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Abstract

Let {X1,...,X,} be complex-valued vector fields in R™ and assume that
they satisfy the bracket condition (i.e. that their Lie algebra spans all vector
fields). Our object is to study the operator E =) X} X;, where X/ is the Lo
adjoint of X;. A result of Hormander is that when the X; are real then E is
hypoelliptic and furthemore it is subelliptic (the restriction of a destribution u
to an open set U is “smoother” then the restriction of Eu to U). When the X;
are complex-valued if the bracket condition of order one is satisfied (i.e. if the
{Xi, [Xi, X;]} span), then we prove that the operator F is still subelliptic. This
is no longer true if brackets of higher order are needed to span. For each k > 1
we give an example of two complex-valued vector fields, X; and X», such that
the bracket condition of order k£ + 1 is satisfied and we prove that the operator
E = X7X1 4+ X5X5 is hypoelliptic but that it is not subelliptic. In fact it
“loses” k derivatives in the sense that, for each m, there exists a distribution
u whose restriction to an open set U has the property that the D*FEu are
bounded on U whenever |a| < m and for some 3, with |3| = m — k + 1, the
restriction of DAu to U is not locally bounded.

1. Introduction

We will be concerned with local C*° hypoellipticity in the following sense.
A linear differential operator operator E on R" is hypoelliptic if, whenever u
is a distribution such that the restriction of Fu to an open set U C R" is in
C*(U), then the restriction of u to U is also in C*(U). If E is hypoelliptic
then it satisfies the following a priori estimates.

*Research was partially supported by NSF Grant DMS-9801626.
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(1) Given open sets U, U’ in R™ such that U ¢ U C U’ C R", a nonnegative
integer p, and a real number s,, there exist an integer ¢ and a constant
C =C(U,p,q,so) such that

Z sup ger|Du(x)| < C( Z SUP e

|| <p 181<q

for all w € C3°(R™).

DPEu(x)| + ||ul-s,),

(2) Given p, ¢ € C°(R™) such that ¢’ = 1 in a neighborhood of supp(o),
and s,, s1 € R, there exist so € R and a constant C' = C(p, ¢/, s1, 52, S0)
such that

loulls, < C([l'Eulls, + [[ull-s,),

for all w € C3°(R™).

Assuming that F is hypoelliptic and that ¢ is the smallest integer so that the
first inequality above holds (for large s,) then, if ¢ < p, we say that E gains
p — q derivatives in the sup norms and if ¢ > p, we say that E loses ¢ — p
derivatives in the sup norms. Similarly, assuming that so is the smallest real
number so that the second inequality holds (for large s,) then, if sy < s1, we
say that E gains s; — so derivatives in the Sobolev norms and if so > s1, we
say that E loses s — s1 derivatives in the Sobolev norms. In particular if F
is of order m and if F is elliptic then F gains exactly m derivatives in the
Sobolev norms and gains exactly m — 1 derivatives in the sup norms. Here
we will present hypoelliptic operators E} of order 2 which lose exactly k — 1
derivatives in the Sobolev norms and lose at least k derivatives in the sup
norms.

Loss of derivatives presents a very major difficulty: namely, how to derive
the a priori estimates? Such estimates depend on localizing the right-hand side
and (because of the loss of derivatives) the errors that arise are apparently al-
ways larger then the terms one wishes to estimate. This difficulty is overcome
here by the use of subelliptic multipliers in a microlocal setting. In this intro-
duction I would like to indicate the ideas behind these methods, which were
originally devised to study hypoellipticity with gain of derivatives. It should be
remarked that that for global hypoellipticity the situation is entirely different;
in that case loss of derivatives can occur and is well understood but, of course,
the localization problems do not arise.

We will restrict ourselves to operators F of second order of the form

0 ou

where (a;;) is a hermitian form with C°° complex-valued components. If at
some point P € R™ the form (a;;(P)) has two nonzero eigenvalues of different
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signs then E is not hypoelliptic so that, without loss of generality, we will
assume that (a;;) > 0.

Definition 1. The operator F is subelliptic at P € R" if there exists a
neighborhood U of P, a real number € > 0, and a constant C = (U, ¢), such
that

lull? < C(|(Bu, w)| + [|u]]?),

for all u € C3°(U).

Here the Sobolev norm ||u||s is defined by
[ulls = [|A%u]],
and A®u is defined by its Fourier transform, which is

Asu(€) = (1 + [¢[%)2a(8).
We will denote by H*(R™) the completion of C§°(R") in the norm ||||s. If
U C R" is open, we denote by Hy (U) the set of all distributions on U such
that u € H*(R™) for all ( € C§°(U). The following result, which shows that
subellipticity implies hypoellipticity with a gain of 2e derivatives in Sobolev
norms, is proved in [KN].

THEOREM. Suppose that E is subelliptic at each P € U C R™. Then E is
hypoelliptic on U. More precisely, if u € H=* N H; (U) and if Eu € H} (U),
then u € HST*(U).

loc

In [K1] and [K2] I introduced subelliptic multipliers in order to establish
subelliptic estimates for the O-Neumann problem. In the case of E, subelliptic
multipliers are defined as follows.

Definition 2. A subelliptic multiplier for E at P € R™ is a pseudodifferen-
tial operator A of order zero, defined on C§°(U), where U is a neighborhood
of P, such that there exist £ > 0, and a constant C' = C(e, P, A), such that

1Au|Z < C(I(Bu, )| + [[ull),
for all u € C§°(U).

If A is a subelliptic multiplier and if A’ is a pseudodifferential operator
whose principal symbol equals the principal symbol of A then A’ is also a
subelliptic multiplier. The existence of subelliptic estimates can be deduced
from the properties of the set symbols of subelliptic multipliers. In the case of
the O-Neumann problem this leads to the analysis of the condition of “D’Angelo
finite type.” Catlin and D’Angelo, in [C] and [D’A], showed that D’Angelo
finite type is a necessary and sufficient condition for the subellipticity of the
O-Neumann problem. To illustrate some of these ideas, in the case of an



946 J. J. KOHN

operator F, we will recall Hérmander’s theorem on the sum of squares of
vector fields.
Let {X1,...,Xm} be vector fields on a neighborhood of the origin in R"™.

Definition 3. The vectorfields { X7, ..., X, } satisfy the bracket condition
at the origin if the Lie algebra generated by these vector fields evaluated at
the origin is the tangent space.

In [Hol], Hérmander proved the following

THEOREM. If the vectorfields {X1,...,Xm} are real and if they satisfy
the bracket condition at the origin then the operator E = XJ2 s hypoelliptic
in a neighborhood of the origin.

The key point of the proof is to establish that for some neighborhoods of
the origin U there exist ¢ > 0 and C' = C(e, U) such that

(1) lull2 < O 11X gull® + lul®),
for all w € C§°(U). Here is a brief outline of the proof of estimate (1) using

subelliptic multipliers. Note that
1. The operators A; = A~1X; are subelliptic multipliers with ¢ = 1, that is
lAull < €3 1Xul + [lul®),
for all u € C§°(U).

2. If A is a subelliptic multiplier then [X;, A] is a subelliptic multiplier.
(This is easily seen: we have X ;= —Xj + a; since Xj is real and

11X, Alu

2 < |(X; Au, Bou)| + [(AXju, Rou)
< |(Au, Row)| + O(ul®) + [(Au, B X )| + [(AX;u, Rou)
< C (JlAul2+ D2 I1Xull® + ul?)

where R = A®[X;, A] and R® = [X ¥, ] are pseudodifferential operators
of order ¢.)

Now using the bracket condition and the above we see that 1 is a subelliptic
multiplier and hence the estimate (1) holds.

The more general case, where the a;; are real but E cannot be expressed as
a sum of squares (modulo L) has been analyzed by Oleinik and Radkevic (see
[OR]). Their result can also be obtained by use of subelliptic multipliers and
can then be connected to the geometric interpretation given by Fefferman and
Phong in [FP]. The next question, which has been studied fairly extensively,
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is what happens when subellipticity fails and yet there is no loss. A striking
example is the operator on R? given by

82
>

2

E = —% —a?(x)
where a(x) > 0 when = # 0. This operator was studied by Fedii in [F], who
showed that E is always hypoelliptic, no matter how fast a(x) goes to zero as
r — 0. Kusuoka and Stroock (see [KS]) have shown that the operator on R3
given by

2 2 2
E = _8_ _ QQ(x)a_ _ 8_’
0x2 oy 022

where a(z) > 0 when = # 0, is hypoelliptic if and only if lim,_.¢loga(z) = 0.
Hypoellipticity when there is no loss but when the gain is smaller than in the
subelliptic case has also been studied by Bell and Mohamed [BM], Christ [Ch1],
and Morimoto [M]. Using subelliptic multipliers has provided new insights
into these results (see [K4]); for example Fedii’s result is proved when a? is
replaced by a with the requirement that a(x) > 0 when x # 0. In the case of
the O-Neumann problem and of the operator 0, on CR manifolds, subelliptic
multipliers are used to established hypoellipticity in certain situations where
there is no loss of derivatives in Sobolev norms but in which the gain is weaker
than in the subelliptic case (see [K5]). Stein in [St] shows that the operator
Oy + 4+ on the Heisenberg group H C C?, with p # 0, is analytic hypoelliptic but
does not gain or lose any derivatives. In his thesis Heller (see [He]), using the
methods developed by Stein in [St], shows that the fourth order operator [+ X
is analytic hypoelliptic and that it loses derivatives (here X denotes a “good”
direction). In a recent work, C. Parenti and A. Parmeggiani studied classes of
pseudodifferential operators with large losses of derivatives (see [PP1]).

The study of subelliptic multipliers has led to the concept of multiplier
ideal sheaves (see [K2]). These have had many applications notably Nadel’s
work on Kéhler-Einstein metrics (see [N]) and numerous applications to alge-
braic geometry. In algebraic geometry there are three areas in which multiplier
ideals have made a decisive contribution: the Fujita conjecture, the effective
Matsusaka big theorem, and invariance of plurigenera; see, for example, Siu’s
article [S]. Up to now the use of subelliptic multipliers to study the 9-Neumann
problem and the laplacian [J, has been limited to dealing with Sobolev norms,
Siu has developed a program to use multipliers for the -Neumann problem
to study Holder estimates and to give an explicit construction of the critical
varieties that control the D’Angelo type. His program leads to the study of
the operator
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where the {Xy,..., X,,} are complex vector fields satisfying the bracket con-
dition. Thus Siu’s program gives rise to the question of whether the above
operator F is hypoelliptic and whether it satisfies the subelliptic estimate (1).
These problems raised by Siu have motivated my work on this paper. At first
I found that if the bracket condition involves only one bracket then (1) holds
with € = i (if the X; span without taking brackets then F is elliptic). Then
I found a series of examples for which the bracket condition is satisfied with
k brackets, k > 1, for which (1) does not hold. Surprisingly I found that the
operators in these examples are hypoelliptic with a loss of k — 1 derivatives
in the Sobolev norms. The method of proof involves calculations with subel-
liptic multipliers and it seems very likely that it will be possible to treat the
more general cases, that is when E given by complex vectorfields and, more
generally, when (a;;) is nonnegative hermitian, along the same lines.
The main results proved here are the following:

THEOREM A. If {Xj,[Xi, X;]} span the complex tangent space at the
1

origin then a subelliptic estimate is satisfied, with € = 3.

THEOREM B. For k > 0 there exist complex vector fields X1y and Xo on
a neighborhood of the origin in R® such that the two vectorfields { X1y, X2} and
their commutators of order k + 1 span the complexified tangent space at the
origin, and when k > 0 the subelliptic estimate (1) does not hold. Moreover,
when k > 1, the operator Ey = X, X1 + X5 X2 loses k derivatives in the sup

norms and k — 1 derivatives in the Sobolev norms.

Recently Christ (see [Ch2]) has shown that the operators —g—; + Ey on
R* are not hypoelliptic when & > 0.

THEOREM C. If Xi; and Xo are the vectorfields given in Theorem B then
the operator B = X1, X1 + X5Xo is hypoelliptic. More precisely, if u is a
distribution solution of Fu = f with u € H*(R3) and if U C R? is an open
set such that f € H (U), then u € H:2 " (U).

loc loc

This paper originated with a problem posed by Yum-Tong Siu. The author
wishes to thank Yum-Tong Siu and Michael Christ for fruitful discussions of
the material presented here.

Remarks. In March 2005, after this paper had been accepted for publi-
cation, I circulated a preprint. Then M. Derridj and D. Tartakoff proved ana-
lytic hypoellipticity for the operators constructed here (see [DT]). The work of
Derridj and Tartakoff used “balanced” cutoff functions to estimate the size of
derivatives starting with the C'°° local hypoellipticity proved here; then Bove,
Derridj, Tartakoff, and I (see [BDKT]) proved C'*° local hypoellipticity using
the balanced cutoff functions, starting from the estimates for functions with
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compact support proved here. Also at this time, in [PP2], Parenti and Parmeg-
giani, following their work in [PP1], gave a different proof of hypoellipticity of
the operators discussed here and in [Ch2].

2. Proof of Theorem A

The proof of Theorem A proceeds in the same way as given above in the
outline of Hormander’s theorem. It works only when one bracket is involved
because (unlike the real case) X; is not in the span of the {X1,..., X;,}. The
constant £ = 1 is the largest possible, since (as proved in [Ho]) this is already
so when the X; are real.

First note that HX*uH2 < || Xiul|? + C||ul|?, since

7 ul?, = (X7u, A~ X ) = (X7u, Pu)
= (u, X;P%u) = —(u, P Xiu) + O([[ull);
hence,
|X7ull?s < (Y IXkull® + llull?),
where P° = A~'X; is a pseudodifferential operator of order zero. Then we
have
X ul? = (u, XX u) = | Xiu|? + (u, [Xi, X{u)
= [|Xiu]? + (A2u, A2 [X;, X[u)
< Xl + O3
To estimate HuH2 by C(X || Xpul|? + |Jul[?) we will estimate || Dul|* . by

C (> 1 X pul]?+||ul?) for all first order operators D. Thus it suffices to estlmate
Du when D = X; and when D = [X;, X;|. The estimate is clearly satisfied if
D= Xi, if D= [XZ,X]] we have

113, X2 = (X3 X0, A7 X, Xjlu) — (X Xu, A (X5, Xu)
= (X; X u, P'u) — (X; X;u, P'u);
the first term on the right is estimated by
(X Xju, POu) = (Xju, X; P'u) = —(Xju, PPX]u) + O(|[ul® + || X;ul|*)
< O(IXull X7 wll + llul® + || X5u]?)
<Le (I1Xpul® + s.c.| X ul + Offul?

and the second term on the right is estimated similarly. Combining these we
have

lull2 < C Z [ ||2 + llull?) < O N Xkull® + llull?) + s.c.ull?:
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hence

lall} < O IXull® + [lul®)

which concludes the proof of theorem A.

3. The operators FE;,

In this section we define the operators: L, L, X1, Xo, and E}.
Let $ be the hypersurface in C? given by:

3%(22) = —’21‘2.

We identify R? with the Heisenberg group represented by $) using the mapping
$H — R3 given by x = Rz1, y = 21, t = S29. Let z=a + /—1y. Let

0 0 0 0
L—a—Zl—2Z1a—22—&+\/—12a

and 9 o 0 0
26—21_2218—22:%_\/_125.

Let X7, and X9 be the restrictions to $ of the operators
0 0

Xy, = —kL: sk Y 1 —k‘+1_'
1k = 21 Z pp + v Z ot

We set 5 5
Xo=L=2_ymi.2
2 oz “ot

and

Ep =X X1+ X5Xo = —L|2|**L — LL.

By induction on j we define the commutators A{J setting A} = [X1z, Xo]
and A), = [A{;l, Xs]. Note that Xo, A¥ and A¥*! span the tangent space of R3.

4. Loss of derivatives (part I)

In this section we prove that the subelliptic estimate (1) does not hold
when k£ > 1. We also prove a proposition which gives the loss of derivatives in
the sup norms which is part of Theorem B. To complete the proof of Theorem
B, by establishing loss in the Sobolev norms, we will use additional microlocal
analysis of Ej, the proof of Theorem B is completed in Section 6.

Definition 4. If U is a neighborhood of the origin then o € C§°(U) is
real-valued and is defined as follows o(z,t) = n(z)7(t), where n € C§°({z € C |
|z| < 2}) with n(z) = 1 when |2|] < 1and 7 € C§°({t € R | || < 2a}) with
7(t) = 1 when |t| < a.
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The following proposition shows that the subelliptic estimate (1) does not
hold when k > 0.

ProproSITION 1. Ifk > 1 and if there exist a neighborhood U of the origin
and constants s and C such that

lull? < C(I1Z°Lul| + || Lul®),
for allu € C§°(U), then s < 0.

Proof. Let A\ and a be sufficiently large so that the support of o(\z,t)
lies in U when A > Ag. We define gy by

aa(z.t) = oAz, t) exp(= 2 (|2 — it)).

Note that Ln(z) = Ln(z) = 0 when |z| < 1, that L(7) = iz7', and that
L(7) = —iz7'. Setting R M(2,t) = v(Az,t), we have:

(2)  ZL(g\) = (R )T + i2(R )7 + A3 2R 0) exp(— A2 (|2 + it))
and
(3) L(gr) = (AR L) — iz(R)7") exp(=A3 (|2] + it)).
Note that the restriction of |gy| to 9 is
[97(2, 8)] = 0(Az, t) exp(=A3|z%).

Now we have, using the changes of variables: first (z,¢) — (A7'z,¢) and then
Z— ATaz
C

Ionll? =z | ) exp(=273 = Pdody

> ¢ exp(—2)\é |2|*)dxdy — % / exp(—2/\§|z|2)dxdy

R 221
> 5 oA [ exp(-A | P)dody
c C )
> — — —zexp(—Az
Az Az ( )
Then we have
lg ”2 > const.
A = 5
Az

for sufficiently large A. Further, using the above coordinate changes to estimate
the individual terms in (2) and in (3), we have

|ZFA (R L) exp(—A2 (
< Cexp(—ki)/

|z[>1

2? = it)|* + AR )7 exp(=A3 (|2 — it) |

1

exp(—)\% ]z\Q)dxdy < )% exp(—Az),
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2I(R ) 7) exp(~AZ (|22 + it))|?
C 1 C
<3 [ 1o exp(-2\3 el )dody < .
and ) )
INEZFHLRA g) exp(—AE (|2 + )|

< CAle/z\Q’“” exp(—2A3|2*)drdy < )\C

2

Hence, if £ > 1, we have
_ - C
12" Lol + I Zoal* < 7

Since |z| < % on the support of gy then we conclude, from the lemma proved
below, that given ¢ there there exists C such that

Mllgall < Cligalle,
for sufficiently large A. It the follows that, if £ > 1 then the subelliptic estimate
lgallZ < C(I1Z"Lgall® + [ Lgal1®)

implies that A3 < C)\~> which is a contradiction and thus the proposition
follows. The following lemma then completes the proof. For completeness we
include a proof which is along the lines given in [ChK].

LEMMA 1. Let Q)5 denote a bounded open set contained in the “slab”
{z € R" | |x1| < 6}. Then, for each ¢ > 0, there exists C = C(g) > 0
such that

(4) [ull < C&lu],
for all u € C§°(Qs) and § > 0.

Proof. Note that the general case follows from the case of n = 1. Since,
writing x = (z1,2’), if for each fixed 2’ we have |Ju(-,z")| < C&||lu(-,z").
then, after integrating with respect to 2’ and noting that
(1+£2)F < (1+|€[%)%, we obtain the desired estimate. So we will assume that
n =1 and set = z1 and £ = &. We define |||ul||s by

llall? = [ 1ePlace) P
We will show that, if s > 0, there exists a constant C' such that
[ulls < Clllullls,

for all u € C§°((—1,1)). First we have

(&) = \/6”516(56)d$| < V2Jul.
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Next, if [{] <a <1,
(14 a(€)* < 27 |ull?

and
/ T (1 e)lae) e

-0
1 S
[ ...§2s+2a|yuy2+(—2+1) Il 2.
¢l <a ¢[>a @

Hence if a is small we obtain |Ju||s < C|||u||s, as required. If supp(u) C (=46, 0)

then set us(z) = u(dz) so that supp(us) C (—1,1). Now

so that [Jus||* = }||ul|? and |||us||? = 6%~ !{|[u/||> which concludes the proof.

Next we prove that Ej loses at least k derivatives in the sup norms.

PROPOSITION 2. If for some open sets U and U', with U C U’, and for
each s there ezists a constant C' = C(sg) such that

(5) >~ sup [Dou(@)| < O sup D Egu(a)] + ul s, ),

laj<p TV 181<q “€Y

for all u € C§°(R3), then q > p + k.
Proof. If 6 > 0 define ug by
us = (|2|* = V=16)P log(|z[* + 0 — v/~11),

where log denotes the branch of the logarithm that takes reals into reals. Since
us is the restriction of (—22)Plog(—22 + &) to $ we have Lus = 0. Then we
have

lim5_>0|Dfu5(O)\ = Q.
Further
Erus = —E|z|2kLu(5

= 24l P4{ (-2 ol +8) + (—eaPlog(-22 +.0) + L)

2|2 — /—1t)P
i L e R e iy B
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Note that ||us||—s, is bounded independently of 6 when sy > 3. Thus, when
qg<p+k—1, we have

sup | D? Ejugs(x)| < const.

1B8I<q el

with the constant independent of §. Hence, applying (5) to us we obtain
q > p + k. This concludes the proof of the proposition.

5. Notation

In this section we set down some notation which will be used throughout
the rest of the paper.

1. Associated to the cutoff function ¢ defined in Definition 1, is a C*° func-
tion u such that Lo = Zu and Lo = zfi (Such a p exists since

Lo(z,t) = Dn(2)7(t) + izn(z)Dy7(t).

Since D,n(z) = 0 in a neighborhood of z = 0 we can set u(z,t) =
D1 (1) +in(2) Dy (t).)

2. Given cutoff functions g, ¢/, as in Definition 1, with ¢’ = 1 in a neigh-
borhood of the support of p, then we denote by {o;} a special sequence
of cutoff functions, each of which satisfies Definition 1 and such that:
01 = 0, 0 = 1 in a neighborhood of | Jg;, and g;+1 = 1 in a neighbor-
hood of the support of ;.

> will be used for “small constant” and

3. The abbreviations “s.c.” and “l.c.’
“large constant”, respectively in the following sense. Au < s.c.Bu+1l.c.Cu
means that given any constant s.c. there exists a constant l.c. such that

the inequality holds for all u in some specified class.

4. We will use ||u]|— to denote the following. Given Au, the expression
Au < ||u|| - means that: if for any s, there exist a constant C' = C(s,)
such that Au < Cllul|—s, holds for all u in some specified class.

6. Microlocalization on the Heisenberg group

Denote by T the vector field defined by

Then
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The following simple formula, which is obtained by integration by parts, is the
starting point of all the estimates connected with the operators Fj.

LEMMA 2. For u € C§°(R?) we have

(6) I Lul* = 2(Tu, u) + || Lul >

Proof. Since L* = —L and L* = —L, we have

We set 1 = Rz,29 = Sz, and z3 = t and denote the dual coordinates by
&1,&, and &3. For (a,tp) € C x R we define

2% =z—a and 25 = —2a971 + 20122 + 23 — tp,

where o1 = R and g = Sa. Then

0 0 O
L= 0z T 833?
and
0 o O

L= aa—zz @

We set 2§ = 21 — a1, 2§ = 22 — g, and z® = (2, 25, 2§). Let F, denote the

the Fourier transform in the z§ coordinates; that is

Fau(§) = /e_iza'gu(xa)dx?x‘g’xg‘.

Definition 5. Let S? = {¢ € R3 | |¢| = 1} be the unit sphere. Suppose
that U, U, are open subsets of S? with U; C U. For each such pair of open sets
we define a set of v € C*°(R?), with v > 0, such that

L. ’Y(|§|) v(§) when [¢] > 1.
v(€) =1 when & € U;.
7(€) =0 when € € S? —U.

To such a v and a € C we associate the operator I', defined by

Falau(§) = v(&§) Fau(f).
Let Z/{+,Z/{1+,UO,L{?,L{_, and U, be open subsets of S? defined as follows.

ut={ees? >0} uf = {ee 6> 5

) 2
U ={cestlal <3} Ul ={ceslal <5},
U ={cecS?| —¢ccU™}, and U] ={¢eS*|-ccU}.
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We denote by 41, 7%, and v~ the corresponding functions and require further
that y7(¢) = v (£) = 0 when [{| < § and 7°(¢) = 1 when é—| € UY. The
sets of these functions will be denoted by G*, G°, and G, respectively. The
corresponding operators are denoted by ', T, and I';,. The sets of these

(e
operators will be denoted by &2, % and &, respectively. Given (a,tg) €

C xR the functions I'fu, T9u, and T', u will be referred to as microlocalizations
of u at (a, tp) in the regions +, 0, and —, respectively.

The following lemma shows that the 0 microlocalization is elliptic for the
operators L and L. In our estimates we will often encounter error terms which
can be bounded by C, |lu||—s, for every sg; abusing notation we will bound
such terms by “||u||—s0”.

LEMMA 3. IfU is a neighborhood of (o, tg) and if ¥°,7° € G° with 7° = 1
in a neighborhood of the support of YV then there exist constants a > 0 and
C > 0 such that, if |z — o] < a on U, then

IToulls < CUITaLull + IToull + [full o)

and 3
IToullr < CUITYLull + [IT%ull + [lull-s0),

for allw € Cg°(U).
Proof. 1f € € U° and if |¢] > 1 then |¢3] < 2|¢|. Thus, if £ € U°, then
€] < 6(|&1| + |€2]) + 1. Now,
2.0
0,112 < Y 10,2 =0, 112 2
IrSul? < c(; I Taul® + Gl + el ).

Let U’ D U be an open set such that |z — a| > 2a on U’ and let ¢ € C§°(U’)
satisfying ¢ = 1 in a neighborhood of U. Then

2
0 -
Iebull} < ¢ (3 Iz Toeul® + IThul? + ul®.)
1 J

2
0 ~

< O'( Y gl + ISl + full? )

1 J
< C"(|ILeToull® + [ Lol oull?

) .
+max|z — alzl\a—:@ﬂluw HIToul? + flul? )
< C"(IITa Lul® + [|To Lull* + 4a?|[Toul| + [Toul? + [lul2 o).
Hence, taking a suitably small we obtain

ITeull? < CUTaLull® + ITa Lull* + [Taull® + [[ull )-
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Furthermore, substituting ¢I'%u for u in (6), we have
ILeTaul* = 2(TTqu, pTou) + || LeTqul?
P _ _
< S-C-II@F%II2 +Le.(ITqull? + fJull2 o) + ClITQ Lull?
3
< s.e|Toullf + Le.(ITqul? + [[ull2 o) + ClITo Lull?,
and since ~
ILeToul® < C(IToLul® + |[Toul? + [lul )
we get,
IToulls < CITELull + [Toull? + ull? ).
Similarly we obtain
IToull < COITeLull + [IToul® + ul® o).

This completes the proof of the lemma.

LEMMA 4. If R® is a pseudodifferential operator of order s then there
exists C' such that

I[R*, T Jull < C(Taulls—1 + l|ull-s)

and
[B°, T Jull < C(ITQulls—1 + [[ull-o0)-

Proof. Since 4 = 1 on a neighborhood of the support of the derivatives
of ¥ it also equals one on a neighborhood of the support of the symbol of
[R*,TF]. Hence [R*,T}] = [R*, T|T% + R=°°, where R~ is a pseudodifferen-
tial operator whose symbol is identically zero. The same argument works for
the term [R*, T,

] and the lemma follows.

Definition 6. For each s € R we define the operator ¥’ as follows. Let
U* and Uj be open sets in S? such that U* = {€ € S? | [&] > ¢ and U] =
{€€ 8] & > % Let v* be the function on R? associated with U*, U*
such that v*(¢) = 0 when [¢| < § and *(£) = 1 in the region {£ € R? | % €

Ui and |€] > 1}, Then we set 1*(€) = (1 + [&3]%)27*(¢) and define W¥, by
FaWou(§) = ¢°(§) Fau(§)-

Note that there exist positive constants ¢ and C' such that

c(1+ [€[)27"(€) < ¥°(€) < C(L+ [€1%)27(€)-
Hence || UST ul| ~ [T ulls and ||WSTSul| ~ [T, ulls; by ~ we mean that they
differ by an operator of order —oco. Also, since v* = 1 on the supports of

and v~, we have

TSUSTE ~ U TF and WS0ST, ~ USTsT .
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LEMMA 5. There exists C such that
I3 Lull* + IITIUI@ < C(ITE Lull® + Thul® + J|ull® ),

and
T, Lul|* + IIT;UI@ < O(I0g Lul® + Toul® + [Jul® ),

for alluw € C°(U).

Proof. Taking ¢ € C§° with ¢ = 1 in a neighborhood of U we substitute
eI'Tu for w in (6) and obtain

ILeTEul? = 2(Tel fu, T fu) + | LT g ul*.
Now, we have
(Tl Eu, pl'fu) = (TT3 pu, T Eu) + O ul* + [|ul2 ).
Since Fo(Tu) = E3Fq(u) we have TTH ~ UITH ~ U2 W:T and
(TeTfu, ¢Tiu) = [ WATHul + O ul® + lul? -

This proves the first part of the lemma, the second follows from the fact that
€517~ (&) = —€37T(=€). Then WIT', ~ W2W>2T,, thus concluding the proof.

7. Loss of derivatives (part II)
Conclusion of the proof of Theorem B

In this section we conclude the proof of Theorem B by showing that if
k > 2 then Ej loses at least k — 1 derivatives in the Sobolev norms.

PROPOSITION 3. Suppose that there exist two neighborhoods of the origin
U and U’', with U C U’, and real numbers s1 and s2 such that if o, o' € C§°(U")
with o =1 on U and o = 1 in a neighborhood of the support of o, and if for
any real number sg there exists a constant C = C(p, o', s9) such that

(7) loulls, < Clle'Erulls, + [lull-s,),

for allu € S, then so > s1 +k — 1. Here § denotes the Schwartz space of
rapidly decreasing functions.

Proof. Let {p;} and {0}} be sequences of cutoff functions in C§°(U) and
C5e(U’), respectively. We assume that oz,t) = ni(|z])7:(t) and 0j(z,t) =
n.(|z])7/(t) as in Definition 1. We further assume that gy = o, ¢f, = ¢, 0i+1 =1
in a neighborhood of the support of g;, and ¢}, ; = 1 in a neighborhood of the
support of ¢; and that the 7;(|z|) are monotone decreasing in |z|. We also
choose {v;"} and {19} such that ~;" € GT, fy;rﬂ =1,and ) € G® and 7Y, =1
in neighborhoods of the supports of V;F and 'y?, respectively. Further we require
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that 7? = 1 in a neighborhood of the support of derivatives of vj . Substituting
\Il_sll“gu for w in (7), replacing so + s1 by sp, we have

low= T ulls, < Cl0' By T ulls, + Jul—s,).

Since 7 079 = 077,
0¥~ Tgulls, = [T T] 0¥~ T ull + O(||ul|-1)
= [leCgull + |9 T [0, U T ul| + O([Jul|—s,)-
Furthermore, W*1T'] o, \Ilsl]l“ar is an operator of order —1; hence we get

@0 [0, TG 1O~ ]| < C([Jul-s,)

and
lelgull < C(ld Ex¥ ™" T ulls, + |lull-s,)-

Next we have
10" Ex U™ T ulls, < |07 TF o' Exull + [ Bk, O~ T Julls, -

Since the symbol of 7970} = 1 in a neighborhood of the symbol of
[0 Ex, V=5 T§] and since the order of [¢'Ex, W~ T'§] is —s1 + 1, we have

I[¢'Ex, @~ T Julls, < CIATITT s, s, 41 + [lull—s,)-
Applying Proposition 3, we have
||Q/1F(1)Ffu||52—51+1 < C(HgllEkITuH&—Srl + ||Q/2F8F1~_u||82—81 + Jull-o0)
so that
1 B0 T ulls,
< (w71 ¢ Eyul| + | 4T ullsy—s, + 1101 BelT tllsy—s,—1 + llull—s,)-
Therefore
loTull < C(1= T3 o Byu
+ HgllEkri‘ruHSz—Sl—l + HgllEkFi_uHSz—Sl—l + HUH—SO)'
Now we have
01 Bal} ulls,—s,—1 < 05T ) Brull + [I[0) Bi, T el sy —s, 1,

again since [0} Ex, T[] is an operator of order one and since 052797, = 1 in a
neighborhood of its symbol, we get

1B, T Tullsy—si—1 < C(IAT3T3 ullsy—s, + lull—s,)-
Then, again applying Proposition 3, we have

1057515 wllsy—s, < CUIATSERT ullsy—s1—2 + [l —oc)
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so that
loh Bry tllsy—ss—1 < CUN*~* 70 o) Byl + || 4TS ERTS ully—sy 2+ ul| s, )-
Hence
ol ul < C(|[ ¥~ T] o Eyul|
+ 1w T o Bul| + |0y T3 ER DS wll sy —s,—2 + [lull s, )-

Proceeding inductively we obtain

N
ler*ull < C (3 0T o Byl
=0

+ e 4sT 42 BrT ey yllosss -1 + lul—s, ).

Since ||[¥*2~*1 [} n/]Eyul| can be incorporated in the successive terms, we
get, by choosing N > s5 —s1+ 1 — 59

N
lorull < (3 ==t Byl + flul s, ).
1=0

Let 7 € C§° with 7 = 1 on the support of 7j; then 7/Eyu = 7/Ep7u when
1 < N so that replacing u by 7u we obtain

N
lor*7ull < (D I =T o/ B + | Fu -, )
i=0
Hence, since v = 1 in a neighborhood of the support of the symbol of [I't, 7]
and thus can be incorporated in the estimate as above, we have

N
ol < C(Z [ =T B + II%UHLO)-
i=0
Choosing 4T so that ¥ = 1 in a neighborhood of the supports of the 'y;r , we
have 73" = 1 in a neighborhood of the support of the symbol of \1'52_51_iF;rTi’Ek.
Then we obtain
N .~
lortul? < O 30 w2 Bl + [7ull,)
i=0
< O THF Byl |* + [|7ul|,)-

We define h) by
Pa(z, 1) = exp (—X2(|2 — it))

since 7hy € S and obtain

HQF—I—h)\H <C (H\IJSQ—Slfj'%Ekh)\H + H7~'h/\H_SO)) .



HYPOELLIPTICITY AND LOSS OF DERIVATIVES 961

Assuming that 7(|z|) is monotone decreasing we have 7(|z|) > n(\|z|); hence,
setting 7 (z) = n(A|z]), we obtain

oLl = [InaTT T hall.

Then, setting ' = (x1,22), v = (y1,42), and & = (£,&) and changing
variables Ay’ — v/, & — A\, and &} — &} + A2, we get

T ha(a) = [ expli(e — 9) - )r(ua)y(€) exp(—X2(1y ? i) duds

— [ explita’ — /) € + s = aes = X))l (€) exp(~N7ly )y
=37 [ explita’ - o) -¢)

+ (3 — y3)&)T(ys)r T (AL, A2 + &) exp(—|y/|*)dydé.

Making the change of variables Az’ — 2’ we have

[mATL T Ry 6]
1 1 + 722 12 2
= F/!/exp(z(x—y)f)f(yg)v (A, A% + &) exp(—|y'|?)dyd€|*d.

Given (¢',&3) € supp(y™) we have

and there exists A such that vt (A&, A2 + &3) = 1 when A > X. Hence we have
limy oo 7T (A, A2 + 53) = 1; thus there exist \g such that

el = g3 [ 1 [ explite = ) - €)7() expl—Iy ) dyde P,
when A > ), therefore there exists C independent of A such that
C
+
ot ha] = .
when \ > Ap.
Next, we will estimate the term ||Thy|—s,. We will use the facts that
1 7m/zm
L™ ()
=1 and that L(hy) = 0. Taking m < s,, we have

F(A~57hy)(€) = /(1+ [€1%) 72" 7(x3) exp(—i(x - € = N2ag) — N?|2[*)da
= [ E O+ E)F ) explili & W) - X2
=L [ I I ) expl—ita - €~ Noag) — WP
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= [ 1P exp(- N (|2 i) 7 (7o) exp( iz - €))d

= [ I (N ()L ()
cexp(—iz’ - & —iz3(&3 — N?))dx
and

L™ (7(x3) exp(—iz’ - & +i — ixz3(&3 — A?)))

i (13)27 (i€ + &o — 22€3)™ 7 exp(—iz’ - € —iz3(& — A?)).

Ms

Thus, setting w(™ (z, £) = 2o a;j(z3)27 (i& +& —22&3)™ 7 and denoting the
corresponding pseudodifferential operator by W™ we have

17hall-s, = CIW M 2" hy [, < Cll2"F Balm—s, < Cllz" 7' b,

where 7/ € C§°(R) and 7/ = 1 in a neighborhood of the support of 7. Now,
changing coordinates Az — z, we get

2 #hall? = [ 17 (o) expl~2%0ef o <

To estimate the remaining terms we have
Exha(z,t) = —2(k + 1)A?|2|**hy (2, 1).
Therefore, with the coordinate change Az’ — 2/, we get
F (U T 7TERhy) (€)
= CF (O T2y ) (€)
= O 21+ &) 3y (O F (rlwa) =1 exp(—A2212) ) (€6 — A?)
= OXH2(1+ )iy (©)7(€ — X)F (| exp(=2122)) (A 7€),

Then, integrating and making the changes of coordinates & — ¢/, &3 — E3+M\2,
we get,

| WsT 7 Ephy |
<Ot (14 @) (€026 — ) PIF (1o expl—12)) (A1) P
< C>\_4k_2
[ X0+ WP (|2 expl—[2P)) (€) P
Then if s > 0 and if A is sufficiently large we have
|WSTTrELhy||? < CA—4k=2,
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We assume k > 1; if s9 — 51 < 0 then
[we == ot a2 < O (ITF FEehal? + [7hal12,,)) < CA=H2
and, by Lemma 1,
[ U152l hy |12 = ([ =T by [P + O([l7T by [25)
> ON=7 2 Iy T hy |2 = C'([[7 Ty 125,)
> C()\282_2sl_2 + )\—Qm—Q).
This implies that for large A we have A252725172 < (A% ~2 4- \=?m=2)  which
is a contradiction, so that so — s; > 0 and
CIA S < Gyl hy|?> < C (H\I/SZ_Slfj%EkhAHz + ||7~'h/\H2—so>
< 03()\432—451—4k—2 + )\—Qm—2)'

Therefore, if m large we get C7 < 203)\4(52_31_k+1) for large A\. Hence s —s1 —
k+1 > 0, which concludes the proof of the proposition and also of Theorem B.

8. Elliptic and subelliptic microlocalizations

In this section we will show that the a priori estimates for the operator
F, gain two derivatives in the 0 microlocalization and gains one derivative in
the — microlocalization, these gains are in the Sobolev norms. Without loss
of generality we will deal only with microlocalizations near the origin, taking
a = 0 and setting Y = @8 and &~ = &, . The subscript o will be dropped
from the corresponding operators.

PROPOSITION 4. Let U and U’ be neighborhoods of the origin with U C U’
and |z| < a on U', where a is sufficiently small as in Lemma 3. Suppose that
0 € C(U) and ¢ € C(U') with ¢ = 1 on a neighborhood of U. Further
suppose that v°,7° € G° with 3° = 1 on a neighborhood of the support of +°.
Then, given s,so € R, there exists C = C(o,0',7°,7°, s, s0) such that

loT0ullZyo + [[oT 2" Lul3,y + ol Lully < C(10T Byull? + [[ull2, ),

for all w € S, where S denotes the Schwartz class of rapidly decreasing func-
tions.

Proof. Let {o;} be a sequence of functions such that ¢; € C§°(U), oo = o,
0i+1 = 1 in a neighborhood of the support of p;, and such that ¢’ = 1 in a
neighborhood of the supports of all the g;. Let {’y? } be a sequence in G° such
that 78 =AY, 710+1 =1 in a neighborhood of the support of 7;, and 3% = 1 in
a neighborhood of the supports of all the 4. Then substituting oA*T1T0u for
u in Lemma 3 we have

LA TYul|? < C(IT°LoA™ ' TRull* + [loA™ T Tul|?).
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Hence
IT%A*  TYullf < O(IT°Z*LoA" T ul® + [T LoA* ' Tul® + [loA* Tul).
Then
LA Tul|f = [loT%ul3 s + O([ATT® 0, AT u|? + [[A*F2[TY, o] ul®
+[|A*F2o(TTY — TO)ulf).

Since [T, A*T1] is a pseudodifferential operator of order s+ 1 and since g1 = 1
on the support of its symbol, we have

A0, AT < C(lloaTullZ iy + ITTul? o )-

The operator [I'Y, g] is of order —1 and g; = 1 on the support of its symbol, so
that
IA*F2[0%, o PYu|? < C(leTYull 1 + T7ul o)

The symbol of the operator A**t2o(I'TY —T') is zero so that
[A* 20T} — TO)ulf? < Clful|? o
Then we obtain
leT%ull312 < CT A TTulf + oD ullZ y + [lull® o),
so that
1ol %312 < C(ITZ* LoA™ ' T ul* +[|T LA Tu >+ o Ty u 21 +[lul® o )-
The following lemma which involves a vector field X will be applied with
X =%"L and X = L.
LEMMA 6. If X is a complex vector field on R? then

ITOX oA TYu)? < C(lol° Xul 3y + T ul 3 + flul® o)

and
10T Xul[? 41 = (A° ol X* Xu, Aol 0u)
+O([lo1TTull 3y + ol ull2 o]l TFull 4
+ DY Xull? + [lo1 T ullsr] oD Xuf g1 + [ul|®.o0 ),
for allu e S.

Proof. We have
IT°X oA Thul| < [IT%A T Xul| + |TO[X, oA T]ull.

The operator P = T9pASTITYX — ASTIT9oI0X is of order s + 1 and 17 = 1
in a neighborhood of the symbol of P; hence

1Pul| < C([PorTTull + [lull-s0) < CllosTiullss1 + [fu]| o).
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Since 7{ = 1 in a neighborhood of the support of the symbol of oI'’, we get
I09A™ DX ul| < C(leMXullss1 + ul—oo).

Furthermore, I''[ X, QASHF(l)] is of order s+ 1 and glfy(f = 1 in a neighborhood
of the support of its symbol so that

ITOLX, oA TJu]| < C(lloalYulls+1 + flull-c0),

which proves the first part of the lemma.
For the second part of the lemma we write

ol Xu[?,y = (Aol X u, A1l X u)
= (ATl Xu, [AST1 oI, Xu) + ([X*, AT oI X u, A oI'0u)
+ (A%l X* X, A2 0I).
Then, since [A**t1oI') X] is of order s + 1 and 017 = 1 in a neighborhood of

its symbol,
I[A* o, Xul|? < C(lloiTYull3y + fluf-o0)-

Then
([X*, AS+1QFO]XU, AS+1QFOU)
= ([(A*F1oI0)*, [X*, A I Xw, ) + (AT D) X, [X*, AP oI ).

Let Q = [(AsTLol0)* [X*, A5H1ol'"]); then @ has order 25+ 1 and 019 = 1 in
a neighborhood of its symbol. Thus

(QXu,u)| < C(I(QorT} Xu, o1T7u)| + [[ul® )
< C(llaa T Xull? + lor Tully + [l o0)-

The symbol of the operator (AST1oI'®)* — AST1oI'V is zero, the order of
[X*, AT1ol9)* is s + 1 and 017 = 1 on a neighborhood of its support. Hence

(AT l)" Xu, [X7, Aol w)| < O(llol XullsrallosTYullser + fJul® o).

Combining these we conclude the proof of the lemma.
Returning to the proof of the proposition, by using the above lemma,
when X = zFL and when X = L, we obtain

HQFOUH§+2 + HQFOEkLUHgH + ||QFOI_JUH§+1
< C([leEpull? + [|loa T2 LullZ + [oa Ty Lu3 + flu) o)-
Replacing o by 0;, 01 by 0i+1, I° by I'?, T'{ by F?H, and s by s — i we obtain
_k =
loiTPull2o; + 0T7 2" Lull2 s —; + loiTf Lul| 24—,
—k T
< O(loiliBrull—; + lom T 2 Lull2_; + [|0fa Do Lull3— + [ull® o0 )-

Proceeding inductively, we obtain
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_k =
HQFOUH§+2 + HQFOZ LU||§+1 + ||QFOLUH§+1

N
_k r
< C( Y o Bl i+ lloni T 2 Lull 2yl o8 T Ll 2l 2 )-
=0

Setting N > sg + s + 1 we conclude the proof of the proposition since
0T} Brull3—; < C(|ld T Egull? + [lull® & )-

PROPOSITION 5. Given neighborhoods of the origin U and U’ with U C U’;
suppose that o € C°(U) and o € C$°(U') with ¢’ =1 on a neighborhood of U.
Further suppose that y~,7~ € G~ withy~ = 1 on a neighborhood of the support
of v~. Then, given s,sg € R, there exists C = C(0,0',v,77,5,80) such that

lor ™ ull3 + llel ™2 Lul3, s + llol ™ Lull3, s < C(I¢T™ Brullf + [Jull,,),
for allu e S.

Proof. The proof is entirely analogous to that of the above proposition.
1
We use Lemma 5 in place of Lemma 3 and substitute gpA®"2T7u for u we
obtain

IT= oA 2T ull < C(IT°LoA* 2Ty ul® + [ oA 2 Tul?).

Then one proceeds exactly as above to obtain the proof.
In the case k = 0 the vectorfields L and L play exactly the same role and
so we obtain the following.

PROPOSITION 6. Given neighborhoods of the origin U and U’ with U CU’.
Suppose that o € C§(U) and o' € C§°(U') with o' = 1 on a neighborhood of U .
Further suppose that v*,5T € GT with ¥ = 1 on a neighborhood of the support
of v*. Then, given s, sy € R, there exists C = C(p,0,v",77,s,50) such that

loT*ull2 + oD Lull%,, + oD Zul?,, < C(loT* Eyull2 + [lull,).

forallueS.
9. The operator Ey and gain of derivatives
Since Ej is a real operator, it can be written as Ey = —X? — Y2, where
X = \%?RL and Y = %%L. Thus it is one of the simplest operators that

satisfy Hormander’s condition and it is well understood. Nevertheless, it is
instructive to write it in terms of L and L and analyze it microlocally in the
framework of the previous section. The operator Ey gains one derivative. As
we have seen the operators Ej do not gain derivatives when & > 0 and z = 0;
in a neighborhood on which z # 0 they do gain derivatives and they also gain
in the 0 and — microlocalizations.
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In the analysis of Ey we can assume, without loss of generality, that o = 0
and we set v = 79, and I' = I'g. The basic observation is that the gain of
derivatives in the + and — microlocalizations is controlled by the operators
LL and LL, respectively. In the 0 microlocalization the gain of derivatives is
controlled by both LL and LL independently. Propositions 4 and 5 give a priori
estimates for Ej in the 0 and — microlocalizations, respectively. Proposition
6 gives these estimates for the 4+ microlocalization. Here we show how to go
from the a priori estimates to hypoellipticity. In particular we prove that Ey
is hypoelliptic and that FEj is hypoelliptic on open sets on which z # 0 and
that the 0 and — microlocalizations of the operators Ej are hypoelliptic.

PROPOSITION 7. Ifu is a distribution such that for some open set V C R3
the restriction of Egu to V is in C°°(V') then the restriction of u to V is also
in C=(U). More precisely, if Eou € HE (V) then v € HETH(V).

loc loc

Proof. Assuming that Fou € H} (V), it suffices to show that any P € V'
has a neighborhood U C V such that for any p € C§°(U) we have pu €
H*+1(R3). Without loss of generality we may assume that P = 0. Now choose
neighborhoods U and U’ of P such that U C U’ and |z| < a on U’, as in
Proposition 4. Let o € C§°(U), let ¢’ € C§°(U’) with ¢’ =1 in a neighborhood
of the support of g, and let § € C5°(R?) such that §# = 1 on a neighborhood
of U'. Since u is a distribution there exists an sop € R such that fu € H % (R3).
Then, choosing ¥, 7%, and 4~ such that v+ +~% 4y~ > const. > 0 and

combining Propositions 4, 5, and 6 we obtain the a prior:i estimate
loullsr + lloLullyy s + lleLull3y s < C(l"Eoulls + [lull2y,),

for all u € C®(R?). Let x € C§°(R3) with x(0) = 1. For § > 0 we define the
smoothing operator S5 by F(Ssu)(§) = x(d§)u(€). The important facts are
that:

1. If § > 0 then for any distribution v the function Ssv € C*°(R).

2. If v is a distribution and if ||Ssv||s is bounded independently of § then
v e H5(R3).

3. If v € H5(R3) then lims_.q ||Ssv — v||s = 0.

4. For § > 0 the operator Ss is a pseudodifferential operator which is uni-
formly of order zero.

Replacing u by Ssfu in Lemma 6 and in the proofs of Propositions 4, 5, and 6
and using item 4 above we obtain

I1S50ully 1 < C(I1Ss¢'Boull3 + [1Ss¢"ull2, s + 1Ss0ull?,),
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where Ss has the symbol ¥(6¢) with ¥ = 1 in a neighborhood of the support
of x. Choose m so that —sg > s+ 1 —m, then substituting s +1—m + j for s
above we obtain, by induction on j, that ||Ssoul|2,; is bounded independently
of §. Hence ou € H**1(R?) thus concluding the proof.

Next we will show that in any region in which z # 0 the operator Ej is
hypoelliptic with a gain of one derivative.

PROPOSITION 8. If V C R? is an open set, with the property that z # 0
on V, and if u is a distribution such that the restriction of Exu to V is in
C>(V), then the restriction of u to V is also in C*°(U). More precisely, if
Eyu € HE (V) thenu € HEN(V).

loc

Proof. Let P € V then P = («,tp) with a # 0. Let U be a neighborhood
of P such that on U we have |z — a| < a, where a is chosen as in Lemma 3,
and also such that on U we have |z| > b > 0. Then

1Zul® < =212 Lul?,

for all u € C§°(U). Hence Propositions 4, 5, and 6 hold with 7 replaced by 7q.
The proof is then concluded using the same argument as above, replacing Ss
with S, 5, which is defined by F,(Sq,su)(§) = x(0§) Fau(§).

Now we prove microlocal hypoellipticity in the 0 and — microlocalizations.

PROPOSITION 9. Given neighborhoods of the origin U and U’ with U C U’
and |z| < a on U', where a is sufficiently small as in Lemma 3, suppose that
0 € C(U) and ¢ € C(U') with ¢ = 1 on a neighborhood of U. Further
suppose that 0 € GY. Then, given s € R, if u is a distribution such that
o Eyu € H5(R3) then ol'%u € H5T2(R3).

Proof. The proof consists of proving the following estimate
18500 %ull2 s < C(o'Exull§ + [luls,).

Its proof is exactly analogous to the proof of Proposition 4. Replacing u by
Ssu the same proof as of Lemma 6 using X S instead of X gives

HSgQFOXquH = (A855QFOX*XU, A5+255QFOu)
+ O(||Sso1Tul|Z, 4 [1Ss0l w2 o1 Ss 01T ul|2,
+ 18501 T9 X w2 + || Ssor1Tull s |l X ul| 1 + JJull® o)-

The argument then proceeds exactly as in Proposition 4 and shows that
| S50l %u||? 5 is bounded independently of § completing the proof.

For the — microlocalization we the following result follows from an argu-
ment entirely analogous to the above proposition.
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PROPOSITION 10. Given neighborhoods of the origin U and U’ with U C U’
and |z| < a on U', where a is sufficiently small as in Lemma 3. Suppose that
0 € C(U) and ¢ € C(U') with ¢ = 1 on a neighborhood of U. Further
suppose that v~ € G°. Then, given s € R, if u is a distribution such that
o Eyu € H5(R3) then oI' ~u € H5T(R3).

10. The operator E;: no loss, no gain

As was shown in Section 5 the operator F; does not gain any derivatives.
Here we will give a proof of an a priori estimate which shows that it does
not lose any derivatives. More precisely, the estimate will show that Fq does
not lose any derivatives after it is proved that FEj is hypoelliptic. This will
be done using the same estimate with an appropriate smoothing operator in
Section 14. As we have seen all the operators Ej, gain a derivative in regions
where z # 0 and in the 0 and — microlocalizations. Thus the remaining case
is the + microlocalization when z = 0. Since the operators Ej are invariant
under translation in the ¢ direction it will suffice to consider neighborhoods
of the origin. In this section we will present a direct proof of the a priori
estimates for F; which will rely on the following lemma. This proof however
cannot be adopted to prove the corresponding a priori estimate for the operator
Fy = E1 4+ c unless ¢ > 0. In fact the same estimates will be proved when we
treat the general case of F, with k > 1. However that treatment is much more
complicated so it might be worthwhile to note this simpler proof.

In the previous section we showed that the elliptic microlocalization I'u
is smooth whenever Eju is smooth. Thus we do not have to keep track of just
which microlocalizing operator in &° is used; in order to simplify the calcula-
tions we will write u” instead of I'%u. Similarly, since all the commutators with
I't that arise are dominated as follows ||[I'F, R*]ul| < C(||[T%[s—1 + [|u||—oo,
we will write 4™ instead of I'T.

LEMMA 7. Given a bounded open set U C R3 there exists C > 0 such that
lull* < C(lzLull® + || Lul]?),
for alluw € Cg°(U).
Proof. If w e C3°(U) we have

lull* = (L(2)u, w) = —(zLu,u) = (zu, Lu) < | 2Lull[Jul] + |[zull]| Lul
< s.clull® + Le.(l2Lul* + | Zul?).

Absorbing the first term on the right into the left-hand side completes the
proof.
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The other estimate we will use here is given in Lemma 5 with a = 0,
namely

(8) Lt + [l )12 < OOt + [l |2 + flul2 o),
for all u € C§°(U).

PRrROPOSITION 11. Let U be a bounded neighborhood of the origin such that
|z| <a onU, let p,0 € C(U) with ¢ =1 in a neighborhood of the support
of 0. Then, given s,sy € R there exists C = C(p, ¢, s, so) such that

|95 gut|| < C(I* 5 o' Brul| + 9%l + [Ju] ).
for all u € C§°(R?).

Proof. We assume that u € C§°(R?) and replace u in (8) by ¢’2¥*u. Then,
following the method of Proposition 4, we get
le'z0*ut 1 < C(IZL T u™||* + | Lo U ub | + [l P u™||* + fJul2 o)
< OV (Bru) ™, 00 u)| + " w2 + [lo" w¥u™ || + [l )
< Ol Exullz + 0" ullZ + [lull? o)

Next, we replace u by Q\IISJr%u+ in Lemma 8 and, with the use of Lemma 1
and the fact that

|20t = 200 2 ut |+ O(|u |25 + [lull® o),
we obtain
low*3ut|? < C(lzLoW* 2t | + |ILo@** 2| + ]2 + [Jull® o)
< C(loByull, s I” + | L(o)**2ut|?
LT 2t |2 + o2, 5 + llull o)
< OlloBrulZ, s I* + 20w 5ut |2 + [l g2y + ull’.)

< C(le'Brull o I* + Nl ull? + llull0)-

Then, redefining ¢’ and ¢”, we conclude the proof.
11. Estimates of oLu™ and of oLLu*

In this section we begin to prove the a priori estimates for the operators
Ey with k& > 1. These will be derived from the estimate (8) and the estimates
in the 0 microlocalization. The main difficulty is the localization in space; one
cannot have a term with the cutoff function o between u and L, or L, unless
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the term also contains suitable powers of z and 2. Substituting oW®Lu for u
in (8) we have
ILow* Lu*|* + [ o¥* Lu™ |3 < C([Lo® " Lu™ || + [ 0* Lu™|* + [Jull ),
so that,
loW* LLu* (| + || 0% L2u™||? + [| o™= Lu ||
< O(llow* LLu™ | + [l U Lu™[|” + [ 6w 1341 + [Jul o)
< O(|(eW*LLLu", 0¥ Lu™)| + [lo"W* Lu™ ||* + || 0" B2y + [Ju]s)-
Since LLL = —LE}, — L?|2|?* L, we have
(oW LLLu™, oW Lut)|
< C(|(eV*LEwu™, 00° Lu™)| + |(0W° L% 2| Lu™, oW Lu™)|
< lc||dEpull? + s.c.|| oV LLu™||? + C|(oW* L?|2|** Lu™, o¥* Lu™)|.
Then, to estimate |(oW*L?|z|?* Lut, o¥*Lu™)|, we have
L2/ L = —kL2*Z" 1L + L|z|** LL
= —K?L|22+Y 4 LL2FR — 2k2b 25 1T 4 L2 LL — 2|2 TL
—K2L| 22D —dk 2P 2RI 4 k(e — 1) L2R 2P 2 4+ kLZFZALL
+ L|z|**LL — 2|2|*TL,
and, using integration by parts, we get

(U LIz Dut, oW Lu®)| < Le.[| ¢V oW |* + £,

(oW 2K 251wt o0 Lut)| < Le. ||z LoWsTaut|? + &,
(k — 1)|(oW*L2* 220, o0 Lu™)| < (k — 1) (Le.||22*F D oWsu ™| 4 &),
(oW L2F2* " Lu, oW Lu™)| < Hz% Lowtut|? + &4,
|(0W*L|z|** LLu*, oW*Lu't)| <
and
|(0° |2 T Lu™, 0¥ Lu™)| < &,
where
Er ~ [0l + (10U Lu™ | + [ful| o,
Ey ~ s.c.\\Q\Ps+5Eu+\\2 + &1,
Ey ~s.c.||oW L2ut|]? + &,
and

&y~ s.cl| oV LLu™|? + &.
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|8 |2k T oLu™, U oLu*t

and
|(WSL|z|?* oL?u™, W pLut)| < C(EL + &).

Again, let {o;} be a sequence of cutoff functions as defined in Section 2. Then
substituting g; for g, s — % for s, and ;11 for o/, we get

—1

|01 * =% LLu* |[* + || i 0> 1~ Lu* |
— _iz1
< C(lld' Brull}_ o + 122572075 gyt

i—1 —

+ 22 g+ (| 0 U Lt fJufl )

Then we obtain the following, by substituting these inequalities into each other
for successive i

loW*LLu™||* + | o¥**2 Lu*||”

N
_i=l = _ _i=t _ _i
< O3 (o5 LBt [P+ 222005 gt | + 12201 gt |?)
=1

Hlow 41975 Lat |2 + flon Bl 2y + flul2 )-

Given s, we choose N > 2(s — s,) + 1 then we obtain the following estimate
which will be repeatedly used in establishing the a priori estimates for Ej,

9) oW LLu™ | + | 0¥"3 Lut || < C(llo Exu|[2 + || 27720 '™

1

+ {122 g 4 ) 2,)
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12. Estimates of ||z/ Wty ||

LEMMA 8. Ifa > 0 then form € Z* and a small constant s.c. there ewists
a constant l.c. such that
m—1
Z |29 00 |2 < L. || 2™ WS 0u T ||? 4 s.c. || TS oul|?
j=1
C(HQ,uOHg—I—(m—l)a—l + HUHQ—oo)a
for allu e C(U).

Proof. For m = 2 we have
120 ou || = (|27 T2 ou, B2 ou™) 4+ O(|| 0240y + [lul® )
< Le |22 0u™ |12 4 s.c. [0 ou 1P + C (|0 w12y amr + Ilul? o)

For m > 2 we assume
m—2
S U gt < L2 Dt 2 s 00 gul 2
j=1

°II3

C(HQ“ s+(m—2)a— 1+HuH2—oo)7

and we have
||Zm_1\115+(m_1)a -|—||2 (Z Z‘Ijs—&-mag +,Zm_2\118+(m_2)agu+)
+O(||Q’LLO||S+ (m—1)a—1 + HuHQ—oo)
<Le. |2 Ts e out||? 4 s.c. ||z 2w Hm=2)a gy ) 12
0 2
Ol I+ m-1)a—1 + 1l 0)-
Adding this to the above and absorbing the term multiplied by s.c. in the
right-hand side we conclude the proof.
LEMMA 9. If0 < j < m and if mT.A < B then for any s.c. and any N
there exists Cy such that
1270 0wt |2 < s (|| 20 E out (2 4 00 0u™?)
0 2 0 2
+C(lou’ |31 + COn a2y + C(llou® 351 + llull2s0),
for alluw € Cg°(U).
Proof. With a = ? we have
12704 out |2 < L[|z U out (|2 + s.c] 00 out |2
+C([lou’ |24 ma—1 + [l o0)-

Since ma = mTA < B,

PITMAE) < seap®TB(E) + Le. (14 €)=
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Then
Hzm\:[jerma +112 _ \I/erma m +112 O 012 2
ou™||”=]| 2" ou™ |7 + O([lu” s ma—1 + [[ullZe0)
gs.c.||\IJs+Bzmgu+||2+C’N||u+||2,N
+O(llou |12 ma1 + l[ul” o)
<s.c. 2" B ouT||? + Onllut | n
+O(llow’ |24 51 + llull® o)

Combining with the above we conclude the proof of the lemma.

LEMMA 10. Ifo = ﬁ and if 1 < j <k then
1270597 ou™ |2 < C (|| Eull? + [[0"ulls + lul|2s0),
for alluw e Cg°(U).

Proof. First note that
k _1
lez*T*u 1P < Olle' Biully_y + 100" 2™ I 4 o).

s_1
Then, replacing s by s + ko, since ko — % =0, we have
127597 out |2 < C([|2F U gut || + (|9 gu?
+ Ol r-1yar + 1l o)
< O(|Z" LU out [P + [ L0 ou || + [l g'u |13 + [lull2 o)
< Ol Brull? + [l o"ull? + [lull® )-

13. Estimate of |[o¥sT7uT||

LEMMA 11. There exists a C > 0 such that
oW 7 u™|| < C(ll ' Brull2y g1 + lldullZ + llull* &),
for allw € C°(U).

Proof.
7 2 = (L) g, 7 )
= —(2LU* 7 ou U7 ou ) — (2057 ou T, LU o)
< Le|2U 7 oLu™||? + C|| U5t oLu™ || + “error”,
where,
“error” < s.c.[| U out || + O (|20 0wt 1P + [ ou® (246 + [Jul? o0)-

In the estimate of the “error” the first term on the right gets absorbed and the
other terms are estimated as follows.

l20° g ||? < O(| o Bl + [|o"ull? + [full2s0).
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The third term, which is microlocalized in the elliptic region, is estimated by
low’l310 < CllloBull3 o2 + [l0ull3).
Hence we get
19557 gut 2 < € (Il oLt | + |0+ oL
+ loBull? + lloul2 + ull® ).
From (9) we have

|+ oLt * < ClloBull? oy + loul + ul* o).

sto—3
So the term that remains to be estimated is ||z¥*T? oLu™ ||, and we have
soLut, Ut s oLu™)
02 2
HO([[u”[540—2 + [[ullZe0)
< l.c.]\z2‘lls+‘7+%gLu+HQ + s.(:.H\Ils""’_%QLu"’H2

FO(lu’|24 5o + llul® o)

||Z\I/S+UQLU+H2 _ (’Z‘Q\I/S+U+

and
”\I,s—i-a—%QLu—I—HQ — (‘I/S+UQLU+, \I/S+U_1QLU+)
= (U ou T, LU Lo Lut) + &
= (U9 ou™, [L, U L]uT)
—(\I/S+Ugu+, \I;eraflgLI_/qu) +&
<O e ou™ |12 + [|[L, w* 7 oL]u|?
+|[ Wt LLuT|? + &)
The second term is estimated as follows
[L, Ut oLju™ =L, U¥T o oLu™ + WS L(p) Lu™
—2\118+J_1QTU+ 4 \PS+J_1QLEU+
so that
I[L, w57 oLu||> < C([[ @ T00u™ ||* + |Jull )
<CO(lldu)240 + lull® o),
and
W7 L) Lut ||* + | U+ oTu ™ |2
< Oz 7wt |* + |9 oul|*) + &».
Furthermore we have

|]\IIS+J_1gLiu+H2 < C”Q/EkUH2 1+ Es.

s+0'72
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The terms £ are bounded as follows
&1 <O 2 s + 1297w P + [|u)® o).
By Lemma 10 we get
&1 <C(l ' Brull + o ul? + [Jull” o),
E<C(du|2 o+ &) <CE,
and
& < C(||2* T out |2 + |22 Pou |2y + &) < C'6,

Hence we have

[0F7 ou™ |2 + (|20 oLu* |2
1
< (|28 2 oL |12 + || o' B3 + (| 0"ull? + [Jul|2o0)-
To estimate the first term on the right we will use Lemma 8 as follows.
|24z oLu | < C(| 205 gL |+ [low 1346 + lull® o).

We apply Lemma 8 with a = %, m = k—1, s replaced by s+ o, and u replaced
by zLu to obtain

12205+ 3 pLut |2 < l.c.sz_l\IlerUJr% ozLu™||? + s.c.||z 05T o Lu||?

2

stot+ k=L + ||u||2—oo)

2

< I.C.sz\I/SJ“’J“% oLu™||? +s.c.|[2 U o Lut||?

+ o’

+ C(”QUOHE_FU_A,_% + HUHQ—OO)
Therefore we have
”\IIS+UQu+||2

k=1
< Ol 7= L™ | + o' Byl oy sy + llull? + [lull2 )

k=1
< Ot = 02" Lu | + o' Brull sy + Qull? + [lul20).

Next, from Lemma 8 with m =k, a = % and s replaced by s + o, we have
qu,s+a+§u”2 < LC'sz\I,eraJrggquHz

s [ U out P + Ol w2, sy + 2 o0)

§C||\I,s+a+%gzk[ju+”2 +&
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and
sz\IJerUJrgQquH? < CH\IIS*"*%QZ’“LUWP +&
= fC'(\I'S"'”'F% oL|z|** Lu* getots ou™)
)
_ 20(\1,s+a+%szLqu7 \I,s-l—a—l—%zk-‘rl'uu—f—) L&
since

|(\I’S+U+ = 0  Lu™ \1,s+cr+ 7 gkl put)| < s.c. ‘|Zk\I,s+o+2QLu+H2

e U fut P 4 6y,
Hence we obtain
2R WSOt oyt |2 < CH\I,eraJr%QEkLuJFHQ P

< O|(WHo+ 5 oL 22K L, USTOTT gut)| + &

= C|(‘PS+U+%QEI¢U—F getotis Qu"’)’
(WS QLI WS )| 4 &

< C(| ettt Byl
(U oL, OS2t ) + &

< O @t o B2 + |05 Lut2) + &

< C(lloBxullfosn-1+ || 2R tgstoth=l gt 12
2RO gt |2) + .

Thus, applying Lemma 9 with m =2k — 1, j = 2k — 2, A:k:—%, B=k-1
and s replaced by s + o, we have

mA_Qk—l 3

ma_ Y <k-1=B.
T o)<k

Now,
22K 2052 |12 < .|| 2RISR |12 4 &
Replacing out by zF"1o/u™ and s by s + % we obtain
B 2k—lygstoth—1, |2
< C’(H\I/H‘Hk 292% LLut|? + &
< C(|(\I/S+U+k_5LQ |z|2kLu+ |Z|2k_2\118+0+k_%g,u)|
+S.C.H\IJS+G+k Lyl 52k= Lot |2 + L. ”Z2k Lyys+o+k—2 o"ul)?) + &
< Ol Byl 24 gy + (W73 LU, [2PF 720505 o ) ) + £
< C|0' Exull3 1 gron—s + [(WF7H20" Lu, 2|2 20t o il gl
+|(\I,s+cr+k IQ,L’LL k 1 k 2\113—&-0-1—1@ 2 )’)+59
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< C|0' Bxull3y oronz + Lo W20 Lut || 4 s.c | 2R oot o i gly | 2
+s.c. ”\IleroJrk 1Q/LU+H2 +lec. HZQk 3\115+o+k 2 +H )_}_89'

Now applying Lemma 9 as above but with j =2k — 3 and A =k — 2, we get

mA 2k -1

i 2k-3

(k—2)<k-1=B.

Hence

” 2k— 3\I,s+o+k 2 +H2 2k— 1‘118+0+k 1 +||2+59

<s.c.llz
Combining the above we obtain

19*7 0u™|? < Cllo' Byull3 4551 + Ero-
To complete the proof of the a priori estimate we will analyze the error terms:

||Zk\1/5+0+ 5 gu+||2 + ||Q/UOH k . +s.c. H\I,S—HTQU—FHZ + ”u”?

sto+-——
Ey ~ E + sz-i-llps-i-a-l—%glu-i-”Q,

&~ Ex 4 |00 s + s || WSS 0ZF Lt 2,

s+a+
Ex v Ex+ W75 oLu |,
55 ~ 54 + ||Z\IJS+UQ/’U,+H2

Eg ~ &5+ ||22/€ 1\1}S+a+k—50 u+”2 + ”ZQk 2\1,54_04_19 2 +H2

Er ~ o+ lou’ 12 ma + lut |2y
68 ~ 57 + ||\IJS+U+k_5Q ZQkLu—I—H2
59 ~ 88 —I—S.C.H\I/S—Hﬂ_k 1922k 1Lu+|]2 + ”Z2k 1\I/s+a+k 2QIUH27

and
Eip ~ Eg + s.c.\\\I/5+U+k_1giu+\\2 + “\I/S+U+k_2glf/u+"2.

The “admissible” errors are ||o'u? + ||ul|? .. The terms involving u® are
all bounded by const.||¢'Eul|?,  ,,_, modulo admissible errors. The terms
involving a small constant s.c. are absorbed in the left. The term ||2U5t7 o'u ||
is bounded by const.||¢’ Exul|?, and the remaining terms can be bounded by a
constant times A(s, ¢'), where A(s, ¢') is defined by

Als, o) = |05 gt [P 21w o 2 0o 2 L2

Repeating the same estimates with s replaced by s — % we replace the error

A(s, o) by A(s — 1, 0"). Repeating this process 2k — 2 times (and redefining
¢') we obtain the desired a priori estimate, namely:

(10) 1057 ou™||* < C(le' Brullyoprr + lo'ulZ + [lull 0)-
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14. Smoothing

To conclude the proof of Theorem C we will apply the above estimate to
the smoothing of a solution. Given a distribution solution u of Eyu = f with f
whose restriction to U is in C*°(U), we wish to show that the restriction of u to
U is in C*°. Without loss of generality we assume that the distribution v has
compact support and lies in H % (R3). For § > 0 we will define a smoothing
operator Kj such that Ksu € C* and lims_oKs(ou™) ~ ou™.

Definition 7. Let w € C{°(R), with w(0) = 1 and let ks(£) = w(d€3)77(€)
and

Ksu(§) = rs(§)a(§),
where 71 (£) = 1 in a neighborhood of the support of 4.

LemMA 12. If [|[Ks(ou™)|ls < C and if o'u® € H® then out € H®.

Proof: We have
1Ks(ou®) — ou™||s < [|Ks((ou)t) — (u))ls + Cllo"us
and
lim(1 + [€%) 2w (83) (eu)* (€)) = (14 [¢[%)2 (eu)* (€))-

—

Then (ou)* € H® and since (ou)t — out is supported in the elliptic region 4°
we have
low*Ils < ll(ew) ™|l + Clle"u’lls,

thus concluding the proof.

LEMMA 13. For 6 > 0, Ks is a pseudodifferential operator of order —oo
which is of order zero uniformly in §. Kj has the following commutation prop-
erties.

1. [E, Ks](I —TY is a pseudodifferential operator of order —oo uniformly
ind.
2. If R? is a pseudodifferential operator of order s then
[R*, K] = TR + U7 R{ + Ry,
where Rf;_l, Rg, and Ry > are pseudodifferential operators of orders —oo

for 6 >0 and of orders s — 1 and 0 uniformly in 9.

Proof. Number 1 follows from the fact that when |£] > 1 then 7°(¢) = 1
on the support of these symbols. To deal with number 2 we write the principal
symbol of [R*®, K5|. Setting x; = =, x9 = y and x3 = ¢, we have

Oks Or* Lo’ oyt ors
; 58, o, = 0 OGN 5+ j w(08) G
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The lemma then follows, since

or? or®
/ ~+ _ s—1_+ ) z+¢—s /
0T g = 6570 {36 s e 5|

where 47 = 1 in a neighborhood of the support of 4y and equals zero in
a neighborhood of the origin. The expression in braces is the symbol of an
operator of order zero uniformly in 9.

Conclusion of proof of Theorem C. Substituting Ksu for w in (10) we
obtain

157 o Ksu™||> < C(||¢' B Ksull 2y gyt + 10/ Ksull? + | Ksul* )
Then we have
1Ks5(out)|2y <O oKsu™ |I” + || 0"ull31 5 1),
I[e'Br, Kslull2 oy i1 SCU1" 07 o1 + 1ull* ),
o' KsullZ < Clldul)?,
and
Ksu|* . <C|ul?
[ Ksul|Z o < CllulZ -
Further
10" )24 i1 < CU10" Erull?igirs + ullo)-

Therefore, changing notation for the cutoff functions, we get
1K5(eu™) 240 < CUle Brull?ygiir + l"ullZ + [ull?,)-

Therefore, if u € H™*, if u* € Hf (U), and if Eypu € HE7TFHU) then
ut € HPI7(U). It then follows that if w € H* and if Eyu € H;' (U)
then ut € Hﬁ)lcka(U). Since, under the same assumptions, we have u° €
H2H2(U) and u~ € HSTH(U) we conclude that v € H3 ¥ (U), thus proving

loc loc loc

Theorem C.

15. Local existence in L2

The a priori estimates for Ej imply the following local existence result.

THEOREM. If P € U C R3 with U an open set, then there exists a
neighborhood Uy C Uy C U, with P € Uy, such that if f € Hllf)gl(U) then there
exists u € L?(Uy) and Eyu = f in Uy.

Proof. Let U; be a small neighborhood of P. In Lemma 11 set p =1 in a
neighborhood of U; and set u = v € C§°(Uy) so that gu = v and [U517, T'F] is
an operator of order —oo on C§°(U;). Hence we obtain

1370 < C1 Bpvll2 o + 10112),
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for all v € C§°(Uy). Setting s+ o + k = 0 and combinig with the estimates for
19 and v~, we obtain

2 2 2
102441 < CUERIT + 10]Z 4 11-0)-
Then, if the diameter of Uy is sufficiently small, we have
||v|\2_k+1_g < small const. ||vH2_k+1.

Hence
[v]|—k+1 < const. [|Exv],

for all v € C§°(U7).
Let W = Cg°(U;) and let K : W — C be the linear functional defined by
Kw = (v, f) with w = Exv. Then

[Kw| = (v, ) < vll-sal[ -1 < Cllo]l.

So K is bounded on W; hence it can be extended to a bounded linear functional
on L?(Uy). Therefore there exists u € L?(U;) such that Kw = (w,u), that is
(v, f) = (Exv,u) = (v, Exu). Thus Epu = f in L?(U;), which completes the
proof.

PRINCETON UNIVERSITY, PRINCETON, NJ
E-mail address: kohn@math.princeton.edu
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Appendix:
Analyticity and loss of derivatives

By MAKHLOUF DERRIDJ and DAVID S. TARTAKOFF

Abstract

In [2], J. J. Kohn proves C*° hypoellipticity for a sum of squares of complex

vector fields which exhibit a large loss of derivatives. Here, we prove analytic

hypoellipticity for this operator.
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1. Introduction and outline

In [2], J. J. Kohn proves hypoellipticity for the operator

0 0
P=LL"+ (Z*L)*(Z"L L=—+iz—,
+ (D) (ML), T
for which there is a large loss of derivatives — indeed in the a priori estimate
one bounds only the Sobolev norm of order —(k — 1)/2, and thus there is a
loss of k — 1 derivatives: Pu€ H{) = u¢€ Hi;(k_l)

We show in this note that solutions of Pu = f with f real analytic are
themselves real analytic in any open set where f is. In so doing we use an
a priort estimate which follows easily from that established by Kohn for this
operator, namely for test functions v of small support near the origin:

(1.1) IZol§ + IZ°Loll§ + [[0]]? ia S |(Po,0) 12

k-1
2

In fact, in [5] (see also [1]), we give a rapid and direct derivation of (1.1) for
this operator and similar estimates for more degenerate operators.

The first two terms on the left of this estimate exhibit maximal control
in L and ZFL, but only these complex directions. Hence in obtaining recursive
bounds for derivatives it is essential to keep one of these vector fields available
for as long as possible. For this, we will construct a carefully balanced localiza-
tion of high powers of T'= —2i0/0t and use the estimate repeatedly, reducing
the order of powers of T' but accumulating derivatives on the localizing func-
tions. These Ehrenpreis type localizing functions work ‘as if analytic’ up to a
prescribed order, with all constants independent of that order, as in [3], [4], but
eventually the good derivatives (L or ZFL) are lost and we must use the third
term on the left of the estimate, absorb the loss of % derivatives, introduce
a new localizing function of larger support and start the whole process again,
but with only a (fixed) fraction of the original power of T'.

2. Observations and simplifications

Our first observation is that we know the analyticity of the solution for z
different from 0 from the earlier work of the second author [3], [4] and Treves
[6]. Thus, modulo brackets with localizing functions whose derivatives are
supported in the known analytic hypoelliptic region, we take all localizing
functions independent of z.

Our second observation is that it suffices to bound derivatives measured
in terms of high powers of the vector fields L and L in L? norm, by standard
arguments, and indeed estimating high powers of L can be reduced to bounding
high powers of L and powers of T of half the order, by repeated integration by
parts. Thus our overall scheme will be to start with high powers (order 2p) of
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L or L, use integration by parts and the a priori estimate repeatedly to reduce
to treating TPu in a slightly larger set.

And to do this, we introduce a new special localization of TP adapted to
this problem.

3. The localization of high powers of T'

The new localization of TP may be written in the form:

_p b
L% o 2% o TP1—C o S0(a+b) o sz*b o Zb oL

P1,P2 _
(T o = Z alb!

a<pi
b<pa

Here by ¢(") we mean (—id/0t)"(t) since near z = 0 we have seen that we
may take the localizing function independent of z. Note that the leading term
(with a +b = 0) is merely TP ¢TP? which equals TP P2 on the initial open set
Qo where ¢ = 1.

We have the commutation relations:

(L, (T7 7)) = Lo (177172),,

L. (17 7),) = (7)o T,

(@795, 2) = (TP o2
and

(@™ #)0,7) = o (T,

where the = denotes modulo CP*—PiTP2=P2 terms of the form
LP1=Pi o zP1Ph o TP o pPr—Pitp2—patl) o TP: o ZP2—P3 o PP
/ /
(p1 — P)!(p2 — ph)!

with either pj = 0 or p,, = 0, i.e., terms where all free T' derivatives have been

(3.2)

eliminated on one side of ¢ or the other. Thus if we start with p; = py = p/2,
and iteratively apply these commutation relations, the number of T" derivatives
not necessarily applied to ¢ is eventually at most p/2.

4. The recursion

We insert first v = (T'2'% ) ,u in the a priori inequality, then bring (T'3°%),,
to the left of P = —LL — Lz*Z*L since Pu is known and analytic. We have,
omitting for now the ‘subelliptic’ term,

IZ(T% %) pulld + [Z°L(T=5)pull§ S 1(P(T%%)pu, (T25)pu) |

~

ST %) Pu, (T5%)pu)pe| + ([P, (T2 pJu, (T3 pu) 1|
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and, by the above bracket relations,
([P, (T %) Ju, (T5%)pu)
—<[LZ (T55)Jun (1)) — (L2, (%

k'=1
k—1
= (@ (TR 7 L, (T55) ju)

with the same meaning for = as above. In every term, no powers of z or z
have been lost, though some may need to be brought to the left of the (79:92);
with again no loss of powers of z or Z and a further reduction in order, every
bracket reduces the order of the sum of the two indices p; and py by one (here
we started with py = ps = p/2), picks up one derivative on ¢, and leave the
vector fields over which we have maximal control in the estimate intact and in
the correct order. Thus we may bring either Lz* or L to the right as Z*L or L,
and use a weighted Schwarz inequality on the result to take maximal advantage
of the a priori inequality. Iterations of all of this continue until there remain
at most p/2 free T derivatives (i.e., the T' derivatives on at least one side of ¢
are all ‘corrected’ by good vector fields) and perhaps as many as p/2 L or L
derivatives, and we may continue further until, at worst, these remaining L or
L derivatives bracket two at a time to produce more T’s, with corresponding
combinatorial factors. After all of this, there will be at most T’ B remaining,
and a factor of £l ~ £!

It is here that the final term on the left of the a priori inequality is used,
in order to bring the localizing function out of the norm after creating another
balanced localization of T3P/ with a new localizing function of Ehrenpreis type
with slightly larger support, geared, roughly, to 3p/4 instead of to p.

Recall that such such localizing functions ¥ may be constructed for any

N and satisfy
C T‘-‘r].
] < <—) N, r<2N
e

where C' is independent of N and e = dist({y) = 1}, (supp ¢)°).

5. Conclusion of the proof

Finally, this entire process, which reduced the order from p to at most
3p/4, (or more precisely to at most 3p/4 + (k — 1)/2), is repeated, over and
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over, each time essentially reducing the order by a factor of 3/4. After at most
log, /3 p such iterations we are reduced to a bounded number of derivatives,
and, as in [3] and [4], all of these nested open sets may be chosen to fit in the
one open set ' where Pu is known to be analytic, and all constants chosen
independent of p (but depending on Pu). The fact that in those works one full
iteration reduced the order by half played no essential role — a factor of 3/4
works just as well.

To be precise, the sequence of open sets, {€2;}, each compactly contained
in the next, with Qlog4/3p = ), have separations d; = dist(Qj,Qjﬂ), with
> d; = dist(Q0, Q) = d, which need to be picked carefully. The localizing
functions {¢;} with ¢; € C§°(Q;41) =1 on Q; satisfy

(5.3) 7| < (cpay @iy, < 203/4)p,
We shall take the d; = (j+11)2 /d> (j+11)2.

Now at most (3/4)/p derivatives will fall on ¢;, and most of the effect of
the derivatives will be balanced by corresponding factorials in the denominator,
as in (3.2), roughly the powers of (3/4)7p in (5.3) in view of Stirling’s formula.
In addition, as noted immediately before the last paragraph in Section 4, there
will be factorials corresponding to the diminution of powers of 7. What will
not be balanced are the powers of dj_l, but the product of these factors will
contribute

J . j 2
H;O:gi/:sp (]2)(3/4) p_ (H;O:gzll/spj(?;/@ ) P — Cp’

which, together with the factorials just mentioned, proves the analyticity of
the solution in .
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