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Invariant measures and arithmetic
quantum unique ergodicity

By ELON LINDENSTRAUSS*
Appendix with D. RupoLprH

Abstract

We classify measures on the locally homogeneous space I'\ SL(2,R) x L
which are invariant and have positive entropy under the diagonal subgroup
of SL(2,R) and recurrent under L. This classification can be used to show
arithmetic quantum unique ergodicity for compact arithmetic surfaces, and a
similar but slightly weaker result for the finite volume case. Other applications
are also presented.

In the appendix, joint with D. Rudolph, we present a maximal ergodic
theorem, related to a theorem of Hurewicz, which is used in theproof of the
main result.

1. Introduction

We recall that the group L is S-algebraic if it is a finite product of algebraic
groups over R, C, or Q,, where S stands for the set of fields that appear in this
product. An S-algebraic homogeneous space is the quotient of an S-algebraic
group by a compact subgroup.

Let L be an S-algebraic group, K a compact subgroup of L, G = SL(2,R)
x L and T" a discrete subgroup of G (for example, I" can be a lattice of G), and
consider the quotient X = I'\G/K.

The diagonal subgroup

A= {<%t egt) :teR} C SL(2,R)

acts on X by right translation. In this paper we wish to study probablilty
measures i on X invariant under this action.

Without further restrictions, one does not expect any meaningful classi-
fication of such measures. For example, one may take L = SL(2,Q,), K =
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SL(2,Zp) and I' the diagonal embedding of SL(2, Z[%]) in G. As is well-known,
(1.1) MNG/K = SL(2,7Z)\ SL(2,R).

Any A-invariant measure g on I'\G/K is identified with an A-invariant mea-
sure fi on SL(2,Z)\ SL(2,R). The A-action on SL(2,7Z)\ SL(2,R) is very well
understood, and in particular such measures [i are in finite-to-one correspon-
dence with shift invariant measures on a specific shift of finite type [Ser85] —
and there are plenty of these.

Another illustrative example is if L is SL(2,R) and K = {e}. In this
case we assume that the projection of I' to each SL(2,R) factor is injective
(for example, I" an irreducible lattice of G). No nice description of A-invariant
measures on X is known in this case, but at least in the case that I' is a
lattice (the most interesting case) one can still show there are many such
measures (for example, there are A-invariant measures supported on sets of
fractal dimension).

An example of a very meaningful classification of invariant measures with
far-reaching implications in dynamics, number theory and other subjects is
M. Ratner’s seminal work [Ra91], [Ra90b], [Ra90a] on the classification of
measures on I'\G invariant under groups H < G generated by one-parameter
unipotent subgroups. There it is shown that any such measure is a linear
combination of algebraic measures: i.e. N invariant measures on a closed
N-orbit for some H < N < (G. This theorem was originally proved for
G a real Lie group, but has been extended independently by Ratner and
G. A. Margulis and G. Tomanov also to the S-algebraic context [MT94], [Ra95],
[Ra98].

In order to get a similar classification of invariant measures, one needs
to impose an additional assumption relating u to the foliation of X by leaves
isomorphic to L/K. The condition we consider is that of recurrence: that is
that for every B C X with u(B) > 0, for almost every = € X with € B there
are elements x’ arbitrarily far (with respect to the leaf metric) in the L/K leaf
of z with 2’ € B; for a formal definition see Definition 2.3. For example, in our
second example of G = SL(2,R) x SL(2,R), K = {e} this recurrence condition
is satisfied if p in addition to being invariant under A is also invariant under
the diagonal subgroup of the second copy of SL(2,R).

Though it is natural to conjecture that this recurrence condition is suf-
ficient in order to classify invariant measures, for our proof we will need one
additional assumption, namely that the entropy of u under A is positive.

Our main theorem is the following:

THEOREM 1.1. Let G = SL(2,R) x L, where L is an S-algebraic group,
H < G is the SL(2,R) factor of G and K is a compact subgroup of L. Take
I to be a discrete subgroup of G (not necessarily a lattice) such that T N L
is finite. Suppose p is a probability measure on X = I'\G/K, invariant un-
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. . ) 0
der multiplication from the right by elements of the diagonal group <(>; *>
Assume that

(1) All ergodic components of p with respect to the A-action have positive
entropy.

(2) w is L/K-recurrent.

Then w is a linear combination of algebraic measures invariant under H .

We give three applications of this theorem, the first of which is to a seem-
ingly unrelated question: arithmetic quantum unique ergodicity. In [RS94],
Z. Rudnick and P. Sarnak conjectured the following;:

CONJECTURE 1.2. Let M be a compact Riemannian manifold of negative
sectional curvature. Let ¢; be a complete orthonormal sequence of eigenfunc-
tions of the Laplacian on M. Then the probability measures dji; = |¢;(2)|? dvol
tend in the weak star topology to the uniform measure dvol on M.

A. I. Snirel'man, Y. Colin de Verdiére and S. Zelditch have shown in
great generality (specifically, for any manifold on which the geodesic flow is
ergodic) that if one omits a subsequence of density 0 the remaining fi; do
indeed converge to dvol [Sni74], [CdV85], [Zel87]. An important component
of their proof is the microlocal lift of any weak star limit i of a subsequence of
the f1;. The microlocal lift of i is a measure p on the unit tangent bundle SM
of M whose projection on M is i, and most importantly it is always invariant
under the geodesic flow on SM. We shall call any measure y on SM arising
as a microlocal lift of a weak star limit of fi; a quantum limit. Thus a slightly
stronger form of Conjecture 1.2 is the following conjecture, also due to Rudnick
and Sarnak:

CONJECTURE 1.3 (Quantum Unique Ergodicity Conjecture). For any
compact negatively curved Riemannian manifold M the only quantum limit
is the uniform measure dvolgys on SM.

Consider now a surface of constant curvature M = I'\H. Then SM =
I'\ PSL(2,R), and under this isomorphism the geodesic flow on SM is con-
jugate to the action of the diagonal subgroup A on I'\ PSL(2,R), and as we
have seen in (1.1) for certain I' < PSL(2,R), we can view X = I'\ SL(2,R) as
a double quotient T\G/K with G = SL(2,R) x SL(2,Q,). We will consider
explicitly two kinds of lattices I' < SL(2,R) with this property: congruence
subgroups of SL(2,7Z) and of lattices derived from Eichler orders in an R-split
quaternion algebra over Q; strictly speaking, the former does not fall in the
framework of Conjecture 1.3 since I' is not a uniform lattice. For simplicity,
we will collectively call both types of lattices congruence lattices over Q.
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Any quantum limit g on I'\ SL(2,R) for " a congruence lattices over Q
can thus be identified with an A-invariant measure on T'\G//K, so in order to
deduce that p is the natural volume on I'\ SL(2,R) one needs only to verify
that p satisfies both conditions of Theorem 1.1.

Closely related to (1.1), which for general lattices over Q holds for all
primes outside a finite exceptional set, are the Hecke operators which are self-
adjoint operators on L?(M) which commute with each other and with the
Laplacian on M. We now restricted ourselves to arithmetic quantum limits:
quantum limits on I\ SL(2, R) for I" a congruence lattice over Q that arises from
a sequence of joint eigenfunctions of the Laplacian and all Hecke operators. It is
expected that except for some harmless obvious multiplicities the spectrum of
the Laplacian on M is simple, so presumably this is a rather mild assumption.

Jointly with J. Bourgain [BL03], [BL04], we have shown that arithmetic
quantum limits have positive entropy: indeed, that all A-ergodic components
of such measures have entropy > 2/9 (according to this normalization, the
entropy of the volume measure is 2). Unlike the proof of Theorem 1.1 this
proof is effective and gives explicit (in the compact case) uniform upper bounds
on the measure of small tubes. The argument is based on a simple idea from
[RS94], which was further refined in [LinOlal; also worth mentioning in this
context is a paper by Wolpert [Wol01]. That arithmetic quantum limits are
SL(2,Qp)/ SL(2, Zy)-recurrent is easier and follows directly from the argument
in [LinOlal]; we provide a self-contained treatment of this in Section 8.

This establishes the following theorem:

THEOREM 1.4. Let M = I'\H with I a congruence lattice over Q. Then
for compact M the only arithmetic quantum limit is the (normalized) volume
dvolgpyr. For M not compact any arithmetic quantum limit is of the form
cdvolgpy with 0 <e¢ < 1.

We remark that T. Watson [Wat01] proved this assuming the Generalized
Riemann Hypothesis (GRH). Indeed, by assuming GRH Watson gets an opti-
mal rate of convergence, and can show that even in the noncompact case any
arithmetic quantum limit is the normalized volume (or in other words, that
no mass escapes to infinity). We note that the techniques of [BL03] are not
limited only to quantum limits; a sample of what can be proved using these
techniques and Theorem 1.1 is the following theorem (for which we do not pro-
vide details, which will appear in [Lin04]) where no assumptions on entropy
are needed (for the number theoretical background, see [Wei67]):

THEOREM 1.5. Let A denote the ring of adeles over Q. Let A(A) denote
the diagonal subgroup of SL(2,A), and let p be an A(A)-invariant probability
measure on X = SL(2,Q)\ SL(2,A). Then u is the SL(2, A)-invariant measure
on X.
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Theorem 1.1 also implies the following theorem:!

THEOREM 1.6. Let G = SL(2,R) x SL(2,R), and H C G as above. Take
T" to be a discrete subgroup of G such that the kernel of its projection to each
SL(2,R) factor is finite (note that this is slightly more restrictive than in The-
orem 1.1). Suppose p is a probability measure on I'\G which is invariant and

ergodic under the two-parameter group B = <<; 2) , <(>; 2)) Then either

(1) w is an algebraic measure, or

(2) the entropy of p with respect to every one-parameter subgroup of B is
zero.

This strengthens a previous, more general, result by A. Katok and
R. Spatzier [KS96], which is of the same general form. However, Katok and
Spatzier need an additional ergodicity assumption which is somewhat techni-
cal to state but is satisfied if, for example, every one-parameter subgroup of
B acts ergodically on p. While this ergodicity assumption is quite natural, it
is very hard to establish it in most important applications. In a recent break-
through, M. Einsiedler and A. Katok [EKO03] have been able to prove without
any ergodicity assumptions a similar specification of measures invariant under
the full Cartan group on I'\G for G an R-split connected Lie group of rank
> 2. It should be noted that their proof does not work in a product situation
as in Theorem 1.6; furthermore, Einsiedler and Katok need to assume that all
one-parameter subgroups of the Cartan group act with positive entropy. In
Section 6 of this paper we reproduce a key idea from [EK03] which is essential
for proving Theorem 1.1 (if one is only interested in Theorem 1.6 this idea is
not needed).

The proofs of both theorems uses heavily ideas introduced by M. Ratner
in her study of horocycle flows and in her proof of Raghunathan’s conjectures,
particularly [Ra82], [Ra83]; see also [Mor05], particularly §1.4. Previous works
on this subject have applied Ratner’s work to classify invariant measures after
some invariance under unipotent subgroups has been established; we use Rat-
ner’s ideas to establish this invariance in the first place. In order to apply Rat-
ner’s ideas one needs a generalized maximal inequality along the action of the
horocyclic group which does not preserve the measure; a similar inequality was

'Indeed, let A be as above and A’ be the group of diagonal matrices in the second SL(2,R)
factor, so that B = AA’. By aresult of H. Hu [Hu93], if there is some one-parameter subgroup
of B with respect to which p has positive entropy, v has positive entropy with respect to either
A or A’ (note that in this case for any one-parameter subgroup of B all ergodic components
have the same entropy). Without loss of generality, 11 (and hence all its ergodic components)
have positive entropy with respect to A; invariance under A’ is used to verify the recurrence
condition in Theorem 1.1.
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discovered by W. Hurewicz a long time ago, but we present what we need (and
a bit more) in the appendix, joint with D. Rudolph. We mention that a some-
what similar approach was used by Rudolph [Rud82] for a completely different
problem (namely, establishing Bernoullicity of Patterson-Sullivan measures on
certain infinite volume quotients of SL(2,R)).

Both Theorem 1.1 and Theorem 1.6 have been motivated by results of
several authors regarding invariant measures on R/Z. We give below only a
brief discussion; for more details see [Lin03].

It has been conjectured by Furstenberg that the only nonatomic proba-
bility measure p on R/Z invariant under the multiplicative semigroup {a"b™}
with a,b € N\ {1} multiplicative independent (i.e. loga/logb ¢ Q) is the
Lebesgue measure. D. Rudolph [Rud90b] and A. Johnson [Joh92] have shown
that any such p which has positive entropy with respect to one element of the
acting semigroup is indeed the Lebesgue measure on R/Z (a special case of
this has been proven earlier by R. Lyons [Lyo88]). It is explicitly pointed out
in [Rud90b] that the proof simplifies considerably if one adds an ergodicity as-
sumption. This theorem is in clear analogy with Theorem 1.6, though we note
that in that case if one element of the acting semigroup has positive entropy
it is quite easy to show that all elements of the acting semigroup have positive
entropy.

B. Host [Hos95] has given an alternative proof of Rudolph’s theorem. The
basic ingredient of his proof is the following theorem: if u is a invariant and
is recurrent under the action of the additive group Z[$]/Z for a,b relatively
prime then p is Lebesgue measure (a similar theorem for the multidimensional
case is given in [Hos00]).

Jointly with K. Schmidt [LS04] we have proved that if a € M,(Z) is a
nonhyperbolic toral automorphism whose action on the n-dimensional torus is
totally irreducible then any a-invariant measure which is recurrent with respect
to the central foliation for the a action on the torus is Lebesgue measure. Like
Host’s results, this is a fairly good (but not perfect) analog to Theorem 1.1.

The scope of the methods developed in this paper is substantially
wider than what I discuss here. In particular, in a forthcoming paper with
M. Einsiedler and A. Katok [EKLO06] we show how using the methods devel-
oped in this paper in conjunction with the methods of [EK03] one can sub-
stantially sharpen the results of the latter paper. These stronger results imply
in particular that the set of exceptions to Littlewood’s conjecture, i.e. those
(o, B) € R? for which lim ,, .o ||nal [|[n8]| > 0, has Hausdorff dimension 0.
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2. (G, T)-spaces

Let X be a locally compact separable metric space. We will denote the
metric on all relevant metric spaces by d(-,-); where this may cause confusion,
we will give the metric space as a subscript, e.g. dx(-,-) etc. Similarly, B,(p)
denotes the open ball of radius r in the metric space p belongs to; where
needed, the space we work in will be given as a superscript, e.g. BX (z). We
will assume implicitly that for any 2z € X (as well as any other locally compact
metric space we will consider) and r > 0 the ball B;X(z) is relatively compact.

We define the notion of a (G, T')-foliated space, or a (G, T')-space for short,
for a locally compact separable metric space T' with a distinguished point e € T'
and a locally compact second countable group G which acts transitively and

2URL: http://cfa-www.harvard.edu/ dcfox/dragon/natlatex.html. Since then Scotland with
my help has written an improved version of these tools which I have used since and which I
intend to post online when it is ready.
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continuously on 7' (i.e. the orbit of e under G is T'). This generalizes the
notion of a G-space for (locally compact, metric) group G, i.e. a space with
a continuous G action (see Example 2.2), as well as the notion of a (G,T)-
manifold ([Thu97, §3.3]).

Definition 2.1. A locally compact separable metric space X is said to be
a (G, T)-space if there is some open cover T of X by relatively compact sets,
and for every U € T a continuous map ty : U x T — X with the following
properties:

(A-1) For every z € U € T, we have that ty(x,e) = x.

(A-2) For any x € U € T, for any y € ty(z,T) and V € ¥ containing y, there
is a 6 € G so that

(2.1) tv(y,") o0 =tu(z,).

In particular, For any x € U € ¥, and any y € ty(z,T),V € T(y) we
have that ty(z,T) =ty (y,T).

(A-1) There is some ry > 0 so that for any x € U the map ty(z,-) is injective
on BL (e).

X is T-space if it is an (Isom(7T),T)-space, where Isom(T") is the isometry
group of T'.

Note that if X is a (G, T)-space, and if the action of G on T extends to
H > G then X is automatically also an (H,T)-space. The most interesting
case is when G acts on T by isometries. If the stabilizer in G of the point e € T
is compact then it is always possible to find a metric on T' so that G acts by
isometries.

Ezample 2.2. Suppose that G is a locally compact metric group, acting
continuously (say from the right) on a locally compact metric space X. Suppose
that this action is locally free, i.e. there is some open neighborhood of the
identity BY(e) C G so that for every z € X

gr—=1Ig

is injective on BY(e). Then X is a (G, G)-space with ty(z,g) = xg for every
U e T (if X is compact, we may take T = {X} though in general a more
refined open cover may be needed). We can identify G (more precisely, the
action of G on itself from the left) as a subgroup of Isom(G) if we take d¢g to
be left invariant (i.e. dg(h1, h2) = dg(ghi, ghe) for any g, h1, he € G).

When G is a group we shall reserve the term G-space to denote this special
case of the more general notion introduced in Definition 2.1.
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For x € X we set
Tx)={UecT:xeU}.
Notice that by property A-2, y € ty(z,T) (which does not depend on U as long

as U € %(x)) is an equivalence relation which we will denote by x 4 y. For

any = we will call its equivalence class under L the T-orbit or T-leaf of x. This
partition into equivalence classes gives us a foliation of X into leaves which are
locally isometric to T'. We say that a T-leaf is an embedded leaf if for any x in
this leaf and U € T(x) the map ty(z, -) is injective (note that if this is true for
one choice of z in the leaf and U € T(x), it will also hold for any other choice).

Definition 2.3. We say that a Radon measure p on a (G,T)-space X is
recurrent if for every measurable B C X with p(B) > 0, for almost every
x € B and for every compact K C T and U € T(x) thereisat € T\ K so that
tU(iL‘, t) € B.

Ezample 2.4. Suppose that G acts freely and continuously on X preserv-
ing a measure y. Then by Poincaré recurrence, u is G-recurrent if, and only
if, G is not compact.

In the context of nonsingular Z or R-actions (i.e. actions of these groups
which preserve the measure class), what we have called the recurrent measures
are known as conservative and play an important role; for example, see §1.1
in [Aar97]. This definition seems to be just what is needed in order to have
nontrivial dynamics. For probability measures, there is an alternative inter-
pretation of this condition in terms of conditional measures which we present
later.

3. Restricted measures on leaves

Throughout this section, X is a (G,T)-space as in Definition 2.1 with
G C Isom(T'). For simplicity, we make the further assumption:

(3.1) The T -leaf of p-almost every x € X is embedded.

Since X is second countable, it is also clearly permissible to assume without
loss of generality that ¥ is countable. Let My (T) denote the space of all
Radon (in particular, locally finite) measures on 7', equipped with the small-
est topology so that the map v — [ fdv is continuous for every continuous
compactly supported f € C.(T). Note that since T is a locally compact sepa-
rable metric space, M (T') is separable and metrizable (though in general not
locally compact).

The purpose of this section is to show how the measure p on X induces
a locally finite measure on almost every T-orbit which is well defined up to a
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normalizing constant. More formally, if U € ¥(x) we define a measurable map
T ,ui{T € Myo(T) with the properties described below in Theorem 3.6; in
particular, z — MIUT satisfies that there is a set of full measure so that for any
two points z,y which are in this set and on the same T leaf, and if § € G is
the isometry determined by (2.1) then

Oupip o<y, VU € T(x),V € Z(y),

i.e. the left-hand side is equal to a nonzero positive scalar times the right-hand
side. Note that even if p is a probability measure, in general MxUT will not be
finite measures. 7

Sometimes, we will omit the upper index and write p, 7 = ugT. Usually
this will not cause any real confusion since ¢y (z, - )« ,ugT does not depend on U.
It is, however, somewhat more comfortable to think of . 7 as a measure on T'
since ty(x, ')*MxUT is in general not a Radon measure.

Let S be the collection of Borel subsets of X. We recall that a sigma ring
is a collection of sets A which is closed under countable unions and under set
differences (i.e., if A, B € A then so is A\ B). Unless specified otherwise, all
sigma rings we consider will be countably generated sigma rings of Borel sets,
and in particular have a maximal element.

Definition 3.1. Let A C S be a countably generated sigma ring, and let
C C A be a countable ring of sets which generates A. The atom [x] 4 of a point
z € X in A is defined as

Zla= () = () A
ceCxelC AcA:izeA

Two countably generated sigma rings A, B C S with the same maximal element
are equivalent (in symbols: A ~ B) if, for every z € X, the atoms [z]4 and
[x]p are countable unions of atoms [y] 4vg of the sigma ring A V B generated
by A and B.

Let A C S be a countably generated sigma ring, u a Radon measure, and
assume that the y-measure of the maximal element of A is finite. Then we can
consider the decomposition of p with respect to the sigma ring A4, i.e. a set of
probability measures {p2 : € X} on X with the following properties:

(1) For all z,2" € X with [z]4 = [2/] 4,
(3.2) prt = gy and ipg([z]a) = 1.
(2) For every B € S, the map x +— u(B) is A-measurable.

(3) For every A€ Aand B € S,
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(3.3) p(AnB) = [ B duta).
We recall that if A ~ B then there is a Borel set of full measure on which

:UJ?’[I}AvB _ Nghm]fwg '
p([x)ave) B ([x]avs)

(3.4)

If A is a sigma ring with maximal element U, and D C U we define A|p =
{AND:Ae A}. Note that for any x € D, [z]4), = [z]4a N D. Similarly to
(3.4), one has that on a Borel subset of D of full measure

(3.5) o = Vo
“ pM([xlan D)

Let BT = BT (e) denote the ball of radius r around the distinguished point
e € T. Note that if z € U € T, then ty(z, BY') does not depend on U; slightly
abusing notation, we define for z € X,

Bl (z) = ty(z, B]), U € Z(x);

we set BT (z) = ty(x, BT). In this notation, the T-leaf of z is BL (z).

LEMMA 3.2. Let x € X and r > 0 be arbitrary. Fiz V € ¥(z) and

assume ty(z,-) is injective on B, .. Then there is an € > 0 so that the set
U = ty(Be(x), B) satisfies

(1) any y,z € U with y € BL,.(2) actually satisfy y € Bl ().
(2) U is a relatively compact (i.e. U is compact) open subset of X.

Proof. By our assumptions on x and 7, we know that = ¢ tv(x,BgOr \
BF(z)). By continuity of ¢/, and local compactness of T, we have that there

is a € > 0 so that for every 2’ € B(x)
(3.6) Bio,(2') N Be(x) C By, (2).

In order to see that (1) holds, suppose y1,y2 € U with y1 € B, (y2).
Then there are z1, 72 € B(z) so that y; € BI (z;) for i = 1,2. By the triangle
inequality, 71 € BT, (z2), and so by (3.6) 1 € B (z2). This implies that
indeed y; € BI, (y2).

Since clearly U C ty/(Bc(z), BT), and the latter is compact since it is the
image by a continuous map of a compact set, the only thing which still needs
explanation at this point is why U is open.

Suppose z = ty(y,q) with y € B(x) and ¢ € Bl. Take V' € %(z). By
Definition 2.1 there is some ¢’ € B! with y = ty(2,¢'). If 2’ is very close to z,
we have that y' = ty/(2,¢) is very close to y — close enough that y' € B.(z)
and then 2’ € BT (y') C U. O
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Definition 3.3. A set A C X is an open T-plaque if for any = € A: (i)
A C BY(z) forsomer >0 (i) ty(x, ) "1 Ais open in T for some (equivalently
for any) V € ¥(z).

Definition 3.4. A pair (A,U) with A C S a countably generated sigma
ring and U C X its maximal element is called an r, T'-flower with center B C X
if

(d-1) B C U and U is relatively compact.
(d-2) For every y € U

lyla=UnBi.(y)

(in particular, the atom [y] 4 is an open T-plaque).
(%-3) If y € B then [y]4 D Bl (y).

COROLLARY 3.5. Under the assumptions of Lemma 3.2, and with U > x
as in that lemma, there is a countably generated sigma ring A so that (A,U)
is a r,T-flower with center B.(x).

Proof. Let U be the collection of all open subsets A of U so that if y € A
then B (y)NU C A.
We first show:

(¥) For every y,y' € U with y ¢ BT (y) one can find disjoint open subsets
A>y A" >y with A, A" e U.

By Lemma 3.2,
BL.w) N BLW) =0;
since both sets are compact, there is an € > 0 so that for all z € B(y,¢€),2' €
By €)
BJ.(z) N BL(') = 0.

Suppose y € V € %, and that B(y,€¢) C V, and similarly for 3’ (and a
corresponding V' € ). Clearly,

A=ty(B(y,¢),B},),
A =ty (B(y,€),BL)
have the desired properties.
Consider the sigma ring A generated by the collection Y. Clearly, (A, U)
satisfies do-1.

Define a relation y — 3 on U x U if y € B} (y'). This is clearly an
equivalence relation. It is in fact a closed equivalence relation, since if y; — .
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and y; — y,y, — v with y,y’ € U then y € BY (v/), and in view of definition
of U this implies y € BI (/). By (x) the quotient space U/ — is Hausdorff;
since U is sigma compact so is U/ ~—. By definition, the open sets on U/ —
are precisely the images of sets in ¢, and A can be identified with the Borel
algebra on U/ ~—, and so in particular is countably generated.

Furthermore, for any y € U, if y € A € U then by definition BT (y) C A4;
if y ¢ A €U then Bl (y)NA=0,so that

(3.7) wa= () An (| Ao BLuNU.
Ael:yeA AclU:ygA

On the other hand, by (), for every v/ € U \ B (y) there is an A € U with
y' & A3y, so in fact equality holds in (3.7), establishing &-2.

Since by Lemma 3.2 for any y € B we have that B (y) C U, &-2 implies
&-3. O

The following theorem is the main result of this section:

THEOREM 3.6. Let X be a (G,T)-space, and p a Radon measure on X
so that p-a.e. point has an embedded T-leaf. Then there are Borel measurable
maps u;/:T Ve Moo(T) for Ve T which are uniquely determined (up to
pu-measure 0) by the following two conditions:

(1) For almost every x € V, MXT(B%F) =1.

(2) For any countably generated sigma ring A C S with maximal element E,
if for every x € E the atom [x] 4 is an open T-plaque, then for p-almost
every x € E, for all V € T containing x,

— \%
ty (2, )"t o ey (o)1 o] a -
In addition, '“;/,T satisfies the following:

(3) There is a set Xo C X of full u-measure so that for every z,y € Xy

with  ~ y, for any U,V € T with x € U,y € V and for any isometry 0
satisfying

(3.8) tv(y,) o0 =tu(z,)
as in Definition 2.1
H*Mg,T X M;/,T-
Proof. Define
X' ={z : ty(z,-)is injective for some (hence all)V € ()} .
By our assumption (3.1), u(X \ X’) = 0.
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Since X is second countable, for any V' € ¥ and k we can cover X' NV by
countably many balls BY, C V which are centers of 10%, T-flowers (A}, ,UY,).
Note that these flowers can be chosen independently of .

Now take 77,2/ = {PZV,;} to be a partition of V' N X’ into Borel sets with

each PXk C BX - Using this partition, we can define an approximation ,u;/?* :
VNX — Mu(T) to the system of conditional measures on the T-leaves ,uXT
as follows:

Mk7* — —1 Ai,~ 3 \4
Mo T _tV(‘Ta ) *(Nx k)‘Bi)k ifze Pi,k‘
It would be convenient to normalize in a consistent way the ML/?* for

different k. For this we need the following easy lemma:

LEMMA 3.7. For every V € X and i, k, for p-almost every x € Ui‘,/.;c and
forall p >0

AV,
(3.9) pa " (By (x)) > 0.
Proof. Set
v ={eetli:3p>0 u*(Bl()=0}.

By (3.3) and (3.2), we have that

(3.10) MWZA;%%WWMMJMM

Let x € U;/k NX" and V' € Z(z). Set

¥ =ty ) (Y g, )
Let § € Y, and set y = ty/(x,§) (so in particular, y € [z] 4v, NY'). By definition
of Y, for every such y there is a p, so that
AY, AV N
0=ty " (B, () = pz " (tv (2, B;, (§))).

Since T is second countable, a countable number of such open neighborhoods
BpTy (g) suffice to cover Y, so that

AY -~ AY
pa (v (2, Y)) = pz (V) = 0.
After we integrate, (3.10) implies that u(Y) = 0. O

We now proceed with the proof of Theorem 3.6. Suppose (A®, U®) for
i = 1,2 are r;, T-flowers with centers B respectively, with 1 < r =1r; < ro
from the countable collection of flowers

(3.11) {(AV, U 1V €T, ik eN}.
Set U(1’2) = U(l) N U(Q) and A(I’Q) == A(1)|U(1,2) V A(Q)‘U(l,z).
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By (3.4) and (3.5) for p almost every z € U(1?)

A2

(1)
(3.12) T[S PR o [

so that for almost every z € B N B
H;:Lt(l) |B,T(m) ’BT (z)
AP (BT (x)) “‘“” (B (

Define Xg to be the set of z € X’ where

(3.13)

8
b

(1) Equation (3.9) holds for all flowers (.AY 0 UZ-Y,C) with x € UXk
(2) For any two flowers as in (1), (3.12) holds.

Define for any x € Xg and k > 1
V,k,*
MZ’; - V/zx*T )
’ HoT (Bif)
by (3.13) we see that for every k < k¥’ and = € X

Vk

Define

v limy o0 u};; for x € VN Xy
My = .
0 otherwise.

It is clear that Theorem 3.6.(1) holds; we verify (2) and (3).

Suppose A C S is a countably generated sigma ring with maximal ele-
ment E, and that for every = € F, [x] 4 is an open T-plaque. Without loss of
generality we may assume that there is some kg so that for every z,

(3.14) [z]4 C By (2),
since otherwise we may replace E by E = {z € F : (3.14)holds } for ko suffi-
ciently large, and A by A|;. Note that by (3.14), for any i, V,

[z]4 C [z]av, for every z € B, ke N E.

To show (2), it is sufficient to note that by (3.4) and (3.5), for every i, V,
for almost every x € EN BX ko

AV
(3.15) i o gt
since by definition for almost every z € V there is some 4 for which

\%4
i,kq
v

s o< v (e Mo () g, -
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We are left with showing (3). Suppose that z,y € Xy with = X y, and let
U,V,0 be as in (3.8). Let r > 0 be arbitrary, and fix rq satisfying = € B. (y).
Choose k such that 10¥ > 7o + r, and define i, j by

x € PZ-% , Y€ P]Vk
We wish to show that
(3.16) (Q*M:ZT)’B,T o8 ML/,T’B,T-

Set A = Agk,A(Q) = A}{k, and let A(12) be a mutual refinement as above.
By definition, the right-hand side is equal to ([ty (y, -)*1]*(/1;/4(2)))\33. For the

left-hand side,
_ e
(01l lsr = (100 tw (e, ) (™)) s
= [tv(y, ')_1]* (:Ua(:],T’B?(y)) .
Since k was chosen sufficiently large so that [x] 402 = [y] 4.2, by (3.12)
Hor|Br ) o HarlBr ()
and (3.16) is established. O

We note the following easy consequence of the construction of the condi-
tional measures; we leave the proof to the reader.

PROPOSITION 3.8. Let A C X be a measurable set with u(A) > 0. Then
for p-almost every x € A and U € Z(x),

U U
(1l a) a1 o B rltg 2,y 1A

4. Recurrent measures and conditional measures on 7T-leaves

Throughout this section, X is a T-space as in Definition 2.1. In Defini-
tion 2.3 we have defined the notion of a T-recurrent measure. Here we give
an alternative criterion when p is a probability measure. As in the previous
section, we assume for simplicity that p-almost every T-leaf is embedded. For
the case of a Z-action which preserves the measure class of u this is the Halmos
Recurrence Theorem (see §1.1 in [Aar97]).

PROPOSITION 4.1. A probability measure u is T-recurrent if, and only if,
for p-almost every x and U € %(x),

(4.1) W (1) = .

Remark.  Consider the following very simple example of a T-structure
where X = T = G, a noncompact locally compact metric group, with the
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T-structure corresponding to the action of G on itself by multiplication from
the right, and p the Haar measure on G. This measure is clearly not recurrent.
However for almost every x we have that ugT is simply a Haar measure on G,
in particular infinite. ’

Proof that (4.1) holds a.s. = p is recurrent. Assume the contrary holds.
Then there is an 1y and a set By with positive measure so that

(4.2) Binty(z,T\BL)=0, VzeB, zeUcfT.

To simplify the analysis, we assume without loss of generality that there is
some U € € with B; C U.

By (4.1), there is an r; > rg and a subset Uy C U with measure u(Uy) >
w(U) — u(B1)/2 so that for any =z € U;

(4.3) ud p(BLY > 1000(B1) " ud 1 (BL).

We now take B to be By N Uy; clearly u(B) > u(B1)/2.
We will need the following;:

LEMMA 4.2. There is 1, T-flower (A, E) with base B' C B satisfying
u(B) > u(B)/2

Proof. By replacing B with a compact subset of measure only slightly less
than p(B) we may assume without loss of generality that B is compact. By
our standing assumption (3.1), we can also assume that ¢y (z, ) is injective on

B2T()r for every x € B. We now take F to be the sigma compact set
E = tU(B7 BZ: (y))
Observe that for any y1,y2 € F, if

(4.4) y1 € BL(y2)

then in fact y; € B;;FTl (y2). Indeed, since y; € E there are z; € B so that
yi € Bl (%) (again for i = 1,2). By (4.2), either

(4.5) z1 € BZ;(ZQ), or
(4.6) Bgo(zl) N BZO(ZQ) = 0.

Equation (4.4) is not consistent with (4.6), so (4.5) holds; hence by the triangle
inequality y1 € Tor,+r, (y2)-

In the same way that Corollary 3.5 was deduced from Lemma 3.2, Lemma
4.2 can be deduced from the above observation: in particular, we define A
as the sigma ring generated by the relatively open subsets A of E with the
property that if y € A then B, (y) C A. O
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We now return to the proof of Proposition 4.1. Decompose the measure
u|E according to the sigma ring A constructed in the above lemma. By Theo-
rem 3.6, for almost every z € F, and in particular for almost every = € B

(4.7) it = coatv (@, ) (111t )1 (10)) -

By (4.2) and (4.3), and by &-3 applied to the flower (A, E), for any z satisfy-
ing (4.7),

48 i (B') < ' (BE ()

<HB), A1)
_ nBAE)
- 100
For almost every y € E with u“y“(B’) > 0, (4.8) holds for at least one = €
[y]laN B, and so

—

—

A
=
&
5
=
<3
5
QL
=
>

p(B1)
100 - 100
Since pu(B’) > u(B)/2 > u(By)/4 we have a contradiction. O

Proof that 1 is recurrent = (4.1) holds a.s. Assume (4.1) does not hold
on a set of positive u measure. Then there is a set B of positive measure and
ro > 0 so that for every x € B
(4.9) plp(T) <oo and plp(BL) > 0.9uY 1(T)

(as usual, the above expression is independent of U as long as x € U € %).
Without loss of generality, we can take this set B to be a subset of X, with
Xy as in Theorem 3.6 item (3).
Suppose now that x € B and y = ty(x,t) € Bwitht e T, ze€U€%
and y € V € . Then as in Theorem 3.6,
(GU,V('T7 y))*,u;(zj,T = Cm,y“;}jT?

hence

WVo(BT) U (BE (1)

M;T(T) B N;J,T(T)
and so by (4.9) we have that

BE Bl (t)#0

andt € BJ . Inother words, for any « € B we have that ty(z, T)NB C B3, ()
and we are done. O
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PROPOSITION 4.3. Let G be a locally compact metric group, and X a
G-space as in Example 2.2. Let p be a probability measure on X, and as usual
assume that the G orbit of almost every x is embedded; i.e. the action is free
on a co-null set. Then p is G-invariant if, and only if, for p-almost every x
the conditional measure i ¢ is a right invariant Haar measure on G.

(Note that since in the case of G-spaces arising from a G-action the maps
ty are independant of U € ¥, we can omit the elements of the atlas used in all
notation.)

Proof that if pz.q is Haar measure almost surely then p is G-invariant.
Let Hg denote a right invariant Haar measure on G. We will show that for
almost every z € X and r > 0 there is an € > 0 so that if f € L*(u) with
supp f C B¢(x) then

(4.10) /f )dpu(y /f yg)du(y) Vg€ BE.

Indeed, take x to be a point for which g — xzg = t(z,g) is injective on
BS,., and (A,U) be an r, G-flower with center B(z) (see Corollary 3.5).
Suppose supp f C B¢(z). Then

[ rwauy //f i (o) dp(y).

By Theorem 3.6.(3), and our assumption on i, g, for almost every y

/Ly X [ (yv ')]*HG“y]A;
since supp f C Be(x) we know by Corollary 3.5 that for any 3’ € [y] 4 for which
f@)#0, g€ ylafor g€ BY. Hence for ally € U

/f )y = /fygduy

Integrating, we get (4.10) for f satisfying supp f C B(x).

In order to obtain (4.10) for general bounded compactly supported mea-
surable functions we proceed as follows: let f be such a function, and set
f(y) = f(yg). Let & > 0 be arbitrary. Find a compact set K C X so that

1 = £ Ul | = F Ty <o
We may further assume that the G-orbit of every x € K is an embedded orbit.
Then we can write f - 1x = f1 + --- + fr with each f; as in the previous

paragraph, and then (4.10) 1mphes the same for f -1, and

/fdu /fdu‘ /f Lgdp — /f lig—dp

I = Akl + || = F e Tags
and we are done.

<26
1p
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For the converse direction we need the following easy fact:

LEMMA 4.4. Let v be a Radon measure on a locally compact second count-
able group G. Let V C G be an open neighborhood of the identity e € G, and
M a countable dense subset of G. Assume that for every open A C'V and for
every g € M,

v(A) = v(Ag).
Then v|y < Hglv, with Hg a right invariant Haar measure on G.

This follows, for example, quite readily from the construction of Haar mea-
sure (§58, Theorem B of [Hal50]); alternatively, it is also an easy consequence
of the existence and uniqueness of Haar measure. We omit the details. Note
that if V = BY then since we have chosen dg to be left invariant we see that
V==V and V7'V C BS.

Proof that if p is G-invariant then (g, ¢ is Haar measure almost surely.
As in the converse direction, it is enough to show that for every 3r, G-flower
for p-almost every every y in the center B of this flower

ty.GlBs, < Halps,-

Suppose A1, Ay, ... is a countable base for the topology of U = (B, BY).
By the definition of a 3r, G-flower, for every i and g € BS. we have that
A;g C U and so by G-invariance of

AA Ay — iay — [ A
/U B (A dply) = p(Ar) = p(Asg) /U 1A (Aig)du(y).

By Theorem 3.6.(2) this gives that for every g € BS. and p-almost every = € B

(4.11) pa((t(z, ) (AN [2]4) = Hae((t(z, )7 (A N [2]4)g) -

Note that since the A; form a basis for the topology of U, any open subset of
B¢ is a countable union of sets from the collection

{(t(z, ) (A N [a]a),. ..}

Let M be a dense countable subset of BQGT. Then for almost every z € B
equation (4.11) holds for every g € M and 4. For such z the measure p, ¢
satisfies all the conditions of Lemma 4.4, and we are done. O

5. Expanding and contracting foliations

Definition 5.1. Let X be a (G, T)-space, and o : X — X a homeomor-
phism of X. Let H > G be a subgroup of the group of homeomorphisms
Hom(T) of T. Then « preserves the (H,T)-structure of X if for any U,V € ¥,
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for any = € U N a~ 'V, there is a homeomorphism § = GQUX € H fixing e (i.e.
f(e) = e) so that

(5.1) aoty(z,:) =ty(ax,-)ob.

Note that if ¢y (z,-) is injective (which we assume holds for almost every x),
then 6 is uniquely determined.

We point out the following special important cases (as always, we assume
that G < Isom(T)):

(1) « preserves the T-leaves if it preserves the (Hom(7T'), T)-structure.

(2) « acts isometrically on the T-leaves if it preserves the (Isom(7T),T)-
structure.

(3) « uniformly expands (contracts) the T-leaves if it preserves the T-leaves
and there is some ¢ > 1 so that 6 as in (5.1) can be chosen to satisfy
d(0z,0y) > cd(x,y) (d(0z,0y) < ctd(z,y)) respectively.

We remark that the notion as above can be extended to any group action
(so Definition 5.1 treats the case of the Z-action generated by «), with the
exception of (3) above for which one needs at least an order on the acting
group. Explicitly, we shall say that an R-action «. uniformly expands T if
for every s > 0 the homeomorphism «; is uniformly expanding. Though for
simplicity we state the results of this section for a Z-action, all statements and
their proofs remain equally valid for R-actions.

An almost immediate corollary of the construction of the systems of con-
ditional measures ug 7 is the following:

PROPOSITION 5.2. Let X be a T-space. Assume that o : X — X is a
homeomorphism that acts isometrically on T-leaves and preserves the mea-
sure . Then for pu almost every x € X,

(5.2) Wor =09V Lkl U €T(@),V € Taa).

Proof. By the properties of conditional measures listed on p. 174, if A is
a countably generated sigma ring of Borel subsets of a Borel set £ C X, for p
almost every z € £

(5.3) i = s
However, in view of Lemma 3.2, Corollary 3.5, and Theorem 3.6 item (2),
the equation (5.3) implies the proposition. O

Let p be a probability measure on the space X, and a a homeomorphism
of X preserving pu. The ergodic decomposition can be constructed in several
ways, one of which is the following. Consider the sigma algebra £ of Borel
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subsets of X which are (strictly) a-invariant (in the case of R-action, £ will
be the collection of Borel subsets of X which are as-invariant for all s). This
sigma algebra is usually not countably generated, and so has no well-defined
atoms. However, since (X, u) is a Lebesgue space, the conditional measures ug
are well-defined. It is fairly easy to see from the definition that almost surely
the measures ,ug are a-invariant. A slightly deeper fact is that they are also
a-ergodic. The standard decomposition p = | ,uidu(x) for this sigma algebra
& is called the ergodic decomposition, and each uf is called (in a somewhat
loose sense) an ergodic component (see for example §3.5 of [Rud90a]).

We recall the following well known property of contracting foliations,
which dates back at least to E. Hopf (cf. e.g. [KH95, §5.4]).

PROPOSITION 5.3. Let X be a T-space and o : X — X a homeomorphism
that uniformly expands the T-leaves. Let i be an a-invariant probability mea-
sure on X, and E C X an a-invariant Borel set. Then there is a Borel set
E' C X with u(EAE") = 0 consisting of complete T-leaves, i.e. such that for
every x € E' it holds that BE (x) C E'.

Proof. We first find, for every § > 0 a Borel Ejs consisting of complete
T-leaves with u(EAEs) < 6. By measurability, find C ¢ E C U with C
compact, U open, and u(U \ C) < §/2. Let f : X — [0,1] be a continuous
function such that f|c =1 and f|ye = 0.

Set

N
1
Es = {x : h_mNﬂooN Zf(T_nl') > %} :

Since f is continuous and « contracts T, the set Es is a union of complete
T-leaves. Furthermore

N
Eg\Ecz{x:EENHW§;§jfaFﬂx>—1Eavﬂx)z%},

n=0
- 1
W EAEs) < {:L‘ : th—woN Z |f(T7"2) — 1p(T "z)| > %}

n=0

[N

N
— 1 _ _
E\E;sC {m:th_)OON golE(T "r)— f(T"x) >
n—=

so by the (usual) maximal inequality applied to «

<2|f ~ gl <4
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Once we have shown how to construct the sets Es, we can take

oo 0
E = U mEgj

i=1j=1

which is easily seen to satisfy all the conditions of the proposition. O

COROLLARY 5.4. Let X be a T-space, o : X — X and u be as in Propo-
sition 5.3. Let £ be the sigma algebra of a-invariant Borel sets. Then:

(1) For p-almost every x and ug almost every y
(Mi)y,T = Hy,T-

(2) For every E € & with positive ;i measure, for p-a.e. x € E
(lE)ar = pa,T-

Proof. We first prove (1). By Proposition 5.3, without loss of generality
E consists of full T-leaves. It follows that for every r, T-flower (A, U), the set
ENU is an element of A.

It follows from the properties of conditional measures that for a.e. z €
ENU
A.
€T

?

(ule)f = p

hence in view of the way the conditional measures p, 7 have been constructed
in the proof of Theorem 3.6 using a countable number of flowers (u|g)z 1 = fa,7
for a.e. x € F as claimed.

We proceed to prove (2). Again it is enough to show that for every r, T-
flower (A, U), for u-almost every x € U and uf almost every v,

(5.4) (WEYA = it

Let & = {ENU:Ee&}, €< & acountably generated sub-sigma alge-
bra equivalent to & modulo p-null sets, and & = EV {U , U B}. Then for almost
every x € U,

(5.5) ue = pl o bl = 1o

As we have already seen, it follows from Proposition 5.3 that up to sets of
measures zero &' is contained in A: i.e. that for every F € £ thereisan A € A
so that u((ENU)AA) = 0. Thus (uf);ﬁ = /@4 for a.e x € U and p almost
every y, and so by (5.5), equation (5.4), and hence this corollary, follow. O
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6. A lemma of Einsiedler-Katok and its generalization

A key point in [EKO03] is the following important observation. While the
statement given in [EKO03] is given in a somewhat less general context, their
proof extends without any substantial difficulties to the framework of T-spaces.
The heart of the arguments is a variation on Hopf’s argument.

Definition 6.1. Let X be a T-space, and « : X — X act isometrically on
T-leaves. We shall say that 2’ € X is asymptotically in the T-leaf of x € X
if there is some z” ~ z so that for any sequence n; for which {a™z} (hence
{a™i2}) is relatively compact, d(a™z”, o™ z') — 0 as i — .

Note that in general there seems to be no reason why this should be a
symmetric relation.

LEMMA 6.2. Let X be a T-space and o : X — X a homeomorphism that
acts isometrically on T-leaves. Suppose that u is an a-invariant probability
measure on X (as usual, also assume that for p almost every x, each T-leaf is
embedded.)

Then there is a co-null set X such that for every x,x’ € Xy so that ' is
asymptotically in the T-leaf of x,

(6.1) pl o @y, U € S(x),U € T(a),
for some ® € Isom(T).

Remark. It will transpire in the proof of Lemma 6.2 that this ® can be
chosen so that for some sequence n;

(6.2) lim o™ty (x, t) = lim o™ty (2/, D(t))

(in particular, both limits exist). Thus, if there is some @’ which satisfies that
whenever {a"ty(x,t)} is relatively compact,

dx(a™ty(z,t), o™ty (2, @ (t)) — 0

then ® = @', a fact that will be useful to us when we actually try to identify
this element ® in certain cases. Note that it is easy to calculate explicitly the
constant of proportionality by comparing the measure of the set BY.

Proof. We show that for every e > 0 there is a set X on which (6.1) holds
with p(Xe¢) > 1 — e. Since the maps = — ugj are Borel, hence py-measurable,
for every e > 0 there is a compact set Xé of measure > 1 — €2 / 100 on which
this map is continuous. By the maximal ergodic theorem, there is a compact
subset X, C X! so that:
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(P-1) For every z € X,
n
lim 1 leé(a”x) >1—e
i=0

(P-2) For every x € X, equation (5.2) holds.
(P-3) p(Xe) >1—ce.
(P-4) X, is a subset of Xy of Theorem 3.6.(3).

Suppose now that z,2’ € X, with 2/ asymptotically on the T-leaf of x.
Let 2" X 2 with d(a™z",a™2') — 0, and U € T(z),U’ € T(2'). By P-1, there
is an infinite sequence of n; so that both a™z and o™z’ € X!. Since X! is
compact, by passing to a subsequence if necessary we may assume that

i i / /
ax — z, air' — 2, (z,z € XE) .

Note that this implies in particular that o”z” — 2/, and so from x L2t
follows that z ~ 2'.

Let V € ¥(z), V' € T(2'). For i large enough, o™z € V and o™z’ € V.
Let

ami,x) ami,x’
as in Definition 5.1.

Without loss of generality, by passing to a subsequence if necessary, we
can assume that there is a limit 6 = lim; .o 0,,, and 0" = lim; .o 0, . Let 0, ./
be an isometry as in Definition 2.1 so that

tV’(ZI7 ) o 02,2' = tV(Z, )

Set ® =[0"] 7106, o6. Then since y — /,L,L/T is continuous and since for all
large enough o™iz € V,a"iz' € V',
(6.3) plp = lm pg, =m0y |l r = O,
(6.4) MZ:T = lim /’LXT,%'I’,T: hm[e;u]*/'sz’,,T: efk#g’/,T-
By Theorem 3.6,
(6'5) MZ’iT X [ez,z’]*u,‘z/,TQ
together, equations (6.3) — (6.5) give (6.1).

Furthermore,

ity (x,t) =ty (Q™x, Oy, (1) — ty(2,0(t) =ty (2,0, 0 0(t)),
ity (2, @(t) =ty (aia,0;, o B(t)) — ty/ (2,0 0 B(t))
=ty/(2,0; . 0 0(1)).

establishing (6.2). O
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Suppose that H = Hy X Hs acts nicely from the right on X as in Exam-
ple 2.2; this gives X an H;j-structure and an Hs-structure in the obvious way.
We wish to extend this notion to more general circumstances. Since we will
have to deal simultaneously with several different structures, where necessary
we shall add the structure we are dealing with to the notation, e.g. ty,s ete. If
S, T are metric spaces, we shall take dgx7 = max(dg, dr). We will also assume
that the components of the marked element e € S x T are the marked elements
(again denoted by the same symbol e) of S and T'.

We shall say that an S x T-structure of X is a product structure if it is
an (Isom(S) x Isom(T"), S x T)-structure. Note that it is immediate that if the
S x T-structure of an S x T-space X is a product structure then it induces an
S-structure on X and a T-structure on X with the same atlas

Let ¥ be as before by taking for any x € U € ¥, s € Sand t € T,

tU;T(l’,t) = tU;SXT(xa (eat))a tU;S($7 S) = tU;SXT(x7 (57 6))

LEMMA 6.3. Let X be an (Isom(S) x Isom(7T), S x T')-space. Suppose that
x € X is such that the map ty.sxr(x,-) is injective on Byl for some (hence
all) V€ Z(x). Then there is an open set U > = (not necessarily in T), and

countably generated sigma rings A = A.sxr and A.s, Ar O A of Borel subsets
of U, and € > 0 so that

(C-1) (U, A.r) is an r, R-flower with base Bc(x) for R=S,T,5 x T.

(C-2) for everyy eV,
Wlan =[ylanBi(y), R=S.T.

Proof. Let U and € be as in Lemma 3.2 applied for the S x T-structure
of X. Note that automatically, U and e also satisfy (1) and (2) of Lemma 3.2,
also for the T' structure of X.

We can now apply Corollary 3.5 three times, once for the S x T-structure,
once for the S-structure and once for the T-structure of X, to obtain three
countably generated sigma rings A = A.gx7, A.g and A.7 of Borel subsets of
V which satisfy C-1.

C-2 follows immediately from the way these sigma rings are constructed
in Corollary 3.5. O

PROPOSITION 6.4 (Einsiedler-Katok Lemma). Suppose that X is an
(Isom(S) x Isom(T), S x T)-space. Let ac: X +— X be a homeomorphism pre-
serving the S, T, and S x T structures of X. Suppose that o acts isometrically
on the S-leaves and uniformly contracts the T-leaves. Let p be an a-invariant
measure on X so that for almost every x its S X T-leaf is an embedded leaf.
Then for u almost every x and all U € T(x)

U _ U U
/"L$,S><T - :U:L‘,S X :U:L‘,T'
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Proof. Let X be a co-null set contained in both the co-null set of Lemma
6.2 applied to the S-structure of X, and the co-null set of Theorem 3.6.(3)
applied to the three structures of X as an S-space, a T-space and an S x T-
space.

Let r > 1 be arbitrary, and zo € X any point whose .S xT-leaf is embedded.

Step 1. We show that there is some ¢ > 0 so that for u-almost every
x € BX(x0) and any V € T(z) there is a measure v, on Bl so that

v v
/’LI,SXT‘B,?XT = :ux,S’Bf X Vgp.
We now apply Lemma 6.3 on zy and r to get an € > 0, an open set Uy
and three sigma rings of subsets of Uy with the properties cited above.
Fix x € Xo N B(xg,€) and U € T(x). Set
tw) = tu;sxr (T, ), Tsi = t(z)(s,1).

Since the S x T-structure of X is a product structure, we have for every
(s,t) € Sx T and V € T(x,) isometries Y, € Isom(S) and Y, € Isom(T) so
that for all 5,8’ € S,t,t' € T

(6.6) trisxr(@, (s,1)) = tvisur (s, (B54(s), 154 (1))).

Since « contracts the T-leaves, it follows that if {a™z} is relatively compact
(and so {a"xs,} is relatively compact for all s,t) then

(6.7) dx (" zep, " xgy) — 0 vt t' eT.

In particular, for every (s,t), we have that x4, is asymptotically on the
S-leaf of x and vice versa. By Lemma 6.2, we know that for every s, ¢ for which
st € Xo and V € T(z,), there is some ® so that /‘g,s x <I>*,u¥§ .- and that
this ® satisfies (6.2) for 2 and ;. By (6.6) and (6.7) we have that if {a/z}
is relatively compact

dx (@™ty,s(z,s'), ™ ty,s (s, 5Xt(5/))) — 0;
so by the remark following Lemma 6.2 we have that & = ﬁ’;{t, i.e.

(6.8) w5 < [BY sty sU.

Let ¢4 : S +— S x T be the map s — (s,t), and let 7g : S x T — S and
mp S x T — T be the natural projections; in particular wg o (; is the identity
transformation S — 5. Assume that x5, € Xo, that (s,t) € BY*T = BY x BT
and V € T(zs¢). By (6.8) and (6.6) we know that for any bounded K C S

tle (1Y, 1) o< tnle (18K Do) )

= [t() © Gl (Mg,s\ﬁx,’l(K)> '
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We now use Theorem 3.6 and the above to show
(6.9) Mé‘i ’Bf(xe,t) x [ty,s(Tst, )]« (“a‘:/s,t,S|B§(6Xt(6)))
o [t() © Gil« (1Y slBs) -
We evaluate the implicit constant by evaluating the measure given to BY (. )

in both sides of (6.9). Applied to this set the right-hand side can be explicitly
calculated:

(It © Celw (1 51Bs)) (BY (wep)) = 1l g (BY N g 0ty (Bf (wer)))
=l g(BY) = 1;
hence

(6.10) !

A,
piz (B (2et))
Note that as long as z¢ € [x] 4 the normalizing factor depends only on t (see

(1) following Definition 3.1)
Since A = A.gx7 C A,g we know that for p-almost every x

M;‘l;i BS(z...) = [t(z) © Ctl« (Ng,s Bs) -

(6.11) it = [t ducto).
We rewrite the above equation using (6.10)
(6.12)

Mf’foT(m) = /MZ;LS’BEXT(x)m[y]A;Sde(y)

xfrwl [ A s (5,1) e(®) Gt slos
7t (BY)Nt )~ ([].4)

= [t(x)]* (V.’EU,T‘;T X MZS‘BF)
with

c(t) = ps (BY (wey)) = pzes (BT (x))

and v a measure supported on BTT C T defined by

Vg,r;T(A) = C(t) d:u‘al:],SXT(Sv t)'

/7FT1(A)ﬂt<z) “H([=la)

Step 2. 'We now show that for any § > 0 there is a set B C Bc(z9) N Xp

of measure > (1 — 0)u(Be(x0)) so that
(6.13) I/UJ,;T x MgT’BZ Va € B.

x

Assume for the moment (6.13) is established. By taking 6 — 0 we deduce that
for almost every x € B¢(xo) we have that

Mg[c],SxT|B§XT X MQICJ,S\BE X N;],T|Bfa
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and from the way we have normalized the conditional measures it is immediate
that in fact equality holds (i.e. the implicit constant above is one). By taking
a countable sequence r; — oo, and for every r; a countable subcover of the
collection of balls of the type BX(xg) which covers all points of X whose
S x T-leaf is embedded, we establish the proposition (note that e implicitly
depends both on zy and on ;).

It remains to establish (6.13). Similarly to (6.11), since A C A, we can
write

(6.14) ,u;é‘]foT(x) = /M;;LT|B§XT(x)m[y]A;TdM?c4(y)

X / ,uff
BS

r

BT (z,..) d[ﬂ-S]*[MZSXT|(t(m))*1[r]A](S)'

Let s : T — Sx T be given by (, : t — (s,t). Equation (6.12) can be rewritten
as

(6.15) ilngeni o [ty 0 Glalnadil o).

Comparing (6.14) and (6.15) we see that Na[:],S and [71'5]*[/LZSXT’(t(I))—l[x}A] are
in the same measure class and that for uzU g almost surely

VU

(6‘16) N‘/x‘ls;’Tc BT (z,.) X [t(a:) © 58]* z,rT

Equation (6.16) is almost what we are seeking; however, we still need to show
that for almost every x this equation holds at the specific value of s = e. This
we achieve in the following way: Let B C Be(xg) N X be a compact set with

w(B) = (1 = €)u(Be(o)),

on which

A
y =y "By
is continuous (with respect to the weak star topology of probability measures
on X). By (6.16) there is a subset B of full measure of # € B for which there
is some sequence s; — e where (6.16) holds. We also require that Theorem
3.6.(2) holds for € B. Then, since
A1 A.r ~ U U
:u‘ats’i,E ’B;T(Isi,e) — My ‘B?(r)? [t(z) o CSJ*VI,T‘;T - [t(w)]*yx,r;T7

by (6.16)

1T () O [ty eV s
or, by Theorem 3.6.(2)
Ma[{,T|BTT(m) X [t(x)]*yz[t],r;Tv

and we are done. O
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COROLLARY 6.5. Let X be an S x T-space and o : X — X as in Propo-

sition 6.4. Then there is a set Xy of full measure so that for every x SXT !

with x, 2" € Xo,U € Z(x),U’ € T(2')

HQIE]/I;T X ’Y*:U’:(E];Ta
where v € Isom(T') is defined by

tursxr(@',-) o (B,7) = tu.sxr(z, ) for some 3 € Tsom(S).

7. Invariant structures and measure rigidity

We recall our main theorem: let H = SL(2,R), be equipped with some
left invariant Riemannian metric dg, L be an S-algebraic group, and K < L
be a compact subgroup. Set T = L/K and let dp be an L-invariant metric
on 7.

Let ' be a discrete subgroup of H x L, and take X = I'\H x T'. Note that
we do not assume that I is a lattice. We take

dixr((h,t), (K, t") = max(dg (h, h'), dr(t,t)).

Since the action of I' preserves this metric, there is a unique metric dx on X
so that the projection m : H x T' — X is locally an isometry. For the sequel,
we will need to assume that I" is “irreducible” in the following (rather weak)
sense that

(7.1) ML= {e}

(note that in the above equation L is identified with its image in H x L).

The group H acts on X from the right, and in addition X has the structure
of an (L, T)-space. Together this gives X the structure of an (H x L, H x T)-
space; in particular this structure is a product structure. Let T be a common
atlas for the T and H-structures of X; since the H-structure of X comes from
a group action, the local maps ty. g (x, h) = xh are independent of U € ¥.

Let

—t
aft) = (60 0t> . A={a(t):teR},

e
nty= (¢ N* ={n*(t) : t R}
0 1)’ ’
_ 10 . _
n(t):(t 1), N~ ={n"(t): t e R}.
THEOREM 7.1. Let X = I'\H x T be as above, and p be an A-invariant

and T-recurrent probability measure on X. Assume that all A-ergodic compo-
nents of i have positive entropy. Then p is N1 -invariant.
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Proof of Theorem 1.1 assuming Theorem 7.1. By assumption, p is
A-invariant. Using the involution i : g — (¢*)~! on H (which we also con-
sider as an involution on H x T fixing the second coordinate) we obtain a new
measure p' on X' =T"\H x T with I = i(T") by first lifting x to the product
H x T, applying the involution ¢ and then projecting back to X’. The hypothe-
ses in Theorem 7.1 remain satisfied for X’ and p/, hence u' is N -invariant,
which shows that p is N invariant.

It follows that the measure pon X = I'\H x I'' is H-invariant, and Theo-
rem 1.1 can now be deduced from the S-algebraic versions of Ratner’s theorem
[MT94], [Ra95]. Alternatively, one can use the elementary observation that a
measure t on H x T is left invariant under H if and only if i is right invariant
under H, hence by lifting 4 to a measure i on H x T the classification problem
at hand reduces to classifying measures on H x T  invariant from the left by
HT', which is easy. O

LEMMA 7.2. Let X be as in Theorem 7.1, and @ be a T-recurrent,
A-invariant probability measure on X. Then for every sufficiently small € > 0,
for every set B C X with u(B) > 0 for almost every x € B, there is a point

Y L 2 with
(7.2) y € BN (Be(z)\ BN *T(z)).

Proof. We first claim that for p-almost every x € X, it holds that the
N7 x T-leaf of  is embedded. Indeed, the irreducibility condition on I' implies
that every T-leaf, without exception, is embedded. So if the N x T-leaf of

z is not embedded, there are some s # 0 so that z ~ zn*(s), say an*(s) =
tu.r(z,t) for t # e.

Consider the orbit of z under the semigroup {a(—t):¢>0}. Almost
surely, xa(—t) would return infinitely often to some compact set K. Sup-
pose t1 < to < ... is a sequence of such times with ¢; — oo, and without
loss of generality we may assume that za(—t;) — zo9. Then xn*(s)a(—t;) =
za(—t;)nt (e 2s) — x0, and there is some ' # e and U’ so that zy =
tyrr(zo,t'): a contradiction, which implies that almost surely the N x T-leaf
of xn is embedded.

Now let € > 0 be arbitrary. Cover X by countably many balls B; of
radius €/2, and throw away those whose intersection with B has measure 0. By
T-recurrence, for p-almost every x € B;N B thereisat € T\ Bf and U € Z(x)
such that y = ty.r(z,t) € B; N B. Note that B; C B¢(x). We also know that
for p-almost every x € B; N B, the Nt x T-leaf of x is embedded so that
y & BN"¥T (). Together this gives (7.2). O

Let +, : R — R be the map x — x + a, and X, : R — R be the map
T — ar.
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LEMMA 7.3. Let p be an A-invariant measure on X. Then the following
sets

7 = {.%' Mg Nt = HN+}
= {.’E €eX:VaeR p,n+= (—"_a)*um’N‘F} ,
Y = {:c € X : Ja such that py N+ < (+a)*,u$7N+}

satisfy wW(Y \ Z) = 0.
Proof. Set for y e Y

Ry, = {a >0 fy N+ X (+a)*ux,N+}
r(y) = inf R,.

Since r(-) satisfies that 7(ya(—t)) = e~ ?!7(y), by A-invariance of p Poincaré
recurrence implies that r(y) = 0 for p-almost every y € Y.

Choose some arbitrary nonnegative compactly supported test function
¢ € C¢(R) which is nonzero in a neighborhood of 0. Then almost surely
[ o(t)d(+a)spty N+ > 0 for any a € Ry, and so we may define k, : R, — R by

d("‘a)*ﬂy,NJr _ f¢(t+a)dﬂy,N+
[y N+ J o(t)dpy N+

Since the map a — [ ¢(t + a)dpu, n+ is continuous, so is £y (a); and if r(y) = 0
(which we recall happens a.s. for y € Y') we now see that in fact R, = R* and

exp(ry(a)) :=

ky(a) = ky(1) - a. In view of this last expression, we set ky = ry(1).
We now again use the fact that p is invariant under the A-action, which
implies that

[XEQt}*My7N+ x Nya(t)7N+'

_ 2t
Hence ry = kyq() (™) or

_ 2t
Ry =€ Kya(t)-

Again Poincaré recurrence implies that &, = 0 for almost every y € Y’; in other
words almost every y € Y is in Z. O

A crucial ingredient in the proof is Ratner’s H-property for the horocy-
cle flow on SL(2,R) ([Ra82, Lemma 2.1] and [Ra83, Def. 1]). This property is
related but distinct from Ratner’s R-property which is used in the proof Raghu-
nathan’s conjecture (see [Ra92, p. 22| for the special case of G = SL(2,R) and
[Ra90b] for the general case). We present below a form of the H-property
that is convenient for our purposes. At its heart, is the following elementary
calculation:
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LEMMA 7.4. There is some universal constant C > 0 so that for any
5,t €ER with 3 >t>1>9,

_ t
n~(0)nt(t) en’ (ﬂ) BE.s.

Proof. Indeed, this is simply an exercise in matrix multiplication:

_ 10\ (1t 1t
" (5)"+(t):<5 1)’(0 1>:<5 1+t5>
(! mwm\ (im0
0 1 5 1+16
I %) gH
e(, TP ) Bls O

LEMMA 7.5. For any compact subset X' C X and p € (0,1), there are C
and 1y > 0 so that for any e < ny and x,z’ € X' with

¥ € Bu(a) \ BY <T(2)
there is some a so that for any T with pa < |7| < a
a'ni (1) € Boey(ani (1))

with C~1 < |7 — 7| < C.

In addition to our use of the H-property, our strategy of proof is similar
to that used by Ratner, particularly in [Ra82], [Ra83].

7.1. A simplified proof of Theorem 7.1. Initially, we state the proof of
Theorem 7.1 given an additional technical assumption, which allows us to
avoid a complication in the proof, clarifying the ideas involved.

Additional assumptions. The additional assumption is that the condi-
tional measures fi, y+ satisfy the doubling condition, i.e. there is a constant
p € (0,1) so that for u-almost every x € X and all r > 1

(7.3) po N+ (BYT) > 240 n+ (BT,

Let Z and Y be as in Lemma 7.3. By Proposition 4.3, Theorem 7.1 is
equivalent to p(X \ Z) = 0. Assume by contradiction that this is false. Let
w = pl x\z- It is immediate from the definition of recurrent measures that the
restriction of a recurrent measure is recurrent; so y’ is T-recurrent. Clearly Z
is A-invariant (up to a set of p-measure 0), and so p’ is A-invariant.

Since Z is A-invariant, it follows from Corollary 5.4(1) that for almost
every x € Z

!/
Ky N+ = Ha N+-
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Replacing p by g’ if necessary, it is enough to show that u(Z) = 0 (or equiva-
lently that (YY) = 0) leads to a contradiction.

Let € > 0 be arbitrary. For any such ¢ we can find a compact subset X3
of X with measure > 1 — ¢ with the following properties:

(X-1) X is disjoint from Y.

(X-2) The map = — p N+ is continuous on X (with respect to the topology
on My (NT) given in §3).

(X-3) X is a subset of the set of full measure in Corollary 6.5 applied to the
NT x T structure of X.

(X-4) X is a subset of the set of full measure in Theorem 3.6.(3) for the N,
T, and NT x T structures of X.

We remark that we can find X; satisfying X-2 by Lusin’s theorem [Fed69,
p. 76], since x +— p, n+ is a Borel measurable map from X to the separable
metric space Moo (NT).

We now apply a version of the maximal ergodic theorem for not necessar-
ily invariant measures which will be proved in the appendix (Theorem A.1).
According to the theorem, there is a set X2 (which we may as well assume
is a compact subset of X7) of measure > 1 — Cyel/? (with C} some universal
constant) so that:

(X-5) For every € X5 and any r > 0

) e ) () 2 (1= e (B,

Let § > 0 be very small (depending on €) to be determined later. Since
w is T-recurrent, by (7.2) it follows that for almost every z € Xy there is an

' % z so that
1« € Xo N Bs(x) \ BN T ().

As long as § is small enough, this implies that 2 and 2’ satisfy the assumptions
of Lemma 7.5. Let a be as in that corollary with p as in (7.3). Clearly, if ¢ is
small enough a will be much bigger than 1.

Let

(7.5) Gi={seR:ani(s) € X1},
Go={seR:a'ni(s) € X1}.
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: T .
Since z,2' € X1 and = ~ 2’ we have that fi; N+ = piz n+. Furthermore, since
z,7' € Xg and a > 1,

(7.6)
pon+ ({5 pa < |s| < a}\ Gi) < € 2pp n+(BY)
<2 Py N ({5 pa < |s| <a}), i=12

where we have used (7.3) to pass from the first to the second line. By X-4, for
all z € X1,

o, N+ (B(]I\H) > 0.
Thus if € < 0.01
pa N+ ({s:pa <|s| <a}NG1NG2) >0

and in particular there is a sp € {s: pa < |s| < a} N G; N G2. Consider now
the pair of points y = zn(so),y’ = 2'n4(sp) € X1. By Lemma 7.5, we know
that

Yy € Bepyorz(yn (7))

for some 7 so that |7] is in a fixed interval I C R* which does not contain 0.
Note that since i, N+ = g N+, and since z, 2, y,y’ are all in X7,

(7.7) fy, N+ OC (450 )l N+

= (+_50)*/’[’1’/,N+

X :uy/,]\” .
By comparing the measure of Bi¥ " one sees that in fact
(7'8) Hy, N+ = My N+.

Applying this with a sequence §; — 0 we get a sequence y;, y; € X1; since
X is compact we may as well assume that y; — y,y; — 3/ and necessarily

y =yni(r), TelU-I
y7y/ € Xl'

Furthermore, since on X7 the map x + px+ , is continuous, and since for

all ¢ by (7.8)
HN+7yi = /,LN‘F,y:
we get that
(7.9) HN+y = BN+y = BN+ yn(r)-
Once again using the fact that y,7’ € X7 we also know that
(7.10) KN+ yn(t) X (+—7’)*:U’N+,y‘
Hence either y or ¢/ is in Y, contrary to the fact that Y is disjoint from Xj.
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7.2. A complete proof of Theorem 7.1. In the proof just given in §7.1,
substantial use has been made of the doubling condition (7.3). The key to
overcoming this difficulty is the observation that for a given constant p < 1
the set

(7.11) R,(z) = {r N+ (BYT) > 2%7N+(Bgf)} ,

which is the set where a doubling condition holds, has a very different behavior,
when we replace = by za(t), from the set of all r that satisfy the conclusion of
Lemma 7.5, i.e. the set

r Vs, pr < |s| <r:a'ng(s) € By(zny(s))
with C™1 < ‘s—s" <C ’

Dp707'y(x,x/) = {

for, e.g. v = Ce'/2 (for technical reasons, we will actually need to use the
slightly bigger ). This gives us hope that by flowing along the flow associated
with the subgroup A we might be able to arrange to have the doubling condition
precisely where we need it.

Before we actually carry out the proof, we need the following standard
fact in a nonstandard terminology:

THEOREM 7.6. Let p be an A-invariant probability measure on X. Then
w is N*t-recurrent if, and only if the entropy with respect to the action of a(1)
by right multiplication of almost every a(1) ergodic component ,uf is positive.

We could have just as well considered ergodic components of the full
A-action: in general, an ergodic component for the R-action corresponding
to A can fail to be ergodic under the Z-action generated by a(1), but the
entropy of this R-ergodic component is equal to the entropy of almost every
Z-ergodic subcomponent.

In essence, this theorem is a corollary of a theorem of Ledrappier and
Young ([LY85, Th. BJ). Strictly speaking, however, the results of that paper
which deals with smooth actions on smooth compact manifolds do not apply
here. In the S-algebraic context a suitable variant of this theory can be found
in §9 of [MT94]. With slightly more work, Theorem 7.6 (which is the only
place where S-algebraicity is used in the proof of Theorem 7.1) can be proved
for general locally compact L, but it is not clear how useful such an extension
would be.

Proof of Theorem 7.6. Let o be the map x — za(1l), and u = f,ugd,u@)
be the ergodic decomposition of p with respect to « (see §5), and let ha(,ug )
denote the entropy of multiplication from the right by a(1) of the ergodic
component ug.

We will show that p-almost surely, if ha(,ug) > 0 then for ,ug—almost

every y, the conditional measure p, y+ is infinite (recall that by Corollary
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5.4(2), pyn+ = (M?)y,N+)- We will also show that conversely, if ha(pf) =0
then for uf—alrnost every y the measure p, y+ is finite, indeed equal to the
delta measure at 0.

As a preliminary step, we note that the sets

E = {m : pg, N+is finite } D {a: D g N+ = 50} =: F»
satisfy
(7.12) 1(Er\ Ep) = 0.
Indeed, define

. {inf{r >0 g+ BN' > %%,MB(@VO*} if ¢ € By
rxr) =

0 otherwise.

Then for p-almost every x we have that r(z) = e 'r(a(z)). By Poincaré
recurrence this implies that 7(z) = 0 almost surely, which is equivalent to
(7.12).

Let now v = ,uf be an ergodic component. By [MT94, Prop. 9.2] there is a
countably generated Borel sigma algebra A of subsets of X with the following
properties:

(i) A is subordinate to NT; i.e., for every = we have that there is some r > 0
so that [z]4 € BN (z) and for v-almost every z we have that there is
some € > 0 so that [z]4 D BN (z).

(i) A < a 1(A)
(iii) The mean conditional entropy H,(A|a.A) is equal to the entropy hq(v).

By definition, the mean conditional entropy is given by
(7.13) H,(A|aA)=— /log VoA ([x]4)dv ()
- /1Og Mdy(@_

Vx,N+ [$]A

Since Fs is a-invariant (up to a set of measure 0), for almost every £ we have
that v(E;) = v(E2) can be either 0 or 1. In the case v(E2) = 1, by (iii) and
(7.13) we see that hy(v) = 0.

In the case v(E7) = 0 we have that since for v-almost every x the measure

vz N+ is infinite,
Vg N+ :L'] kA - Vo—ig, N+ [Oé_il']a_A)

log —————= Z

Vg, N+ [:EA -0 Vo~ xN+([ lZL‘]A)

— OQ.
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Since v is a a-invariant, the above equation implies that

(7.14) V{.I': —logM >0} > 0.
V337N+ [w]A
Thus if v(E)) = 0 then the integral (7.13) is positive, and so is hq (V). O

COROLLARY 7.7. If the entropy of almost every A-ergodic component ui
with respect to the action of A is positive, then there is a p so that

2(p) = {w s pen+ (BY") > 21w BY) }
has u(X(p)) > 1 —e.

Note that R,(x) is related to X'(p) by
(7.15) Ry(z) = {e* 1 za(—t) € X(p)} .
We now let X3 be a compact subset of the set X, defined as in §7.1,

equation (7.4) with p(X3) > 1 — Cye'/* so that for every z € X3 and 7 > 0
and with p as in Corollary 7.7,

(7.16) 1 / "1y (za(s))ds > (1 — /4,
0

1 / Ly (wals))ds > (1 — %),

T

1 /0 L (za(s))ds > (1 — V%),

0
1 / L (za(s))ds > (1 — &V/4).

—T
The existence of such a set is guaranteed by the maximal ergodic theorem (this
time in the classical, i.e. measure-preserving, context).

Now take § >0 to be very small, and find z, 2’ € X3 so that d(z,2") <9
and = ~ 2/ using Poincaré recurrence for T as in §7.1. Later, § will be de-
termined but in particular we demand that § < 7y with 79 as in Lemma 7.5
applied to the compact subset X;.

The following lemma is simply a somewhat more quantitative version of
the argument in the simplified proof of §7.1.

LEMMA 7.8. Let X and p be as in Theorem 7.1. Let Xo be a compact
subset of X as in §7.1. Then for any sufficiently small § > 0, and any C > 0
if v, 7' € Xo satisfy

(*-a) d(x,2") <9,

(*-b) x Lo,
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(*-c) x is not in the same N*-leaf as ',
(*-d) Dpcy(z,2') NRy(x) # 0,
then there is an s € R and an s’ with C~! < |s'| < C so that:
*1) y=any(s) and y' = 2'ny(s) are both in X1,
+ +
(*-2) y € By(y'n(s),
(*-3) fy,N+ = Hy N+

Proof. We first remark that *-3 follows from *-1 since y X 1y and for any
two T-equivalent points in X7,

Hy N+ = My’ N+-

Thus we need only to prove we can find s € R so that both *-1 and *-2
hold.
As in §7.1, equation (7.5), we set

Gi={seR:zns(s) € X1},
Go={seR:2'ny(s) € X1},

and note once more that since z,2’ € X, we have that p, y+ = p1zr n+. Let
a € D,c(x,2") N Ry(x); clearly if § is small a > 1. Since z, 2’ € Xy we have
that for i =1, 2,

(7.17) po N+ ({5 pa <|s| <a}\G;) < 61/2MI7N+(B(]1V+);
and since a € R,(x) we get
(7.17) < 26V 21y n+ ({5 2 pa < |s| < a}).
This implies (as long as € < 0.01) that there is some
so € {s:pa<|s| <a}NGiNGs.

Set y = 2n4(s0), ¥ = 2'ny(sp). By our choice of s, both y and ' are in Xj.
Since a € D, c(x,z") we have that

y' € By(yn+(s))
with C~! < |s/| < C and we are done. O
LEMMA 7.9. Let p € (0,1) be arbitrary. Then for any sufficiently small

d >0, for any x,2’ € Xq with d(z,2') < & at least one of the following holds,
for some constant Cy that does not depend on 6:

(1) There is some & > Cy 6712 so that for all 0 < t < k|In&,
§1€ D, 0y 514 (za(—t),x'a(—t))

for some fized absolute constant k > 0.
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(2) There is some & > Cy 67Y/2 so that for all

K Iné| <t <2k |[In&],

e_tfl €D, .54 (za(—t),2'a(—t))
where again k' > 0 is an absolute constant.

Proof. Define s, s4,5_ by

(7.18) N xn_(s_)ny(sy)a(sq),
d(z',zn_(s_)ni(s4)a(sq,)) < 6

(since X; is compact, it is an immediate consequence of the definition of
the metric on X that there are indeed such s,,sy,s_). It also follows that
[sals|s+|,|s—|] < C& for some constant C. (We note that throughout this
proof, C, Cq, etc. stand for some large constants that does not depend on 9,
with the agreement that each constant can be taken as large as needed and
may depend only on the constants that have appeared before.)

From (7.18) and the fact that H acts isometrically on the T-leaves of X
it follows that

(119)  2a(-nne(©) L an_(s )y (se)alsa)a(—r)n (©),
d(z'a(=T)n4(8), an—(s-)n4(s4)a(sa)a(—T)n+(£)) < 0.
Using the formula from Lemma 7.4, we see that assuming |{| > 1,7 > 0 and

}526273_} ,2€s4] < 1,

(7.20)  an_(s-)ny(s4)a(sa)a(=7)n(E)
= za(—7)n_(e*"s_)ni (e sy + e 2 €)a(sy)

—27 —2s
e “Tsy e <% I
aha i <1 +e¥s_(e7?Tsy + 6_23“5)> Beigerio-

€ za(—T)ny (€ — 25,6 — Ts_€%)BH

with

(7.21) o = Cymax(&e? |s_|, e [sy ], l¢[ ).

Combining (7.20) with (7.19) we get that

(7.22) z'a(—=7)n—(€) € Buax(e.s)(za(—=7)n_(£)) with
g =€ 25,6 — s &%

There are now two cases, corresponding to the two cases in the lemma:
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Case 1. |sq] > ]s,|10/21. In this case we take & = |s,| ', and consider 7
in the range

0<7<7=0.01n&.

Note that in particular &, > C~1571. Let ¢ be as in (7.22). Then for any ¢ in
the range p&; < £ < & we have that

€275 2 < €70 [s_| < €70 [sal*" < [5a]""® < 6005,

while on the other hand |2s,£| > 2p. Thus for § small enough, depending only
on p,

L<|e—¢| = |25 + €75 < 2
and so for appropriate choice of Cy by (7.22)
&1 € D, ¢y max(o,5)(za(—7), z'a(—7)).
By (7.21)
o = Cymax(£e® |s_|, e 7 [s4[, €7
< Cymax(|s,|"?®,C8) < Cs6,
which is substantially better than the estimate < §'/4 that we needed.

Case 2. |sq| < |s,|10/21. In this case we take & = |5,\_1/2, and consider
7 in the range

0.05In¢& <7< 0.11ln&;.
Then for any ¢ in the range pe "¢ < € < e7t&
p< s g <1
and
[saf] < €7TEL [sa| < E [sq| < s |MATPTIORE < |05 000

So once again if ¢ is small enough (depending only on p) and ¢’ is as in (7.22)
p
B € ¢ <2

ie. e77¢1 € D, oy max(os) (Ta(—7), 2'a(—7)).
We are left with estimating o in this case:
0 = Cymax(¢e” [s_| e |sy ], |6 )

< Ca(|s- "7, 6,15 [*7) < C30717°

which is again better than advertised. O



206 ELON LINDENSTRAUSS

LEMMA 7.10. Let p be as in Corollary 7.7, and x,x’ € X3 so that d(z,z")

<Sandz > for a sufficiently small 6. Then if € (the constant used in the
definition of X3) is smaller than some absolute constant there is a 7 > 0 so
that

(7.23) D, ¢, 51/ (za(—7),2"a(-7)) N Ry(za(—T)) # 0,
(7.24) za(—7) € Xa,
(7.25) r'a(—1) € Xo.

Proof. There are two (very similar) cases corresponding to the two cases
of Lemma 7.9 applied to z, 2"

Case (1) of Lemma 7.9 holds. Let & be as in Lemma 7.9.(1). We know
that for all 7 € (0, klog &),

&1 € D, ¢, sis(za(—7),2'a(—t"))

so we need to check that there is some 7 in the above range for which simul-
taneously (7.24), (7.25) and

(7.26) &1 € Rp(za(—1))
all hold. We can rewrite (7.26) using (7.15) as
(7.27) za(—7 — $In&) € X(p).
Using (7.16), since z, 2" € X3, we know that
KkIn&
(7.28) / L, (wa(—s)1x, (2a(—s)) ds > (1 — 26/ Ingy.
0
On the other hand, using the same equation
0
/ . Lx\x(p)(Ta(s)) ds < e/ng.
_(§+”) In&;
So in particular
kIné:
(7.29) / Lx\v(p) (za(—s — 1 Ing&)) ds < /*In¢;.
0

Combining (7.28) with (7.29) we see that as long as
2k +1) <k

(which certainly holds for € less than some absolute constant) there is a 7 as
in the statement of Lemma 7.10.

Case (2) of Lemma 7.9 holds. Again let £; be as in Lemma 7.9.(2). We
know that for all 7 € (k'log &y, 2k log &),

e T4 e DP7CO’51/4(:L‘a(—T),:c'a(—t'))
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so again we need to check that there is some 7 in the above range for which
simultaneously (7.24), (7.25) and

(7.30) e & € Ry(wa(—1))
hold; i.e.,
za(—3m — $In&) € X(p).

Similarly to the previous case, we can estimate the measure of the parameters
7 in the required range which fails to satisfy one of the assumptions of Lemma
7.10:

2k In&;
/ 1 (za(—))1x, (@'a(—s)) ds > (1 — 27426 In .
k' In&;

Next,

2k In&;
//1 ¢ 1X\X(p)(xa(_%5 - %11151)) <.

It is again clear that if € is smaller than some absolute constant there will be
a parameter 7 satisfying all the conditions of this lemma. O

Conclusion of the proof of Theorem 7.1. We have already shown that for
any d > 0 we can find a pair of points z, 2’ € X3 with x L 2 and d(z,z") < 0.
By Lemma 7.10 there is some 7 so that
D, ¢, 514 (za(—7), Z'a(—7)) NRy(a(—7)z) # 0,
za(—7) € Xo
r'a(—1) € Xo.
By Lemma 7.8 there is some s so that for some s’ in a fixed bounded
closed subset S C R\ {0}
y = za(—7)n4(s) € Xi,
y = a'a(—7)ny(s) € Xy,
Y € Byia(yni(s)),
My, N+ = Hy' N+-
Since z + p, n+ is continuous on X7, X is compact, and ¢ arbitrarily
small, we see that there must be points z, 2/ € X; with

z=2'n,(s) for some ' € S, p, N+ = pu N+,

a contradiction to the definition of Xj. O
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8. Hecke Maas forms and recurrent measures

In this section we take G to be the linear algebraic group of invertible
elements in a quaternion division algebra defined over Q. Assume that G is
unramified over R and Q,, and take G = G(R) x G(Q,). Take I' = G(Z[%]),
or more precisely the diagonal embedding of this group in G. Then as is well-
known, I is a lattice in G. More generally, one may take a congruence sub
group of this lattice of order relatively prime to p — everything mentioned below
is equally valid for such a lattice, and except for minor notational nuisances
the arguments need not be modified.

We take Koo < G(R) and K, = G(Z,) < G(Qp) to be the respective
maximal compact subgroups, and take K = K, x K. Let C denote the center
of G(R), considered as a subgroup of G. As is well-known, M = CT'\G/K
can be identified as a compact quotient of the hyperbolic half plane H, and
X = CT\G/K, a compact quotient of SL(2,R). Finally, set X = CT\G, =,
be the projection x — xK,, and let 7o, be the projection x +— zK, and
Tp,co = Tp O Teo-

Let Cp = G(Qp) N CT, which we identify between G(Q,) and its image
in G. This is always a subgroup of the center of G(Q)); indeed, this is just the
multiplicative group of nonzero rationals viewed as a subgroup of the nonzero
quaternions. Thus G(Q,)/C), is a group which acts freely and continuously
on X. This group no longer acts on M or X; however, this action has not
completely disappeared: if one takes a G(Q,) orbit 2G(Q,) C CT\G then
for any x € X, the map t[z] : gC,K, — mp(xg) is an embedding of T =
G(Qp)/CpG(Zy) (ie. of a p + l-regular tree with some additional algebraic
structure) in X. What is more, if y = zg € 2G(Q)), then t[z|(T) = t[y|(T)
and t[y] 1 ot[z] is a tree automorphism: indeed, it is simply the map ¢C, K, —
g_qupr. Finally, for any y € X one can find a neighborhood y € U C X in
which there is a continuous section 777 of the bundle X — X, which gives us a
map ty : U x T — X defined by

tu(y',q) = tlrw(y)](9)-

In this way we see that X has a natural T-space structure. Take ¥ to be some
open cover of X with sets U as above. Since T can be naturally identified
with the tree it is natural to take the metric on T to be normalized so that the
distance between nearest neighbors is 1; with this normalization,? for every
g € G(Qp)/C, we have that

Lo
dr(9Kp, g (% 1) Kp) =1

3and identifying G(Q,) with GL(2,Q,)
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This structure as a T-space is intimately connected with the Hecke opera-
tors T},. Indeed, let g1, 2, . .., gp+1 be the nearest neighbors of the distinguished
point e € T'. Then for any function f on X one can define T}, f by

p+1

Tpf(x) =) fltv(e,a)),

i=1

where U € ¥ is a neighborhood of x (this does not depend on U).

THEOREM 8.1. Let ®; be a sequence of eigenfunctions of T, in L*(X) N
C(X), with ||®;||, = 1. Suppose that the probability measures |®;% dvol con-
verge in the weak star topology to a measure . Then p is T-recurrent.

Remark. If X is not compact, it is not necessarily true that u is a probabil-
ity measure. If u is the trivial 0 measure, then either agree to call it T-recurrent
or exclude this case from the theorem.

In [Wol01], [Lin0O1a] it was shown that every arithmetic quantum limit can
be realized as a weak star limit of ]@i\z dvol with ®; Hecke eigenfunctions in
L?(X)NC(X) as above; hence the following is a direct corollary of Theorem 8.1:

COROLLARY 8.2. Let X, p and T be as above. Then every arithmetic
quantum limit on X is T-recurrent.

If fis a function f: T — C, we let
Spf(@)= > f)
dr(z,y)=1

more generally, set Spr f(z) = ZdT(Ly):k f(y).
The following easy estimate (very similar to the one used in[BLO03]) is the

heart of the proof of Theorem 8.1.
LEMMA 8.3. If Stf = Af for f: T — C and X € R, then for all n > 0,
(8.1) D If W)= Conlf(e)l?,

yeBT

with Cy an absolute constant that does not depend on A or even on p.

Proof. There are two cases: || > 2p'/? and |\| < 2p'/2. We begin with
the former case. Since Spx can be expressed as a polynomial in Sy, we get that
f is an eigenfunction of S,x. Let A, be the corresponding eigenvalue. As one

then

may verify, e.g. by induction, if we set cosha = ‘—2}3 v

h(2n + Da
ZAk_psm(”jL) > (2n + 1)p"

sinh a
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In other words,

> fly)| = @n+1)p" f(e).

dT(e7y)e{0727"'72n}
Applying Cauchy-Schwartz, we get
> F()]? = n?|f(e).
dT(e,y)E{O,Q,...,2n}

1/2

We now turn to the case |A| < 2p'/2. We proceed similarly to the previous

case: we set cosf = % and use the identity
2pt/2)

nSin(2n +1)¢
© sing

(8.2) Z)\ o =P

Subtracting (8.2) with n = k — 1 from the same equation for n = k, and using
the Cauchy-Schwartz inequality, we get

> d(e f(y)
Z |f(y)| = ‘ (C;jl)%% 1 ‘

e

(!
1 [sin(2k +1)0  sin(2k — 1)6 2
-2 sin 6 psin 6

>clf(e))*  if (2k+1)0 mod 7 € [27/5, 37/5].

Since it is easy to see that if n > ¢1/6 then

ZX[%”%’}((W{: + 1)6 mod ) > can,
k=1
we get that (8.1) holds for n > ¢;/6.
On the other hand, if n < ¢3/6 for a sufficiently small absolute constant
sin@ni1)6 > 50 by (8.2) we have that for such n

sin 6
n
D Ap
k=0

c3 one has that

> np"

and so
ST WP = en® | f(e)]* = enlf(e).
yEBT,

By suitably choosing Cp in (8.1) the bounds we obtained for n > ¢;/6 and
n < c3/0 suffice to prove this equation in all cases. O
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Fix some left invariant metric on G(R); since it is left invariant, it gives
rise to a well-defined metric dx(-,-) on X. Define the injectivity radius ri,; as

rinj = min {dg®) (91, 92) : 91,92 € G(R) with m,(g1) = mp(g2) } -

COROLLARY 8.4. Let u be a measure on X as in Theorem 8.1. Let n € N
and x € V € T be arbitrary, and take 0 < r < 144,j/3 so that BX(z) C V. Then

(8.3) > wBX(y)) = Conu(BX (x)).

y€t(z,BY)

Remark. The restriction B/ (z) C V is not essential. It is used merely to
simplify notation, and is not really a limitation since we will only be interested
in small balls.

Proof. X is a T-space with the additional nice property that ty(-,q) :
V — X is an isometry for every V € ¥ and ¢ € T. This in particular implies
that for any y = ty(z,q) and any f € L'(X),

/ f(z)dvol(z) = / f(ty(z,q))dvol(z).
BX(y) BX ()

Now let ®; € C(X)NL3(X) be an eigenfunction of the Hecke operator T},. Let

pi be the measure defined by p;(A) = [, [®i(z )|? dvol(z). Then
(8.4) > w(BX ) / 2)[2 dvol(z)
yety (2,B7) yety (z.B7) ' BY (”
/ > @ity (z,9))| dvol(z).
B (x quT

Now since ®; is an eigenfunction of T, for every z € V the map ¢ —
®;(tyv(z,q)) is an eigenfunction of S, and we may apply Lemma 8.3 to get

(8.5) (8.4) > C’on/ |®;(2) 2 dvol(z) = ps(BX (x)).
BX ()
By definition, p; — i, so for any open set U C X we have that
p(U) < lim pi(U) < Tim i (U) < pu(0).
Applying this to (8.5) one gets (8.3). O
Proof of Theorem 8.1. Let € > 0 be arbitrary and ng > (Cpe) ™!
Let * € X and r be sufficiently small so that all the balls B;X(y) with
y € t(z,BT) are pairwise disjoint. Without loss of generality we may also

assume that 7 < riy;/3, and that there is some V € T so that BX (z) C V.
Set U = Uyet(a,B1) BX(y), and take A to be the measurable partition

whose atoms are precisely the sets t(y, BL) for y € BX (x). If C; is a countable



212 ELON LINDENSTRAUSS

algebra of Borel subsets of B:X (z) generating the sigma ring of Borel measur-
able subsets of BX(x) then

C:{U tV(Cmv,BE;);chl}

Ved

is a countable algebra of Borel subsets of U generating A. Since the topology on
T is the discrete topology, A satisfies the conditions of part (2) of Theorem 3.6:
every atom of A is clearly an open T-plaque.

Decompose the measure u|y := p(- N U) according to the sigma ring A,
obtaining a system of conditional measures ,u;f (each supported on a finite
subset of U) so that for any B C U

(3.6) MB%jLuﬁBﬂwuﬂmw-

Define a : U — BX(z) by

(8.7) a(y) = [ylan B ()
(more precisely, a(y) is a unique element of the set on the right-hand side of
(8.7)). Set v = a.(u|y) and for every ¢ € Bl set

Vg = tV('a Q)_l*(M‘Bf(tv(x,q)))'

Thus v and all v, are measures supported on B:X(x) and v, = p BX(z)- Note
also that v =) qVa- In particular for every ¢ € BL we have that vy < v, and
we set p, to be the Radon-Nikodym derivative p, = ”—lj

Using this we can write for any B C U

(8.8) wB) =Y [tv (). (BN BX (tv(x,9)))
qEBT

:@@Zwmwmmwm

qeBT

Comparing (8.6) with (8.8) we see that for v-almost every y

it ({tv (. a)}) = pq(y).

By the theorems on differentiation of measures [Mat95]) for v-almost every y

v (BX(9)
paly) = 1M (BX(y))

Also note that except for a countable set of radii s, we have that v,(0BX) = 0.
Furthermore, Lemma 3.7 implies that p. # 0 almost surely. Using this and
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Corollary 8.4 we see that for v-almost every y

() _ 2genr Pa¥)
1zt ({y}) pe(y)
quBg ve(B3 (v))

= lim
s—0 ve(B5 (y))
: > genr Yo(BX (1))
=lim s .o X
ve(Bg (y))
Z an.

It follows from part (2) in Theorem 3.6 that for p-almost every y we have
that

NXT(B?;) > Con.

In other words, p is T-recurrent in a rather quantitative and uniform way! 0O

Appendix A. A maximal ergodic theorem for noninvariant
measures (joint with D. Rudolph)

The maximal ergodic theorem states that for any probability measure p
on the space X invariant under an R%action z — t.ra(z, s), if we define for
any function f on X

M) = sup—e || taeto. )] s

s

then for any f € L'(X, )

ple: M(D] > By < S0
with Cy a universal constant depending on d.

In 1944 W. Hurewicz [Hur44] proved a version of the pointwise ergodic
theorem, using a maximal ergodic theorem, valid for a general recurrent mea-
surable Z-action on a probability measure space. It is most often quoted today
with the additional assumption that the action is measure-class-preserving;
however this assumption, which was not made in the original paper, is not a
natural one for the purposes of this paper.

Hurewicz also claimed to have a similar theorem for R-actions (which is
the case used in the proof of Theorem 1.1) but neither the statement nor the
proof of this theorem appears to have been written.

4The maximal ergodic theorem is known in much greater generality for actions of general
amenable groups (see [Lin01b]). We do not know if our results here can also be similarly
extended.
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The main result of this appendix is the following version of a maximal
ergodic theorem in the non-measure-preserving setting. In what follows, we
take T to be R? or more generally any (locally compact, second countable)
metric space with a transitive metric-preserving action on which the Besicov-
itch covering theorem holds (see [Mat95, Th. 2.7]). More precisely, we need
some number P(T') so that for any bounded subset A C T and family of closed
balls B so that every point of A is a center of some ball of B there is a finite
or countable collection of balls B; € B such that they cover A and every point
of T belongs to at most p(T) balls B;.

THEOREM A.l. Let T be a metric space satisfying the Besicovitch cov-
ering theorem, and let X be an (Isom(T'),T)-space, and o« : X — X be a
homeomorphism that uniformly expands the T-leaves. Suppose that i is an «
invariant probability measure on X, and that for p-almost every x its T'-leaf is

embedded. Define

M) = sup s [ (trto )] d 5)

>0 Mg, T
Then

ple Mu(Ple] > Ry < T,

with Cr a universal constant depending only on T'.

The main novelty in the (proof of the) above theorem is the introduction of
the Besicovitch covering theorem to this context. This allows us, in particular,
to treat non-measure-preserving R"-actions, for which relatively little seems
to have been done. We note that the assumption regarding the existence of a
measure-preserving leaf expanding homeomorphism « is not needed; we have
not made an effort to prove an optimal theorem (deferring this to a later
paper) but a theorem sufficient for the purposes of this paper and probable
generalizations.

Added in Proof. J. Feldman has brought to our attention the paper
[Bec83] which has related results, and in particular contains the key idea of
using the Besicovitch covering lemma to prove more general ergodic theorems.

The following lemma allows us to translate Theorem A.l1 to a question
about covers of T'.

LEMMA A.2. Let X be as in Theorem A.1. For everyr,d > 0 there are a
subset X' and a sigma ring A of subsets of X' so that
(A1) [2]a € BL(z)  for every z € X’
(A.2) p{re X' : Bl (z) C [z]a} > 1-06.
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Proof. First we show that there are a subset X” with u(X”) > 1— 4, an
r’ > 0, and a sigma ring A" with UA’ D X” so that (A.1) and (A.2) hold for
x € X", A" and r’. This does not use a-invariance of p.

Indeed, let K C X be a compact set with u(K) > 1 — §/2 so that every
x € K has an embedded T-leaf. We use Corollary 3.5 to construct finitely
many 1, T-flowers, say {(A;, U;)},—; n with centers {B;},_; ., so that the
centers B; cover K (see Definition 3.4). Define, for every 0 < a < r

Ua=1{2:Bl(z)c U}, Aa={ANU:A€A}.

Notice that by &-3 in Definition 3.4 we have B; C U, .
Set ' = §/4N. Since p(U;) < 1, there must be an ' < a(i) < r — 1’ so
that

#(Uia—r \ Uiatrr) < 21"
Now, take

(i.e. A’ is the sigma ring generated by the union U,fil Ai o)) and set X =

N
Uiz1 (Ui a@iy)-
It is clear that for every z € X", the atom [z]4 C BL(x); so we only
need estimate

(A.3) p{re X" :Bl(z) ¢ [v]la}.

So when is BL(x) ¢ [z]4? Only if for some i there is an A € A a(i) S0 that
either

ez Abut BL ¢ Aor
e v X"\ Abut BLNA#0.

In either case, © € U; (i)~ \ Ui a(i) 4+
Thus we see that

N
(A3) < u(Uiagi)—r \ Uiagiy4r) < 6/2,
=1

and r’; A" and X" satisfy (A.2).
Suppose « expands the T-leaves by at least a factor of ¢ > 1. Then for
any z € UA’
Oy [0 an () C (O[] ).

Take n large enough so that ¢"r’ > r and set A = a(A’), X’ = o™ X”. Then
(A.1) and (A.2) for A', X" and 7’ imply the same for A4, X’ and r. O
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Proof of Theorem A.1. Let Y = {x € X : M,(f)[xz] > R}, and for any
r > 0 define

My, (f)la] = sup ——

0<p<r Har(Bp) /B |f(tr (@, 8))| dpg;r(s).

P

Let r be sufficiently large so that
Y={zeX:M,,(f)z] >R/2}

satisfies p(Y’) > pu(Y)/2. Let A and X' be as in Lemma A.2 for § = u(Y)/4,
and set

V"=Y'n{ze X : Bl (z) C [z]a},

so that in particular p(Y") > u(Y)/4.
Choose x € X', and let Y, = Y” N [z]4. For every y € Y, there is an
ry < 7 so that

/ O du(2) > R (B () /2.
BT (y)

Note that since y € Y” and r, < r we have Bg; (y) C [z]4. Find, using the
Besicovitch covering theorem, a countable subcollection F = { BL (y;)} of the
collection {BZ; (y):y € Yx} so that Y, C UF but no point in [z] 4 is contained
in more than P(T') balls from the collection F. Then

Z/|f ) du(y

BeF

[1rwlaeto) = P

Be]—‘
R
> .

We now integrate over z € X' to get

[ 1l duty //!f ) i (y)dia()
ZWT) /X [t vdnta)

= 2P(T>M(Y”),

and so we indeed get the maximal inequality

SP(T) 1£]l,

w(y) < 7
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