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Discreteness of spectrum and positivity
criteria for Schrödinger operators

By Vladimir Maz’ya and Mikhail Shubin*

Abstract

We provide a class of necessary and sufficient conditions for the dis-
creteness of spectrum of Schrödinger operators with scalar potentials which
are semibounded below. The classical discreteness of spectrum criterion by
A. M. Molchanov (1953) uses a notion of negligible set in a cube as a set
whose Wiener capacity is less than a small constant times the capacity of the
cube. We prove that this constant can be taken arbitrarily between 0 and 1.
This solves a problem formulated by I. M. Gelfand in 1953. Moreover, we
extend the notion of negligibility by allowing the constant to depend on the
size of the cube. We give a complete description of all negligibility conditions
of this kind. The a priori equivalence of our conditions involving different
negligibility classes is a nontrivial property of the capacity. We also establish
similar strict positivity criteria for the Schrödinger operators with nonnegative
potentials.

1. Introduction

In 1934, K. Friedrichs [3] proved that the spectrum of the Schrödinger
operator −∆ + V in L2(Rn) with a locally integrable potential V is discrete
provided V (x) → +∞ as |x| → ∞ (see also [1], [11]). On the other hand, if
we assume that V is semi-bounded below, then the discreteness of spectrum
easily implies that for every d > 0∫

Qd

V (x)dx → +∞ as Qd → ∞,(1.1)

where Qd is an open cube with the edge length d and with the edges parallel
to coordinate axes and Qd → ∞ means that the cube Qd goes to infinity (with
fixed d). This was first noticed by A. M. Molchanov in 1953 (see [10]) who also
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showed that this condition is in fact necessary and sufficient in case n = 1 but
not sufficient for n ≥ 2. Moreover, in the same paper Molchanov discovered a
modification of condition (1.1) which is fully equivalent to the discreteness of
spectrum in the case n ≥ 2. It states that for every d > 0

inf
F

∫
Qd\F

V (x)dx → +∞ as Qd → ∞,(1.2)

where the infimum is taken over all compact subsets F of the closure Q̄d which
are called negligible. The negligibility of F in the sense of Molchanov means
that cap (F ) ≤ γ cap (Qd), where cap is the Wiener capacity and γ > 0 is
a sufficiently small constant. More precisely, Molchanov proved that we can
take γ = cn where for n ≥ 3

cn = (4n)−4n( cap (Q1))−1.

Proofs of Molchanov’s result can be found also in [9], [2], and [6]. In par-
ticular, the books [9], [2] contain a proof which first appeared in [8] and
is different from the original Molchanov proof. We will not list numerous
papers related to the discreteness of spectrum conditions for one- and mul-
tidimensional Schrödinger operators. Some references can be found in [9],
[6], [5].

As early as 1953, I. M. Gelfand raised the question about the best possible
constant cn (personal communication). In this paper we answer this question
by proving that cn can be replaced by an arbitrary constant γ, 0 < γ < 1.

We even establish a stronger result. We allow negligibility conditions of
the form

cap (F ) ≤ γ(d) cap (Qd)(1.3)

and completely describe all admissible functions γ. More precisely, in the nec-
essary condition for the discreteness of spectrum we allow arbitrary functions
γ : (0,+∞) → (0, 1). In the sufficient condition we can admit arbitrary func-
tions γ with values in (0, 1), defined for d > 0 in a neighborhood of d = 0 and
satisfying

lim sup
d↓0

d−2γ(d) = +∞.(1.4)

On the other hand, if γ(d) = O(d2) in the negligibility condition (1.3), then
the condition (1.2) is no longer sufficient, i.e. it may happen that it is satisfied
but the spectrum is not discrete.

All conditions (1.2) involving functions γ : (0,+∞) → (0, 1), satisfying
(1.4), are necessary and sufficient for the discreteness of spectrum. Therefore
two conditions with different functions γ are equivalent, which is far from being
obvious a priori . This equivalence means the following striking effect: if (1.2)
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holds for very small sets F , then it also holds for sets F which almost fill the
corresponding cubes.

Another important question is whether the operator −∆+V with V ≥ 0 is
strictly positive, i.e. the spectrum is separated from 0. Unlike the discreteness
of spectrum conditions, it is the large values of d which are relevant here.
The following necessary and sufficient condition for the strict positivity was
obtained in [8] (see also [9, §12.5]): there exist positive constants d and κ such
that for all cubes Qd

inf
F

∫
Qd\F

V (x)dx ≥ κ ,(1.5)

where the infimum is taken over all compact sets F ⊂ Q̄d which are negligible
in the sense of Molchanov. We prove that here again an arbitrary constant
γ ∈ (0, 1) in the negligibility condition (1.3) is admissible.

The above mentioned results are proved in this paper in a more general
context. The family of cubes Qd is replaced by a family of arbitrary bodies
homothetic to a standard bounded domain which is star-shaped with respect
to a ball. Instead of locally integrable potentials V ≥ 0 we consider positive
measures. We also include operators in arbitrary open subsets of Rn with the
Dirichlet boundary conditions.

2. Main results

Let V be a positive Radon measure in an open set Ω ⊂ Rn. We will
consider the Schrödinger operator which is formally given by an expression
−∆ + V. It is defined in L2(Ω) by the quadratic form

hV(u, u) =
∫

Ω
|∇u|2dx +

∫
Ω
|u|2V(dx), u ∈ C∞

0 (Ω),(2.1)

where C∞
0 (Ω) is the space of all C∞-functions with compact support in Ω.

For the associated operator to be well defined we need a closed form. The
form above is closable in L2(Ω) if and only if V is absolutely continuous with
respect to the Wiener capacity, i.e. for a Borel set B ⊂ Ω, cap (B) = 0 implies
V(B) = 0 (see [7] and also [9, §12.4]). In the present paper we will always
assume that this condition is satisfied. The operator, associated with the
closure of the form (2.1) will be denoted HV.

In particular, we can consider an absolutely continuous measure V which
has a density V ≥ 0, V ∈ L1

loc(R
n), with respect to the Lebesgue measure dx.

Such a measure will be absolutely continuous with respect to the capacity as
well.

Instead of the cubes Qd which we dealt with in Section 1, a more general
family of test bodies will be used. Let us start with a standard open set G ⊂ Rn.
We assume that G satisfies the following conditions:
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(a) G is bounded and star-shaped with respect to an open ball Bρ(0) of
radius ρ > 0, with the center at 0 ∈ Rn;

(b) diam(G) = 1.

The first condition means that G is star-shaped with respect to every point
of Bρ(0). It implies that G can be presented in the form

G = {x| x = rω, |ω| = 1, 0 ≤ r < r(ω)},(2.2)

where ω �→ r(ω) ∈ (0,+∞) is a Lipschitz function on the standard unit sphere
Sn−1 ⊂ Rn (see [9, Lemma 1.1.8]).

The condition (b) is imposed for convenience of formulations.
For any positive d > 0 denote by Gd(0) the body {x| d−1x ∈ G} which is

homothetic to G with coefficient d and with the center of homothety at 0. We
will denote by Gd a body which is obtained from Gd(0) by a parallel translation:
Gd(y) = y + Gd(0) where y is an arbitrary vector in Rn.

The notation Gd → ∞ means that the distance from Gd to 0 goes to
infinity.

Definition 2.1. Let γ ∈ (0, 1). The negligibility class Nγ(Gd; Ω) consists
of all compact sets F ⊂ Ḡd satisfying the following conditions:

Ḡd \ Ω ⊂ F ⊂ Ḡd ,(2.3)

and

cap (F ) ≤ γ cap (Ḡd).(2.4)

Now we formulate our main result about the discreteness of spectrum.

Theorem 2.2. (i) (Necessity) Let the spectrum of HV be discrete. Then
for every function γ : (0,+∞) → (0, 1) and every d > 0

inf
F∈Nγ(d)(Gd,Ω)

V(Ḡd \ F ) → +∞ as Gd → ∞.(2.5)

(ii) (Sufficiency) Let a function d �→ γ(d) ∈ (0, 1) be defined for d > 0 in
a neighborhood of 0, and satisfy (1.4). Assume that there exists d0 > 0 such
that (2.5) holds for every d ∈ (0, d0). Then the spectrum of HV in L2(Ω) is
discrete.

Let us make some comments about this theorem.

Remark 2.3. It suffices for the discreteness of spectrum of HV that the
condition (2.5) holds only for a sequence of d’s; i.e., d ∈ {d1, d2, . . . }, dk → 0
and d−2

k γ(dk) → +∞ as k → +∞.
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Remark 2.4. As we will see in the proof, in the sufficiency part the con-
dition (2.5) can be replaced by a weaker requirement: there exist c > 0 and
d0 > 0 such that for every d ∈ (0, d0) there exists R > 0 such that

d−n inf
F∈Nγ(d)(Gd,Ω)

V(Ḡd \ F ) ≥ cd−2γ(d),(2.6)

whenever Ḡd ∩ (Ω \ BR(0)) 
= ∅ (i.e. for distant bodies Gd having nonempty
intersection with Ω). Moreover, it suffices that the condition (2.6) is satisfied
for a sequence d = dk satisfying the condition formulated in Remark 2.3.

Note that unlike (2.5), the condition (2.6) does not require that the left-
hand side goes to +∞ as Gd → ∞. What is actually required is that the left-
hand side has a certain lower bound, depending on d for arbitrarily small d > 0
and distant test bodies Gd. Nevertheless, the conditions (2.5) and (2.6) are
equivalent because each of them is equivalent to the discreteness of spectrum.

Remark 2.5. If we take γ = const ∈ (0, 1), then Theorem 2.2 gives
Molchanov’s result, but with the constant γ = cn replaced by an arbitrary con-
stant γ ∈ (0, 1). So Theorem 2.2 contains an answer to the above-mentioned
Gelfand question.

Remark 2.6. For any two functions γ1, γ2 : (0,+∞) → (0, 1) satisfying the
requirement (1.4), the conditions (2.5) are equivalent, and so are the conditions
(2.6), because any of these conditions is equivalent to the discreteness of spec-
trum. In a different context an equivalence of this kind was first established
in [5].

It follows that the conditions (2.5) for different constants γ ∈ (0, 1) are
equivalent. In the particular case, when the measure V is absolutely continuous
with respect to the Lebesgue measure, we see that the conditions (1.2) with
different constants γ ∈ (0, 1) are equivalent.

Remark 2.7. The results above are new even for the operator H0 = −∆
in L2(Ω) (but for an arbitrary open set Ω ⊂ Rn with the Dirichlet boundary
conditions on ∂Ω). In this case the discreteness of spectrum is completely
determined by the geometry of Ω. Namely, for the discreteness of spectrum of
H0 in L2(Ω) it is necessary and sufficient that there exist d0 > 0 such that for
every d ∈ (0, d0)

lim inf
Gd→∞

cap (Ḡd \ Ω) ≥ γ(d) cap (Ḡd),(2.7)

where d �→ γ(d) ∈ (0, 1) is a function, which is defined in a neighborhood of 0
and satisfies (1.4). The conditions (2.7) with different functions γ, satisfying
the conditions above, are equivalent. This is a nontrivial property of capacity.
It is necessary for the discreteness of spectrum that (2.7) hold for every function
γ : (0,+∞) → (0, 1) and every d > 0, but this condition may not be sufficient
if γ does not satisfy (1.4) (see Theorem 2.8 below).
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The following result demonstrates that the condition (1.4) is precise.

Theorem 2.8. Assume that γ(d) = O(d2) as d → 0. Then there exist
an open set Ω ⊂ Rn and d0 > 0 such that for every d ∈ (0, d0) the condition
(2.7) is satisfied but the spectrum of −∆ in L2(Ω) with the Dirichlet boundary
conditions is not discrete.

Now we will state our positivity result. We will say that the operator HV
is strictly positive if its spectrum does not contain 0. Equivalently, we can say
that the spectrum is separated from 0. Since HV is defined by the quadratic
form (2.1), the strict positivity is equivalent to the existence of λ > 0 such
that

hV(u, u) ≥ λ‖u‖2
L2(Ω), u ∈ C∞

0 (Ω).(2.8)

Theorem 2.9. (i) (Necessity) Let us assume that HV is strictly positive,
so that (2.8) is satisfied with a constant λ > 0. Let us take an arbitrary
γ ∈ (0, 1). Then there exist d0 > 0 and κ > 0 such that

d−n inf
F∈Nγ(Gd,Ω)

V(Ḡd \ F ) ≥ κ(2.9)

for every d > d0 and every Gd.

(ii) (Sufficiency) Assume that there exist d > 0, κ > 0 and γ ∈ (0, 1), such
that (2.9) is satisfied for every Gd. Then the operator HV is strictly positive.

Instead of all bodies Gd it is sufficient to take only the ones from a finite
multiplicity covering (or tiling) of Rn.

Remark 2.10. Considering the Dirichlet Laplacian H0 = −∆ in L2(Ω) we
see from Theorem 2.9 that for any choice of a constant γ ∈ (0, 1) and a standard
body G, the strict positivity of H0 is equivalent to the following condition:

∃ d > 0, such that cap (Ḡd ∩ (Rn \ Ω)) ≥ γ cap (Ḡd) for all Gd.(2.10)

In particular, it follows that for two different γ’s these conditions are equivalent.
Noting that Rn \Ω can be an arbitrary closed subset in Rn, we get a property
of the Wiener capacity, which is obtained as a byproduct of our spectral theory
arguments.

3. Discreteness of spectrum: necessity

In this section we will prove the necessity part (i) of Theorem 2.2. We
will start by recalling some definitions and introducing necessary notation.

For every subset D ⊂ Rn denote by Lip(D) the space of (real-valued)
functions satisfying the uniform Lipschitz condition in D, and by Lipc(D) the
subspace in Lip(D) of all functions with compact support in D (this will only
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be used when D is open). By Liploc(D) we will denote the set of functions on
(an open set) D which are Lipschitz on any compact subset K ⊂ D. Note that
Lip(D) = Lip(D̄) for any bounded D.

If F is a compact subset in an open set D ⊂ Rn, then the Wiener capacity
of F with respect to D is defined as

capD(F ) = inf
{∫

Rn
|∇u(x)|2dx

∣∣∣∣ u ∈ Lipc(D), u|F = 1
}

.(3.1)

By Bd(y) we will denote an open ball of radius d centered at y in Rn. We
will write Bd for a ball Bd(y) with unspecified center y.

We will use the notation cap (F ) for cap Rn(F ) if F ⊂ Rn, n ≥ 3, and for
cap B2d

(F ) if F ⊂ B̄d ⊂ R2, where the discs Bd and B2d have the same center.
The choice of these discs will usually be clear from the context; otherwise we
will specify them explicitly.

Note that the infimum does not change if we restrict ourselves to the
Lipschitz functions u such that 0 ≤ u ≤ 1 everywhere (see e.g. [9, §2.2.1]).

We will also need another (equivalent) definition of the Wiener capacity
cap (F ) for a compact set F ⊂ B̄d. For n ≥ 3 it is as follows:

cap (F ) = sup{µ(F )
∣∣∣∣∫

F
E(x − y)dµ(y) ≤ 1 on Rn \ F },(3.2)

where the supremum is taken over all positive finite Radon measures µ on F

and E = En is the standard fundamental solution of −∆ in Rn; i.e.,

E(x) =
1

(n − 2)ωn
|x|2−n ,(3.3)

where ωn is the area of the unit sphere Sn−1 ⊂ Rn. If n = 2, then

cap (F ) = sup{µ(F )
∣∣∣∣∫

F
G(x, y)dµ(y) ≤ 1 on B2d \ F },(3.4)

where G is the Green function of the Dirichlet problem for −∆ in B2d; i.e.,

−∆G(· − y) = δ(· − y), y ∈ B2d,

G(·, y)|∂B2d
= 0 for all y ∈ B2d. The maximizing measure in (3.2) or in (3.4)

exists and is unique. We will denote it µF and call it the equilibrium measure.
Note that

cap (F ) = µF (F ) = µF (Rn) = 〈µF , 1〉.

The corresponding potential will be denoted PF , so that

PF (x) =
∫

F
E(x − y)dµF (y), x ∈ Rn \ F, n ≥ 3,

PF (x) =
∫

F
G(x, y)dµF (y), x ∈ B2d \ F, n = 2.
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We will call PF the equilibrium potential or capacitary potential. We will extend
it to F by setting PF (x) = 1 for all x ∈ F .

It follows from the maximum principle that 0 ≤ PF ≤ 1 everywhere in Rn

if n ≥ 3 (and in B2d if n = 2).
In the case when F is a closure of an open subset with a smooth boundary,

u = PF is the unique minimizer for the Dirichlet integral in (3.1) where we
should take D = Rn if n ≥ 3 and D = B2d if n = 2. In particular,∫

|∇PF |2dx = cap (F ),(3.5)

where the integration is taken over Rn (or Rn \ F ) if n ≥ 3 and over B2d (or
B2d \ F ) if n = 2.

The following lemma provides an auxiliary estimate which is needed for
the proof.

Lemma 3.1. Assume that G has a C∞ boundary, and P is the equilibrium
potential of Ḡd. Then∫

∂Gd

|∇P |2ds ≤ nLρ−1d−1 cap (Ḡd),(3.6)

where the gradient ∇P in the left-hand side is taken along the exterior of Ḡd, ds

is the (n− 1)-dimensional volume element on ∂Gd. The positive constants ρ, L

are geometric characteristics of the standard body G (they depend on the choice
of G only, but not on d): ρ was introduced at the beginning of Section 2, and

L =
[

inf
x∈∂G

νr(x)
]−1

,(3.7)

where νr(x) = x
|x| · ν(x), ν(x) is the unit normal vector to ∂G at x which is

directed to the exterior of Ḡ.

Proof. It suffices to consider Gd = Gd(0). For simplicity we will write G
instead of Gd(0) in this proof, until the size becomes relevant.

We will first consider the case n ≥ 3. Note that ∆P = 0 on �Ḡ = Rn \ Ḡ.
Also P = 1 on Ḡ, so in fact |∇P | = |∂P/∂ν|. Using the Green formula, we
obtain

0 =
∫

�Ḡ
∆P · ∂P

∂r
dx =

∫
�Ḡ

∆P

(
x

|x| · ∇P

)
dx

=−
∫

�Ḡ
∇P · ∇

(
x

|x| · ∇P

)
dx −

∫
∂G

∂P

∂ν

(
x

|x| · ∇P

)
ds

=−
∑
i,j

∫
�Ḡ

∂P

∂xj
· ∂

∂xj

(
xi

|x| ·
∂P

∂xi

)
dx −

∫
∂G

∂P

∂ν
· ∂P

∂r
ds
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=−
∑
i,j

∫
�Ḡ

∂P

∂xj
· δij

|x| ·
∂P

∂xi
dx +

∑
i,j

∫
�Ḡ

xixj

|x|3 · ∂P

∂xi
· ∂P

∂xj
dx

−
∑
i,j

∫
�Ḡ

xi

|x| ·
∂P

∂xj
· ∂2P

∂xi∂xj
dx −

∫
∂G

∂P

∂ν
· ∂P

∂r
ds

=−
∫

�Ḡ

1
|x| |∇P |2dx +

∫
�Ḡ

1
|x|

∣∣∣∣∂P

∂r

∣∣∣∣2 dx

−1
2

∑
i

∫
�Ḡ

xi

|x| ·
∂

∂xi
|∇P |2dx −

∫
∂G

|∇P |2νrds.

Integrating by parts in the last integral over �Ḡ, we see that it equals

1
2

∑
i

∫
�Ḡ

∂

∂xi

(
xi

|x|

)
· |∇P |2dx +

1
2

∑
i

∫
∂G

xi

|x| |∇P |2νids

=
n − 1

2

∫
�Ḡ

1
|x| |∇P |2dx +

1
2

∫
∂G

|∇P |2νrds,

where νi is the ith component of ν. Returning to the calculation above, we
obtain

0 =
n − 3

2

∫
�Ḡ

1
|x| |∇P |2dx +

∫
�Ḡ

1
|x|

∣∣∣∣∂P

∂r

∣∣∣∣2 dx − 1
2

∫
∂G

|∇P |2νrds.(3.8)

It follows that ∫
∂G

|∇P |2νrds ≤ (n − 1)
∫

�Ḡ

1
|x| |∇P |2dx.

Recalling that G = Gd(0), we observe that |x|−1 ≤ (ρd)−1. Now using (3.5),
we obtain the desired estimate (3.6) for n ≥ 3 (with n − 1 instead of n).

Let us consider the case n = 2. Then, by definition, the equilibrium
potential P for G = Gd(0) is defined in the ball B2d(0). It satisfies ∆P = 0 in
B2d(0) \ Ḡ and the boundary conditions P |∂G = 1, P |∂B2d(0) = 0. Let us first
modify the calculations above by taking the integrals over Bδ(0) \ Ḡ (instead
of �Ḡ), where d < δ < 2d. We will get additional boundary terms with the
integration over ∂Bδ(0). Instead of (3.8) we will obtain

0 =−1
2

∫
Bδ(0)\Ḡ

1
|x| |∇P |2dx +

∫
Bδ(0)\Ḡ

1
|x|

∣∣∣∣∂P

∂r

∣∣∣∣2 dx

−1
2

∫
∂G

|∇P |2νrds +
1
2

∫
∂Bδ(0)

[
2

∣∣∣∣∂P

∂r

∣∣∣∣2 − |∇P |2
]

ds.

Therefore∫
∂G

|∇P |2νrds ≤
∫

Bδ(0)\Ḡ

1
|x| |∇P |2dx +

∫
∂Bδ(0)

[
2

∣∣∣∣∂P

∂r

∣∣∣∣2 − |∇P |2
]

ds

≤ 1
ρd

∫
B2d(0)\Ḡ

|∇P |2dx +
∫

∂Bδ(0)
|∇P |2ds.
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Now let us integrate both sides with respect to δ over the interval [d, 2d] and
divide the result by d (i.e. take the average over all δ). Then the left-hand side
and the first term on the right-hand side do not change, while the last term
becomes d−1 times the volume integral with respect to the Lebesgue measure
over B2d(0) \ Bd(0). Due to (3.5) the right-hand side can be estimated by
(1 + ρ)(ρd)−1 cap (Ḡd). Since 0 < ρ ≤ 1, we get the estimate (3.6) for n = 2.

Proof of Theorem 2.2, part (i). (a) We will use the same notation as
above. Let us fix d > 0, take Gd = Gd(z), and assume that G has a C∞

boundary. Let us take a compact set F ⊂ Rn with the following properties:

(i) F is the closure of an open set with a C∞ boundary;

(ii) Ḡd \ Ω � F ⊂ B3d/2(z);

(iii) cap (F ) ≤ γ cap (Ḡd) with 0 < γ < 1.

Let us recall that the notation Ḡd \Ω � F means that Ḡd \Ω is contained in the
interior of F . This implies that V(Ḡd \ F ) < +∞. The inclusion F ⊂ B3d/2(z)
and the inequality (iii) hold, in particular, for compact sets F which are small
neighborhoods (with smooth boundaries) of negligible compact subsets of Ḡd,
and it is exactly such F ’s which we have in mind.

We will refer to the sets F satisfying (i)–(iii) above as regular ones.
Let P and PF denote the equilibrium potentials of Ḡd and F respectively.

The equilibrium measure µḠd
has its support in ∂Gd and has density −∂P/∂ν

with respect to the (n − 1)-dimensional Riemannian measure ds on ∂Gd. So
for n ≥ 3 we have

P (y) =−
∫

∂Gd

E(x − y)
∂P

∂ν
(x)dsx, y ∈ Rn;

−
∫

∂Gd

∂P

∂ν
(x)dsx = cap (Ḡd);

P (y) = 1 for all y ∈ Gd, 0 ≤ P (y) ≤ 1 for all y ∈ Rn.

(If n = 2, then the same holds only with y ∈ B2d and with the fundamental
solution E replaced by the Green function G.) It follows that

−
∫

∂Gd

PF
∂P

∂ν
ds = −

∫
F

∫
∂Gd

E(x − y)
∂P

∂ν
(x)dsxdµF (y) ≤ µF (F ) = cap (F ).

Therefore,

cap (Ḡd) − cap (F ) ≤ −
∫

∂Gd

(1 − PF )
∂P

∂ν
ds,
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and, using Lemma 3.1, we obtain

( cap (Ḡd) − cap (F ))2 ≤
(∫

∂Gd

(1 − PF )
∂P

∂ν
ds

)2

(3.9)

≤‖1 − PF ‖2
L2(∂Gd)‖∇P‖2

L2(∂Gd)

≤nL(ρd)−1 cap (Gd)‖1 − PF ‖2
L2(∂Gd),

where L is defined by (3.7).

(b) Our next goal will be to estimate the norm ‖1 − PF ‖L2(∂Gd) in (3.9)
by the norm of the same function in L2(Gd).

We will use the polar coordinates (r, ω) as in (2.2), so that in particular
∂Gd is presented as the set {r(ω)ω| ω ∈ Sn−1}, where r : Sn−1 → (0,+∞) is
a Lipschitz function (C∞ as long as we assume the boundary ∂G to be C∞).
Assuming that v ∈ Lip(Ḡd), we can write∫

∂Gd

|v|2ds =
∫

Sn−1

|v|2 r(ω)n−1

νr
dω(3.10)

≤ L

∫
Sn−1

|v(r(ω), ω)|2r(ω)n−1dω,

where dω is the standard (n − 1)-dimensional volume element on Sn−1.
Using the inequality

|f(ε)|2 ≤ 2ε

∫ ε

0
|f ′(t)|2dt +

2
ε

∫ ε

0
|f(t)|2dt, f ∈ Lip([0, ε]), ε > 0,

we obtain

|v(r(ω), ω)|2 ≤ 2εr(ω)
∫ r(ω)

(1−ε)r(ω)
|v′ρ(ρ, ω)|2dρ +

2
εr(ω)

∫ r(ω)

(1−ε)r(ω)
|v(ρ, ω)|2dρ

≤ 2εr(ω)
[(1 − ε)r(ω)]n−1

∫ r(ω)

(1−ε)r(ω)
|v′ρ(ρ, ω)|2ρn−1dρ

+
2

εr(ω)[(1 − ε)r(ω)]n−1

∫ r(ω)

(1−ε)r(ω)
|v(ρ, ω)|2ρn−1dρ.

It follows that the integral on the right-hand side of (3.10) is estimated by∫
Sn−1

2εr(ω)dω

(1 − ε)n−1

∫ r(ω)

(1−ε)r(ω)
|v′ρ(ρ, ω)|2ρn−1dρ

+
∫

Sn−1

2dω

ε(1 − ε)n−1r(ω)
|v(ρ, ω)|2ρn−1dρ.

Taking ε ≤ 1/2, we can majorize this by

2nεd

∫
Ḡd

|∇v|2dx +
2n

ερd

∫
Ḡd

|v|2dx,
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where ρ ∈ (0, 1] is the constant from the description of G in Section 2. Recalling
(3.10), we see that the resulting estimate has the form∫

∂Gd

|v|2ds ≤ 2nLεd

∫
Ḡd

|∇v|2dx +
2nL

ερd

∫
Ḡd

|v|2dx.

Now, taking v = 1 − PF , we obtain∫
∂Gd

(1 − PF )2ds ≤ 2nLεd cap (F ) +
2nL

ερd

∫
Ḡd

(1 − PF )2dx.

Using this estimate in (3.9), we obtain

(3.11) ( cap (Ḡd) − cap (F ))2

≤ ρ−1n2nL2 cap (Ḡd)
(

ε cap (F ) +
1

ερd2

∫
Gd

(1 − PF )2dx

)
.

(c) Now let us consider G which is star-shaped with respect to a ball,
but does not necessarily have C∞ boundary. In this case we can approxi-
mate the function r(ω) (see Section 2) from above by a decreasing sequence
of C∞ functions rk(ω) (e.g. we can apply a standard mollifying procedure to
r(ω) + 1/k), so that for the the corresponding bodies G(k), the constants Lk

are uniformly bounded. It is clear that in this case we will also have ρk ≥ ρ,
and cap (Ḡ(k)

d ) → cap (Ḡd) due to the well known continuity property of the
capacity (see e.g. Section 2.2.1 in [9]). So we can pass to the limit in (3.11) as
k → +∞ and conclude that it holds for arbitrary G (which is star-shaped with
respect to a ball). But for the moment we still retain the regularity condition
on F .

(d) Let us define

L =
{

u
∣∣∣u ∈ C∞

0 (Ω), hV(u, u) + ‖u‖2
L2(Ω) ≤ 1

}
,(3.12)

where hV is defined by (2.1). By the standard functional analysis argument
(see e.g. Lemma 2.3 in [6]) the spectrum of HV is discrete if and only if L is
precompact in L2(Ω), which in turn holds if and only if L has “small tails”;
i.e., for every η > 0 there exists R > 0 such that∫

Ω\BR(0)
|u|2dx ≤ η for every u ∈ L.(3.13)

Equivalently, we can write that∫
Ω\BR(0)

|u|2dx ≤ η

[∫
Ω
|∇u|2dx +

∫
Ω
|u|2V(dx)

]
,(3.14)

for every u ∈ C∞
0 (Ω).
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Therefore, it follows from the discreteness of the spectrum of HV that for
every η > 0 there exists R > 0 such that for every Gd with Ḡd∩(Rn\BR(0)) 
= ∅
and every u ∈ C∞

0 (Gd ∩ Ω)∫
Gd

|u|2dx ≤ η

(∫
Gd

|∇u|2dx +
∫
Ḡd

|u|2V(dx)
)

.(3.15)

In other words, η = η(Gd) → 0 as Gd → ∞ for the best constant in (3.15).
(Note that η(Gd)−1 is the bottom of the Dirichlet spectrum of HV in Gd ∩ Ω.)

Since 1 − PF = 0 on F (hence is in a neighborhood of Ḡd \ Ω), we can
take u = χσ(1 − PF ), where σ ∈ (0, 1) is to be chosen later, χσ ∈ C∞

0 (Gd) is a
cut-off function satisfying 0 ≤ χσ ≤ 1, χσ = 1 on G(1−σ)d, and |∇χσ| ≤ Cd−1

with C = C(G). Then, using integration by parts and the equation ∆PF = 0
on G \ F , we obtain∫

Gd

|∇u|2dx =
∫
Gd

(
|∇χσ|2(1 − PF )2 −∇(χ2

σ) · (1 − PF )∇PF + χ2
σ|∇PF |2

)
dx

=
∫
Gd

|∇χσ|2(1 − PF )2dx ≤ C2(σd)−2

∫
Gd

(1 − PF )2dx.

Therefore, from (3.15)∫
Gd

|u|2dx ≤ η

[
C2(σd)−2

∫
Gd

(1 − PF )2dx + V(Ḡd \ F )
]

;

hence ∫
G(1−σ)d

(1 − PF )2dx ≤ η

[
C2(σd)−2

∫
Gd

(1 − PF )2dx + V(Ḡd \ F )
]

.

Now, applying the obvious estimate∫
Gd

(1 − PF )2dx ≤
∫
G(1−σ)d

(1 − PF )2dx + mes (Gd \ G(1−σ)d)

≤
∫
G(1−σ)d

(1 − PF )2dx + C1σdn,

with C1 = C1(G), we see that∫
Gd

(1 − PF )2dx ≤ η

[
C2(σd)−2

∫
Ḡd

(1 − PF )2dx + V(Ḡd \ F )
]

+ C1σdn;

hence ∫
Gd

(1 − PF )2dx ≤ 2ηV(Ḡd \ F ) + 2C1σdn,(3.16)

provided

ηC2(σd)−2 ≤ 1/2.(3.17)
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Returning to (3.11) and using (3.16) we obtain(
1 − cap (F )

cap (Ḡd)

)2

≤C2

[
ε + ε−1d−n

∫
Gd

(1 − PF )2dx

]
(3.18)

≤C2[ε + 2C1σε−1 + 2ε−1d−nηV(Ḡd \ F )],

where C2 = C2(G). Without loss of generality we will assume that C2 ≥ 1/2.
Recalling that cap (F ) ≤ γ cap (Ḡd), we can replace the ratio cap (F )/ cap (Ḡd)
in the left-hand side by γ. Now let us choose

ε =
(1 − γ)2

4C2
, σ =

ε(1 − γ)2

8C1
=

(1 − γ)4

32C1C2
.(3.19)

Then ε ≤ 1/2 and for every fixed γ ∈ (0, 1) and d > 0 the condition (3.17) will
be satisfied for distant bodies Gd, because η = η(Gd) → 0 as Gd → ∞. (More
precisely, there exists R = R(γ, d) > 0, such that (3.17) holds for every Gd such
that Gd ∩ (Rn \ BR(0)) 
= ∅.)

If ε and σ are chosen according to (3.19), then (3.18) becomes

d−nV(Ḡd \ F ) ≥ (16C2η)−1(1 − γ)4,(3.20)

which holds for distant bodies Gd if γ ∈ (0, 1) and d > 0 are arbitrarily fixed.

(e) Up to this moment we worked with “regular” sets F – see conditions
(i)–(iii) in part (a) of this proof. Now we can get rid of the regularity require-
ments (i) and (ii), retaining (iii). So let us assume that F is a compact set,
Ḡd \ Ω ⊂ F ⊂ Ḡd and cap (F ) ≤ γ cap (Ḡd) with γ ∈ (0, 1). Let us construct a
sequence of compact sets Fk � F , k = 1, 2, . . . , such that every Fk is regular,

F1 � F2 � . . . , and
∞⋂

k=1

Fk = F.

We then have cap (Fk) → cap (F ) as k → +∞ due to the well known continuity
property of the capacity (see e.g. §2.2.1 in [9]). According to the previous steps
of this proof, the inequality (3.20) holds for distant Gd’s if we replace F by Fk

and γ by γk = cap (Fk)/ cap (Ḡd). Since the measure V is positive, the resulting
inequality will still hold if we replace V(Ḡd \Fk) by V(Ḡd \F ). Taking the limit
as k → +∞, we obtain that (3.20) holds with γ′ = cap (F )/ cap (Ḡd) instead
of γ. Since γ′ ≤ γ, (3.20) immediately follows for arbitrary compact F such
that Ḡd \ Ω ⊂ F ⊂ Ḡd and cap (F ) ≤ γ cap (Ḡd) with γ ∈ (0, 1).

(f) Let us fix G and take the infimum over all negligible F ’s (i.e. compact
sets F , such that Ḡd \Ω ⊂ F ⊂ Ḡd and cap (F ) ≤ γ cap (Ḡd)) on the right-hand
side of (3.20). We get then for distant Gd’s

d−n inf
F∈Nγ(Gd,Ω)

V(Ḡd \ F ) ≥ (16C2η)−1(1 − γ)4.(3.21)
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Now let us recall that the discreteness of spectrum is equivalent to the condition
η = η(Gd) → 0 as Gd → ∞ (with any fixed d > 0). If this is the case, then
it is clear from (3.21), that for every fixed γ ∈ (0, 1) and d > 0, the left-hand
side of (3.21) tends to +∞ as Gd → ∞. This concludes the proof of part (i) of
Theorem 2.2.

4. Discreteness of spectrum: sufficiency

In this section we will establish the sufficiency part of Theorem 2.2.

Let us recall the Poincaré inequality (see e.g. [4, §7.8], or [6, Lemma 5.1]):

||u − ū||2L2(Gd) ≤ A(G)d2

∫
Gd

|∇u(x)|2dx, u ∈ Lip(Gd),

where Gd ⊂ Rn is as described in Section 2 and

ū =
1

|Gd|

∫
Gd

u(x) dx

is the mean value of u on Gd, and |Gd| is the Lebesgue volume of Gd, A(G) > 0
is independent of d. (In fact, the best A(G) is obtained if A(G)−1 is the lowest
nonzero Neumann eigenvalue of −∆ in G.)

The following Lemma generalizes (to an arbitrary body G) a particular
case of the first part of Theorem 10.1.2 in [9] (see also Lemma 2.1 in [5]).

Lemma 4.1. There exists C(G) > 0 such that the following inequality
holds for every function u ∈ Lip(Ḡd) which vanishes on a compact set F ⊂ Ḡd

(but is not identically 0 on Ḡd):

cap (F ) ≤
C(G)

∫
Gd

|∇u(x)|2dx

|Gd|−1
∫
Gd

|u(x)|2dx
.(4.1)

Proof. Let us normalize u by

|Gd|−1

∫
Gd

|u(x)|2dx = 1,

i.e. |u|2 = 1. By the Cauchy-Schwarz inequality we obtain

|u| ≤
(
|u|2

)1/2
= 1.(4.2)

Replacing u by |u| does not change the denominator and may only de-
crease the numerator in (4.1). Therefore we can restrict ourselves to Lipschitz
functions u ≥ 0.
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Let φ = 1 − u. Then φ = 1 on F , and φ̄ = 1 − ū ≥ 0 due to (4.2). Let us
estimate φ̄ from above. Obviously

φ̄ = |Gd|−1/2(‖u‖ − ‖ū‖) ≤ |Gd|−1/2‖u − ū‖,

where ‖ · ‖ means the norm in L2(Gd). Hence the Poincaré inequality gives

φ̄ ≤ A1/2d|Gd|−1/2‖∇u‖ = A1/2d|Gd|−1/2‖∇φ‖,

where A = A(G). So

φ̄2 ≤ Ad2|Gd|−1

∫
Gd

|∇φ|2dx.

and

‖φ̄‖2 ≤ Ad2

∫
Gd

|∇φ|2dx.

Using the Poincaré inequality again, we obtain

‖φ‖2 = ‖(φ − φ̄) + φ̄‖2 ≤ 2‖φ − φ̄‖2 + 2‖φ̄‖2 ≤ 4Ad2

∫
Gd

|∇φ|2dx,

or ∫
Gd

φ2dx ≤ 4Ad2

∫
Gd

|∇φ|2dx.(4.3)

Let us extend φ outside Gd = Gd(y) by inversion in each ray emanating from y.
In notation introduced in (2.2) we can write φ(y + rω) = φ(y + r−1(r(ω))2ω)
for every r > r(ω) and every ω ∈ Sn−1.

It is easy to see that the extension φ̃ satisfies∫
B3d

|φ̃|2dx ≤ C1(G)
∫
Gd

|φ|2dx,

∫
B3d

|∇φ̃|2dx ≤ C1(G)
∫
Gd

|∇φ|2dx.

Let η be a piecewise smooth function, such that η = 1 on Bd, η = 0 outside
B2d, 0 ≤ η ≤ 1 and |∇η| ≤ d−1; i.e., η(x) = 2 − d−1|x| if d ≤ |x| ≤ 2d. Then

cap (F ) ≤
∫

B2d

|∇(φ̃η)|2dx ≤ 2C1(G)
(∫

Gd

|∇φ|2dx + d−2

∫
Gd

φ2dx

)
.

Taking into account that |∇φ| = |∇u| and using (4.3), we obtain

cap (F ) ≤ 2C1(G)(1 + 4A)
∫
Gd

|∇u|2dx,

which is equivalent to (4.1) with C(G) = 2C1(G)(1 + 4A(G)).

The next lemma is an adaptation of a very general Lemma 12.1.1 from [9]
(see also Lemma 2.2 in [5]) to test bodies Gd in general (instead of cubes Qd).
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Lemma 4.2. Let V be a positive Radon measure in Ω. There exists C2(G)
> 0 such that for every γ ∈ (0, 1) and u ∈ Lip(Ḡd) with u = 0 in a neighborhood
of Ḡd \ Ω, ∫

Gd

|u|2dx ≤ C2(G)d2

γ

∫
Gd

|∇u|2dx +
C2(G)dn

Vγ(Gd,Ω)

∫
Ḡd

|u|2V(dx),(4.4)

where

Vγ(Gd,Ω) = inf
F∈Nγ(Gd,Ω)

V(Gd \ F ).(4.5)

(Here the negligibility class Nγ(Gd,Ω) is as introduced in Definition 2.1.)

Proof. Let Mτ = {x ∈ Ḡd : |u(x)| > τ}, where τ ≥ 0. Note that Mτ is a
relatively open subset of Ḡ, and Mτ ⊂ Ω; hence Ḡd \Mτ ⊃ Ḡd \ Ω.

Since
|u|2 ≤ 2τ2 + 2(|u| − τ)2 on Mτ ,

for all τ , ∫
Gd

|u|2dx ≤ 2τ2|Gd| + 2
∫
Mτ

(|u| − τ)2dx.

Let us take
τ2 =

1
4|Gd|

∫
Gd

|u|2dx;

i.e. τ = 1
2

(
|u|2

)1/2
. Then for this particular value of τ we obtain∫

Gd

|u|2dx ≤ 4
∫
Mτ

(|u| − τ)2dx.(4.6)

Assume first that cap (Ḡd \ Mτ ) ≥ γ cap (Ḡd). Using (4.6) and applying
Lemma 4.1 to the function (|u| − τ)+, which equals |u| − τ on Mτ and 0
on Gd \Mτ , we see that

cap (Ḡd \Mτ ) ≤
C(G)

∫
Mτ

|∇(|u| − τ)|2dx

|Gd|−1
∫
Gd

|u|2dx
≤

C(G)
∫
Gd

|∇u|2dx

|Gd|−1
∫
Gd

|u|2dx
,

where C(G) is the same as in (4.1). Thus,∫
Gd

|u|2dx ≤
C(G)|Gd|

∫
Gd

|∇u|2dx

cap (Ḡd \Mτ )
≤

C(G)|Gd|
∫
Gd

|∇u|2dx

γ cap (Ḡd)
.

Note that |Gd| = |G|dn and cap (Ḡd) = cap (Ḡ)dn−2, where for n = 2 the
capacities of Ḡ = Ḡ1(0) and Ḡd = Ḡd(y) are taken with respect to the discs
B2(0) and B2d(y) respectively. Therefore we obtain∫

Gd

|u|2dx ≤ C(G)|G|d2

γ cap (Ḡ)

∫
Gd

|∇u|2dx.(4.7)
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Now consider the opposite case with cap (Ḡd \ Mτ ) ≤ γ cap (Ḡd). Then
we can write∫

Ḡd

|u|2V(dx) ≥
∫
Mτ

|u|2V(dx)≥ τ2V(Mτ ) =
1

4|Gd|

∫
Gd

|u|2dx · V(Mτ )

≥ 1
4|Gd|

∫
Gd

|u|2dx · Vγ(Gd,Ω).

Finally we obtain in this case∫
Gd

|u|2dx ≤ 4|Gd|
Vγ(Gd,Ω))

∫
Ḡd

|u|2V(dx).(4.8)

The desired inequality (4.4) immediately follows from (4.7) and (4.8) with
C2(G) = max

{
C(G)|G|( cap (Ḡ))−1, 4|G|

}
.

Now we will move to the proof of the sufficiency part in Theorem 2.2 start-
ing with the following proposition which gives a general (albeit complicated)
sufficient condition for the discreteness of spectrum.

Proposition 4.3. Given an operator HV, let us assume that the following
condition is satisfied : there exists η0 > 0 such that for every η ∈ (0, η0) there
exist d = d(η) > 0 and R = R(η) > 0, so that if Gd satisfies Ḡd∩(Ω\BR(0)) 
= ∅,
then there exists γ = γ(Gd, η) ∈ (0, 1) such that

γd−2 ≥ η−1 and d−nVγ(Gd,Ω) ≥ η−1 .(4.9)

Then the spectrum of HV is discrete.

Proof. Recall that the discreteness of spectrum is equivalent to the fol-
lowing condition: for every η > 0 there exists R > 0 such that (3.14) holds for
every u ∈ C∞

0 (Ω). This will be true if we establish that for every η > 0 there
exist R > 0 and d > 0 such that∫

Gd

|u|2dx ≤ η

[∫
Gd

|∇u|2dx +
∫
Ḡd

|u|2V(dx)
]

,(4.10)

for all Gd such that Ḡd ∩ (Ω \ BR(0)) 
= ∅ and for all u ∈ C∞(Ḡd), such
that u = 0 in a neighborhood of Ḡd \ Ω. Indeed, assume that (4.10) is true.
Let us take a covering of Rn by bodies Ḡd so that it has a finite multiplicity
m = m(G) (i.e. at most m bodies Ḡd can have nonempty intersection). Then,
taking u ∈ C∞

0 (Ω) and summing up the estimates (4.10) over all bodies Gd

with Ḡd ∩ (Ω \ BR(0)) 
= ∅, we obtain (3.14) (hence (3.13)) with mη instead
of η.

Now Lemma 4.2 and the assumptions (4.9) immediately imply (4.10) (with
η replaced by C2(G)η).
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Instead of requiring that the conditions of Proposition 4.3 are satisfied for
all η ∈ (0, η0), it suffices to require this for a monotone sequence ηk → +0. We
can also assume that d(ηk) → 0 as k → +∞. Then, passing to a subsequence,
we can assume that the sequence {d(ηk)} is strictly decreasing. Keeping this
in mind, we can replace the dependence d = d(η) by the inverse dependence
η = g(d), so that g(d) > 0 and g(d) → 0 as d → +0 (and here we can
also restrict ourselves to a sequence dk → +0). This leads to the following,
essentially equivalent but more convenient reformulation of Proposition 4.3:

Proposition 4.4. Given an operator HV, assume that the following con-
dition is satisfied : there exists d0 > 0 such that for every d ∈ (0, d0) there exist
R = R(d) > 0 and γ = γ(d) ∈ (0, 1), so that if Ḡd ∩ (Ω \ BR(0)) 
= ∅, then

d−2γ ≥ g(d)−1 and d−nVγ(Gd,Ω) ≥ g(d)−1,(4.11)

where g(d) > 0 and g(d) → 0 as d → +0. Then the spectrum of HV is discrete.

Proof of Theorem 2.2, part (ii). Instead of (ii) in Theorem 2.2 it suffices
to prove the (stronger) statement formulated in Remark 2.4. So suppose that
there exist d0 > 0, c > 0, for all d ∈ (0, d0), there exist R = R(d) > 0, γ(d) ∈
(0, 1), satisfying (1.4), such that (2.6) holds for all Gd with Ḡd∩(Ω\BR(0)) 
= ∅.

Since the left-hand side of (2.6) is exactly d−nVγ(d)(Gd,Ω), we see that
(2.6) can be rewritten in the form

d−nVγ(Gd,Ω) ≥ cd−2γ(d),

hence we can apply Proposition 4.4 with g(d) = c−1d2γ(d)−1 to conclude that
the spectrum of HV is discrete.

5. A sufficiency precision example

In this section we will prove Theorem 2.8. First, we construct a domain
Ω ⊂ Rn, such that the condition (2.7) is satisfied with γ(d) = Cd2 (with an
arbitrarily large C > 0), and yet the spectrum of −∆ in L2(Ω) (with the
Dirichlet boundary condition) is not discrete.

This will show that the condition (1.4) is precise, so that Theorem 2.8 will
be proved. We will assume for simplicity that n ≥ 3.

We will use the following notation:

• L(j) is the spherical layer {x ∈ Rn : log j ≤ |x| ≤ log(j + 1)}. Its width
is log(j + 1) − log j which is < j−1 for all j and equivalent to j−1 for large j.

• {Q(j)
k }k≥1 is a collection of closed cubes which form a tiling of Rn and

have edge length ε(n) j−1, where ε(n) is a sufficiently small constant depending
on n (to be adjusted later).

• x
(j)
k is the center of Q

(j)
k .
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• {B(j)
k }k≥1 is the collection of closed balls centered at x

(j)
k with radii ρj

given by
ωn(n − 2) ρn−2

j = C(ε(n)/j)n,

where ωn is the area of the unit sphere Sn−1 ⊂ Rn and C is an arbitrary
constant. The last equality can be written as

cap (B(j)
k ) = C mes Q

(j)
k ,(5.1)

where mes is the n-dimensional Lebesgue measure on Rn. Among the balls
B

(j)
k we will select a subcollection which consists of the balls with the additional

property B
(j)
k ⊂ L(j). We will refer to these balls as selected ones. We will

denote selected balls by B̃
(j)
k . By an abuse of notation we will not introduce

special letters for the subscripts of the selected balls. We will also denote by
Q̃

(j)
k the corresponding cubes Q

(j)
k , so that

Q̃
(j)
k = Q

(j)
k ⊃ B̃

(j)
k .

• Λ(j) =
⋃

k≥1 B̃
(j)
k ⊂ L(j).

• Ω is the complement of ∪j≥1Λ(j).

• Br(P ) is the closed ball with radius r ≤ 1 centered at a point P . We
will make a more precise choice of r later.

Proposition 5.1. The spectrum of −∆ in Ω (with the Dirichlet boundary
condition) is not discrete.

Proof. Let j ≥ 7 and P ∈ L(j), i.e.

log j ≤ |P | ≤ log(j + 1).

Note that the ball Br(P ) is a subset of the spherical layer ∪l≥s≥mL(s) if and
only if

log m ≤ |P | − r and |P | + r ≤ log(l + 1).

Therefore, if
log m ≤ log j − r

and
log(j + 1) + r ≤ log(l + 1),

then Br(P ) ⊂ ∪l≥s≥mL(s). The last two inequalities can be written as

m ≤ j e−r and j + 1 ≤ (l + 1)e−r.(5.2)

If we take, for example,

m = [j/3] and l = 3j,



DISCRETENESS OF SPECTRUM FOR SCHRÖDINGER OPERATORS 939

then, due to the inequality j ≥ 7, we easily deduce that

Br(P ) ⊂
⋃

[j/3]≤s≤3j

L(s).(5.3)

Using (5.2), the definition of Ω and subadditivity of capacity, we obtain:

cap (Br(P ) \ Ω) = cap (Br(P ) ∩ (∪s≥1Λ(s)))

≤
∑

[j/3]≤s≤3j

∑
k≥1

cap (Br(P ) ∩ B̃
(s)
k )

≤ C
∑

[j/3]≤s≤3j

∑
{k:Br(P )∩Q̃

(s)
k 	=∅}

mes Q̃
(s)
k .

It is easy to see that the multiplicity of the covering of Br(P ) by the cubes Q̃
(s)
k ,

participating in the last sum, is at most 2, provided ε(n) is chosen sufficiently
small. Hence,

cap (Br(P ) \ Ω) ≤ c(n)C rn.(5.4)

On the other hand, we know that the discreteness of spectrum guarantees that
for every r > 0

lim inf
|P |→∞

cap (Br(P ) \ Ω) ≥ γ(n) rn−2,

where γ(n) is a constant depending only on n (cf. Remark 2.7). For sufficiently
small r > 0 this clearly contradicts (5.4).

Proposition 5.2. The domain Ω satisfies

lim inf
|P |→∞

cap (Br(P ) \ Ω) ≥ δ(n)C rn,(5.5)

where δ(n) > 0 depends only on n.

Proof. Let µ
(s)
k be the capacitary measure on ∂B̃

(s)
k (extended by zero to

Rn \ ∂B̃
(s)
k ), and let ε1(n) denote a sufficiently small constant to be chosen

later. We introduce the measure

µ = ε1(n)
∑
k,s

µ
(s)
k ,

where the summation here and below is taken over k, s which correspond to
the selected balls B̃

(s)
k . Taking P ∈ L(j), let us show that∫

Br/2(P )
E(x − y)dµ(y) ≤ 1 on Rn,(5.6)

where E(x) is given by (3.3). It suffices to verify (5.6) for x ∈ Br(P ), because
for x ∈ Rn \ Br(P ) this will follow from the maximum principle.
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Obviously, the potential in (5.6) does not exceed∑
{s,k:B̃

(s)
k ∩Br/2(P ) 	=∅}

ε1(n)
∫

∂B̃
(s)
k

E(x − y)dµ
(s)
k (y).

We divide this sum into two parts
∑′ and

∑′′, the first sum being extended
over all points x

(s)
k with the distance ≤ j−1 from x. Recalling that x ∈ Br(P )

and using (5.3), we easily see that the number of such points does not exceed
a certain constant c1(n). We define the constant ε1(n) by

ε1(n) = (2c1(n))−1.

Since µ
(s)
k is the capacitary measure, we have∑ ′ . . . ≤ ε1(n) c1(n) = 1/2.

Furthermore, by (5.1)

∑ ′′ . . . ≤ c2(n)
∑ ′′ cap (B̃(s)

k )

|x − x
(s)
k |n−2

= c2(n)C
∑ ′′ mes Q̃

(s)
k

|x − x
(s)
k |n−2

≤ c3(n) C

∫
Br(P )

dy

|x − y|n−2
< c4(n) C r2.

We can assume that
r ≤ (2c4(n)C)−1/2

which implies
∑′′ ≤ 1/2. Therefore (5.6) holds.

It follows that for large |P | (i.e. for P with |P | ≥ R = R(r) > 0), or,
equivalently, for large j, we will have

cap (Br(P ) \ Ω) ≥
∑

{s,k: B̃
(s)
k ⊂Br/2(P )}

ε1(n)µ(s)
k (∂B̃

(s)
k )

= ε1(n)
∑

{s,k: B̃
(s)
k ⊂Br/2(P )}

cap (B̃(s)
k )

= ε1(n) C
∑

{s,k: B̃
(s)
k ⊂Br/2(P )}

mes Q
(s)
k ≥ δ(n) C rn.

This ends the proof of Proposition 5.2, hence of Theorem 2.8.

Remark 5.3. Slightly modifying the construction given above, we easily
provide an example of an operator H = −∆ + V (x) with V ∈ C∞(Rn), n ≥ 3,
V ≥ 0, such that the corresponding measure V dx satisfies (2.5) with γ(d) =
Cd2 and an arbitrarily large C > 0, but the spectrum of H in L2(Rn) is
not discrete. So the condition (1.4) is precise even in case of the Schrödinger
operators with C∞ potentials.
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6. Positivity of HV

In this section we prove Theorem 2.9.

Proof of Theorem 2.9 (necessity). Let us assume that the operator HV is
strictly positive. This implies that the estimate (3.15) holds with some η > 0
for every Gd (with an arbitrary d > 0) and every u ∈ C∞

0 (Gd ∩ Ω). But then
we can use the arguments of Section 3 which lead to (3.21), provided (3.17) is
satisfied. It will be satisfied if d is chosen sufficiently large.

Proof of Theorem 2.9 (sufficiency). Let us assume that there exist d > 0,
κ > 0 and γ ∈ (0, 1) such that for every Gd the estimate (2.9) holds. Then
by Lemma 4.2, for every Gd and every u ∈ C∞(Ḡd), such that u = 0 in a
neighborhood of Ḡd \ Ω, we have∫

Gd

|u|2dx ≤ C2(G)d2

γ

∫
Gd

|∇u|2dx +
C2(G)dn

κ

∫
Ḡd

|u|2V(dx).

Let us take a covering of Rn of finite multiplicity N by bodies Ḡd. It follows
that for every u ∈ C∞

0 (Ω)∫
Ω
|u|2dx ≤ NC2(G)d2 max

{
1
γ

,
dn−2

κ

} (∫
Ω
|∇u|2dx +

∫
Ω
|u|2V(dx)

)
,

which proves the positivity of HV.
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