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Finite and infinite arithmetic progressions
in sumsets

By E. Szemerédi and V. H. Vu*

Abstract

We prove that if A is a subset of at least cn1/2 elements of {1, . . . , n},
where c is a sufficiently large constant, then the collection of subset sums of A

contains an arithmetic progression of length n. As an application, we confirm
a long standing conjecture of Erdős and Folkman on complete sequences.

1. Introduction

For a (finite or infinite) set A of positive integers, SA denotes the collection
of finite subset sums of A

SA =

{∑
x∈B

x|B ⊂ A, |B| < ∞
}

.

Two closely related notions are that of lA and l∗A: lA denotes the set of
numbers which can be represented as a sum of l elements of A and l∗A denotes
the set of numbers which can be represented as a sum of l different elements
of A, respectively. (If l > |A|, then l∗A is the empty set.) It is clear that

SA = ∪∞
l=1l

∗A.

One of the fundamental problems in additive number theory is to estimate the
length of the longest arithmetic progression in SA, lA and l∗A, respectively.

The purpose of this paper is multi-fold. We shall prove a sharp result
concerning the length of the longest arithmetic progression in SA. Via the
proof, we would like to introduce a new method which can be used to handle
many other problems. Finally, the result has an interesting application, as we
can use it to settle a forty-year old conjecture of Erdős and Folkman concerning
complete sequences.

*Research supported in part by NSF grant DMS-0200357, by an NSF CAREER Grant
and by an A. Sloan Fellowship.
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Theorem 1.1. There is a positive constant c such that the following holds.
For any positive integer n, if A is a subset of [n] with at least cn1/2 elements,
then SA contains an arithmetic progression of length n.

Here and later [n] denotes the set of positive integers between 1 and n.

The proof Theorem 1.1 introduces a new and useful method to prove
the existence of long arithmetic progressions in sumsets. Our method relies
on inverse and geometrical arguments, rather than on Fourier analysis like
most papers on this topic. This method opens a way to attack problems
which previously have seemed very hard. Let us, for instance, address the
problem of estimating the length of the longest arithmetic progression in lA

(where A is a subset of [n]), as a function of l, n and |A|. In special cases
sharp results have been obtained, thanks to the works of several researchers,
including Bourgain, Freiman, Halberstam, Ruzsa and Sárközy [2], [6], [8], [17].
Our method, combined with additional arguments, allows us to derive a sharp
bound for this length for a wide range of l and |A|. For instance, we can obtain
a sharp bound whenever l = nα and |A| = nβ, where α and β are arbitrary
positive constants at most 1. Details will appear in a subsequent paper [19].

An even harder problem is to estimate the length of the longest arithmetic
progression in l∗A. The distinction that the summands must be different fre-
quently poses a great challenge. (A representative example is Erdős-Heilbronn
vs Cauchy-Danveport [15].) On the other hand, one of our arguments (the
tiling technique discussed in §5) seems to provide an effective tool to overcome
this challenge. Although there are still many details to be verified, we believe
that with this tool, we could handle l∗A as successfully as lA. As a conse-
quence, one can prove a sharp bound for the length of the longest arithmetic
progression in SA even when the cardinality of A is much smaller than n1/2, ex-
tending Theorem 1.1. Our method also works for multi-sets (where an element
may appear many times). A result concerning multi-sets will be mentioned in
Section 7.

Let us now make a few comments on the content of Theorem 1.1. The
bound in this theorem is sharp up to the constant factor c. In fact, it is
sharp from two different points of view. First, it is clear that if A is the
interval [cn1/2], then the length of the longest arithmetic progression in SA

is O(n). Second, and more interesting, there is a positive constant α such
that the following holds: For all sufficiently large n there is a set A ⊂ [n] with
cardinality αn1/2 such that the longest arithmetic progression in SA has length
O(n3/4). We provide a concrete construction at the end of Section 5.

We next discuss an application of Theorem 1.1. We can use this theorem
to confirm a well-known and long standing conjecture of Erdős, dating back
to 1962. In fact, the study of Theorem 1.1 was partially motivated by this
conjecture.
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An infinite set A is complete if SA contains every sufficiently large positive
integer. The notion of complete sequences was introduced by Erdős in the early
sixties and has since then been studied extensively by various researchers (see
§6 of [5] or §4.3 of [15] for surveys).

The central question concerning complete sequences is to find sufficient
conditions for completeness. In 1962, Erdős [4] made the following conjecture

Conjecture 1.2. There is a constant c such that the following holds.
Any increasing sequence A = {a1 < a2 < a3 < . . . } satisfying

(a) A(n) ≥ cn1/2

(b) SA contains an element of every infinite arithmetic progression,

is complete.

Here and later A(n) denotes the number of elements of A not exceeding n.
The bound on A(n) is best possible, up to the constant factor c, as shown by
Cassels [3] (see also below for a simple construction). The second assumption
(b) is about modularity and is necessary as shown by the example of the
sequence of even numbers. So Erdős’s conjecture basically says that a sequence
is complete if it is sufficiently dense and satisfies a trivially necessary modular
condition.

Erdős [4] proved that the statement of the conjecture holds if one replaces
(a) by a stronger condition that A(n) ≥ cn(

√
5−1)/2. A few years later, in

1966, Folkman [9] improved Erdős’ result by showing that A(n) ≥ cn1/2+ε is
sufficient, for any positive constant ε. The first and simpler step in Folkman’s
proof is to show that any sequence satisfying (b) can be partitioned into two
subsequences with the same density, one of which still satisfies (b). In the
next and critical step, Folkman shows that if A is a sequence with density at
least n1/2+ε then SA contains an infinite arithmetic progression. His result
follows immediately from these two steps. In the following we say that A is
subcomplete if SA contains an infinite arithmetic progression. Folkman’s proof,
quite naturally, led him to the following conjecture, which (if true) would imply
Conjecture 1.2.

Conjecture 1.3. There is a constant c such that the following holds.
Any increasing sequence A = {a1 < a2 < a3 < . . . } satisfying A(n) ≥ cn1/2 is
subcomplete.

Here is an example which shows that the density n1/2 is best possible (up
to a constant factor) in both conjectures. Let m be a large integer divisible
by 8 (say, 104) and A be the sequence consisting of the union of the intervals
[m2i

/4, m2i

/2] (i = 0, 1, 2 . . . ). It is clear that this sequence has density Ω(n1/2)
and satisfies (b). On the other hand, the difference between m2i

/4 and the
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sum of all elements preceding it tends to infinity as i tends to infinity. Thus
SA cannot contain an infinite arithmetic progression. (The constants 1/4 and
1/2 might be improved to slightly increase the density of A.)

Folkman’s result has further been strengthened recently by Hegyvári [11]
and �Luczak and Schoen [13], who (independently) reduced the density n1/2+ε

to cn1/2 log1/2 n, using a result of Freiman and Sárközy (see §7). Together
with Conjecture 1.3, Folkman also made a conjecture about nondecreasing
sequences (where the same number may appear many times). We address this
conjecture in the concluding remarks (§7).

An elementary application of Theorem 1.1 helps us to confirm Conjecture
1.3. Conjecture 1.2 follows immediately via Folkman’s partition argument. In
fact, as we shall point out in Section 7, the statement we need in order to
confirm Conjecture 1.3 is weaker than Theorem 1.1.

Corollary 1.4. There is a positive constant c such that the following
holds. Any increasing sequence of density at least cn1/2 is subcomplete.

Corollary 1.5. There is a positive constant c such that the following
holds. Any increasing sequence A = {a1 < a2 < a3 < . . . } satisfying

(a) A(n) ≥ cn1/2

(b) SA contains an element of every infinite arithmetic progression,

is complete.

Let us conclude this section with a remark regarding notation. Through
the paper, we assume that n is sufficiently large, whenever needed. The asymp-
totic notation is used under the assumption that n tends to infinity. Greek
letters ε, γ, δ etc. denote positive constants, which are usually small (much
smaller than 1). Lower case letters d, h, g, l, m, n, s denote positive integers.
In most cases, we use d, h and g to denote constant positive integers. The
logarithms have base two, if not otherwise specified. For the sake of a better
presentation, we omit unnecessary floors and ceilings. For a positive integer
m, [m] denotes the set of positive integers in the interval from 1 to m, namely,
[m] = {1, 2, . . . , m}.

The notion of sumsets is central in the proofs. If A and B are two sets of
integers, A + B denotes the set of integers which can be represented as a sum
of one element from A and one element from B: A+B = {a+ b|a ∈ A, b ∈ B}.
We write 2A for A + A; in general, lA = (l − 1)A + A.

A graph G consists of a (finite) vertex set V and an edge set E, where
an element of E (an edge) is a (unordered) pair (a, b), where a �= b ∈ V . The
degree of a vertex a is the number of edges containing a. A subset I of V (G) is
called an independent set if I does not contain any edge. A graph is bipartite
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if its vertex set can be partitioned into two sets V1 and V2 such that every edge
has one end point in V1 and one end point in V2 (V1 and V2 are referred to as
the color classes of V ).

2. Main lemmas and ideas

Let us start by presenting a few lemmas. After the reader gets him-
self/herself acquainted with these lemmas, we shall describe our approach to
the main theorem (Theorem 1.1).

As mentioned earlier, our method relies on inverse arguments and so we
shall make frequent use of Freiman type inverse theorems. In order to state
these theorems, we first need to define generalized arithmetic progressions. A
generalized arithmetic progression of rank d is a subset Q of Z of the form
{a +

∑d
i=1 xiai|0 ≤ xi ≤ ni}; the product

∏d
i=1 ni is its volume, which we

denote by Vol(Q). The ai’s are the differences of Q. In fact, as two different
generalized arithmetic progressions might represent the same set, we always
consider generalized arithmetic progressions together with their structures. Let
A = {a+

∑d
i=1 xiai|0 ≤ xi ≤ ni} and B = {b+

∑d
i=1 xiai|0 ≤ xi ≤ mi} be two

generalized arithmetic progressions with the same set of differences. Then their
sum A + B is the generalized arithmetic progression {(a + b) +

∑d
i=0 ziai|0 ≤

zi ≤ ni + mi}.
Freiman’s famous inverse theorem asserts that if |A + A| ≤ c|A|, where c

is a constant, then A is a dense subset of a generalized arithmetic progression
of constant rank. In fact, the statement still holds in a slightly more general
situation, when one considers A+B instead of A+A, as shown by Ruzsa [16],
who gave a very nice proof which is quite different from the original proof of
Freiman. The following result is a simple consequence of Freimain’s theorem
and Plünnecke’s theorem (see [18, Th. 2.1], for a proof). The book [14] of
Nathanson contains a detailed discussion on both Plünnecke’s and Ruzsa’s
results.

Theorem 2.1. For every positive constant c there is a positive integer d

and a positive constant k such that the following holds. If A and B are two
subsets of Z with the same cardinality and |A + B| ≤ c|A|, then A + B is a
subset of a generalized arithmetic progression P of rank d with volume at most
k|A|.

In the case A = B, it has turned out that P has only �log2 c� essential
dimensions. The following is a direct corollary of Theorem 1.3 from a paper
of Bilu [1]. One can also see that it is a direct consequence of Freiman’s cube
lemma and Freiman’s homomorphism theorem [7].

Theorem 2.2. For any positive constant c ≥ 2 there are positive con-
stants δ and c′ such that the following holds. If A ⊂ Z satisfies |A| ≥ c2
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and |2A| ≤ c|A|, then there is a generalized arithmetic progression P of rank
�log2 c� such that Vol(P ) ≤ c′|A| and |P ∩ A| ≥ δ|A| ≥ δ

c′ Vol(P ).

Next, we take a closer look at generalized arithmetic progressions of rank 2.
The following two lemmas show that under certain circumstances, a generalized
arithmetic progression P of rank 2 contains a long arithmetic progression whose
length is proportional to the cardinality of P .

Lemma 2.3. Let P = {x1a1+x2a2|0 ≤ xi ≤ li} be a generalized arithmetic
progression of rank 2 where li ≥ 5ai > 0 for i = 1, 2. Then P contains an
arithmetic progression of length 3

5 |P | and difference gcd(a1, a2).

This lemma was proved in an earlier paper [18]; we sketch the proof for
the sake of completeness.

Proof of Lemma 2.3. We shall prove that P contains an arithmetic
progression of length 3

5 gcd(a1,a2)
(l1a1+l2a2) and difference gcd(a1, a2). A simple

argument shows that
3

5 gcd(a1, a2)
(l1a1 + l2a2) ≥

3
5
|P |.

It suffices to consider the case when a1 and a2 are co-prime. In this case we
shall actually show that P contains an interval of length 3

5(l1a1 + l2a2).
In the following we identify P with the cube Q = {(x1, x2)|0 ≤ xi ≤ li} of

integer points in Z2 together with the canonical map

f : Z2 → Z : f((x1, x2)) = x1a1 + x2a2.

The desired progression will be provided by a walk in this cube, following a
specific rule. Once the walk terminates, its two endpoints will be far apart,
showing that the progression has large length.

As a1 and a2 are co-prime, there are positive integers l′1, l
′′

1 , l′2 and l
′′

2 such
that l′1, l

′′

1 < a2, l′2, l
′′

2 < a1 and

l′1a1 − l′2a2 = l
′′

2a2 − l
′′

1a1 = 1.(1)

We show that P contains the interval [15(l1a1 + l2a2), 4
5(l1a1 + l2a2)]. Let

u1 and u2 denote the vectors (l′1,−l′2) and (−l
′′

1 , l
′′

2 ), respectively. Set v0 =
(l1/5, l2/5). We construct a sequence v0, v1, . . . , such that f(vj+1) = f(vj) + 1
as follows. Once vj is constructed, set vj+1 = vj + ui given that one can find
1 ≤ i ≤ 2 such that vj + ui ∈ Q (if both i satisfy this condition then choose
any of them). If there is no such i, then stop. Let vt = (yt, zt) be the last
point of this sequence. As neither vt + u1 nor vt + u2 belong to Q, both of the
following two conditions (∗) and (∗∗) must hold:

(∗) yt + l′1 > l1 or zt − l
′

2 ≤ 0.
(∗∗) yt − l

′′

1 ≤ 0 or zt + l
′′

2 > l2.
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Since l′1 < a2 ≤ l1/2, yt + l′1 > l1 and yt − l
′′

1 ≤ 0 cannot occur simul-
taneously. The same holds for zt − l

′′

2 ≤ 0 and zt + l
′

2 > l2. Moreover, since
f(vj) is increasing and y0 = l1/5 ≥ a2 > l

′′

1 and z0 = l2/5 ≥ a1 > l
′

2, we can
conclude that zt − l

′

2 ≤ 0 and yt − l
′′

1 ≤ 0 cannot occur simultaneously, either.
Thus, the only possibility left is yt + l′1 > l1 and zt + l

′′

2 > l2. This implies that
yt > l1 − l′1 ≥ 4

5 l1 and zt > l2 − l
′′

1 ≥ 4
5 l2. Thus

f(vt) >
4
5
(l1a1 + l2a2),(2)

concluding the proof.

Lemma 2.4. If U ⊂ [m] is a generalized arithmetic progression of rank 2
and l|U | ≥ 20m, where both m and |U | are sufficiently large, then lU contains
an arithmetic progression of length m.

Proof of Lemma 2.4. Assume that U = {a+x1a1 +x2a2|0 ≤ xi ≤ ui}. We
can assume that u1, u2 > 10 (if u1 is small, then it is easy to check that lU ′

contains a long arithmetic progression, where U ′ = {a + x2a2|0 ≤ x2 ≤ u2}).
Now let us consider

lU = {la + x1a1 + x2a2|0 ≤ xi ≤ lui}.(3)

By the assumption l|U | ≥ 20m, we have l(u1 + 1)(u2 + 1) ≥ 20m. As
u1, u2 ≥ 10, it follows that lu1u2 ≥ 10m. On the other hand, U is a subset of
[m] so the difference of any two elements of U has absolute value at most m.
It follows that u1a1 ≤ m. This implies

u1a1 ≤ m ≤ lu1u2/10.

So it follows that 10a1 ≤ lu2. Similarly 10a2 ≤ lu1. Thus lU satisfies the as-
sumption of Lemma 2.3 and this lemma implies that lU contains an arithmetic
progression of length at least

3
5
|lU | ≥ 3

5
2m > m,

concluding the proof. In the inequality 3
5 |lU | ≥ 3

52m we used the fact that
|lU | ≥ 2m. This fact follows immediately (and with room to spare) from the
assumption l|U | ≥ 20m and the well-known fact that |A + B| ≥ |A| + |B|,
unless both A and B are arithmetic progressions of the same difference. (We
leave the easy proof as an exercise.)

Despite its simplicity, Lemma 2.4 plays an important role in our proof.
It shows that in order to obtain a long arithmetic progression, it suffices to
obtain a large multiple of a generalized arithmetic progression of rank 2. As
the reader will see, generalized arithmetic progressions of rank 2 are actually
the main objects of study in this paper.
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The next lemma asserts that by adding several subsets of positive density
of a certain generalized arithmetic progression of constant rank, one can fill
an entire generalized arithmetic progression of the same rank and comparable
cardinality. This is one of our main technical tools and we shall refer to it as
the “filling” lemma.

Lemma 2.5. For any positive constant γ and positive integer d, there is
a positive constant γ′ and a positive integer g such that the following holds. If
X1, . . . , Xg are subsets of a generalized arithmetic progression P of rank d and
|Xi| ≥ γ Vol(P ) then X1 + · · ·+ Xg contains a generalized arithmetic progres-
sion Q of rank d and cardinality at least γ′ Vol(P ). Moreover, the distances of
Q are multiples of the distances of P .

Remark. The conditions of this lemma imply that the ratio between the
cardinality and the volume of P is bounded from below by a positive con-
stant. The quantities Vol(P ), |P |, Vol(Q), |Q|, |Xi|’s differ from each other by
constant factors only.

Let us now give a sketchy description of our plan. In view of Lemma
2.4, it suffices to show that SA contains a (sufficiently large) multiple of a
(sufficiently large) generalized arithmetic progression of rank 2. We shall carry
out this task in two steps. The first step is to produce one relatively large
generalized arithmetic progression. In the second step, we put many copies of
this generalized arithmetic progression together to obtain a large multiple of it.
This multiple will be sufficiently large so that we can invoke Lemma 2.4. These
two steps are not independent, as both of them rely on the following structural
property of A: Either SA contains an arithmetic progression of length n (and
we are done), or a large portion of A is trapped in a small generalized arithmetic
progression of rank 2. This is the content of the main structural lemma of our
proof.

Lemma 2.6. There are positive constants β1 and β2 such that the follow-
ing holds. For any positive integer n, if A is a subset of [n] with at least n1/2

elements then either SA contains an arithmetic progression of length n, or there
is a subset A′ of A such that |A′| ≥ β1|A| and A′ is contained in generalized
arithmetic progression W of rank 2 with volume at most n1/2 logβ2 n.

The reader might feel that the above description of our plan is somewhat
vague. However, at this stage, that is the best we could do without involving
too much technicality. The plan will be updated gradually and become more
and more concrete as our proof evolves.

There are two technical ingredients of the proof which deserve mentioning.
The first is what we call a tree argument. This argument, in spirit, works as
follows. Assume that we want to add several sets A1, . . . , Am. We shall add
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them in a special way following an algorithm which assigns sets to the vertices
of a tree. A set of any vertex contains the sum of the sets of its children. If
the set at the root of the tree is not too large, then there is a level where the
sizes of the sets do not increase (compared to the sizes of their children) too
much. Thus, we can apply Freiman’s inverse theorems at this level to deduce
useful information. The creative part of this argument is to come up with a
proper algorithm which suits our need.

The second important ingredient is the so-called tiling argument, which
helps us to create a large generalized arithmetic progression by tiling many
small generalized arithmetic progressions together. (In fact, it would be more
precise to call it wasteful tiling as the small generalized arithmetic progressions
may overlap.) This technique will be discussed in detail in Section 5.

The rest of the paper is organized as follows. In the next section, we prove
Lemma 2.5. In Section 4, we prove Lemma 2.6. Both of these proofs make
use of the tree argument mentioned above, but in different ways. The proof
of Theorem 1.1 comes in Section 5, which contains the tiling argument. In
Section 6, we prove the Erdős-Folkman conjectures. The final section, Section
7, is devoted to concluding remarks.

3. Proof of Lemma 2.5

We shall need the following lemma which is a corollary of a result of Lev
and Smelianski (Theorem 6 of [12]). This lemma is relatively easy and the
reader might want to consider it an exercise.

Lemma 3.1. The following holds for all sufficiently large m. If A and B

are two sets of integers of cardinality m and |A+B| ≤ 2.1m, then A is a subset
of an arithmetic progression of length 1.1m.

We also need the following two simple lemmas.

Lemma 3.2. For any positive constant ε there is a positive integer h0 such
that the following holds. If h ≥ h0 and A1, . . . , Ah are arithmetic progressions
of length at least εn of an interval I of length n, then there is a number h′ ≥
.09ε2h and an arithmetic progression B of length .9εn such that at least h′

among the Ai’s contain B.

Proof of Lemma 3.2. Consider the following bipartite graph. The first
color class consists of A1, . . . , Ah. The other color class consists of the arith-
metic progressions of length .9εn in I. Since the difference of an arithmetic
progression of length .9εn in I is at most 1/(.9ε), the second color class has
at most n/(.9ε) vertices. Moreover, an arithmetic progression of length εn

contains at least .1εn arithmetic progression of length .9εn. Thus, each vertex
in the first class has degree at least .1εn and so the number of edges is at least
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.1εnh. It follows that there is a vertex in the second color class with degree
at least .1εnh

n/(.9ε) = .09ε2h. The progression corresponding to this vertex satisfies
the claim of the lemma.

Lemma 3.3. Let B be an interval of cardinality n and B′ be a subset of B

containing at least .8n elements. Then B′ + B′ contains an interval of length
1.2n + 2.

Proof of Lemma 3.3. Without loss of generality we can assume that B =
[n]. If an integer m can be represented as a sum of two elements in B in
more than .2n ways (we do not count permutations) than m ∈ B′ + B′. To
conclude, notice that every m in the interval [.4n + 1, 1.6n− 1] has more than
.2n representations.

To prove Lemma 2.5, we use induction on d. The harder part of the proof
is to handle the base case d = 1. To handle this case we apply the tree method
mentioned in the introduction.

Without loss of generality we can assume that g is a power of 4, |Xi| = n1

and 0 ∈ Xi for all 1 ≤ i ≤ g. Let m be the cardinality of P ; we can also assume
that P is the interval [m]. Set X1

i = Xi for i = 1, . . . , g and g1 = g. Here is
the description of the algorithm we would like to study.

The algorithm. At the tth step, the input is a sequence Xt
1, . . . , X

t
gt

of
sets of the same cardinality nt where gt is an even number. Choose a pair
1 ≤ i < j ≤ gt which maximizes |Xt

i + Xt
j | (if there are many such pairs

choose an arbitrary one). Denote the sum Xt
i + Xt

j by X ′
1. Remove i and j

from the index set and repeat the operation to obtain X ′
2 and so on. After

gt/2 operations we obtain a set sequence X ′
1, . . . , X

′
gt/2 which has decreasing

cardinalities. Define gt+1 = gt/4. Consider the sequence X ′
1, . . . , X

′
gt+1

and
truncate all but the last set so that all of them have the same cardinality
(which is |X ′

gt+1
|). The truncated sets will be named Xt+1

1 , . . . , Xt+1
gt+1

and they
form the input of the next step. The algorithm halts when the input sequence
has only one element. A simple calculation shows that gt = 1

4t−1 g1 for all
possible t’s.

Notice that Xt
gt

is a subset of 2tP and thus nt = |Xt
gt
| is at most 2tm. On

the other hand,
n1 = |X1

g1
|/m ≥ γ.

So, for some t ≤ log1.05
1
γ , nt+1 ≤ 2.1nt. By the description of the algorithm,

there are gt/2 sets among the Xt
i such that every pair of them have cardinality

at most nt+1 ≤ 2.1nt. To simplify the notations, call these sets Y1, . . . , Yh. We
have that

h = gt/2 ≥ 1
4t

g1.

So, by increasing g1 we can assume that h is sufficiently large, whenever needed.
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We have that |Yi| = nt and |Yi + Yj | ≤ 2.1nt for all 1 ≤ i < j ≤ h. We are
now in position to invoke an inverse statement and at this stage all we need is
Lemma 3.1 (which is much simpler than Freiman’s general theorem). By this
lemma, every Yi is a subset of an arithmetic progression Ai of length at most
1.1nt. Moreover, Ai is a subset of 2tP . Also observe that by the definition of
t, nt/|2tP | ≥ γ.

We can extend the Ai’s obtained prior to Lemma 3.2 so that each of them
has length exactly 1.1nt. By Lemma 3.2, provided that gt is sufficiently large,
there are Ai and Aj such that B = Ai ∩ Aj is an arithmetic progression of
length at least nt. Now consider Yi and Yj which are subsets of Ai and Aj ,
respectively. Since Yi and Yj both have nt elements, B′ = Yi ∩ Yj ∩ B has at
least .8nt elements.

The set B′ + B′ is a subset of Yi + Yj , which, in turn, is a subset of
X1 + · · ·+Xg (recall that we assume 0 ∈ Xi for every i). This and Lemma 3.3
complete the proof for the base case d = 1.

Now assume that the hypothesis holds for all d ≤ r; we are going to prove
it for d = r + 1. This proof uses a combinatorial counting argument and is
independent of the previous proof. In particular, we do not need the tree
method here.

Consider a generalized arithmetic progression P of rank r + 1 and its
canonical decomposition P = P1 + P2, where P1 is an arithmetic progression
and P2 is a generalized arithmetic progression of rank r (P1 is the first “edge”
of P ). For every x ∈ P2, denote by P i

1(x) the set of those elements y of P1

where x + y ∈ Xi. We say that x is i-normal if P i
1(x) has density at least γ/2

in P1. Since |Xi| ≥ γVol(P ), the set Ni of i-normal elements has density at
least γ/2 in P2, for all possible i.

Let g = g′g
′′

where g′ and g
′′

are large constants satisfying g
′′ � g′ � 1/γ.

Partition X1, . . . , Xg into g
′′

groups with cardinality g′ each. Consider the
first group. Without loss of generality, we can assume that its members are
X1, . . . , Xg′ and also that |N1| = · · · = |Ng′ | = γ|P2|/2. Order the elements in
each Ni increasingly. For each 1 ≤ k ≤ |N1|, let xk

1, . . . , x
k
g′ be the kth elements

in N1, . . . , Ng′ , respectively. Consider the sets P1(xk
i ), P1(xk

2), . . . , P1(xk
g′). Given

that g′ is sufficiently large, we can apply the statement for the base case d = 1
to obtain an arithmetic progression Ak of length γ1|P1|, for some positive con-
stant γ1 depending on γ. Each of the Ak, k = 1, 2, . . . , |N1|, is a subset of g′P1

which has length g′|P1| (to be exact, the length of g′P1 is g′|P1| + O(1); but
since the error term O(1) plays no role, we omit it here and later to simplify
the presentation), so the density of each Ak in g′P1 is γ1/g′. Applying Lemma
3.2 with n = g′|P1| and ε = γ1/g′, a .09(γ1/g′)2 fraction of the Ak’s contain the
same arithmetic progression B of length .9γ1|P1|. Without loss of generality,
we can assume A1, . . . , AL, where

L = .09(γ1/g′)2|N1| = .09(γ1/g′)2γ|P2|/2,
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all contain B. Let Y1 be the collection of the sums xk = xk
1 + · · · + xk

g′ ,
1 ≤ k ≤ L. By the ordering, all xk’s are different so |Y1| = L and thus Y1 has
density

L/g′|P2| = .09(γ1/g′)2(γ/2g′)

in g′P2. Moreover, the set Y1 + B1 is a subset of X1 + · · · + Xg′ .
Next, by considering the second group, we obtain Y2 + B2 and so on.

Now we focus on the sets Y1 + B1, . . . , Yg′′ + Bg′′ . Each Bj is an arithmetic
progression in g′P1 with density

.9γ1|P1|/g′|P1| = .9γ1/g′.

By Lemma 3.2, at least a

.09(.9γ1/g′)2 ≥ .07(γ1/g′)2

fraction of the Bj ’s contain the same arithmetic progression C of length

.9(.9γ1|P1|) ≥ .8γ1|P1|.
Without loss of generality, we can assume that B1, . . . , Bg′′′ contain C, where

g
′′′

= .08(γ1/g′)2g
′′
.

By setting g
′′

sufficiently large compared to g
′
, we can assume that g

′′′
is

sufficiently large.
Now we are in position to conclude the proof. As Y1, . . . , Yg′′′ have density

at least .09(γ1/g′)2(γ/2g′) in g′P2, for a sufficiently large g
′′′

, Y1 + · · · + Yg′′′

contains a generalized arithmetic progression D of rank r of constant density
in g

′′′
(g′P2), due to the induction hypothesis. The set C + D is a generalized

arithmetic progression of rank r +1 with positive constant density in g
′′′

(g′P ).
On the other hand, this generalized arithmetic progression is a subset of (Y1 +
C) + · · · + (Yg′′′ + C). As we assumed 0 ∈ Xi for 1 ≤ i ≤ g, the sum (Y1 +
C) + · · · + (Yg′′′ + C) is a subset of X1 + · · · + Xg, completing the proof.

4. Proof of Lemma 2.6

This proof is relatively long and we break it into several parts. In the
first subsection, we present two lemmas. The next subsection contains the
description of an algorithm (again we use the tree method), which is somewhat
more involved than the one used in the proof of Lemma 2.5. In the third
subsection, we analyze this algorithm and construct the desired sets A′ and W .
The fourth and final subsection is devoted to the verification of a technical
statement which we need in order to show that W has the properties claimed
by the lemma.

4.1. Two simple lemmas. The first lemma is a simple result from graph
theory.
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Lemma 4.1. Let G be a graph with vertex set V . If |V | ≥ K2 − K and
G does not contain an independent set of size K then there is a vertex with
degree at least |V |/K.

Proof of Lemma 4.1. Let I be an independent set with maximum cardi-
nality. By the assumption of the lemma |I| ≤ K − 1. Since I has maximum
cardinality, for any vertex a ∈ V \I there must be a vertex b ∈ I such that
(a, b) is an edge (otherwise I ∪ {a} would be a larger independent set). Thus,
there must be at least |V | − |I| edges with one end point in I and the other
end point in V \I. Therefore, there is a vertex in I with degree at least

|V | − |I|
|I| ≥ |V | − (K − 1)

K − 1
≥ |V |

K
,

where in the last inequality we used the assumption |V | ≥ K2 − K.

Lemma 4.2. Any set A with Ω(n1/2) elements has a subset A′ with O(log n)
elements such that |SA′ | = Ω(n1/2).

Proof of Lemma 4.2. We find A′ by the greedy algorithm. We choose the
first element x1 of A′ arbitrarily. Assume that x1, . . . , xi have been chosen. We
denote by Si the sumset S{x1,...,xi} and si its cardinality. We choose xi+1 from
A\{x1, . . . , xi} to maximize si+1 = |S{x1,...,xi+1}| (ties are broken arbitrarily).
If si+1 ≤ 1.1si then xi+1 + Si and Si should have at least .9si elements in
common. Since xi+1 was chosen optimally, we have that

|Si − Si| ≥ .9si|A\{x1, . . . , xi}|.

Since |Si − Si| ≤ s2
i , si ≥ .9|A\{x1, . . . , xi}|. Let A′ = {x1, . . . , xi}, where i is

the first index satisfying either si+1 ≤ 1.1si or |SA′ | ≥ n1/2. The definition of
i and the above calculation show that A′ satisfies the claim of Lemma 4.2.

Remark 4.3. With a small modification, we can have A′ such that |A′| =
O(log n) and |l∗A′| = Ω(n1/2), where l = |A′|/2 and l∗A′ denotes the collection
of sum of l different elements from A′.

Fix a small positive constant ε (say 1/100) and let T be the first integer
such that (1/2 − ε)T ≤ log n

n1/2 . One can find a positive constant K (depending
on ε) such that

K3T/4 ≥ n11/10.(4)

Using Lemma 4.2 iteratively one can produce mutually disjoint subsets
A′

1, . . . , A
′
m of A with the following properties: |A′

i| = O(log n), m = Ω(n/ log n),
|SA′

i
| = Ω(n1/2) and | ∪m

i=1 A′
i| ≤ |A|/2. We denote by A1, A2, and Bi the sets

∪m
i=1A

′
i, A\A1, and SA′

i
, respectively.
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In what follows, we assume that SA does not contain an arithmetic pro-
gression of length n. Our proof has two main steps. In the first step, we create
a generalized arithmetic progression P with constant rank and small volume
which contains a positive constant fraction of A2. In the second step, we use
P to construct the required generalized arithmetic progression W .

4.2. The algorithm. We are going to apply the tree method and this
subsection is devoted to the description of the algorithm. To start, set m0 = m.
Truncate the Bi’s so each of them has exactly b0 = αn1/2 elements, for some
positive constant α. Denote by B0

i the truncation of Bi. We start with the
sequence B0

1 , . . . , B0
m0

, each element of which has exactly b0 elements. Without
loss of generality, we may assume that m0 is even. At the beginning, the
elements in A2 are called available.

A general step of the algorithm functions as follows. The input is a se-
quence Bt

1, . . . , B
t
mt

of sets of the same cardinality bt. Consider the sets Bt
i +Bt

j

for all possible pairs i and j. Choose i and j where the sum has maximum
cardinality (if there are many pairs, order them lexicographically and choose
the first one — the order is not important at all, our only goal is to make
the operation well-defined). Next, choose x1, . . . , xK from the set of available
elements so that

B′
1 = (Bt

i + Bt
j) ∪

(
∪K

i=1 (Bt
i + Bt

j + xi)
)

has maximum cardinality (we break ties as above). Remove i and j from
the index set and the xi’s from the available set and repeat the operation to
obtain B′

2 and so on. We end up with a set sequence B′
1, . . . , B

′
mt/2 where

|B′
1| ≥ · · · ≥ |B′

mt/2|.
Let mt+1 be the largest even integer not exceeding (1 − ε)mt/2 and set

bt+1 = |B′
mt+1

|. Truncate the B′
i’s (i < ml+1) so that the remaining sets have

exactly bt+1 elements each. Denote by Bt+1
i the remaining subset of B′

i. The
sequence Bt+1

1 , . . . , Bt+1
mt+1

is the output of the step.
If mt+1 ≥ 3, then we continue with the next step. Otherwise, the algo-

rithm terminates.
We would like to say a few words about how to exploit this algorithm to

our advantage. By the description of the algorithm

Bk
mk

= (Bk−1
i + Bk−1

j ) ∪
(

∪K
h=1 (Bk−1

i + Bk−1
j + xh)

)
(5)

for some i, j and xh’s. We are going to show that there is some step k where
|Bk

mk
| is bounded by a|Bk−1

i |, for some constant a. This enables us to apply
Freiman’s theorem to get information about Bk−1

i and Bk
mk

. Furthermore,
we can show that there is some overlap among the sets (Bk−1

i + Bk−1
j + xh)

(h = 1, . . . , K), since otherwise their union would be too large. Thanks to this
information and also the fact that we choose the xh in an optimal way, we can
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derive some properties of the set of available elements. The desired sets A′ and
W will be constructed from the set of available elements using this property.

Before starting the analysis of the algorithm, let us pause for a moment
and make some simple observations:

• Bt
i is a subset of SA (more precisely a subset of SA1) for any possible t

and i.

• The maximum element in Bt
i is at most (2t+1 − 1)n (induction).

• For any possible t, bt+1 ≥ 2bt.

• At each step, the length of the sequence shrinks by a factor 1/2 − ε, so
the algorithm terminates after T ′ = (1 − o(1))T steps.

• The number of elements xi used in the algorithm is O(n1/2/ log n), so at
any step, there are always (1 − o(1))|A2| available elements.

Now comes an important observation

Fact 4.4. There is an index k ≤ 3
4T such that bk ≤ Kkb0.

Proof of Fact 4.4. As SA is a subset of [cn3/2] for some constant c, bk =
O(n3/2). On the other hand, the definition of K implies

K3T/4b0 = Ω(K3T/4n1/2) � n3/2,

proving the claim.

4.3. Finding A′ and W . Let k be the first index where bk ≤ Kkb0. This
means |Bk

mk
| ≤ Kkb0. By the description of the algorithm

Bk
mk

= (Bk−1
i + Bk−1

j ) ∪
(

∪K
h=1 (Bk−1

i + Bk−1
j + xh)

)
(6)

for some i, j and xh’s. This implies that

|Bk
mk

| ≥ |Bk−1
i + Bk−1

j |(7)

where 1 ≤ i < j ≤ mk−1 and both Bk−1
i and Bk−1

j have cardinality bk−1 ≥
Kk−1b0. The definition of k then implies that |Bk

mk
| ≤ Kbk−1, so

|Bk−1
i + Bk−1

j | ≤ K|Bk−1
i |.(8)

Applying Freiman’s theorem to (8), we can deduce that there is a generalized
arithmetic progression R with constant rank containing Bk−1

i and Vol(R) =
O(|Bk−1

i |) = O(bk−1).
We say that two elements u and v of Bk−1

j are equivalent if their difference
belongs to R − R. If u and v are not equivalent then the sets u + Bk−1

i and
v + Bk−1

i are disjoint, since Bk−1
i is a subset of R. By (8), the number of
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equivalence classes is at most K. Let us denote these classes by C1, . . . , CK ,
where some of the Cs’s might be empty. We have Bk−1

i ⊂ R and Bk−1
j ⊂

∪K
s=1Cs.

Let us now take a close look at (6). The assumption |Bk
mk

| ≤ K|Bk−1
i |

and (6) imply that there must be a pair s1, s2 such that the intersection

(Bk−1
i + Bk−1

j + xs1) ∩ (Bk−1
i + Bk−1

j + xs2)

is not empty. Moreover, the set {x1, . . . , xK} in (6) was chosen optimally.
Thus, for any set of K available elements, there are two elements x and y such
that the intersection (Bk−1

i + Bk−1
j + x) ∩ (Bk−1

i + Bk−1
j + y) is not empty.

This implies

x − y ∈ (Bk−1
i + Bk−1

j ) − (Bk−1
i + Bk−1

j ) ⊂ ∪1≤g,h≤K

(
(R + Cg) − (R + Ch)

)
.

(9)

Define a graph G on the set of available elements as follows: x and y are
adjacent if and only if

x − y ∈ (Bk−1
i + Bk−1

j ) − (Bk−1
i + Bk−1

j ).

By the argument above, G does not contain an independent set of size K,
so by Lemma 4.1 there should be a vertex x with degree at least |V (G)|/K.
(Here K is a constant so the condition |V | ≥ K2 − K holds trivially.) By (9)
and the pigeon hole principle, there is a pair (g, h) such that there are at least
|V (G)|/K3 elements y satisfying

x − y ∈ (R + Cg) − (R + Ch).(10)

Both Cg and Ch are subsets of translates of R; so the set Y of the elements
y satisfying (10) is a subset of a translate of P = (R + R) − (R + R). Recall
that at any step, the number of available elements is (1 − o(1))|A2|, we have

|Y | ≥ (1 − o(1))|A2|/K3 = Ω(|A2|).(11)

Claim 4.5. There is a generalized arithmetic progression U of rank two
such that |U ∩P | = Ω(Vol(P )) and Vol(U) = O(n1/2 logβ n), for some positive
constant β.

Assuming Claim 4.5, we conclude the proof of Lemma 2.6 as follows. We
say that two elements in P are equivalent if their difference belongs to U−U . If
x and y are not equivalent, then x+(U∩P ) and y+(U∩P ) are disjoint subsets
of P + P . Since Vol(P + P ) = O(Vol(P )), the condition |U ∩ P | = Ω(Vol(P ))
implies that the number of equivalence classes is bounded by a constant. So,
there is an equivalence class whose intersection with A2 has cardinality Ω(|A2|).
On the other hand, there is a translate W of U − U containing this class. As
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Vol(U) = O(n1/2 logβ n) and U has rank two, W is also a generalized arithmetic
progression of ranks 2 and volume O(n1/2 logβ n), as required by Lemma 2.6.

4.4. Proof of Claim 4.5. Let us go back to the definition of Bk
mk

(see
(6)). When we define Bk

mk
, we choose i and j to maximize the cardinality of

Bk−1
i + Bk−1

j . On the other hand, as mk ≤ (1/2 − ε)mk−1, for any remaining
index i, we have at least l = 2εmk−1 choices for j. This means that there are
l sets Bk−1

j1
, . . . , Bk−1

jl
, all of the same cardinality bk−1, such that

|Bk−1
i + Bk−1

jr
| ≤ |Bk−1

i + Bk−1
j | ≤ Kbk−1(12)

for all 1 ≤ r ≤ l.
From now on, we work with the sets Bk−1

jr
, 1 ≤ r ≤ l. By considering

equivalence classes (as in the paragraph following (8)), we can show that for
each r, Bk−1

jr
contains a subset Dr which is a subset of a translate of R and

|Dr| ≥ |Bk−1
jr

|/K = Ω(Vol(R)). The sum of all Dr’s is a subset of SA.
By Lemma 2.5, there is a constant g such that D1 + · · · + Dg contains

a generalized arithmetic progression Q1 with cardinality at least γVol(R) for
some positive constant γ. Using the next g Di’s, we can create Q2 and so on.
At the end, we have l1 = �l/g� generalized arithmetic progression Q1, . . . , Ql1 .
Each of these has rank d = rank(R) and cardinality at least γVol(R). More-
over, they are subsets of translates of the generalized arithmetic progression
R′ = gR which also has volume O(Vol(R)).

There are only O(1) possibilities for the difference sets of the Qi. Thus,
there is a positive constant γ1 such that at least a γ1 fraction of the Qi’s has the
same difference set. Consequently, there is a generalized arithmetic progression
Q (of rank d and cardinality at least γVol(R)) and an integer l2 = Ω(l1) so
that there are least l2 translates of Q among the Qi’s. (To be more precise,
there are l2 among the Qi’s which contains a translate of Q. We can truncate
these Qi’s so that they equal a translate of Q.) Without loss of generality, we
can assume that Q1, . . . , Ql2 are translates of Q.

Next, we investigate the sets Q1, . . . , Ql2 . Their sum is clearly a translate
of l2Q. Moreover, this sum is a subset of SA. Thus, SA contains a translate of
l2Q.

Define a sequence T0 = Q, Ti+1 = 2Ti. Let i0 be the first i such that
|Ti+1| ≤ 7|Ti|. (The argument below shows that i0 exists.) A combination of
Lemma 2.2 and Lemma 2.5 implies that there is a constant h such that hTi

contains a generalized arithmetic progression U0 of rank 2 where

|U0| = Ω(|Ti|) = Ω(7i0 |Q|).

Using the equivalence class argument, we can show that there is a translate U

of U0 − U0 such that

|U ∩ T0| = |U ∩ Q| = Ω(|Q|).
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Now, let us take a close look at l2 and Q. Following the calculation, we
see that

l2 = Ω(l1) = Ω(l) = Ω(mk−1) ≥ Ω((1/2 − ε)k−1m0) ≥ ε1(1/2 − ε)k−1 n1/2

log n
,

(13)

for some positive constant ε1. Furthermore,

|Q| = Ω(Vol(R)) = Ω(bk−1) = Ω(Kk−1b0) = Ω(Kk−1n1/2).(14)

Equation (14) implies that

|U0| = Ω(7i0Vol(Q)) ≥ ε2K
k−17i0n1/2,(15)

for some positive constant ε2.
Observe that Q can be viewed (after a proper translation) as a subset of

[g2k+1n] for some constant g. Indeed, Q is contained in the sum D1 + · · ·+Dg

and each Dj is a subset of some Bk−1
ij

, which, in turn, is a subset of [2k+1n].
Thus U0 is a subset of the interval [2i0hg2k+1n]. Moreover, as SA contains a
translate of l2Q, SA contains a translate of l2

2i0hU0 = l3U0, where

l3 =
l2

2i0h
≥ ε1

2i0h
(1/2 − ε)k−1 n1/2

log n
.(16)

Let us consider two cases:

(i) The product of the right-most formulae in (16) and (15) is at least
20(2i0hg2k+1n).

In this case l3|U0| satisfies the condition of Lemma 2.4 with m = 2i0hg2k+1n.
Therefore l3U0 contains a arithmetic progression of length m > n. As a trans-
late of l3U0 is a subset of SA, it follows that SA contains an arithmetic pro-
gression of length n, a contradiction.

(ii) The product is less than 20(2i0hg2k+1n). This implies that
ε1ε2

h
(
7
4
)i0(

K

2
(
1
2
− ε))k−1 n

log n
≤ 80hgn.

It follows that 1
log n(7

4)i0(K
2 (1

2 − ε))k−1 is upper bounded by the constant
80h2g
ε1ε2

. We choose K sufficiently large so that K
2 (1

2 − ε) > 1; this implies that
(7
4)i0 = O(log n). Thus there is a positive constant β such that (2d)i0 ≤ logβ n,

where d is the rank of P . Now let us bound Vol(U0). It is clear that

Vol(U0) ≤ (2d)hVol(Ti0) ≤ (2d)h(2d)i0Vol(P ) = Θ((2d)i0Vol(P )).

Taking (14) into account, we deduce that

Vol(U0) = Θ((2d)i0Vol(P )) = O(n1/2 logβ n).(17)

As Vol(U) = O(Vol(U0)), the proof of Claim 4.5 is complete.
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5. Proof of Theorem 1.1

A rough description of our plan is the following. We first use Lemma 2.6 to
find a large set B whose elements can be represented as a sum of two elements
of A in many ways. In the second step, we use the elements of B to construct a
large generalized arithmetic progression of rank 2. (See the paragraph following
Lemma 2.4 for an explanation why a large generalized arithmetic of rank 2 is
all we need.)

The following definition plays an important role in the proof.

Definition 5.1. A number x has multiplicity m with respect to a set A

if x can be represented as a sum of two different elements of A in at least m

ways. A set B has multiplicity m with respect to A if every element of B has
multiplicity m with respect to A.

The reader might wonder why a set B with high multiplicity is useful. In
the next few sentences we try to give a quick explanation. Consider a set B

with multiplicity m and a sum s = b1 + · · · + bl, where bi ∈ B and l ≤ m/2.
We claim that one can write s as a sum of different elements of A. We show
this by induction on l. Trivially there are two different elements a1 and a1′ of
A such that b1 = a1 + a1′ . Assume that

b1 + . . . br = (a1 + a1′) + · · · + (ar + ar′),

where the elements on the right-hand side are all different and r + 1 ≤ m/2.
Consider b1+ · · ·+br +br+1. Notice that for any i ≤ r, each of the two numbers
ai and ai′ appear in at most one representation of br+1. Thus, there are at
most 2r representations of br+1 which we cannot use. Since 2r < m, there is a
good representation left.

The above argument allows us to consider the sumset lB and not have to
worry about using the same element in a sum many times. As we pointed out
in the introduction, it is much more convenient when one allows repetitions in
the sum.

Let A be a subset of [n] with at least cn1/2 elements, where c is a suf-
ficiently large constant. We assume (for a contradiction) that SA does not
contain an arithmetic progression of length n. By Lemma 2.6, there is a gen-
eralized arithmetic progression P with constant rank 2 such that A1 = P ∩ A

has constant density α in A and P has volume at most n1/2 logβ n, for some
constant β. Here neither α nor β depends on c, so by increasing c we can as-
sume that |A1| ≥ c1n

1/2, where c1 is still a sufficiently large constant. We are
going to show that SA1 contains an arithmetic progression of length n, which
is a contradiction, as A1 is a subset of A.

The rest of this section is organized as follows. In the first subsection we
find a set B with high multiplicity. By the above argument, we can conclude
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that lB is a subset of SA, for some large number l. This number l has the
form l = n1/2

4t log t where t is a parameter to be defined. It is important for the
rest of the proof that we can assume t is sufficiently large. In the second
subsection, we are going to show why this assumption is legitimate. A further
consideration in this subsection shows that beside being large, t has some other
useful properties.

One can show that lB contains a large generalized arithmetic progression
of rank 2. However, this generalized arithmetic progression is still not large
enough to allow Lemma 2.4 to be invoked. We shall use the so-called tiling
argument (mentioned in the Introduction) to tile several translates of this gen-
eralized arithmetic progression to obtain a much larger generalized arithmetic
progression (for which Lemma 2.4 works). The tiling argument is technical
and we break it into two subsections. In the first one, we consider a simplified
scenario so the reader can quickly grasp the idea. The treatment of the general
case follows next. The fifth, and final, subsection is devoted to a construction
showing the sharpness of Theorem 1.1.

5.1. Defining B. Denote by Mk the set of numbers whose multiplicities
with respect to A1 lie between n1/2

2kk and n1/2

2k+1(k+1) , for all k = 1, 2, 3, . . . , �log n1/2�
(we may assume that n1/2 is an irrational number to avoid possible overlaps).
It is clear that Mk is subset of A + A ⊂ 2P so

|Mk| ≤ Vol(2P ) ≤ 4n1/2 logβ n

for all k. Moreover,

�log n1/2�∑
k=1

n1/2

2kk
|Mk| ≥

(|A1|
2

)
≥

(
c1n

1/2

2

)
.

The total contribution from those k’s where 2kk ≥ log2+β n is at most

n1/2

log2+β n
(4n1/2 logβ n) log n = o(n).

So
�log log2+β n�∑

k=1

n1/2

2kk
|Mk| ≥

(|A1|
2

)
≥ (1 − o(1))c2

1n/2,(18)

which implies that there is an index k between 1 and �log log2+β n� such that
|Mk| ≥ c2n1/22k

k , where c2 = c2
1
3 (

∑∞
k=1

1
k2 )−1 (if there are many choose the

largest k). Rename this particular set Mk to B and set t = 2k. This is the set
B we look for. The elements of B have multiplicity at least

n1/2

2k+1(k + 1)
≥ n1/2

4t log2 t
= l



FINITE AND INFINITE ARITHMETIC PROGRESSIONS IN SUMSETS 21

with respect to A1, so lB is a subset of SA1 . Moreover |lB| = O(n3/2) since
lB is a subset of SA1 and A1 is a set of O(n1/2) numbers not exceeding n.
Without loss of generality, we can assume that l is a power of 2.

In the rest of the proof we shall need the assumption that t is bounded
below by a large constant. In the next subsection, we are going to show this
assumption is legitimate.

5.2. A consideration of t. If t > log n, then we are done since n is
arbitrarily large; so, we assume that t ≤ log n. Let B0 = B and Bi+1 = 2Bi.
Let γi = |Bi|/|Bi−1| and s be the first index where γs ≤ 7. A simple calculation
shows that (2.1)s < l since otherwise |lB| � n3/2, a contradiction. By Lemma
2.2, Bs is a subset of a generalized arithmetic progression Q of rank 2 and
|Bs| ≥ αVol(Q) for some positive constant α. Lemma 2.5 implies that there is
a constant g such that 2gBs contains a generalized arithmetic progression Q′

of rank 2 and cardinality at least α′|Bs|, where α′ is another positive constant.
Moreover, as (2.1)s < l and t ≤ log n, l/2s = ω(1) so l/2s > 2g. Thus l

2s+g Bs+g

is a subset of SA1 and so is l
2s+g Q′. We next want to apply Lemma 2.4. In order

to verify the conditions of this lemma, let us consider the product l
2s+g |Q′|. We

have
l

2s+g
|Q′| ≥ α′ l

2s+g
|Bs| ≥

α′

2g

(7
2

)s
l|B0|,(19)

where in the last inequality we used the fact that |Bs| ≥ 7s|B0| which is
a consequence of the definition of s. As |B0| = |B| = |Mk| ≥ c2n1/2t

log t and

l = n1/2

4t log t , we see that

l|B0| ≥
c2n

4 log2 t

and
l

2s+g
|Q′| ≥ α′

2g

(7
2

)s c2n

4 log2 t
.(20)

Notice that Q′ is a subset of the interval [2s+gn]. So if α′

g (7
2)s c2n

4 log2 t
≥ 20(2s+gn)

then by Lemma 2.4 l
2s+g |Q′| contains an arithmetic progression of length 2s+gn

> n, a contradiction. Thus

α′

2g

(7
2

)s c2n

4 log2 t
≤ 20 × 2s+gn,

which implies that
α′

80g

c2

4g
≤ log2 t.

By increasing c2 (the constants α′ and g do not depend on c2) we can assume
that t is sufficiently large, whenever needed. In particular, we may assume
that t ≥ log300 t � 1.
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The rest of the proof of Theorem 1.1 splits into two cases. The first and
easy case is when γ1 . . . γs is relatively large.

Case 1. log3 t ≤ γ1 . . . γs5−s. In this case

|Bs| ≥ γ1 . . . γs|B0| ≥ 5s(log3 t)|B0| ≥ 5s log3 t
n1/2t

log t
= 52n1/2tlog2 t.(21)

The analysis of this case is similar to the argument we just presented. Consider
the set Q′ as above. We have

l

2s+g
|Q′| ≥ α′

2g

l

2s
|Bs|.(22)

By (21) and the fact that l = n1/2

4t log t the right-hand side of (22) is at least

α′

2g

n1/2

4t log t
(
5
2
)sn1/2t log3 t ≥ α′ log t

4g
(
5
2
)s2gn.(23)

Provided that t is sufficiently large, we have α′ log t
4g ≥ 20. Thus the right-hand

side of (23) is at least 20(2s+gn), which implies that l
2s+g |Q′| ≥ 20(2s+gn).

Similar to the previous proof, we can conclude that l
2s+g Q′ contains an arith-

metic progression of length 20(2s+gn) > n, a contradiction. This completes
the analysis of the first case.

Case 2. log3 t ≥ γ1 . . . γs5−s. Recall that by Lemma 2.2, Bs is a subset
of constant density of a generalized arithmetic progression P of rank 2. The
condition log3 t ≥ γ1 . . . γs5−s and the fact that all γi > 7 together imply that
γ1 . . . γs ≤ log6 t. Thus B is a subset of density

Ω(
1

γ1 . . . γs
) = Ω(

1
log6 t

)

of P . This information will be critical in the rest of the proof.

The remaining arguments of the proof are somewhat easier to verify with
a geometrical visualization. For that purpose, we introduce the following map.
Assume that P = {x1a1 + x2a2|0 ≤ xi ≤ li}, Φ is a map which maps P onto
Z2 as follows

Φ : (x1a1 + x2a2) → (x1, x2).

We would like to emphasize here that Φ does take into account the structure
of P . If we view P as a set of integers, Φ is not an one-to-one map. If the same
number x has two different representations x = x1a1 + x2a2 = x′

1a1 + x′
2a2,

then Φ(x) contains both (x1, x2) and (x′
1, x

′
2). Φ−1 maps Z2 to Z as follows

Φ−1(x, y) → (xa1 + ya2).

We shall work with Φ(B) and Φ(P ) which are easier to view as they are two
dimensional geometrical objects. If x = (u, v) and x′ = (u′, v′) are two points
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in Z2, then x + x′ = (u + u′, v + v′). Under Φ−1, an (integral) parallelogram
in Z2 corresponds to a generalized arithmetic progression of rank 2, whose
differences are integral linear combinations of the differences of P .

Recall that the general form of a generalized arithmetic progression of
rank 2 is {a + x1a1 + x2a2|0 ≤ xi ≤ li}. We can make the assumption that
a = 0 for the following reason. In what follows, we consider only numbers which
can be represented as a sum of the same number of elements in P . Given this,
all arguments are invariant under shifting, justifying the assumption.

5.3. The tiling argument : Simplified case. It is not very hard to show
that lB contains a relatively large generalized arithmetic progression of rank 2.
However, this generalized arithmetic progression is still not large enough that
one can apply Lemma 2.4. The tiling argument, presented below, provides
a method by which we can tile several translates of a generalized arithmetic
progression of rank 2 to obtain a much larger generalized arithmetic progression
(for which Lemma 2.4 works).

The argument is somewhat technical and we first present a simplified
version so the reader could capture the main ideas with not too much trouble.
The complete treatment follows in the next subsection.

Partition each edge of Φ(P ) into log50 t intervals of equal length (we could
assume, without loss of generality, that log t is an integer and the lengths of
the edges of Φ(P ) are divisible by log50 t). The products of these intervals
partition Φ(P ) into log100 t identical rectangles. A small rectangle Q is dense
if

|B ∩ Φ−1(Q)|
|Q| ≥ 1

log7 t
.

Since |B|/Vol(P ) = Ω(1/ log6 t), it follows, via a routine counting argument,
that there is a subset B′ of B, |B′| ≥ 9

10 |B| such that for any x ∈ B′, at least
one element of Φ(x) is contained in a dense rectangle (call such an element
good). Let C be the collection of good elements. We focus on C and the dense
rectangles, ignoring all other elements.

Consider a dense rectangle Q. For each element x ∈ Φ(B) ∩ Q, Φ−1(x)
has high multiplicity with respect to A1. So to each x we may associate a
collection Nx of pairs of elements of A1, where the sum of each pair equals
Φ−1(x).

Fact 5.2. For each dense Q, the union of Nx’s for all x ∈ Q contains at
least n1/2

log109 t
mutually disjoint pairs.

Before going into the proof, let us point out why this fact is useful. The
critical information here is that l̄ = n1/2

log109 t
is much larger than l = n1/2

4t log t (here
we do need the assumption that t is large). On the other hand, if one considers
a sum s = x1 + · · · + xl̄/2, where xi is an element of some dense rectangle
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Qi, then by an argument similar to the one following Definition 5.1, one can
find s′ = x′

1 + · · · + x′
l̄/2

so that x′
i ∈ Qi and the integer corresponding to s′

(Φ−1(s′)) can be written as the sum of l̄ different elements of A1. Furthermore,
the difference between s and s′ is relatively small since xi and x′

i belong to the
same rectangle for all i. Thus, we are able to approximate s fairly well by a
sum of l̄ different elements of A. We shall make this argument precise and
quantitative at the end of this subsection (see the paragraphs following (24)).

Proof of Fact 5.2. The number of elements of B ∩ Φ−1(Q) is at least

|Q|
log7 t

=
|P |

log107 t
≥ |B|

log107 t
.

Each element in B gives rise to l = n1/2

4t log t pairs. So the elements of B∩Φ−1(Q)
give us at least

|B|
log107 t

× n1/2

4t log t
≥ c2n

1/2t

log108 t
× n1/2

4t log t
=

c2n

4 log109 t

pairs (notice that in the first inequality we use the lower bound |B| ≥ c2n1/2t
log t ).

It is important to keep in mind that if two pairs correspond to the same
number, then they are disjoint (as their sums are equal). Moreover, if two
pairs correspond to two different numbers, then they have at most one element
in common.

Now we create a collection of disjoint pairs by the greedy algorithm.
Choose the first pair arbitrarily. Discard all pairs having nontrivial inter-
section with this pair. Choose the second pair arbitrarily from the set of
remaining pairs and so on. Since each number in A1 could appear in at most
|A1| − 1 ≤ c1n

1/2 pairs, we discard at most 2c1n
1/2 pairs in each step. Thus

the collection of disjoint pairs has cardinality at least

c2n

4 log109 t
× 1

2c1n1/2
=

c2

8c1
× n

log109 t
.

Recall that c2 = c2
1
3 (

∑∞
k=1

1
k2 )−1. Since c1 is sufficiently large, c2

8c1
≥ 1. It

follows that our collection has at least n
log109 t

disjoint pairs, completing the
proof of Fact 5.2.

For each dense rectangle Q, let NQ be the largest collection of disjoint
pairs. For a pair (a, b) in NQ, there is a corresponding point in Z2: x = Φ(a+b).
In the following, we denote by DQ the collection of these points; DQ is a
multi-set in Z2 (different pairs may lead to the same point). We have that
|DQ| ≥ n1/2

log109 t
for any dense rectangle Q. Let D be the union of the DQ’s.

Claim 5.3. There is a number h = O(log8 t) such that hC contains a par-
allelogram RC with cardinality at least α1|C|, where α1 is a positive constant.
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Proof of Claim 5.3. Observe that C ′ = Φ−1(C) is a subset of P and
|C ′|/Vol(P ) is Ω(1/ log7 t). Similar to the argument preceding Case 1, consider
a sequence C0 = C ′, Ci+1 = 2Ci. If |Ci| ≥ 7|Ci−1| for all i ≤ s, then

|Cs| ≥ 7s|C0| = Ω(7slog7 t)Vol(P ) ≥ 7s

log8 t
Vol(P ).

On the other hand, Cs is a subset of 2sP which has cardinality at most
4sVol(P ). Thus

7s

log8 t
≤ 4s,

which implies that 2s ≤ log8 t. So there is a number s′ so that 2s′ ≤ log8 t

and |2s′+1C ′| ≤ 7|2s′
C ′|. Lemma 2.5 implies that g2s′

C ′ contain a generalized
arithmetic progression C

′′
of rank 2 and cardinality Ω(|2s′

C ′|) = Ω(|C ′|) =
Ω(|C|). Moreover, the differences of this generalized arithmetic progression
are multiples of the differences of P , so Φ(C

′′
) is a parallelogram in Z2. To

conclude, notice that h = g2s′
= O(log8 t).

It follows from the claim above that lC contains the parallelogram P1 =
l
hRC , whose sides are L1 and L2. However, this parallelogram is not sufficiently
large so that one can apply Lemma 2.4 to the generalized arithmetic progression
Φ−1(P1). In fact, we want to obtain the larger parallelogram P2 = K

h RC where
K = l log30 t. Notice that

K

h
|RC | ≥ (log20 t)lα1|C| ≥ (log20 t)lα1|B| ≥ 20hn,

since h = O(log8 t) and both c2 and t are sufficiently large. Since Φ−1(RC) is a
subset of [hn], Lemma 2.4 implies that K

h RC contains an arithmetic progression
of length hn ≥ n, a contradiction.

Up to this point, our arguments are general. Let us now make a simplifying
assumption that the basis vectors of the parallelogram RC are the same as those
of P , namely i = (1, 0) and j = (0, 1). We can assume that

P1 = {ui + vj|0 ≤ u ≤ L1, 1 ≤ v ≤ L2}.

We shall construct P2 = K
h RC by a tiling operation as follows. We first

use KD to obtain a dense subset X of P2. Next, we use the translates of P1,
centered at the elements of X, to cover P2.

Consider P2. Each of its element is an element of KC and can be written
as

z = x1 + · · · + xK ,

where xi ∈ C. By the definition of C, each xi is in some dense rectangle Q.
For xi ∈ Q, we shall replace it by some yi ∈ DQ.
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Next, let us compare |DQ| and K. We have

|DQ| ≥
n1/2

log109 t
and K = l log30 t =

n1/2 log29 t

4t
.(24)

Provided that t is sufficiently large (t ≥ log300 t), |DQ| > 3K for all dense Q.
Now comes the essential point of the whole argument: since |DQ| ≥ 3K for
all Q, we can replace x1, . . . , xK by elements y1, . . . , yK with the following
property. There are mutually disjoint pairs (a1, a

′
1), . . . , (aK , a′K), ai, a

′
i ∈ A1,

such that ai + a′i = Φ−1(yi). This guarantees that Φ−1(
∑K

i=1 yK) can be
represented as the sum of exactly 2K different elements from A1.

Now let us consider the difference
∑K

i=1(yi − xi). Notice that xi − yi is
small for each i (as they are in the same dense rectangle). So the sum is small
and we want to show that it is a vector of P1. Indeed, the horizontal component
of xi − yi is at most l1/ log50 t, so the horizontal component of x is at most

Kl1/ log50 t ≤ l1n
1/2

t log20 t
< L1.

The same estimate holds for the vertical component.
To summarize, we have proved that KD contains a subset X such that

X + lC contains a large rectangle P2, where Φ−1(P2) contains an arithmetic
progression of length n. Moreover, the inverse of any element from X is in SA1 .

5.4. The tiling argument : General case. In the previous proof, we made
the assumption that the basis vectors of RC are the same as those of P , namely
(1, 0) and (0, 1). This assumption might not always hold and we need to
modify the proof a little bit. To start, assume that the basis vectors of RC are
v1 = (a1, b1) and v2 = (a2, b2), where ai, bi’s are integers. Since RC has high
density in hP , the ai’s and bi’s cannot be too large in absolute value. Indeed,

|RC |
|hP | ≥

1
log30 t

,

so the absolute values of a1, a2, b1, b2 are at most log30 t. Now consider the
parallelogram P1

P1 = {v + y1v1 + y2v2|0 ≤ yi ≤ Li}.

Without loss of generality, we can assume that v = 0. Next, consider a
point z = x1 + · · ·+xK in P2, where xi ∈ C (recall that P2 = K

h RC is a subset
of KC). As already mentioned, each xi is in some dense rectangle Q, so we
can use the dense rectangles to partition the xi’s and rewrite z as follows

z =
m∑

j=1

∑
x∈Qj

x,
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where Q1, . . . , Qm are the dense rectangles. Since we partition P into log100 t

rectangles, m ≤ log100 t.
The important issue here is that we need to make sure that the approxi-

mation y of x is a vector in the lattice L spanned by v1 and v2. A vector in
this lattice has the form (ga1 + g′a2, gb1 + g′b2), where g and g′ are integers.
For the sake of simplicity, let us assume that a1a2b1b2 �= 0. We are going to
produce vectors where both coordinates are divisible by the product a1a2b1b2.
(If a1 = 0 and a2b1b2 �= 0 then we consider the product a2b1b2; the rest of the
proof is the same.) It is trivial that these vectors belong to the lattice L.

We first approximate the sum
∑

x∈Qj
x for each 1 ≤ j ≤ m. As the

subindex j plays no role, we omit it for a better presentation. To satisfy the
modularity condition, we shall use only a special subset of DQ. We say that
two elements in DQ are equivalent if both coordinates of their difference are
divisible by a1a2b1b2. There is a equivalence class D′

Q with at least

|DQ|/(a1a2b1b2)2 ≥ |DQ|/ log160 t

elements. It is easy to see both coordinates of the sum of any |a1a2b1b2|
elements in D′

Q are divisible by a1a2b1b2. So such a sum is in L.
Partition the set {x, x ∈ Q} in the same way. We have (a1a2b1b2)2 equiva-

lence classes. In each class, partition the elements into groups of size |a1a2b1b2|
(one group may have fewer elements and we call this the exceptional group).
The sum of the vectors in a nonexceptional group is a vector in L. Replace
each nonexceptional group with a group of |a1a2b1b2| elements from D′

Q. Using
the fact that t ≥ log300 t, we can verify that |D′

Q| is still much larger than K.
Thus, similar to the previous case, we can guarantee that the participating
elements from D′

Q are all different. The approximating vector is the sum of
the (new) elements in the nonexceptional groups and the (old) elements in the
exceptional groups. It is obvious that the difference between this vector and
the original vector

∑
x∈Q x is a vector in L as in each replacement we replace

a vector in L with in another vector from the same lattice.
It remains to estimate the magnitude of the difference between x1+· · ·+xK

and its approximation. This part is essentially the same as in the simplified
case, since we still replace xi with some yi from the same dense rectangle.

Each element of P2 can be written as y+z, where y is the vector we obtain
by replacements and z is vector in lC. Furthermore, y can be written as

y = y1 + · · · + yK′ + u1 + · · · + uK−K′ ,

where the yi’s are the replacements and u1, . . . , uK−K′ are elements of C which
did not get replaced. In each dense rectangle, at most a1a2b1b2 − 1 elements
did not get replaced, so

K − K ′ ≤ a1a2b1b2 log100 t ≤ log180 t ≤ l
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and thus Φ−1(u) can be represented as sum of at most 2 log180 t elements
from A1. Provided that t is sufficiently large, |D′

Q| ≥ 4K > l, we can find
y1, . . . , yK′ so that their corresponding pairs are disjoint and also disjoint from
the elements used in the representation of Φ−1(u). Thus, Φ−1(y) is an element
of SA1 .

Consider Φ−1(P2). This set contains an arithmetic progression N of length
n. Since Φ−1(y) is an element of SA1 , each element of N is a sum of Φ−1(y) and
Φ−1(z) where z and y are as above. Furthermore, both Φ−1(y) and Φ−1(z) are
in SA1 . However, we are not completely done. The (only) remaining obstacle
is that an element from A1 might appear in the representations of Φ−1(y)
and Φ−1(z) simultaneously. We can, however, overcome this obstacle by the
following simple, but useful argument.

The cloning argument. At the very beginning, we split the set A into two
sets A′ and A

′′
in such the way that |A′| ≈ |A′′ | and any number x which has

high multiplicity with respect to A′ should have almost the same multiplicity
with respect to A

′′
. Next, we continue with A′ and keep A

′′
for reserve. Repeat

the whole proof with A′ (so A1 will be a subset of A′ etc) until the previous
paragraph. To overcome the obstacle, it suffices to show that SA′′ contains an
exact copy of Φ−1(lC). In other words, we clone an exact copy of Φ−1(lC) in
SA′′ .

We are going to show that a random splitting provide the sets A′ and A
′′

as required with probability close to one. A random splitting is constructed as
follows: For each element of A throw a fair coin. If head, we put the element
into A′, otherwise we put it into A

′′
. If a number x has multiplicity Nx �

log n with respect to A, then it is easy to see (via standard large deviation
inequalities) that with probability at least 1 − n−2, x has multiplicities

Nx

4
± 10

√
Nx log n = (1 + o(1))

Nx

4

with respect to both A′ and A
′′
. Since there are only O(n) possible x, with

probability close to 1, every x with multiplicity � log n has approximately the
same multiplicities in A′ and A

′′
.

When we obtain the set Mk (which we rename B), the elements in Mk

have multiplicity at least n1/2

2k+1(k+1) � log n with respect to A′. Furthermore,

as we define l = n1/2

6.2kk , we have l ≤ 1
2

n1/2

2k+1(k+1) . So the elements of Mk should
have multiplicities at least l with respect to A

′′
. Therefore Φ−1(lC) is a subset

of SA′′ , completing the proof.

5.5. The sharpness of Theorem 1.1. Here we construct a set A ⊂ [n] with
cardinality roughly (1

2)1/2n1/2 such that SA does not contain an arithmetic
progression of length (1

2)7/4n3/4. Assume that n is sufficiently large. Choose
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two different primes p1 ≈ p2 ≈ (1
2)3/4n3/4. Consider the set

A =
{

x1p1 + x2p2|1 ≤ xi ≤ (1 − ε)
(

1
2

)1/4

n1/4
}

,

where ε is a small positive constant. One can show that

x1p1 + x2p2 = x′
1p1 + x′

2p2

if and only if (x1, x2) = (x′
1, x

′
2). Thus A is proper and its cardinality is

(1− ε)2
(

1
2

)1/2
n1/2. On the other hand, A is a subset of [n] and SA is a subset

of the generalized arithmetic progression

B =
{

x1p1 + x2p2|1 ≤ xi ≤
1 − ε

2

(
1
2

)3/4

n3/4
}

.

Since

2
1 − ε

2

(
1
2

)3/4

n3/4 ≤ pi,

it follows that 2B is still proper and this implies that if

(x1p1 + x2p2) + (x′
1p1 + x′

2p2) = 2(x
′′

1p1 + x
′′

2)p2,

holds for three elements (x1p1 + x2p2), (x′
1p1 + x′

2p2), (x
′′

1p1 + x
′′

2p2) of B then
x1 + x′

1 = 2x
′′

1 and x2 + x′
2 = 2x

′′

2 . So the length of the longest arithmetic
progression in B is at most the length of an edge of B, which is less than(

1
2

)7/4
n3/4.

6. Erdős-Folkman’s conjectures

We prove Corollary 1.4, using Theorem 1.1. Corollary 1.5 follows from
Corollary 1.4 via Folkman’s partition argument. The proof presented here
combines arguments from Hegyvári’s paper [11] and new ideas. Let us start
with a corollary of Lemma 2.3.

Corollary 6.1. Let P be a generalized arithmetic progression of rank 2,
P = {x1a1 + x2a2|0 ≤ xi ≤ li}, where li ≥ 5a3−i for i = 1, 2. Then P contains
an arithmetic progression of length l1 + l2 whose difference is gcd(a1, a2).

Proof of Corollary 6.1. The corollary is easy to check if either a1 or a2 is
divisible by the other. We omit the proof of this case. If both a1/ gcd(a1, a2)
and a2/ gcd(a1, a2) is at least 2, then by Lemma 2.3, P contains an arithmetic
progression of length at least

3
5 gcd(a1, a2)

(l1a1 + l2a2) ≥
6
5
(l1 + l2) > (l1 + l2),

concluding the proof.
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The next lemma is a consequence of the Chinese remainder theorem and
we omit the simple proof.

Lemma 6.2. Let 1 ≤ x1 < x2 < · · · < xh < d be positive integers. If
gcd(x1, . . . , xh) = 1(mod d), then there are integers 0 ≤ a1, . . . , ah < d such
that

∑h
j=1 ajxj ≡ 1(mod d).

Another useful observation is the following, due to Graham [10].

Lemma 6.3. Let Y = y1 < y2 < . . . be an infinite sequence of positive
integers and SY = {s1 < s2 < . . . }. If ym+1 ≤

∑m
i=1 yi for all sufficiently

large m, then there is some L such that si+1 − si ≤ L for all i.

The proof of this lemma is short and we include it here for the sake of
completeness. This proof is different from the proof in [10].

Proof of Lemma 6.3. There is some m0 such that ym+1 ≤
∑m

i=1 yi for all
m ≥ m0. Let L =

∑m0
i=1 yi. We are going to prove that si+1 − si ≤ L for all i.

Our strategy is as follows: if si+1 − si > L for some i, we construct a finite set
B such that

si <
∑
yj∈B

yj < si+1,(25)

which would contradict the assumption that si and si+1 are two consecutive
elements of S(Y ). We denote by B1 the set of elements of Y appearing in the
representation of si (if si has many representations, choose an arbitrary one).

If there is some yj , j ≤ m0, not in B1, then B = B1 ∪ yj satisfies (25)
since yj ≤ ym0 ≤ L. Let m1 be the largest index such that {y1, . . . , ym1} ⊂ B1,
from now on we can assume that m1 ≥ m0.

By the definition of m1, ym1+1 is not an element of B1. Moreover, m1 ≥
m0, so ym1+1 ≤

∑m1
i=1 yi. Among all subsets C of {y1, . . . , ym1} satisfying

ym1+1 +
∑

yj∈C yj ≤
∑m1

i=1 yi, let B2 be the one which maximizes
∑

yj∈B2
2j (if

B2 is the empty set we set
∑

yj∈B2
2j = 1 ). Let us consider two cases:

Case 1. There is some yk, k ≤ m0, not in B2. In this case B =
(B1\{y1, . . . , ym1}) ∪ {ym1+1 ∪ B2 ∪ yk} satisfies (25) since

ym1+1 +
∑

yj∈B2

yj ≤
m1∑
i=1

yi ≤ ym1+1 +
( ∑

yj∈B2

yj

)
+ yk ≤ ym1+1 +

( ∑
yj∈B2

yj

)
+L.

Case 2. {y1, . . . , ym0} ⊂ B2. In this case, there is an index m2 ≥ m0 such
that {y1, . . . , ym2} ⊂ B2 but ym2+1 /∈ B2. Since ym1+1 +

∑
yj∈B2

yj ≤
∑m1

i=1 yi,
m2 < m1. Furthermore, since m2 ≥ m0, ym2+1 ≤

∑m2
i=1 yi, so the set B′

2 =
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(B2\{y1, . . . , ym2}) ∪ ym2+1 satisfies

ym1+1 +
∑

yj∈B′
2

yj ≤
m1∑
i=1

yi.

On the other hand,
∑

yj∈B′
2
2j >

∑
yj∈B2

2j , which contradicts the definition

of B2. This completes the proof of Lemma 6.3.

Now we are going to use Theorem 1.1 to prove a critical lemma.

Lemma 6.4. For any sufficiently large constant c the following holds. For
any sequence A of density at least cn1/2 there is a positive integer d such
that for every l the set SA contains an arithmetic progression of length l with
distance d.

Proof of Lemma 6.4. We can assume that A = {a1 < a2 < . . . }, where
am ≤ m2/c2 for all sufficiently large m. Let A[m] be the set consisting of the
first m elements of A. Fix a sufficiently large m and define A0 = A[m] and
Ai = A[2im]\A[2i−1m]. The set Ai has 2i−1m elements and is a subset of the
interval [4im2/c2].

By Theorem 1.1 (provided that c is sufficiently large), SAi
contains an

arithmetic progression Pi of length li = 4im2/c2 for all i. Set Q0 = P0 (and
assume that d0 is the difference of Q0) and consider the generalized arithmetic
progression Q0+P1. This is a generalized arithmetic progression of rank 2 with
volume l1l2. Moreover, this two dimensional generalized arithmetic progression
is a subset of a relatively short interval [2l3/2

1 ], so one can easily check that
its differences are relatively small and satisfy the assumption of Corollary 6.1.
This corollary implies that Q0 + P1 = P0 + P1 should contain an arithmetic
progression Q1 of length l0 + l1 − 2 with difference d1 which is a divisor of d0.
(The −2 term comes from the fact that in Corollary 6.1, the edges of P have
length l1 + 1 and l2 + 1, respectively.) Similarly, by considering Q1 + P2 we
obtain an arithmetic progression Q2 of length l0 + l1 + l2 − 3 with difference
d2 which is a divisor of d1 and so on. The difference sequence d0, d1, d2, . . . is
nonincreasing, so there must be an index j so that di = dj = d for all i ≥ j.
The arithmetic progressions Qj , Qj+1, Qj+2, . . . have increasing lengths and
the same difference d. Moreover, each Qi is a subset of SA and this completes
the proof.

We are, finally, in a position to complete the proof. The following defini-
tion will play an important role.

Definition 6.5. An infinite sequence B = {b1 < b2 < b3 < . . . } is a (d, L)-
net if |bi+1 − bi| < L and is divisible by d for all i = 1, 2 . . . .
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It is clear that if B is a (d, L)-net and Q is an arithmetic progression
with difference d and length larger than L/d, then B + Q contains an infinite
arithmetic progression with difference d. This observation will be the leading
idea in what follows.

Consider a sequence A = {a1 < a2 < a3 . . . } with density at least cn1/2.
Partition A into two parts A1 and A2, where A1 (A2) contains the elements
with odd (even) indices, respectively. Since A has density cn1/2, both A1 and
A2 have density cn1/2/2.

Use A1 to create the arithmetic progressions Q0, Q1, Q2, . . . with the same
difference d and strictly increasing lengths, as shown in Lemma 6.4.

Next, we focus on A2. Let X be the set of divisors d′ of d with the following
property. All but at most finitely many elements of A2 are divisible by d′. Since
1 ∈ X, X is not empty and thus has a maximum element d1. By throwing away
finitely many elements, we can assume that all elements are divisible by d1.
Next, discard every element y (in the remaining sequence) with the property
that there is only a finite number elements of A2 equal y modulo d. Again, we
discard only a finite number of elements so the remaining sequence still has
the same density as A2. Thus, we can assume that A2 = {b1d1 < b2d1 < . . . }
where the bi’s have the following property: Let b′i be the remainder when
dividing bi by d. For each i, there are infinitely many j’s such that b′i = b′j .
Moreover, the greatest common divisor of the b′i’s equals one modulo d by the
definition of d1.

By Lemma 6.2 and the property of A2, we can find (d−1) mutually disjoint
finite subsets X1, . . . , Xd−1 of A2 so that the sum of the elements in each subset
equals d1 modulo d. Denote these sums by x1d + d1, . . . , xd−1d + d1, where
the xi’s are nonnegative integers. For any arithmetic progression Qj with
length l ≥ 3(x1 + · · · + xd−1), the set Qj + S{x1d+d1,...,xd−1d+d1} contains an
arithmetic progression with difference d1 and length at least l/2. Thus we can
conclude that SA1 +S{x1d+d1,...,xd−1d+d1} contains an arbitrarily long arithmetic
progression with difference d1.

Set A′
2 = A2\ ∪d−1

i=1 Xi; to complete the proof, we show that SA′
2

contains
a (d1, L)-net for some constant L. Let SA′

2
= {s1 < s2 < . . . }. Clearly all the

si’s are divisible by d1 so it suffices to show that there is some L such that
si+1 − si ≤ L for all i. We do this by applying Lemma 6.3.

Given this lemma, all we need is to verify the assumption ym+1 ≤
∑m

i=1 yi,
where yj denotes the jth element of A′

2. Recall that A′
2 has the same density

as A2, which is cn1/2/2. So for a sufficiently large m, ym+1 ≤ 4(m + 1)2/c2 ≤
m2/3, provided that we set c large enough. On the other hand,

m∑
i=1

yi ≥
m∑

i=1

i =
(

m + 1
2

)
> m2/3.

The proof is complete.
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7. Concluding remarks

• We do not need the full strength of Theorem 1.1 in the proof of Corollary
1.4. The only place where we used Theorem 1.1 is the proof of Lemma
6.4. The reader can check that in this application, it is already sufficient
to have Pi containing an arithmetic progression of length kl

3/4
i , for some

sufficient large constant k. Thus, what we actually required, instead of
Theorem 1.1, is the following statement: For any constant k there is a
constant c such that the following holds. If A ⊂ [n] and |A| ≥ cn1/2,
then SA contains an arithmetic progression of length kn3/4.

• For the proof of Theorem 1.1, it suffices to have a generalized arithmetic
progression of constant rank in Lemma 2.6. However, we prefer to state
this lemma the current form as it might be interesting in its own right.
Furthermore, the proof for constant rank is not significantly simpler than
the proof for the optimal rank 2.

• Sárközy [17] and Freiman [6] proved that if A is a subset of [n] and
l|A| ≥ cn, where c is sufficiently large constant, then lA contains an
arithmetic progression of length Ω(l|A|). Some of the facts used in our
proof are corollaries of this result (for instance, Lemma 2.4). However, we
avoid using this result for two reasons. The first reason is that we want
our proof to be self-contained. The second, and more important, reason
is that the techniques developed in our proof already provide a new and
relatively simple proof of the Freiman-Sárközi result. The reader who is
interested in the details of this proof is referred to [18] (§1.1 of [18]).

• By slightly modifying the proof of Theorem 1.1, we could obtain a little
bit stronger result that if |A| ≥ cn1/2, then l∗A contains an arithmetic
progression of length n, for some l ≤ |A|, where l∗A denotes the set of
numbers which can be represent as a sum of exactly l distinct elements
of A. To see this, note that the only place in the whole proof where we
do not consider sums of the same number of elements is the statement of
Lemma 4.2. But, as we pointed out in Remark 4.3 following this lemma,
one can modify the proof to obtain a similar statement where SA′ is a
replaced by l∗0A

′, for some l0 = O(log n).

• Together with Conjecture 1.3, Folkman [9] (see also §6 of [5]) also made
the following conjecture about nondecreasing sequences

Conjecture 7.1. There is a constant c such that the following
holds. Any nondecreasing sequence A = {a1 ≤ a2 ≤ a3 ≤ . . . } satis-
fying A(n) ≥ cn is subcomplete.
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We confirm this conjecture in [19]. Given the proof in the previous
section, it suffices to have the following variant of Theorem 1.1 for multi-
sets.

Theorem 7.2 ([19]). There is a positive constant c such that the
following holds. For any positive integer n, if A is a multi-set consisting
of positive integers between 1 and n with and |A| ≥ cn, then SA contains
an arithmetic progression of length n.
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