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Inverse spectral problems and
closed exponential systems

By Miklós Horváth*

Abstract

Consider the inverse eigenvalue problem of the Schrödinger operator de-
fined on a finite interval. We give optimal and almost optimal conditions for a
set of eigenvalues to determine the Schrödinger operator. These conditions are
simple closedness properties of the exponential system corresponding to the
known eigenvalues. The statements contain nearly all former results of this
topic. We give also conditions for recovering the Weyl-Titchmarsh m-function
from its values m(λn).

1. Introduction

Consider the Schrödinger operator

Ly = −y′′ + q(x)y(1.1)

over the segment [0, π] with a potential

q ∈ L1(0, π) real-valued.(1.2)

The eigenvalue problem

Ly = λy on [0, π],(1.3)

y(0) cos α + y′(0) sinα = 0,(1.4)

y(π) cos β + y′(π) sinβ = 0(1.5)

defines a sequence of eigenvalues

λ0 < λ1 < · · · < λn < . . . , λn ∈ R, λn → +∞;(1.6)

they form together the spectrum σ(q, α, β).
In the inverse eigenvalue problems we aim to recover the potential q from

a given set of eigenvalues (not necessarily taken from the same spectrum). The
first result of this type is given in
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Theorem A (Ambarzumian [1]). Let q ∈ C[0, π] and consider the
Neumann eigenvalue problem

y′(0) = y′(π) = 0 (i.e. α = β = π/2).

If the eigenvalues are λn = n2, n ≥ 0 then q ≡ 0.

Later it was observed by G. Borg that the knowledge of the first eigenvalue
λ0 = 0 plays a crucial role here; he also found the general rule that in most
cases two spectra are needed to recover the potential:

Theorem B (Borg [5]). Let q ∈ L1(0, π), σ1 = σ(q, 0, β), σ2 =
σ(q, α2, β), sinα2 �= 0 and

σ̃2 =
{

σ2 if sinβ = 0
σ2 \ {λ0} if sinβ �= 0.

Then σ1 ∪ σ̃2 determines the potential a.e. and no proper subset has the same
property.

Here determination means that there is no other potential q∗ ∈ L1(0, π)
with σ1 = σ∗

1, σ̃2 = σ̃∗
2. There is a related extension:

Theorem C (Levinson [16]). Let q ∈ L1(0, π). If sin(α1 − α2) �= 0 then
the two spectra σ(q, α1, β) and σ(q, α2, β) determine the potential a.e.

By an interesting observation of Hochstadt and Lieberman, if half of the
potential is known then one spectrum is enough to recover the other half of q:

Theorem D (Hochstadt and Lieberman [11]). If q ∈ L1(0, π), then q on
(0, π/2) and the spectrum σ(q, α, β) determine q a.e. on (0, π).

This idea has been further developed by Gesztesy and Simon:

Theorem E (Gesztesy, Simon [9]). Let q ∈ L1(0, π) and π/2 < a < π.
Then q on (0, a) and a subset S ⊂ σ = σ(q, α, β) of eigenvalues satisfying

#{λ ∈ S : λ ≤ t} ≥ 2(1 − a/π)#{λ ∈ σ : λ ≤ t} + a/π − 1/2

for sufficiently large t > 0, uniquely determine q a.e. on (0, π).

Another statement of this type is given in

Theorem F (del Rio, Gesztesy, Simon [7]). Let q ∈ L1(0, π), let σi =
σ(q, αi, β) be three different spectra and S ⊂ σ1 ∪ σ2 ∪ σ3. If

#{λ ∈ S : λ ≤ t} ≥ 2/3#{λ ∈ σ1 ∪ σ2 ∪ σ3 : λ ≤ t}

for large t then the eigenvalues in S determine q.
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In Horváth [12] a similar but more general sufficient condition is given for
the case when the known eigenvalues are taken from N different spectra.

The following statement provides a necessary and sufficient condition for a
set of eigenvalues to determine the potential; it is one of the major new results
of this paper. Before its formulation it is useful to fix some terminology. Let
1 ≤ p ≤ ∞ and 1/p+1/p′ = 1. A system {ϕn : n ≥ 1}, ϕn ∈ Lp′(0, π) is called
closed in Lp(a, b) if h ∈ Lp(a, b),

∫ π
0 hϕn = 0 for all n implies h = 0. This is

equivalent to the completeness of the ϕn in Lp′(0, π) if p > 1. Let β ∈ R be
given and let q∗, q ∈ Lp(0, π). We say that the (different) values λn ∈ R are
common eigenvalues of q∗ and q if there exist αn ∈ R with

λn ∈ σ(q, αn, β) ∩ σ(q∗, αn, β).

So every eigenvalue λn is allowed to belong to different spectra. The values
cot αn are defined by q, λn and β; see (1.12) below. In the above cited theorems
the eigenvalues are taken from at most three spectra; in [12] the λn belong to
finitely many spectra.

Let 0 ≤ a < π and λn ∈ R be different values. By the statement

“β, q on (0, a) and the eigenvalues λn determine q in Lp”

we mean that there are no two different potentials q∗, q ∈ Lp(0, π) with q∗ = q

a.e. on (0, a) such that the λn are common eigenvalues of q∗ and q. By the
statement

“β, q on (0, a) and the eigenvalues λn do not determine q in Lp”

we mean that for every q ∈ Lp(0, π) there exists a different potential q∗ ∈
Lp(0, π) with q∗ = q a.e. on (0, a) such that the λn are common eigenvalues of
q∗ and q.

Theorem 1.1. Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), 0 ≤ a < π and let λn ∈
σ(q, αn, 0) be real numbers with λn �→ −∞. Then β = 0, q on (0, a) and the
eigenvalues λn determine q in Lp if and only if the system

e(Λ) =
{

e±2iµx, e±2i
√

λnx : n ≥ 1
}

(1.7)

is closed in Lp(a − π, π − a) for some (for any) µ �= ±
√

λn.

In case sin β �= 0 we find a different situation. First we state a sufficient
condition:

Theorem 1.2. Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), sinβ �= 0, λn ∈ σ(q, αn, β),
λn �→ −∞ and 0 ≤ a < π. If the set

e0(Λ) =
{

e±2i
√

λnx : n ≥ 1
}

(1.8)

is closed in Lp(a− π, π − a) then q on (0, a) and the eigenvalues λn determine
q in Lp.
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The following example shows that the above closedness condition (1.8) is
sharp in some cases:

Proposition 1.3. Let β = π/2,

q(x) =
{

0 on (0, π/2)
1 on (π/2, π),

q∗(x) =
{

1 on (0, π/2)
0 on (π/2, π).

Then for the set of all common eigenvalues of q∗ and q, the system e0(Λ) has
deficiency 1 in Lp(−π, π), 1 ≤ p < ∞. In other words, the system e1(Λ) ={

e2iµx, e±2i
√

λnx : n ≥ 1
}

with µ �= ±
√

λn is closed in Lp(−π, π).

Remark. In the important special cases considered by Borg in Theorem B,
however, the closedness of e0(Λ) is not an optimal condition in Theorem 1.2; in
those situations the codimension of e0(Λ) is 1 for the set of eigenvalues defining
the potential (see §4).

Remark. Denote by v(x, λ) the solution of

−v′′ + q(x)v = λv on (0, π),(1.9)

v(π, λ) = sinβ, v′(π, λ) = − cos β(1.10)

and let v∗(x, λ) be the same function defined by q∗ instead of q. Then the com-
mon eigenvalues of q∗ and q under the boundary condition (1.5) are precisely
the solutions λn ∈ R of the equation

v(0, λ)v∗′(0, λ) = v′(0, λ)v∗(0, λ).(1.11)

In this case λn ∈ σ(q∗, αn, β) ∩ σ(q, αn, β) with

cot αn = −v′(0, λn)
v(0, λn)

= −v∗′(0, λn)
v∗(0, λn)

.(1.12)

In looking for a necessary condition for sinβ �= 0 we have to avoid the
Ambarzumian-type exceptional cases where less than two spectra are enough
to determine the potential. To this end, introduce the following minimality
condition

(M) There exists h ∈ Lp(a, π) such that∫ π

a
h �= 0 but

∫ π

a
h(x)[v2(x, λn) − 1/2 sin2 β] dx = 0 ∀n.

For 1 < p this condition can also be formulated in the following form: the
closed subspace generated in Lp′(a, π) by the functions v2(x, λn) − 1/2 sin2 β

does not contain the constant function 1; here 1/p + 1/p′ = 1.
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Theorem 1.4. Let sinβ �= 0, 0 ≤ a < π, 1 ≤ p ≤ ∞ and λn, n ≥ 1 be
different real numbers with λn �→ −∞. Suppose (M) and that

e(Λ) =
{

e±2iµx, e±2i
√

λnx
}

is not closed in Lp(a − π, π − a), where µ �= ±
√

λn. Then q on (0, a) and the
eigenvalues λn do not determine q in Lp.

Define the Weyl-Titchmarsh m-function corresponding to the problem
(1.3), (1.5) by

mβ(λ) =
v′(0, λ)
v(0, λ)

(1.13)

where v(x, λ) is given in (1.9), (1.10). It is a meromorphic function having
poles at the zeros of v(0, λ).

Theorem G (Borg [6], Marchenko [18]). The potential and the value
tanβ can be recovered from the m-function mβ(λ).

In the context of the m-function Theorem 1.1 and Theorem 1.2 can be
generalized in the following way:

Theorem 1.5. Let 1 ≤ p ≤ ∞ and λn, n ≥ 1, be arbitrary different real
numbers with λn �→ −∞. Let β1, β2 ∈ R, q∗, q ∈ Lp(0, π) and consider the
m-functions mβ1 and m∗

β2
, defined by q and q∗ respectively.

• If the system e0(Λ) is closed in Lp(−π, π) then

mβ1(λn) = m∗
β2

(λn), n ≥ 1(1.14)

implies mβ1 ≡ m∗
β2

(so tanβ1 = tanβ2 and q∗ = q).

• Let sinβ1 · sinβ2 = 0. Then (1.14) implies sinβ1 = sinβ2 = 0. In this
case (1.14) implies m∗

0 ≡ m0 if and only if the system e(Λ) is closed in
Lp(−π, π).

Remark. We allow in (1.14) that both sides be infinite.

A former result of this type is given in

Theorem H (del Rio, Gesztesy, Simon [7]). Denote c+ = max(c, 0) and
let q ∈ L1(0, π). If λn > 0 are distinct numbers satisfying

∞∑
n=0

(λn − n2/4)+
1 + n2

< ∞(1.15)

then the values mβ(λn) determine mβ (and tanβ).
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Since (1.15) implies the closedness of e0(Λ), this statement is a special
case of Theorem 1.5; see Section 4.

Finally we mention the following localized version of Theorem G. It was
first given in Simon [20]; see also Gesztesy and Simon [8], [10] and Bennewitz
[4].

Theorem I ([20], [8], [10], [4]). Let β1, β2 ∈ R, q∗, q ∈ L1(0, π),
0 ≤ a < π. Then q∗ = q a.e. on (0, a) if and only if for every ε > 0

mβ1(λ) − m∗
β2

(λ) = O
(
e−2(a−ε)|�

√
λ|

)
(1.16)

holds along a nonreal ray arg λ = γ, sin γ �= 0.

From this statement the following generalization of Theorem 1.5 can be
given:

Theorem 1.6. Let 1 ≤ p ≤ ∞ and λn, n ≥ 1 be arbitrary different real
numbers with λn �→ −∞. Let β1, β2 ∈ R, q∗, q ∈ Lp(0, π) and suppose that
(1.16) holds for every ε > 0 along a nonreal ray.

• If the system e0(Λ) is closed in Lp(a − π, π − a) then (1.14) implies
mβ1 ≡ m∗

β2
.

• Let sinβ1 · sinβ2 = 0. Then (1.14) yields sinβ1 = sinβ2 = 0. In this
case (1.14) implies m∗

0 ≡ m0 if and only if the system e(Λ) is closed in
Lp(a − π, π − a).

Remark. The statements of Theorems 1.1 and 1.5 for the Schrödinger
operators on the half-line are investigated in the forthcoming paper [13]. It
turns out that the inverse eigenvalue problem is closely related to the inverse
scattering problem with fixed energy.

The organization of this paper is as follows. In Section 2 we provide
the proof of Theorem 1.1; the main ingredient is Lemma 2.1. Some technical
background needed in the proof is given only in Section 5. Section 3 is devoted
to prove Theorems 1.2, 1.4, 1.5 and 1.6 by modifying the procedure presented
in Section 2. The applications of the new results are collected in Section 4;
we show how the above-mentioned former results can be presented as special
cases of Theorems 1.1 to 1.6. This requires the use of some standard tools from
the theory of nonharmonic Fourier series, more precisely, some closedness and
basis tests for exponential systems. Finally at the end of Section 4 we check
the properties of the counterexample formulated in Proposition 1.3.
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2. Proof of Theorem 1.1

In this section we provide the proof of Theorem 1.1. We start with some
lemmas.

Lemma 2.1. Let B1 and B2 be Banach spaces. For every q ∈ B1 a con-
tinuous linear operator

Aq : B1 → B2

is defined so that for some q0 ∈ B1

Aq0 : B1 → B2 is an (onto) isomorphism,(2.1)

and the mapping q 
→ Aq is Lipschitzian in the sense that

‖(Aq∗ − Aq)h‖ ≤ c(q0)‖q∗ − q‖‖h‖ ∀h, q, q∗ ∈ B1, ‖q‖, ‖q∗‖ ≤ 2‖q0‖,(2.2)

the constant c(q0) being independent of q, q∗ and h. Then the set {Aq(q− q0) :
q ∈ B1} contains a ball in B2 with center at the origin.

Proof. Let G0 ∈ B2 be an arbitrary element, the norm of which is small
in a sense to be specified later. Our task is to find an element q∗ ∈ B1 such
that

Aq∗(q∗ − q0) = G0.(2.3)

This will be done by the following iteration. The vector q∗0 is defined by

Aq0(q
∗
0 − q0) = G0(2.4)

and q∗k+1 by

Aq0(q
∗
k+1 − q0) = G0 − (Aq∗

k
− Aq0)(q

∗
k − q0), k ≥ 0.(2.5)

This is justified by (2.1). We state that q∗k → q∗, a solution of (2.3). Indeed,
consider the following corollary of (2.5):

Aq0(q
∗
k+1 − q∗k) = −(Aq∗

k
− Aq0)(q

∗
k − q∗k−1) − (Aq∗

k
− Aq∗

k−1
)(q∗k−1 − q0);(2.6)

if k = 0, we use instead

Aq0(q
∗
1 − q∗0) = −(Aq∗

0
− Aq0)(q

∗
0 − q0).(2.6′)

Using the conditions (2.1), (2.2) we get from the formulae (2.4), (2.6′) and
(2.6) that

‖q∗0 − q0‖ ≤ c1‖G0‖,(2.7)

‖q∗1 − q∗0‖ ≤ c1‖q∗0 − q0‖2 if ‖q∗0‖ ≤ 2‖q0‖,(2.8)
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‖q∗k+1 − q∗k‖ ≤ c1‖q∗k − q∗k−1‖(‖q∗k − q0‖ + ‖q∗k−1 − q0‖),(2.9)

if ‖q∗k‖ ≤ 2‖q0‖, ‖q∗k−1‖ ≤ 2‖q0‖, k ≥ 1

with a constant c1 independent of the q∗k, k ≥ 0, and of G0. We suppose that
G0 is small enough to ensure

8c2
1‖G0‖ ≤ 1, c1‖G0‖ ≤ 1/2‖q0‖(2.10)

and we prove that

‖q∗k+1 − q∗k‖ ≤ 1/2‖q∗k − q∗k−1‖, ‖q∗k‖ ≤ 2‖q0‖ if k ≥ 1.(2.11)

Indeed, (2.7) and (2.10) imply ‖q∗0‖ ≤ 3/2‖q0‖ and then by (2.8)

‖q∗1 − q∗0‖ ≤ c1‖q∗0 − q0‖2 ≤ c2
1‖G0‖ · ‖q∗0 − q0‖ ≤ 1/2‖q∗0 − q0‖ ≤ 1/4‖q0‖

and then

‖q∗1‖ ≤ ‖q∗1 − q∗0‖ + ‖q∗0 − q0‖ + ‖q0‖ ≤ (1/4 + 1/2 + 1)‖q0‖.
Consequently by (2.9)

‖q∗2 − q∗1‖ ≤ c1‖q∗1 − q∗0‖(‖q∗1 − q0‖ + ‖q∗0 − q0‖)
≤ c1‖q∗1 − q∗0‖(‖q∗1 − q∗0‖ + 2‖q∗0 − q0‖)
≤ ‖q∗1 − q∗0‖(c2

1‖q∗0 − q0‖2 + 2c1‖q∗0 − q0‖)
≤ ‖q∗1 − q∗0‖(c4

1‖G0‖2 + 2c2
1‖G0‖) ≤ 1/2‖q∗1 − q∗0‖

which is (2.11) for k = 1. Now suppose (2.11) below a fixed value of k and
prove it for that k. We have

‖q∗i − q0‖ ≤ ‖q∗i − q∗i−1‖ + · · · + ‖q∗1 − q∗0‖ + ‖q∗0 − q0‖
≤ 2‖q∗1 − q∗0‖ + ‖q∗0 − q0‖ ≤ 2c1‖q∗0 − q0‖2 + ‖q∗0 − q0‖
≤ 2c3

1‖G0‖2 + c1‖G0‖ ≤ 2c1‖G0‖ ≤ ‖q0‖
for i ≤ k and then

‖q∗k‖ ≤ ‖q∗k − q0‖ + ‖q0‖ ≤ 2‖q0‖.
Consequently

‖q∗k+1 − q∗k‖ ≤ c1‖q∗k − q∗k−1‖(‖q∗k − q0‖ + ‖q∗k−1 − q0‖)
≤ ‖q∗k − q∗k−1‖(4c4

1‖G0‖2 + 2c2
1‖G0‖) ≤ 1/2‖q∗k − q∗k−1‖

and so (2.11) is proved and then q∗k → q∗ in B1. Now

Aq0(q
∗
k+1 − q0) = G0 + (Aq∗ − Aq∗

k
)(q∗k − q0) − (Aq∗ − Aq0)(q

∗
k − q0).(2.12)

Since

‖(Aq∗ − Aq∗
k
)(q∗k − q0)‖ ≤ c‖q∗ − q∗k‖ · ‖q∗k − q0‖ → 0 k → ∞,

we can take the limit in (2.12) to obtain

Aq0(q
∗ − q0) = G0 − (Aq∗ − Aq0)(q

∗ − q0).

This is (2.3) so the proof is complete.
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In the following statement the point a) (in a less general situation) and
the formula (2.16) are due to Gesztesy and Simon [9], [10]. We give the whole
proof for the sake of completeness.

Lemma 2.2. Let 0 ≤ a < π, q, q∗ ∈ L1(0, π), q∗ = q a.e. on (0, a). Con-
sider the function

F (z) = v∗(a, z)v′(a, z) − v(a, z)v∗′(a, z)(2.13)

where v and v∗ are defined by q and q∗ respectively in (1.9), (1.10) with β = 0.
The derivatives in (2.13) refer to x. Then

a) The real zeros of F (z) are precisely the common eigenvalues of q and q∗;
in other words, all values z = λ ∈ R for which there exists α ∈ R with
λ ∈ σ(q∗, α, 0) ∩ σ(q, α, 0).

b) If λn �→ −∞ holds for the (infinitely many) common eigenvalues of q∗

and q then ∫ π

a
(q∗ − q) = 0.(2.14)

Proof. F (λ) = 0 if and only if the initial condition vectors (v(a, λ), v′(a, λ))
and (v∗(a, λ), v∗′(a, λ)) are parallel. Since q∗ = q a.e. on (0, a), this means that
v∗ and v are identical on [0, a] up to a constant factor. In other words we have
λ ∈ σ(q∗, α, 0) ∩ σ(q, α, 0) with tanα = − v(0,λ)

v′(0,λ) = − v∗(0,λ)
v∗′(0,λ) . This proves a).

To show b) take the function

F (x, z) = v∗(x, z)v′(x, z) − v(x, z)v∗′(x, z).(2.15)

Now

∂F

∂x
(x, z) = v∗(x, z)v′′(x, z) − v(x, z)v∗′′(x, z)

= (q(x) − q∗(x))v(x, z)v∗(x, z)

which implies

F (z) = −
∫ π

a

∂F

∂x
(x, z) dx =

∫ π

a
(q∗(x) − q(x))v(x, z)v∗(x, z) dx.(2.16)

If the zeros λn have a finite accumulation point then the entire function F (z)
is identically zero, which implies m∗ = m and q∗ = q; in this case (2.14) is
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obvious. Otherwise the λn have a subsequence tending to +∞. By Lemma 5.2

2(z2 − µ2)F (z2) = 2(z2 − µ2)
∫ π

a
(q∗(x) − q(x))v(x, z2)v∗(x, z2) dx

(2.17)

=
∫ π

a
(q∗ − q) −

∫ π

a
(q∗(x) − q(x)) cos 2z(π − x) dx

−
∫ π

a
(q∗(x) − q(x))

∫ 2(π−x)

0
cos zτM(π − x, τ, µ2) dτ dx

= I1 − I2 − I3.

Here I3 has the form

I3 =
∫ 2(π−a)

0
cos zτ

∫ π−τ/2

a
(q∗(x) − q(x))M(π − x, τ, µ2) dx dτ.(2.18)

This means that for the subsequence of values z =
√

λn tending to +∞ we
have I3 → 0. Since I2 → 0 is obvious, from F (λn) = 0 we infer (2.14) as
asserted.

Proof of Theorem 1.1. We consider the closedness of the system

C(Λ) = {cos 2µx, cos 2
√

λnx : n ≥ 1}(2.19)

in Lp(0, π − a) instead of that of e(Λ) in Lp(a − π, π − a); this is justified in
Lemma 5.4.

The if part. If the system C(Λ) is closed in Lp(0, π − a) then the
eigenvalues λn and q|(0,a) determine q on the whole (0, π). Suppose indirectly
that there exists another potential q∗ ∈ Lp with q∗ = q a.e. on (0, a) and
λn ∈ σ(q∗, αn, 0) ∩ σ(q, αn, 0) for some αn ∈ R. Define F (z) by (2.13); then
F (λn) = 0 (n ≥ 1) and F �≡ 0. The function

G(z) = −2(z2 − µ2)F (z2)

has zeros at ±µ, ±
√

λn. From (2.14) we get

G(z) =
∫ π

a
(q∗(x) − q(x))

[
1 − 2(z2 − µ2)v(x, z2)v∗(x, z2)

]
dx.(2.20)

Define the linear operators

Aq∗ : Lp(a, π) → Lp(a, π)

(Aq∗h)(x) = h(x) + 2
∫ x

a
h(τ)M(π − τ, 2(π − x), µ2, q, q∗) dτ.
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Then Lemma 5.2 gives, after an interchange of integrations,

(2.21)
∫ π

a
(q∗(x) − q(x))

[
1 − 2(z2 − µ2)v(x, z2)v∗(x, z2)

]
dx

=
∫ π

a
cos 2z(π − x) [Aq∗(q∗ − q)] (x) dx.

Observe that

Aq∗ : Lp(a, π) → Lp(a, π) is an isomorphism.(2.22)

Indeed, the Volterra operator

h 
→ 2
∫ x

a
h(τ)M(π − τ, 2(π − x), µ2, q, q∗) dτ

with continuous kernel is known to have the spectrum σ = {0}. In particular,
−1 �∈ σ i.e. Aq∗ is an isomorphism. Now if q∗ �= q then Aq∗(q∗ − q) �= 0;
hence by (2.20) and (2.21) the system C(Λ) is not closed in Lp(0, π − a). This
contradiction proves the if part of Theorem 1.1.

The only if part. If C(Λ) is not closed in Lp(0, π−a) and if λn �→ −∞ then
for every q ∈ Lp(0, π) there exists q∗ ∈ Lp(0, π), q∗ �= q but q∗ = q a.e. on (0, a)
and there exist values αn ∈ R with λn = σ(q∗, αn, 0)∩σ(q, αn, 0) for all n ≥ 1.
Indeed, since C(Λ) is not closed, there exists a function 0 �= h ∈ Lp(0, π − a)
such that

G0(z) def=
∫ π−a

0
h(x) cos 2zx dx(2.23)

has zeros at ±µ and ±
√

λn. Our task is to show that for every q ∈ Lp(0, π)
there exists q∗ ∈ Lp(0, π), q∗ �= q, q∗ = q a.e. on (0, a) such that

γG0(z) =
∫ π

a
(q∗(x) − q(x))

[
1 − 2(z2 − µ2)v(x, z2)v∗(x, z2)

]
dx(2.24)

holds for some constant γ �= 0. Indeed, G0(µ) = 0 and (2.24) gives (2.14) and
then the function F (z) defined in (2.13) has zeros F (λn) = 0; i.e. the λn are
common eigenvalues of q∗ and q. Taking into account (2.21), (2.23) and (2.24),
our task is to find q∗ with

γh(π − x) = Aq∗(q∗ − q)(x) a.e. for some γ �= 0.(2.25)

We check this representation by Lemma 2.1 applied with B1 = B2 = Lp(a, π).
The condition (2.1) is verified in (2.22) and (2.2) follows from Lemma 5.2, since
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if q, q∗, q∗∗ ∈ Lp with norms ≤ D then

‖(Aq∗∗ − Aq∗)h‖ = 2

{∫ π

a

∣∣∣ ∫ x

a
h(τ)

[
M(π − τ, 2(π − x), µ2, q, q∗∗)

−M(π − τ, 2(π − x), µ2, q, q∗)
]
dτ

∣∣∣p dx

}1/p

≤ c(D)‖q∗∗ − q∗‖
{∫ π

a

(∫ x

a
|h|

)p

dx
}1/p

≤ c1(D)‖q∗∗ − q∗‖ · ‖h‖

with straightforward modifications for p = ∞. So Lemma 2.1 applies and this
shows the possibility of the representation (2.25) with sufficiently small γ �= 0.
The proof is complete.

3. Proofs of Theorems 1.2 to 1.6

In this part of the paper we give the proofs of the remaining new results.
They are modifications of the proof of Theorem 1.1 or consequences of already
proved results. The proof of Proposition 1.3 is deferred to Section 4.

Lemma 3.1. Let 1 ≤ p ≤ ∞, q, q∗ ∈ Lp(0, π), 0 ≤ a < π, q∗ = q a.e. on
(0, a). Let F (z) be defined by (2.13), where the functions v and v∗ are as given
in (1.9), (1.10) with q and q∗. Let sinβ �= 0. Then

a) The real zeros of F (z) are precisely the common eigenvalues

λn ∈ σ(q∗, αn, β) ∩ σ(q, α, β)

of q∗ and q.

b) If λn �→ −∞ holds for the (infinitely many) common eigenvalues of q

and q∗ then (2.14) holds.

Proof. The verification of Lemma 2.2 can be repeated, only (2.17) is
replaced by

F (z2) =
sin2 β

2

∫ π

a
(q∗ − q) +

sin2 β

2

∫ π

a
(q∗(x) − q(x)) cos 2z(π − x) dx(3.1)

+
∫ π

a
(q∗(x) − q(x))

∫ 2(π−x)

0
cos zτL(π − x, τ) dτ dx;

see Lemma 5.3. Consequently

F (z2) → sin2 β

2

∫ π

a
(q∗ − q) if z → +∞, z ∈ R,

and the proof of (2.14) is finished as in Lemma 2.2.
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Proof of Theorem 1.2. We must show that if the system

C0(Λ) = {cos 2
√

λnx : n ≥ 1}(3.2)

is closed in Lp(0, π−a) then q|(0,a) and the eigenvalues λn determine q. Indeed,
let q∗ ∈ Lp(0, π) be another potential with q∗ = q a.e. on (0, a) such that
λn ∈ σ(q∗, αn, β) ∩ σ(q, α, β), n ≥ 1 for some αn ∈ R. From Lemma 5.3 we
infer for h ∈ Lp(a, π)

∫ π

a
h(x)

[
v(x, z2)v∗(x, z2) − 1/2 sin2 β

]
dx =

∫ π

a
cos 2z(π − x)Aq∗h(x) dx

(3.3)

where

Aq∗h(x) =
sin2 β

2
h(x) +

∫ x

a
h(τ)2L(π − τ, 2(π − x), q, q∗) dτ.(3.4)

We observe that

Aq∗ : Lp(a, π) → Lp(a, π) is an isomorphism(3.5)

just as in the proof of Theorem 1.1. Let F (z) be defined by (2.13), (2.16). It
follows from (2.14) that

F (z2) =
∫ π

a
cos 2z(π − x) [Aq∗(q∗ − q)] (x) dx.(3.6)

Now if q∗ �= q then 0 �= h = Aq∗(q∗ − q) ∈ Lp satisfies∫ π

a
h(x) cos 2

√
λn(π − x) dx = 0 ∀n,

in contradiction to the closedness of C0(Λ) in Lp(0, π − a).

The following statement is the counterpart of Lemma 2.1:

Lemma 3.2. Let B1 and B2 be Banach spaces, let ϕ : B2 → C be a
bounded linear functional and let B21 be a closed subspace of B2. For every
q ∈ B1 define a continuous linear operator

Aq : B1 → B2.

Suppose (2.1), (2.2) and

dimB21 ≥ 2, B21 �⊂ Kerϕ.(3.7)

Then the set {Aq(q − q0) : q ∈ B1, q − q0 ∈ A−1
q0

(Kerϕ)} contains a nonzero
element of B21.
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Proof. Take an element 0 �= G0 ∈ B21 ∩ Kerϕ and let G00 ∈ B21 \ Kerϕ
with ϕ(G00) = 1. Define the operator P : B2 → B2 by

PG = G − ϕ(G)G00.(3.8)

By definition we have

ImP ⊂ Kerϕ.(3.9)

The vector q∗0 is defined by

Aq0(q
∗
0 − q0) = G0(3.10)

and q∗k+1 by

Aq0(q
∗
k+1 − q0) = G0 − P ((Aq∗

k
− Aq0)(q

∗
k − q0)), k ≥ 0.(3.11)

Then we have for k ≥ 1

Aq0(q
∗
k+1 − q∗k) = −P

[
(Aq∗

k
− Aq0)(q

∗
k − q∗k−1) − (Aq∗

k
− Aq∗

k−1
)(q∗k−1 − q0)

]
;

if k = 0, we use instead

Aq0(q
∗
1 − q∗0) = −P ((Aq∗

0
− Aq0)(q

∗
0 − q0)).

These correspond to the formulae (2.6), (2.6′). Since the operator P is bounded,
the same estimation procedure can be executed (as in Lemma 2.1). So (2.11)
holds and then q∗k → q∗ ∈ B1. Taking the limit in (3.11) we can verify again
as in Lemma 2.2 that

Aq0(q
∗ − q0) = G0 − P ((Aq∗ − Aq0)(q

∗ − q0));(3.12)

i.e.,

Aq∗(q∗ − q0) = G0 + (I − P )((Aq∗ − Aq0)(q
∗ − q0)) = G0 + cG00(3.13)

with some constant c. This shows that 0 �= Aq∗(q∗ − q0) ∈ B21. From (3.12)
and (3.9) we finally get q∗ − q0 ∈ A−1

q0
(Kerϕ). Lemma 3.2 is proved.

Proof of Theorem 1.4. Let q ∈ Lp(0, π); our task is to find a different
q∗ ∈ Lp(0, π), q∗ = q on (0, a) such that the λn are common eigenvalues of q∗

and q. This will be done by applying Lemma 3.2 with B1 = B2 = Lp(a, π),

ϕ : Lp(a, π) → C, ϕ(h) =
∫ π

a
A−1

q h

and

B21 = {h ∈ Lp(a, π) :
∫ π

a
h(x) cos 2

√
λn(π − x) dx = 0 ∀n}.

Now condition (2.1) is given in (3.5), (2.2) follows from Lemma 5.3. In order
to check dim B21 ≥ 2 recall the following identity (see Young [21, Ch. III]):
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Let α(t) belong to Lp(−d, d) and suppose that

f(z) =
∫ d

−d
α(t)eiztdt satisfies f(µ) = 0.

Then for every λ �= µ, λ ∈ C there exists β(t) ∈ Lp(−d, d) with

z − λ

z − µ
f(z) =

∫ d

−d
β(t)eiztdt,

namely,

β(t) = α(t) + i(λ − µ)e−iµt

∫ t

−d
α(s)eiµsds.

This can be verified by direct substitution. A repeated application of this idea
gives that if f(±µ) = 0 (or f(0) = f ′(0) = 0 for µ = 0), then for every λ �= ±µ

there exists γ(t) ∈ Lp(−d, d) with

z2 − λ2

z2 − µ2
f(z) =

∫ d

−d
γ(t)eiztdt.

Supposing that α(t) is even, α(−t) = α(t), we see that f(z) and thus γ(t) is
even. In other words, f(z) =

∫ d
0 2α(t) cos zt dt, f(µ2) = 0 implies

z2 − λ2

z2 − µ2
f(z) =

∫ d

0
2γ(t) cos zt dt.

Since C(Λ) is not closed in Lp(0, π − a), there exists 0 �= h ∈ Lp(0, π − a) with

f(z) =
∫ π−a

0
h(t) cos zt dt, f(2

√
λn) = 0 ∀n, f(2µ) = 0.

Take any number µ1 �= ±µ, µ1 �= ±
√

λn, then

z2 − 4µ2
1

z2 − 4µ2
f(z) =

∫ π−a

0
h1(t) cos zt dt for some h1 ∈ Lp(0, π − a).

Consequently h(π − t) and h1(π − t) are linearly independent elements of B21;
thus dimB21 ≥ 2 as asserted. Finally the minimality condition (M) implies by
(3.3) that there exists a function h ∈ Lp(a, π) satisfying∫ π

a
Aqh(x) cos 2

√
λn(π − x) dx = 0 ∀n but

∫ π

a
h �= 0.

Let h1 = Aqh, then h1 ∈ B21 \ Kerϕ showing that B21 �⊂ Kerϕ. Thus all
conditions formulated in Lemma 3.2 are fulfilled, so there exists q∗ �= q, q∗ ∈
Lp(a, π) such that

Aq∗(q∗ − q) ∈ B21 and Aq(q∗ − q) ∈ Kerϕ i.e.
∫ π

a
(q∗ − q) = 0.(3.14)
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Define F (z) corresponding to q∗ and q. Putting together the formulae (2.16),
(3.3) and (3.14) gives

F (z2) =
∫ π

a
(q∗(x) − q(x))

[
v(x, z2)v∗(x, z2) − 1/2 sin2 β

]
dx

=
∫ π

a
cos 2z(π − x)

[
Aq∗(q∗ − q)

]
(x) dx

and then F (λn) = 0; i.e., the λn are common eigenvalues of q∗ and q. The
proof of Theorem 1.4 is complete.

Proofs of Theorems 1.5 and 1.6. To make explicit the dependence on the
parameter β we denote by v(x, λ, β) the solution of (1.9), (1.10). Let

F (x, z) = v′(x, z, β1)v∗(x, z, β2) − v(x, z, β1)v∗
′(x, z, β2).

We have F (0, λn) = 0 by (1.14). The condition (1.16) means that q∗ = q a.e.
on (0, a) and then

F (λn) = 0 if F (z) = F (a, z).

If the values λn have a finite accumulation point then F (0, z)≡0 and m∗=m

follows. In this case e0(Λ) is also closed in Lp(a−π, π− a). Indeed, if G(
√

λn)
= 0 with G(z) =

∫ π−a
0 h(x) cos 2zx dx where h ∈ Lp(0, π − a) then G ≡ 0 and

h = 0. So in what follows we can suppose that λnk
→ ∞ for a subsequence.

As in Lemma 2.2 we can verify that

F (z) =
∫ π

a
(q∗(x) − q(x))v(x, z, β1)v∗(x, z, β2) dx + F (π, z)(3.15)

where

F (π, z) = − cos β1 sinβ2 + cos β2 sinβ1 = sin(β1 − β2).

Suppose first that

sinβ1 · sinβ2 �= 0.(3.16)

Analogously as in (3.3) we can check by Lemma 5.3′ (last section) that

(3.17)
∫ π

a
h(x)

[
v(x, z2, β1)v∗(x, z2, β2) − 1/2 sinβ1 sinβ2

]
dx

=
∫ π

a
cos 2z(π − x)Bq∗h(x) dx

where

Bq∗h(x) =
sinβ1 sinβ2

2
h(x)(3.18)

+
∫ x

a
h(τ)2L(π − τ, 2(π − x), q, q∗, β1, β2) dτ.
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Consequently

F (z2) = sin(β1 − β2) + 1/2 sinβ1 sinβ2

∫ π

a
(q∗ − q) +

+
∫ π

a
cos 2z(π − x)Bq∗(q∗ − q)(x) dx.

From λnk
→ +∞, F (λnk

) = 0, it follows that

sin(β1 − β2) + 1/2 sinβ1 sinβ2

∫ π

a
(q∗ − q) = 0

and then

0 = F (λn) =
∫ π

a
cos 2

√
λn(π − x)Bq∗(q∗ − q)(x) dx ∀n.

Since C0(Λ) is closed in Lp(0, π − a), we infer Bq∗(q∗ − q) = 0; i.e., F ≡ 0 ,
and hence mβ1 ≡ m∗

β2
.

Now consider the case

sinβ1 · sinβ2 = 0.(3.19)

We see from (5.14) that for sinβ = 0

v(π − x, z2, β) = O
(

1
|z|e

|�z|x
)

uniformly in z ∈ C, z �= 0 and 0 ≤ x ≤ π − a. Analogously from (5.25) we get
for sinβ �= 0

v(π − x, z2, β) = O
(
e|�z|x

)
.

This implies by (3.15) that

F (z2) = sin(β1 − β2) + O
(

1
|z|e

|�z|x
)

.

Now from F (λnk
) = 0, λnk

→ +∞, it follows that sin(β1 − β2) = 0 and then
sinβ1 = sinβ2 = 0. So (1.14) has the form

m0(λn) = m∗
0(λn);

in other words the λn are common eigenvalues of q∗ and q. In this case m∗
0 ≡ m0

(i.e., q∗ = q) follows if and only if e(Λ) is closed in Lp(a − π, π − a); this is
stated in Theorem 1.1. The proofs of Theorems 1.5 and 1.6 are complete.
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4. Applications

This section is devoted to demonstrate how the formerly known theorems
listed in Section 1 can be deduced from the new results. At the end of this
section we provide the proof of Proposition 1.3.

Consider an arbitrary sequence {µn : n ≥ 1} of different complex numbers
satisfying

|µn| → ∞.(4.1)

Define the counting function

n(r) =
∑

|µn|≤r

1 for r > 0(4.2)

and the function

N(r) =
∫ r

1

n(t)
t

dt.(4.3)

Recall the following classical closedness test of Levinson:

Theorem 4.1 ([15], see also Young [21]). Let 0 ≤ a < π, 1 ≤ p < ∞,
1/p + 1/p′ = 1. If

lim sup
r→∞

(N(r) − 2(1 − a/π)r + 1/p′ ln r) > −∞(4.4)

then the system {eiµnx : n ≥ 1} is closed in Lp(a − π, π − a).

Remark. The original form of Theorem 4.1 in [21] refers to 1 < p and to
the case a = 0 because it is formulated as a completeness test in Lp′ and this
is equivalent to closedness in Lp only if p > 1. However the proof given in [21]
works also for p = 1 and it can be transformed into the form (4.4).

Remark. We can easily extend Theorem 4.1 to those cases where there
are values µn taken with multiplicities 1 < mn < ∞; in this case (4.2)
is accordingly modified and the exponential system contains the members
eiµnx, xeiµnx, . . . , xmn−1eiµnx.

In applying Theorem 4.1 we need the following estimates for the N -
function corresponding to a complete spectrum.

Lemma 4.2. Denote by Nσ the N -function for the set {±2
√

λn : λn ∈
σ(q, α, β)}; if λn = 0 then the value 0 has multiplicity 2 in this set. Then, as
r → +∞,

sinα = sinβ = 0 ⇒ Nσ(r) = r − ln r + O(1),(4.5)
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sinα = 0 �= sinβ or sinα �= 0 = sinβ(4.6)

⇒ Nσ(r) = r + O(1),

sinα �= 0, sinβ �= 0 ⇒ Nσ(r) = r + ln r + O(1).(4.7)

Proof. Consider first the Dirichlet case (4.5). Recall the well-known eigen-
value asymptotics √

λn = n + O(
1
n

), n ≥ 1(4.8)

(see, e.g., [17]). Let n(1) and N (1) be the corresponding functions if we substi-
tute the values ±2

√
λn by ±2n. From (4.8) it follows that

Nσ(r) − N (1)(r) = O(1).(4.9)

We can count N (1)(r) for 2k ≤ r ≤ 2k + 2 as follows

N (1)(r) =
∫ r

1

n(1)(t)
t

dt =
k∑

i=2

(2i − 2)[ln(2i) − ln(2i − 2)](4.10)

+ 2k[ln r − ln(2k)] = 2k ln r − 2
k∑

i=1

ln(2i)

= 2k ln r − 2k ln 2 − 2 ln(k!) = 2k(ln r − ln 2) − 2k(ln k − 1)

− ln k + O(1) = 2k ln(
r

2k
) + 2k − ln k + O(1)

= 2k − ln k + O(1) = r − ln r + O(1).

From (4.9) we get Nσ(r) = r − ln r + O(1) as asserted.
In the second case (4.6) we start with the asymptotics√

λn = n + 1/2 + O(
1

n + 1
), n ≥ 0.(4.11)

Define the functions n(2) and N (2) by the main term of (4.11). Taking into
account n(2)(t) = n(1)(t + 1), n(1)(t) = t + O(1) we obtain

N (2)(r) =
∫ r

1

n(1)(t + 1)
t

dt =
∫ r

1

n(1)(t + 1)
t + 1

dt +
∫ r

1

n(1)(t + 1)
t(t + 1)

dt

= N (1)(r + 1) +
∫ r

1

t + O(1)
t(t + 1)

dt + O(1) = r + O(1).

With Nσ(r) = N (2)(r)+O(1) this implies (4.6). Finally in case (4.7) we argue



904 MIKLÓS HORVÁTH

similarly starting from √
λn = n + O(

1
n + 1

), n ≥ 0(4.12)

and using the fact that n(3)(t) = n(1)(t + 2). The proof is complete.

Remark. Let d > 0 and denote by Nd the N -function corresponding to
the set {±2nd : n ≥ 1}. Then we have

Nd(r) =
r

d
− ln r + O(1).(4.13)

Indeed, nd(t) = n(1)(t/d) implies

Nd(r) =
∫ r

1

n(1)( t
d)

t
dt =

∫ r

d

1
d

n(1)(t)
t

dt

= N(
r

d
) + O(1) =

r

d
− ln r + O(1).

Proof of Theorem C. Note first that σ(q, α1, β) ∩ σ(q, α2, β) = ∅. If sinβ

= 0, we have two spectra of type (4.6) or one of type (4.6) and the other of
type (4.5). Thus

NΛ0(r) ≥ 2r − ln r + O(1)

if NΛ0 is the N -function corresponding to the values ±2
√

λ where λ runs over
the eigenvalues from the two spectra. Adjoining the pair ±2µ we get

NΛ(r) ≥ 2r + ln r + O(1).

By Theorem 4.1 this implies that e(Λ) is closed in L1(−π, π) and then the
potential is determined by the two spectra. Now, if sinβ �= 0, we have two
spectra of type (4.7) or one of type (4.7) and one of type (4.6). Hence

NΛ0(r) ≥ 2r + ln r + O(1)

so that e0(Λ) is closed in L1(−π, π); thus the potential is again determined.

Proof of Theorem D. This follows from the estimates:

sinβ �= 0 ⇒ NΛ0 = Nσ ≥ r + O(1),

sinβ = 0 ⇒ NΛ = Nσ + 2 ln r + O(1) ≥ r + ln r + O(1).

Proof of Theorem E. Denote by nS(t) the n-function corresponding to the
set {±2

√
λn : λn ∈ S}. Then for large t

nS(t) = 2#{λn ∈ S : λn ≤ t2/4} ≥ 4(1 − a/π)#{λn ∈ σ : λn ≤ t2/4}
+ 2a/π − 1 = 2(1 − a/π)nσ(t) + 2a/π − 1.
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Hence

sinβ �= 0 ⇒ NΛ0 ≥ 2(1 − a/π)r + (2a/π − 1) ln r + O(1),

sinβ = 0 ⇒ NΛ ≥ 2(1 − a/π)(r − ln r) + 2 ln r

+ (2a/π − 1) ln r + O(1) =

= 2(1 − a/π)r + 2a/π ln r + (2a/π − 1) ln r + O(1)

which verifies Theorem E even after deleting a/π − 1/2 from the density con-
dition on S.

Proof of Theorem F.

sinβ �= 0⇒ NΛ0 ≥ 2/3(Nσ1 + Nσ2 + Nσ3) + O(1)

≥ 2/3(3r + 2 ln r) + O(1),

sinβ = 0 ⇒ NΛ ≥ 2/3(Nσ1 + Nσ2 + Nσ3) + 2 ln r + O(1)

≥ 2/3(3r − ln r) + 2 ln r + O(1).

Proof of Theorem H. By Theorem 1.5 it is enough to verify that (1.15)
implies the closedness of e0(Λ) in L1(−π, π). Consider the N -function for the
set {±2

√
λn : n ≥ 0}; we have to check that

N(r) − 2r �→ −∞ (r → +∞).(4.14)

We shift the values λn < n2

4 into n2

4 . This will diminish N(r) and it is enough
to prove (4.14) for the diminished N . But we can also shift the values λn > n2

4

into n2

4 since this will grow N by a bounded quantity. Indeed, the growth is
at most∑

n<r

2
∫ 2

√
λn

n

dt

t
=

∑
n<r

ln
4λn

n2
=

∑
n<r

ln
(

1 +
4(λn − n2/4)

n2

)
= O(1)

by (1.15). For the shifted system {λn = n2/4 : n ≥ 0} we have N0(r) =
2r + ln r + O(1); hence N(r) ≥ 2r + ln r + O(1) and (4.14) follows.

In order to check Theorem B we need a stability result of Riesz bases.
By definition, a Riesz basis is an isomorphic image of an orthonormal basis of
a Hilbert space. A famous result of Kadec [14] says that if λn are arbitrary
real numbers with |λn − n| ≤ L < 1/4 for all n ∈ Z then the system {eiλnx :
n ∈ Z} forms a Riesz basis in L2(−π, π). It has been previously known that
the constant 1/4 is best possible here; see e.g., Young [21]. Later on, S. A.
Avdonin [2] realized that it is not necessary to impose the bound L < 1/4 for
every individual shift |λn − n|; instead, it is enough to take this bound only
for the average shifts in the following sense:
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Theorem 4.3 ([2]). Suppose that the shifts δn ∈ C are bounded and the
shifted exponents λn = n + δn are separated ; i.e., infn�=m |λn − λm| > 0. If the
average Kadec condition

lim sup
R→∞

sup
x∈R

1
R

∣∣∣ ∑
x<n+
δn<x+R

δn

∣∣∣ <
1
4

(4.15)

holds then the shifted system {eiλnx : n ∈ Z} forms a Riesz basis in L2(−π, π).

Proof of Theorem B (in case sin β = 0). The sufficiency of two spectra is
proved in Theorem C; we investigate the necessity. For the eigenvalues λ

(1)
n of

σ(q, 0, 0) and λ
(2)
n of σ(q, α2, 0) we have√

λ
(1)
n = n + o(1) (n ≥ 1),

√
λ

(2)
n = n + 1/2 + o(1) (n ≥ 0).(4.16)

So the set of all values ±2
√

λ is an o(1)-perturbation of Z \ {0}. Since the
eigenvalues are different, this means that the shifted exponents are separated
and (4.15) holds with lim sup = 0. Consequently e0(Λ) is a Riesz basis of
codimension 1. Hence e(Λ) is complete in L2 and after deleting an arbitrary
eigenvalue it becomes incomplete (of codimension 1). In other words, after the
deletion it is not closed in L2, thus it is not closed in L1. By Theorem 1.1 this
proves Theorem B if sin β = 0.

Remark. The case sin β �= 0 cannot be dealt with in this general frame-
work. Roughly speaking, we have “half an eigenvalue” deficiency and excess
in e0(Λ) and e(Λ), respectively. This prevents us from applying Theorems 1.2
and 1.4. It would be possible to give ad hoc modifications, based on the special
structure of the set of eigenvalues in order to cover this special case; we do not
give the details.

Our last topic in this section is the proof of Proposition 1.3. We need the
following elementary

Lemma 4.4. In the domain |w| > 1 the function

f(w) = w sin
π

2
w +

1
w

sin
π

2w

has only real zeros.

Proof. Since f(−w) = f(w), we can suppose �w ≥ 0. From the well-
known formula

| sin(a + ib)| =
√

sin2 a + sinh2 b(4.17)

we can easily check that

| sin π

2
w| > | sin π

2w
| if |w| > 1, 0 ≤ �w ≤ 1,(4.18)
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hence f(w) has no zeros in this domain. Indeed, if w = x + iy, 0 ≤ x ≤ 1,
x2 + y2 > 1 then sin2 π

2 x ≥ sin2 π
2

x
x2+y2 , sinh2 π

2 y ≥ sinh2 π
2

y
x2+y2 and equality

cannot occur in both cases. Now consider the case x = 1 + ε, ε > 0 being
appropriately small. From

sin
π

2
(1 + ε) = 1 − O(ε2)

and (4.17) we get

| sin π

2
w| > | sin π

2w
| − O(ε2) if x = 1 + ε.

Consequently

|w sin
π

2
w| > | 1

w
sin

π

2w
| if x = 1 + ε.(4.19)

Indeed, this is trivial if |y| is large enough, and for other values y | sin π
2w | is

not very small, so that

|w sin
π

2
w|> (1 + ε)

(
| sin π

2w
| − O(ε2)

)
> | 1

w
sin

π

2w
| + 2ε| sin π

2w
| − O(ε2) > | 1

w
sin

π

2w
|.

Hence f has no zeros on the line x = 1 + ε. We can simply check by (4.17)
that

|w sin
π

2
w| > | 1

w
sin

π

2w
| if x = 2k + 1 (k = 1, 2, . . . ) and y ∈ R(4.20)

and that for large R > 0

|w sin
π

2
w| > | 1

w
sin

π

2w
| if |y| ≥ R.(4.21)

This means by Rouché’s theorem that f(w) has exactly one zero in each of
the rectangles [1 + ε, 3]× [−R, R] and [2k + 1, 2k + 3]× [−R, R] for k ≥ 1 and
no other zeros exist. These zeros must be real since f(w) = f(w) and this
completes the proof.

Proof of Proposition 1.3. On the interval [π/2, π] we have v(x, z) =
cos(π − x)

√
z − 1. Thus v(π

2 , z) = cos π
2

√
z − 1, v′(π

2 , z) =
√

z − 1 sin π
2

√
z − 1

and then in [0, π/2]

v(x, z) = cos(
π

2
− x)

√
z · cos

π

2
√

z − 1

− sin(π
2 − x)

√
z√

z

√
z − 1 sin

π

2
√

z − 1.

Finally we get that

v(0, z) = cos
π

2
√

z · cos
π

2
√

z − 1 −
√

z − 1√
z

sin
π

2
√

z · sin π

2
√

z − 1,(4.22)

v′(0, z) =
√

z sin
π

2
√

z · cos
π

2
√

z − 1 +
√

z − 1 cos
π

2
√

z · sin π

2
√

z − 1.(4.23)
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Similarly

v∗(0, z) = cos
π

2
√

z · cos
π

2
√

z − 1 −
√

z√
z − 1

sin
π

2
√

z · sin π

2
√

z − 1,(4.24)

v∗′(0, z) = v′(0, z).(4.25)

Consider the function

F (z) = v′(0, z)v∗(0, z) − v(0, z)v∗′(0, z)(4.26)

= v′(0, z)(v∗(0, z) − v(0, z)) = −v′(0, z)
sin π

2

√
z√

z
· sin π

2

√
z − 1√

z − 1
.

Its real zeros are precisely the common eigenvalues of q and q∗. In order to
find the zeros of v′(0, z), consider the decomposition

v′(0, z) =
√

z sin
π

2
(
√

z +
√

z − 1)(4.27)

− (
√

z −
√

z − 1) cos
π

2
√

z sin
π

2
√

z − 1

=
√

z sinπ
√

z +
[√

z(sinπ
√

z − sin
π

2
(
√

z +
√

z − 1))

− (
√

z −
√

z − 1) cos
π

2
√

z sin
π

2
√

z − 1
]

def= g(z) + [h(z)].

From

sinπ
√

z − sin
π

2
(
√

z +
√

z − 1) = 2 sin
π

2

√
z −

√
z − 1

2
· cos

π

2
3
√

z +
√

z − 1
2

we infer
√

z(sinπ
√

z − sin
π

2
(
√

z +
√

z − 1))

= O
(√

z
1√
z
e

π

4
(3|�√

z|+|�
√

z−1|)
)

= O
(
eπ|�√

z|
)

.

Then

h(z) = O
(
eπ|�√

z|
)

, |z| → ∞.(4.28)

The (simple) zeros of the function g(z) are z = k2, k = 0, 1, . . . . We know
that

|g(z)| ≥ c
√
|z|eπ|�√

z| if |z| = (N + 1/2)2, n ∈ N,

with c > 0 independent of z and N . Comparing this estimate with (4.28) we
get from Rouché’s theorem that v′(0, z) has precisely N + 1 zeros in the disk
|z| < (N + 1/2)2 and (again by Rouché’s theorem) that the zeros satisfy√

λ
(1)
n = n + O(

1
n + 1

) (n ≥ 0, n → ∞).(4.29)
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We have to check that these zeros are real. Apply trigonometric identities to
obtain

v′(0, z) =
√

z
sin π

2 (
√

z +
√

z − 1) + sin π
2 (
√

z −
√

z − 1)
2

+
√

z − 1
sin π

2 (
√

z +
√

z − 1) − sin π
2 (
√

z −
√

z − 1)
2

=
√

z +
√

z − 1
2

sin
π

2
(
√

z +
√

z − 1)

+
√

z −
√

z − 1
2

sin
π

2
(
√

z −
√

z − 1)

= 1/2f(w), w =
√

z +
√

z − 1.

Here we used (
√

z +
√

z − 1)(
√

z −
√

z − 1) = 1. By appropriately defining
the square roots we can suppose |w| = |√z +

√
z − 1| ≥ 1. If |w| = 1, then√

z +
√

z − 1 = w = 1
w =

√
z −

√
z − 1, hence w + w = 2

√
z is real, w − w =

2
√

z − 1 is purely imaginary. This means that 0 ≤ z ≤ 1. If |w| > 1 and
f(w) = 0 then by Lemma 4.4 the root w =

√
z +

√
z − 1 is real. Then

1
w =

√
z −

√
z − 1 and hence

√
z and

√
z − 1 are also real; i.e., z ≥ 1. This

shows indeed that v′(0, z) has only real zeros. The other two factors in (4.26)
have the zeros λ

(2)
n , λ

(3)
n satisfying√

λ
(2)
n = 2n (n ≥ 1),(4.30) √

λ
(3)
n =

√
4n2 + 1 = 2n + O(

1
n

) (n ≥ 1).(4.31)

So for the N -function of the sets of values ±2
√

λn we get by (4.13) that

N (1)(r) = r + ln r + O(1), N (2)(r), N (3)(r) =
r

2
− ln r + O(1).

If µ �= ±
√

λ
(j)
n , then the N -function of all values ±2

√
λ

(j)
n and 2µ satisfies

N(r) = 2r + O(1)

which means by the Levinson test that the system

e1(Λ) = {e2iµx, e±2i
√

λx : F (λ) = 0}

is closed in Lp(−π, π). On the other hand e0(Λ) cannot be closed by Theo-
rem 1.2, so it has deficiency 1 as asserted.
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5. Technical background

In this last part of the paper we give the auxiliary results used in the above
proofs. More precisely we provide integral representations for the products of
eigenfunctions and a connection between the closedness of cosine and expo-
nential systems. The first result is a refinement of the known representation
(5.1) below; see, e.g., Marchenko [19].

Lemma 5.1. Let 1 ≤ p ≤ ∞, 0 < d < ∞, q ∈ Lp(−d, d) and consider the
solution e(x, λ) of the initial value problem

−y′′ + qy = λ2y on (−d, d), y(0) = 1, y′(0) = iλ.

It has a representation of the form

e(x, λ) = eiλx +
∫ x

−x
K1(x, t)eiλtdt(5.1)

with a continuous kernel K1(x, t). If there exist two potentials q∗, q ∈ Lp(−d, d)
with norm ≤ D then

|K1(x, t, q)| ≤ c(D),(5.2)

|K1(x, t, q∗) − K1(x, t, q)| ≤ c(D)‖q∗ − q‖p(5.3)

with a constant c(D) = c(D, p, d) independent of q, q∗, x and t.

Proof. Define H(α, β) = K1(α + β, α − β) for α, β ≥ 0. Introduce the
notation

σ(u) =
∫ u

0
|q|, �(u, v) =

∫ u

0

∫ v

0
|q(α + β)| dβ dα.

It is shown in Marchenko [19] that

H(u, v) = 1/2
∫ u

0
q +

∫ u

0

∫ v

0
q(α + β)H(α, β) dβ dα(5.4)

and

|H(u, v)| ≤ 1/2σ(u)e�(u,v).(5.5)

From σ(u) ≤ c(D), �(u, v) ≤ c(D) we get |H(u, v)| ≤ c(D) which is (5.2). To
show (5.3) consider the decomposition

H∗(u, v) − H(u, v) = 1/2
∫ u

0
(q∗ − q)(5.6)

+
∫ u

0

∫ v

0
(q∗(α + β) − q(α + β))H∗(α, β) dβ dα

+
∫ u

0

∫ v

0
q(α + β)(H∗(α, β) − H(α, β)) dβ dα.
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This implies

|H∗(u, v) − H(u, v)| ≤ c‖q∗ − q‖p(5.7)

+ c(D)
∫ u

0

∫ v

0
|q∗(α + β) − q(α + β)| dβ dα

+
∫ u

0

∫ v

0
|q(α + β)||H∗(α, β) − H(α, β)| dβ dα

≤ c(D)‖q∗ − q‖p +
∫ u

0

∫ v

0
|q(α + β)||H∗(α, β) − H(α, β)| dβ dα.

Recall the following inequality of Wendroff (see, e.g., in [3]): Let c ≥ 0,
u(s, r) ≥ 0, v(s, r) ≥ 0, u continuous, v locally integrable in the domain
r, s ≥ 0. Now if

u(x, y) ≤ c +
∫ x

0

∫ y

0
v(r, s)u(r, s) ds dr, x, y ≥ 0,(5.8)

then

u(x, y) ≤ ce
∫ x

0

∫ y

0 v(r,s) ds dr, x, y ≥ 0.(5.9)

Applying this to (5.7) gives

|H∗(u, v) − H(u, v)| ≤ c(D)‖q∗ − q‖pe
∫ u

0

∫ v

0 |q(α+β)| dβ dα(5.10)

≤ c(D)‖q∗ − q‖p

which is equivalent to (5.3).

Our next topic is an integral representation for v(x, λ)v∗(x, λ):

Lemma 5.2. Let β = 0 in (1.10) and µ ∈ C, 1 ≤ p, q∗, q ∈ Lp(0, π).
Then for z ∈ C

(5.11) 1 − 2(z2 − µ2)v(π − x, z2)v∗(π − x, z2)

= cos 2zx +
∫ 2x

0
cos zτM(x, τ, µ2) dτ

where the kernel function M(x, τ, µ2) is linear in µ2, continuous in (x, τ) and
independent of z. Further if q∗∗ ∈ Lp and ‖q‖p, ‖q∗‖p, ‖q∗∗‖p ≤ D then

|M(x, τ, µ2, q, q∗)| ≤ c(D, µ, p),(5.12)

|M(x, τ, µ2, q, q∗∗) − M(x, τ, µ2, q, q∗)| ≤ c(D, µ, p)‖q∗∗ − q∗‖p.(5.13)

Proof. It can be checked from (5.1) that there exists a continuous kernel
K(x, t), 0 ≤ t ≤ x, satisfying K(x, 0) = 0, the analogues of (5.2), (5.3) and

v(π − x, z2) =
sin zx

z
+

∫ x

0
K(x, t)

sin zt

z
dt.(5.14)
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Indeed, define K1 for the potential q(π−x); then K(x, t) = K1(x, t)−K1(x,−t)
satisfies (5.14). Consequently

1 − 2z2v(π − x, z2)v∗(π − x, z2)(5.15)

= 1 − 2 sin2 zx − 2
∫ x

0
K(x, t) sin zx sin zt dt

− 2
∫ x

0
K∗(x, t) sin zx sin zt dt

− 2
∫ x

0

∫ x

0
K(x, t)K∗(x, u) sin zt sin zu du dt

= cos 2zx −
∫ x

0
K(x, t)[cos z(x − t) − cos z(x + t)] dt

−
∫ x

0
K∗(x, t)[cos z(x − t) − cos z(x + t)] dt

−
∫ x

0

∫ x

0
K(x, t)K∗(x, u)[cos z(t − u) − cos z(t + u)] du dt

= cos 2zx − I1 − I∗1 − I2.

We have to check that I1, I∗1 and I2 have integral representations as in the
right side of (5.11) with continuous kernels satisfying (5.12) and (5.13). In I1∫ x

0
K(x, t) cos z(x − t) dt =

∫ x

0
K(x, x − τ) cos zτ dτ,∫ x

0
K(x, t) cos z(x + t) dt =

∫ 2x

x
K(x, τ − x) cos zτ dτ ;

i.e.,

I1 =
∫ 2x

0
cos zτM1(x, τ) dτ,(5.16)

M1(x, τ) =
{

K(x, x − τ) if 0 ≤ τ ≤ x

−K(x, τ − x) if x ≤ τ ≤ 2x.

The kernel M1 is continuous since K(x, 0) = 0 and the analogues of (5.12),
(5.13) are also satisfied ((5.13) is trivial). In I∗1 we argue similarly. In I2 we
change the order of integrations:∫ x

0

∫ x

0
K(x, t)K∗(x, u) cos z(t − u) du dt(5.17)

=
∫ x

0

∫ t

t−x
K(x, t)K∗(x, t − τ) cos zτ dτ dt

=
∫ x

0

(∫ x

τ
K(x, t)K∗(x, t − τ) dt

)
cos zτ dτ

+
∫ x

0

(∫ x−τ

0
K(x, t)K∗(x, t + τ) dt

)
cos zτ dτ
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and ∫ x

0

∫ x

0
K(x, t)K∗(x, u) cos z(t + u) du dt(5.18)

=
∫ x

0

∫ x+t

t
K(x, t)K∗(x, τ − t) cos zτ dτ dt

=
∫ x

0

(∫ τ

0
K(x, t)K∗(x, τ − t) dt

)
cos zτ dτ

+
∫ 2x

x

(∫ x

τ−x
K(x, t)K∗(x, τ − t) dt

)
cos zτ dτ.

Consequently

I2 =
∫ 2x

0
cos zτM2(x, τ) dτ(5.19)

with the kernel

M2(x, τ) =



∫ x
τ K(x, t)K∗(x, t − τ) dt

+
∫ x−τ
0 K(x, t)K∗(x, t + τ) dt

−
∫ τ
0 K(x, t)K∗(x, τ − t) dt if 0 ≤ τ ≤ x,

−
∫ x
τ−x K(x, t)K∗(x, τ − t) dt if x ≤ τ ≤ 2x

(5.20)

continuous also at τ = x by definition. Here (5.12) and (5.13) also follow from
Lemma 5.1. In order to complete the proof of (5.19) we have to find an integral
representation of 2µ2v(π − x, z2)v∗(π − x, z2). We apply the identities∫ t

0
(t − τ) cos zτ dτ =

1 − cos zt

z2
(5.21)

and

v(π − x, z2)v∗(π − x, z2) =
1 − cos 2zx

2z2

+
∫ x

0
K(x, t)

cos z(x − t) − cos z(x + t)
2z2

dt

+
∫ x

0
K∗(x, t)

cos z(x − t) − cos z(x + t)
2z2

dt

+
∫ x

0

∫ x

0
K(x, t)K∗(x, u)

cos z(t − u) − cos z(t + u)
2z2

du dt

=
1
2
I3 + I4 + I∗4 + I5.

Now

I3 =
∫ 2x

0
(2x − τ) cos zτ dτ
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and in I4∫ x

0
K(x, t)

1 − cos z(x + t)
z2

dt

=
∫ x

0
K(x, t)

∫ x+t

0
(x + t − τ) cos zτ dτ dt

=
∫ 2x

0
cos zτ

(∫ x

max(0,τ−x)
K(x, t)(x + t − τ) dt

)
dτ,∫ x

0
K(x, t)

1 − cos z(x − t)
z2

dt

=
∫ x

0
cos zτ

(∫ x−τ

0
K(x, t)(x − t − τ) dt

)
dτ.

The kernel arising here is zero at τ = x, so it can be continuously extended to
x ≤ τ ≤ 2x. This proves an appropriate integral representation for I4. The
case of I∗4 is similar. Finally in I5 we get by twofold interchange of integrations∫ x

0

∫ x

0
K(x, t)K∗(x, u)

1 − cos z(t + u)
z2

du dt

=
∫ 2x

0

(∫ x

max(τ−x,0)
K(x, t)

∫ x

max(τ−t,0)
K∗(x, u)(t + u − τ) du dt

)
· cos zτ dτ,∫ x

0

∫ x

0
K(x, t)K∗(x, u)

1 − cos z(t − u)
z2

du dt

=
∫ x

0
cos zτ

(∫ x

τ
K(x, t)

∫ t−τ

0
K∗(x, u)(t − u − τ) du dt

)
dτ

+
∫ x

0
cos zτ

(∫ x−τ

0
K(x, t)

∫ x

t+τ
K∗(x, u)(u − t − τ) du dt

)
dτ.

Since the last two kernels can be continuously extended by zero to the domain
x ≤ τ ≤ 2x and the analogue of (5.12), (5.13) is again a trivial corollary of
(5.2) and (5.3), the proof of Lemma 5.3 is complete.

A similar statement holds for sinβ �= 0:

Lemma 5.3. Let sinβ �= 0, 1 ≤ p and q, q∗ ∈ Lp(0, π); then for z ∈ C,

v(π − x, z2)v∗(π − x, z2) − 1/2 sin2 β = 1/2 sin2 β cos 2zx(5.22)

+
∫ 2x

0
L(x, t) cos zt dt
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with a kernel L(x, t) continuous in (x, t). Further if q∗∗ ∈ Lp and ‖q‖p, ‖q∗‖p,
‖q∗∗‖p ≤ D then

|L(x, t, q, q∗)| ≤ c(D, p),(5.23)

|L(x, t, q, q∗∗) − L(x, t, q, q∗)| ≤ c(D, p)‖q∗∗ − q∗‖p.(5.24)

Proof. From Lemma 5.1 we know that

v(π − x, z2) = sinβ cos zx +
∫ x

0
N(x, t) cos zt dt(5.25)

with a continuous kernel N satisfying the analogue of (5.2), (5.3). Indeed, if
we define the kernel K1 for the potential q(π − x) then

N(x, t) = sinβ
K1(x, t) + K1(x,−t)

2
+ cos β

K1(x, t) − K1(x,−t)
2

.

Now

v(π − x, z2)v∗(π − x, z2) − 1/2 sin2 β

= 1/2 sin2 β cos 2zx + I1 sinβ + I∗1 sinβ + 2I2,

I1 =
∫ x

0
N(x, t) (cos z(x − t) + cos z(x + t)) dt,

I∗1 =
∫ x

0
N∗(x, t) (cos z(x − t) + cos z(x + t)) dt,

I2 =
∫ x

0

∫ x

0
N(x, t)N∗(x, u) (cos z(t − u) + cos z(t + u)) du dt.

As above we can check that

I1 =
∫ 2x

0
cos zτL1(x, τ) dτ, L1(x, τ) =

{
N(x, x − τ) if 0 ≤ τ ≤ x,

N(x, τ − x) if x ≤ τ ≤ 2x;

I2 =
∫ 2x

0
cos zτL2(x, τ) dτ +

∫ x

0
cos zτL3(x, τ) dτ

with

L2(x, τ) =
∫ min(τ,x)

max(τ−x,0)
N(x, t)N∗(x, τ − t) dt,

L3(x, τ) =
∫ x−τ

0
N(x, t)N∗(x, t + τ) dt +

∫ x

τ
N(x, t)N∗(x, t − τ) dt.

Since L3 can be continuously extended by zero to the domain x ≤ τ ≤ 2x and
(5.12), (5.13) follow from Lemma 5.1, the proof is complete.
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After obvious modifications we can also prove

Lemma 5.3′. Let sinβ1 �= 0, sinβ2 �= 0 and q, q∗ ∈ L1(0, π); then for
z ∈ C

(5.26) v(π − x, z2, β1)v∗(π − x, z2, β2) − 1/2 sinβ1 sinβ2

= 1/2 sin2 β1 sinβ2 cos 2zx +
∫ 2x

0
cos ztL(x, t, q, q∗, β1, β2) dt

with a kernel L(x, t) continuous in (x, t).

Our final auxiliary result is a connection between the closedness of expo-
nential systems and that of cosine systems.

Lemma 5.4. Let zn, n ≥ 1, be arbitrary different complex numbers and
let d > 0, 1 ≤ p ≤ ∞. The system {cos znx : n ≥ 1} is closed in Lp(0, d) if and
only if the system {e±iznx : n ≥ 1} is closed in Lp(−d, d). If in case zn = 0,
then 1 and x are chosen instead of e±iznx.

Proof. The only if part. If the cosine system is not closed in Lp(0, d), then
there exists 0 �= h ∈ Lp(0, d) with∫ d

0
h(x) cos znx dx = 0, n ≥ 1.(5.27)

Define h(−x) = h(x); then (5.27) implies

0 =
∫ d

−d
h(x) cos znx dx =

∫ d

−d
h(x)e±iznx dx

and in case zn = 0 we also have
∫ d
−d h(x)x dx = 0. Consequently{e±iznx : n≥1}

is not closed in Lp(−d, d).

The if part. If the exponential system is not closed then there exists a
function 0 �= h ∈ Lp(−d, d) with

0 =
∫ d

−d
h(x)e±iznxdx, n ≥ 1.(5.28)

Then

0 =
∫ d

−d
h(−x)e±iznxdx,

0 =
∫ d

−d
(h(x) + h(−x))e±iznxdx = 2

∫ d

0
(h(x) + h(−x)) cos znx dx

and this proves that the cosine system is not closed unless h is odd. Now if h

is odd, we get from (5.28) that

0 =
∫ d

0
h(x) sin znx dx, n ≥ 1.
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Integrating by parts gives

0 = zn

∫ d

0
cos znx

(∫ d

x
h

)
dx.

In other words, 0 �=
∫ d
x h ∈ Lp(0, d) is orthogonal to all functions cos znx,

zn �= 0. If zn = 0, then

0 =
∫ d

−d
xh(x) dx = 2

∫ d

0
xh(x) dx = 2

∫ d

0

(∫ d

x
h

)
dx

= 2
∫ d

0
cos znx

(∫ d

x
h

)
dx.

Thus the cosine system is not closed in Lp(0, d), which was to be proved.
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