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The density of discriminants
of quartic rings and fields

By Manjul Bhargava

1. Introduction

The primary purpose of this article is to prove the following theorem.

Theorem 1. Let N
(i)
4 (ξ, η) denote the number of S4-quartic fields K

having 4 − 2i real embeddings such that ξ < Disc(K) < η. Then

(a) lim
X→∞

N
(0)
4 (0, X)

X
=

1
48

∏
p

(1 + p−2 − p−3 − p−4);

(b) lim
X→∞

N
(1)
4 (−X, 0)

X
=

1
8

∏
p

(1 + p−2 − p−3 − p−4);

(c) lim
X→∞

N
(2)
4 (0, X)

X
=

1
16

∏
p

(1 + p−2 − p−3 − p−4).

Several further results are obtained as by-products. First, our methods
enable us to count all orders in S4-quartic fields.

Theorem 2. Let M
(i)
4 (ξ, η) denote the number of quartic orders O con-

tained in S4-quartic fields having 4−2i real embeddings such that ξ<Disc(O)<η.
Then

(a) lim
X→∞

M
(0)
4 (0, X)

X
=

ζ(2)2ζ(3)
48 ζ(5)

;

(b) lim
X→∞

M
(1)
4 (−X, 0)

X
=

ζ(2)2ζ(3)
8 ζ(5)

;

(c) lim
X→∞

M
(2)
4 (0, X)

X
=

ζ(2)2ζ(3)
16 ζ(5)

.

Second, the proof of Theorem 1 involves a determination of the densities
of various splitting types of primes in S4-quartic fields. If K is an S4-quartic
field unramified at a prime p, and K24 denotes the Galois closure of K, then the
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Artin symbol (K24/p) is defined as a conjugacy class in S4, its values being 〈e〉,
〈(12)〉, 〈(123)〉, 〈(1234)〉, or 〈(12)(34)〉, where 〈x〉 denotes the conjugacy class
of x in S4. It follows from the Chebotarev density theorem that for fixed K

and varying p (unramified in K), the values 〈e〉, 〈(12)〉, 〈(123)〉, 〈(1234)〉, and
〈(12)(34)〉 occur with relative frequency 1 : 6 : 8 : 6 : 3. We prove the following
complement to Chebotarev density:

Theorem 3. Let p be a fixed prime, and let K run through all S4-quartic
fields in which p does not ramify, the fields being ordered by the size of the
discriminants. Then the Artin symbol (K24/p) takes the values 〈e〉, 〈(12)〉,
〈(123)〉, 〈(1234)〉, and 〈(12)(34)〉 with relative frequency 1:6 :8 :6 :3.

Actually, we do a little more: we determine for each prime p the density
of quartic fields K in which p has the various possible ramification types. For
instance, it follows from our methods that a proportion of precisely (p+1)2

p3+p2+2p+1

of S4-quartic fields are ramified at p.
Third, Theorem 1 implies that relatively many—in fact, a positive pro-

portion of!—quartic fields do not have full Galois group S4. Indeed, it was
shown by Baily [1], using methods of class field theory, that the number of
D4-quartic fields having absolute discriminant less than X is between c1X and
c2X for some constants c1 and c2. This result was recently refined to an ex-
act asymptotic by Cohen, Diaz y Diaz, and Olivier [7], who showed that the
number of such D4-quartic fields is ∼ cX, where c ≈ .052326 . . . . Moreover,
it has been shown by Baily [1] and Wong [26] that the contributions from the
Galois groups C4, K4, and A4 are negligible in comparison; i.e., the number
of quartic extensions having one of these Galois groups and absolute discrimi-
nant at most X is o(X) (in fact, O(X

7
8
+ε)). In conjunction with these results,

Theorem 1 implies:

Theorem 4. When ordered by absolute discriminant, a positive propor-
tion (approximately 17.111%) of quartic fields have associated Galois group D4.
The remaining 82.889% of quartic fields have Galois group S4.

As noted in [6], this is in stark contrast to the situation for polynomials,
since Hilbert showed that 100% of degree n polynomials (in an appropriate
sense) have Galois group Sn. Theorem 4 may be broken down by signature.
Among the quartic fields having 0, 2, or 4 complex embeddings respectively,
the proportions having associated Galois group S4 are given by: 83.723%,
93.914%, and 66.948% respectively.

Finally, using a duality between quartic fields and 2-class groups of cubic
fields, we are able to determine the mean value of the size of the 2-class group
of both real and complex cubic fields. More precisely, we prove



DISCRIMINANTS OF QUARTIC RINGS AND FIELDS 1033

Theorem 5. For a cubic field F , let h∗
2(F ) denote the size of the exponent-

2 part of the class group of F . Then

(a) lim
X→∞

∑
F h∗

2(F )∑
F 1

= 5/4 ;(1)

(b) lim
X→∞

∑
F h∗

2(F )∑
F 1

= 3/2 ,(2)

where the sums range over cubic fields F having discriminants in the ranges
(0, X) and (−X, 0) respectively.

The theorem implies, in particular, that at least 75% of totally real cubic
fields, and at least 50% of complex cubic fields, have odd class number.

It is natural to compare the values 5/4 and 3/2 obtained in our theorem
with the corresponding values predicted by the Cohen-Martinet heuristics (the
analogues of the Cohen-Lenstra heuristics for noncyclic, higher degree fields).
There has been much recent skepticism surrounding these heuristics (even by
Cohen-Martinet themselves; see [9]), since at the prime p = 2 they do not
seem to agree with existing computational data.∗ In light of this situation,
it is interesting to note that our Theorem 5 agrees exactly with the (original)
prediction of the Cohen-Martinet heuristics [8]. In particular, Theorem 5 is a
strong indication that, in the language of [8], the prime p = 2 is indeed “good”,
and the fact that Theorem 5 does not agree well with current computations is
due only to the extremely slow convergence of the limits (1) and (2).

The cubic analogues of Theorems 1, 3, and 5 for cubic fields were obtained
in the well-known work of Davenport-Heilbronn [15]. Their methods relied
heavily on the remarkable discriminant-preserving correspondence between cu-
bic orders and equivalence classes of integral binary cubic forms, established by
Delone-Faddeev [16]. It seems, however, that Davenport-Heilbronn were not
aware of the work in [16], and derived the same correspondence for maximal
orders independently; had they known the general form of the Delone-Faddeev
parametrization, it would have been possible for them (using again the results
of Davenport [13]) simply to read off the cubic analogue of Theorem 2.† Mean-

∗A computation of all real cubic fields of discriminant less than 500000 ([17]) shows that
(
∑

0<Disc(F )<500000 h∗
2(F ))/(

∑
0<Disc(F )<500000 1) equals about 1.09, a good deal less than

5/4; the analogous computation for complex cubic fields of absolute discriminant less than
1000000 ([18]) yields approximately 1.30, a good deal less than 3/2!

†We note the result here, since it seems not to have been stated previously in the literature.
Let M3(ξ, η) denote the number of cubic orders O such that ξ < Disc(O) < η. Then

lim
X→∞

M3(0, X)

X
= π2/72,

lim
X→∞

M3(−X, 0)

X
= π2/24.
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while, the cubic analogue of Theorem 4 may be obtained by combining the
work of Davenport-Heilbronn [15] with that of Cohn [10].‡

An important ingredient that allows us to extend the above cubic results
to the quartic case is a parametrization of quartic orders by means of two in-
tegral ternary quadratic forms up to the action of GL2(Z)× SL3(Z), which we
established in [3]. The proofs of Theorems 1–5 thus reduce to counting integer
points in certain 12-dimensional fundamental regions. We carry out this count-
ing in a hands-on manner similar to that of Davenport [13], although another
crucial ingredient in our work is a new averaging method which allows us to
deal more efficiently with points in the cusps of these fundamental regions. The
necessary point-counting is accomplished in Section 2. This counting result,
together with the results of [3], immediately yields the asymptotic density of
discriminants of pairs (Q, R), where Q is an order in an S4-quartic field and R

is a cubic resolvent of Q. Obtaining Theorems 1–5 from this general density
result then requires a sieving process which we carry out in Section 3.

The space of pairs of ternary quadratic forms that we use in this arti-
cle, as well as the space of binary cubic forms that was used in the work of
Davenport-Heilbronn, are both examples of what are known as prehomoge-
neous vector spaces. A prehomogeneous vector space is a pair (G, V ), where
G is a reductive group and V is a linear representation of G such that GC
has a Zariski open orbit on VC. The concept was introduced by Sato in the
1960’s, and a classification of all prehomogeneous vector spaces was given in
the work of Sato-Kimura [22], while Sato-Shintani [23] developed a theory of
zeta functions associated to these spaces.

The connection between prehomogeneous vector spaces and field exten-
sions was first studied systematically in the beautiful 1992 paper of Wright-
Yukie [27]. In that paper, they laid out a program to determine the density of
discriminants of number fields of degree up to five by considering adelic versions
of Sato-Shintani’s zeta functions as developed by Datskovsky and Wright [11]
in their work on cubic extensions. Despite looking very promising, the program
has not succeeded to date beyond the cubic case, although the global theory
of the adelic zeta function in the quartic case was developed in the impressive
1993 treatise of Yukie [28], which led to a conjectural determination of the
Euler products appearing in Theorem 1 (see [29]).

The reason that the zeta function method has required such a large amount
of work, and has thus presented some related difficulties, is that intrinsic to
the zeta function approach is a certain overcounting of quartic extensions.
Specifically, even when one wishes to count only quartic field extensions of Q
having, say, Galois group S4, inherent in the zeta function is a sum over all

‡Their work implies that, when ordered by absolute discriminant, 100% of cubic fields
have associated Galois group S3.
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“étale extensions” of Q, including the “reducible” extensions that correspond
to direct sums of quadratic extensions. These reducible quartic extensions
far outnumber the irreducible ones; indeed, the number of reducible quartic
extensions of absolute discriminant at most X is asymptotic to X log X, while
we show that the number of quartic field extensions of absolute discriminant
at most X is only O(X). This overcount results in the Shintani zeta function
having a double pole at s = 1 rather than a single pole. Removing this double
pole, in order to obtain the desired main term, has been the primary difficulty
with the zeta function method.

One way our viewpoint differs from the adelic zeta function approach is
that we consider integer orbits as opposed to rational orbits. This turns out to
have a number of significant advantages. First, the use of integer orbits enables
us to apply a convenient reduction theory in terms of Siegel sets. Within these
Siegel sets, we then determine which regions contain many irreducible points
and which do not. We prove that the cusps of the Siegel sets contain most
of the reducible points, while the main bodies of the Siegel sets contain most
of the irreducible points. These geometric results allow us to separate the
irreducible orbits from the reducible ones from the very beginning, so that we
may proceed directly to the “irreducible” integer orbits, where geometry-of-
numbers methods are applicable. The aforementioned difficulties arising from
overcounting are thus bypassed.

A second important advantage of using integer orbits in conjunction with
geometry-of-numbers arguments is that the resulting methods are very ele-
mentary and the treatment is relatively short. Finally, the use of integer orbits
enables us to count not only S4-quartic fields but also all orders in S4-quartic
fields.

Nevertheless, the adelic zeta function method, if completed in the future,
could lead to some interesting results to supplement Theorems 1–5. For ex-
ample, it may yield functional equations for the zeta function as well as a
precise determination of its poles, thus possibly leading to lower bounds on
first order error terms in Theorem 1–5. It is also likely that the zeta function
methods together with the methods introduced here would lead to even further
applications in these and other directions.

We fully expect that the geometric methods introduced in this paper will
also prove useful in other contexts. For example, with only slight modifications,
the methods of this paper can also be used to derive the density of discriminants
of quintic orders and fields. These and related results will appear in [4], [5].

We note that, in this paper, we always count quartic (and cubic) number
fields up to isomorphism. Another natural way to count number fields is as
subfields of a fixed algebraic closure Q̄ of Q. It is easy to see that any iso-
morphism class of S4-quartic field corresponds to four conjugate subfields of
Q̄, while an isomorphism class of D4-quartic field corresponds to two conju-
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gate subfields of Q̄. Adopting the latter counting convention would therefore
multiply all constants in Theorems 1 and 2 by a factor of four. Moreover, the
proportion of S4-quartic fields in Theorem 4 would then increase to 90.644%
(by signature: 91.141%, 96.862%, and 80.202%). Theorems 3 and 5, of course,
would remain unchanged.

2. On the class numbers of pairs of ternary quadratic forms

Let VR denote the space of pairs (A, B) of ternary quadratic forms over
the real numbers. We write an element (A, B) ∈ VR as a pair of 3×3 symmetric
real matrices as follows:

2 · (A, B) =

 2a11 a12 a13

a12 2a22 a23

a13 a23 2a33

 ,

 2b11 b12 b13

b12 2b22 b23

b13 b23 2b33

 .(3)

Such a pair (A, B) is said to be integral if A and B are “integral” quadratic
forms, i.e., if aij , bij ∈ Z.

The group GZ = GL2(Z)×SL3(Z) acts naturally on the space VR. Namely,
an element g2 ∈ GL2(Z) acts by changing the basis of the lattice of forms
spanned by (A, B); i.e., if g2 =

(
r s
t u

)
, then g2 · (A, B) = (rA + sB, tA + uB).

Similarly, an element g3 ∈ SL3(Z) changes the basis of the three-dimensional
space on which the forms A and B take values; i.e., g3·(A, B) = (g3Agt

3, g3Bgt
3).

It is clear that the actions of g2 and g3 commute, and that this action of GZ
preserves the lattice VZ consisting of the integral elements of VR.

The action of GZ on VR (or VZ) has a unique polynomial invariant. To
see this, notice first that the action of GL3(Z) on V has four independent
polynomial invariants, namely the coefficients a, b, c, d of the binary cubic form

f(x, y) = f(A,B)(x, y) = 4 · Det(Ax − By),

where (A, B) ∈ V . We call f(x, y) the binary cubic form invariant of the
element (A, B) ∈ V .

Next, GL2(Z) acts on the binary cubic form f(x, y), and it is well-known
that this action has exactly one polynomial invariant, namely the discriminant
Disc(f). Thus the unique polynomial invariant for the action of GZ on VZ is
Disc(4 · Det(Ax − By)). We call this fundamental invariant the discriminant
Disc(A, B) of the pair (A, B). (The factor 4 is included to insure that any pair
of integral ternary quadratic forms has integral discriminant.)

The orbits of GZ on VZ have an important arithmetic significance. Recall
that a quartic ring is any ring that is isomorphic to Z4 as a Z-module; for
example, an order in a quartic number field is a quartic ring. In [3], we showed
how quartic rings may be parametrized in terms of the GZ-orbits on VZ:
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Theorem 6. There is a canonical bijection between the set of GZ-equiv-
alence classes of elements (A, B) ∈ VZ and the set of isomorphism classes of
pairs (Q, R), where Q is a quartic ring and R is a cubic resolvent ring of Q.
Under this bijection, we have Disc(A, B) = Disc(Q) = Disc(R).

A cubic resolvent of a quartic ring Q is a cubic ring R equipped with a
certain quadratic resolvent mapping Q → R, whose precise definition will not
be needed here (see [3] for details). In view of Theorem 6, it is natural to try
to understand the number of GZ-orbits on VZ having absolute discriminant
at most X, as X → ∞. The number of integral orbits on VZ having a fixed
discriminant D is called a “class number”, and we wish to understand the
behavior of this class number on average.

From the point of view of Theorem 6, we would like to restrict the elements
of VZ under consideration to those which are “irreducible” in an appropriate
sense. More precisely, we call a pair (A, B) of integral ternary quadratic forms
in VZ absolutely irreducible if

• A and B do not possess a common zero as conics in P2(Q); and

• the binary cubic form f(x, y) = Det(Ax − By) is irreducible over Q.

Equivalently, (A, B) is absolutely irreducible if A and B possess a common zero
in P2 having field of definition K, where K is a quartic number field whose
Galois closure has Galois group either A4 or S4 over Q. In terms of Theorem 6,
absolutely irreducible elements in VZ correspond to pairs (Q, R) where Q is an
order in either an A4 or S4-quartic field. The main result of this section is the
following theorem:

Theorem 7. Let N(V (i)
Z ; X) denote the number of GZ-equivalence classes

of absolutely irreducible elements (A, B) ∈ VZ having 4−2i zeros in P2(R) and
satisfying |Disc(A, B)| < X. Then

(a) lim
X→∞

N(V (0)
Z ; X)
X

=
ζ(2)2ζ(3)

48
;

(b) lim
X→∞

N(V (1)
Z ; X)
X

=
ζ(2)2ζ(3)

8
;

(c) lim
X→∞

N(V (2)
Z ; X)
X

=
ζ(2)2ζ(3)

16
.

Theorem 7 is proved in several steps. In Subsection 2.1, we outline the
necessary reduction theory needed to establish some particularly useful funda-
mental domains for the action of GZ on VR. In Subsection 2.2, we describe a
new “averaging” method that allows one to efficiently count points in various
components of these fundamental domains in terms of their volumes. In Sub-
sections 2.3–2.5, we investigate the distribution of reducible and irreducible
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integral points within these fundamental domains. The volumes of the result-
ing “irreducible” components of these fundamental domains are then computed
in the final Subsection 2.6, proving Theorem 7.

In Section 3, we will show how similar counting methods—together with
a sieving process—can be used to prove Theorems 1–5.

2.1. Reduction theory. The action of GR = GL2(R) × SL3(R) on VR
has three nondegenerate orbits V

(0)
R , V

(1)
R , V

(2)
R , where V

(i)
R consists of those

elements (A, B) in VR having 4 − 2i common zeros in P2(R). We wish to
understand the number N(V (i)

Z ; X) of absolutely irreducible GZ-orbits on V
(i)

Z
having absolute discriminant less than X (i = 0, 1, 2). We accomplish this by
counting the number of integer points of absolute discriminant less than X in
suitable fundamental domains for the action of GZ on VR.

These fundamental regions are constructed as follows. First, let F denote
a fundamental domain for the action of GZ on GR by left multiplication. We
may assume that F ⊂ GR is semi-algebraic and connected, and that it is
contained in a standard Siegel set, i.e., F ⊂ N ′A′KΛ, where

K = {orthogonal transformations in GR};

A′ = {a(t1, t2, t3) : 0 < t−1
1 ≤ c1 t1, 0 < (t2t3)−1 ≤ c1 t2 ≤ c2

1 t3},

where a(t1, t2, t3) =

((
t−1
1

t1

)
,

(
(t2t3)

−1

t2
t3

))
; or

A′ = {a(s1, s2, s3) : s1 ≥ 1/
√

c1, s2, s3 ≥ 1/ 3
√

c1},

where a(s1, s2, s3) =

((
s−1
1

s1

)
,

(
s−2
2 s−1

3

s2s
−1
3

s2s
2
3

))
;

N ′ = {n(u1, u2, u3, u4) : |u1|, |u2|, |u3|, |u4| ≤ c2},

where n(u1, u2, u3, u4) =

((
1
u1 1

)
,

(
1
u2 1
u3 u4 1

))
;

Λ = {λ : λ > 0},

where λ acts by

((
λ

λ

)
,

(
1

1
1

))
,

and c1, c2 are absolute constants. For example, the well-known fundamental
domains in GL2(R) and GL3(R) as constructed by Minkowski satisfy these
conditions for c1 = 2/

√
3 and c2 = 1/2.

Next, for i = 0, 1, 2, let ni denote the cardinality of the stabilizer in GR
of any element v ∈ V

(i)
R . (One easily checks that ni = 24, 4, 8 for i = 0, 1, 2

respectively.) Then for any v ∈ V
(i)

R , Fv will be the union of ni fundamental
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domains for the action of GZ on V
(i)

R . Since this union is not necessarily
disjoint, Fv is best viewed as a multiset, where the multiplicity of a point x

in Fv is given by the cardinality of the set {g ∈ F | gv = x}. Evidently, this
multiplicity is a number between 1 and ni.

Furthermore, since Fv is a polynomial image of a semi-algebraic set F ,
the theorem of Tarski and Seidenberg on quantifier elimination ([25], [24])
implies that Fv is a semi-algebraic multiset in VR; here by a semi-algebraic
multiset R we mean a multiset whose underlying subsets Rk of elements in
R having multiplicity k are semi-algebraic for all 1 ≤ k < ∞. The semi-
algebraicity of Fv will play an important role in what follows (cf. Lemmas 9
and 15).

For any v ∈ V
(i)

R , we have noted that the multiset Fv is the union of ni

fundamental domains for the action of GZ on V
(i)

R . However, not all elements
in GZ\VZ will be represented in Fv exactly ni times. In general, the number of
times the GZ-equivalence class of an element x ∈ VZ will occur in Fv is given
by ni/m(x), where m(x) denotes the size of the stabilizer of x in GZ. Since we
have shown in [3] that the stabilizer in GZ of an absolutely irreducible element
(A, B) ∈ VZ is always trivial, we conclude that, for any v ∈ V

(i)
R , the product

ni ·N(V (i)
Z ; X) is exactly equal to the number of absolutely irreducible integer

points in Fv having absolute discriminant less than X.
Thus to estimate N(V (i)

Z ; X), it suffices to count the number of integer
points in Fv for some v ∈ V

(i)
R . The number of such integer points can be

difficult to count in a single such Fv (see e.g., [13], [2]), so instead we average
over many Fv by averaging over certain v lying in a box H.

2.2. Averaging over fundamental domains. Let H = {(A, B) ∈ VR :
|aij |, |bij | ≤ 10 for all i, j; |Disc(A, B)| ≥ 1}, and let Φ = ΦH denote the
characteristic function of H. Then since Fv is the union of ni fundamental
domains for the action of GZ on V (i) = V

(i)
R , we have

(4)

N(V (i)
Z ; X)

=

∫
v∈V (i) Φ(v) · #{x ∈ Fv ∩ V

(i)
Z abs. irr. : 0 < |Disc(x)| < X} |Disc(v)|−1dv

ni ·
∫

v∈V (i) Φ(v) |Disc(v)|−1dv
,

where points in Fv∩V
(i)

Z are as usual counted according to their multiplicities
in Fv. The denominator on the right-hand side of (4) is, by construction,
a finite absolute constant Mi greater than zero. We have chosen to use the
measure |Disc(v)|−1dv because it is a GR-invariant measure.

More generally, for any GZ-invariant set S ⊂ VZ, we may speak of the
number N(S; X) of irreducible GZ-orbits on S having absolute discriminant
less than X. Then N(S; X) can be expressed similarly as
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(5)

N(S; X)

=
2∑

i=0

∫
v∈V (i) Φ(v) · #{x ∈ Fv ∩ S abs. irr. : 0 < |Disc(x)| < X} |Disc(v)|−1dv

ni ·
∫

v∈V (i) Φ(v) |Disc(v)|−1dv
.

We shall use this definition of N(S; X) for any S ⊂ VZ, even if S is not
GZ-invariant. Note that for disjoint S1, S2 ⊂ VZ, we have N(S1 ∪ S2) =
N(S1) + N(S2).

Using the fact that |Disc(v)|−1dv is the unique GR-invariant measure on
V (i) (up to scaling), we may also express formula (5) for N(S; X) as an integral
over F−1 ⊂ GR. Let dg be a left-invariant Haar measure on GR, which is
uniquely defined up to scaling. Then we may write

N(S; X) =
2∑

i=0

1
Mi

∫
v∈V (i)

∑
x∈Fv∩S abs. irr.

|Disc(x)|<X

Φ(v) |Disc(v)|−1dv

=
2∑

i=0

c′

Mi

∫
g∈F−1

∑
x∈V (i)∩S abs. irr.

|Disc(x)|<X

Φ(gx) dg,

(6)

where c′ is an absolute constant depending only on the scaling of the Haar
measure dg. In particular, since F−1 ⊂ KA′−1N ′Λ ⊂ KN ′A′−1Λ, we have the
upper bound

N(S; X) �
∫

g∈KN ′A′−1Λ

∑
x∈S abs. irr.
|Disc(x)|<X

Φ(kna−1λx) s−2
1 s−6

2 s−6
3 d×λ d×s dn dk.(7)

Note that, in the latter integral, it suffices to restrict λ ∈ Λ to within the range
[X−1/12, c], where c = (max{|Disc(x)| : x ∈ H})1/12 is an absolute constant.
Indeed, if x ∈ S with 1 ≤ |Disc(x)| < X and λ is outside the range [X−1/12, c],
then |Disc(kna−1λx)| = λ12|Disc(x)| will lie outside the range [1, c12]; in that
case, kna−1λx /∈ H and the integrand will be zero.

Now since K and N ′ are compact, there exists a compact set H ′ such that
H ′ ⊃ N ′KH. In fact, we may set

H ′ = {(A, B) ∈ VR : |aij |, |bij | ≤ 60 for all i, j; |Disc(A, B)| ≥ 1}
as it is easy to check that the latter set contains N ′KH. Let Ψ denote the
characteristic function of H ′. Then (7) implies

N(S; X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

σ(S) s−2
1 s−6

2 s−6
3 d×s d×λ,(8)

where σ(S) = σ(S; λ, s1, s2, s3) is given by

σ(S) =
∑

(A,B)∈S abs. irr.
|Disc(A,B)|<X

Ψ
(
λ · a(s1, s2, s3)−1(A, B)

)
.
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Noting that 2λ · a(s1, s2, s3)−1(A, B) is
(9)([
2 λs1s4

2s
2
3a11 λs1s2s2

3a12 λs1s2s
−1
3 a13

λs1s2s2
3a12 2 λs1s

−2
2 s2

3a22 λs1s
−2
2 s−1

3 a23

λs1s2s
−1
3 a13 λs1s

−2
2 s−1

3 a23 2 λs1s
−2
2 s−4

3 a33

]
,

[
2 λs−1

1 s4
2s

2
3a11 λs−1

1 s2s2
3a12 λs−1

1 s2s
−1
3 a13

λs−1
1 s2s2

3a12 2 λs−1
1 s−2

2 s2
3a22 λs−1

1 s−2
2 s−1

3 a23

λs−1
1 s2s

−1
3 a13 λs−1

1 s−2
2 s−1

3 a23 2 λs−1
1 s−2

2 s−4
3 a33

])
,

we see that λ · a(s1, s2, s3)−1(A, B) will lie in H ′ only if (A, B) lies in the box
defined by the inequalities
(10)

|a11|≤ 60
λs1s4

2s
2
3
; |a12|≤ 60

λs1s2s2
3
; |a13|≤ 60s3

λs1s2
; |a22|≤ 60s2

2
λs1s2

3
; |a23|≤ 60s2

2s3

λs1
; |a33|≤ 60s2

2s
4
3

λs1
;

|b11|≤ 60s1
λs4

2s
2
3
; |b12|≤ 60s1

λs2s2
3
; |b13|≤ 60s1s3

λs2
; |b22|≤ 60s1s2

2
λs2

3
; |b23|≤ 60s1s2

2s3

λ ; |b33|≤ 60s1s2
2s

4
3

λ .

Hence σ(S) is at most the number of absolutely irreducible points in S lying
in the box (10). In practice, we will choose our sets S ⊂ VZ for which it is easy
to estimate the number of points in S lying in the box (10). This will allow
for accurate estimates of N(S; X).

We note that the same counting method may be used even if we are
interested in counting both reducible and irreducible orbits in VZ. For any
set S ⊂ VZ, let N∗(S; X) be defined by (5), but where the phrase “abs. irr.”
is removed. Thus for a GZ-invariant set S ⊂ VZ, N∗(S; X) counts the total
number of GZ-orbits in S having absolute discriminant nonzero and less than
X (not just the irreducible ones). By the same reasoning, we have

N∗(S; X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

σ∗(S) s−2
1 s−6

2 s−6
3 d×s d×λ,(11)

where σ∗(S) = σ(S; λ, s1, s2, s3) denotes the number of integer points in S

satisfying (10).
The expression (5) for N(S; X), its analogue for N∗(S, X), the upper

bounds (8) and (11), and the inequalities (10) will be useful in the sections
that follow.

2.3. Preliminary estimates. We begin with some estimates that must be
satisfied by the coefficients of any element (A, B) ∈ Fv, where v ∈ H.

Lemma 8. Let v ∈ H. Suppose (A, B) ∈ Fv has entries given by (3) and
satisfies |Disc(A, B)| < X. Let S be any multiset consisting of elements of the
form aij or bij. Let m denote the number of a’s which occur in S, and let
n = |S| −m denote the number of b’s; let i, j, and k = 2 |S| − i− j denote the
number of indices in S equal to 1, 2, and 3 respectively. If m ≥ n, 2i ≥ j + k,
and i + j ≥ 2k, then ∏

s∈S

s = O(X |S|/12).
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Proof. Note that Fv ⊂ Λ′N ′A′Kv, where N ′, A′, and K are as in Sec-
tion 2.1 and Λ′ = {λ ∈ R : 0 < λ < X1/12}. For a multiset S as in the lemma,
it is clear that the value of f =

∏
s∈S s is bounded on Kv, since K and H are

compact. Next, the values of f on A′Kv are simply sn−m
1 sj+k−2i

2 s2k−i−j
3 times

the values of f on Kv. If m ≥ n, 2i ≥ j+k, and i+j ≥ 2k, then it is clear that
sn−m
1 sj+k−2i

2 s2k−i−j
3 is absolutely bounded, and hence the values of f on A′Kv

are also bounded. Finally, N ′ is compact, and it acts only by lower triangular
transformations; thus f also takes bounded values on N ′A′Kv. Therefore, the
values of f on Λ′N ′A′Kv are at most O(X |S|/12) in size. This is the desired
conclusion.

Lemma 8 gives those estimates on the entries of (A, B) that follow imme-
diately from the fact that F is contained in a Siegel set.

The following two lemmas will also be useful. The first is essentially due
to Davenport [12], [14]. To state the lemma, we require the following simple
definitions. A multiset R ⊂ Rn is said to be measurable if Rk is measurable
for all k, where Rk denotes the set of those points in R having a fixed multi-
plicity k. Given a measurable multiset R ⊂ Rn, we define its volume in the
natural way; that is, Vol(R) =

∑
k k · Vol(Rk), where Vol(Rk) denotes the

usual Euclidean volume of Rk.

Lemma 9. Let R be a bounded, semi -algebraic multiset in Rn having max-
imum multiplicity m, where R is defined by at most k polynomial inequalities
each having degree at most �. Then the number of integer lattice points (counted
with multiplicity) contained in the region R is

Vol(R) + O(max{Vol(R̄), 1}),

where Vol(R̄) denotes the greatest d-dimensional volume of any projection of
R onto a coordinate subspace obtained by equating n − d coordinates to zero,
where d takes all values from 1 to n − 1. The implied constant in the second
summand depends only on n, m, k, and �.

Although Davenport states Lemma 9 only for compact semi-algebraic sets,
his proof adapts without essential change to the more general case of bounded
semi-algebraic multisets.

The following effective special case of Lemma 9 will be particularly useful.

Lemma 10. Let c > 0, and let B be a closed box in Rn each of whose
faces is parallel to a coordinate hyperplane and each of whose edges has length
at least c. Then the number of integer points in B is at most C ·Vol(B), where
C is an absolute constant depending only on c.
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The proof of Lemma 10 is trivial. Furthermore, it is easy to see that we
may take C = max{�c�/c, 1+1/�c�}n, with equality if and only if B is an
appropriately placed n-dimensional hypercube in Rn whose edges each have
length either c or �c� (whichever gives the bigger value of C).

Notation. In what follows, we use ε to denote any positive real number.
Thus we say “f(X) = O(X1+ε)” if f(X) = O(X1+ε) for any ε > 0.

2.4. Estimates on reducible pairs (A, B). In this section we describe the
relative frequencies with which absolutely irreducible elements sit inside various
parts of the multiset Fv, as v varies over the box H.

Lemma 11. Let v take a random value in H uniformly with respect to the
measure |Disc(v)|−1 dv. Then the expected number of absolutely irreducible ele-
ments (A, B) ∈ Fv∩VZ such that a11 = 0 and |Disc(A, B)| < X is O(X11/12).

Proof. Let V (0) denote the set of (A, B) ∈ VR such that a11 = 0. Note
that if an element (A, B) ∈ V (0) is absolutely irreducible, then we must have
b11 �= 0, for otherwise (1, 0, 0) ∈ P2(Q) would be a common zero of A and B.

We wish to show that N(V (0);X), as defined by (5), is O(X11/12). To
estimate N(V (0);X), we partition V (0) into two sets: V (0∗), consisting of
those elements (A, B) ∈ V (0) for which a12 �= 0; and V (00), consisting of those
(A, B) where both a11 = a12 = 0. Then we have N(V (0); X) = N(V (0∗); X)+
N(V (00);X). We estimate the latter two terms in two cases.

Case I. N(V (0∗); X). In this case, estimate (8) becomes

N(V (0∗); X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

σ(V (0∗)) s−2
1 s−6

2 s−6
3 d×s d×λ,(12)

where σ(V (0∗)) is at most the number of integer points in the box defined by
the inequalities (10) together with the conditions

a11 = 0, |a12| ≥ 1, |b11| ≥ 1.(13)

The number of integer points (a12, · · · , b33) ∈ R11 satisfying the latter re-
quirements can be positive only if the quantities 60

λs1s2s2
3

and 60s1
λs4

2s
2
3

are each
at least 1, since |a12|, |b11| ≥ 1. In that case, the conditions (10) and (13)
define a union of four boxes in R11, each of whose sidelengths is seen to be
bounded below by 2−11. By Lemma 10, it follows that the number of integer
points in B is bounded above by an absolute constant times Vol(B). Since
Vol(B) � λ−11s1s

4
2s

2
3, we have

σ(V (0∗)) � λ−11s1s
4
2s

2
3.(14)
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Equation (12) then implies

N(V (0∗); X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

λ−11s−1
1 s−2

2 s−4
3 d×s d×λ = O(X11/12)(15)

as desired.

Case II. N(V (00);X). If we have (A, B) with a11 = a12 = 0 then a13 �= 0
and a22 �= 0, or else the cubic form invariant f(x, y) = Det(Ax − By) would
be reducible. Therefore, by estimate (8), the expected number of absolutely
irreducible elements (A, B) ∈ V (00) with |Disc(A, B)| < X is

N(V (00); X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

σ(V (00)) s−2
1 s−6

2 s−6
3 d×s d×λ,(16)

where σ(V (0∗)) is bounded above by the number of integer points in the box
defined by the inequalities (10) and the conditions

a11 = 0, a12 = 0, |a13| ≥ 1, |a22| ≥ 1, |b11| ≥ 1.(17)

The conditions (10) and (17) define a region B ⊂ R10. This region can have
an integer point only if the quantities 60s3

λs1s2
, 60s2

2
λs1s2

3
, and 60s1

λs4
2s

2
3

are each at least
1. In that case, we observe that B is the union of eight boxes each of whose
sidelengths is at least 2−8. By Lemma 10, the number of integer points in B
is at most C(2−8) · Vol(B) � λ−10s2

1s
5
2s

4
3. Hence from (16) we have

N(V (00);X) �
∫ c

λ=X− 1
12

∫
s1,s2,s3

λ−10s−1
2 s−2

3 d×s d×λ = O(X10/12 log X),(18)

since equations (10) and (17) together imply that s1 ≤ 60
λ ≤ 60X1/12. This

yields the lemma.

Thus, for the purposes of proving Theorem 7, we may assume that a11 �= 0.

Lemma 12. Let v ∈ H. The number of (A, B) ∈ Fv such that a11 �= 0,
|Disc(A, B)| < X, and f(x, y) = Det(Ax − By) is reducible is O(X11/12).

Proof. Any cubic ring R = R(f) of discriminant n such that f(x, y) is a
reducible cubic form sits in a unique cubic Q-algebra K = R ⊗ Q ∼= Q ⊕ F ,
where F is a certain quadratic Q-algebra (indeed, F depends only on the
squarefree part of n). Let us write Disc(R) = k2Disc(K). Then the number of
quartic Q-algebras L having discriminant dividing Disc(R) = k2Disc(K), and
such that the cubic resolvent of L is K, is O(h∗

2(K)Disc(R)ε) by the work of
Baily [1].§ Since K is of the form Q ⊕ F , where F is a quadratic Q-algebra,

§Although Baily states all results for “cubic fields”, it is clear that his arguments hold
also when every occurrence of “field” is replaced by “étale Q-algebra”.
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we have h∗
2(K) = O(Disc(K)ε) by genus theory. Hence the total number of

possibilities for the quartic Q-algebra L, given R = R(f), is O(Disc(R)ε).
Now any quartic ring Q such that the cubic resolvent ring of Q is R must

be an order in such an L, and the index of this order in OL (the ring of integers
of L) must divide k. In particular, for a fixed choice of L the number of Q ⊆ L

with Rres(Q) = R(f) is at most the number of orders of index k in OL. For
any integer k > 0, let EP(n) denote the product of all factors pe occurring in
the prime power decomposition of n such that e ≥ 8. Then it follows from a
result of Nakagawa [20, Theorem 1] that the number of orders of index k in
the ring of integers in an étale quartic Q-algebra L is at most O(EP(k2)1/4+ε),
independent of L.

Let s = 16/27. We divide the set S of reducible cubic forms f(x, y) into
two sets: S1, the set of all reducible cubic forms f with EP(Disc(f)) ≥ Disc(f)s,
and S2, the set of all reducible cubic forms f with EP(Disc(f)) < Disc(f)s.

We treat first the (A, B) ∈ Fv with f(x, y) ∈ S1 and |Disc(f)| < X. It is a
standard fact that the number of positive integers n < X such that EP(n) ≥ ns

is O(X1− 7
8
s+ε). Furthermore, it is easy to see (see e.g., Datskovsky-Wright [11],

Nakagawa [21]) that the number of orders of a given index k in the maximal
order of a cubic Q-algebra K is at most O(k1/3+ε), independent of K; it follows
that the number of reducible f(x, y) with a given discriminant n is at most
O(n1/6+ε). Hence the total number of classes of reducible cubic forms f ∈ S1

satisfying 0 < |Disc(f)| < X is at most O(X1− 7
8
s+ε · X 1

6
+ε).

Finally, given an f ∈ S1 with 0 < |Disc(f)| < X, the number of quartic
Q-algebras L of discriminant at most Disc(R(f)), such that the cubic resolvent
of L is K =R(f)⊗Q, is O(Disc(f)ε) = O(Xε); and the maximal number of or-
ders Q of index k in OL is at most O(EP(k2)1/4+ε) = O(X1/4+ε). We conclude
that the total number of (A, B) ∈ Fv with f(x, y) ∈ S1 and |Disc(f)| < X is

O(X1− 7
8
s+ε · X 1

6
+ε · Xε · X 1

4
+ε).(19)

To similarly treat the (A, B) ∈ Fv with f(x, y) ∈ S2 and |Disc(f)| < X,
we may invoke a result of Davenport [13, Lemma 3], the proof of which implies
that the total number of reducible forms f(x, y) = ax3 + bx2y + cxy2 + dy3

arising from an (A, B) ∈ Fv such that a �= 0 and |Disc(f)| < X is at most
O(X3/4+ε). In particular, the total number of such cubic forms f ∈ S2 is at
most O(X3/4+ε). Now given an f ∈ S2, the number of quartic Q-algebras L

having discriminant at most Disc(R(f)), such that the cubic resolvent of L is
K = R(f) ⊗ Q, is O(Disc(f)ε) = O(Xε); and the number of orders Q of index
k in OL is at most O(EP(k2)1/4+ε) = O(k

1
2
s+ε) = O(X

1
4
s+ε). Therefore, the

total number of (A, B) ∈ Fv with f(x, y) ∈ S2, a �= 0, and |Disc(f)| < X is

O(X
3
4
+ε · Xε · X 1

4
s+ε).(20)

Choosing s = 16/27 yields O(X97/108+ε) in both (19) and (20), and thus both
are O(X11/12).
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It remains only to show that the number of (A, B) satisfying the conditions
of the lemma, for which a = Det(A) = 0, is also at most O(X11/12). To this
end, note that Det(A) = 0 is a quadratic equation in a23, with nonzero leading
coefficient a11. It follows that once all entries of A except for a23 are fixed,
then a23 too is determined up to at most two possibilities by the equation
Det(A) = 0.

Let S denote the set of all (A, B) ∈ VZ such that Det(A) = 0, so that
the entry a23 of A is determined up to two possibilities by the other entries
of A. Then estimate (11) applies to N∗(S; X), where σ∗(S) is the number of
points in S in the region defined by (10) but where we assume a23 takes values
in a set of cardinality at most two. Thus we may consider the 11-dimensional
region B defined by (10) in the 11 variable entries of (A, B) excluding a23. This
region B can have an integer point only if 60

λs1s4
2s

2
3
≥ 1 (since |a11| must be at

least 1). In that case, B is seen to be a union of two boxes in R11 each of whose
sidelengths is at least 2−14; by Lemma 10, we have

σ∗(S) � 2 · Vol(B) � 2 · λ−11s1s
−2
2 s−1

3

so that

N∗(S; X) � 2
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

λ−11s−1
1 s−8

2 s−7
3 d×s d×λ = O(X11/12),

as was desired.

Let T denote the set of twelve variables {aij , bij}. Note that a11 �= 0
together with the estimate a2

11t = O(X1/3) for t ∈ T (Lemma 8) shows that

t = O(X1/3)

for all t ∈ T .

Lemma 13. Let v take a random value in H uniformly with respect to the
measure |Disc(v)|−1 dv. Then the expected number of integer points (A, B) ∈
Fv such that a11 �= 0, |Disc(A, B)| < X, and A and B have a common zero in
P2(Q) is O(X11/12+ε).

Proof. We introduce some simple notation that will be needed during the
course of the proof. First, let R1(y, z), R2(x, z), R3(x, y) denote the resultants
of the two quadratic forms A(x, y, z) and B(x, y, z) with respect to the variables
x, y, z respectively. The Ri’s are thus binary quartic forms.

Next, denote by A12(x, y), A13(x, z), A23(y, z) the binary quadratic forms
obtained from A(x, y, z) by setting z, y, x equal to zero respectively. Define
B12(x, y), B13(x, z), and B23(y, z) analogously. Associate with these pairs
(A12, B12), (A13, B13), (A23, B23) of binary quadratic forms their discriminant
invariants D12, D13, D23 given by

Dij = Disc(Det(Aijx − Bijy)).
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Equivalently, Dij is the resultant of the binary quadratic forms Aij(x, y) and
Bij(x, y) with respect to y, divided by x4. The discriminants Dij are forms of
degree four in the entries of (A, B). We note also that D12 is the coefficient
of x4 in R2(x, z) and of y4 in R1(y, z), with the analogous interpretations for
D13 and D23.

Now fix v ∈ H, and let (A, B) be an element in Fv with |Disc(A, B)| < X

for which A and B have a common rational zero (r, s, t) ∈ P2(Q). We choose
r, s, t to be integers having no common factor. If there is more than one rational
zero, we choose (r, s, t) so that as many of the r, s, t are zero as possible.
We write r = (r, s)(r, t)r0, s = (r, s)(s, t)s0, t = (r, t)(s, t)t0, where (m, n)
denotes the greatest common divisor of m and n (set (m, 0) = (0, n) = 1 for
convenience).

Let us consider first the case where rst �= 0 (so that A and B have no
common rational point in P2 with a coordinate equal to zero). To bound the
number of possibilities for (A, B) in this case, we examine the discriminants
D12, D13, D23.

If any of these discriminants, say D12, is equal to zero, then the corre-
sponding pair of quadratic forms (A12, B12) must have a common zero (r′, s′)
in P1. By assumption, this zero cannot be rational, for otherwise (r′, s′, 0)
would be a common rational zero of (A, B) having a zero coordinate. There-
fore, if D12 = 0, then A12, B12 possess the same pair of conjugate zeros (defined
over some quadratic extension of Q), and thus A12 and B12 are scalar multi-
ples of each other. Pick u, v ∈ Z such that uA12 − vB12 = 0. Then clearly
f(u, v) = Det(uA−vB) = 0, so that f(x, y) is reducible over Q. Such elements
(A, B) with f(x, y) reducible have already been handled, by Lemma 12.

We may therefore assume that D12 �= 0, D13 �= 0, and D23 �= 0. If all
aij , bij aside from possibly b23 are nonzero, then the estimate (Lemma 8)∏

t∈T\{b23}
t = O(X11/12)(21)

implies that the number of nonzero choices for the variables in T \ {b23} is
O(X11/12+ε). If some elements of T \ {b23} are equal to 0, we may replace
those variables in (21) by a11, and the estimate still remains true by Lemma 8.
Thus the number of choices for the remaining nonzero variables in T is still
O(X11/12+ε).

Once the variables in T \ {b23} have been chosen, they also determine
the quantities D12 and D13, which by assumption are nonzero. Since the co-
efficients of x4 in R3(x, y) and R2(x, z) are D12 and D13 respectively, and
R3(r, s) = R2(r, t) = 0, it follows that t0 and s0 divide D12 and D13 respec-
tively. Thus the number of possibilities for s0 and t0 are bounded by the
number of factors of D12 and D13 respectively. Since D12D13 = O(X2/3) by
Lemma 8, the number of possibilities for s0, t0 is at most O(Xε). Now r divides
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(the nonzero quantity) A23(s, t), and as A23(s, t) is clearly at most O(X2) in
absolute value, the number of choices for r is also at most O(Xε). The factors
(r, s), (r, t), and (s, t) are also determined up to O(Xε) choices, as they are
factors of r, r, and a11 respectively. Finally, since B(r, s, t) = 0, the value
of b23 is uniquely determined by T \ {b23}, r, s, and t. Hence the number of
choices for b23, given T \ {b23}, is at most O(Xε), and so the total number of
choices for T is O(X11/12+ε).

We consider next the cases where exactly one of r, s, t is equal to zero (so
that A and B do not have a common rational point in P2 with two coordinates
equal to zero).

If r = 0 and st �= 0, then

A23(s, t) = B23(s, t) = 0.(22)

We can assume that at least one of a22, b22 (say b22) and at least one of a33,
b33 (say b33) is nonzero, for otherwise (0, 1, 0) or (0, 0, 1) would be a rational
zero of (A, B) with two zero coordinates. Since∏

t∈T\{a23,b23}
t = O(X10/12)(23)

(where as before zero variables are replaced by a11), we see that the number
of choices for T \ {a23, b23} is bounded by O(X10/12+ε). Once these choices
are made, (22) implies that s divides b33 and t divides b22; hence the number
of possibilities for s and t is bounded by the number of factors of b33 and b22

respectively; so s and t can take at most O(Xε) values (since b22 and b33 are
both O(X1/3)). The values of a23 and b23 are then determined by T \{a23, b23},
r, s, and t. Thus the total number of possibilities for (A, B) in this case is
O(X10/12+ε).

The case s = 0, rt �= 0 is handled similarly; the equation (23) is simply
changed to

a11

∏
t∈T\{a13,b13}

t = O(X11/12),(24)

and we find in conclusion that there are at most O(X11/12+ε) choices for (A, B)
in this case.

The case t = 0, rs �= 0 is a bit more difficult. Proceeding in the same
manner, we find a12 and b12 are determined up to O(Xε) possibilities once a11,
a22, b11, and b22 are fixed. However, equation (24) now becomes

a2
11

∏
t∈T\{a12,b12}

t = O(X12/12),(25)

and this does not yield a satisfactory estimate. Nevertheless, we can still show
that the expected number of possibilities in this case, as v ranges over H, is at
most O(X10/12+ε).
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Indeed, let S denote the set of (A, B) ∈ VZ such that A and B have a com-
mon zero of the form (r, s, 0) with rs �= 0, so that a12 and b12 are determined up
to O(Xε) possibilities by the remaining variables. Then estimate (11) applies
to N∗(S; X), where σ∗(S) is the number of points in S in the region defined
by (10) but where we assume a12, b12 take values in sets of cardinality at most
O(Xε). Thus we may consider the 10-dimensional region B defined by (10) in
the ten variables of T \{a12, b12}. This region B can have an integer point only
if 60

λs1s4
2s

2
3
≥ 1 (since |a11| must be at least 1). In that case, B is a union of two

boxes in R10 each of whose sidelengths is bounded from below; by Lemma 10,
we have

σ∗(S) � Vol(B)O(Xε)2 � λ−10s2
2s

4
3O(Xε)

so that

N∗(S; X) � O(Xε)
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

λ−10s−2
1 s−4

2 s−2
3 d×s d×λ = O(X10/12+ε).

We now consider the cases where exactly two of r, s, t are equal to zero.
This condition implies that either a11 = b11 = 0 (which does not occur by
hypothesis), a22 = b22 = 0, or a33 = b33 = 0.

If a33 = b33 = 0, then the estimate∏
t∈T\{a33,b33}

t = O(X10/12)(26)

(again with variables equal to zero replaced by a11) shows that there are at
most O(X10/12+ε) possibilities for the variables in T .

Finally, suppose a22 = b22 = 0. We show that as v ranges over H, on
average one expects O(X10/12) values for (A, B) in this case. Let S denote
the set of (A, B) ∈ VZ for which a22 = b22 = 0. Then we have as before the
estimate (11) for N∗(S; X). The value of σ∗(S) is the number of integer points
in the region defined by (10) together with the condition a22 = b22 = 0. As
before, this defines a region B in R10 which—whenever it has an integer point—
becomes the union of two boxes whose edges are parallel to the coordinate axes
and whose lengths are bounded from below. Now Vol(B) � λ−10s−4

2 s4
3, so by

Lemma 10, we obtain

N∗(S; X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

λ−10s−2
1 s−10

2 s−2
3 d×s d×λ = O(X10/12).

This completes the proof of Lemma 13.

2.5. Cutting the cusps. Let 0 < δ < 1
12 .

Lemma 14. Let v take a random value in H uniformly with respect to
the measure |Disc(v)|−1 dv. Then the expected number of (A, B) ∈ Fv with
|Disc(A, B)| < X such that 0 < |a11| < Xδ is O(X11/12+δ).
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Proof. We partition VR into ∪V (m), where V (m) denotes the subset of
VR such that |a11| = m. To handle N∗(V (m); X) for m ≥ 1, we use again
the estimate (11). In this case, the quantity σ∗(V (m)) is equal to the number
of integer points (A, B) satisfying the inequalities (10) and the condition that
|a11| = m. This set of integer points can be nonempty only if 60

s1s4
2s

2
3

is at least
m. In that case, the region B defined by (10) and |a11| = m is the union
of two 11-dimensional boxes (contained in the hyperplanes of VR defined by
a11 = ±m) whose sidelengths are all bounded below by an absolute constant.
By Lemma 10,

σ∗(V (m)) � Vol(B) � λ−11s1s
4
2s

2
3.

Estimate (11) thus gives

N(V (m); X) �
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

λ−11s−1
1 s−2

2 s−4
3 d×s d×λ = O(X11/12)

where the implied constant is independent of m. Hence

N∗(∪1≤m≤XδV (m); X) =
�Xδ�∑
m=1

N(V (m); X) = XδO(X11/12) = O(X11/12+δ),

as desired.

Lemma 15. Let v take any value in H ∩ V (i). Let RX = RX(v) denote
the submultiset of points in Fv having absolute discriminant less than X, and
let R(δ)

X = {(A, B) ∈ RX : |a11| ≥ Xδ}. Then the number of integral elements

in R(δ)
X is

Vol(R(δ)
X ) + O(X1−δ+ε),

where Vol(R(δ)
X ) denotes the volume of the multiset R(δ)

X .

Proof. Let R(δ)
X be as in the statement of the lemma. Then it is easy

to see that the region R(δ)
X is bounded; indeed, the conditions |a11| ≥ Xδ

and a3
11t = O(X1/3) imply that t = O(X1/3−3δ) for all t ∈ T . Furthermore,

the various boundaries of R(δ)
X are defined by a bounded number of algebraic

surfaces of bounded degree. By Lemma 9, it follows that the number of integer
points in the multiset R(δ)

X is

Vol(R(δ)
X ) + O(Vol(R̄(δ)

X ))(27)

where Vol(R̄(δ)
X ) denotes the greatest r-dimensional volume of a projection of

R(δ)
X onto any of the r-dimensional coordinate subspaces (1 ≤ r ≤ 11) in VR.

Let T again denote the set of twelve variables {aij , bij}, let T ′ be any
proper subset of T , and consider the projection of R(δ)

X onto the coordinate
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hyperplane ZT ′ given by

ZT ′ = {t = 0 : t ∈ T \ T ′}.

We know by Lemma 8 that for (A, B) ∈ R(δ)
X ,

|a11|12−|T ′| ·
∣∣∣ ∏
t∈T ′

t
∣∣∣ < C1X

for some constant C1. Since |a11| ≥ Xδ, and 12 − |T ′| ≥ 1, it follows that∣∣∣ ∏
t∈T ′

t
∣∣∣ < C1X

1−δ.(28)

Furthermore, we have seen that |a11| ≥ Xδ implies that for any t ∈ T ′,

|t| < C2X
1/3(29)

for some constant C2. Thus the projection of R(δ)
X onto ZT ′ is contained in the

|T ′|-dimensional region defined by (28) and (29). This region is seen to have
volume at most

O(X1−δ+ε),

for any proper subset T ′ ⊂ T .
Therefore, (27) implies that the number of integer points in R(δ)

X is given
by

Vol(R(δ)
X ) + O(X1−δ+ε),(30)

where the implied constant may be chosen independently of v ∈ H∩V (i). This
is the desired conclusion.

Lemma 16. Let v take a random value in H ∩V (i) uniformly with respect

to the measure |Disc(v)|−1 dv, and let RX = RX(v) and R(δ)
X = R(δ)

X (v) be as

in Lemma 15. Then the expected size of Vol(RX)−Vol(R(δ)
X ) is O(X11/12+δ).

Proof. Let Ei(X) denote the expected value of Vol(RX(v))−Vol(R(δ)
X (v)),

as v varies over H ∩ V (i). We may write

Ei(X) =
1

Mi

∫
v∈V (i)

∫
x=(A,B)∈RX (v)

|a11|<Xδ

Φ(v) dx |Disc(v)|−1dv,(31)

where both dv and dx denote Euclidean measure on R12. Let us denote by
V (i)(δ, X) ⊂ V (i) the set {(A, B) ∈ V (i) : |a11| < Xδ, |Disc(A, B)| < X}.
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Following (6)–(8) and the proof of Lemma 14, we then have

Ei(X) =
c′

Mi

∫
g∈F−1

∫
x∈V (i)(δ,X)

Φ(gx) dx dg

�
∫

g∈KN ′A′−1Λ

∫
x∈V (i)(δ,X)

Φ(kna−1λx) s−2
1 s−6

2 s−6
3 dx d×λ d×s dn dk

�
∫

λ, s1,s2,s3

∫
x∈V (i)(δ,X)

Ψ
(
λ · a(s1, s2, s3)−1(A, B)

)
s−2
1 s−6

2 s−6
3 dx d×s d×λ

�
∫ c

λ=X− 1
12

∫ ∞

s1,s2,s3=
1
2

∫ Xδ

a11=−Xδ

λ−11s−1
1 s−2

2 s−4
3 da11 d×s d×λ

= O(X11/12+δ).

Choose δ = 1/24. Then Lemmas 11–16 yield

Proposition 17. Let v take a random value in H ∩ V (i) uniformly with
respect to the measure |Disc(v)|−1 dv, and let RX = RX(v) denote the sub-
multiset of points in Fv having absolute discriminant less than X. Then the
expected number of absolutely irreducible integral elements in RX is

Vol(RX) + O(X23/24+ε).

Therefore, even though the total number of lattice points in RX far ex-
ceeds the volume of RX in general, the above proposition states that the
number of absolutely irreducible lattice points in RX will essentially be equal
to the volume as X → ∞.

2.6. Computation of the fundamental volume. To prove Theorem 7, it
remains only to compute Vol(RX(v)), where RX(v) is defined as in Lemma 15.
We will see that this volume depends only on whether v lies in V (0), V (1), or
V (2); here V (i) again denotes the GR-orbit in VR consisting of those elements
(A, B) for which A and B possess 4 − 2i common zeros in P2(R).

Before performing this computation, we state first some propositions re-
garding the group G = GL2 × SL3 and its 12-dimensional representation V .

Proposition 18. The group GR acts transitively on V (i), and the isotropy
groups for v ∈ V (i) are given as follows:

(i) S4, if v ∈ V (0);

(ii) C2 × C2, if v ∈ V (1); and

(iii) D4, if v ∈ V (2).
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In view of Proposition 18, it is convenient to use the notation ni to denote
the order of the stabilizer of any vector v ∈ V (i). Proposition 18 implies that
we have n0 = 24, n1 = 4, and n2 = 8.

Now define the usual subgroups K, A+, N , and N̄ of GR as follows:

K = {orthogonal transformations in GR};

A+ = {a(t) : t ∈ R×4
+ }, where a(t) =

((
t1

t2

)
,

(
t3

t4
(t3t4)

−1

))
;

N = {n(u) : u ∈ R4}, where n(u) =

((
1
u1 1

)
,

(
1
u2 1
u3 u4 1

))
;

N̄ = {n̄(x) : x ∈ R4}, where n̄(x) =

((
1 x1

1

)
,

(
1 x2 x3

1 x4

1

))
.

It is well-known that the natural product map K × A+ × N → GR is an
analytic diffeomorphism. In fact, for any g ∈ GR, there exist unique k ∈ K,
a = a(t1, . . . , t4) ∈ A+, and n = n(u1, . . . , u4) ∈ N such that g = k a n. In
particular, the element n̄(x) ∈ N̄ can also be factored uniquely in this way;
the corresponding value of a is provided in the following proposition.

Proposition 19. Let n̄(x1, . . . , x4) ∈ N̄ . Set

q = 1 + x2
1, r = 1 + x2

2 + (x2x4 − x3)2, s = 1 + x2
3 + x2

4.

Then n̄ = k a(t1, t2, t3, t4) n, where

t1 = 1/
√

q, t2 =
√

q, t3 = 1/
√

r, t4 =
√

r/
√

s.

Define an invariant measure dg on GR as follows. Choose an invariant
measure dk on K so that

∫
K 1 dk = 1, and define∫

GR

f(g)dg =
∫

K

∫
R4

∫
R×4

+

f(kna)d×t du dk

=
∫

K

∫
R4

∫
R×4

+

t−1
1 t2t

−4
3 t−2

4 f(kan)d×t du dk.

Let dy = dy1 dy2 · · · dy12 be the standard Euclidean measure on VR.

Proposition 20. For any f ∈ L1(GR),∫
GR

f(g)dg =
1

32π3

∫
R×4

∫
R4

∫
R4

f(n̄(x)n(u)a(t))dx du d×t.
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Proof. We apply Proposition 19 to change variables, using the value of
the definite integral∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
qrs

dx1 dx2 dx3 dx4 = 2π3.

Proposition 21. For i = 0, 1, or 2, let f ∈ C0(V (i)), and let y denote
any element of V (i). Then∫

g∈GR

f(g · y)dg =
ni

6π3

∫
v∈V (i)

|Disc(v)|−1f(v) dv.

Proof. It suffices to prove the equality for

y =

 1
−1

 ,

 −1
1

 ∈ V (0),

y =

 1
1

−1

 ,

 1
1

 ∈ V (1), or

y =

 1
1

 ,

 1
1

 ∈ V (2).

Put

(z1, . . . , z12) = n̄(x)n(u)a(t) · y.

Then the form Disc(z)−1dz1 ∧ · · · ∧ dz12 is a GR-invariant measure, and so we
must have

Disc(z)−1dz1 ∧ · · · ∧ dz12 = c dx ∧ du ∧ d×t

for some constant factor c. An explicit calculation shows that c = −3/16 in all
three cases. By Proposition 18, GR is an ni-fold covering of V (i) via the map
g → g · y, where ni = 24, 4, or 8 for i = 0, 1, or 2 respectively. Hence∫

GR

f(g · y)dg = ni ·
1

32π3
· 16

3

∫
V (i)

|Disc(v)|−1f(v)dv

=
ni

6π3

∫
V (i)

|Disc(v)|−1f(v)dv,

as desired.
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Finally, for a vector vi ∈ V (i), we obtain using Proposition 21 that

Vol(RX(vi)) =
6π3

ni

∫ X1/6

0
t6d×t ·

∫
GZ\G1

R

dg

=
6π3

ni
· X

6
· ζ(2)

π
· ζ(2)ζ(3)

2π2
=

ζ(2)2ζ(3)
2ni

X,

proving Theorem 7.

3. Pairs of ternary quadratic forms and Theorems 1–5

Theorem 6 and Theorem 7 together now immediately imply the following

Theorem 22. Let M
∗(i)
4 (ξ, η) denote the number of isomorphism classes

of pairs (Q, R) such that Q is an order in an S4-quartic field with 4 − 2i real
embeddings, R is a cubic resolvent ring of Q, and ξ < Disc(Q) < η. Then

(a) lim
X→∞

M
∗(0)
4 (0, X)

X
=

ζ(2)2ζ(3)
48

;

(b) lim
X→∞

M
∗(1)
4 (−X, 0)

X
=

ζ(2)2ζ(3)
8

;

(c) lim
X→∞

M
∗(2)
4 (0, X)

X
=

ζ(2)2ζ(3)
16

.

To obtain finer asymptotic information on the distribution of quartic rings
(in particular, without the weighting by the number of cubic resolvents), we
need to be able to count absolutely irreducible GZ-equivalence classes in VZ
lying in certain subsets S ⊂ VZ. If S is defined, say, by finitely many congruence
conditions, then this can easily be done; we have

lim
X→∞

N(S ∩ V (i); X)
X

=
ζ(2)2ζ(3)

2ni

∏
p

µp(S),(32)

where µp(S) denotes the p-adic density of S in VZ, and ni = 24, 4, or 8 for
i = 0, 1, or 2 respectively. This refinement of Theorem 7 is proved in exactly
the same way as the original theorem.

We recall from [3, §4.10], however, that the set S of elements (A, B) in
VZ corresponding to maximal orders is defined by infinitely many congruence
conditions. To prove that (32) still holds for such a set, we require a uniform
estimate on the error term when only finitely many factors are taken in (32).
This estimate is provided in Section 3.2. In Section 3.3, we then use the
estimate to complete the proofs of Theorems 1–5.

3.1. Nowhere overramified quartic fields. Let Q be an order in an
S4-quartic field, and let p ∈ Z be a prime such that Q is maximal at p. We
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say p is overramified in Q if (p) factors into primes in Q as P 4, P 2, or P 2
1 P 2

2 ;
similarly, the archimedean prime of Z (the “prime at infinity”) is overramified
in Q if it factors into the product of two ramified places (i.e., if Q is totally
complex). A maximal quartic order Q (or the quartic field K4 in which it lies)
is nowhere overramified if no prime of Z (finite or infinite) is overramified in Q.

The significance of being “nowhere overramified” is as follows. Given an
S4-quartic field K4, let K24 denote its Galois closure. Let K3 denote a cubic
field contained in K24 (the “cubic resolvent field”), and let K6 be the unique
quadratic extension of K3 such that the Galois closure of K6 over Q is K24.
Then one checks that the quadratic extension K6/K3 is unramified precisely
when the quartic field K4 is nowhere overramified. Conversely, if K3 is a
noncyclic cubic field, and K6 is an unramified quadratic extension of K3, then
the Galois closure of K6 is an S4-extension K24 which contains up to conjugacy
a unique, nowhere overramified quartic extension K4.

3.2. A uniformity estimate. Let us denote by Vp the set of all (A, B) ∈ VZ
corresponding to quartic orders Q that are maximal at p and in which p is not
overramified. Let Wp = VZ − Vp. In order to apply a simple sieve to obtain
Theorems 1–5, we require the following proposition, analogous to Proposition 1
in [15] (though our proof is significantly simpler).

Proposition 23. N(Wp ; X) = O(X/p2), where the implied constant is
independent of p.

Proof. The set Wp may be naturally partitioned into two subsets: W(1)
p ,

the set of points (A, B) ∈ VZ corresponding to quartic rings not maximal at p;
and W(2)

p , the set of points (A, B) ∈ VZ corresponding to quartic rings that are
maximal at p but also overramified at p.

We first treat W(1)
p . We will need the following lemma.

Lemma 24. The number of maximal S4-quartic orders (equivalently, the
number of S4-quartic fields) having absolute discriminant less than X is O(X).

Lemma 24 follows immediately from Theorem 22, since we have shown
previously that every quartic ring has at least one cubic resolvent ring ([3,
Corollary 4]).

To estimate N(W (1)
p ; X) using Lemma 24, we wish to know for any mul-

tiple k of p that (a) the number of subrings of index k in a maximal quartic
ring Q is not too large relative to k; and (b) the number of cubic resolvents
that such a subring can possess is also not too large relative to k. For (a), a
much stronger result than we need has been proved by Nakagawa [20], whose
methods imply that the number of orders having index k =

∏
pei

i in a maxi-
mal quartic ring Q is at most O(

∏
p
(2+ε)�ei/4�
i ), where

∏
pei

i denotes the prime
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power decomposition of k. Any such order will of course have discriminant
k2Disc(Q).

As for (b), we have shown in [3, Corollary 4] that the number of cubic
resolvents of a quartic ring having content n is σ(n), where σ denotes the
usual sum-of-divisors function. (Recall that the content of a quartic ring Q

is the largest integer n such that Q = Z + nQ′ for some quartic ring Q′.) In
particular, rings having content 1 possess a single cubic resolvent.

Since every content n quartic ring Q arises as Z+nQ′ for a unique content 1
quartic ring Q′, and Disc(Q) = n6 Disc(Q′), we conclude

N(W(1)
p ; X) <

∞∑
n=1

σ(n)
n6

( ∞∑
e=1

p(2+ε)�e/4�

p2e

)∏
q 	=p

( ∞∑
e=0

q(2+ε)�e/4�

q2e

)
O(X) = O(X/p2),

as desired.
We turn next to W(2)

p . Let us say a quadratic extension K6 of a noncyclic
cubic field K3 is acceptable if the Galois closure of K6 over Q has Galois group
a transitive subgroup of S4. For a fixed K3, let g(n) denote the number of
acceptable quadratic extensions whose conductor has absolute norm n. To
estimate g(n), we require two lemmas. The first lemma is due to Baily [1]:

Lemma 25 (Baily). K6 is an acceptable quadratic extension of K3 if and
only if NK3/QDisc(K6/K3) is the square of an ideal in Z.

The next lemma gives an upper bound on the sum of h∗
2(K3) over all cubic

fields K3 having absolute discriminant less than X.

Lemma 26. We have ∑
K3

h∗
2(K3) = O(X),(33)

where the sum ranges over all cubic fields K3 having absolute discriminant less
than X.

Lemma 26 follows from Lemma 24 as Theorem 5 will follow from Theo-
rem 1.

Now it is a consequence of Lemma 25 that g(n) = 0 for nonsquare n. On
the other hand, for a square integer n = m2, class field theory implies that

g(m2) < κ h∗
2(K3) 3ω(m),(34)

where ω(m) denotes the number of prime factors of m, and κ is a constant
bounded independently of K3 (it corresponds to the even and infinite places;
see [1] for details).
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Lemma 26 and (34) now imply that, for some constant c′′,

N(W(2)
p ; X) ≤ κ

∑
K3

∑
p|m

m2|Disc(K3)|<X

3ω(m)h∗
2(K3)

≤ 3κ
∑

p2m2<X

3ω(m)
∑

|Disc(K3)|<X/(p2m2)

h∗
2(K3)

≤ 3κc′′
X

p2

∑
p2m2<X

3ω(m)

m2

< 3κc′′
X

p2

∑
m

3ω(m)

m2
.

As the last sum converges absolutely, this concludes the proof of the proposi-
tion.

3.3. Proofs of Theorems 1–5.

Proof of Theorem 1. As in [3], let Up denote the set of all (A, B) ∈ VZ
that correspond to pairs (Q, R) for which Q is maximal at p, and let U = ∩pUp.
Then U is the set of (A, B) ∈ VZ corresponding to maximal quartic rings Q.
In [3, Lemma 23], we determined the p-adic density µp(Up) of Up:

µp(Up) = (p − 1)4 p (p + 1)2 (p2 + p + 1)(p3 + p2 + 2p + 1)/ p12.(35)

Suppose Y is any positive integer. It follows from (32) and (35) that

lim
X→∞

N (i)(∩p<Y Up; X)
X

=
ζ(2)2ζ(3)

2ni

∏
p<Y

[p−12p (p2 − 1)2(p3 − 1)(p4 + p2 − p − 1)],

where we use the notation N (i)(S; X) for N(S ∩ V (i); X). Letting Y tend to
infinity, we obtain immediately that

lim sup
X→∞

N (i)(U ; X)
X

≤ ζ(2)2ζ(3)
2ni

∏
p

[p−12p (p2 − 1)2(p3 − 1)(p4 + p2 − p − 1)]

=
ζ(2)2ζ(3)

2ni

∏
p

[(1 − p−2)2(1 − p−3)(1 + p−2 − p−3 − p−4)]

=
1

2ni

∏
p

(1 + p−2 − p−3 − p−4).

To obtain a lower bound for N (i)(U ; X), we note that⋂
p<Y

Up ⊂ (U ∪
⋃

p≥Y

Wp).
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Hence by Proposition 23,

lim
X→∞

N (i)(U ; X)
X

≥ ζ(2)2ζ(3)
2ni

∏
p<Y

[p−12p (p2 − 1)2(p3 − 1)(p4 + p2 − p− 1)]−O(
∑
p≥Y

p−2).

Letting Y tend to infinity completes the proof.

Proof of Theorem 2. We first prove the analogue of Theorem 2 for the
set S of S4-quartic orders having content 1 (i.e., the primitive quartic orders);
on such quartic rings the correspondence of Theorem 6 is bijective. To this
end, let Sp denote the set of elements (A, B) ∈ VZ having content prime to p,
so that S = ∩pSp. Then as noted in [3], an element (A, B) ∈ VFp

corresponds
to a quartic ring with content prime to p if and only if A and B are linearly
independent over Fp. It follows that

µp(Sp) = (p6 − 1)(p6 − p)/p12.

The same argument as in the proof of Theorem 1 then shows that

lim
X→∞

N (i)(S; X)
X

=
ζ(2)2ζ(3)

2ni

∏
p

(1 − p−5)(1 − p−6) =
ζ(2)2ζ(3)

2ni ζ(5)ζ(6)
.(36)

To obtain Theorem 2 from (36), we observe that every content 1 ring Q1

contains the content n ring Qn = Z + nQ1, and conversely, every content n

ring Qn arises from a unique content 1 ring Q1 in this way. Furthermore, if Q1

has discriminant D then Qn has discriminant n6D. It follows that

lim
X→∞

M
(i)
4 (0, X)

X
=

∞∑
n=1

1
n6

ζ(2)2ζ(3)
2niζ(5)ζ(6)

=
ζ(2)2ζ(3)
2ni ζ(5)

,

as desired.

Proof of Theorem 3. It is known that the Artin symbol (K24/p) equals
〈e〉, 〈(12)〉, 〈(123)〉, 〈(1234)〉, and 〈(12)(34)〉 precisely when the splitting type
of p in Q is (1111), (112), (13), (4), or (22) respectively, where Q denotes the
ring of integers in K4. As in [3], let Tp(σ) denote the set of all (A, B) ∈ VZ that
correspond to quartic rings Q having a specified splitting type σ at p; then the
set of all such (A, B) ∈ VZ corresponding to maximal quartic rings Q is given
by U ∩ Tp(σ). Hence by the same argument as in the proof of Theorem 1, we
have

lim
X→∞

X−1N (i)(U ∩ Tp(σ); X) = µp(Tp(σ))
∏
q 	=p

µq(Uq).

On the other hand, Lemma 21 of [3] gives the p-adic densities of Tp(σ) for all
splitting and ramification types σ. In particular, the values of µp(Tp(σ)) for
σ = (1111), (112), (13), (4), or (22) occur in the ratio 1:6:8:6:3 for any value
of p; this is the desired result.
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Proof of Theorem 4. By Theorem 1, the number of S4-quartic fields having
4 − 2i real embeddings and absolute discriminant at most X is asymptotic to
ciX, where

c0 = .0253477143 . . . , c1 = .1520862858 . . . , c2 = .0760431429 . . . .

Thus the total number of S4-quartic fields with absolute discriminant at most
X is asymptotic to cX, where c = c0 + c1 + c2 = .2534771431 . . . .

The analogous constants for D4-quartic fields, as obtained in [7], are given
by

d0 = .0049278439 . . . , d1 = .0098556878 . . . , d2 = .0375424793 . . . ,

for a total of d = .0523260112 . . . .
It follows that the asymptotic proportion of S4-quartic fields among all

quartic fields having 4, 2, or 0 real embeddings, when ordering quartic fields
by absolute discriminant, is given by c0

c0+d0
≈ 83.723%, c1

c1+d1
≈ 93.914%, and

c2
c2+d2

≈ 66.948% respectively, for an overall proportion of c
c+d ≈ 82.889%.

This yields Theorem 4.

Proof of Theorem 5. Let V = ∩pVp be the set of all (A, B) ∈ VZ corre-
sponding to nowhere overramified maximal quartic rings. Using [3, Lemma 23],
and the fact that Vp is simply the union of all Up(σ)’s where σ �= (14), (22), or
(1212), we obtain

µp(Vp) = p−12 p2 (p2 − 1)2 (p3 − 1)2.(37)

By the same argument as in Theorem 1, we therefore get

Lemma 27. Let L
(i)
4 (ξ, η) denote the number of nowhere overramified S4-

quartic fields K having 4 − 2i real embeddings such that ξ < Disc(K) < η.
Then

(a) lim
X→∞

L
(0)
4 (0, X)

X
=

ζ(2)2ζ(3)
48

∏
p

µp(Vp)

=
ζ(2)2ζ(3)

48
ζ(2)−2ζ(3)−2 = 1/(48ζ(3));

(b) lim
X→∞

L
(1)
4 (−X, 0)

X
=

ζ(2)2ζ(3)
8

∏
p

µp(Vp)

=
ζ(2)2ζ(3)

8
ζ(2)−2ζ(3)−2 = 1/(8ζ(3)).

On the other hand, given a nowhere overramified S4-quartic field K4 with
Galois closure K24, we have observed earlier that in K24 is contained a unique
(up to conjugacy) cubic field K3 and a unique unramified extension K6 of K3.



DISCRIMINANTS OF QUARTIC RINGS AND FIELDS 1061

In addition, the discriminant of K4 is equal to the discriminant of K3, and the
number of quadruplets of quartic fields K4 corresponding to a given K3 in this
way equals h∗

2(K3) − 1 (see Heilbronn [19] for full details). Therefore,∑
0<Disc(K3)<X

(h∗
2(K3) − 1) = L

(0)
4 (0, X),

∑
−X<Disc(K3)<0

(h∗
2(K3) − 1) = L

(1)
4 (−X, 0).

(38)

Since Davenport and Heilbronn [15] have shown that

lim
X→∞

∑
0<Disc(K3)<X 1

X
= 1/(12ζ(3)),

lim
X→∞

∑
−X<Disc(K3)<0 1

X
= 1/(4ζ(3)),

(39)

we conclude

lim
X→∞

∑
0<Disc(K3)<X h∗

2(K3)∑
0<Disc(K3)<X 1

= 1 + lim
X→∞

L
(0)
4 (0, X)∑

0<Disc(K3)<X 1

= 1 +
1/(48ζ(3))
1/(12ζ(3))

=
5
4
,

lim
X→∞

∑
−X<Disc(K3)<0 h∗

2(K3)∑
−X<Disc(K3)<0 1

= 1 + lim
X→∞

L
(1)
4 (−X, 0)∑

−X<Disc(K3)<0 1

= 1 +
1/(8ζ(3))
1/(4ζ(3))

=
3
2
.

Acknowledgments. This article is based on Chapter 5 of the author’s
Ph.D. thesis [2] at Princeton University. I am extremely grateful to my advisor
Andrew Wiles and to Peter Sarnak for all their enthusiasm, encouragement,
and guidance during this work. I am also very thankful to Karim Belabas,
Henri Cohen, Keith Conrad, Kiran Kedlaya, Hendrik Lenstra, Igor Rodni-
anski, Jean-Pierre Serre, and Don Zagier for many helpful conversations and
comments on earlier versions of this manuscript.

I extend my gratitude to the Hertz Foundation for funding this work, and
to the Clay Mathematics Institute for their subsequent support.

Clay Mathematics Institute, Cambridge, MA
Princeton University, Princeton, NJ
E-mail address: bhargava@math.princeton.edu



1062 MANJUL BHARGAVA

References

[1] A. M. Baily, On the density of discriminants of quartic fields, J. Reine Angew. Math.
315 (1980), 190–210.

[2] M. Bhargava, Higher Composition Laws, Ph.D. Thesis, Princeton University, June 2001.

[3] ———, Higher composition laws III: The parametrization of quartic rings, Ann. of
Math. 159 (2004), 1329–1360.

[4] ———, Higher composition laws IV: The parametrization of quintic rings, Ann. of
Math., to appear.

[5] ———, The density of discriminants of quintic rings and fields, Ann. of Math., to
appear.

[6] H. Cohen, F. Diaz y Diaz, and M. Olivier, A survey of discriminant counting, in Al-
gorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci . 2369, 80–94,
Springer-Verlag, Berlin, 2002.

[7] H. Cohen, F. Diaz y Diaz, and M. Olivier, Enumerating quartic dihedral extensions of
Q, Compositio Math. 133 (2002), 65–93.

[8] H. Cohen and J. Martinet, Étude heuristique des groupes de classes des corps de nom-
bres, J. Reine Angew. Math. 404 (1990), 39–76.

[9] ———, Heuristics on class groups: some good primes are not too good, Math. Comp.
63 (1994), 329–334.

[10] H. Cohn, The density of abelian cubic fields, Proc. Amer. Math. Soc. 5 (1954), 476–477.

[11] B. Datskovsky and D. J. Wright, The adelic zeta function associated to the space of
binary cubic forms II: Local theory, J. Reine Angew. Math. 367 (1986), 27–75.

[12] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179–183.

[13] ———, On the class-number of binary cubic forms I and II, J. London Math. Soc. 26
(1951), 183–198.

[14] ———, Corrigendum: “On a principle of Lipschitz”, J. London Math. Soc. 39 (1964),
580.

[15] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc.
Roy. Soc. London Ser. A 322 (1971), 405–420.

[16] B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree,
Translations of Mathematical Monographs 10, 1964, A.M.S., Providence, RI.

[17] V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp. 44 (1985), 495–
518.

[18] G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields
with discriminant D > −106, Math. Comp. 55 (1990), 313–325.

[19] H. Heilbronn, On the 2-classgroup of cubic fields, Studies in Pure Math. (1971), 117–
119.

[20] J. Nakagawa, Orders of a Quartic Field , Mem. Amer. Math. Soc. 122 (1996), no. 583,
A.M.S., Providence, RI.

[21] ———, On the relations among the class numbers of binary cubic forms, Invent. Math.
134 (1998), 101–138.

[22] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces
and their relative invariants, Nagoya Math. J. 65 (1977), 1–155.

[23] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector
spaces, Ann. of Math. 100 (1974), 131–170.



DISCRIMINANTS OF QUARTIC RINGS AND FIELDS 1063

[24] A. Seidenberg, A new decision method for elementary algebra, Ann. of Math. 60 (1954),
365–374.

[25] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., revised,
Univ. of California Press, Berkeley and Los Angeles, Calif., 1951.

[26] S. Wong, Automorphic forms on GL(2) and the rank of class groups, J. reine Angew.
Math. 515 (1999), 125–153.

[27] D. J. Wright and A. Yukie, Prehomogeneous vector spaces and field extensions, Invent.
Math. 110 (1992), 283–314.

[28] A. Yukie, Shintani Zeta Functions, London Mathematical Society Lecture Note Series
183, Cambridge Univ. Press, Cambridge, 1993.

[29] ———, Density theorems for prehomogeneous vector spaces, preprint.

(Received June 7, 2004)


