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Inverse spectral problems and
closed exponential systems

By MIKLGOS HORVATH*

Abstract

Consider the inverse eigenvalue problem of the Schrodinger operator de-
fined on a finite interval. We give optimal and almost optimal conditions for a
set of eigenvalues to determine the Schrodinger operator. These conditions are
simple closedness properties of the exponential system corresponding to the
known eigenvalues. The statements contain nearly all former results of this
topic. We give also conditions for recovering the Weyl-Titchmarsh m-function
from its values m(Ay).

1. Introduction

Consider the Schrodinger operator

(1.1) Ly =—y" +q(z)y
over the segment [0, 7] with a potential

(1.2) q € L1(0,7) real-valued.
The eigenvalue problem

(1.3) Ly=MXy on [0,7],

(1.4) y(0) cosar + ' (0) sinaw = 0,
(1.5) y(m)cos B+ ¢ (m)sinB =0

defines a sequence of eigenvalues
(1-6) MN<AM< <A\ <., MER, N\, — +o0;

they form together the spectrum o(q, a, 3).

In the inverse eigenvalue problems we aim to recover the potential ¢ from
a given set of eigenvalues (not necessarily taken from the same spectrum). The
first result of this type is given in
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THEOREM A (Ambarzumian [1]).  Let ¢ € C[0,7] and consider the
Neumann eigenvalue problem

v (0)=y(r)=0 (ie.a=p=mn/2).
If the eigenvalues are A\, = n?, n >0 then ¢ = 0.

Later it was observed by G. Borg that the knowledge of the first eigenvalue
Ao = 0 plays a crucial role here; he also found the general rule that in most
cases two spectra are needed to recover the potential:

THEOREM B (Borg [5]). Let ¢ € Li(0,7), o1 = 0(q,0,0), o2 =
o(q, a2, 3), sinas # 0 and

O o)) if sin@ =0
P27\ oo\ {\o} ifsing #£0.

Then o1 U Go determines the potential a.e. and no proper subset has the same
property.

Here determination means that there is no other potential ¢* € L1(0,7)
with o1 = o], 02 = 05. There is a related extension:

THEOREM C (Levinson [16]). Let ¢ € L1(0,7). If sin(ag — o) # 0 then
the two spectra o(q, a1, 3) and o(q, o, 3) determine the potential a.e.

By an interesting observation of Hochstadt and Lieberman, if half of the
potential is known then one spectrum is enough to recover the other half of ¢:

THEOREM D (Hochstadt and Lieberman [11]). If g € Li(0,7), then g on
(0,7/2) and the spectrum o(q, o, 3) determine q a.e. on (0, 7).

This idea has been further developed by Gesztesy and Simon:

THEOREM E (Gesztesy, Simon [9]). Let ¢ € L1(0,7) and 7/2 < a < .
Then q on (0,a) and a subset S C 0 = o(q,, 3) of eigenvalues satisfying

#{NeS: A<t} >2(1—a/m)# N Nco: A<t}+a/m—1/2
for sufficiently large t > 0, uniquely determine q a.e. on (0,7).

Another statement of this type is given in

THEOREM F (del Rio, Gesztesy, Simon [7]). Let g € Li(0,7), let o; =
o(q, a;, B) be three different spectra and S C oy UogyUos. If

#ANeS A<t} >2/3#{N€o1UoaUas: A<t}

for large t then the eigenvalues in S determine q.
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In Horvath [12] a similar but more general sufficient condition is given for
the case when the known eigenvalues are taken from N different spectra.

The following statement provides a necessary and sufficient condition for a
set of eigenvalues to determine the potential; it is one of the major new results
of this paper. Before its formulation it is useful to fix some terminology. Let
l1<p<ocandl/p+1/p' =1. Asystem {p, :n > 1}, p, € Ly(0,7) is called
closed in Ly(a,b) if h € Ly(a,b), [; hen = 0 for all n implies h = 0. This is
equivalent to the completeness of the ¢, in L, (0,7) if p > 1. Let 8 € R be
given and let ¢*, ¢ € L,(0,7). We say that the (different) values A, € R are
common eigenvalues of ¢* and q if there exist o, € R with

)\n S U(Q7 an’ﬂ) N U(q*, anvﬁ)'

So every eigenvalue A, is allowed to belong to different spectra. The values
cot av, are defined by ¢, A, and f3; see (1.12) below. In the above cited theorems
the eigenvalues are taken from at most three spectra; in [12] the A,, belong to
finitely many spectra.

Let 0 < a < mand A\, € R be different values. By the statement

“B, q on (0,a) and the eigenvalues Ny, determine q in L,"

we mean that there are no two different potentials ¢*, ¢ € L,(0,7) with ¢* = ¢
a.e. on (0,a) such that the A\, are common eigenvalues of ¢* and ¢q. By the
statement

“B, q on (0,a) and the eigenvalues \, do not determine q in L,"

we mean that for every ¢ € L,(0,7) there exists a different potential ¢* €
L,(0,7) with ¢* = g a.e. on (0, a) such that the \,, are common eigenvalues of
q* and gq.

THEOREM 1.1. Let 1 < p < o0, ¢ € Lp(0,7), 0 < a < 7 and let N, €
o(q, an,0) be real numbers with A, / —oo. Then 3 =0, q on (0,a) and the
eigenvalues A\, determine q in L, if and only if the system

(1.7) e(A) = {2, F2Vhe i > 1}
is closed in Ly(a — m,m — a) for some (for any) p # £/ Ap.

In case sin 8 # 0 we find a different situation. First we state a sufficient
condition:

THEOREM 1.2. Let 1 < p < o0, ¢ € L,(0,7), sinf # 0, A\, € o(q, an, B),
Ap 72 —00 and 0 < a < 7. If the set

(1.8) eo(A) = {eﬂ@'\/m 0> 1}

is closed in Ly(a —m,m—a) then g on (0,a) and the eigenvalues \,, determine
qm Ly.
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The following example shows that the above closedness condition (1.8) is
sharp in some cases:

PROPOSITION 1.3. Let f=17/2,

o(z) = { 0 on(0,7/2)

1 on(n/2,m),

[ 1 on(0,7/2)
a (@)= { 0 on(m/2,7).

Then for the set of all common eigenvalues of ¢* and q, the system eg(A) has
deficiency 1 in Ly(—m,m), 1 < p < oco. In other words, the system ei;(A) =
{ezwx, eF2VAnT Ly > 1} with p # £/ Ay, is closed in Ly(—m, ).

Remark. In the important special cases considered by Borg in Theorem B,
however, the closedness of eg(A) is not an optimal condition in Theorem 1.2; in
those situations the codimension of eg(A) is 1 for the set of eigenvalues defining
the potential (see §4).

Remark. Denote by v(x, \) the solution of
(1.9) —v" +q(z)v =X on (0,7),
(1.10) v(m,A) =sing3, o' (m,A) = —cosf3
and let v*(x, A) be the same function defined by ¢* instead of ¢. Then the com-

mon eigenvalues of ¢* and ¢ under the boundary condition (1.5) are precisely
the solutions A, € R of the equation

(1.11) v(0, \)v*' (0, \) = v'(0, \)v* (0, \).
In this case A, € o(¢*, an, B) No (g, ay, ) with
v'(0, An) v* (0, \n)
1.12 tay, = — _ .
(112 OO T 0 T o (0, M)

In looking for a necessary condition for sin 3 # 0 we have to avoid the
Ambarzumian-type exceptional cases where less than two spectra are enough
to determine the potential. To this end, introduce the following minimality
condition

) There exists h € L , ) such that

/h;«éo but /h M) —1/2sin2 Bldz =0 ¥n.

For 1 < p this condition can also be formulated in the following form: the
closed subspace generated in L, (a, ) by the functions v?(z, \,) — 1/2sin? 3
does not contain the constant function 1; here 1/p+ 1/p' = 1.
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THEOREM 1.4. Letsin #0,0<a <7, 1<p<ooand Ay, n > 1 be
different real numbers with A, / —oo. Suppose (M) and that

e(A) = {ej:2i/m:7 eﬂi\/)\ix}

is not closed in L,(a —m,m — a), where p # £+/A,. Then q on (0,a) and the
eigenvalues A\, do not determine q in L.

Define the Weyl-Titchmarsh m-function corresponding to the problem
(1.3), (1.5) by

(1.13) mg(\) = 1;/((8’;))

where v(z, \) is given in (1.9), (1.10). It is a meromorphic function having
poles at the zeros of v(0, A).

THEOREM G (Borg [6], Marchenko [18]).  The potential and the value
tan 8 can be recovered from the m-function mg(\).

In the context of the m-function Theorem 1.1 and Theorem 1.2 can be
generalized in the following way:

THEOREM 1.5. Let 1 < p < oo and Ay, n > 1, be arbitrary different real
numbers with A\, / —oo. Let f1, B2 € R, ¢*, ¢ € Ly(0,m) and consider the
m-functions mg, and mj, , defined by q and q* respectively.

o If the system eg(A) is closed in Ly(—m, ) then
(1.14) mg, (An) = mpz,(A\n), n>1
implies mg, = mj, (so tan B1 = tan B2 and ¢* = q).

e Let sinfy -sinfBy = 0. Then (1.14) implies sin 3y = sin P = 0. In this
case (1.14) implies m§ = mq if and only if the system e(A) is closed in
Ly(—m,m).

Remark. We allow in (1.14) that both sides be infinite.
A former result of this type is given in

THEOREM H (del Rio, Gesztesy, Simon [7]). Denote ¢, = max(c,0) and
let g € L1(0,7). If Ay, > 0 are distinct numbers satisfying

o) —TL2
(1.15) > % < 00

n=0

then the values mg(\y,) determine mg (and tan 3).
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Since (1.15) implies the closedness of eg(A), this statement is a special
case of Theorem 1.5; see Section 4.

Finally we mention the following localized version of Theorem G. It was
first given in Simon [20]; see also Gesztesy and Simon [8], [10] and Bennewitz
[4].

THEOREM 1 ([20], [8], [10], [4]).  Let 51, B2 € R, ¢*, ¢ € L1(0,7),
0<a<m. Then q¢* =q a.e. on (0,a) if and only if for every e > 0

(1.16) mp, (A) —m’, (A) = O (6—2<a_a>|sm>

holds along a nonreal ray arg A = =y, sin~y # 0.

From this statement the following generalization of Theorem 1.5 can be
given:

THEOREM 1.6. Let 1 < p < o0 and A\, n > 1 be arbitrary different real
numbers with A\, # —oo. Let 31, B2 € R, ¢*, ¢ € L,(0,7) and suppose that
(1.16) holds for every e > 0 along a nonreal ray.

o If the system eg(A) is closed in Ly(a — m,m — a) then (1.14) implies

mg,

= m%z.

o Let sinf -sinfBy = 0. Then (1.14) yields sin 5y = sinfBy = 0. In this
case (1.14) implies m§ = mg if and only if the system e(A) is closed in
Ly(a—m,m—a).

Remark. The statements of Theorems 1.1 and 1.5 for the Schrodinger
operators on the half-line are investigated in the forthcoming paper [13]. It
turns out that the inverse eigenvalue problem is closely related to the inverse
scattering problem with fixed energy.

The organization of this paper is as follows. In Section 2 we provide
the proof of Theorem 1.1; the main ingredient is Lemma 2.1. Some technical
background needed in the proof is given only in Section 5. Section 3 is devoted
to prove Theorems 1.2, 1.4, 1.5 and 1.6 by modifying the procedure presented
in Section 2. The applications of the new results are collected in Section 4;
we show how the above-mentioned former results can be presented as special
cases of Theorems 1.1 to 1.6. This requires the use of some standard tools from
the theory of nonharmonic Fourier series, more precisely, some closedness and
basis tests for exponential systems. Finally at the end of Section 4 we check
the properties of the counterexample formulated in Proposition 1.3.
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2. Proof of Theorem 1.1

In this section we provide the proof of Theorem 1.1. We start with some
lemmas.

LEMMA 2.1. Let By and By be Banach spaces. For every q € By a con-
tinuous linear operator

Ay By — B
is defined so that for some qg € B
(2.1) Ay, : By — By is an (onto) isomorphism,
and the mapping q — Ay is Lipschitzian in the sense that
(2.2) (Ag- — ADhl < clao)la” — alllbll Vh,a.q* € By, llall, Ia*ll < 2llaoll

the constant c(qo) being independent of q, ¢* and h. Then the set {Aq(q—qo) :
q € By} contains a ball in Be with center at the origin.

Proof. Let Gy € By be an arbitrary element, the norm of which is small
in a sense to be specified later. Our task is to find an element ¢* € By such
that

(2.3) Ag(¢" = q0) = Go.

This will be done by the following iteration. The vector ¢ is defined by
(2.4) Ago(90 — q0) = Go

and gy by

(2.5) Ago (@1 — 90) = Go — (Ag; — Ag,)(ak —0), k= 0.

This is justified by (2.1). We state that ¢; — ¢*, a solution of (2.3). Indeed,
consider the following corollary of (2.5):

(2.6) Ago(qhr1 —ar) = —(Ag; — Ag)(qx — ar1) — (Agz — Ag_ ) (g1 — D)
if K =0, we use instead
(2.6') Ago (a1 — q0) = —(Ag; — Ago) (20 — 0)-

Using the conditions (2.1), (2.2) we get from the formulae (2.4), (2.6") and
(2.6) that

(2.7) 125 — qoll < e1l|Goll,

(2.8) lgi — a3l < erllag — aoll if g5l < 2lqoll.
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(2.9) k41 — @l < ellar — g1 llClgk = qoll + lgk—1 — qol]),
if [lgrll < 2llgoll, llge—1ll < 2ligoll, k=1

with a constant c¢; independent of the ¢, k¥ > 0, and of Gy. We suppose that
G is small enough to ensure

(2.10) 8¢i[|Goll <1, al|Goll < 1/2[|go
and we prove that
(2.11) a1 — aell < 1/2llax — a1 ll, ezl < 2llqoll if £ > 1.
Indeed, (2.7) and (2.10) imply ||¢5]| < 3/2||qo|| and then by (2.8)
lat — a5l < eillag — aoll® < N Goll - llas — aoll < 1/2]la5 — qoll < 1/4llgol|

and then

larll < llar — @ ll + llao — qoll + llaoll < (1/4+1/2+ 1)]|qo]-
Consequently by (2.9)

*

las — qill < eillar — goll(lar — goll + llgo — qoll)
< allg — aoll(lar — @l + 2llg0 — oll)
< gt = all(Zllag — aol* + 2e1llgg — aoll)
< llgr = @ ll(illGoll* + 2¢1[|Goll) < 1/2]laf — g5
which is (2.11) for £ = 1. Now suppose (2.11) below a fixed value of k£ and
prove it for that k. We have
lgi = gqoll < llgi — @il + -+ llat — aoll + llgo — aoll
< 2llg; — g5l + llag — qoll < 2c1llag — qoll* + g5 — qoll
< 261 [|Goll* + e1||Goll < 2¢1||Goll < lqoll
for ¢« < k and then
Il < llat = aoll + lloll < 2loll
Consequently

gk+1 — all < erllar — @i ll(lla — qoll + llgz—1 — goll)
< llgx — gk ll(4ct | Goll* + 2¢[Goll) < 1/2llg; — @i |
and so (2.11) is proved and then ¢j — ¢* in B;. Now
(212)  Ago (g1 = 90) = Go + (A — Agy)(ar — q0) — (Ag- — Ag,)(gk — 0)-
Since
1(Ag — Ag:)(ar — ao)ll < cll¢” = all - lgk — @oll = 0k — o0,
we can take the limit in (2.12) to obtain
Agy (¢ = q0) = Go = (Ag- = Ag))(d" = 90)-
This is (2.3) so the proof is complete. O
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In the following statement the point a) (in a less general situation) and
the formula (2.16) are due to Gesztesy and Simon [9], [10]. We give the whole
proof for the sake of completeness.

LEMMA 2.2. Let 0 < a < m, q,q° € L1(0,7), ¢* = q a.e. on (0,a). Con-
sider the function

(2.13) F(z) = v*(a,2)V'(a, 2) — v(a, 2)v*(a, 2)

where v and v* are defined by q and ¢* respectively in (1.9), (1.10) with 5 = 0.
The derivatives in (2.13) refer to x. Then

a) The real zeros of F(z) are precisely the common eigenvalues of q and ¢*;
in other words, all values z = A € R for which there exists o € R with
A€ao(q*,a,0)No(gq,a,0).

b) If A\, / —oo holds for the (infinitely many) common eigenvalues of ¢*
and q then

(2.14) /W(q* —q)=0.

Proof. F(A) = 0 if and only if the initial condition vectors (v(a, A), v'(a, \))
and (v*(a,\),v*'(a, \)) are parallel. Since ¢* = q a.e. on (0, a), this means that
v* and v are identical on [0, a] up to a constant factor. In other words we have

A€ o(¢*,a,0)No(q,a,0) with tana = —5((%’);)) = —5:,((%’);))_ This proves a).
To show b) take the function
(2.15) F(z,2) = v*(x, 2)V(z,2) — v(z, 2)v* (2, 2).
Now
F
g—x(:):, 2) = v*(z, 2)v" (2, 2) — v(z, 2)v*" (2, 2)

= (q(z) — ¢ (@))v(z, 2)v" (2, 2)
which implies

TOF

(2.16) F(z2)=— %(x, z)dr = /W(q*(x) —q(z))v(x, 2)v"(z, 2) d.

If the zeros A, have a finite accumulation point then the entire function F(z)
is identically zero, which implies m* = m and ¢* = ¢; in this case (2.14) is
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obvious. Otherwise the A\, have a subsequence tending to +0co. By Lemma 5.2
(2.17)

22— )R () =22 =) [ (0"@) — o)l 20" (0, 22) do
= /ﬂ(q* —q) — /ﬂ(q*(x) —q(x))cos2z(m — x)dx

™ 2(r—zx)
- / (¢"(x) — Q(x))/ cos 2T M (7 — x, 7, ) dr da
a 0
=1 — I, —Is.

Here I3 has the form

2(m—a) T—T7/2
(2.18) Is = / cos ZT/ (¢*(z) — q(x))M (7 — z, 7, %) dx dr.
0 a

This means that for the subsequence of values z = /A, tending to +o0o we
have Is — 0. Since Iy — 0 is obvious, from F()\,) = 0 we infer (2.14) as
asserted. O

Proof of Theorem 1.1. We consider the closedness of the system
(2.19) C(A) = {cos2uz,cos2/ Az :n > 1}

in Ly(0, 7 — a) instead of that of e(A) in L,(a — m, 7 — a); this is justified in
Lemma 5.4.

The if part.  If the system C(A) is closed in L,(0,7 — a) then the
eigenvalues ), and ql(0,a) determine g on the whole (0,7). Suppose indirectly
that there exists another potential ¢* € L, with ¢* = ¢ a.e. on (0,a) and
An € 0(q*, ap,0) No(q, oy, 0) for some oy, € R. Define F'(z) by (2.13); then
F(A\,) =0 (n>1)and F # 0. The function

G(2) = —2(2% =y F(?)
has zeros at £, £1/\,. From (2.14) we get
(2.20) G(z) = /W(q*(ac) —q(z)) [1 - 2(22 — pHv(z, 22)v* (x, 22)] dz.
Define the linear operators

Ag : Lp(a, m) — Lp(a, m)

(Ag-h)(z) = h(x) +2 /I h(T)M(m — 7,2(m — x), 12, q, q*)dr.



INVERSE PROBLEMS AND CLOSEDNESS 895

Then Lemma 5.2 gives, after an interchange of integrations,

1) [ @@ - a@) [1 -2~ @)oo 2 o, 7)] da

- / " cos2:(m — 2) [Ag- (¢ — 9)] () da
Observe that
(2.22) Ag- : Lp(a,m) — Ly(a,n) is an isomorphism.

Indeed, the Volterra operator
h+— 2/ h(T)M(w — 7,2(7 — x), u?, q,q") dr

with continuous kernel is known to have the spectrum o = {0}. In particular,
—1 ¢ o ie. Ay is an isomorphism. Now if ¢* # ¢ then Ay (¢* — q) # 0;
hence by (2.20) and (2.21) the system C(A) is not closed in L,(0, 7 —a). This
contradiction proves the if part of Theorem 1.1.

The only if part. If C'(A)is not closed in L,,(0, 7—a) and if A,, /4 —oo then
for every g € L,(0, ) there exists ¢* € L,(0,7), ¢* # ¢ but ¢* = g a.e. on (0,a)
and there exist values o, € R with \,, = 0(¢*, @, 0)No(q, ap,0) for all n > 1.
Indeed, since C(A) is not closed, there exists a function 0 # h € L,(0,7 — a)
such that

def

(2.23) Golz) L /0 " (@) cos 223 da

has zeros at £y and ++v/\,. Our task is to show that for every ¢ € L,(0, )
there exists ¢* € L,(0,7), ¢* # ¢, ¢* = q a.e. on (0,a) such that

(224)  AGo(z) = / (@) — q(@) [1 - 20 — @P)o(e, 2yt (, )] da

holds for some constant v # 0. Indeed, Go(p) = 0 and (2.24) gives (2.14) and
then the function F(z) defined in (2.13) has zeros F'(\,) = 0; i.e. the A\, are
common eigenvalues of ¢* and ¢. Taking into account (2.21), (2.23) and (2.24),
our task is to find ¢* with

(2.25) vh(m — z) = Ag-(¢* — q)(x) a.e. for some ~ # 0.

We check this representation by Lemma 2.1 applied with By = By = Ly(a, 7).
The condition (2.1) is verified in (2.22) and (2.2) follows from Lemma 5.2, since
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if ¢, ¢*, ¢ € L, with norms < D then

(A — Ag-)h] = 2{ I

1/p
~M(m —7,2(m — x),14*, ¢, q")] dT‘p dw}

<aple o1 | (/ |h|>,, a}” <aiD)le ~ gl I

with straightforward modifications for p = co. So Lemma 2.1 applies and this
shows the possibility of the representation (2.25) with sufficiently small vy # 0.
The proof is complete. O

/m h(r)[M (7 — 7,2(7 — 2), 1*, q,¢**)

3. Proofs of Theorems 1.2 to 1.6

In this part of the paper we give the proofs of the remaining new results.
They are modifications of the proof of Theorem 1.1 or consequences of already
proved results. The proof of Proposition 1.3 is deferred to Section 4.

LEMMA 3.1. Let 1 < p < o0, q,¢* € Lp(0,7), 0 < a < m, ¢* =q ae. on
(0,a). Let F(z) be defined by (2.13), where the functions v and v* are as given
in (1.9), (1.10) with g and q*. Let sinf3 # 0. Then

a) The real zeros of F(z) are precisely the common eigenvalues

)\n S U(Q*,anaﬁ) N O'(q,Oé,B)

of ¢* and q.

b) If A, / —oo holds for the (infinitely many) common eigenvalues of q
and ¢* then (2.14) holds.

Proof. The verification of Lemma 2.2 can be repeated, only (2.17) is
replaced by

sin? i sin? i
e F) =250 [ —a+ 550 [0 - ) cosetr—a) da
)

+ / (0(2) — a@)) /O ) s L — 1) dr d

see Lemma 5.3. Consequently

F(Z2) —

s 2 ™
s1n2ﬂ/ (¢ —q) if z — 400, z € R,
a

and the proof of (2.14) is finished as in Lemma 2.2. O
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Proof of Theorem 1.2. We must show that if the system

(3.2) Co(A) = {cos 2/ Az : n > 1}

is closed in L, (0,7 —a) then q|( ) and the eigenvalues A, determine ¢. Indeed,
let ¢* € Ly(0,m) be another potential with ¢* = ¢ a.e. on (0,a) such that
An € 0(q*, an, B) No(q,a,3), n > 1 for some a,, € R. From Lemma 5.3 we
infer for h € Ly(a, )

(3.3)
/ h(z) [v(z, 22)v*(x, 2%) — 1/2sin? B dx = / cos 2z(m — x)Ag-h(x) dz

where

64)  Aph(a) = L)+ / " h()2L(r — 2 — 2),0,4") d
We observe that

(3.5) Ay Lp(a,m) — Lp(a,m) is an isomorphism

just as in the proof of Theorem 1.1. Let F(z) be defined by (2.13), (2.16). It
follows from (2.14) that

(3.6) F(2*) = /7r cos2z(m — x) [Ag-(¢" — q)] (x) dz.

Now if ¢* # g then 0 # h = Ay-(¢* — q) € Ly, satisfies

s
/ h(z) cos 2/ Ap(m —x)dx =0 Vn,
a
in contradiction to the closedness of Cy(A) in L, (0,7 — a). O
The following statement is the counterpart of Lemma 2.1:

LEMMA 3.2. Let By and By be Banach spaces, let ¢ : By — C be a
bounded linear functional and let Boy be a closed subspace of Bo. For every
q € By define a continuous linear operator

Aq : Bl — B2.
Suppose (2.1), (2.2) and
(37) dim Bgl Z 2, Bgl ¢ Kergp.

Then the set {Aq(q —qo) : ¢ € Bi1,g—qo € A(;l(Kergo)} contains a monzero
element of Bo.
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Proof. Take an element 0 # Gy € By N Kerp and let Gog € Bo; \ Kerp
with ¢(Goo) = 1. Define the operator P : By — By by

(3.8) PG =G — ¢(G)Gp.
By definition we have
(3.9) ImP C Kergp.

The vector ¢ is defined by

(3.10) Ag (5 — q0) = Go
and gy, by
(3.11) Ago (@1 — @) = Go — P((Agqy — Agy)(ar — q0)), k=0.

Then we have for k > 1
Ag (@1 —ar) = =P |[(Ag; — Agy) (. — @r—1) — (Agqp — Agz_ )(Gh1 — q0) | 5
if K =0, we use instead
Ago (@1 — @) = —P((Ags — Ago) (90 — 90))-

These correspond to the formulae (2.6), (2.6"). Since the operator P is bounded,
the same estimation procedure can be executed (as in Lemma 2.1). So (2.11)
holds and then ¢;, — ¢* € B;y. Taking the limit in (3.11) we can verify again
as in Lemma 2.2 that

(3.12) Ago (0" = q0) = Go — P((Ag- — Ag,)(¢" — q0));
(3.13) Aq*(q* —qo) = Go+ (I — P)((Aq* - A(Io)(q* —qo)) = Go + cGoo

with some constant ¢. This shows that 0 # Ag-(¢* — qo) € Bai. From (3.12)
and (3.9) we finally get ¢* — qo € A_ ! (Kery). Lemma 3.2 is proved. O

Proof of Theorem 1.4. Let ¢ € Ly(0,m); our task is to find a different
q* € Ly(0,7), ¢* =qon (0,a) such that the \,, are common eigenvalues of ¢*
and ¢. This will be done by applying Lemma 3.2 with By = By = Ly(a, ),

o:Ly(a,m)—C, (h) :/ A
and
Boy ={h € Ly(a,) : / h(z) cos 2/ Ap(m — z)dx = 0 Vn}.

Now condition (2.1) is given in (3.5), (2.2) follows from Lemma 5.3. In order
to check dim Ba; > 2 recall the following identity (see Young [21, Ch. IIIJ):
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Let a(t) belong to L,(—d,d) and suppose that

d .
f(2) :/ a(t)etdt  satisfies f(u) = 0.

—d
Then for every A # p, A € C there exists §(t) € Ly(—d,d) with

z

— 2f<z) = /_ Zﬂu)emdt,

namely,

t

B(t) = a(t) +i(A — u)e_i“t/ afs)esds.

—d
This can be verified by direct substitution. A repeated application of this idea
gives that if f(£pu) =0 (or f(0) = f'(0) = 0 for px = 0), then for every \ # +u
there exists v(t) € L,(—d,d) with

22— )\2 d ;

Sl = [ e
Supposing that «(t) is even, a(—t) = a(t), we see that f(z) and thus ~(¢) is
even. In other words, f(z) = fod 2a(t) cos zt dt, f(u?) = 0 implies

2 _ )2 d

%ﬁ fz) = /0 2y(t) cos =t dt.

Since C(A) is not closed in Ly (0,7 — a), there exists 0 # h € Ly(0, 7 —a) with

£(z) = /Oﬂ_ah(t) cosztdt, f(2v/a) =0 Vn, f(2u) = 0.

Take any number puq # +p, p1 # /Ay, then

Z2 o 4/1/% T—a
R (2) = /0 hi(t) cos zt dt for some hy € Ly(0, 7 — a).

Consequently h(m —t) and hi(m —t) are linearly independent elements of Bay;
thus dim By > 2 as asserted. Finally the minimality condition (M) implies by
(3.3) that there exists a function h € L,(a, ) satisfying

/ Agh(x)cos2y/ Ap(m —x)dx =0 Vn but / h # 0.

Let hy = Agh, then h; € By \ Kerg showing that By ¢ Kerp. Thus all
conditions formulated in Lemma 3.2 are fulfilled, so there exists ¢* # ¢, ¢* €
Ly(a, ) such that

(3.14) Ag(¢" —q) € By and Ay(¢" — q) € Kergp i.e. / (¢" —q)=0.
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Define F'(z) corresponding to ¢* and ¢. Putting together the formulae (2.16),
(3.3) and (3.14) gives

F(2?) = /ﬂ(q*(az) —q(x)) [v(az, 22)v*(x, 2%) — 1/2sin? ﬁ] dx
= /7r cos 2z(m — ) [Ag- (¢* — @)] () da

and then F(\,) = 0; i.e., the )\, are common eigenvalues of ¢* and g. The
proof of Theorem 1.4 is complete. O

Proofs of Theorems 1.5 and 1.6. To make explicit the dependence on the
parameter 3 we denote by v(x, A, 3) the solution of (1.9), (1.10). Let

F(z,2) = (2,2, B1)v*(x, 2, B2) — v(z, 2, B1)v" (2, 2, Ba).

We have F(0,\,) =0 by (1.14). The condition (1.16) means that ¢* = ¢ a.e.
on (0,a) and then

F(\,) =0if F(z) = F(a, z2).

If the values A, have a finite accumulation point then F(0,z)=0 and m*=m
follows. In this case eg(A) is also closed in L,(a — m, 7 —a). Indeed, if G(v/Ay)

=0 with G(2) = [y “ h(x) cos 2zx dz where h € L,(0,m — a) then G =0 and

h = 0. So in what follows we can suppose that \,, — oo for a subsequence.
As in Lemma 2.2 we can verify that

(3.15) F(z) = /W(q*(x) —q(x))v(x, z, B1)v" (2, 2, B2) dz + F(m, 2)
where

F(m,z) = — cos (1 sin By + cos B sin 1 = sin(B1 — F2).

Suppose first that
(3.16) sin 31 - sin By # 0.

Analogously as in (3.3) we can check by Lemma 5.3 (last section) that
(3.17) / h(z) [v(m, 22, B1)v* (x, 22, B2) — 1/2sin By sinﬁg] dx

= / cos 2z(m — x)Bg-h(z) dx

where

_ sin 3y sin B2 h(z)
B 2

+ / h(r)2L(m — 7,2(m — x),q,9", B1, B2) dT.

(3.18) By-h(z)
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Consequently

™

F(2) = sin(By ~ Bo) + 1/2sinfrsin i [ ("~ ) +
+ / cos 2z(m — x)Bg-(¢* — q)(z) dx.
From \,, — +o0, F(\,,) =0, it follows that

sin(61 — B2) 4+ 1/2sin B1 sin 52/ (¢"—=q)=0
and then
0=F(\) :/ cos 2v/ M (1 — 2) By (¢* — q)(z) dz  Vn.

Since Cp(A) is closed in Ly(0,7 — a), we infer By (¢* —¢) = 0; ie., F =0,
and hence mg, = mj, .

Now consider the case
(3.19) sin 31 - sin B9 = 0.

We see from (5.14) that for sin 5 =0

1 5
v(r —z,2%,8) =0 (WBN’Z"’”)
z

uniformly in z € C, z # 0 and 0 < & < 7 — a. Analogously from (5.25) we get
for sin 3 # 0

v(r —z,2%,3) =0 (e‘gz‘x) .

This implies by (3.15) that

F(2?) = sin(8; — ﬁg)—|—0<‘ € m).

Now from F(A,,) =0, Ay, — +o0, it follows that sin(f; — f2) = 0 and then
sin 31 = sinff2 = 0. So (1.14) has the form

mo(An) = mo(An);
in other words the \,, are common eigenvalues of ¢* and ¢. In this case m§ = myg

(i.e., ¢* = q) follows if and only if e(A) is closed in Ly(a — m, 7 — a); this is
stated in Theorem 1.1. The proofs of Theorems 1.5 and 1.6 are complete. O
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4. Applications

This section is devoted to demonstrate how the formerly known theorems
listed in Section 1 can be deduced from the new results. At the end of this
section we provide the proof of Proposition 1.3.

Consider an arbitrary sequence {p, : n > 1} of different complex numbers
satisfying

(4.1) |ton| — o0.

Define the counting function
(4.2) n(r) = Z 1 for r>0
|H1L‘ST

and the function

(4.3) N(r) = /11“ @ dt.

Recall the following classical closedness test of Levinson:

THEOREM 4.1 ([15], see also Young [21]). Let0 < a <7, 1 < p < o0,
1/p+1/p=1.If

(4.4) limsup(N(r) — 2(1 — a/m)r +1/p Inr) > —c0

r—00

then the system {e* :n > 1} is closed in Ly(a — m,7 — a).

Remark. The original form of Theorem 4.1 in [21] refers to 1 < p and to
the case a = 0 because it is formulated as a completeness test in L, and this
is equivalent to closedness in L, only if p > 1. However the proof given in [21]
works also for p = 1 and it can be transformed into the form (4.4).

Remark. We can easily extend Theorem 4.1 to those cases where there
are values p, taken with multiplicities 1 < m, < oo; in this case (4.2)

is accordingly modified and the exponential system contains the members
eHnt xethn® . ,ﬂzm"_lew"m.

In applying Theorem 4.1 we need the following estimates for the IN-
function corresponding to a complete spectrum.

LEMMA 4.2. Denote by N, the N-function for the set {£2/ A\, : A\ €
o(q,,B)}; if Ap = 0 then the value 0 has multiplicity 2 in this set. Then, as
r — 400,

(4.5) sina=sinf=0= Ny(r) =r—Inr+ O(1),
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(4.6) sina =0#sinf or sina # 0 =sin 3
= N,(r)=r+0(1),

(4.7) sina # 0, sinf # 0= Ny(r) =r+1Inr+ O(1).

Proof. Consider first the Dirichlet case (4.5). Recall the well-known eigen-
value asymptotics

(4.8) \/Tn:n+0(%), n>1

(see, e.g., [17]). Let n® and N be the corresponding functions if we substi-
tute the values £2v/\,, by £2n. From (4.8) it follows that

(4.9) Ny(r) = NP () = 0(1).

We can count N(l)(r) for 2k < r < 2k + 2 as follows

r k
(4.10) NW(@r) = / @ dt =) (2 — 2)[In(2i) — In(2i — 2)]
1 i=2
k
+ 2k[Inr — In(2k)] = 2kInr — 2 In(2i)
=1

=2klnr —2kIn2 — 21In(k!) = 2k(lnr — In2) — 2k(Ink — 1)
—Ink+O(1) = zkln(%) + 2k — Ink + O(1)
=2k—Ink+O(1)=7r—Inr+ O(1).
From (4.9) we get Ny(r) =7 —Inr 4+ O(1) as asserted.

In the second case (4.6) we start with the asymptotics

1
: Vn = ———), n>0.
(4.11) A= n+1/240(—), n>0

Define the functions n(® and N® by the main term of (4.11). Taking into
account n? (t) = nM (¢t + 1), nM(t) = t + O(1) we obtain

"Mt +1) " nM(t 4 1) "Mt +1)
N () = / et ) g / S S / R S
(=] e A I AT

:N“W+1)+/j%dt+0(l) =7+ 0O(1).

With N, (r) = N®)(r) 4 O(1) this implies (4.6). Finally in case (4.7) we argue
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similarly starting from

1
4.12 Ap = 0) ) >
(4.12) Vii=nt0(10), 020
and using the fact that n(® (t) = n() (¢t 4 2). The proof is complete. O

Remark. Let d > 0 and denote by Ny the N-function corresponding to
the set {£2nd : n > 1}. Then we have

(4.13) Ny(r) = 2 —Inr 4 O(1).

Indeed, ng(t) = n(t/d) implies

r

:N(d

)+ 0(1) = g —Inr+ O(1).

Proof of Theorem C. Note first that o(q, a1, 8) No(q, az,B) = 0. If sin g3
= 0, we have two spectra of type (4.6) or one of type (4.6) and the other of
type (4.5). Thus

Np,(r) > 2r —Inr + O(1)

if Np, is the N-function corresponding to the values +2v/X where \ runs over
the eigenvalues from the two spectra. Adjoining the pair +2u we get

Na(r) > 2r +1Inr + O(1).

By Theorem 4.1 this implies that e(A) is closed in Li(—m,7) and then the
potential is determined by the two spectra. Now, if sin3 # 0, we have two
spectra of type (4.7) or one of type (4.7) and one of type (4.6). Hence

Np,(r) > 2r +1Inr+ O(1)
so that eg(A) is closed in Ly (—m, 7); thus the potential is again determined. OJ
Proof of Theorem D. This follows from the estimates:
sinf3 # 0= Nj, = N, >r+ O(1),
sin3=0= Ny =N,+2Inr+0O(1) >r+Inr+ O(1). O
Proof of Theorem E. Denote by ng(t) the n-function corresponding to the
set {£2v/ A, : A\, € S}. Then for large ¢

ng(t) = 24#{A\y € S : Ay <t2/4} > 4(1 — a/m)#{\y € 02 N, < t2/4}
+2a/m—1=2(1 —a/m)n.(t) + 2a/7 — 1.
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Hence

sinf # 0= Np, >2(1 —a/m)r+ (2a/7 —1)Inr 4+ O(1),
sinB=0= Ny >2(1—a/m)(r —Inr)+2Inr
+ (2a/7—1)Inr+ O(1) =
=2(1—a/m)r+2a/mlnr+ (2a/7 — 1) Inr + O(1)

which verifies Theorem E even after deleting a/m — 1/2 from the density con-
dition on S. a

Proof of Theorem F.

sin B # 0= Ny, > 2/3
>2/3
sinff=0= Np >2/3
>2/3

Ny, + No, + No,) + O(1)

3r+2Inr) 4+ O(1),

Ny, + Ny, + No,) 4+ 2In7 + O(1)
3r—Inr)+2Inr+ O(1). 0

~~ I~ I~

Proof of Theorem H. By Theorem 1.5 it is enough to verify that (1.15)
implies the closedness of eg(A) in Li(—m, 7). Consider the N-function for the
set {£2v/ A\, : m > 0}; we have to check that

(4.14) N(r)—2r 4 —oco (r — 400).

We shift the values A\, < %2 into 711—2. This will diminish N(r) and it is enough
to prove (4.14) for the diminished N. But we can also shift the values \,, > %2

into %2 since this will grow N by a bounded quantity. Indeed, the growth is
at most

2VA g A\, 4(\, — n2/4)
Zz/ & :;hq? :;m <1+T) _ o)

by (1.15). For the shifted system {\, = n?/4 : n > 0} we have No(r) =
2r +1Inr + O(1); hence N(r) > 2r +1Inr + O(1) and (4.14) follows. O

In order to check Theorem B we need a stability result of Riesz bases.
By definition, a Riesz basis is an isomorphic image of an orthonormal basis of
a Hilbert space. A famous result of Kadec [14] says that if A, are arbitrary
real numbers with [\, —n| < L < 1/4 for all n € Z then the system {e"»® :
n € Z} forms a Riesz basis in La(—m, 7). It has been previously known that
the constant 1/4 is best possible here; see e.g., Young [21]. Later on, S. A.
Avdonin [2] realized that it is not necessary to impose the bound L < 1/4 for
every individual shift |\, — n|; instead, it is enough to take this bound only
for the average shifts in the following sense:
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THEOREM 4.3 ([2]). Suppose that the shifts 6, € C are bounded and the
shifted exponents A\, = n+ 0, are separated; i.e., infy, sy, [Ny — Apy| > 0. If the
average Kadec condition

1
(4.15) limsup sup E‘ Z On
R—oo  z€R r<n+Ré,<zr+R

holds then the shifted system {e*»® :n € Z} forms a Riesz basis in Lay(—7, ).

<1
4

Proof of Theorem B (in case sin f = 0). The sufficiency of two spectra is

proved in Theorem C; we investigate the necessity. For the eigenvalues )\g) of
0(q,0,0) and )\%2) of o(q, az,0) we have

(4.16) AV =n+tod) (n>1), VAP =n+1/240(1) (n>0).

So the set of all values +2v/X is an o(1)-perturbation of Z \ {0}. Since the
eigenvalues are different, this means that the shifted exponents are separated
and (4.15) holds with limsup = 0. Consequently eg(A) is a Riesz basis of
codimension 1. Hence e(A) is complete in Lo and after deleting an arbitrary
eigenvalue it becomes incomplete (of codimension 1). In other words, after the
deletion it is not closed in Lg, thus it is not closed in L;. By Theorem 1.1 this
proves Theorem B if sin 3 = 0. O

Remark. The case sin § # 0 cannot be dealt with in this general frame-
work. Roughly speaking, we have “half an eigenvalue” deficiency and excess
in eg(A) and e(A), respectively. This prevents us from applying Theorems 1.2
and 1.4. It would be possible to give ad hoc modifications, based on the special
structure of the set of eigenvalues in order to cover this special case; we do not
give the details.

Our last topic in this section is the proof of Proposition 1.3. We need the
following elementary

LEMMA 4.4. In the domain |w| > 1 the function
1
flw) = wsingw—i— Esin%

has only real zeros.

Proof. Since f(—w) = f(w), we can suppose fw > 0. From the well-
known formula

(4.17) |sin(a + ib)| = V/sin? a + sinh? b

we can easily check that

(4.18) | sin ~w| > | sin —

5 . if lw|>1, 0 <Rw <1,



INVERSE PROBLEMS AND CLOSEDNESS 907

hence f(w) has no zeros in this domain Indeed, if w = = + iy, 0 <z <1,
22 + y? > 1 then sin® 5T > sin? 2+ 5, sinh? 5y > smh2 2+ > and equality
cannot occur in both cases. NOW consider the case z = 1 + ¢, € > 0 being

appropriately small. From
sin 2(1 +e)=1-0(?
and (4.17) we get
]singw\ > |Sm%| —0(e?) ifz=1+e.
Consequently
(4.19) \wsingw| > \%sin%| ifr=1+e¢.

Indeed, this is trivial if |y| is large enough, and for other values y |sin 5| is
not very small, so that

|w sin gwl >(1+¢) (| sin %| - 0(52)>
1 m T 1 T
— sin —| + 2¢|sin — | — O(¢? — sin —|.
>|wsm2w\—|— 6]81n2w] (€)>|wsm2w|
Hence f has no zeros on the line x = 1 + . We can simply check by (4.17)
that
(4.20)  |wsin “w| > |sin | #z—2k+1(k=12...) and y€ R
. wsin —w| > |—sin —| ifx = = ...) an
2 wo 2w o Y
and that for large R > 0
1
(4.21) \wsin%wl>|asin%] if |y| > R.

This means by Rouché’s theorem that f(w) has exactly one zero in each of
the rectangles [1 + ¢, 3] X [-R, R] and [2k + 1,2k + 3] x [-R, R] for k > 1 and
no other zeros exist. These zeros must be real since f(w) = f(w) and this
completes the proof. O

Proof of Proposition 1.3. On the interval [r/2,7] we have v(z,z)
cos(m —x)y/z — 1. Thus v(§,2) =cos vz — 1,0 (§,2) = Vz—Isinfv/z — 1
and then in [0, 7/2]

v(z,z) = cos(§ —x)V/z - cos g\/z -1

Sm(_\;,x)\[\/z — 1sin —\/z —

Finally we get that
ve—1
(4.22) v(0,2) = cos g\/E - oS z\/z —-1- i/_ sing z - sin g\/z -1,

(4.23) v’(O,z)zﬁst\/E cos—\/z— +\/z—1cos—\/2 sm—\/z—l
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Similarly

(4.24) v*(0,z) = cos g\/g - cos g\/z -1- V2 - sing z - sing\/z -1,
-

(4.25) v*(0,2) = v'(0, 2).

Consider the function

(4.26) F(z2) ='(0,2)v*(0,2) — v(0,2)v*'(0, 2)

sin§y/z sinfvz—1
vz Vz—1

Its real zeros are precisely the common eigenvalues of ¢ and ¢*. In order to
find the zeros of v/(0, z), consider the decomposition

(4.27)  0'(0,2) = v/zsin g(\/E +vz—1)
— (Vz = Vz—T)cos g/zsin ove—1
- zsinwﬁ%—[\/;(sinﬂ z—sing(\/g—i—\/z——l))
—(VZ = Vz—Tcos ozsin vz —1

='(0,2)(v*(0, 2) — v(0, 2)) = —v'(0, 2)

def

= g(2) + [h(2)].
From
sinmy/z —sin (Vi Ve D) —2sin A VI VECL (maVERVEL
2 2 2 2 5
we infer

Vz(sinmy/z —sing(\/;—i- Vz—1))

=0 <\/E%62(3|3\/E|+|3\/z—1)> -0 (€n|s\/z\) ‘

Then

(4.28) h(z) =0 (e”'sﬁ‘) |2l = o

The (simple) zeros of the function g(z) are z = k%, k = 0,1,.... We know
that

19(2)| = e/]ze™SVA it 2| = (N +1/2)%, neN,

with ¢ > 0 independent of z and N. Comparing this estimate with (4.28) we
get from Rouché’s theorem that v(0, z) has precisely N + 1 zeros in the disk
|z| < (N +1/2)? and (again by Rouché’s theorem) that the zeros satisfy

(1) _ 1 S
(4.29) An —n—|—0(n+1) (n>0, n— 0).
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We have to check that these zeros are real. Apply trigonometric identities to
obtain

sinf(vz+ vz —1)+sin5(yz — vz —1)

v'(0,2) = /2 5
+msing(\/§+ \/m);sin%(\/_— Vz—1)
= %sing(ﬁ—i-\/z— 1)

TGRS R R
=1/2f(w), w=+z++Vz-1.
Here we used (v/z + vz —1)(y/z — vz —1) = 1. By appropriately defining

the square roots we can suppose |w| = [\/z + vz —1| > 1. If |w| = 1, then

VitvVz—1=w=1=,/z—/z—T1, hence w+w = 2y/z is real, w — W =
2y/z — 1 is purely imaginary. This means that 0 < z < 1. If |w| > 1 and
f(w) = 0 then by Lemma 4.4 the root w = /2 + /2 —1 is real. Then

% = /2 —+/z—1 and hence \/z and /z — 1 are also real; i.e., z > 1. This
shows indeed that v/(0, z) has only real zeros. The other two factors in (4.26)

have the zeros A,(f), )\S’) satisfying

(4.30) AP = (n>1),
1
(4.31) VAP = Va2 +1=2n4+0(=) (n>1).
n
So for the N-function of the sets of values £2v/\,, we get by (4.13) that

NOE) =r+Inr+0(1), NO@E), NO@) = g —Inr+ O(1).

If p # i\/@ , then the N-function of all values i2\/@ and 2u satisfies
N(r)=2r+0O(1)
which means by the Levinson test that the system
e1(A) = {eZiuaz’e:I:Qi\/Xx . F()\) = 0}

is closed in Ly(—m,m). On the other hand eg(A) cannot be closed by Theo-
rem 1.2, so it has deficiency 1 as asserted. O
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5. Technical background

In this last part of the paper we give the auxiliary results used in the above
proofs. More precisely we provide integral representations for the products of
eigenfunctions and a connection between the closedness of cosine and expo-
nential systems. The first result is a refinement of the known representation
(5.1) below; see, e.g., Marchenko [19].

LEMMA 5.1. Let 1 <p < o0, 0<d <00, q € L,(—d,d) and consider the
solution e(x, \) of the initial value problem

—y" +qy =Ny on (—d,d), y(0)=1, ' (0)=i\

It has a representation of the form

(5.1) e(z,\) = e+ [ Ky(z,t)eMdt

—x

with a continuous kernel K1 (z,t). If there exist two potentials ¢*, q¢ € L,(—d, d)
with norm < D then

(52) |K1(m7t7Q)| SC(D)v

(5.3) K1 (z,t,q") — Ki(2,t,q)| < ¢(D)llg" — qllp

with a constant ¢(D) = ¢(D, p,d) independent of q, ¢*, = and t.

Proof. Define H(«, ) = Ki(a + ,a — ) for a, f > 0. Introduce the

notation
=/\QI, o(u,v) //!qoc+ﬂ\dﬁda

It is shown in Marchenko [19] that

(5.4) H(u,v _1/2/ q—l—/ / (a+ B)H(c, B) dB da
and
(5.5) |H (u, )| < 1/20(u)e??),

From o(u) < ¢(D), o(u,v) < ¢(D) we get |H(u,v)| < ¢(D) which is (5.2). To
show (5.3) consider the decomposition

(5.6) H*(u,v)—H(u,v)_l/Q/u(q —q)
/ / “(a+B) = qla+ p)H (o, B) df da
+/0 /0 qla+ B)(H*(a, B) — H(a, 8)) dB da.
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This implies
(5.7) [H"(u,v) — H(u,v)| < cllg" —qllp
+eD) [ [0t 5) - gta+ )l dida
o Jo
+ [ [ lata s 9 (@,0) - Hia, )] dBd
0 Jo

<)l ~dly+ [ ' / “lg(a + B)|H" (o, B) — H(ew, )| dB dov

Recall the following inequality of Wendroff (see, e.g., in [3]): Let ¢ > 0,
u(s,r) > 0, v(s,r) > 0, u continuous, v locally integrable in the domain
r,s > 0. Now if

x ry

(5.8) u(z,y) < c+/ / v(r, s)u(r,s)dsdr, x,y >0,
0 0

then

(5.9) u(z,y) < celo Jovrs)dsdr g0 >,

Applying this to (5.7) gives

(5.10) |H* (u,v) = H(u,0)| < e(D)|lg" —gflpels o late Pl a5 de

<
<
which is equivalent to (5.3). O

Our next topic is an integral representation for v(x, \)v*(z, A):

LEMMA 5.2. Let 8 = 0 in (1.10) and p € C, 1 < p, ¢*, ¢ € Lp(0,7).
Then for z € C

(5.11) 1 —2(22 — p®)o(m — z, 22)v* (7 — z, 2?)
2x
= cos2zx + / cos 2 M (z, 7, %) dr
0

where the kernel function M (z, T, u?) is linear in pu?, continuous in (x,7) and
independent of z. Further if ¢** € L, and |\qlp, ||¢*|lp, lg**||p < D then

(5.12) \M (z,7, 1%, q,q%)| < e(D, p, p),

(5.13) \M (x, 7, 12, q, ) — M(z,7, 1%, q,q)| < e(D, 1, p) |7 — ¢ |-

Proof. Tt can be checked from (5.1) that there exists a continuous kernel
K(x,t), 0 <t <z, satisfying K (z,0) = 0, the analogues of (5.2), (5.3) and

. x _
(5.14) v(m —x,2%) = iy —i—/ K(x,t) STt
z 0 z
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Indeed, define K for the potential ¢(m—z); then K (x,t) = Ki(x,t)— K (z, —t)
satisfies (5.14). Consequently

(5.15) 1—22%0(m —z,2°)v* (7 — z, 2°)

x
:1—251n22m—2/ K (z,t)sin zx sin 2t dt
. 0
2/ K*(x,t)sin zx sin zt dt
037 x
—2/ / K(z,t)K*(z,u)sin 2t sin zu du dt
0 Jo
= cos2zx — / K(x,t)[cosz(x — t) — cos z(x + t)] dt
i 0
—/ K*(x,t)[cos z(x — t) — cos z(x + t)] dt
0

—/ / K(z,t)K*(z,u)[cos z(t —u) — cos z(t + u)] dudt
o Jo
=cos2zx — I — I] — Is.

We have to check that I;, I and I have integral representations as in the
right side of (5.11) with continuous kernels satisfying (5.12) and (5.13). In I;

/ K(x,t)cosz(x—t)dt:/ K(x,x — 7)cos zT dr,
0 0

T 2x
/ K(z,t)cosz(x +t)dt = K(z,7 — x) cos zT dT;
0

x
i.e.,

2x
(5.16) Il—/ cos zT My (x, 7)dr,
0

[ K(z,o—7) if0<7<2z

The kernel M; is continuous since K(z,0) = 0 and the analogues of (5.12),
(5.13) are also satisfied ((5.13) is trivial). In I we argue similarly. In Iy we
change the order of integrations:

(5.17) /Om /Om K(z,t)K*(z,u)cos z(t — u) dudt

r ot
= / K(x,t)K*(z,t — T)cos zT dr dt
0 Jt—zx

_ /Ox (/jK(x,t)K*(w,t . dt) cos 27 dr

+/ </ K(x,t)K*(x,t+T)dt> cos zT dT
0o \Jo
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and

(5.18) /x /90 K(z,t)K*(z,u) cos z(t + u) du dt

T T+t
= / / K(z,t)K*(z,7 —t)cos zT dT dt
0o Ji
= / </ K(z, t)K*(z, 7 — 1) dt> cos zT dt
0 0
2x T
+/ </ K(z,t)K*(z,7 — t) dt) cos z7 dT.

2z
(5.19) 12:/ cos 2T Ms(x, ) dr
0

Consequently

with the kernel
fo (z,t)K*(z,t — 7)dt
+ [y T K(x, t)K*(z,t 4+ 7) dt
— Jo K(z,t)K*(x, 7 —t)dt if0<r<ua,
_fr—xK r, ) K*(x, 7 —t)dt ifz<71<2

(5.20) Ms(z,7) =

continuous also at 7 = z by definition. Here (5.12) and (5.13) also follow from
Lemma 5.1. In order to complete the proof of (5.19) we have to find an integral
representation of 2uv(m — x, 22)v* (7 — x, 22). We apply the identities

! 1 — cos zt
(5.21) / (t—T)coszrdr = %
0 z
and
1 —cos2zx
v(m —xz, 29 )" (m —x, 2%) = 5,2
/ Kz cosz :c—t)—cosz(x+t)dt
222
. cos z(x — t) — cos z(x + t)
+/ K*(z,t) 5,7 dt
+/ / K (2, ) K () cos z( u)2z2008 Z(t 4+ u) dudt

1
= 5[3+I4+IZ+I5.
Now

2x
I3 = / (2 — 7)coszT dT
0
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and in Iy
1- t
/ K(ot) cosz(x+ )dt

/ Ka:t/ (x+t—7)coszrdrdt
0

cosz7'< )(:c+t7')dt> dr,
max(0,7—x)

T 1 _
/ K(z,t) Cosz(x D g
0 z

_ /Om cos 27 </0$_TK(x,t)(x 1) dt> dr.

The kernel arising here is zero at 7 = x, so it can be continuously extended to
x < 7 < 2z. This proves an appropriate integral representation for I;. The
case of I} is similar. Finally in I5 we get by twofold interchange of integrations

T x 1—
/ / K(z,t)K*(z,u) cos2(t +u) du dt
0 JO

2

z
2z T x
—/ / K(x,t)/ K*(z,u)(t+u—7)dudt
0 max(T—z,0) max(7—t,0)
- cos 27 dT,
/ / K(z,t)K*(z ) Cosz(t_u)dudt
z

:/0 COS 2T (/ K(z,t) Ot TK*(x u)(t—u—T)dudt) dr
+/Oxcosz7 (/D K(x,1) :TK*(Q:,u)(u—t—T)dudt) dr.

Since the last two kernels can be continuously extended by zero to the domain
x < 7 < 2z and the analogue of (5.12), (5.13) is again a trivial corollary of
(5.2) and (5.3), the proof of Lemma 5.3 is complete. O

A similar statement holds for sin 3 # 0:
LEMMA 5.3. Letsinf3#0, 1 <p and q, ¢* € Ly(0,7); then for z € C,
(5.22) v(r —x, 22 )v* (7 — 2, 2%) — 1/2sin? 3 = 1/2sin? B cos 22z

2x
+ / L(z,t)cos zt dt
0
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with a kernel L(x,t) continuous in (z,t). Further if ¢** € Ly, and ||q|p, |l¢*||p,
lg**|lp < D then

(5.23) |L(z,t,q,q")| < (D, p),
(524) |L(x,t,q, q**) - L(l‘,t,q, q*)| S C(Dvp)”q** - q*Hp

Proof. From Lemma 5.1 we know that
T
(5.25) v(m — x,2%) = sin B cos zx+/ N(z,t)cosztdt
0
with a continuous kernel N satisfying the analogue of (5.2), (5.3). Indeed, if

we define the kernel K for the potential ¢(m — x) then

K t)— K —t
+COSﬂ 1(357) 5 1(ZE, )

Ki(z,t) + Kq(x, —t)

N(z,t) =sinp 5

Now

v(m — z, 2%)v*(m — z,2%) — 1/2sin’ 8

= 1/2sin% Bcos 2zx + I sin B + I} sin 3 + 21>,
1

L = /Om N(z,t)(cosz(x —t) + cos z(z + 1)) dt,
L= /Orr N*(z,t) (cos z(z — t) + cos z(z + 1)) dt,
Iy :/0 /0 N(z,t)N*(z,u) (cos z(t — u) + cos z(t + u)) dudt.

As above we can check that

2x .
B [ N@,z—7) if0<7 <2,
Il_/o cos z7 Ly (x, T) dr, Ll(fE,T)—{ Nlor—2) ifz<r <2

2x T
I, :/ cos z7Lo(x, T) dT+/ cos zTL3(x, ) dr
0 0
with

min(7,x)
Lo(a,7) = / N(z, )N* (2, 7 — ) dt,
max(T—z,0)

Li(xz,7) = N(w,t)N*(:r,t+T)dt+/ N(z,t)N*(z,t — T)dt.
0 T

Since L3 can be continuously extended by zero to the domain z < 7 < 2z and
(5.12), (5.13) follow from Lemma 5.1, the proof is complete. O
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After obvious modifications we can also prove

LEMMA 5.3". Let sinf3; # 0, sin B2 # 0 and q, ¢* € L1(0,7); then for
ze€C

(5.26) wv(m —x, 22, B1)v* (1 — x, 2%, Bo) — 1/2sin B sin By
2z
= 1/2sin? By sin (5 cos 2zz + / cos ztL(z,t,q,q", B1, B2) dt
0
with a kernel L(z,t) continuous in (x,t).

Our final auxiliary result is a connection between the closedness of expo-
nential systems and that of cosine systems.

LEMMA 5.4. Let z,, n > 1, be arbitrary different complex numbers and
letd>0,1<p<oo. The system {cos zpx : n > 1} is closed in Ly(0,d) if and
only if the system {eX*»® . n > 1} is closed in Ly(—d,d). If in case z, = 0,
then 1 and = are chosen instead of e*"*r®.

Proof. The only if part. If the cosine system is not closed in L, (0, d), then
there exists 0 # h € L,(0,d) with

d
(5.27) / h(z)coszpxdr =0, n>1.
0
Define h(—z) = h(z); then (5.27) implies

d J |
0 :/ h(zx) cos zpx dx :/ h(x)eﬂ:zzn:c du

and in case z,, = 0 we also have fiid h(z)x dz = 0. Consequently{e**"® : n>1}
is not closed in Ly,(—d, d).

The if part. If the exponential system is not closed then there exists a
function 0 # h € L,(—d,d) with

d
(5.28) 0= / h(z)e*%dx, n > 1.
—d

Then

d .
0:/ h(—z)e* % dz,

—d

d

d
= —z))et Ty = T —2)) coS zpx dx
0= [ (hla)+ h=a)e*=rdn =2 | (hia) + b)) cos 2 d

and this proves that the cosine system is not closed unless h is odd. Now if A
is odd, we get from (5.28) that

d
0:/ h(z)sinzpx dz, n > 1.
0
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Integrating by parts gives

d d
0= zn/ COS Zp X (/ h) dx.
0 T

In other words, 0 # f;lh € L,(0,d) is orthogonal to all functions cos z,z,
zn # 0. If 2z, =0, then

O—/th(m)dm—2/odxh(x)dx—2/od </:h> da
zz/odcosznm (/ﬁ) d.

Thus the cosine system is not closed in L,(0,d), which was to be proved. O
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