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Curve shortening and the topology
of closed geodesics on surfaces

By Sigurd B. Angenent*

Abstract

We study “flat knot types” of geodesics on compact surfaces M2. For
every flat knot type and any Riemannian metric g we introduce a Conley index
associated with the curve shortening flow on the space of immersed curves on
M2. We conclude existence of closed geodesics with prescribed flat knot types,
provided the associated Conley index is nontrivial.

1. Introduction

If M is a surface with a Riemannian metric g then closed geodesics on
(M, g) are critical points of the length functional L(γ) =

∫
|γ′(x)|dx defined

on the space of unparametrized C2 immersed curves with orientation, i.e. we
consider closed geodesics to be elements of the space

Ω = Imm(S1, M)/Diff+(S1).

Here Imm(S1, M) = {γ ∈ C2(S1, M) | γ′(ξ) �= 0 for all ξ ∈ S1} and Diff+(S1)
is the group of C2 orientation preserving diffeomorphisms of S1 = R/Z. (We
will abuse notation freely, and use the same symbol γ to denote both a con-
venient parametrization in C2(S1;M), and its corresponding equivalence class
in Ω.)

The natural gradient flow of the length functional is given by curve short-
ening, i.e. by the evolution equation

∂γ

∂t
=

∂2γ

∂s2
= ∇T (T ), T

def=
∂γ

∂s
.(1)

In 1905 Poincaré [33] pointed out that geodesics on surfaces are immersed
curves without self-tangencies. Similarly, different geodesics cannot be tan-
gent – all their intersections must be transverse. This allows one to classify
closed geodesics by their number of self-intersections, or their “flat knot type,”
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and to ask how many closed geodesics of a given “type” exist on a given surface
(M, g). Our main observation here is that the curve shortening flow (1) is the
right tool to deal with this question.

We formalize these notions in the following definitions (which are a special
case of the theory described by Arnol’d in [13].)

Flat knots. A curve γ ∈ Ω is a flat knot if it has no self-tangencies. Two
flat knots α and β are equivalent if there is a continuous family of flat knots
{γθ | 0 ≤ θ ≤ 1} with γ0 = α and γ1 = β.

Relative flat knots. For a given finite collection of immersed curves,

Γ = {γ1, . . . , γN} ⊂ Ω,

we define a flat knot relative to Γ to be any γ ∈ Ω which has no self-tangencies,
and which is transverse to all γj ∈ Γ. Two flat knots relative to Γ are equivalent
if one can be deformed into the other through a family of flat knots relative
to Γ.

Clearly equivalent flat knots have the same number of self-intersections
since this number cannot change during a deformation through flat knots. The
converse is not true: Flat knots with the same number of self-intersections need
not be equivalent. See Figure 1. Similarly, two equivalent flat knots relative
to Γ = {γ1, . . . , γN} have the same number of self-intersections, and the same
number of intersections with each γj .

Figure 1: Two flat knots in R2 with two self-intersections

In this terminology any closed geodesic on a surface is a flat knot, and
for given closed geodesics {γ1, . . . , γN} any other closed geodesic is a flat knot
relative to {γ1, . . . , γN}.

One can now ask the following question: Given a Riemannian metric g

on a surface M , closed geodesics γ1, . . . , γN for this metric, and a flat knot α

relative to Γ = {γ1, . . . , γN}, how many closed geodesics on (M, g) define flat
knots relative to Γ which are equivalent to α? In this paper we will use curve
shortening to obtain a lower bound for the number of such closed geodesics
which only depends on the relative flat knot α, and the linearization of the
geodesic flow on (TM, g) along the given closed geodesics γj .
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Our strategy for estimating the number of closed geodesics equivalent to a
given relative flat knot α is to consider the set Bα ⊂ Ω of all flat knots relative
to Γ which are equivalent to α. This set turns out to be almost an isolating
block in the sense of Conley [17] for the curve shortening flow. We then define a
Conley index h(Bα) of Bα and use standard variational arguments to conclude
that nontriviality of the Conley index of a relative flat knot implies existence
of a critical point for curve shortening in Bα.

To do all this we have to overcome a few obstacles.
First, the curve shortening flow is not a globally defined flow or even

semiflow. Given any initial curve γ(0) ∈ Ω a solution γ : [0, T ) → Ω to curve
shortening exists for a short time T = T (γ0) > 0, but this solution often
becomes singular in finite time. What helps us overcome this problem is that
the set of initial curves γ(0) ∈ Bα which are close to forming a singularity is
attracting. Indeed, the existing analysis of the singularities of curve shortening
in [24], [7], [25], [26], [32] shows that such singularities essentially only form
when “a small loop in the curve γ(t) contracts as t ↗ T (γ(0)).” A calculation
involving the Gauss-Bonnet theorem shows that once a curve has a sufficiently
small loop the area enclosed by this loop must decrease under curve shortening.
This observation allows us to include the set of curves γ ∈ Bα with a small
loop in the exit set of the curve shortening flow. With this modification we
can proceed as if the curve shortening flow were defined globally.

Second, Bα is not a closed subset of Ω and its boundary may contain
closed geodesics, i.e. critical points of curve shortening: such critical points are
always multiple covers of shorter geodesics. To deal with this, one must analyze
the curve shortening flow near multiple covers of closed geodesics. It turns out
that all relevant information to our problem is contained in Poincaré’s rotation
number of a closed geodesic. In the end our Conley index h(Bα) depends not
only on the relative flat knot class Bα, but also on the rotation numbers of the
given closed geodesics {γ1, . . . , γN}.

Finally, the space Bα on which curve shortening is defined is not locally
compact so that Conley’s theory does not apply without modification. It turns
out that the regularizing effect of curve shortening provides an adequate sub-
stitute for the absence of local compactness of Bα.

After resolving these issues one merely has to compute the Conley index
of any relative flat knot type to estimate the number of closed geodesics of
that type. To describe the results we need to discuss satellites and Poincaré’s
rotation number.

1.1. Satellites. Let α ∈ Ω be given, and let α : R/Z → M also denote a
constant speed parametrization of α. Choose a unit normal N along α, and
consider the curve αε : R/Z → M given by

αε(t) = expα(qt)

(
ε sin(2πpt)N(qt)

)
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where p
q is a fraction in lowest terms. When ε = 0, αε is a q-fold cover of α.

For sufficiently small ε �= 0 the αε are flat knots relative to α. Any flat knot
relative to α equivalent to αε is by definition a (p, q)-satellite of α.

Poincaré [33] observed that a (p, q)-satellite of a simple closed curve α has
2p intersections with α and p(q − 1) self-intersections. See also Lemma 2.1.

1.2. Poincaré’s rotation number. Let γ(s) be an arc-length parametriza-
tion of a closed geodesic of length L > 0 on (M, g). Thus γ(s+L) ≡ γ(s), and
T = γ′(s) satisfies ∇T T = 0. Jacobi fields are solutions of the second order
ODE

d2y

ds2
+ K(γ(s))y(s) = 0,(2)

where K : M → R is the Gaussian curvature of (M, g).
Let y : R → R be any Jacobi field, and label the zeroes of y in increasing

order

. . . < s−2 < s−1 < s0 < s1 < s2 < . . .

with (−1)ny′(sn) > 0. Using the Sturm oscillation theorems one can then show
that the limit

ω(γ) = lim
n→∞

s2n

nL

exists and is independent of the chosen Jacobi field y. We call this number
the Poincaré rotation number of the geodesic γ. If there is a Jacobi field with
only finitely many zeroes then the oscillation theorems again imply that y(s)
has either one or no zeroes s ∈ R. In this case we say the rotation number is
infinite.

For an alternative definition we observe that if y(s) is a Jacobi field then
y(s) and y′(s) cannot vanish simultaneously. Thus one can consider

ρ(γ) = lim
s→∞

L

2πs
arg{y(s) + iy′(s)}.

Again it turns out that this limit exists and is independent of the particular
choice of Jacobi field y. Moreover one has

ρ =
1
ω

.

We call ρ the inverse rotation number of γ. See [27] where the much more
complicated case of quasi-periodic potentials is treated. The inverse rotation
number ρ is analogous to the “amount of rotation” of a periodic orbit of a
twist map introduced by Mather in [30].

1.3. Allowable metrics for a given relative flat knot and the nonresonance
condition. Let Γ = {γ1, . . . , γN} ⊂ Ω be a collection of curves with no mutual
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or self-tangencies, and denote by MΓ the space of C2,µ Riemannian metrics
g on M for which the γi ∈ Γ are geodesics (thus the metric has continuous
derivatives of second order which are Hölder continuous of some exponent
µ ∈ (0, 1)). When written out in coordinates one sees that this condition is
quadratic in the components gij and ∂igjk of the metric and its derivatives.
Thus MΓ is a closed subspace of the space of C2,µ metrics on M.

If α ∈ Ω is a flat knot rel Γ then it may happen that α is a (p1, q1) satellite
of, say, γ1. In this case the rotation number of γ1 will affect the number of
closed geodesics of flat knot type α rel Γ. To see this, consider a family of
metrics {gλ | λ ∈ R} ⊂ Mγ for which the inverse rotation number ρ(γ; gλ)
is less than p1/q1 for negative λ and more than p1/q1 for positive λ. Then,
as λ increases from negative to positive, a bifurcation takes place in which
generically two (p1, q1) satellites of γ1 are created. These bifurcations appear
as resonances in the Birkhoff normal form of the geodesic flow on the unit
tangent bundle near the lift of γ. This is described by Poincaré in [33, §6,
p. 261]. See also [14, Appendix 7D,F].

In studying the closed geodesics of flat knot type α rel Γ we will therefore
exclude those metrics for which a bifurcation can take place. To be precise,
given α we order the γi so that α is a (pi, qi) satellite of γi, if 1 ≤ i ≤ m,
but not a satellite of γi for m < i ≤ N . We then impose the nonresonance
condition

ρ(γi) �=
pi

qi
for i ∈ {1, . . . , m}.(3)

The metrics g ∈ MΓ which satisfy this condition can be separated into 2m

distinct classes. For any subset I ⊂ {1, . . . , m} we define MΓ(α; I) to be the
set of all metrics g ∈ MΓ such that the inverse rotation numbers ρ(γ1), . . . ,
ρ(γm) satisfy

ρ(γi) <
pi

qi
if i ∈ I and ρ(γi) >

pi

qi
if i �∈ I.(4)

For each I ⊂ {1, . . . , m} we define in Section 6 a Conley index hI . This is done
by choosing a metric g ∈ MΓ(α; I), suitably modifying the set Bα ⊂ Ω and its
exit set for the curve shortening flow, according to the choice of I ⊂ {1, . . . , m}
and then finally setting hI equal to the homotopy type of the modified Bα with
its exit set collapsed to a point. Thus the index we define is the homotopy type
of a topological space with a distinguished point. We show that the resulting
index hI does not depend on the choice of metric g ∈ M(α; I), and also that
the index hI does not change if one replaces α by an equivalent flat knot rel Γ.

Using rather standard variational methods we then show in §7:

Theorem 1.1. If g ∈ MΓ(α; I) and if the index hI is nontrivial, then the
metric g has at least one closed geodesic of flat knot type α rel Γ.
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Using more standard variational arguments one could then improve on this
and show that there are at least n − 1 closed geodesics of type α rel Γ, where
n is the Lyusternik-Schnirelman category of the pointed topological space hI .
We do not use this result here and omit the proof.

Computation of the index hI for an arbitrary flat knot α rel Γ may be
difficult. It is simplified somewhat by the independence of hI from the metric
g ∈ MΓ(α; I). In addition we have a long exact sequence which relates the
homologies of the different indices one gets by varying I.

Theorem 1.2. Let ∅ ⊂ J ⊂ I ⊂ {1, . . . , m} with J �= I. Then there is a
long exact sequence

. . . Hl+1(hI) ∂∗−→ Hl(AI
J) −→ Hl(hJ) −→ Hl(hI) ∂∗−→ Hl−1(AI

J) . . .(5)

where

AI
J =

∨
k∈I\J

{
S1 × S2pk−1

S1 × {pt}

}
.

This immediately implies

Theorem 1.3. If J ⊂ I with J �= I then hI and hJ cannot both be trivial.

One may regard this as a global bifurcation theorem. If for some choice of
rotation numbers I and some choice of metric g ∈ MΓ(α; I) there are no closed
geodesics of type α rel Γ, then the index hI is trivial. By increasing one or
more of the rotation numbers (i.e. increasing I to J), or by decreasing some of
the rotation numbers (i.e. decreasing I to J) the index hI becomes nontrivial,
and a closed geodesic of type α rel Γ must exist for any metric g ∈ MΓ(α;J).

When applied to the case where M = S2 and Γ consists of one simple
closed curve γ this gives us the following result.

Theorem 1.4. Let g be a C2,µ metric on M with a simple closed geodesic
γ ∈ Ω. Let ρ = ρ(γ, g) be the inverse rotation number of γ.

If ρ > 1 then for each p
q ∈ (1, ρ) there is a closed geodesic γp/q on (M, g)

which is a (p, q) satellite of γ.
Similarly, if ρ < 1 then for each p

q ∈ (ρ, 1) there is a closed geodesic γp/q

on (M, g) which is a (p, q) satellite of γ.
In both cases the geodesic γp/q intersects the given simple closed geodesic

γ exactly 2p times, and γp/q intersects itself exactly p(q − 1) times.

Acknowledgements. The work in this paper was inspired by a question of
Hofer (Oberwollfach, 1993) who asked me if one could apply the Floer homol-
ogy construction to curve shortening, and which results could be obtained in
this way. This turned out to be a very fruitful question, even though in the



CURVE SHORTENING AND GEODESICS 1193

end curve shortening appears to be sufficiently well behaved to use the Conley
index instead of Floer’s approach.

The paper was finished during my sabattical at the University of Leiden.
It is a pleasure to thank Rob van der Vorst, Bert Peletier and Sjoerd Verduyn
Lunel for their hospitality.

Contents
1. Introduction
2. Flat knots
3. Curve shortening
4. Curve shortening near a closed geodesic
5. Loops
6. Definition of the Conley index of a flat knot
7. Existence theorems for closed geodesics
8. Appendices
References

2. Flat knots

2.1. The space of immersed curves. The space of immersed curves Ω =
Imm(S1, M)/Diff+

(
S1

)
is locally homeomorphic to C2(R/Z). The homeo-

morphisms are given by the following charts. Let γ ∈ Ω be a given immersed
curve. Choose a C2 parametrization γ : R/Z → M of this curve and extend it
to a C2 local diffeomorphism σ : (R/Z) × (−r, r) → M for some r > 0. Then
for any C1 small function u ∈ C2(R/Z) the curve

γu(x) = σ(x, u(x))(6)

is an immersed C2 curve. Let Ur = {u ∈ C2(R/Z) : |u(x)| < r}. For sufficiently
small r > 0 the map Φ : u ∈ Ur 	→ γu ∈ Ω is a homeomorphism of Ur onto a
small neighborhood Φ(Ur) of γ. The open sets Φ(Ur) which one gets by varying
the curve γ cover Ω, and hence Ω is a topological Banach manifold with model
C2(R/Z).

A natural choice for the local diffeomorphism σ would be

σ(x, u) = expγ(x)(uN(x))

where N is a unit normal vector field for the curve γ. We avoid this choice
of σ since it uses too many derivatives. For σ to be C2 one would want the
normal to be C2, so the curve would have to be C3; one would also want the
exponential map to be C2, which requires the Christoffel symbols to have two
derivatives, and so the metric g would have to be C3.

For future reference we observe that if the curve γ is C2,µ then one can
also choose the diffeomorphism σ to be C2,µ.
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2.2. Covers. For any γ ∈ Ω and any nonzero integer q we define q · γ to
be the q-fold cover of γ, i.e. the curve with parametrization

(q · γ)(t) = γ(qt), t ∈ R/Z,

where γ : R/Z → M is a parametrization of γ. Thus (−1) · γ is the curve γ

with its orientation reversed.
A curve γ ∈ Ω will be called primitive if it is not a multiple cover of some

other curve, i.e. if there are no q ≥ 2 and γ0 ∈ Ω with γ = q · γ0.

2.3. Flat knots. Let γ1, . . . , γN be a collection of primitive immersed
curves in M . Define

∆(γ1, . . . , γN ) =

γ ∈ Ω

∣∣∣∣∣∣
γ has a self-tangency or a
tangency with one of the
γi

(7)

and

∆ = {γ ∈ Ω | γ has a self-tangency} .(8)

Then ∆ and ∆(γ1, . . . , γN ) are closed subsets of Ω, and their complements
Ω \ ∆ and Ω \ ∆(γ1, . . . , γN ) consist of flat knots, and flat knots relative to
(γ1, . . . , γN ), respectively. Two such flat knots are equivalent if and only if
they lie in the same component of Ω \ ∆ or Ω \ ∆(γ1, . . . , γN ).

2.4. Flat knots as knots in the projective tangent bundle. Let PTM be the
projective tangent bundle of M , i.e. PTM is the bundle obtained from the unit
tangent bundle

T 1(M) = {(p, v) ∈ T (M) | g(v, v) = 1}

by identification of all antipodal vectors (x, v) and (x,−v). The projective
tangent bundle is a contact manifold. If we denote the bundle projection
by π : PTM → M , then the contact plane L(x,±v) ⊂ T (PTM) at a point
(x,±v) ∈ PTM consists of those vectors ξ ∈ T (PTM) for which dπ(ξ) is a
multiple of v. Each contact plane L(x,±v) contains a nonzero vector ϑ with
dπ(ϑ) = 0 (ϑ corresponds to infinitesimal rotation of the unit vector ±v in the
tangent space TxM , while the base point x remains fixed).

Any γ ∈ Ω defines a C1 immersed curve γ̂ in the projective tangent bundle
PTM with parametrization γ̂(s) = (γ(s),±γ′(s)), where γ(s) is an arc length
parametrization of γ. We call γ̂ the lift of γ.

An immersed curve γ̃ in PTM is the lift of some γ ∈ Ω if and only if γ̃ is
everywhere tangent to the contact planes, and nowhere tangent to the special
direction ϑ in the contact planes.

Self-tangencies of γ ∈ Ω correspond to self-intersections of its lift γ̂ ⊂
PTM . Thus an immersed curve γ ∈ Ω is a flat knot exactly when its lift γ̂ is a
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knot in the three manifold PTM . If two curves γ1, γ2 ∈ Ω define equivalent flat
knots then one can be deformed into the other through flat knots. By lifting
the deformation we see that γ̂1 and γ̂2 are equivalent knots in PTM .

2.5. Intersections. If α ∈ Ω\∆(γ1, . . . , γn) then α is transverse to each of
the γi. Hence the number of intersections in α ∩ γi is well defined. This only
depends on the flat knot type of α relative to γ1, . . . , γn.

If α ∈ Ω \∆ then α only has transverse self-intersections, so their number
is well defined by #α ∩ α = #{0 ≤ x < x′ < 1 | α(x) = α(x′)}. From a
drawing of α they are easily counted. An α ∈ Ω \ ∆ can only have double
points, triple points, etc. (see Figure 2). If α only has double points (a generic
property) then their number is the number of self-intersections. Otherwise one
must count the number of geometric self-intersections where a k-tuple point
counts for

(
k
2

)
self-intersections. Again this number only depends on the flat

knot type of α ∈ Ω \ ∆.

Figure 2: Equivalent flat knots with 3 self-intersections.

2.6. Nontransverse crossings of curves. If γ1, γ2 ∈ Ω are not necessarily
transverse then we define the number of crossings of γ1 and γ2 to be

Cross(γ1, γ2) = sup
γi∈Ui

inf
{

#(γ′
1 ∩ γ′

2)
∣∣∣∣ γ′

1 ∈ U1, γ′
2 ∈ U2

γ′
1∩| γ′

2

}
(9)

where the supremum is taken over all pairs of open neighborhoods Ui ⊂ Ω of
γi. Thus Cross(γ1, γ2) is the smallest number of intersections γ1 and γ2 can
have if one perturbs them slightly to become transverse.

The number of self-crossings Cross(γ, γ) is defined in a similar way.
Clearly Cross(γ1, γ2) is a lower semicontinuous function on Ω × Ω.

2.7. Satellites. We first describe the local model of a satellite of a primitive
flat knot γ ∈ Ω \∆ and then transplant the local model to primitive flat knots
on any surface.

Let q ≥ 1 be an integer, and let u ∈ C2(R/qZ) be a function for which

all zeroes of u are simple(10)

and

all zeroes of vk(x) def= u(x) − u(x − k) are simple for k = 1, 2, · · · , q − 1.(11)
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Consider the curve αu in the cylinder Γ = (R/Z) × R, parametrized by

αu : R/qZ → Γ, αu(x) = (x, u(x)).(12)

The conditions (10) and (11) imply that αu is a flat knot relative to α0, where
α0 = (R/Z)×{0} is the zero section (i.e., the curve corresponding to u(x) ≡ 0).

Now consider a primitive flat knot γ ∈ Ω\∆. Denote by γ : R/Z → M any
parametrization, and choose a local diffeomorphism σ : R/Z × (−r, r) → M

with γ(x) = σ(x, 0). As in §2.1 we then identify any curve γu which is C1 close
to γ with a function u ∈ C2(R/Z) via (6).

If u ∈ C2(R/qZ) then the curve defined by

αε,u(x) = σ(x, εu(x))(13)

is a flat knot relative to γ. For given u ∈ C2(R/qZ) and small enough ε > 0
the αε,u all define the same relative flat knot.

By definition, a curve α ∈ Ω \ ∆(γ) is a satellite of γ ∈ Ω \ ∆ if for some
u ∈ C2(R/qZ) it is isotopic relative to γ to all αε,u with ε > 0 sufficiently
small.

To complete this definition we should specify the orientation of the satellite
αε,u. One can give αε,u as defined in (13) the same orientation as its base
curve γ, or the opposite orientation. We will call both curves satellites of γ.
In general the satellites αε,u and −αε,u can define different flat knots relative
to γ or they can belong to the same relative flat knot class.

Example. Let γ be the equator on the standard two sphere M = S2.
Then any other great circle is a satellite of γ. Moreover, all these great circles
with either orientation define the same flat knot relative to the equator. For
example, if α is a great circle in a plane through the x-axis which makes an
angle ϕ � π/2 with the xy-plane, then one can reverse its orientation by first
rotating it through π − 2ϕ around the x-axis, and then rotating it through π

around the z-axis. Throughout this motion the curve remains transverse to the
equator, so that α and −α indeed belong to the same component of ∆ \Ω(γ).
Below we will show that this example is exceptional.

As defined in the introduction, one obtains (p, q) satellites by setting

u(x) = sin(2π
p

q
x).(14)

Let p �= 0, and let α be the (p, q) satellite of γ given by u(x) = ε sin(2π p
q x).

Then we can translate α along the base curve γ; i.e. we can consider the (p, q)
satellites ατ given by uτ (x) = ε sin(2π p

q (x − τ)). By translating from τ = 0 to
τ = q

2p one finds an isotopy from α to the curve ᾱ given by ū(x) = sin(2π−p
q x).

Hence one can turn any (p, q) satellite into a (−p, q) satellite, and we may
therefore always assume that p is nonnegative.
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We will denote the set of (p, q)-satellites of γ ∈ Ω by Bp,q(γ), always
assuming that p ≥ 0 and q ≥ 1.

More precisely we will let B+
p,q(γ) be the set of (p, q)-satellites of γ which

have the same orientation as γ, and we let B−
p,q(γ) be those (p, q) satellites with

opposite orientation. With this notation we always have

Bp,q(ζ) = B+
p,q(ζ) ∪ B−

p,q(ζ).

It is not a priori clear that all these classes are disjoint, but by counting
the number of self-intersections of (p, q) satellites one can at least see that
there are infinitely many disjoint Bp,q’s.

Lemma 2.1. Let γ ∈ Ω \∆ be a flat knot with m self-intersections. Then
any α ∈ Bp,q(γ) has exactly 2p + 2mq intersections with ζ, and p(q − 1) + mq2

self -intersections.

This was observed by Poincaré [33]. We include a proof for completeness’
sake.

Proof. Intersections of α and γ are of two types. Each zero of u(x)
corresponds to an intersection of α and γ. At each self-intersection of γ the
two intersecting strands of γ are accompanied by 2q strands of α which intersect
γ in 2q points. Since u(x) has 2p zeroes and γ has m self-intersections we get
2mq + 2p intersections of α and γ.

To count self-intersections one must count the intersections of the graph
of u(x) = sin(2π p

q x) wrapped up on the cylinder Γ = (R/Z) × R, i.e. the
intersections of the graphs of uk(x) = u(x − 2k) (k = 0, 1, . . . , q − 1) with
0 ≤ x < 2π. After some work one finds that these are arranged in q − 1
horizontal rows, each of which contains p intersections.

At each self-intersection of γ two strands of γ cross. If ε is small enough
then αε,u is locally almost parallel to γ, so that any pair of crossing strands of
γ is accompanied by a pair of q nearly parallel strands of α which cross each
other. This way we get q2 extra self-crossings of α and 2q extra crossings of γ

with α per self-crossing of γ.

Lemma 2.2. If Bp,q(γ) ∩ Br,s(γ) �= ∅ then p = r and q = s.

Proof. If α ∈ Bp,q has 2k intersections with γ and l self-intersections then

p(q − 1) + mq2 = l, p + mq = k.

Substitute p = k − mq in the first equation to get

l = (k + m)q − k = mq + (q − 1)k

from which one finds q = k+l
k+m . In particular, the numbers k, l and m determine

p and q.
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The proof also shows that most satellites are not (p, q)-satellites for any
(p, q). Indeed, given α ∈ Bp,q(γ) one can modify it near one of its crossings
with γ so as to increase the number k of intersections with γ arbitrarily without
changing the number of self-intersections l, or m. Unless both l = 0 and m = 0,
then for large enough k the fraction k+l

k+m will not be an integer, so the modified
curve can no longer be a (p, q) satellite. If both l = m = 0 then both γ and its
satellite α must be simple curves.

2.8. (p, q) satellites along a simple closed curve on S2. In this section we
consider the case in which M = S2 and ζ ∈ Ω is a simple closed curve. We
will show that for all (p, q) except p = q = 1 the classes B±

p,q(ζ) are different.
After applying a diffeomorphism we may assume that M is the unit sphere

in R3 and that ζ is the equator, given by z = 0.
To study curves in Ω \∆(ζ) it is useful to recall that one can identify the

unit tangent bundle T 1(S2) of the 2-sphere with the group SO(3, R). Indeed,
by definition,

T 1(S2) = {(�x, �ξ) ∈ R3 × R3 | |�x| = |�ξ| = 1, �x ⊥ �ξ}

so that any unit tangent vector (�x, �ξ) ∈ T 1(S2) determines the first two
columns of an orthogonal matrix. The third column of this matrix is the
cross product �x × �ξ. The map

(�x, �ξ) ∈ T 1(S2) 	→ (�x, �ξ, �x × �ξ) ∈ SO(3, R)

is a diffeomorphism, and from here on we will simply identify T 1(S2) and
SO(3, R).

Let U ⊂ T 1(S2) be the complement of the set of tangent vectors to ζ

and −ζ. One can describe U very conveniently using “Euler Angles”. For the
definition of these angles we refer to Figure 3. Any unit tangent vector (�x, �ξ)
defines an oriented great circle, parametrized by

X(t) = (cos t)�x + (sin t)�ξ.

Unless (�x, �ξ) is a tangent vector of the equator ±ζ, the great circle through
(�x, �ξ) intersects the equator in two points. In one of these intersections the
great circle crosses the equator from south to north. Let θ be the angle from
the upward intersection to x, so that X(−θ) is the upward intersection point.
We define ψ to be the angle between the plane through the great circle {X(t) |
t ∈ R} and the xy-plane (so that 0 < ψ < π). Finally we let φ be the angle
along the equator ζ from the x-axis to the upward intersection point X(−θ).

If we denote the matrix corresponding to a rotation by an angle α around
the x axis by Rx(α), etc. then the relation between the Euler angles (θ, ϕ, ψ)
and the unit tangent vector (x, ξ) they represent is given by

(�x, �ξ, �x × �ξ) = Rz(φ) · Rx(ψ) · Rz(θ).(15)
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Figure 3: Euler angles φ, ψ and θ.

The map (�x, �ξ) 	→ (θ, ψ, φ) is a diffeomorphism between U and (R/2πZ) ×
(0, π) × (R/2πZ) ∼= T2 × R.

Given this identification we can now define two numerical invariants of flat
knots α relative to the equator ζ. By the lift of a unit speed parametrization,
any flat knot α ∈ Ω \ ∆(ζ) defines a closed curve α̂ : S1 → U . The numerical
invariants are then the increments of the Euler angles θ and φ along α̂, which
we will denote by ∆θ(α) and ∆φ(α), respectively. Both are integral multiples
of 2π.

Lemma 2.3. If α is a satellite of ζ given by (13) then

±∆θ + ∆φ = 2qπ,(16a)

∆θ = 2pπ(16b)

where 2p is the number of zeroes of u ∈ C2(R/2qπZ). In the first equation one
must take the “+ sign” if α has the same orientation as ζ, and the “− sign”
otherwise.

Note that the number of zeroes of u ∈ C2(R/2πZ) must always be even
(assuming they are all simple zeroes, of course).

Proof. We project the sphere onto the cylinder x2 + y2 = 1 and write z

and ϑ for the usual coordinates on this cylinder. We assume that α projects
to the graph of z = u(ϑ) on the cylinder, and that u is a 2qπ periodic function
with simple zeroes only, and for which |u(ϑ)| + |u′(ϑ)| is uniformly small. Let
α have the same orientation as the equator (from west to east). We compute
the Euler angles corresponding to the unit tangent vector to α at the point
which projects to (ϑ0, u(ϑ0)) on the cylinder. In Figure 4 we have sketched the
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z

z = u(ϑ)

φ
ψ

θ
ϑ0

Figure 4: A great circle projected onto the cylinder.

great circle which passes through (ϑ0, u(ϑ0)) with slope u′(ϑ0) as it appears in
(ϑ, z) coordinates on the cylinder. Since great circles are intersections of planes
through the origin with the sphere, they project to intersections of such planes
with the cylinder, and are therefore graphs of z = ψ sin(ϑ − φ).

From Figure 4 one finds

θ + φ = ϑ0, u(ϑ0) = ψ sin θ, u′(ϑ0) = ψ cos θ,(17)

so that

θ = arg(u′(ϑ0) + iu(ϑ0)).(18)

From (17) we see that θ + φ increases by 2qπ along the curve α. To compute
∆φ we use (18) and count the number of times the curve u′(ϑ0)+ iu(ϑ0) in the
complex plane crosses the positive real axis. Every such crossing corresponds
to a zero of u with positive derivative, and hence there are 2p

2 = p of them.
We conclude that ∆θ = p × 2π, as claimed.

Similar arguments also allow one to find ∆φ and ∆θ if one gives α the
orientation opposite to that of the equator.

We have observed that B+
1,1(ζ) and B−

1,1(ζ) coincide. If p/q is any fraction
in lowest terms then B+

p,q(ζ) = B−
p,q(ζ) combined with (16a) implies ∆θ = 0,

and hence p = q. Since gcd(p, q) = 1 we conclude

Lemma 2.4. If ζ is a simple closed curve on S2, and B+
p,q(ζ) = B−

p,q(ζ)
then p = q = 1.

3. Curve shortening

3.1. The gradient flow of the length functional. Let g be a C2,µ metric on
the surface M . Then for any C1 initial immersed curve γ0 a maximal classical
solution to curve shortening exists on a time interval 0 ≤ t < T (γ0). We denote
this solution by {γt : 0 ≤ t < T (γ0)}. The solution depends continuously
on the initial data γ0 ∈ Ω, so that curve shortening generates a continuous
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local semiflow

Φ : D → Ω, Φt(γ0)
def= γt,

D = {(γ, t) ∈ Ω × [0,∞) | 0 ≤ t < T (γ)} .

One can show that if T (γ0) < ∞ then the geodesic curvature κγt
of γt “blows-

up” as t ↗ T (γ0), i.e.

lim
t↗T (γ0)

sup
γt

|κγt
| = ∞.

Since the geodesic curvature itself satisfies a parabolic equation

∂κγ

∂t
=

∂2κγ

∂s2
+

(
K ◦ γ + κ2

γ

)
κγ(19)

(K ◦ γ is the Gauss curvature of the surface evaluated along the curve) the
maximum principle implies that one has the following lower estimate for the
lifetime of any solution. If T (γ0) ≤ 1 then

T (γ0) ≥
C√

supγt
|κ|

(20)

where C is some constant depending on supM |K| only. See [22] or [6].
The curve shortening flow on Ω provides a gradient flow for the length

functional. Indeed, one has

dL(γt)
dt

= −
∫

γt

(κγt
)2 ds(21)

where ds represents arclength along γt. Thus solutions of curve shortening
do indeed always become shorter, unless γt is a geodesic, in which case the
solution γt ≡ γ0 is time independent. From the above description of T (γ0) one
easily derives the following (see [23], [24], also [6], [7]).

Lemma 3.1. If T (γ0) = ∞ then

lim
t→∞

sup
γt

|κγt
| = 0.

Moreover, any sequence ti ↗ ∞ has a subsequence t′i for which γt′i converges
to some geodesic of (M, g).

In other words, orbits of the curve shortening flow Φ which exist for all
t ≥ 0 have (compact) omega-limit sets in the sense of dynamical systems. Such
ω-limit sets,

ω(γ0)
def= {γ∗ ∈ Ω | ∃ti ↑ ∞ : γti

→ γ∗}
are of course connected, and if the geodesics of (M, g) are isolated then any
orbit of curve shortening either becomes singular or else converges to one
geodesic.
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The same is true for “ancient orbits,” i.e. orbits {γt} which are defined
for all t ≤ 0 and for which supt≤0 L(γt) < ∞. For such orbits one can define
the α limit set

α(γ0)
def= {γ∗ ∈ Ω | ∃ti ↘ −∞ : γti

→ γ∗} ,

and this set consists of closed geodesics.

3.2. Parabolic estimates. Since curve shortening is a nonlinear heat equa-
tion solutions are generally smoother than their initial data. This provides a
compactness property which we will use later to construct the Conley-index.
There are various well-known ways of deriving the smoothing property of non-
linear heat equations. Here we show which estimate one can easily obtain
assuming only that the metric g is C2.

Lemma 3.2. If {γt | 0 ≤ t ≤ t0} is a solution of curve shortening whose
curvature is bounded by |κ| ≤ A at all times, then∫

γt

κ2
sds ≤ C

t
(22)

where the constant C only depends on A, t0, the length L of γ(0) and supM |K|.

By adding a Nash-Moser iteration to the following arguments one could
improve the estimate (22) to an L∞ estimate for κs of the form |κs| ≤ C/

√
t.

However, (22) will be good enough for us in this paper.

Proof. Let γ : R/Z×[0, T ) → M be a normal parametrization of a solution
of curve shortening, i.e. one with ∂tγ ⊥ ∂sγ. Then the curvature κ satisfies
(19), and using the commutation relation [∂t, ∂s] = κ2∂s one obtains

∂κs

∂t
=

∂2κs

∂s2
+

∂

∂s

(
(K ◦ γ)κ + κ3

)
.(23)

The arclength ds on the curve evolves by ∂
∂tds = −κ2ds. Therefore we have

d

dt

∫
γt

(κs)2ds =
∫

γt

(
2κsκst − κ2κ2

s

)
ds(24)

=
∫

γt

(
−2(κss)2 + 5κ2κ2

s − 2κ(K ◦ γ)κss

)
ds

≤ C + C

∫
γt

κ2
sds −

∫
γt

(κss)2ds

where the constant C only depends on A, L and supM |K|.
By expanding κ(·, t) in a Fourier series in s one finds that(∫

γt

κ2
sds

)2

≤
∫

γt

κ2ds

∫
γt

κ2
ssds,
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which implies ∫
γt

κ2
ssds ≥ 1

C

(∫
γt

κ2
sds

)2

where the constant C only depends on A = sup |κ| and L. Combined with (24)
this leads to a differential inequality for

∫
κ2

sds,

d

dt

∫
γt

(κs)2ds ≤ C + C

∫
γt

κ2
sds − 1

C

(∫
γt

κ2
sds

)2

.

Integration of this inequality gives (22).

This lemma implies that for solutions with bounded curvature the curva-
ture becomes Hölder continuous with exponent 1/2, since

|κ(P, t) − κ(Q, t)| ≤
∫ Q

P
|κs|ds(25)

≤
(∫ Q

P
κ2

sds

)1/2

distγt
(P, Q)1/2 (Cauchy)

≤ C(L, A, sup |K|)
t

distγt
(P, Q)1/2,

distγt
(P, Q)1/2 being the distance from P to Q along the curve γt.

3.3. The nature of singularities in curve shortening. Consider a solution
{γ(t) : 0 ≤ t < T} of curve shortening with T = T (γ0) < ∞. Then, as t ↗ T ,
the curve γt converges to a piecewise smooth curve γT which has finitely many
singular points P1, . . . , Pm; i.e. γT is the union of finitely many immersed arcs
whose endpoints belong to {P1, . . . , Pm}.

Either γt shrinks to a point (in which case m = 1, and γT consists only of
the point P1), or else any neighborhood U ⊂ M2 of any of the Pi will contain a
self-intersecting arc of γt for t sufficiently close to T . In other words, γt ∩ U is
the union of a finite number of arcs, at least one of which has a self-intersection
(a parametrization x ∈ R/Z 	→ γt(x) of the curve will enter U and self-intersect
before leaving the neighborhood).

This description of the singularities which a solution of curve shortening
may develop follows from work of Grayson [23], [24]; see also [6], [7], [32] for
a similar result applicable to more general flows; an alternative proof of the
above result can now be given using the Hamilton-Huisken distinction between
“type 1 and type 2” singularities (see [9] for a short survey), where we apply a
monotonicity formula in the type 1 case, and either Hamilton’s [25] or Huisken’s
isoperimetric ratios [26] in the type 2 case.



1204 SIGURD B. ANGENENT

3.4. Intersections and Sturm’s theorem. We recall Sturm’s theorem [35]
which states that if u(x, t) is a classical solution of a linear parabolic equation

∂u

∂t
= a(x, t)uxx + b(x, t)ux + c(x, t)u

on a rectangular domain [x0, x1] × [t0, t1], with boundary conditions

u(x0, t) �= 0, u(x1, t) �= 0, for t0 ≤ t ≤ t1,

then the number of zeroes of u(·, t)

z(u; t) def= #{x ∈ [x0, x1] | u(x, t) = 0}
is finite for any t > t0, and does not increase as t increases. Moreover, at any
moment t∗ at which u(·, t∗) has a multiple zero, z(u, t) drops. This theorem
goes back to Sturm [35] who gave a rigorous proof assuming the solutions and
coefficients are analytic functions, which has been rediscovered and reproved
under weaker hypotheses many times since then. See [31], [29], [11].

In [10] we argue that Sturm’s theorem may be considered as a “degener-
ate version” of the well-known principle that the local mapping degree of an
analytic function f : C → C near any of its zeroes is always positive (so that
one can count zeroes of f by computing winding numbers, etc.).

Using Sturm’s theorem we proved the following in [6], [7].

Lemma 3.3. Any smooth solution {γt | 0 < t < T} of curve shortening
which is not a multiple cover of another solution, always has finitely many
self-intersections, all of which are transverse, except at a discrete set of times
{tj} ⊂ (0, T ). At each time tj the number of self-intersections of γt decreases.

A similar statement applies to intersections of two different solutions: if
{γ1

t | 0 < t < T} and {γ2
t | 0 < t < T} are solutions of curve shortening then

they are transverse to each other, except at a discrete set of times {tj} ⊂ (0, T ),
and at each tj the number of intersections of γ1

t and γ2
t decreases.

4. Curve shortening near a closed geodesic

4.1. Eigenfunctions as (p, q) satellites. Let γ ∈ Ω be a primitive closed
geodesic of length L for a given C2,µ metric g. We consider a C1 neighborhood
U ⊂ Ω and parametrize it as in §2.1. Since the metric g is C2,µ, geodesics of
g are C3,µ, and the unit normal to a geodesic will be C2,µ. We can therefore
choose the local diffeomorphism σ : R/LZ×(−δ, +δ) → M so that x 	→ σ(x, 0)
is a unit speed parametrization of γ and such that σy(x, 0) is a unit normal to
γ at σ(x, 0).

The pullback of the metric under σ is

σ∗(g) = E(x, u)(dx)2 + 2F (x, u) dx du + G(x, u)(du)2,

for certain C2,µ functions E, F , G.
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One can map a C1 neighborhood of q · γ in Ω onto a neighborhood of the
origin in C2(R/qLZ) via (6):

u ∈ C2(R/qLZ) 	→ αu ∈ Ω, αu(x) = σ(x, u(x)).(26)

In this chart the length functional L : Ω → R is given by

L(αu) =
∫ qL

0

√
E(x, u) + 2F (x, u)ux + G(x, u)u2

x dx.

The curve αu will be a geodesic if and only if u satisfies the Euler-Lagrange
equations corresponding to L. Since we assume γ is already a geodesic,
u(x) ≡ 0 satisfies the Euler-Lagrange equations. As is well-known, the sec-
ond variation of L at u = 0 is then given by

d2L(γ) · (v, v) =
d2L(εv)

dε2

∣∣∣∣
ε=0

=
∫ qL

0

(
v′(x)2 − K(γ(x))v(x)2

)
dx

where K(γ(x)) is the Gauss curvature of (M, g) evaluated at γ(x).
Consider the associated Hill’s equation

d2ϕ

dx2
+ (Q(x) + λ)ϕ(x) = 0 (x ∈ R)(27)

where λ is an eigenvalue parameter, and where Q(x) = K(γ(x)) (although in
what follows Q ∈ C0(R/LZ) could be arbitrary).

Let ϕi(x) be the solutions with initial conditions

ϕ0(0) = 1, ϕ′
0(0) = 0, ϕ1(0) = 0, ϕ′

1(1) = 1,(28)

and define the solution matrix

M(λ;x) =
(

ϕ0(x) ϕ1(x)
ϕ′

0(x) ϕ′
1(x)

)
,(29)

which belongs to SL(2, R).
If we identify the set of rays {

(
ta
tb

)
| t ≥ 0, a2 + b2 = 1} emanating from

the origin in R2 with their intersections with the unit circle, then the linear
transformation defined by M(λ;x) also defines a homeomorphism of the unit
circle to itself. This homeomorphism has a rotation number ρ(λ, x), which is
determined up to its integer part (see [18, §17.2]). To fix the integer part of
ρ(λ, x), we require that ρ(λ, 0) = 0 for all λ ∈ R and that ρ(λ, x) vary contin-
uously with λ and x. The inverse rotation number of the geodesic mentioned
in the introduction is precisely ρ(λ = 0, x = L).

Since the coefficient Q(x) is an L periodic function, one has

M(λ; qL) = M(λ;L)q(30)

and hence

ρ(λ, qL) = qρ(λ, L).(31)
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The rotation number ρ(λ, L) is a continuous nondecreasing function of
the eigenvalue parameter λ, and thus for each fraction p/q the set of λ with
ρ(λ, L) = p/q is a closed interval [λ−

p/q, λ
+
p/q]. Indeed, if 2p/q is not an integer,

then λ−
p/q = λ+

p/q, and we just write λp/q.
The λ±

p/q depend on the potential Q, and depending on the context we will
either write λp/q(Q) or λp/q(γ) if Q = K ◦ γ is the Gauss curvature evaluated
along γ, as above.

Both for λ = λ−
p/q, and λ = λ+

p/q, Hill’s equation (27) has a qL periodic
solution which we denote by ϕ±

p/q(x). When λ−
p/q = λ+

p/q both solutions ϕi(λ;x)
are qL periodic, and we let ϕ±

p/q(x) be ϕ0, ϕ1 respectively.
Let Ep/q(Q) be the two dimensional subspace of C2(R/qLZ) defined by

Ep/q(Q) def=
{

c+ϕ+
p/q(x) + c−ϕ−

p/q(x)
∣∣∣ c± ∈ R

}
.(32)

This space is determined by Q ∈ C0(R/LZ), i.e. does not require the geodesic
γ or the surface M for its definition. It is the spectral subspace corresponding
to the eigenvalues λ±

p/q of the unbounded operator − d2

dx2 −Q(x) in L2(R/qLZ)
and as such depends continuously on the potential Q ∈ C0(R/qLZ).

Lemma 4.1. Let αε be the satellite of γ given by αεu(x) = σ(x, εu(x)),
with u(x) ∈ Ep/q(K ◦ γ), u �= 0, and ε sufficiently small. Then αεu is a (p, q)
satellite of γ, i.e. αεu ∈ Bp,q(γ).

Proof. The space Ep/q(Q) ⊂ C2(R/qLZ) depends continuously on Q ∈
C0(R/qLZ). For Q(x) ≡ 0 one has

Ep/q(0) = {A cos 2π p
q

x
L + B sin 2π p

q
x
L | A, B ∈ R}.

Choose a continuous family of ϕθ ∈ Ep/q(θK ◦ γ), ϕθ �= 0 with ϕ0(x) =
cos 2π p

q
x
L .

We must now show that for sufficiently small ε �= 0 the corresponding
curves

αε,θ(x) = σ(x, εϕθ(x))

define flat knots relative to γ. To prove this we will show (i) that the graph
of ϕθ(x) has no double zeroes (which implies that αθ,ε is never tangent to γ),
and (ii) that the graphs of ϕθ(x) and ϕθ(x− kL) (k = 1, 2, . . . , q− 1) have no
tangencies (which implies that αθ,ε has no self-tangencies).

The following arguments are inspired by those in [12, §2].
If λ−

p/q(θK ◦γ) = λ+
p/q(θK ◦γ), then ϕθ is a solution of Hill’s equation (27)

and cannot have a double zero without vanishing identically.
If λ−

p/q(θK ◦ γ) �= λ+
p/q(θK ◦ γ) then

ϕθ(x) = c−(θ)ϕ−
p/q(x) + c+(θ)ϕ+

p/q(x)
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for certain constants c±(θ), at least one of which is nonzero. If one of these
constants vanishes then ϕθ is again a solution of Hill’s equation and therefore
cannot have a double zero. If both coefficients c± are nonzero then we consider

u(t, x) = c−(θ)eλ−
p/qtϕ−

p/q(x) + c+(θ)eλ+
p/qtϕ+

p/q(x).

This function is a solution of the heat equation corresponding to Hill’s equation,
i.e.

∂u

∂t
=

∂2u

∂x2
+ θK ◦ γ(x)u,

and by Sturm’s theorem the number of zeroes of u(t, ·) must decrease at any
moment t at which u(t, ·) has a double zero. For t → ±∞, u(t, ·) is asymptotic
to c±eλ±tϕ±

p/q(x), and since both ϕ±
p/q(x) have 2p zeroes in the interval [0, qL)

none of the intermediate functions u(t, ·) can have a double zero. In particular
ϕθ = u(0, ·) only has simple zeroes.

To prove (ii) one applies exactly the same arguments to the difference
ϕθ(x) − ϕθ(x − kL). The conclusion then is that this difference either only
has simple zeroes (as desired), or else must vanish identically. To exclude the
second possibility we observe that ϕθ(x) ≡ ϕθ(x − kL) implies that ϕθ is an
lL periodic function with 1 ≤ l < q some divisor of gcd(k, q). The number of
zeroes of ϕθ then equals q

l times the number of zeroes m of ϕθ in its minimal
period interval [0, lL). This number m is even, so the number of zeroes of ϕθ

in the interval [0, qL) is a multiple of 2q/l. However, this number is 2p and
so q/l must be a common divisor of p and q. This contradicts the hypothesis
gcd(p, q) = 1.

4.2. The linearized flow at a closed geodesic. In the chart (26) curve
shortening is equivalent to the following parabolic equation for u(x, t) (see [6]
and also §8.1):

ut =
uxx + P (x, u) + Q(x, u)ux + R(x, u)(ux)2 + S(x, u)(ux)3

E(x, u) + 2F (x, u)ux + G(x, u)(ux)2
.(33)

The coefficients P , Q, R and S are C1 functions of their arguments, and they
satisfy {

P (x, 0) = Q(x, 0) = 0,

Py(x, 0) = K(σ(x, 0))
(34)

in which K is the Gauss curvature on the surface.
One can apply classical results on parabolic equations to deduce short-

time existence for curve shortening from (33). In this section we shall use the
local form of curve shortening to prove
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Lemma 4.2. If {γt | t ≥ 0} is an orbit of curve shortening which converges
to a closed geodesic α ∈ Ω, then for t sufficiently large γt is a (p, q) satellite of
α; i.e., γt ∈ Bp,q(α) for some p, q. Moreover,

λ−
p/q(α) ≤ 0.(35)

If {γt | t ≤ 0} is an “ancient orbit” of curve shortening with limt→−∞ γt = α

for some closed geodesic α ∈ Ω, then for −t sufficiently large γt is a (p, q)
satellite of α for some p, q. In this case,

λ+
p/q(α) ≥ 0.(36)

Proof. We only prove the first statement; the second can be shown in the
same way.

If γt converges to α in C1 then we can choose coordinates as above, and
for large t the curves γt correspond to a solution u(x, t) of (33). This solution
is defined for, say, t ≥ t0, and u(·, t) → 0 in C1(R/Z) as t → ∞. By parabolic
estimates we also have u(·, t) → 0 in C2(R/Z) as t → ∞.

We can write (33) as

ut = a(x, u, ux)uxx + b(x, u, ux)ux + c(x, u, ux)u

where, using (34) and E(x, 0) ≡ 1,

a(x, u, p) =
(
E(x, u) + 2F (x, u)p + G(x, u)p2

)−1
,

b(x, 0, 0) = 0,

c(x, 0, 0) = K(σ(x, 0)).

Thus (33) can be written as a quasilinear equation

ut = A(u)u

in which A(u) is the linear differential operator

A(u) = a(x, u, ux)
d2

dx2
+ b(x, u, ux)

d

dx
+ c(x, u, ux).

For u = 0 this operator reduces to

A(0) =
d2

dx2
+ K(α(x))

whose spectrum we have just discussed.
Since u tends to zero, u asymptotically satisfies the equation ut = A(0)u,

and thus for some j ≥ 0 and some constant C �= 0 one has

lim
t→∞

u(x, t)
‖u(·, t)‖L2

= Cϕj(x)(37)
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where ϕj(x) is an eigenfunction of A(0) with 2j zeroes. See Lemmas 8.1
and 8.2. For large t the curve γt is therefore parametrized by

x 	→ σ
(
x, ε(t){Cϕj(x) + o(1)}

)
,

where ε(t) → 0 as t → ∞. This implies that γt is a satellite of α.
If both eigenvalues λ±(p/q, K ◦α) were positive then for large t one would

have

d

dt
‖u(·, t)‖2

L2 = (u(t),A(u(t))u(t))L2

= (λ±(p/q, K ◦ α) + o(1))‖u(·, t)‖2
L2

> 0

which would keep u(·, t) from converging to zero.

5. Loops

5.1. Loops, simple loops, and filled loops. Let γ ∈ Ω \ ∆ be a flat knot,
and choose a parametrization γ ∈ C2(S1, M), also denoted by γ. By definition
a loop for γ is a nonempty interval (a, b) ⊂ R for which γ(a) = γ(b) is a
transverse self-intersection.

If we identify S1 with ∂D, where D is the unit disc in the complex plane,
then γ(a) = γ(b) implies that any simple loop (a, b) ⊂ R for γ defines a map
γ̄ : S1 → M via

γ̄
(
e2πi t−a

b−a

)
= γ(t), for t ∈ (a, b).

By definition we will say that one can fill in a loop (a, b) if the map γ̄ : ∂D → M

can be extended to a local homeomorphism ϕ : D → M . We will always assume
that a filling is at least C1 on D \ {1}, and that ϕ is a local diffeomorphism on
D \ {1}.

If γ̄ : S1 → M is contractible, and one-to-one, then by the Jordan curve
theorem one can fill γ̄. We call such a loop an embedded loop.

Fillings come in two varieties which are distinguished by the way they
approach the corner at the intersection γ(a) = γ(b). The arcs γ((a− ε, a + ε))
and γ((b−ε, b+ε)) divide a small convex neighborhood of this intersection into
four pieces (“quadrants”). The image ϕ(D(1, δ)) of a small disk will intersect
either one or three of these quadrants. If ϕ(D(1, δ)) lies in one quadrant we
call the corner convex, otherwise we call the corner concave.

5.2. Continuation of loops and their fillings. Let {γθ | θ ∈ [0, 1]} ⊂ Ω \ ∆
be a smooth family of flat knots, and let γθ stand for smooth parametrizations
of the corresponding curves. If (a0, b0) ⊂ R is a loop for γθ0 then, since all γθ

have transverse self-intersections, the Implicit Function Theorem implies the
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Figure 5: Convex and concave corners.

existence and uniqueness of smooth functions a(θ), b(θ) for which (a(θ), b(θ))
is a loop for γ(θ), and such that a(θ0) = a0 and b(θ0) = b0. Thus any loop of
a flat knot can be continued along homotopies of that flat knot.

Now assume that the loop (a0, b0) ⊂ R of γθ0 has a filling: can one continue
this filling in the same way? In general the answer is no, as the example in
Figure 6 shows. It is also not true that embedded loops must remain embedded
under continuation (see Figure 7)

Figure 6: Inward corners may cut up fillings.

Figure 7: An embedded loop becomes nonembedded.

Lemma 5.1. If the filling ϕ0 : D → M of the loop (a0, b0) has a convex
corner, then there exists a continuous family of fillings ϕθ : D → M for the
loops (a(θ), b(θ)) for all θ ∈ [0, 1].
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Proof. We may assume, by changing the parametrizations if necessary,
that a(θ) and b(θ) are constant, so that (a, b) is a loop for each θ ∈ [0, 1].

If one has a filling of a loop for some parameter value θ0, then by con-
structing a tubular neighborhood of the arc γ : [a, b] → M one can adapt
the given filling ϕ0 to a filling ϕθ of the loops (a, b) for all θ in some interval
(θ0 − ε0, θ0 + ε0). To obtain a continuation from θ = 0 all the way to θ = 1 we
must find a fixed lower bound for the size of the tubular neighborhoods. Such
a lower bound then implies a lower bound for the length 2ε0 of the intervals
on which one can construct local continuations, so that a finite number of such
local continuations will take one from θ = 0 to θ = 1. We will therefore now
describe the construction of the tubular neighborhoods of the γθ and the local
continuations of the fillings in more detail.

Choose a suitable smooth metric g on the surface M . Then the Gauss
curvature of (M, g) and geodesic curvatures of the γθ are uniformly bounded,
say by some constant K. We can therefore choose a small σ > 0 (much smaller
than the injectivity radius of (M, g)) such that the intersection of any disk
with radius σ at any point P ∈ M with any of the curves γθ looks like a finite
collection of straight line segments. More precisely, if we define the map φP,σ

from the unit disc DP ⊂ TP M ∼= R2 to M , by φP,σ(x) = expP (σx), then the
preimage φ−1

P,σ(γθ) is a finite collection of nearly straight arcs whose curvature
is bounded by C(K)σ, which can be made arbitrarily small by decreasing σ.

For each θ ∈ [0, 1] we construct a smooth vector field Xθ along γθ (i.e.
Xθ : S1 → TM satisfies Xθ(t) ∈ Tγθ(t)(M) for all t ∈ S1), which is nowhere
tangent to γθ, in particular ∠(Xθ(t), γ′

θ(t)) ≥ δ for some constant δ > 0. This
δ can be chosen independently of θ. We can also choose the Xθ so that their
derivatives are uniformly bounded, i.e. |∇jXθ| ≤ Cj with Cj independent of θ.
(Note that we do not assume that the Xθ vary continuously with θ.) Indeed,
once one has constructed such a vector field for some value θ1 of θ one can use
the same vector field for all θ in an interval containing θ1. A finite number
of these intervals cover the interval [0, 1], so that we really only need a finite
number of vector fields Xθ.

Let some θ0 ∈ [0, 1] be given, and let ϕ0 : D → M be a filling for the loop
(a, b) of γθ0 . Since γθ0 is the image ϕ0(D) of the boundary of the unit disc
one can define an “outward direction” at each γθ0(t). We will assume that our
vector field X along γθ0 is directed inward.

A tubular neighborhood is constructed from the mapping

S(t, s) = expγθ0 (t)(sX(t)).

This map is smooth from S1 × R → M . It is a local diffeomorphism on some
neighborhood U = S1 × [−ρ, ρ] of S1 × {0}, where ρ > 0 is independent of θ0.



1212 SIGURD B. ANGENENT

If we choose X so that X(a) = X(b), then this map is a local homeo-
morphism from the annulus I × [−ρ, ρ] to M , where I = [a, b]/{a, b} (i.e. the
interval [a, b] with its endpoints identified so that I ∼= S1).

Now consider the curves I×{s} for 0 ≤ s < ρ. For sufficiently small s ≥ 0
there exist closed curves Γs ⊂ D for which

S(I × {s}) = ϕθ0(Γs).

Each Γs is parametrized by t 	→ w(t, s), where w is the solution of

S(t, s) = ϕθ0(w(t, s)).

From S(t, 0) = γθ0(t) it follows that w = exp
(
2πi t−a

b−a

)
is a solution for s = 0.

Fix t and let s increase, starting at s = 0; then, since ϕθ0 : D → M is
a local homeomorphism, one can continue the solution w(t, s) to a solution
w = w(t, s) ∈ int(D) for 0 ≤ s < σ(t) ≤ ρ, where σ(t) is a positive l.s.c.
function of t. In particular, σ(t) is bounded from below by some constant
σ > 0. If for some t ∈ I one has σ(t) < ρ, then as s ↑ σ(t) the solution w(t, s)
must tend to the boundary ∂D (otherwise one could continue the solution
beyond s = σ(t).)

It follows from X(a) = X(b) that w(a, s) ≡ w(b, s), and so t ∈ [a, b] 	→
w(t, s) parametrizes a closed curve Γs.

Proposition 5.2. There exists a σ′ > 0, independent of θ such that all
Γs with 0 < s < σ′ are disjoint embedded curves in D.

Proof. To begin, there is some σ′′ > 0 such that none of the smooth
immersed curves t ∈ R/Z 	→ S(t, s) with |s| ≤ σ′′ has a self-tangency. This σ′′

only depends on the choice of the vector fields Xθ, and we may thus assume
that it is independent of θ.

The curves Γs are smooth, except at w(a, s) = w(b, s), where they have a
corner. Since the derivatives of the vector fields Xθ are bounded, we can find
a σ′′′ > 0 independent of θ such that all curves S(I × {s}) with |s| ≤ σ′′′ have
convex corners (in the sense that Xθ0 points “into the corner.”) Hence the Γs

also have convex corners for all 0 < s < σ′′′ for which they are defined.
Let

σ′ = min(σ, σ′′, σ′′′).

As s increases from 0 to σ′ the Γs must remain embedded, for the only way
they can loose their embeddedness is by first forming a self-tangency. However,
the smooth parts of the curves Γs are mapped to S(I ×{s}) which has no self-
tangency. On the other hand the corner of Γs is convex, and so it cannot take
part in a first self-tangency. Therefore the Γs remain embedded.

The Γs are nested. Indeed, they move with velocity
∂w

∂s
= Dϕ(w(t, s))−1 ∂S

∂s
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which is never tangent to Γs. Thus the Γs always move in the same direction,
which must be inward, since they start at Γ0 = ∂D.

Being nested, the Γs can never reach the boundary ∂D again, and hence
they exist for all s ∈ (0, σ′).

Conclusion of proof of Lemma 5.1. By “straightening” the curves Γs, we
see that the above construction allows us to modify the filling ϕ0 so that on
the annulus e−σ′/2 ≤ |w| ≤ 1 it is given by

ϕ0(reiφ) = S(a +
φ

2π
(b − a),− ln r).(38)

For this ϕ0 the curves Γs are circles centered at the origin. Then we use this
same expression (38) to extend ϕ0 to a local homeomorphism ϕ̄0 : Deσ′ → M .

Since all γ|[a,b] with θ close to θ0 are transverse to the vector field X, the
preimage under ϕ̄0 of a nearby loop γθ

∣∣
[a,b] appears as a graph r = r(φ) in

polar coordinates. One easily adapts the filling ϕ0 to a filling of γθ

∣∣
[a,b] by first

mapping the unit disk D to the region enclosed by the polar graph r = r(φ),
and then composing with ϕ̄0. The length of the interval of θ’s for which one
can do this is bounded from below by some δ > 0 which is independent of
θ, and hence a finite number of these local continuations will allow one to fill
γθ

∣∣
[a,b] for all θ ∈ [0, 1].

5.3. Loops and singularities in curve shortening. In §3.3 we considered a
solution {γt | 0 ≤ t < T} of curve shortening which becomes singular at time
t = T without shrinking to a point. In the notation of §3.3 we recalled that
Grayson’s work implies that for every neighborhood U of a singular point Pj

there is a time TU ∈ (0, T ) such that for TU < t < T the curve γt has a loop
(a′, b′) ⊂ [0, 1) with γt([a′, b′]) contained in U . Such a loop need not be simple,
but one can easily extract a subloop (a, b) ⊂ (a′, b′) which is simple. Since
γt|(a, b) is simple it is also a fillable loop. Still, the loop could have a nonconvex
corner, but if this is the case, and if the neighborhood U is homeomorphic to a
disc, then we claim one can find another loop, which is contained in U , which
is simple, and whose filling has a convex corner.

Indeed, let R ⊂ M be the region enclosed by the loop, and let A be the
(nonconvex) corner point of R. Since A is a nonconvex corner point the two
arcs of γ \ ∂R enter into the region R (see Figure 8). There are now two
possibilities:

Case 1. If one of these arcs exits R again (say, at B ∈ ∂R) without
first forming a self-intersection, then the arc AB divides R into two pieces, the
boundary of one of which is a simple loop with a convex corner B.

Case 2. If both arcs starting at A self-intersect before leaving R, then
each of these arcs contains a simple loop whose area is strictly smaller than that
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Case 1 Case 2

A

B

A A

Figure 8: Finding a fillable loop with a convex corner.

of R. If this smaller loop still does not have a convex corner then we repeat
the argument, thereby obtaining a nested sequence of smaller simple loops.
Since γ only has finitely many loops this sequence must terminate either with
a simple loop with a convex corner, or with a loop as in Case 1.

Thus we can refine the description of singularities in §3.3 to the following:

Lemma 5.3. If {γt | 0 ≤ t < T} is a solution of curve shortening which
becomes singular at t = T , then for any ε > 0 there exists a tε ∈ (0, T ) such
that γtε

has a convexly fillable loop with area no more than ε.

5.4. Decrease of area of small loops. Let {γt | t0 ≤ t < t1} be a solution
of curve shortening with γ ∈ Ω \∆ for all t ∈ (t0, t1). Assume γt0 has a fillable
loop with a convex corner. Then one can continue this loop for all values of
t ∈ (t0, t1). Let ϕt : D2 → M be a filling of these loops. Since ϕt is a local
diffeomorphism away from 1 ∈ D2, we can pull the metric back from M to
D2 and define the area form dSt and Gauss curvature Kt of ϕ∗

t (g), as well
as the geodesic curvature κt and arc length dst of the boundary ∂D2. The
Gauss-Bonnet formula states that∫

∂D
κtdst +

∫∫
D

KtdSt + θext = 2π.

Here θext is the exterior angle at the corner of the filling. See Figure 9.

θext

Figure 9: Definition of θext

Using this we find that the area A(t) of the filling ϕt satisfies

dA(t)
dt

=
d

dt

∫∫
D2

ϕ∗
t (dS) = −

∫
∂D2

κds = −2π + θext +
∫ ∫

KdS.
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Since 0 < θext < π this implies
dA(t)

dt
< −π + (sup

M
K)A(t).

Define

ε(g) =
π

2 supM K

if supMK > 0 and ε(g) = ∞ otherwise. We may then conclude:

Lemma 5.4. Let γ0 ∈ Ω \ ∆ have a convexly filled loop with area at most
ε(g), and consider the corresponding solution {γt | 0 ≤ t < T} of curve short-
ening. As long as the solution stays in Ω \ ∆ one can continue the loop, and
its area satisfies

A′(t) ≤ π

2
, and A(t) ≤ ε(g) − π

2
t.(39)

In particular the solution must either become singular or cross ∆ before
t∗ = 2ε(g)

π .

6. Definition of the Conley index of a flat knot

6.1. The boundary of a relative flat knot type. Let B ⊂ Ω \ ∆(Γ) be a
relative flat knot type, for some Γ = {γ1, . . . , γN} ⊂ Ω. Throughout we will
make the following assumption concerning multiple covers

If α = m · β ∈ Ω, m ≥ 2, β ∈ Ω, is tranverse to all γi then α �∈ B̄.(40)

We mention some examples.

6.1.1. (p, q) satellites. If M is the sphere and ζ is the equator, then
consider B = Bp,q(ζ). Let U be the subset of the unit tangent bundle which
consists of all vectors not tangent to ζ. We have seen in §2.8 that U has the
homotopy type of T2. Any α ∈ Ω which is transverse to ζ lifts to a curve α̂ in
U , and hence defines a homotopy class [α̂] in π1(T2) ∼= Z2. The homotopy class
[α̂] does not depend on α ∈ B, and hence on α ∈ B̄. Since gcd(p, q) = 1 this
homotopy class is not a multiple of any other element of π1(T2), and therefore
α cannot be a multiple of another curve. We conclude that the relative flat
knot types Bp,q(ζ) satisfy condition (40).

This example is easily generalized to any relative flat knot type B ⊂
Ω \ ∆(Γ). Define U to be the unit tangent bundle of M with the tangent
vectors to the ±γi removed, and assume that the homotopy class [α̂] ∈ π1(U)
is not a multiple of any other element of π1(U). Then B̄ cannot contain multiple
covers transverse to the γi ∈ Γ.

6.1.2. Simple closed curves. Let S be the set of simple closed curves on
M = S2. If α = mβ is a multiple cover, then any α′ ∈ Ω near α must have
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at least one self-intersection. Hence S satisfies condition (40). However in this
case U is the entire unit tangent bundle T 1S2 ∼= RP3 whose fundamental group
is Z2, in which 2 · 1 = 0 and 3 · 1 = 1, i.e. in which all elements are nontrivial
multiples. So just like Bp,q(ζ) the flat knot type S satisfies (40), but it does so
for different reasons.

6.1.3. Free satellites. Let p, q with gcd(p, q) = 1 be given and consider
the set B of all α ∈ Ω for which a simple closed curve ζ ∈ Ω exists such that
α is a (p, q) satellite of ζ. Since any two simple closed curves can be deformed
into each other by isotopy of S2, the set B is a connected component of Ω \ Γ,
and hence the set of curves which are (p, q) satellites is a flat knot type. Note
that, in contrast with the example from §6.1.1 the curve ζ here is not fixed,
and the set Γ is empty. Our current set B is a flat knot type, while the set B
from §6.1.1 was only a relative flat knot type.

For any simple closed curve ζ the q fold cover q · ζ lies on the boundary
∂B since one can approximate it by (p, q) satellites of ζ. Since there are no γi

in this example, this flat knot type does not satisfy the condition (40).
We consider the closure B̄ of B in Ω and define

B̂ = B̄ \ {±m · γi | m ≥ 2, i = 1, . . . , N},
∂B̂ = B̂ ∩ ∂B.

Lemma 6.1. Let g ∈ MΓ. For any α ∈ ∂B̂ a tα > 0 exists such that
Φ(0,tα)(α) ⊂ B ∪

(
Ω \ B̄

)
.

Recall that the curve shortening flow Φt was defined in 3.1.

Proof. Since α ∈ B̄ the curve α has only finitely many crossings with any
of the γi. Hence for some t1 > 0 all Φt(α) with 0 < t < t1 are transverse to
all γi. If α is not primitive, then condition (40) implies that Φt(α) ∈ Ω \ B̄. If
α is primitive, then we may assume that the Φt(α) with 0 < t < t1 also have
transverse self-intersections. Hence Φt(α) ∈ Ω \ ∆ ⊂ B ∪

(
Ω \ B̄

)
.

The following lemma states that orbit segments cannot touch the bound-
ary of a flat knot type B “from the inside”.

Lemma 6.2. Let g ∈ MΓ. If Φ[0,t](α) ⊂ B̂ and t > 0 then Φs(α) ∈ B for
all s ∈ (0, t).

Proof. Suppose for some s ∈ (0, t) one has Φs(α) ∈ ∂B̂. Then Φs(α)
cannot be a multiple cover by condition (40). By the Sturmian theorem Φs′

(α)
is a flat knot rel Γ for all s′ �= s close to s, and either the number of self-
intersections or the number of intersections of Φs′

(α) with some γi ∈ Γ must
drop as s′ crosses s. This contradicts Φ[0,t](α) ⊂ B̂.
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We define the exit set of B̂ to be the set B− consisting of those α ∈ ∂B̂ for
which Φ(0,tα)(α) ⊂ Ω \ B̄. The complement B+ = ∂B̂ \ B− is called the entry
set.

Lemma 6.3. The sets B± do not depend on the metric g ∈ MΓ chosen in
their definition.

Lemma 6.4. B− is a closed subset of B̂.

We prove these lemmas in reverse order.

6.1.4. Proof of Lemma 6.4. We first show that B+ is open in ∂B̂. Let
α ∈ B+ be given. Then Φ(0,tα) ⊂ B and in particular Φtα/2(α) ∈ B. By
continuity of the local semiflow Φ there is an open neighborhood N ⊂ Ω
containing α such that Φtα/2(N ) ⊂ B. Suppose some α′ ∈ N belongs to B−.
Then there is a small t′ ∈ (0, tα/2) such that Φt′(α′) ∈ Ω \ B̄. By continuity
of Φ again, there is an α′′ ∈ N ∩ B with Φt′(α′′) ∈ Ω \ B̄. But then α′′ ∈ B,
Φt′(α′′) ∈ Ω \ B̄, and Φtα/2(α′′) ∈ B. This contradicts the Sturmian theorem.

6.1.5. Proof of Lemma 6.3. We classify the possible curves α ∈ ∂B̂ as
follows.

(1) α is primitive and transverse to all γi, but α has a self-tangency.

(2) α is primitive and tangent to some γi (but α �= ±γi by condition (40))

(3) α = m · β (m ≥ 2, β ∈ Ω) is a multiple cover. In this case α must be
tangent to at least one of the γi, by condition (40).

The curves in Case 3 all belong to B−, for under the curve shortening flow
they remain multiple covers, while they instantaneously become transverse to
the γi, so that condition (40) forces them to leave B̄.

The following proposition shows that we have in Case 1,

α ∈ B− ⇔ Cross(α, α) < m0,

while in Case 2 we have

α ∈ B− ⇔ ∃i : Cross(α, γi) < mi.

Thus we have a description of the exit set which is independent of the chosen
metric g.

Proposition 6.5. Let α ∈ B̂ be primitive with α �= ±γi for any i. If
Cross(α, α) = m0(B) and Cross(α, γi) = mi(B) for i = 1, . . . , N , then for
some ε > 0 one has Φ(0,ε)(α) ⊂ B.
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Proof. Since Φ(0,ε](α) ⊂ Ω \ ∆(γ1, . . . , γN ) we either have Φ(0,ε](α) ⊂ B
or Φ(0,ε](α) ⊂ Ω \ B̄. We must show the latter cannot hold. Suppose it does
hold. Then let αn ∈ B be a sequence with αn → α. Since Φε(α) ∈ Ω \ B̄ one
also has Φε(αn) ∈ Ω \ B̄ for large enough n ∈ N. Thus the orbit Φt(αn) crosses
∆(γ1, . . . , γN ) for some t ∈ [0, ε]. By the Sturmian theorem one then has

#
(
Φε(αn) ∩ Φε(αn)

)
< m0 or ∃i : #

(
Φε(αn) ∩ γi

)
< mi.

On the other hand Φε(α) ∈ Ω \ ∆(γ1, . . . , γN ) so that for sufficiently large
n ∈ N one has

either #
(
Φε(αn) ∩ Φε(αn)

)
= #

(
Φε(α) ∩ Φε(α)

)
< m0

or ∃i : #
(
Φε(αn) ∩ γi

)
= #

(
Φε(α) ∩ γi

)
< mi.

If we now let ε ↓ 0 then we get

Cross(α, α) < m0 or ∃i : Cross(α, γi) < mi.

Thus we have a contradiction, and the proposition is proved.

Given a metric g we now define

B�(g, ε) =
{

α ∈ B
∣∣∣∣ α has a filled loop with

a convex corner, and area ≤ ε

}
,(41)

B̂�(g, ε) = the closure of B�(g, ε) in Ω \ {±qγi | q ∈ N, 1 ≤ i ≤ N} ,(42)

and we call

h(B) =
[
B̂

/
B̂�(g, ε) ∪ B−

]
,

the Conley-index of the component B. Here for any closed subset A of a topo-
logical space X, [X/A] stands for the homotopy type of the pointed quotient
space X/A. See [17].

Lemma 6.6. The set B− ∪ B̂�(g, ε) is positively invariant relative to B̂.

Proof. Let Φ[0,t](α) ⊂ B̂ with t > 0 and α ∈ B− ∪ B̂�(g, ε) be given.
By Lemma 6.2 we have Φs(α) ∈ B for 0 < s < t.
Fix an s ∈ (0, t) and choose a sequence αn → α with αn ∈ B�(g, ε). Since

Φs(α) ∈ B continuity of the semiflow implies Φs(αn) ∈ B for large enough n.
Foward invariance of B�(g, ε) in B then implies Φs(αn) ∈ B�(g, ε). Taking the
limit as n → ∞ one finds Φs(α) ∈ B̂�(g, ε) for any s ∈ (0, t). Taking another
limit s → t one finds that Φt(α) ∈ B̂�(g, ε).

Lemma 6.7. The Conley index h(B) does not depend on the metric g ∈
MΓ or the choice of ε > 0, as long as ε < ε(g).
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This lemma justifies the absence of g and ε in our notation “h(B)” for the
index.

The proof of this lemma is essentially found in [17]. Our observation here
is that although we do not have the desired local compactness1 we are only
trying to prove that the index is independent of the “index pair” for a small
class of index pairs.

We split the proof of Lemma 6.7 into two pieces. It will be convenient to
write

H(g, ε) = B̂
/

B− ∪ B̂�(g, ε)

so that we have defined the Conley index of B to be the homotopy type of the
quotient H(g, ε), and we must now show that this homotopy type does not
depend on g ∈ MΓ or ε ∈ (0, ε(g)).

6.1.6. h(B) does not depend on ε. Let 0 < ε1 < ε2 < ε(g) be given. Then
trivially we have the inclusion B�(g, ε1) ⊂ B�(g, ε2) which leads to a natural
mapping

H(g, ε1)
f−→ H(g, ε2).

(Whenever A1 ⊂ A2 ⊂ X are closed subsets there is a natural mapping
X/A1 → X/A2.)

We will show that this mapping is a homotopy equivalence. For every
γ ∈ B̂ we define

T∗(γ) = inf{t ≥ 0 | Φt(γ) ∈ B− ∪ B̂�(g, ε1)}(43)

with the understanding that T∗(γ) = ∞ if Φt(γ) never reaches the exit set or
B̂�(g, ε1).

Proposition 6.8. The function T∗ : B̂ → [0,∞] is continuous.

Proof. We check that both conditions T∗(γ) < M and T∗(γ) > M define
open subsets of B̂.

If T∗(γ) < M for some 0 < M < ∞, then ΦT∗(γ)(γ) belongs to B− or
B̂�(g, ε1). In the first case the orbit immediately leaves B, and so there exists a
t0 ∈ (T∗(γ), M) with Φt0(γ) ∈ Ω\ B̄. By continuity of the semiflow Φ the same
is then true for all γ′ near γ, so that T∗(γ′) < t0 < M holds on a neighborhood
of γ.

Consider the second case, in which ΦT∗(γ)(γ) ∈ B̂�(g, ε1). If T∗(γ) = 0
then it is possible that γ = ΦT∗(γ)(γ) lies on B+. When this happens Φt(γ)

1K. Rybakowski has developed a version of Conley’s theory for local semiflows on complete
metric spaces, but we were unable to verify his “admissibility condition,” mainly because B̂
can contain arbitrarily long curves, and, possibly, geodesics of arbitrary length.
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must immediately enter B and henceB�(g, ε1), by forward invariance of B̂�(g, ε)
relative to B̂. If on the other hand T∗(γ) > 0 then ΦT∗(γ)(γ) cannot lie on B+.
By assumption it does not lie on B− either, and thus it lies in B�(g, ε1). It
follows from Lemma 5.4 that at t = T∗(γ) the orbit Φt(γ) develops a convexly
filled loop with area ≤ ε1, and that for t > T∗(γ) the loop has area ≤ ε1 −
π
2 (t− T∗(γ)) which is strictly less than ε1. Invoking continuity of the semiflow
we conclude again that this condition also holds for γ′ near γ.

Conversely, if T∗(γ) > M , then the (compact) orbit segment {γt | 0 ≤
t ≤ M} is contained in B̂ \ B̂�(g, ε1) which is open relative to B̂. Once more
continuity of the semiflow guarantees that this is also the case for γ′ close to γ.

It follows from Lemma 5.4 that for all γ ∈ B�(g, ε2) one has T∗(γ) ≤
2
π (ε2 − ε1). By continuity this also holds for all γ ∈ B̂�(g, ε2). Now define

T0(γ) = min
(

2
π

(ε2 − ε1), T∗(γ)
)

and consider the following homotopy (0 ≤ λ ≤ 1):

Gλ : B− ∪ B̂ → B− ∪ B̂, γ 	→ ΦλT0(γ)(γ).

Then

• G0 is the identity map on B− ∪ B̂,

• Gλ maps B− ∪ B̂�(g, ε) to itself for every ε ∈ (0, ε(g)) (by forward invari-
ance of B− ∪ B̂�, Lemma 6.6),

• G1 maps B− ∪ B̂�(g, ε1) into B− ∪ B̂�(g, ε2)

and it is easily verified from these facts that G1 is a homotopy inverse of f .

6.1.7. h(B) does not depend on the metric. Let g1, g2 ∈ MΓ be two given
metrics. Then, since the surface M is compact there exists a constant A > 0
such that one has g1 ≤ Ag2 and g2 ≤ Ag1 pointwise on M . In particular the
area form of either metric is bounded by A2 times the area form of the other.
We therefore have the following inclusions

B− ∪ B̂�(g1, ε) ⊂ B− ∪ B̂�(g2, A
2ε) ⊂ B− ∪ B̂�(g1, A

4ε) ⊂ B− ∪ B̂�(g2, A
6ε)

and corresponding natural maps

H(g1, ε)
f−→ H(g2, A

2ε)
g−→ H(g1, A

4ε) h−→ H(g2, A
6ε).

Now it follows from the previous section that for sufficiently small ε > 0 the
compositions g ◦ f and h ◦ g are homotopy equivalences, so that g has a left
and right homotopy inverse. Hence g is a homotopy equivalence.
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6.2. Virtual satellites and the modified Conley index of a relative flat knot.
Let B ⊂ Ω\∆(Γ) be a relative flat knot for some Γ = {γ1, . . . , γN} ⊂ Ω. Define
MΓ as in §1.3, and, as in §1.3, order the γi so that for i = 1, . . . , m there exists
pi/qi with

qiγi ∈ ∂B and B ⊂ Bpi,qi
(γi)(44)

while no such pi/qi exist for i = m + 1, . . . , n. By Lemma 2.2 the pi/qi are
uniquely determined.

We impose the nonresonance condition (3) and for any I ⊂ {1, . . . , m} we
define M(α; I) for α ∈ B as in §1.3. Since M(α; I) does not depend on α ∈ B
we will write M(B; I) for M(α; I). Our discussion of the rotation number in
§4.1 shows that condition (4) is equivalent to

λ+
pi/qi

(γi) < 0 for i ∈ I, and λ−
pi/qi

(γi) > 0 for i ∈ Ic,(45)

where Ic = {1, . . . , m} \ I.
For the moment write q = qi and γ = γi. Let U ⊂ B̄ be a closed neigh-

borhood in B̄ of qγ which is small enough for qγ to be the only geodesic in U ,
and for U ∩ B̂�(g, ε) to be empty (for some ε ∈ (0, ε(g)) which we keep fixed
throughout this section).

Define

Utransient = {α ∈ U ∩ B̄ | ∃t > 0 : Φt(α) ∈ B \ U}(46)

U# = U \ (Utransient ∪ {qγ}) .(47)

The conditions α ∈ B̄ and Φt(α) ∈ B imply that Φ(0,t] ⊂ B, since orbits cannot
leave and then enter B̄ again. Thus U# consists of those α ∈ U which do not
leave U before leaving B.

Clearly Utransient is open, so that U# is closed in B̂ and U#∪{qγ} is closed
in B̄.

By construction U# is positively invariant relative to B̂; U \ {q · γ} is
positively invariant relative to B̂ if and only if U = U#∪{q ·γ}, or, equivalently,

U# = U \ {q · γ}.

Lemma 6.9. U# ∪ {qγ} is a neighborhood in B̄ of q · γ.

Proof. If U#∪{qγ} is not a neighborhood of qγ then a sequence αn ∈ B̄\U#

with limn→∞ αn = qγ must exist. Since U is assumed to be a neighborhood we
may assume that all αn ∈ U , and thus αn ∈ Utransient. Then t′n > 0 exist with
Φt′n(αn) ∈ B \ U . Choose tn to be the largest t ∈ (0, t′n) with Φ[0,tn](αn) ⊂ U .
In particular Φtn(αn) ∈ ∂U .

Since qγ is a fixed point for curve shortening, we have limn→∞ tn = ∞.
By parabolic estimates 3.2 we can extract a convergent subsequence of the
sequence of solutions {βn(t) def= Φtn+t(αn) | −tn < t ≤ 0}. The limit is an
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“ancient orbit” {β(t) | −∞ < t ≤ 0} which remains in U , and which reaches
∂U at t = 0. The α-limit of such an orbit must be qγ (being the only closed
geodesic in U) but this contradicts λ+

p/q(γ) < 0 and Lemma 4.2.

For any neighborhood U ⊂ B̄ of qγ and T > 0 we define

U#T = {ΦT (α) | Φ[0,T ](α) ⊂ U#}.

As T increases the set U#T shrinks. In general U#T is not a neighborhood
of q · γ; in fact, due to the regularizing effect of the heat flow, U#T will have
empty interior.

Lemma 6.10. Let U ,V ⊂ B̄ be neighborhoods of qγ. Then for sufficiently
large T > 0 one has U#T ⊂ V# and V#T ⊂ U#.

Proof. We need only prove the first inclusion, and we may of course assume
that the neighborhoods U = U#∪{qγ}, V = V#∪{qγ} are positively invariant
relative to B.

Arguing by contradiction we assume that there exists a sequence αk ∈ U
with Φ[0,k](αk) ⊂ U \V. Parabolic estimates yield an a priori bound for ∂k

∂s on
the curves Φ1(αk), and thus we can extract a convergent subsequence from the
solutions βk(t) = Φt+1(αk) of curve shortening. The limit would then be an
orbit of curve shortening which stays in U \ V, in particular its ω-limit would
be a closed geodesic other than qγ in U , which by assumption does not exist.

Let I ⊂ {1, . . . , m} and g ∈ MΓ(B; I) be given. For each i ∈ I we choose
a sufficiently small neighborhood Ui of qiγi and we set

UI def=
⋃
i∈I

U#
i .

We will assume that the Ui \ {qiγi} are forward invariant relative to B̂, i.e.
Ui = U#

i .

Definition 6.11. The modified Conley index of the relative flat knot type
B is

hI(B) =
[
B̂

/
B− ∪ B̂�(g, ε) ∪ UI

]
.

Our previously defined Conley index h(B) is contained in this definition
as the special case in which I ⊂ {1, . . . , m} is empty.

Lemma 6.12. For sufficiently small Ui and ε > 0 the index hI(B) does
not depend on either ε, the metric g ∈ MΓ(B; I) or the neighborhoods Ui.



CURVE SHORTENING AND GEODESICS 1223

Proof. We may assume that U ⊃ V for otherwise we choose a smaller
neighborhood W ⊂ U ∩V and compare the indices hI(B) obtained by using U
and V with the index obtained by using W.

Choose a sufficiently large T > 0 so that U#T ⊂ V and as before in (43)
define

T∗(α) = inf{t ≥ 0 | Φt(α) ∈ B− ∪ B̂�}.

We showed in Proposition 6.8 that the exit time T∗(α) is a continuous function
with values in [0,∞]. The family of maps

Fθ(α) def= Φθ min(T∗(α),T )(α)

with θ ∈ [0, 1] is therefore a continuous homotopy Fθ : id ∼= F1 of maps of the
pairs (B̂,B− ∪ B̂� ∪U) and (B̂,B− ∪ B̂� ∪U). From U#T ⊂ V we conclude that
F1 maps the quotient B̂/(B− ∪ B̂� ∪U) to B̂/(B− ∪ B̂� ∪V), and is a homotopy
inverse for the inclusion induced map from B̂/(B−∪B̂�∪V) to B̂/(B−∪B̂�∪U).

6.3. The Conley index of a virtual satellite.

Lemma 6.13. The homotopy type of U#
i /(U#

i ∩B−) is that of S1×S2pi−1/S1

× {pt}. Consequently the homotopy type of UI/(UI ∩ B−) is given by
m∨

i=1

[S1 × S2pi−1/S1 × {pt}].

We will call the homotopy type of U#
i /(U#

i ∩B−) the Conley index of the
virtual satellite of qiγi in B.

In the following proof we omit the subscript i and write U instead of Ui,
etc.

The same arguments as in Corollary 6.12 show that U#/(U#∩B−) is inde-
pendent of both the metric g, provided γ is a geodesic with λ+

p/q(γ)
< 0, and the neighborhood U , provided it is sufficiently small, meaning that
it should not contain any other closed geodesics besides qγ and be disjoint
from B̂�. Thus we may choose our metric so that a neighborhood of γ in the
surface M is isometric to a part of the surface of revolution whose metric is
given by

(ds)2 = ey2/2{(dx)2 + (dy)2}, (x, y) ∈ (R/Z) × R,

where the “waist” y = 0 corresponds to γ. Curves α ∈ Ω which are C1 close
to qγ are then given by graphs of functions u ∈ C2(R/qZ), α(x) = (x, u(x))
(such a graph wraps itself q times around the waist {y = 0}). In this section
we will identify a small neighborhood of q · γ ∈ Ω with an open neighborhood
of u ≡ 0 in C2(R/qZ) without explicitely mentioning the identification again.
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Curve shortening for such graphs is equivalent to the PDE
∂u

∂t
=

uxx

1 + u2
x

− u.(48)

We choose

U = Nσ ∩ B̄(49)

where

Nσ = {u ∈ C2(R/qZ) | sup
x

|u(x)| ≤ σ, sup
x

|u′(x)| ≤ σ},(50)

and σ is sufficiently small.

Lemma 6.14. Nσ is invariant for the curve shortening flow, so that U
contains no transient part , i.e. U = U# ∪ {qγ}.

Proof. The maximum principle implies that any solution of (48) with
|u(x, 0)| ≤ σ satisfies |u(x, t)| ≤ σe−t, since ±σe−t are sub- and supersolutions
for (48).

By differentiating (48) one finds that v = ux satisfies

vt =
vxx

1 + u2
x

− 2ux

(1 + u2
x)2

vx − v

so that the maximum principle again implies that supx |v(x, 0)| ≤ σ leads to
supx |v(x, t)| ≤ σe−t.

We will identify ∆ ⊂ Ω with those u ∈ C2(R/qZ) which correspond to a
curve αu ∈ ∆.

Lemma 6.15. Both B− and ∆ are cones in C2(R/qZ).

Proof. A function u ∈ C2(R/qZ) belongs to ∆ if it either has a multiple
zero or if for some k = 1, . . . , q− 1 the function u(x)−u(x−k) has a multiple
zero. This clearly holds for u if and only if it holds for λu, for any λ �= 0. Thus
∆ is a cone.

Near qγ the set B− consists of those u ∈ ∆ which have fewer self-inter-
sections, or fewer intersections with u = 0 than a general u ∈ B has. This
condition also holds for both u and λu or for neither.

Any u ∈ C2(R/qZ) has a Fourier series of the form

u(x) =
∞∑

k=0

Re

(
uke

2kπix/q
)

(51)

with u0 ∈ R and uk ∈ C for k ≥ 2. The embedding C2 ↪→ W 2,2 implies that∫ q

0
{u(x)2 +

q4

16π4
u′′(x)2}dx =

∞∑
k=0

(1 + k4)|uk|2 < ∞.(52)
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We now define

Sε =

{
u ∈ C2(R/qZ)

∣∣∣∣∣
∞∑

k=0

(1 + k4)|uk|2 = ε2

}
;

i.e., Sε is the intersection with C2(R/qZ) of the sphere of radius ε in W 2,2(R/qZ)
with norm given by (52).

Since W 2,2 ↪→ C1 one has Sε ⊂ Nσ for small enough ε > 0.
Lemma 6.15 implies that (Sε ∩ B̂,Sε ∩ B−) is a deformation retract of

(U#,U#∩B−), the deformation going along rays through the origin in C2(R/qZ).
We therefore have a homotopy equivalence

U#/(U# ∩ B−) ∼= (Sε ∩ U#)/(Sε ∩ U# ∩ B−).

For small enough ε > 0 one has Sε ⊂ Nσ, so that Sε ∩ U# = Sε ∩ B̂, and
Sε ∩ U# ∩ B− = Sε ∩ B−. Hence we have a further homotopy equivalence

U#/(U# ∩ B−) ∼= (Sε ∩ B̂)/(Sε ∩ B−).

The linear heat equation induces a continuous semiflow on Sε: for any
u ∈ Sε let

u(t, x) =
∞∑

k=0

Re

(
uke

2kπix/q−4k2π2/q2t
)

(53)

be the solution of ut = uxx starting from u, and define Ψt(u) to be the radial
projection of u(t, ·) onto Sε, so that

(
Ψtu

)
(x) = ε

u(t, x)
‖u(t, ·)‖W 2,2

.

We will refer to Ψt as the projected heat flow.
The essential insight which allows us to determine the homotopy type of

(Sε ∩ B̂)/(Sε ∩B−) and hence of U#/(U# ∩B−) is that (Sε ∩ B̂,Sε ∩B−) turns
out to be an index pair for the projected heat flow Ψt : Sε → Sε which isolates
the invariant set

C def=

{
Re

(
upe

2πipx/q
) ∣∣∣ up ∈ C, |up| =

ε√
1 + p4

}
.

This invariant set is a normally hyperbolic circle whose unstable manifold is
2p dimensional, so one expects its Conley index to be

[
S1 × S2p−1/S1 × pt

]
.

Since we do not have the required compactness hypothesis of [17], we must
prove these statements by hand, essentially verifying that Conley’s arguments
still go through in our setting.
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For u ∈ Sε we define the quantities

w+(u) = ε−2
∑
k>p

(
1 + k4

)
|uk|2,

w−(u) = ε−2
∑

0≤k<p

(
1 + k4

)
|uk|2,

wp(u) = ε−2
(
1 + p4

)
|up|2.

By definition we have

w−(u) + wp(u) + w+(u) = 1

for all u ∈ Sε.

Lemma 6.16. Along any orbit Ψt(u) of the projected heat flow one has

dw+(Ψtu)
dt

≤ −Cw+(1 − w+) < 0,(54)

dw−(Ψtu)
dt

≥ −Cw−(1 − w−) > 0.(55)

Proof. Let u(t, x) be the solution to the linear heat equation starting at
u ∈ Sε given by (53), so that u(t, x) =

∑
k≥0 Re(uk(t)e2πikx/q) with uk(t) =

e−4π2k2/q2tuk(0). Then one has

dw+(u(t, ·))
dt

=
∑
k>p

(
1 + k4

)
Re(2u′

k(t)uk(t))

≤ −8π2(p + 1)2

q2
w+(u(t, ·))

and

dw−(u(t, ·))
dt

≥ −8π2(p − 1)2

q2
w−(u(t, ·)),

dwp(u(t, ·))
dt

= −8π2p2

q2
wp(u(t, ·)).

Using

w±(Ψt(u)) =
w±(u(t, ·))

w+(u(t, ·)) + wp(u(t, ·)) + w−(u(t, ·))
one then arrives at (54) and (55) with C = 8π2(2p ± 1)/q2.

Consider the sets

Vρ = {u ∈ Sε ∩ B̂ | w+(u) ≤ ρ},
V−

ρ = {u ∈ Vρ | w−(u) ≥ ρ}.
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The differential inequalities (54), (55) imply that (Vρ,V−
ρ ) is an index pair. It

isolates the same invariant set C as (U#,U# ∩B−), so one expects Vρ/V−
ρ and

U#/(U# ∩ B−) to have the same homotopy type. To prove this we exhibit
homotopy equivalences obtained by “flowing along” with Ψt

U#/(U# ∩ B−) −→ Vρ/(Vρ ∩ B−),(56)

and

Vρ/(Vρ ∩ B−) −→ Vρ/V−
ρ .(57)

6.3.1. Construction of the homotopy equivalence (56). We define

t∗(u) = inf{t ≥ 0 | w+(Ψt(u)) ≤ ρ}.

Proposition 6.17. The function t∗ is continuous and finite on Sε ∩ B̂.

Proof. We first observe that one has w+(u) < 1 for every u ∈ U#. Indeed,
if w+(u) = 1 then w−(u) = wp(u) = 0 and so the Fourier series (51) only
contains terms with k ≥ p + 1. Then u has at least 2(p + 1) sign changes and
cannot belong to B̂ or U# ⊂ B̂.

The differential inequality (54) implies that w+(Ψt(u)) will decrease to ρ

in finite time so that t∗ is finite. Moreover d
dtw+ < 0 implies that the time at

which w+(Ψt(u)) becomes equal to ρ depends continuously on u.

The family of maps Gθ(u) = Ψθt∗(u)(u) is a continuous homotopy Gθ : id ∼=
G1. The final map G1 sends U#/(U#∩B−) to Vρ/(Vρ∩B−) and is a homotopy
inverse for the inclusion induced map Vρ/(Vρ ∩ B−) → U#/(U# ∩ B−).

6.3.2. Construction of the homotopy equivalence (57). To construct a map
from left to right in (57) we observe

Proposition 6.18. If ρ > 0 is small enough then Vρ ∩ B− ⊂ V−.

Proof. We consider the sets

Wρ = {u ∈ Sε | w+(u) ≤ ρ, w−(u) ≤ ρ},(58)

W−
ρ = {u ∈ Sε | w+(u) ≤ ρ, w−(u) = ρ}.(59)

By definition Wρ is a W 2,2 neighborhood of Γ which can be made as small in
W 2,2 as desired by decreasing ρ. Since Γ is compact, and since ∆ is closed in
C1 and thus also in W 2,2, we conclude that, for sufficiently small ρ > 0, Wρ

and ∆ are disjoint. Since Vρ \V−
ρ ⊂ Wρ and B− ⊂ ∆ the proposition follows.

For small enough ρ the proposition guarantees that we have an inclusion
induced map Vρ/(Vρ ∩ B−) −→ Vρ/V−

ρ . A homotopy inverse for this map can
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again be found by following the flow. Define an “exit time”

t∗(u) def= inf{t ≥ 0 | Ψt(u) ∈ B−}.

If we allow t∗(u) = ∞ in case the orbit Ψt(u) never hits B− then t∗(u) de-
pends continuously on u ∈ U , again because orbits cross B− in a topologically
transverse way (this is the same argument as in Proposition 6.8).

Proposition 6.19. If w−(u) > 0 then t∗(u) < ∞.

Proof. Let k0 be the smallest integer with uk0 �= 0. Then Ψt(u) =
ε u(t,·)
‖u(t,·)‖2,2

with u(t, x) given by (53). For large t the dominant term in (53) is
the term with k = k0, so that

lim
t→∞

Ψt(u) = Const · Re

(
uk0e

2πik0x/q
)

.

Since w−(u) > 0 we have k0 < p, and hence for large t, Ψt(u) has less than 2p

sign changes so that Ψt(u) cannot lie in B̄ anymore. The only way Ψt(u) can
leave B is by crossing B− first.

We can now define the following family of maps,

Gθ(u) = Ψθη(w−(u))t∗(u)(u)

in which η : R → R is a continuous nondecreasing function with η(w) ≡ 0
for w ≤ ρ/2 and η(w) ≡ 1 for w ≥ ρ. Thus η(w−(u)) vanishes in the region
w−(u) ≤ ρ/2 while t∗(u) is continuous for w−(u) > 0 so that the product
η(w−(u))t∗(u) is continuous everywhere.

The Gθ are maps of the pairs (Vρ,V−
ρ ) and (Vρ,Vρ ∩ B−) respectively,

and the final map G1 sends (Vρ,V−
ρ ) to (Vρ,Vρ ∩ B−). It therefore provides a

homotopy inverse for the inclusion induced map Vρ/(Vρ ∩ B−) → Vρ/V−
ρ .

6.3.3. Computation of the homotopy type of Vρ/V−
ρ . Define Wρ and W−

ρ

as above in (58), (59).

Proposition 6.20. For small enough ρ > 0 one has

Wρ = Vρ \ V−
ρ , W−

ρ = Wρ ∩ V−
ρ .

Consequently, for small ρ > 0 one has [Vρ/V−
ρ ] = [Wρ/W−

ρ ].

Proof. This follows directly from the proof of Proposition 6.18.

Proposition 6.21. The pair (Wρ,W−
ρ ) contains (Zρ,Z−

ρ ) with

Zρ
def
= {u ∈ Wρ | w+(u) = 0}, Z−

ρ
def
= Zρ ∩W−

ρ

as a deformation retract.
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Proof. One can write u ∈ Wρ as u = u− + up + u+ and can homotope it
to Gθ(u) = µ(θ)u− + ν(θ)up + θu+, where µ(θ), ν(θ) ∈ R+ are chosen so as to
keep Gθ(u) on Sε.

Proposition 6.22. Zρ/Z−
ρ is homeomorphic with S1 ×S2p−1/(S1 × pt).

Proof. We can write any u ∈ Zρ as

u(x) = Re
∑

k≤p uke
2πikx/q,(60)

with ∑
k≤p(1 + k4)|uk|2 = ε2.(61)

The condition w−(u) ≤ ρ is equivalent to∑
k<p(1 + k4)|uk|2 ≤ ρε2(62)

so that

(1 + p4)|up|2 ≥ (1 − ρ)ε2.

In particular, up �= 0 if ρ < 1, and we can write

up = eiθ

√
ε2 −

∑
k<p(1 + k4)|uk|2
1 + p4

(63)

with θ = arg up. We have defined a map f from Zρ to C×R×C2p−2, given by

f : u 	→ (eiθ, u0, u1, . . . , up−1).

(Recall that u0 is real, while the other coefficients are complex.)
This map is one-to-one and hence a homeomorphism onto its image. The

image is clearly S1 × B2p−1, where S1 is the unit circle in C and B2p−1 is the
convex ball in R × Cp−1 given by (62).

The subspace Z−
ρ consists of those u ∈ Zρ for which one has equality in

(62), and therefore f maps Z−
ρ onto S1 ×∂B2p−1. We conclude that Zρ/Z−

ρ is
homeomorphic with (S1×B2p−1)/(S1×∂B2p−1) which in turn is homeomorphic
with (S1 × S2p−1)/(S1 × {pt}).

6.4. A long exact sequence relating the hI(B). Let ∅ ⊂ J ⊂ I ⊂ {1, . . . , m}
with J �= I be given, and set K = I \ J .

Choose a metric g ∈ MΓ(B;J). This metric can be modified to a new
metric g̃ ∈ MΓ(B; I) so that g and g̃ coincide on an open neighborhood of the
geodesics γj , for all j ∈ J .

We can then construct punctured neighborhoods Ui ⊂ B̂ of qiγi which
isolate the qiγi for all i ∈ I, and which are so small that curve shortening for
g and for g̃ coincide on a neighborhood of qiγi in Ω for all i ∈ J .
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The indices hI(B) and hJ(B) are then defined to be the homotopy types
of the pointed spaces

HI(B) def=
B̂

UI ∪ B− ∪ B̂�(g, ε)
, HJ(B) def=

B̂
UJ ∪ B− ∪ B̂�(g, ε)

,

and since UJ ⊂ UI we have a natural map HJ(B) → HI(B) which collapses
the set

AI
J

def=
UI ∪ B− ∪ B̂�(g, ε)
UJ ∪ B− ∪ B̂�(g, ε)

(64)

to the base point in HI(B). Since UI = UJ �UK is a disjoint union, the space
AI

J in (64) is homeomorphic to

UI ∪ B− ∪ B̂�(g, ε)
UJ ∪ B− ∪ B̂�(g, ε)

=
UJ ∪ UK ∪ B− ∪ B̂�(g, ε)

UJ ∪ B− ∪ B̂�(g, ε)

=
UK

UK ∩
(
UJ ∪ B− ∪ B̂�(g, ε)

)
=

UK

UK ∩ B−

∼=
∨

k∈K

{
S1 × S2pk−1

S1 × {pt}

}
.

Proposition 6.23. The subset AI
J of HJ(B) is collared.

Proof. We should have started with neighborhoods Vi, and then chosen
Ui ⊂ intVi. The curve shortening flow then retracts the Vi into the Ui.

This proposition implies an isomorphism

Hl(HJ(B),AI
J) ∼= Hl(HJ(B)/AI

J) = Hl(HI(B))

of relative singular homology groups.
The long exact sequence on homology for the pair

(
HJ(B),AI

J

)
then gives

us the long exact sequence

. . . Hl+1(hI(B)) ∂∗−→ Hl(AI
J) −→ Hl(hJ(B)) −→ Hl(hI(B)) ∂∗−→ Hl−1(AI

J) . . .

(65)

from Theorem 1.2.

6.5. Proof of Theorem 1.3. We know that not all homology groups of
AI

J are trivial; so, if hI(B) is the homotopy type of a point, then the exact
sequence implies that AI

J and hJ(B) have the same homology groups. Similarly,
if hJ(B) happens to be trivial, then Hl(AI

J) ∼= Hl+1(hI(B)) for all l, so that
hI(B) cannot be trivial.
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7. Existence theorems for closed geodesics

7.1. Proof of Theorem 1.1. Fix Γ = {γ1, . . . , γN} ⊂ Ω, a relative flat knot
type B ⊂ Ω \ ∆(Γ), an I ⊂ {1, . . . , m}, and a metric g ∈ MΓ(B; I). Assuming
that there are no closed geodesics in B for the metric g we will show that hI(B)
is trivial.

Define T∗ : B̂ → [0,∞] by

T∗(α) = inf{t ≥ 0 | Φt(α) ∈ B− ∪ B̂�(g, ε)}.

It was shown in Proposition 6.8 that T∗ is continuous. Thus the set

W = {α ∈ B̂ | T∗(α) = ∞}

is closed in B̂.
Choose neighborhoods Ui � qiγi with Ui = U#

i , as in §6.2. Let U = ∪i∈IUi.
For each α ∈ W there is a tα ∈ [0,∞) such that Φtα(α) ∈ intU , where

intU is the interior of U with respect to B̂. Indeed, if α ∈ W then the entire
orbit Φ[0,∞)(α) is contained in B. This orbit must converge to some closed
geodesic, and by assumption such a geodesic must lie on ∂B̄. That is, the orbit
must converge to one of the qiγi with i ∈ I.

Continuity of the semiflow implies that some neighborhood Oα � α also
gets mapped into intU under Φtα . Choose a sequence αn so that the On = Oαn

form a locally finite covering of W . Next let O = ∪nOn and construct a
continuous function t0 : O → [0,∞) with t0(β) ≥ tαn

for all β ∈ On. We may
assume that limγ→∂O t0(γ) = ∞ (add dist(γ, ∂O)−1 to t0(γ) if necessary).

One has Φt0(β)(β) ∈ intU for all β ∈ O. Moreover,

T#(α) = min
(
t0(α), T∗(α)

)
defines a continuous everywhere finite function on B̂ which satisfies

ΦT#(α)(α) ∈ B− ∪ B̂�(g, ε) ∪ U .

The family of maps

F θ(α) = ΦθT#(α)(α)

with 0 ≤ θ ≤ 1 defines a deformation retraction of (B̂,B− ∪ B̂� ∪ U) into
(B− ∪ B̂� ∪ U ,B− ∪ B̂� ∪ U). Thus the index hI(B) is trivial.

7.2. Proof of Theorem 1.4. Let γ be a simple closed geodesic on the
sphere S2. After applying a diffeomorphism we may assume that γ is the
equator. We consider p, q satellites of the equator. Thus in the notation we
have used so far, we have Γ = {γ1, . . . , γN} = {ζ}, N = 1. The unique curve
ζ ∈ Γ belongs to the boundary of Bp,q(ζ), and thus m = 1. There are two
modified Conley indices to be considered, namely h∅(B) and h{1}(B).
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To compute the Conley indices hI(Bp,q(ζ)) for arbitrary p/q �= 1 we use the
fact that the indices do not depend on the metric, and consider the standard
metric on the usual unit sphere S2 ⊂ R3. For this metric the equator is indeed
a closed geodesic, while all geodesics are great circles. In particular, no closed
geodesic on the standard sphere is a p, q satellite of the equator. Moreover, the
rotation number of the equator is exactly ρ(ζ) = 1.

For p/q > 1 we therefore conclude that

h{1}(Bp,q(ζ)) = [point]

while for p/q < 1 we get

h∅(Bp,q(ζ)) = [point].

By the long exact sequence from Theorem 1.3 we then find that for p/q > 1
the index h∅(Bp,q(ζ)) is nontrivial, while for p/q < 1 the index h{1}(Bp,q(ζ)) is
nontrivial.

If one now has another metric g for which the simple closed curve ζ is
a geodesic with rotation number ρ(ζ, g) > p/q > 1, then the nontriviality of
h∅(Bp,q(ζ)) implies existence of at least one closed geodesic of g which is a
(p, q) satellite of ζ. Similarly, if one has 1 > p/q > ρ(ζ, g), then nontriviality
of h{1}(Bp,q(ζ)) again leads to the same conclusion.

8. Appendices

8.1. Curve shortening in local coordinates. Assume g is an h2,µ metric on
M and let γ ∈ Ω be an h2,µ curve of length L. Then there exists an h2,µ local
diffeomorphism σ : T × (−r, r) → M with T = R/LZ such that x 	→ σ(x, 0) is
an arclength parametrization of γ. If γ is a q fold cover, then we may assume
that σ(x + L/q, y) ≡ σ(x, y).

In the local coordinates {x, y} the metric g is given by

σ∗g = E(x, y)(dx)2 + 2F (x, y) dx dy + G(x, y)(dy)2(66)

where E, F, G are h2,µ functions on T × (−r, r).
We now compute the geodesic curvature of the graph of y = u(x) and

determine the PDE which is equivalent to curve shortening in the coordinates
{x, y}.

The unit tangent to the graph {(x, u(x)) | x ∈ T} is

T =
∂x + ux∂y

|∂x + ux∂y|
=

1
λ

(∂x + ux∂y)

where λ =
√

E + 2F ux + G u2
x.
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If we write X ∧ Y for Ωg(X, Y ) where Ωg = (EG−F 2)dx∧ dy is the area
form of the metric g, then the geodesic curvature is κ = T ∧∇T (T ); i.e.,

κ = λ−3(∂x ∧ ∂y)
[
uxx + P (x, u) + Q(x, u)ux + R(x, u)u2

x + S(x, u)u3
x

]
where

P =
∂x ∧∇∂x

(∂x)
∂x ∧ ∂y

, Q =
2∂x ∧∇∂y

(∂x) + ∂y ∧∇∂x
(∂x)

∂x ∧ ∂y
,

R =
∂x ∧∇∂y

(∂y) + 2∂y ∧∇∂y
(∂x)

∂x ∧ ∂y
, S =

∂y ∧∇∂y
(∂y)

∂x ∧ ∂y
.

If we now consider a moving family of graphs y = u(x, t), then the normal
velocity of this family of curves is given by

V = T ∧ (ut∂y) = λ−1(∂x ∧ ∂y)ut

so that curve shortening, i.e. V = κ, is equivalent to

ut =
uxx + P (x, u) + Q(x, u)ux + R(x, u)u2

x + S(x, u)u3
x

E(x, u) + 2F (x, u)ux + G(x, u)u2
x

.(67)

8.2. Interpretation of the coefficients P , Q, R, S. The coefficient S(x, u) is
the geodesic curvature of the vertical lines y = constant. If the diffeomorphism
σ were obtained by exponentiating normal vectors to the x-axis, as in (13) §2.7,
then S would vanish. (However, (13) contains the unit normal vector N which
is only h1,µ, and so the resulting map σ is also only h1,µ instead of h2,µ.)

The coefficient P is proportional to the geodesic curvature of the curves
u = constant. In particular P (x, 0) is proportional to the geodesic curvature
of the x-axis. The x-axis is a geodesic only if P (x, 0) ≡ 0.

If the x axis is a geodesic then we can assume after an h2,µ change of
coordinates that x 	→ (x, 0) is a unit speed parametrization of the x-axis, and
that on the x-axis the vector ∂y is a unit normal to the x-axis. In other words,
we assume that

E(x, 0) = 1, F (x, 0) = 0, G(x, 0) = 1

for all x. (Use a Whitney type exension theorem, as in [34, §VI.2.3, Th. 4].)
The derivative Py(x, 0) is then given by

Py(x, 0) =
∂

∂y

(
∂x ∧∇∂x

(∂x)
∂x ∧ ∂y

)
y=0

= ∂x ∧∇∂y
∇∂x

(∂x) (use ∇∂x
∂x = 0, ∂x ∧ ∂y = 1 for y = 0)

= ∂x ∧
{
∇∂x

∇∂y
(∂x) + R(∂y, ∂x)∂x

}
(definition of the
Riemann tensor)

= K(x, u)
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where K is the Gauss curvature. (This last calculation is the standard deriva-
tion of the equation for Jacobi fields.)

On the x-axis we have ∇∂y
(∂x) = ∇∂x

(∂y) = 0 since ∂y is a unit normal
to a geodesic. We also have ∇∂x

(∂x) = 0 since the x axis is a geodesic. Thus

Q(x, 0) = 0.

Both R and S are h1,µ functions of their arguments.
Thus the linearization of (67) at u = 0 is

ut = uxx + K(x)u,(68)

K(x) = K ◦ γ(x) being the Gauss curvature along the x-axis.

8.3. Short time existence and the C1 local semiflow property. Equa-
tion (67) is of the form

ut = F (x, u, ux, uxx)(69)

where F is a C1,µ function of its arguments with

λ−1 ≤ (1 + p2)
∂F (x, u, p, q)

∂q
≤ λ

for some constant λ. It is well-known (perhaps under higher differentiablity
assumptions on F ) that solutions with initial data u(·, 0) ∈ C2,µ(T) exist on a
short time interval. We now show that (69) generates a C1 local semiflow on
an open subset of h2,µ(T).

We may assume in our setting that F (x, u, p, q) is defined for all (x, u, p, q) ∈
T × R3 with |u| ≤ r for some r > 0. Let V ⊂ C1(T) be defined by

V = {u ∈ C1(T) | |u| < r}.

We write V k,λ for V ∩ hk,λ(T).
The PDE (69) is actually quasilinear; i.e., F has the form F (x, u, p, q) =

a(x, u, p)q + b(x, u, p) where a and b are C1,µ in x and u and analytic in p ∈ R.
This implies that the substitution operator u 	→ F (x, u, ux, uxx) is continuously
Fréchet differentiable from V 2,µ to h0,µ(T). Since the Fréchet derivative of F

is the generator of an analytic semigroup in h0,ν(T) for any ν ∈ (0, µ), we can
apply [5, Cor. 2.9] and conclude that (69) generates a C1 local semiflow on
V 2,ν for every ν ∈ (0, µ). This, by definition, means the following:

Continuous local semiflow. The map Φ which maps the initial data
u0 and time t to the solution u(t) at time t is defined on an open subset
D ⊂ V 2,ν × [0,∞) containing V 2,ν × {0} and satisfies

(1) F is continuous,

(2) F (u0, 0) = u0 for all u0 ∈ V 2,ν ,
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(3) If (u0, t) ∈ D then {u0} × [0, t] ⊂ D,

(4) If (u0, t) ∈ D and (F (u0, t), s) ∈ D then (u0, t+s) ∈ D and F (u0, t+s) =
F (F (u0, t), s).

Differentiable local semiflow.2 For each t ≥ 0 define Dt = {u ∈ V 2,ν |
(u, t) ∈ D} and write Φt(u) = Φ(u, t). Then the map u 	→ Φt(u) is continuously
differentiable from Dt to V 2,ν . Moreover, the Fréchet derivative dΦt(u) is a
strongly continuous function of both variables (u, t) ∈ D, i.e. for any v0 ∈
h2,ν(T) the map (u, t) 	→ dΦt(u)v0 is continuous from D to h2,ν(T). One obtains
dΦt(u)v0 by formally linearizing (69); i.e., v(t) = dΦt(u)v0 is the solution of

vt = Fq(x, u, ux, uxx)vxx + Fp(x, u, ux, uxx)vx + Fu(x, u, ux, uxx)v,(70)

v(·, 0) = v0(·).

8.4. Linearization at a closed geodesic. If the curve γ (the x-axis) is a
geodesic so that u ≡ 0 is a solution to (67), then u = 0 is a fixed point of
the local semiflow Φt on V 2,ν . The semigroup property Φt ◦ Φs = Φt+s and
the chain-rule imply that the linear operators {dΦt(0) | t ≥ 0} form a (C0)
semigroup on h2,ν(T). Since the linearized equation (70) coincides with (68)
the semigroup {dΦt(0)} is generated by A =

(
d
dx

)2 − K ◦ γ(x). (A is an
unbounded operator on hν with domain h2,ν and hence generates a semigroup
on hν , h2,ν and any of their interpolation spaces.)

Let the spectrum of A be

λ0 > λ1 ≥ λ2 > · · · > λ2i−1 ≥ λ2i > · · ·

with corresponding eigenfunctions {ϕk}. For j ∈ N we write Ej for span {ϕ0, . . .

. . . , ϕ2j} and Ec
j for the closure in h2,ν(T) of the span of {ϕ2j+1, ϕ2j+2, . . . }.

Then Ej and Ec
j are spectral subspaces of the operator A with h2,ν(T) =

Ej ⊕ Ec
j . We let πj denote the projection of h2,ν(T) onto Ej along Ec

j .

Lemma 8.1.Let {u(t) | t≥0} ⊂ V 2,ν be an orbit of Φt with limt→∞ u(t)=0
in the h2,ν(T) norm. Then for any j ∈ N,

lim
t→∞

‖πju(t)‖
‖u(t)‖ = 0 or 1.(71)

Here all norms are h2,ν(T) norms.
The same statement is true for “ancient orbits” {u(t) | −∞ < t ≤ 0}

provided all limits are taken for t → −∞.

2We repeat these definitions here because there seems to be no consensus on what a
differentiable local semiflow should be. In particular Amann [1], [2] does not include or prove
strong continuity of dΦt at t = 0.
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Proof. Once one gets away from the PDE and considers {u(n) | n =
1, 2, · · · } as an orbit of the time-one map Φ1 the proof is completely standard.

The map Φ1 : D1 → V 2,ν is C1, and its Fréchet derivative is given by
dΦ1(0) = eA, a compact operator with spectrum eλi , i ∈ N0. One can find
equivalent norms ||| · ||| on Ej and Ec

j so that

|||eAv||| ≥ eλ2j |||v|||, ∀v ∈ Ej ,

|||eAv||| ≤ eλ2j+1 |||v|||, ∀v ∈ Ec
j .

Suppose now that

lim sup
n→∞

|||πju(n)|||
|||u(n)||| > 0.

Then for some ε > 0 and any r > 0 there exists a large n∗ such that |||πju(n∗)|||
|||u(n∗)|||

> ε and |||u(n)||| < r for all n ≥ n∗.
We can now write Φ1(u) = M(u)u where

M(u) =
∫ 1

0
dΦ(θu)dθ.

Since Φ1 is C1 we have |||M(u) − eA||| < σ(|||u|||) where σ(r) ↘ 0 as r ↘ 0.
If one splits u = v ⊕ vc ∈ Ej ⊕ Ec

j , as well as ū = M(u)u = v̄ ⊕ v̄c, and if
one assumes |||u||| ≤ r, then

|||v̄||| = |||πjM(u)(v ⊕ vc)|||
≥ |||πje

A(v ⊕ vc)||| − σ(r)|||u|||
≥ eλ2j |||v||| − σ(r)|||u|||

≥
(
eλ2j − σ(r)

)
|||v||| − σ(r)|||vc|||.

Similarly one finds

|||v̄c||| ≤
(
eλ2j+1 + σ(r)

)
|||vc||| + σ(r)|||v|||.

If one also assumes that |||v||| ≥ ε|||vc||| then

|||v̄|||
|||v̄c||| ≥

(
eλ2j − σ(r)

)
ε − σ(r)

eλ2j+1 + σ(r) + εσ(r)
.(72)

Since eλ2j > eλ2j+1 one can choose 1 < ϑ < eλ2j−λ2j+1 . For sufficently small
r > 0 one concludes from (72) that

|||v̄|||
|||v̄c||| ≥ ϑε.

Inductive application of this estimate shows that for u(k) = v(k) ⊕ vc(k) one
has

|||v(n∗ + i)|||
|||vc(n∗ + i)||| ≥ ε(n∗ + i) = ϑiε

as long as 1 + ε(n∗ + i) < δ
2σ(r) .
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Thus if lim supn→∞ ‖πju(n)‖/‖u(n)‖ > 0, then

lim inf
n→∞

‖πjv(n)‖/‖vc(n)‖ ≥ δ/2σ(r),

with r > 0 arbitrarily small. Hence ‖πju(n)‖/‖u(n)‖ → 1 as n → ∞.
Having established the alternative (71) along a sequence n ↗ ∞ we now

assume that
lim sup

t↗∞
‖πju(t)‖/‖u(t)‖ > ε > 0.

Then for any r > 0 there is a t0 > 0 such that ‖u(t)‖ ≤ r for t ≥ t0 and
‖πju(t0)‖/‖u(t0)‖ > ε.

The previous arguments imply that limn↗∞ ‖πju(tn)‖/‖u(tn)‖ = 1, where
tn = t0 + n.

Splitting u(t) = v(t) ⊕ vc(t) as before we have ‖v(tn)‖ = o
(
‖vc(tn)‖

)
for

n ↗ ∞. To estimate v(t) and vc(t) for t ∈ (tn, tn+1) we write

u(tn + θ) = dΦθ(u(tn)) = Mθ(u(tn))u(tn),

where Mθ(u) =
∫ 1
0 dΦθ(su)ds.

Since Φ is a differentiable semiflow the map (θ, u) 	→ Mθ(u) is strongly
continuous. Hence, for small enough r > 0 the operators {Mθ(u) | 0 ≤ θ ≤
1, ‖u‖ ≤ r} are uniformly bounded. Since E2j is finite dimensional, the map
(θ, u) 	→ Mθ(u)|E2j

is norm continuous. In particular, there is a τ(r) > 0 with
τ(r) ↘ 0 for r ↘ 0, such that

‖Mθ(u)|E2j
− eθA|E2j

‖L(E2j ,h2,ν) ≤ τ(r)

if ‖u‖ ≤ r and θ ∈ [0, 1].
We have the following estimates:

‖v(tn + θ)‖ ≥ ‖πjMθ(u(tn))v(tn)‖ − ‖πjMθ(u(tn))vc(tn)‖
≥ ‖πje

θAv(tn)‖ − ‖πj(Mθ(u(tn)) − eθA)v(tn)‖
− ‖πjMθ(u(tn))vc(tn)‖

≥ eθλ2j‖v(tn)‖ − τ(r)‖v(tn)‖ − o(1)‖v(tn)‖

(use ‖vc(tn)‖ = o(‖v(tn)‖)). Also

‖vc(tn + θ)‖ ≤ ‖πc
jMθ(u(tn))v(tn)‖ − ‖πc

jMθ(u(tn))vc(tn)‖
≤ τ(r)‖v(tn)‖ + o(1)‖v(tn)‖
= o(1) · ‖v(tn)‖

which together imply ‖vc(tn + θ)‖ = o(‖v(tn + θ)‖) as n ↗ ∞, uniformly in
θ ∈ [0, 1].
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Lemma 8.2 (Notation as in Lemma 8.1). For any solution {u(t) | t ≥ 0}
of curve shortening which converges to u = 0 there exists a j ∈ N such that

lim
t→∞

‖πju(t)‖
‖u(t)‖ = 1.

In particular one has ‖u(t)‖ ≥ Ce−ζt for some ζ < ∞.

Proof. If the limit were 0 for all j then the solution u(t) would approach
u = 0 faster than any exponential, and so we must prove the lower bound
‖u(t)‖ ≥ Ce−ζt.

There is a standard approach for proving exponential lower bounds on
decay in heat equations due to Agmon (see [19, §2.18, p.181]) which is used
to prove backward uniqueness results. This approach would work here, but
it would require us to differentiate the functions a(x, u, p) in the PDE twice,
thereby forcing us to consider metrics g on M with at least three derivatives. In
order not to use more than just g ∈ h2,µ we follow the less standard approach
from the appendix in [3] which applies to semilinear equations.

To rewrite curve shortening as a semilinear equation we study the evo-
lution of the curvature as a function of renormalized arclength. Let γ :
R/Z × [0, t∗) → M be a normal parametrization (i.e. ∂tγ ⊥ ∂xγ) of a solu-
tion of curve shortening. Write L(t) for length at time t, let Pt be the point
γ(0, t) (so that Pt moves with velocity perpendicular to the curve always) and
define the normalized arclength coordinate ς of any point Q = γ(x, t) on γt by

ς(x, t) =
1

L(t)

∫ x

0
|∂xγ(ξ, t)|dξ =

1
L(t)

∫ Q

Pt

ds.(73)

We also introduce a new time variable related to t via

τ =
∫ t

0

dt

L(t)2
.

Proposition 8.3. The curvature κ, as a function of τ and ς, satisfies

κτ = κςς + L(τ)2
{
J [κ]κς + (K ◦ γ)κ + κ3

}
(74)

where

J [κ] =
∫ ς

0
κ2dς − ς

∫ 1

0
κ2dς.

Proof. A straightforward calculation begins with differentiating (73) with
respect to t to get

∂ς

∂t
= ς

∫ 1

0
κ2dς −

∫ ς

0
κ2dσ.

Then the chain rule(
∂κ

∂t

)
x=const

=
(

∂κ

∂t

)
ς=const

+
∂κ

∂ς

∂ς

∂t

after some simplification leads to (74).
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Since the limiting geodesic u = 0 has positive length the new and old
time variables t and τ are roughly proportional, so it suffices to establish an
exponential lower bound for the solution in the τ variable.

The equation (74) is semilinear, and can be written as

κτ = Aκ + R(τ)κ

where A = (∂ς)2 − L2
0K0(x), with K0(x) = K(σ(x, 0)), is the Gauss curvature

on the x axis, and L0 is the length of the x-axis. The “remainder” operator
R(τ) is

R(τ) = L(τ)2J [κ(τ)]
∂

∂ς
+ κ2 +

(
K ◦ γτ − K ◦ γ∞

)
.

This operator is bounded from the Sobolev space W 1,2(R/Z) to L2(R/Z). If
we assume that ‖πju(t)‖/‖u(t)‖ → 0 for all j then the coefficients in R decay
faster than any exponential e−ζτ and thus the operator norm of R(τ) from
W 1,2(R/Z) to L2(R/Z) also tends to zero.

The eigenvalues of the self-adjoint operator A on L2 grow like n2, so the
nth gap in the spectrum of A has length proportional to n. This is exactly
enough for the argument in [3, Appendix] and we can conclude that no solution
of curve shortening can approach a geodesic at a faster than exponential rate.

University of Wisconsin-Madison, Madison, Wisconsin
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