕ′(t) =−1
2

∑
1≤�≤k

m�(θ(q�+1) − θ(q�))(2.10)

−1
2

∑
1≤�≤k

(m� − m�−1)µ�

(
ξ(R1,2) − R1,2ξ

′(q�) + θ(q�)
)

+ R

where |R| ≤ c(N).



228 MICHEL TALAGRAND

The convexity of ξ implies that

∀x , ξ(x) − xξ′(q) + θ(q) ≥ 0(2.11)

so by (2.10) we have

ϕ(1) ≤ ϕ(0) − 1
2

∑
1≤�≤k

m�

(
θ(q�+1) − θ(q�)

)
+ c(N).(2.12)

One basic idea of (2.1) is that for t = 0, there is no interaction between
the sites, so that ϕ(0) is easy to compute. In fact, if we denote by Xi,� the
r.v. defined as in (1.10) but starting with the sequence (zi,p)0≤p≤k rather than
with the sequence (zp)0≤p≤k, we see immediately by decreasing induction over
� that

F�,0 = N log 2 +
∑
i≤N

Xi,�(2.13)

so that

ϕ(0) = log 2 + X0(2.14)

and (2.12) implies

1
N

E log
∑
σ

exp
(
HN (σ) + h

∑
i≤N

σi

)
≤ Pk(m, q) + c(N),(2.15)

which proves “half” of Theorem 1.1, the main result of [3].
Soon after the present work was submitted for publication, Aizenman,

Sims and Starr [1] produced a generalization of Guerra’s interpolation scheme
(nontrivial arguments are required to show that this scheme actually contains
Guerra’s scheme). The main purpose of this scheme seems to have been to
try to improve on Guerra’s bound (2.15). As Theorem 1.1 shows, this is not
possible. However the scheme of [1] is still of interest, and is more transparent
than Guerra’s scheme. It was used in particular by the author [17] to prove that
Guerra’s bound (2.15) still holds if one relaxes condition (1.5) into assuming
that ξ is convex on R+ rather than on R as is assumed in [3]. It would be
nice to be able to prove Theorem 1.1 under these weaker conditions on ξ. This
would in particular cover the case of the p-spin interaction model for odd p.

We will deduce the other half of Theorem 1.1 from the following, where
we recall that ϕ depends implicitly on k,m and q.

Theorem 2.2. Given t0 < 1, there exists a number ε > 0, depending only
on t0, ξ and h, with the following property. Assume that for some number k

and for some sequences m and q as in (1.8), we have

Pk(m, q) ≤ P(ξ, h) + ε,(2.16)
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Pk(m, q) realizes the minimum over all choices of m and q.(2.17)

Then, for t ≤ t0, we have

lim
N→∞

ϕ(t) = ψ(t) := ϕ(0) − t

2

∑
1≤�≤k

m�

(
θ(q�+1) − θ(q�)

)
.(2.18)

The existence of m and q satisfying (2.17) is obvious by a compactness
argument. It is to permit this compactness argument that equality is allowed
in (1.6) and (1.7). However, when m and q are as in (2.17), without loss of
generality, we can assume (decreasing k if necessary) that

0 = q0 < q1 < · · · < qk < qk+1 = 1 , 0 = m0 < m1 < · · · < mk−1 < mk = 1.

(2.19)

This is because if q� = q�+1 then z� = 0, so that we can remove q�+1 from the
list q and m� from the list m without changing anything. If m� = m�+1 we
can “merge the intervals [q�, q�+1[ and [q�+1, q�+2[” and remove q�+1 from q and
m� from m.

The central point of Theorem 2.2 is the fact that t0 < 1 can be as close
to 1 as one wishes. The expert about the cavity method should have already
guessed that if instead of (2.17) we fix m and we assume that Pk(m, q) realizes
the minimum over all choices of q, then the conclusion of Theorem 2.2 holds
for some t0 > 0 (a result that is in the spirit of the fact that “the replica-
symmetric solution is true at high enough temperature”). The key mechanism
of the proof extracts information from the fact that Pk(m, q) is also minimal
over all choices of m to reach any value t0 < 1 (a result that is in the spirit of
“the control of the entire high-temperature region”).

It might be useful to stress the considerable simplification that is brought
by Theorem 2.2. One only has to consider structures with a “finite level on
complexity” independent of N . It is of course much easier to bring out these
structures in a large system than it would be to bring out the whole Parisi
structure with “an infinite level of complexity”. One can surely expect that
this idea of reducing to a “finite level of complexity” through interpolation to
be useful in the study of other spin glass systems.

When ξ′′(0) > 0, one can actually take ε of order (1− t0)6 in Theorem 2.2.
We see no reason why this rate would be optimal.

To prove Theorem 1.1, we see from Guerra’s identity that |ϕ′(t)| ≤ L +
c(N), where, as everywhere in this paper, L denotes a number depending on
ξ and h only, that need not be the same at each occurrence. Since ψ(1) =
Pk(m, q), we see from (2.18) that

lim sup
N→∞

|ϕ(1) − Pk(m, q)| ≤ L(1 − t0)
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so that
lim inf
N→∞

ϕ(1) ≥ P(ξ, h) − L(1 − t0),

and this implies Theorem 1.1 since t0 < 1 is arbitrary.
We will deduce Theorem 2.2 from the following, where, for simplicity, we

write µr(A) rather than µr(1A) for a subset A of Σ2
N .

Proposition 2.3. Given t0 < 1, there exists ε > 0, depending only on
t0, ξ and h, with the following properties. Assume that k,m, q are as in (2.16),
(2.17) and (2.19). Then for any ε1 > 0, and any 1 ≤ r ≤ k, for N large
enough, we have for all t ≤ t0 that

µr

({
(σ1, σ2); (R1,2 − qr)2 ≥ K(ψ(t) − ϕ(t)) + ε1

})
≤ ε1.(2.20)

Here, as well as in the rest of the paper, K denotes a number depending
on ξ, t0, h, q and m only, and that need not be the same at each occurrence.
(Thus here K does not depend on N, t or ε1.)

Proof of Theorem 2.2. Since ξ is twice continuously differentiable, we
have

|ξ(R1,2) − R1,2ξ
′(qr) + θ(qr)| ≤ L(R1,2 − qr)2(2.21)

and thus (2.20) implies (since |R1,2 − qr| ≤ 2) that for t ≤ t0, we have

µr

(
ξ(R1,2) − R1,2ξ

′(qr) + θ(qr)
)
≤ K(ψ(t) − ϕ(t)) + Lε1

and (2.10) implies that(
ψ(t) − ϕ(t)

)′ ≤ K
(
ψ(t) − ϕ(t)

)
+ Lε1 + c(N).(2.22)

Since ϕ(0) = ψ(0), (2.18) follows by integration.

The essential ingredient in the proof of (2.20) is an a priori bound of the
same nature as (2.15), but for two copies of the system coupled in a special
way. This construction will make the functionals µ� of (2.9) appear as very
natural objects. We fix 1 ≤ r ≤ k and sequences m and q as in (2.16), (2.17),
and (2.19) once and for all. (Thus m1 > 0.) We consider a sequence of pairs
of Gaussian r.v. (z1

p , z2
p), for 0 ≤ p ≤ k. Each pair is independent of the others.

For j = 1 or j = 2 the sequence (zj
p) is as in (1.9); but

z1
p = z2

p if p < r; z1
p and z2

p are independent if p ≥ r.(2.23)

We consider the Hamiltonian

Ht(σ1, σ2) =
√

t
(
H(σ1) + H(σ2)

)
+

∑
j=1,2

∑
i≤N

σj
i

(
h +

√
1 − t

∑
0≤p≤k

zj
i,p

)
,

(2.24)
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where (z1
i,p, z

2
i,p)0≤p≤k are independent copies of the sequence (z1

p , z2
p)0≤p≤k,

that are also independent of the randomness in H. We define

n� =
m�

2
if 0 ≤ � < r; n� = m� if r ≤ � ≤ k,(2.25)

and

Jk+1,t,u = log
∑

R1,2=u

exp Ht(σ1, σ2).(2.26)

Thus, the sum is taken only over all pairs (σ1, σ2) for which R1,2 = u. (We
always assume that u is taken such that such pairs exist.) For � ≥ 0, we define
recursively

J�,t,u =
1
n�

log E� exp n�J�+1,t,u(2.27)

where E� denotes expectation in the r.v. zj
i,p for p ≥ �, and we set

Ψ(t, u) =
1
N

EJ1,t,u,(2.28)

where the expectation is in the randomness of H and the r.v.zj
i,0. The a priori

estimate on which the paper relies is the following.

Theorem 2.4. If t0 < 1, there is a number ε > 0, depending only on t0, ξ

and h such that whenever (2.16), (2.17) and (2.19) hold, for all t ≤ t0 we have

Ψ(t, u) ≤ 2ψ(t) − (u − qr)2

K
+ 2c(N),(2.29)

where K does not depend on t or N .

It is very likely that with a further effort, one could get an explicit de-
pendence of K in t0, probably K = L/(1 − t0)2, thereby obtaining a rate of
convergence in Theorem 1.1. This line of investigation is better left for further
research.

To obtain Proposition 2.3, we will combine (2.29) with the following.

Proposition 2.5. Assume that for some ε2 > 0 we have

Ψ(t, u) ≤ 2ϕ(t) − ε2.(2.30)

Then we have

µr({R1,2 = u}) ≤ K exp
(
−N

K

)
,(2.31)

where K does not depend on N or t.
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Proof of Proposition 2.3. Consider t0 < 1 and let ε > 0 be as in Theo-
rem 2.4. Let K0 be the constant of (2.29). Consider ε1 > 0. Then if

(u − qr)2 ≥ 2K0(ψ(t) − ϕ(t)) + ε1,

by (2.29) we have Ψ(t, u) ≤ 2ϕ(t)− ε1/K0 + 2c(N), so that (2.30) holds for N

large with ε2 = ε1/2K0. Since there are at most 2N +1 values of u to consider
(because NR1,2 ∈ Z), it follows from (2.31) that

µr

({
(R1,2 − qr)2 ≥ 2K0(ψ(t) − ϕ(t)) + ε1

})
≤ (2N + 1)K exp

(
−N

K

)
,

and for N large enough the right-hand side is ≤ ε1 for all t ≤ t0.

The proof of Proposition 2.5 has two parts. The first part relies on a
rather general principle, but the second will shed some light on the conditions
(2.23) and (2.25).

Keeping the dependence in t implicit, we define

Jk+1 = log
∑

σ1,σ2

exp Ht(σ1, σ2),(2.32)

where the sum is now over all pairs of configurations, and we define recursively
J� as in (2.27). We set

V� = expn�(J�+1 − J�)(2.33)

and denote by 〈 · 〉 an average for Gibbs’ measure with Hamiltonian (2.24). To
lighten notation we write J�,u rather than J�,t,u.

Lemma 2.6. If we have E(J1,u) ≤ E(J1)− ε2N , then for some number K ′

not depending on N or t we have

E
(
V1 · · ·Vk〈1{R1,2=u}〉

)
≤ K ′ exp

(
− N

K ′

)
.

Proof. Let U = 〈1{R1,2=u}〉, so that U ≤ 1 and

Jk+1,u = Jk+1 + log U.(2.34)

Arguing as in (2.8), we see that

∀� ≥ 0 , E�

(
V� · · ·VkU

)
≤ 1.(2.35)

We prove by decreasing induction over � that

J�+1,u ≥ J�+1 +
1

n�+1
log E�+1

(
V�+1 · · ·VkU

)
.(2.36)

For � = k, this is (2.34). For the induction from � + 1 to �, using (2.35) for
� + 1 and that n� ≤ n�+1, we see first that

J�+1,u ≥ J�+1 +
1
n�

log E�+1

(
V�+1 · · ·VkU

)
(2.37)
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and thus, using the definition of V� in the second line,

exp n�J�+1,u ≥E�+1(V�+1 · · ·VkU) exp n�J�+1

= V�E�+1(V�+1 · · ·VkU) exp n�J�

=E�+1(V� · · ·VkU) exp n�J�.

Since J� does not depend on the r.v. (zj
i,p) for p ≥ �, and since E� = E�E�+1 we

have

E� exp n�J�+1,u ≥ exp n�J�E�(V� · · ·VkU),

and taking logarithms completes the induction. Thus, using (2.36) for � = 0
we have

log E1(V1 · · ·VkU) ≤ n1(J1,u − J1)

and hence, taking expectation,

E log E1(V1 · · ·VkU) ≤ −ε2n1N.

Moreover since m1 > 0 we have n1 > 0. It then follows from concentration of
measure (as detailed in this setting e.g. in [16, §2.2]) that log E1(V1 · · ·VkU) ≥
−ε2n1N/2 with a probability at most K1 exp(−N/K1), where K1 does not
depend on N or t. Thus E1(V1 · · ·VkU) ≥ exp(−ε2n1N/2) with the same
probability and the conclusion using (2.35) for � = 1.

Lemma 2.7. We have
1
N

EJ1 = 2ϕ(t),(2.38)

and for any function f on Σ⊗2
N , we have

E(V1 · · ·Vk〈f〉) = µr(f).(2.39)

Combining this with Lemma 2.6, we prove Proposition 2.5.

Proof. The ideas underlying this proof are very simple, but will play a
fundamental role in the sequel. Therefore, we try choose clarity over formality.
Writing zp = (zi,p)i≤N , we see that the quantities F� = F�,t of (2.3) depend
on the randomness of H and the r.v. (zp) for p < �, so we can write them as
F�(z1, . . . ,z�−1). For j = 1, 2, we write, with obvious notation

F j
� = F�(z

j
1, . . . ,zj

�−1).

We claim that for � ≥ 1 we have

J� = F 1
� + F 2

� .(2.40)

This is obvious for � = k + 1. If � ≥ r, since z1
� and z2

� are independent,

E� exp m�(F 1
�+1 + F 2

�+1) = E� exp m�F
1
�+1E� exp m�F

2
�+1 = exp m�(F 1

� + F 2
� )
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and this performs the induction step from � + 1 to � in (2.40). If � < r, since
F j

�+1 depends only on (zj
1, . . . ,zj

r−1), we have by (2.23) that F 1
�+1 = F 2

�+1, so,
since n� = m�/2,

E� exp n�(F 1
�+1 + F 2

�+1) = E� exp m�F
1
�+1 = E� exp m�F

1
� = exp n�(F 1

� + F 2
� )

and this completes the proof of (2.40). Taking � = 1 and expectation implies
(2.38).

Since W� depends only on z1, . . . ,z�, it follows with obvious notation that

V� = W 1
� = W 2

� if � < r; V� = W 1
� W 2

� if � ≥ r,

from which it is straightforward to check (2.39).

3. Guerra’s bound and its extension

We will first prove Theorem 2.1. Our approach to the computations is
slightly simpler than Guerra’s [3]. This simplification will be quite helpful
when we will consider the more complicated situation of Theorem 3.1.

The main tool of the proof is integration by parts. Consider a jointly
Gaussian family of r.v. h = (hj)j∈J , J finite. Then for a function F : RJ → R,
of moderate growth, we have

EhiF (h) =
∑
j∈J

E(hihj)E
∂F

∂xj
(h).(3.1)

Since exp m�F�,t = E� exp m�F�+1,t, by (2.3) we get

∂F�,t

∂t
exp m�F�,t = E�

∂F�+1,t

∂t
exp m�F�+1,t,

and since F�,t is Ξ�-measurable, we get

∂F�,t

∂t
= E�W�

∂F�+1,t

∂t

where W� is given by (2.5). By iteration (and arguing as in the proof of (2.8)),
we get

ϕ′(t) = E
(
W1 · · ·Wk

∂Fk+1,t

∂t

)
.(3.2)

Since m0 = 0 and mk = 1, for any numbers c1, . . . , ck+1, we have∑
1≤�≤k

m�(c�+1 − c�) = ck+1 +
∑

1≤�≤k

c�(m�−1 − m�).(3.3)

Using this for c� = F�,t, we get

W1 · · ·Wk = T exp Fk+1,t(3.4)
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where T = T1 · · ·Tk and

T� = exp F�,t(m�−1 − m�),(3.5)

so that

ϕ′(t) =
1
N

E
(
T

∂

∂t
exp Fk+1,t

)
= I +

∑
0≤p≤k

II(p),(3.6)

where

I =
1

2N
√

t
E
(
T

∑
σ

H(σ) exp Ht(σ)
)
,(3.7)

II(p) =− 1
2N

√
1 − t

E
(
T

∑
σ,i

σizi,p exp Ht(σ)
)
.(3.8)

To compute I, we use (3.1) for the family (H(σ))σ∈ΣN
. We write

ζ(σ1, σ2) =
1
N

E
(
H(σ1)H(σ2)

)
(3.9)

so that by (1.3) we have

|ζ(σ1, σ2) − ξ(R1,2)| ≤ c(N).(3.10)

We think of the quantities H(σ) as independent variables, and, with a slight
abuse of notation, we have from (3.5) that

∂T�

∂H(ρ)
= (m�−1 − m�)

∂F�,t

∂H(ρ)
T�

so that I = III +
∑

1≤�≤k I(�) where

III =
1

2
√

t
E
(
T

∑
σ,ρ

ζ(σ, ρ)
∂

∂H(ρ)
exp Ht(σ)

)
(3.11)

I(�) =
m�−1 − m�

2
√

t
E
(
T

∑
σ,ρ

ζ(σ, ρ) exp Ht(σ)
∂F�,t

∂H(ρ)

)
.(3.12)

Now
∂

∂H(ρ)
exp Ht(σ) =

√
t 1{ρ=σ} exp Ht(σ)

=
√

t 1{ρ=σ}〈1{σ}〉t exp Fk+1,t.

Here 1{ρ=σ} is 1 if ρ = σ and is 0 otherwise. The function 1{σ} is such that
1{σ}(τ ) = 1{ρ=τ} so that 〈1{σ}〉t is the mass at σ of the Gibbs measure. Thus,∑

σ,ρ

ζ(σ, ρ)
∂

∂H(ρ)
exp Ht(σ) =

√
t
∑
σ

ζ(σ, σ)〈1{σ}〉t exp Fk+1,t

=
√

t〈ζ(σ, σ)〉t exp Fk+1,t,
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and using (3.10), (3.4) and (2.8) for � = 1, we get

III =
1
2
ξ(1) + R

where |R| ≤ c(N)/2. We have

∂

∂H(ρ)
Fk+1,t =

√
t〈1{ρ}〉t

so that, proceeding as in (3.2), we have

∂

∂H(ρ)
F�,t =

√
tE�

(
W� · · ·Wk〈1{ρ}〉t

)
=

√
t γ�(1{ρ}).(3.13)

Since exp Ht(σ) = 〈1{σ}〉t exp Fk+1,t we get from (3.4) that

I(�) =
m�−1 − m�

2

∑
σ,ρ

ζ(σ, ρ)E
(
W1 · · ·Wk〈1{σ}〉tγ�(1{ρ})

)
.(3.14)

Since E = EE� and W1, . . . , W�−1, γ� are Ξ�-measurable, we get that

E
(
W1 · · ·Wk〈1{σ}〉tγ�(1{ρ})

)
= E

(
W1 · · ·W�−1γ�(1{ρ})E�(W� · · ·Wk〈1{σ}〉t)

)
= E

(
W1 · · ·W�−1γ�(1{ρ})γ�(1{σ})

)
= E

(
W1 · · ·W�−1γ

⊗2
� (1{(σ,ρ)})

)
= µ�(1{(σ,ρ)})

and thus

I(�) =
m�−1 − m�

2
µ�(ζ(σ, ρ)).

Again using (3.10), we get

I =
1
2

(
ξ(1) +

∑
1≤�≤k

(m�−1 − m�)µ�(ξ(R1,2))
)

+ R(3.15)

where |R| ≤ c(N).
Since F�,t does not depend on zi,p for � ≤ p, a similar (but easier) compu-

tation yields

II(p) = −1
2
(
ξ′(qp+1) − ξ′(qp)

)(
1 +

∑
p<�≤k

(m�−1 − m�)µ�(R1,2)
)
.(3.16)

Since ξ′(q0) = ξ′(0) = 0, summation of these formulas for 0 ≤ p ≤ k yields∑
0≤p≤k

II(p) = −1
2

(
ξ′(1) +

∑
1≤�≤k

(m�−1 − m�)ξ′(q�)µ�(R1,2)
)
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so that

(3.17)

2ϕ′(t) = ξ(1) − ξ′(1) +
∑

1≤�≤k

(m�−1 − m�)µ�

(
ξ(R1,2) − R1,2ξ

′(q�)
)

+ 2R

=−θ(1) −
∑

1≤�≤k

(m�−1 − m�)θ(q�)

+
∑

1≤�≤k

(m�−1 − m�)µ�

(
ξ(R1,2) − R1,2ξ

′(q�) + θ(q�)
)

+ 2R

and the result follows using (3.3) for c� = θ(q�).

We now turn to the principle on which the paper relies. We consider
integers κ, τ , with τ ≤ κ, a number η = ±1, a sequence n0 = 0 ≤ n1 ≤ · · · ≤ nκ

= 1, and a sequence ρ0 = 0 ≤ ρ1 ≤ · · · ≤ ρκ+1 = 1. We consider independent
pairs of random variables (Z1

p , Z2
p)0≤p≤κ. We construct independent pairs of

Gaussian random variables (y1
p, y

2
p)0≤p≤κ with the following properties:

y1
p = ηy2

p if p < τ,(3.18)

y1
p and y2

p are independent if p ≥ τ,(3.19)

E(yj
p)

2 = t
(
ξ′(ρp+1) − ξ′(ρp)

)
.(3.20)

We consider independent copies (Z1
i,p, Z

2
i,p)0≤p≤κ of the sequence

(Z1
p , Z2

p)0≤p≤κ, and independent copies (y1
i,p, y

2
i,p)0≤p≤κ of the sequence

(y1
p, y

2
p)0≤p≤κ. We assume that these are independent of each other and of the

randomness of H. For 0 ≤ v ≤ 1, we define

Hv(σ1, σ2) =
√

vtH(σ1) +
√

vtH(σ2)(3.21)

+
∑

j=1,2

∑
i≤N

σj
i

(
h +

∑
0≤p≤κ

(Zj
i,p +

√
1 − vyj

i,p)
)
.

We think of t as fixed, so the dependence in t is not indicated. To lighten
notation we set

u = ηρτ .(3.22)

We define

Fκ+1,v = log
∑

R1,2=u

exp Hv(σ1, σ2),(3.23)

that is, the sum is taken only over the pairs (σ1, σ2) of configurations such
that R1,2 = u. We denote by E� expectation in the variables Zj

i,p and yj
i,p for

p ≥ �, and define recursively

F�,v =
1
n�

log E� exp n�F�+1,v.
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(If n� = 0, this means that F�,v = E�F�+1,v.) We define

η(v) =
1
N

EF1,v.(3.24)

Theorem 3.1. For 0 < v < 1 we have

η′(v) ≤ −t
(
2

∑
�<τ

n�

(
θ(ρ�+1) − θ(ρ�)

)
+

∑
�≥τ

n�

(
θ(ρ�+1) − θ(ρ�)

))
+ 4c(N)

(3.25)

and, consequently,

η(1)≤ η(0) − t
(
2

∑
�<τ

n�

(
θ(ρ�+1) − θ(ρ�)

))
(3.26)

+
∑
�≥τ

n�

(
θ(ρ�+1) − θ(ρ�)

))
+ 4c(N).

The underlying idea is that, as in Theorem 2.1, for v = 0, there is no
coupling between the sites, so that we will be able to estimate η(0), and thus
to bound η(1) with (3.26).

Proof. This relies on the same principles as the proof of Theorem 2.1. The
main new feature is that new terms are created by the interaction between the
two copies of the system we consider now. These terms tend to have the wrong
sign to make the argument of Theorem 2.1 work, but the device of restricting
the summation to R1,2 = u in (3.23) makes these terms much easier to handle.
We write

V� = exp n�(F�+1,v − F�,v); T� = exp F�,v(n�−1 − n�),

so that if T = T1 · · ·Tκ we have V1 · · ·Vκ = T exp Fκ+1,v. We consider the set

Su = {(σ1, σ2) ∈ Σ2
N ; R1,2 = u}

and, for a function f on Su, define 〈f〉v by

〈f〉v exp Fκ+1,v =
∑

(σ1,σ2)∈Su

f(σ1, σ2) exp Hv(σ1, σ2).

We define a probability γ� on Su by

γ�(f) = E�(V� · · ·Vκ〈f〉v)
and for a function f on S2

u, we write

µ�(f) = E
(
V1 · · ·V�−1γ

⊗2
� (f)

)
.

As in the case of Theorem 2.1, we obtain

η′(v) = I +
∑

0≤p≤κ

II(p),(3.27)
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where

I =
√

t

2N
√

v
E
(
T

∑
R1,2=u

(H(σ1) + H(σ2)) expHv(σ1, σ2)
)
,(3.28)

II(p) =−
√

t

2N
√

1 − v
E
(
T

∑
R1,2=u

∑
i≤N,j=1,2

σj
i y

j
i,p exp Hv(σ1, σ2)

)
.(3.29)

We have

(3.30)
∂

∂H(σ)
exp Hv(σ1, σ2) =

√
vt(1{σ1=σ} + 1{σ2=σ}) exp Hv(σ1, σ2)

=
√

vt(1{σ1=σ} + 1{σ2=σ})〈1{(σ1,σ2)}〉v exp Fκ+1,v

so that
∂

∂H(σ)
Fκ+1,v =

√
vt

∑
(τ1,τ2)∈Su

(1{τ1=σ} + 1{τ2=σ})〈1{(τ1,τ2)}〉v.

Thus, integrating by parts in (3.28), as in the case of Theorem 2.1, we get

I = III +
∑

0≤�≤κ

I(�),

where

III =
t

2
E
(
V1 · · ·Vκ

∑
R1,2=u

D1(σ1, σ2)
)

(3.31)

I(�) =
t

2
(n�−1 − n�)E

(
V1 · · ·Vκ

∑
R1,2=u

D2(σ1, σ2)
)
,(3.32)

for

(3.33)

D1(σ1, σ2) =
∑
σ

(1{σ1=σ} + 1{σ2=σ})
(
ζ(σ1, σ) + ζ(σ2, σ)

)
〈1{(σ1,σ2)}〉v

=
(
ζ(σ1, σ1) + ζ(σ2, σ2) + 2ζ(σ1, σ2)

)
〈1{(σ1,σ2)}〉v

and

D2(σ1, σ2) =
∑
σ

(
ζ(σ1, σ) + ζ(σ2, σ)

)
〈1{(σ1,σ2)}〉v(3.34)

×
∑

(τ1,τ2)∈Su

(1{τ1=σ} + 1{τ2=σ})γ�

(
1{(τ1,τ2)}

)
= 〈1{(σ1,σ2)}〉v

∑
(τ1,τ2)∈Su

γ�

(
1{(τ1,τ2)}

)
×

(
ζ(σ1, τ 1) + ζ(σ1, τ 2) + ζ(σ2, τ 1) + ζ(σ2, τ 2)

)
.
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Using, as in the case of Theorem 2.1, the fact that

E
(
V1 · · ·Vκ〈f1〉vγ�(f2)

)
= E

(
V1 · · ·V�−1γ�(f1)γ�(f2)

)
we get

I(�) =
t

2
(n�−1 − n�)µ�

(
ζ(σ1, τ 1) + ζ(σ1, τ 2) + ζ(σ2, τ 1) + ζ(σ2, τ 2)

)
,

where the four quantities ζ(·, ·) are seen as functions of ((σ1, σ2), (τ 1, τ 2)) ∈
S2

u.
Using (3.10), and since in (3.31) the summation is only over R1,2 = u, we

have

I =
t

2

(
2ξ(1) + 2ξ(u) +

∑
1≤�≤κ

(n�−1 − n�)µ�

(
ξ
(
R(σ1, τ 1)

)
+ ξ

(
R(σ1, τ 2)

)
+ξ

(
R(σ2, τ 1)

)
+ ξ

(
R(σ2, τ 2)

)))
+ R,

where |R| ≤ 4c(N).
To compute the term II, we have to keep in mind (3.18) and (3.19). When

p ≥ τ we find by a similar computation

II(p) = Cp :=− t

2
(
ξ′(ρp+1) − ξ′(ρp)

)
×

(
2 +

∑
p<�≤κ

(n�−1 − n�)µ�

(
R(σ1, τ 1) + R(σ2, τ 2)

))
and when p < τ , we find

II(p) = Cp −
ηt

2
(
ξ′(ρp+1) − ξ′(ρp)

)
×

(
2u +

∑
p<�≤κ

(n�−1 − n�)µ�

(
R(σ1, τ 2) + R(σ2, τ 1)

))
.

By summation of these formulas, we get∑
0≤p≤κ

II(p) =− t

2

(
2ξ′(1) + 2ηuξ′(ρτ )

+
∑

1≤�≤κ

ξ′(ρ�)(n�−1 − n�)µ�

(
R(σ1, τ 1) + R(σ2, τ 2)

)
+η

∑
1≤�≤κ

ξ′(ρmin(�,τ))(n�−1 − n�)µ�

(
R(σ1, τ 2) + R(σ2, τ 1)

))
.

We note that, since we assume that ξ(x) = ξ(−x), besides (2.11) we also have

ξ(x) − ηxξ′(q) + θ(q) = ξ(ηx) − ηxξ′(q) + θ(q) ≥ 0.

Finally, writing

Sj(ρ) = ξ(R(σj , τ j)) − ξ′(ρ)R(σj , τ j) + θ(ρ) ≥ 0,
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T j,j′
(ρ) = ξ(R(σj , τ j′

)) − ηξ′(ρ)R(σj , τ j′
) + θ(ρ) ≥ 0

we get

η′(v)≤ t

2

(
2
(
ξ(1) − ξ′(1) + ξ(u) − ηuξ′(ρτ )

)
+

∑
1≤�≤κ

(n�−1 − n�)µ�

(
S1(ρ�) + S2(ρ�)

)
+

∑
1≤�≤κ

(n�−1 − n�)µ�

(
T 1,2(ρmin(�,τ)) + T 2,1(ρmin(�,τ))

)
−2

∑
1≤�≤κ

(n�−1 − n�)θ(ρ�) − 2
∑

1≤�≤κ

(n�−1 − n�)θ(ρmin(�,τ))
)
+4c(N).

Now, since ξ(ηx) = ξ(x) and ρτ = ηu, we have ξ(u) − ηuξ′(ρτ ) = ξ(ρτ ) −
ρτξ

′(ρτ ) = −θ(ρτ ), so using (3.3) twice, and since Sj(ρ), T j,j′
(ρ) ≥ 0 we get

η′(v)≤−t
( ∑

1≤�≤κ

n�

(
θ(ρ�+1) − θ(ρ�)

)
+

∑
1≤�≤κ

n�

(
θ(ρmin(�+1,τ)) − θ(ρmin(�,τ))

))
+ 4c(N)

=−t
( ∑

1≤�≤κ

n�

(
θ(ρ�+1) − θ(ρ�)

)
+

∑
1≤�<τ

n�

(
θ(ρ�+1) − θ(ρ�)

))
+ 4c(N).

This proves (3.25).

4. The basic operators.

In this section, we perform some basic calculations, and then learn how
to use conditions (2.16), (2.17) and (2.19).

We consider a standard Gaussian r.v. g, and an infinitely differentiable
function A such that E exp A(x + g

√
v) < ∞ for each x and each v ≥ 0. For

0 < m ≤ 1, we define

B(x, v, m) =
1
m

log E exp mA
(
x + g

√
v
)
,(4.1)

and B(x, v, 0) = EA
(
x + g

√
v
)
. Since the case m = 0 is essentially trivial, it

will never be considered in the proofs below. To lighten notation, we write B′

for ∂B/∂x, B′′ for ∂2B/∂x2, etc. and omit the arguments x, v and m in the
next lemma and its proof.

Lemma 4.1. We have

exp B(x, v, m) ≤ E exp A
(
x + g

√
v
)
.(4.2)
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If A is strictly convex, so is x 	→ B(x, v, m),(4.3)

∂B

∂v
=

1
2
B′′ +

m

2
B′2.(4.4)

Proof. By Hölder’s inequality, we have

E exp mA(x + g
√

v) ≤
(
E exp A(x + g

√
v)

)m
.

This proves (4.2). To lighten notation, we write Y = x + g
√

v and

Q = exp m
(
A(Y ) − B(x, v, m)

)
(4.5)

so that E(Q) = 1 and

B′ = E(A′(Y )Q),(4.6)

B′′ = E(A′′(Y )Q) + mE
(
A′(Y )2Q

)
− mB′E(A′(Y )Q)(4.7)

= E(A′′(Y )Q) + mE
(
A′(Y )2Q

)
− mB′2

by (4.6). Since EQ = 1, the Cauchy-Schwarz inequality shows that

B′ = E(A′(Y )Q) ≤ E
(
A′(Y )2Q

)1/2
,

so (4.7) implies that B′′ ≥ E(A′′(Y )Q) and this proves (4.3). Using integration
by parts, we have

∂B

∂v
=

1
2
√

v
E(gA′(Y )Q) =

1
2
E(A′′(Y )Q) +

m

2
E
(
A′(Y )2Q

)
(4.8)

and together with (4.7) this proves (4.4).

We consider another standard Gaussian r.v. g′, independent of g. We
consider a > 0 and 0 ≤ m′ ≤ 1. We think of these quantities as fixed,
so they remain implicit in the notation. We consider 0 ≤ v ≤ a and write
Z = x + g′

√
a − v and

C(x, v, m) =
1
m′ log E exp m′B(x + g′

√
a − v, v, m)(4.9)

=
1
m′ log E exp m′B(Z, v, m),

where B is as given in (4.1). We write

R = exp m′(B(Z, v, m) − C(x, v, m)
)
.(4.10)

Lemma 4.2. We have
∂C

∂v
(x, v, m) =

1
2
(m − m′)E

(
B′2(Z, v, m)R

)
.(4.11)
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Proof. From (4.9), we have ∂C/∂v = I + II, where

I = E
(∂B

∂v
(Z, v, m)R

)
,

II =− 1
2
√

a − v
E
(
g′B′(Z, v, m)R

)
=−1

2
E
(
(B′′(Z, v, m) + m′B′2(Z, v, m))R

)
after integration by parts, and we use (4.4).

We write

∆(x, v) =
∂

∂m
C(x, v, m)

∣∣∣
m=m′

.(4.12)

To lighten notation, (and since we think of m′ as fixed) we write B(x, v) rather
than B(x, v, m′), and similarly for B′, B′′, etc.

Lemma 4.3. Writing Y = x + g
√

v and Z = x + g′
√

a − v, we have

∆(x, v) = E(D(Z, v)R)(4.13)

where

D(x, y) = − 1
m′B(x, v) +

1
m′E

(
A(Y ) exp m′(A(Y ) − B(x, v))

)
,(4.14)

∂∆
∂v

(x, v) =
1
2
E
(
B′2(Z, v)R

)
,(4.15)

∂

∂v
E
(
B′2(Z, v)R

)
= −E

(
B′′2(Z, v)R

)
.(4.16)

Proof. It is straightforward to see that

D(x, v) =
∂

∂m
B(x, v, m)

∣∣∣
m=m′

(4.17)

and using (4.9) this yields (4.13). Next, we observe that C(x) := C(x, v, m′)
is independent of v, because

C(x, v, m′) =
1
m′ log E exp m′A

(
x + g

√
a
)

(4.18)

since x + g
√

v + g′
√

a − v has the same distribution as x + g
√

a. Also, if we
denote by V (x, v) the last term of (4.14), then,

E(V (Z, v)R) =
1
m′E

(
A(x + g

√
a) exp m′(A(x + g

√
a) − C(x)

))
is also independent of v, so that

∂∆
∂v

(x, v) = − 1
m′

∂

∂v
E(B(Z, v)R).(4.19)
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For simplicity, we write B = B(Z, v), B′ = B′(Z, v) etc. and C = C(x), so that
R = expm′(B − C). We have

∂

∂v
E(BR) =

∂

∂v
E(B exp m′(B − C)) = III + IV

where, using (4.4),

III = E
(∂B

∂v
(1 + m′B)R

)
=

1
2
E
(
(B′′ + m′B′2)(1 + m′B)R

)
,

IV =− 1
2
√

v − a
E
(
g′B′(1 + m′B) exp m′(B − C)

)
=−1

2
E
((

(B′′ + m′B′)(1 + m′B) + m′B′2)R)
,

and thus
∂

∂v
E(BR) = −m′

2
E(B′2R).(4.20)

Combining this with (4.19) proves (4.15). In the same manner,

∂

∂v
E
(
B′2 exp m′(B − C)

)
= V + VI,

where, by (4.2)

V = E
(
(2

∂B′

∂v
B′ + m′B′2 ∂B

∂v
)R

)
= E

(
(B(3)B′ + 2m′B′2B′′ +

1
2
m′B′2B′′ +

1
2
m′2B′4)R

)
.

Integration by parts gives

VI =− 1
2
√

v − a
E
(
g′(2B′B′′ + m′B′3) exp m′(B − C)

)
=−1

2
E
(
(2B′′2 + 2B′B(3) + 3m′B′2B′′ + 2m′B′2B′′ + m′2B′4)R

)
,

which yields (4.6).

Lemma 4.4. For a r.v. Y and 0 < m ≤ 1, we have, for a certain num-
ber L, ∣∣∣ d

dm

( 1
m

log E exp mY
)∣∣∣≤LE exp L|Y |,(4.21)

∣∣∣ d2

dm2

( 1
m

log E exp mY
)∣∣∣≤LE exp L|Y |.(4.22)

Proof. Setting M = m−1 log E exp mY and

U =
exp mY

E exp mY
= exp m(Y − M),
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we have
d

dm

( 1
m

log E exp mY
)

=− 1
m2

log E exp mY +
1
m

EY exp mY

E exp mY

=
1

m2
EU log U.

Now

U − 1 ≤ U log U ≤ U − 1 + L(U − 1)2,

so that, since EU = 1,

0 ≤ 1
m2

EU log U ≤ L

m2
E(U − 1)2 ≤ LE(Y − M)2 exp 2|Y − M |,(4.23)

by the fact that |ex − 1| ≤ |x|e|x|. We have exp M ≤ E exp Y by Hölder’s
inequality, and M ≥ EY by Jensen’s inequality, and the proof of (4.21) is
easily concluded.

Simple algebra shows that

d2

dm2

( 1
m

log E exp mY
)

=
1

m3

(
−2EU log U + EU log2 U − (EU log U)2

)
.

The last term is taken care of by (4.23). We note that∣∣−2U log U + U log2 U + 2(U − 1)
∣∣ ≤ L|U − 1|3

so that ∣∣−2EU log U + EU log2 U
∣∣ ≤ LE|U − 1|3

and we conclude as before.

After these preliminaries, we turn to the main goal of this section, learning
how to use conditions (2.16) and (2.17). We remind the reader that we have
fixed an integer k and sequences m and q, that satisfy these conditions and
(2.19), and Gaussian r.v. (z�)0≤�≤k as in (1.9).

We consider the function

Ak+1(x) = log chx(4.24)

and we define recursively, for � ≥ 1, the function

A�(x) =
1

m�
log E exp m�A�+1(x + z�),(4.25)

and A0(x) = EA1(x + z0). Then the r.v. X� of (1.10) is given by X� = A�

(
h +∑

0≤p<� zp

)
so that X0 = A0(h) and (2.14) becomes

ϕ(0) = log 2 + A0(h).(4.26)

We recall that we think of m� as being a parameter attached to the in-
terval [q�, q�+1[. A basic procedure is to consider qr−1 ≤ u ≤ qr and to split
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the interval [qr−1, qr[ into the subintervals [qr−1, u[ and [u, qr[, to which one
attaches the parameters mr−1 and m respectively, where mr−1 ≤ m ≤ mr.
Accordingly, we consider the sequences

q(u) = (q0, . . . , qr−1, u, qr, . . . , qk+1),(4.27)

m(m) = (m0, . . . , mr−1, m, mr, . . . , mk).(4.28)

We write

Φ(m, u) = Pk+1(m(m), q(u)).(4.29)

It should be obvious that Φ(mr−1, u) = Pk(m, q), so that by (2.16) we have

Φ(m, u) ≥ Φ(mr−1, u) − ε.(4.30)

It is also useful to note that for m = mr, one can merge the intervals [u, qr[
and [qr, qr+1[, so that by (2.17), we have

Φ(mr, u) ≥ Pk(m, q) = Φ(mr−1, u).(4.31)

Let us now examine how this splitting procedure affects the construction
(4.25). We set A = Ar, and consider the quantities (4.1) and (4.9), where we
take

a = ξ′(qr) − ξ′(qr−1); m′ = mr−1.(4.32)

We set

Cr(x, v, m) = B(x, v, m); Cr−1(x, v, m) = C(x, v, m),(4.33)

and for 1 ≤ � ≤ r − 2, we define recursively

C�(x, v, m) =
1

m�
log E exp m�C�+1(x + z�, v, m).(4.34)

We set

T (v, m) = EC1(h + z0, v, m).(4.35)

From (4.18) we see that C(x, v, mr−1) = Ar−1(x). Then we see inductively
that C�(x, v, mr−1) = A�(x) so that we have

T (v, mr−1) = A0(h).(4.36)

Taking into account that we have replaced mr−1 by m on the interval [u, qr[,
we get, using (4.29) and (4.11),

Φ(m, u) = log 2 + T (ξ′(qr) − ξ′(u), m)(4.37)

−1
2

∑
1≤�≤k

m�

(
θ(q�+1) − θ(q�)

)
+

1
2
(mr−1 − m)

(
θ(qr) − θ(u)

)
.
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We define

w� = h +
∑
p<�

zp if � ≤ r − 1 ; wr = wr−1 + g′
√

a − v.(4.38)

For � ≤ r − 1, we set

R�(v, m) = expm�

(
C�+1(w�+1, v, m) − C�(w�, v, m)

)
(4.39)

and, to lighten notation,

Sr−2(v, m) = R1(v, m) · · ·Rr−2(v, m).(4.40)

From (4.35), and proceeding as in (3.2), we get the formula

∂T

∂m
(v, m) = E

(
Sr−2(v, m)

∂C

∂m
(wr−1, v, m)

)
.(4.41)

When m = mr−1, this formula is particularly well adapted to differentiation in
v because then the quantity Sr−2(v, mr−1) does not depend on v (see (4.18)).
We then write it Sr−2.

We define

U(v) = 2
∂T

∂m
(v, m)

∣∣∣
m=mr−1

.(4.42)

Using (4.12) and (4.41), we have

U(v) = 2E(Sr−2∆(wr−1, v)).(4.43)

Since Sr−2 does not depend on v, to differentiate in v we can use (4.15) and
(4.16). Writing

Sr−1(v) = Sr−2Rr−1(v, mr−1),

this yields the following (fundamental) relations

U ′(v) =E
(
Sr−1(v)B′2(wr, v)

)
(4.44)

U ′′(v) =−E
(
Sr−1(v)B′′2(wr, v)

)
≤ 0.(4.45)

Let us note the following relation following from (4.37) and (4.42),

f(u) :=
∂Φ
∂m

(m, u)
∣∣∣
m=mr−1

=
1
2
U(ξ′(qr) − ξ′(u)) − 1

2
(
θ(qr) − θ(u)

)
.(4.46)

Lemma 4.5. We have∣∣∣ ∂Φ
∂m

(m, u)
∣∣∣ ≤ L,

∣∣∣ ∂2Φ
∂m2

(m, u)
∣∣∣ ≤ L.

The point here is that these derivatives are bounded by a quantity de-
pending on ξ and h but not on k. This is essential for our approach.
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Proof. It suffices to prove this boundedness for ∂T/∂m and ∂2T/∂m2.
Using (4.41) and computing ∂C/∂m from (4.9), we obtain

∂T

∂m
(v, m) = E

(
Sr−1(v, m)

∂B

∂m
(wr, v, m)

)
(4.47)

where Sr−1(v, m) = Sr−2(v, m)Rr−1(v, m). To lighten notation, we will not
indicate the dependence in v (so we write Sr−1(m) rather than Sr−1(v, m),
etc.). We have ∑

0≤�≤r−1

m�

(
C�+1(w�+1, m) − C�(w�, m)

)
(4.48)

= mr−1Cr(wr, m) +
∑

0≤�≤r−1

C�(w�, m)(m�−1 − m�)

and thus, recalling (4.39) and (4.40),

∂

∂m
Sr−1(m) =

(
mr−1

∂Cr

∂m
(wr, m) +

∑
0≤�≤r−1

(m�−1 − m�)
∂C�

∂m
(w�, m)

)
Sr−1(m)

and hence, from (4.47)

∂2T

∂m2
(w, m) =E

(
Sr−1(m)

∂2B

∂m2
(wr, m)

)
+mr−1E

(
Sr−1(m)

∂Cr

∂m
(wr, m)

∂B

∂m
(wr, m)

)
+

∑
0≤�≤r−1

(m�−1 − m�)E
(
Sr−1(m)

∂C�

∂m
(w�, m)

∂B

∂m
(wr, m)

)
.

By Hölder’s inequality, it suffices to show that

ES4
r−1(m) ≤ L,(4.49)

E
(∂B

∂m
(wr, m)

)4
≤ L; E

(∂2B

∂2m
(wr, m)

)4
≤ L,(4.50)

E
(∂C�

∂m
(w�, m)

)4
≤ L.(4.51)

If L0 is the constant of Lemma 4.4, iteration of (4.2) and use of Hölder’s
inequality show that

E exp 4L0B(wr, m) ≤ Ech4L0

(
wr + g

√
v +

∑
�≥r

z�

)
≤ L

so that (since B ≥ 0), Lemma 4.4 implies (4.50) by Hölder’s inequality. Use of
(4.48), of (4.2) and Hölder’s inequality yields (4.49).

To prove (4.51), one computes ∂C�/∂m in the same manner as we com-
puted ∂C1/∂m and proceeds similarly.
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There is a general principle at work in Lemma 4.5, namely that the
“change of density” Sr−1 does not affect the boundedness of derivatives. This
will be used again.

Proposition 4.6. The function f(u) of (4.46) satisfies

f(u) ≥ −L
√

ε.(4.52)

Proof. Since there is nothing to prove if f(u) ≥ 0, we assume f(u) < 0.
It follows from Lemma 4.5 that

Φ(m, u) ≤ Φ(mr−1, u) + (m − mr−1)f(u) + L1(m − mr−1)2.(4.53)

By (4.31), we have

(mr − mr−1)f(u) + L1(mr − mr−1)2 ≥ 0

so that

mr ≥ mr−1 −
f(u)
L1

.

Thus

mr−1 ≤ m := mr−1 −
f(u)
2L1

≤ mr

and by (4.30), (4.53) for this value of m yields −ε ≤ −f(u)2/4L1.

Proposition 4.7. We have

qr = U ′(0).(4.54)

Proof. Computing ∂T/∂v from (4.35) by proceeding as in (3.2) and using
(4.11) with m′ = mr−1, we get

∂T

∂v
(v, m) =

1
2
(m − mr−1)E

(
Sr−1(v, m)B′2(wr, v, m)

)
,(4.55)

where Sr−1(v, m) = Sr−2(v, m)Rr−1(v, m). (It is interesting to observe that
differentiating this relation in m at m = mr−1 yields again the relation (4.44).)

The relation v = ξ′(qr)−ξ′(u) defines u as a function u(v) and u′(v)ξ′′(u(v))
= −1. Since θ′(u) = uξ′′(u), we have dθ(u(v))/dv = −u(v) and, by (4.37)

∂Φ
∂v

(m, u(v)) =
1
2
(m − mr−1)

(
E(Sr−1(v, m)B′2(wr, v, m)) − u

)
.

Thus, if m �= mr−1 and qr−1 < u < qr, if we cannot decrease Φ(m, u) by a
small variation of u, we must have

u = E
(
Sr−1(v, m)B′2(wr, v, m)

)
.(4.56)

When r = 1 and u = 0, one still obtains this relation by expressing that a small
increase of u does not decrease Φ. (This case is the reason why we consider u
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as a function of v; if we differentiate (4.37) with respect to u, we get an extra
factor ξ′′(u), and we might well have ξ′′(0) = 0.)

Thus (4.56) must hold if we cannot decrease Φ(m, u) = Pk+1(m(m), q(u))
by a small variation of u. If we write q(u) = (q′�)�≤k+1, we see that u = q′r is
simply one of the terms of this sequence. Changing k into k− 1, and using the
fact that mr−1 �= mr by (2.19), we see that (4.54) must hold, for otherwise, we
could decrease Pk(m, q) by a small variation of qr.

Proposition 4.8. We have

f(qr) = f ′(qr) = 0; f(qr−1) ≥ 0.

Proof. We have f(qr) = 0 simply because when u = qr, Φ(m, u) does not
depend on m. By (2.19) we have mr−1 < 1. Thus we have f(qr−1) ≥ 0, for
otherwise we could decrease Pk(m, q) by a small increase of mr−1. (In fact, if
r ≥ 2, we have mr−1 > 0 so that we even have f(qr−1) = 0.) Using (4.46), we
get

f ′(qr) =
1
2
ξ′′(qr)

(
qr − U ′(0)

)
= 0

by (4.54).

Lemma 4.9. We have |f (3)(u)| ≤ L.

Proof. This should be obvious by the method of Lemma 4.5.

Proposition 4.10. We have

−f ′′(qr) =
1
2
ξ′′(qr)(−ξ′′(qr)U ′′(0) − 1) ≤ Lε1/6.(4.57)

Proof. Since f ′(qr) = f(qr) = 0, by Propositions 4.6 and 4.8, we have

−L
√

ε ≤ f(u) ≤ 1
2
(u − qr)2f ′′(qr) + L|u − qr|3(4.58)

so that

f ′′(qr) ≥ − L
√

ε

(u − qr)2
− L|u − qr|.(4.59)

Also, since f(qr−1) ≥ 0, we see from (4.58) that

f ′′(qr) ≥ −2L(qr − qr−1).(4.60)

If qr − qr−1 ≤ ε1/6, this implies f ′′(qr) ≥ −2Lε1/6. Otherwise, taking u =
qr − ε1/6 ≥ qr−1 we get again f ′′(qr) ≥ −Lε1/6 from (4.59).

Our basic construction splits the interval [qr−1, qr[ into the intervals
[qr−1, u[ and [u, qr[. A “dual” construction splits instead the interval [qr, qr+1[
into [qr, u[ and [u, qr+1[, to which we now attach parameters mr−1 ≤ m ≤ mr

and mr respectively. This dual construction is studied by very similar methods,
so we do not detail it.
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5. The main estimate

The goal of this section is to prove Theorem 2.4. In the following state-
ments, L1, L2, . . . , denote specific quantities depending only upon ξ and h.

Proposition 5.1. If L1ε
1/6 ≤ 1 − t0, then

qr−1 ≤ u ≤ qr, L1(qr − u) ≤ 1 − t0 ⇒ Ψ(t, u) ≤ 2ψ(t) − (1 − t0)2

L1
(u − qr)2.

(5.1)

Proposition 5.2. If L1ε
1/6 ≤ 1 − t0, then

qr ≤ u ≤ qr+1, L1(u − qr) ≤ 1 − t0 ⇒ Ψ(t, u) ≤ 2ψ(t) − (1 − t0)2

L1
(u − qr)2.

(5.2)

Proposition 5.3. If L2ε
1/6 ≤ 1 − t0, r = 1 and 0 ≤ u < q1, then

Ψ(t, u) < 2ψ(t).(5.3)

Proposition 5.4. If L2ε
1/6 ≤ 1 − t0, r = 1 and −q1 ≤ u < 0, then (5.3)

holds.

We consider the function

γ(c) = inf
{
|ξ(y) − ξ(x) + (x − y)ξ′(y)|; 0 ≤ x, y ≤ 1, |x − y| ≥ c

}
.(5.4)

Then, since we assume ξ′′(x) > 0 for x > 0, we have γ(c) > 0 for c > 0.

Proposition 5.5. If L3ε
1/2 ≤ (1 − t0)γ((1 − t0)/L1), then

qr−1 ≤ u ≤ qr, L1(qr − u) ≥ 1 − t0 ⇒ Ψ(t, u) < 2ψ(t).

Proposition 5.6. If L3ε
1/2 ≤ (1 − t0)γ((1 − t0)/L1), then

qr ≤ u ≤ qr+1, L1(u − qr) ≥ 1 − t0 ⇒ Ψ(t, u) < 2ψ(t).

Proposition 5.7. If either u < qr−1 or u > qr+1, then (5.3) holds.

Proof of Theorem 2.4. Combining Propositions 5.6 to 5.7 we see that if
t ≤ t0, if L1|u − qr| ≥ 1 − t0 and if L3ε

1/2 ≤ (1 − t0)γ((1 − t0)/L1), we have
Ψ(t, u) < 2ψ(t). By compactness, there exists K such that

t ≤ t0 ; L1|u − qr| ≥ 1 − t0 =⇒ Ψ(t, u) ≤ 2ψ(t) − (u − qr)2

K

and (5.1) and (5.2) finish the proof.
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Propositions 5.3 and 5.4 are not used as such in the proof of Theroem 2.4,
but are intermediate results used in the proof of Proposition 5.7.

Proposition 5.1, 5.3 and 5.5 rely on a common scheme of proof. We
consider

ρ0 = 0, ρ1 = q1, . . . , ρr−1 = qr−1, ρr = u, ρr+1 = qr, . . . , ρk+1 = qk, ρk+2 = 1,

(5.5)

n0 = 0, n1 =
m1

2
, . . . , nr−1 =

mr−1

2
,(5.6)

nr = m, nr+1 = mr, . . . , nk = mk−1, nk+1 = 1,

where m is a number satisfying mr−1/2 ≤ m ≤ mr. Thus (when r ≥ 2, and
hence mr−1 > 0) the number m can be either larger or smaller than mr−1, a
key feature of the construction.

We recall the r.v. (zj
p) of (2.23), for 0 ≤ p ≤ k, and we set

Zj
p =

√
1 − tzj

p if p < r; Zj
r = 0; Zj

p =
√

1 − tzj
p−1 if p > r.(5.7)

We consider the r.v. yj
p of (3.18) for η = 1. We will use Theorem 3.1 with

κ = k + 1 and τ = r. (Note that u = ρτ .)
It should be obvious from (5.7) (since “nothing happens for nr” because

Zj
r = 0) that, with the notation (3.24), we have

Ψ(t, u) = η(1).(5.8)

We have∑
�≤r−2

n�

(
θ(ρ�+1) − θ(ρ�)

)
=

1
2

∑
�≤r−2

m�

(
θ(q�+1) − θ(q�)

)
,

nr−1

(
θ(ρr) − θ(ρr−1)

)
=

mr−1

2
(
θ(u) − θ(qr−1)

)
,

nr

(
θ(ρr+1) − θ(ρr)

)
= m

(
θ(qr) − θ(u)

)
,∑

�≥r+1

n�

(
θ(ρ�+1) − θ(ρ�)

)
=

∑
�≥r

m�

(
θ(q�+1) − θ(q�)

)
,

so that, collecting the terms and using (5.8) we get from (3.26) that

Ψ(t, u) ≤ η(0) − t
∑
�≤k

m�

(
θ(q�+1) − θ(q�)

)
− t(m − mr−1)

(
θ(qr) − θ(u)

)
.

(5.9)

To bound η(0), we define an auxiliary function V (λ, m, v) as follows. Consider
independent pairs (g1

p, g
2
p) of Gaussian r.v., for 0 ≤ p ≤ k + 1, such that, if

a = ξ′(qr) − ξ′(qr−1), and if 0 ≤ v ≤ a, we have

For p > r, g1
p and g2

p are independent ; E(g1
p)

2 = E(g2
p)

2 = ξ′(ρp+1) − ξ′(ρp).
(5.10)
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g1
r and g2

r are independent ; E(g1
r )

2 = E(g2
r )

2 = v.(5.11)

g1
r−1 = g2

r−1; E(g1
r−1)

2 = E(g2
r−1)

2 = a − v.(5.12)

For p < r − 1, g1
p = g2

p , E(g1
p)

2 = E(g2
p)

2 = ξ′(ρp+1) − ξ′(ρp).(5.13)

Keeping the dependence in v and λ implicit, we define the functions

A∗
k+2(x1, x2) = log

(
chx1chx2chλ + shx1shx2shλ

)
,(5.14)

and for 1 ≤ � ≤ k + 1 we define recursively the functions

A∗
� (x1, x2) =

1
n�

log E� exp n�A
∗
� (x1 + g1

� , x2 + g2
� ),

defining as usual A∗
� (x1, x2) = E�A

∗
� (x1 + g1

� , x2 + g2
� ) when n� = 0. We set

V (λ, m, v) = A∗
0(h, h).(5.15)

To relate this function to η(0), we note that∑
R1,2=u

exp H0(σ1, σ2) ≤ exp(−λNu)
∑

σ1,σ2

exp
(
H0(σ1, σ2) +

∑
i≤N

λσ1
i σ

2
i

)
,

∑
ε1,ε2=±1

exp(a1ε1 + a2ε2 + λε1ε2) = 4(cha1cha2chλ + sha1sha2shλ)

and that the r.v. gj
p = Zj

p + yj
p satisfy (5.10) to (5.13) with

v = v(u) = t
(
ξ′(qr) − ξ′(u)

)
.(5.16)

It should then be obvious that

η(0) ≤ 2 log 2 + V (λ, m, v(u)) − λu.(5.17)

We note that

V (0, m, v) = 2T (v, m),(5.18)

where T (v, m) is defined as in (4.35). This is seen by the same argument as
that used in (2.39). In particular from (4.36) we have

V (0, mr−1, v(u)) = 2A0(h).(5.19)

Combining (5.9) and (5.17), we get

Ψ(t, u)≤ 2 log 2 + V (λ, m, v(u)) − λu(5.20)

−t
∑
�≤k

m�

(
θ(q�+1) − θ(q�)

)
− t(m − mr−1)

(
θ(qr) − θ(u)

)
.

By (5.19), for λ = 0 and m = mr−1, the right-hand side of (5.20) is 2ψ(t). Thus,
to prove that Ψ(t, u) < 2ψ(t), it suffices to show that the partial derivative of
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this right-hand side at λ = 0, m = mr−1 with respect to λ is not zero, or, if
r ≥ 2, and hence mr−1 > 0, to show that the partial derivative of this right-
hand side with respect to m is not zero (or to obtain a quantitative control of
these derivatives to prove (5.1)). It is because m0 = 0 that special arguments
are required when r = 1.

The nice fact is that the partial derivatives of the right-hand side of (5.20)
relate well to quantities studied in Section 4. This is obvious through (5.18)
concerning the partial derivative with respect to m. Less obvious is the follow-
ing.

Lemma 5.8. We have
∂

∂λ
V (λ, mr−1, v)

∣∣∣
λ=0

= U ′(v)(5.21)

where U ′(v) is as given by (4.44).

Proof. Let us write ζj
� = h +

∑
0≤p<� gj

p and

R∗
� = exp n�

(
A∗

�+1(ζ
1
�+1, ζ

2
�+1) − A∗

� (ζ
1
� , ζ2

� )
)

so that from (5.15) and proceeding as in (3.2) we have

∂V

∂λ
(λ, mr−1, v)

∣∣∣
λ=0

= E
(
R∗

1 · · ·R∗
k+1th(ζ1

k+2)th(ζ2
k+2)

)
.(5.22)

We recall the sequence (A�) of functions of (4.25), and the quantity B(x, v)
= B(x, v, mr−1) of (4.1). Then, recalling (5.14), proceeding as in the proof of
(2.38), and using (5.10) to (5.13), we see that when λ = 0 and m = mr−1 we
have

� ≥ r + 1 =⇒ A∗
� (x1, x2) = A�−1(x1) + A�−1(x2),(5.23)

A∗
r(x1, x2) = B(x1, v) + B(x2, v),(5.24)

� ≤ r − 1 =⇒ A∗
� (x, x) = 2A�(x).(5.25)

Thus we have

� ≤ r − 2 =⇒ R∗
� = exp m�

(
A�+1(ζ1

�+1) − A�(ζ1
� )

)
,(5.26)

R∗
r−1 = exp mr−1

(
B(ζ1

r , v) − Ar−1(ζ1
r−1)

)
,(5.27)

� ≥ r =⇒ R∗
� = Q1

�Q
2
� ,(5.28)

where

Qj
r = exp mr−1

(
Ar(ζ

j
r+1) − B(ζj

r , v)
)
,

� > r ⇒ Qj
� = exp m�−1

(
Ar(ζ

j
�+1) − Ar−1(ζ

j
� )

)
.
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If we denote by Er expectation in the r.v. gj
p for p ≥ r, the right-hand side

of (5.22) is then (using independence as provided by (5.10) and (5.11))

E
(
R∗

1 · · ·R∗
r−1Er

(
R∗

r · · ·R∗
k+1th(ζ1

k+2)th(ζ2
k+2)

))
= E

(
R∗

1 · · ·R∗
r−1Er

(
Q1

r · · ·Q1
k+1th(ζ1

k+2)
)2)

.

From (4.25), (5.10), (5.11) and (4.1), and proceeding as in (3.2) we have

B′(ζ1
r ) = Er

(
Q1

r · · ·Q1
k+1th(ζ1

k+2)
)
,

and the result from (4.44), (5.26) and (5.27), since the sequences (ζ1
� )�≤r and

(w�)�≤r of (4.38) have the same distribution.

Lemma 5.9. We have∣∣∣ ∂2

∂λ2
V (λ, mr−1, v)

∣∣∣ ≤ L.(5.29)

Proof. Similar to Lemma 4.5.

Proof of Proposition 5.1. We recall the function v(u) of (5.16) and
consider the function

h(u) = U ′(v(u)) − u,(5.30)

so that, by (4.54), we have h(qr) = 0. We have

h′(qr) = −tξ′′(qr)U ′′(0) − 1.

We claim that

Lε1/6 ≤ 1 − t0 ⇒ h′(qr) ≤ −1 − t0
2

.(5.31)

Indeed, if −ξ′′(qr)U ′′(0) ≤ 1/2, we have h′(qr) ≤ −1/2. Otherwise, since 0 ≤
−U ′′(0) ≤ L we have ξ′′(qr) ≥ 1/L, so that by (4.57) we have −ξ′′(qr)U ′′(0) ≤
1 + Lε1/6, and hence

−tξ′′(qr)U ′′(0) − 1 ≤ t0 + Lε1/6 − 1,

from which (5.31) follows.
Now (as in Lemmas 4.5 and 5.9), |h′′(u)| ≤ L, so that, since h(qr) = 0,

h(u) ≥ (u − qr)h′(qr) − L(u − qr)2 ≥ 1
4
(qr − u)(1 − t0)(5.32)

when h′(qr) ≤ −(1 − t0)/2 and u − qr ≤ (1 − t0)/4L.
By Lemma 5.9, the function α(λ) = V (λ, mr−1, v(u))−λu satisfies |α′′(λ)|

≤ L, so that

inf
λ

α(λ) ≤ α(0) − α′(0)2

L
(5.33)
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and since by (5.21) we have α′(0) = h(u), combining with (5.32) and (5.20)
finishes the proof.

Proof of Proposition 5.3. In the case r = 1, we have B(x, v) =
EA(x + g

√
v), so that B′′(x, v) = EA′′(x + g

√
v), and one sees from (4.45)

that

−U ′′(v) = E
(
A′′(g

√
a − v + g1

√
v)A′′(g

√
a − v + g2

√
v)

)
where a = ξ′(q1) and g, g1, g2 are standard Gaussian, so that, using the Cauchy-
Schwarz inequality,

−U ′′(v) ≤ E
(
A′′2(g

√
a − v + g1

√
v)

)
= E

(
A′′2(g

√
a)

)
= −U ′′(0).

Thus, the function h(u) of (5.30) satisfies

h′(u) = −tξ′′(u)U ′′(v(u)) − 1 ≤ −tξ′′(q1)U ′′(0) − 1 = h′(q1).

Using (5.31), we see that if Lε1/6 ≤ 1 − t0 we have h′(u) < 0 for u ≤ q1 so
that since h(q1) = 0, h(u) > 0 for u < q1 and we are done by (5.33) as in
Proposition 5.1.

Proof of Proposition 5.5. We can assume U ′(v(u)) = u, for otherwise
we are done by (5.33) as in Proposition 5.1. Let us denote by D the partial
derivative in m of the right-hand side of (5.20) at m = mr−1 and λ = 0. By
(5.18) and (4.42),

D = U(v(u)) − t
(
θ(qr) − θ(u)

)
.

The function

x 	→ β(x) = U
(
x(ξ′(qr) − ξ′(u))

)
− x

(
θ(qr) − θ(u)

)
is concave because its derivative

β′(x) =
(
ξ′(qr) − ξ′(u)

)
U ′(x(ξ′(qr) − ξ′(u))

)
− θ(qr) + θ(u)

is decreasing by (4.45). Thus

β(1) ≤ β(t) + (1 − t)β′(t).(5.34)

Since we assume that U ′(v(u)) = u, we have

β′(t) =
(
ξ′(qr) − ξ′(u)

)
u − θ(qr) + θ(u) = ξ(qr) − ξ(u) + (u − qr)ξ′(qr)

after replacing θ by its value (1.12). Thus, by definition of the function γ of
(5.4) we have β′(t) ≤ −γ(qr − u) and (5.34) yields

D = β(t) ≥ (1 − t0)γ(qr − u) + β(1).

By (4.46) and (4.52), we have β(1) ≥ −L
√

ε. Thus if qr − u ≥ (1− t0)/L1 and
L
√

ε ≤ (1 − t0)γ((1 − t0)/L1), we have D > 0.
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Proof of Proposition 5.4. We modify the previous scheme of proof by
taking now the r.v. yj

p as in (3.18) to (3.20) for η = −1. We recall that ρr = |u|.
Proceeding as in Lemma 5.8 we get

W (v) :=
∂

∂λ
V (λ, 0, v)

∣∣∣
λ=0

= E
(
A′(g

√
a − v + g1

√
v)A′(−g

√
a − v + g2

√
v)

)
where A = A1, a = ξ′(q1) and g, g1, g2 are independent standard Gaussian. We
show that for v = v(u) = ξ′(q1)− tξ′(|u|) = ξ′(q1)+ tξ′(u) we have W (v(u))−u

> 0. First we observe that W (v(0)) ≥ 0 and then show as in Proposition 5.3
that the derivative in u is < 0.

The proofs of Propositions 5.2 and 5.6 are very similar to the proofs of
Propositions 5.1 and 5.5 respectively, using now the “dual construction” that
we described at the end of Section 4, and we turn to the proof of Proposi-
tion 5.7. This proof is comparatively easier than the previous ones since it
does not require the work of Section 4. However, a new construction is re-
quired. We consider s with qs−1 ≤ |u| ≤ qs, and the two sequences

(m′
�) =

(
0,

m1

2
, . . . ,

mr−1

2
, mr, . . . , mk−1, mk

)
(m′′

� ) =
(
0,

m1

2
, . . . ,

ms−1

2
, ms−1, ms, . . . , mk−1, mk

)
.

We consider a sequence n0 ≤ n1 ≤ · · · ≤ n2k+2 and two disjoint subsets I and
J of {0, . . . , 2k + 2} with cardI = k + 1 and cardJ = k + 2 such that the
numbers (n�)�∈I are the numbers (m′

�)0≤�≤k, while the numbers (n�)�∈J are
the numbers (m′′

� )0≤�≤k+1. The purpose of the sets I and J is that we keep
track whether a number n� occurs from the list (m′

�) or the list (m′′
� ). This

is particularly useful in the case where, accidentally, for some �, �′ we have
m� = m�′/2. We consider the sequence

(q′�)0≤�≤k+2 = (q0, q1, q2, . . . , qs−1, |u|, qs, . . . , qk, qk+1),(5.35)

so that |u| = q′s. We define the sequence (ρ�)0≤�≤2k+3 by ρ� = q′p, where p is
the smallest integer for which n� ≤ m′′

p. We define τ as the unique τ ∈ J such
that ρτ = |u|. It should be clear with this construction that∑

1≤�<τ 2n�

(
θ(ρ�+1) − θ(ρ�)

)
+

∑
τ≤�≤2k+2

n�

(
θ(ρ�+1) − θ(ρ�)

)
(5.36)

=
∑

1≤�≤s−1

2m′′
�

(
θ(q′�+1) − θ(q′�)

)
+

∑
s≤�≤k

m′′
�

(
θ(q′�+1) − θ(q′�)

)
=

∑
1≤�≤k

m�

(
θ(q�+1) − θ(q�)

)
.

We define Zj
� =

√
1 − tzj

p if � ∈ I and n� = m′
p, and Zj

� = 0 if � ∈ J . We
consider the sequence (yj

p) as defined in (3.18) to (3.20) where η = 1 if u ≥ 0
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and η = −1 if u < 0. It should be obvious that, with the notation of (3.26), we
have Ψ(t, u) = η(1), so that to prove that Ψ(t, u) < 2ψ(t) it suffices to prove
that η(0) < 2ϕ(0) = 2 log 2 + 2A0(h).

We set gj
� = Zj

� + yj
� . We observe that if � ∈ I we have gj

� = Zj
� , while if

� ∈ J we have gj
� = yj

� . Thus for all �, either g1
� = ±g2

� or else g1
� and g2

� are
independent. The first case occurs exactly when � ∈ I and n� = m′

p = mp/2 for
p ≤ r − 1 or � ∈ J and n� = m′′

p = mp/2 for p ≤ s− 1. The second case occurs
exactly when � ∈ I and n� = m′

p = mp for p ≥ r or � ∈ J and n� = m′′
p+1 = mp

for p ≥ s − 1.
We define the sequence (n∗

� ) by n∗
� = 2n� if g1

� = ±g2
� and n∗

� = n� if g1
� and

g2
� are independent. We observe that n∗ is one of the numbers m0, . . . , mk+1.

We define

D2k+3(x1, x2) = log chx1 + log chx2

and, recursively, for 0 ≤ � ≤ 2k + 2,

D�(x1, x2) =
1
n�

log E exp n�D�+1(x1 + g1
� , x2 + g2

� ).

As usual, η(0) ≤ 2 log 2 + D0(h, h), so that all we have to prove is that

D0(h, h) < 2A0(h).(5.37)

We define

D∗
2k+3(x) = log chx

and, recursively, for � ≥ 0,

D∗
� (x) =

1
n∗

�

log E exp n∗
�D

∗
�+1(x + g1

� ).

Lemma 5.10. Consider n ≥ 0, two independent Gaussian r.v. g1 and g2,
with E(g1)2 = E(g2)2 �= 0, and functions G(x) and D(x1, x2) such that

∀x1, x2, D(x1, x2) ≤ G(x1) + G(x2).(5.38)

Define

D(1)(x1, x2) =
1
n

log E exp nD(x1 + g1, x2 + g2),

D(2)(x1, x2) =
1
n

log E exp nD(x1 + g1, x2 + g1),

D(3)(x1, x2) =
1
n

log E exp nD(x1 + g1, x2 − g1),

G′(x) =
1
n

log E exp nG(x + g1),

G′′(x) =
1
2n

log E exp 2nG(x + g1).
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Then,

(a) We have

D(1)(x1, x2) ≤ G′(x1) + G′(x2).(5.39)

If equality occurs in (5.38) only for x1 = ±x2, we then have

∀x1, x2, D(1)(x1, x2) < G′(x1) + G′(x2).(5.40)

(b) We have

∀x1, x2, D(2)(x1, x2) ≤ G′′(x1) + G′′(x2).(5.41)

If n > 0 and G is strictly convex, we can have equality only if x1 = x2.
If there is never equality in (5.38), there is never equality in (5.41). If
n = 0 and equality occurs in (5.38) only for x1 = x2, equality occurs in
(5.41) only for x1 = x2.

(c) We have

∀x1, x2, D(3)(x1, x2) ≤ G′′(x1) + G′′(x2).(5.42)

If n > 0, G is strictly convex and G(x) = G(−x), we can have equality
in (5.42) only for x1 = −x2. If there is never equality in (5.38), there is
never equality in (5.42). If n = 0 and equality occurs in (5.38) only for
x1 = −x2, equality occurs in (5.42) only for x1 = −x2.

Proof. The first part of (a) follows by independence. The second part is
obvious.

The first part of (b) follows from the Cauchy-Schwarz inequality. If n > 0,
there can be equality only if the two functions y 	→ exp nG(x1 + y) and y 	→
exp nG(x2 + y) are proportional, i.e. if y 	→ G(x1 + y)−G(x2 + y) is constant.
Since G is strictly convex we must have x1 = x2. The rest of (b) is obvious.

The first part of (c) follows from the Cauchy-Schwarz inequality. There
can be equality only if the two functions y 	→ exp nG(x1 + y) and y 	→
exp nG(x2 − y) = expnG(y − x2) are proportional. If G is strictly convex,
this implies as before that x1 = −x2. The rest is obvious.

Proposition 5.11. We have

D0(h, h) ≤ 2D∗
0(h).(5.43)

Equality can occur only when

∀b, c ≤ 2k + 2, (g1
b �= 0, g1

c �= 0, n∗
b = nb, n∗

c = 2nc > 0) ⇒ c < b.(5.44)

Moreover,

u < −q1 ⇒ D0(h, h) < 2D∗
0(h).(5.45)
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Proof. (5.43) follows from recursive use of (5.39) and (5.41). Suppose that
(5.44) fails, so that we can find b < c with n∗

b = nb, n
∗
c = 2nc > 0. We can

assume that c − b is as small as possible under these conditions. Then either
b = c − 1, or else n� = 0 for � < c. Also, c ≥ 2 since nc > 0 and the first
two terms of the sequence (n�) are zero. We observe that by Lemma 4.1, the
functions D∗

� are strictly convex. Thus by Lemma 5.10(b), we have

Dc−1(x1, x2) < D∗
c−1(x1) + D∗

c−1(x2) if x1 �= x2.

If b = c − 1, by (5.40), we have D�(x1, x2) < D∗
� (x1) + D∗

� (x2) for � = b − 1,
and hence by Lemma 5.10, (b), for all 0 ≤ � < b. If instead n� = 0 for � < c,
we have recursively

∀ b ≤ � < c − 1 , x1 �= x2 ⇒ D�(x1, x2) < D∗
� (x1) + D∗

� (x2)

and we conclude as before.
To prove (5.45) we observe that if u < −q1 there exists b in J with

nb = m1/2 and g1
b = −g2

b , and that nc = 0 for c ∈ J and c < b. By (5.42),
and, since D∗

� (x) = D∗
� (−x), we have

Db−1(x1, x2) < D∗
b−1(x1) + D∗

b−1(x2) if x1 �= −x2,

and we conclude as before.

Since we have q1 < q2 < · · · < qk, the only possibility to have g1
� = 0 is

when � ∈ J, n� = ms−1/2 and |u| = qs−1 or n� = ms−1 and |u| = qs.
Given a function Q and numbers a ≥ 0 and m > 0, we write

Tm,a(Q)(x) =
1
m

log E exp mQ
(
x + g

√
a
)
,

where g is standard Gaussian.

Lemma 5.12. If a, a′ ≥ 0 and m ≥ m′, for each x,

Tm,a ◦ Tm′,a′(Q)(x) ≤ Tm′,a′ ◦ Tm,a(Q)(x).(5.46)

If a, a′ > 0 and m > m′, we can have
equality only if the function Q is constant.

(5.47)

Proof. Consider independent standard normal r.v. g and g′, and denote
by E and E′ expectation in g and g′ respectively. Then

Tm,a ◦ Tm′,a′(Q)(x) =
1
m

log E exp
m

m′ log E′ exp m′Q
(
x + g

√
a + g′

√
a′

)
,

Tm′,a′ ◦ Tm,a(Q)(x) =
1
m′ log E′ exp

m′

m
log E exp mQ

(
x + g

√
a + g′

√
a′

)
.
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Setting α = m/m′ ≥ 1 and X = exp m′Q
(
x + g

√
a + g′

√
a′

)
, the required

inequality is

(E(E′X)α)1/α ≤ E′(EXα)1/α

or

||E′X||α ≤ E′||X||α(5.48)

if one sets ||Y ||α = (EY α)1/α. This inequality holds true by convexity. More-
over, when α > 1, the norm || · ||α is strictly convex, so there can be equality
in (5.48) only if, seen as a function of g, X does not depend on g′, i.e. Q is
constant.

Proof of Proposition 5.7. For 0 ≤ � ≤ 2k + 2, let

a� = E(g1
� )

2 = E(g2
� )

2.

Each number n∗
� is one of the numbers m0, . . . , mk, and, moreover,

the sum of the numbers a� such that n∗
� = mp is ξ′(qp+1) − ξ′(qp).(5.49)

This is seen by inspection. For example, there are three values of � for which
n∗

� = ms−1. There is one value in I, for which a� = (1 − t)(ξ′(qs) − ξ′(qs−1)).
There is one value in J where n∗

� = n� and a� = t(ξ′(qs) − ξ′(|u|)), and one
value in J where n∗

� = 2n� and a� = t(ξ′(|u|) − ξ′(qs−1)).
Consider the operators W� = Tn∗

� ,a�
. The function D∗

0 is constructed by
starting with the function D∗

2k+2(x) = log chx and applying successively the
operators W2k+2, W2k+1, . . . , W1, W0.

Consider a permutation π of {0, . . . , 2k+2} such that the sequence (n∗
π(�))

is nondecreasing. If we apply successively the operators Wπ(2k+2), Wπ(2k+1), . . .

. . . , Wπ(1), Wπ(0) to the function D∗
2k+2(x), we obtain the function A0 (where

A0(x) = EA1(x + z1). This follows from (5.49) and the fact that

Tm,a1 ◦ Tm,a2 = Tm,a1+a2 .

Lemma 5.12 then shows that

D∗
0(h) ≤ A0(h).(5.50)

Moreover, (5.47) shows that we can have equality only if

c < b ⇒ n∗
c ≤ n∗

b .(5.51)

We have to show that equality cannot simultaneously occur in (5.43) and (5.50).
We will consider only the case where qs−1 < u < qs, leaving the (easy) equality
cases to the reader. We then have a� �= 0 for each �.

By (5.45) we have already proved (5.37) if u < −q1, so we can assume that
u ≥ −q1. Then we have either s = 1 or u ≥ 0. If s = 1, by Propositions 5.3
and 5.4, there is nothing to prove if r = 1, so we can assume r ≥ 2 and hence
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s ≤ r − 1. If u ≥ 0, since we assume that u �∈ [qr−1, qr+1] we can assume that
either s ≤ r− 1 or r + 1 ≤ s− 1. Thus, in any case, we can assume that either
s ≤ r − 1 or r + 1 ≤ s − 1.

Assume first that s ≤ r − 1. Consider c ∈ I and b ∈ J with nc = mr−1/2
and nb = ms−1, so that n∗

c = mr−1 = 2nc > 0 and n∗
b = nb. We cannot have

equality in (5.43) unless c < b. But then

n∗
c = mr−1 ≥ ms > ms−1 = nb = n∗

b ,

and by (5.51) we cannot have inequality in (5.50).
Assume now that r+1 ≤ s−1. Consider c ∈ J and b ∈ I with nc = ms−1/2

and nb = mr. Thus n∗
c = ms−1 = 2nc ≥ 0 and n∗

b = nb. If we have equality in
(5.43), then we must have c < b by (5.44). Then

n∗
c = ms−1 ≥ mr+1 > mr = nb = n∗

b ,

and by (5.51) we cannot have equality in (5.50).
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