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The classification of torsion
endo-trivial modules

By Jon F. Carlson∗ and Jacques Thévenaz

1. Introduction

This paper settles a problem raised at the end of the seventies by J.L.
Alperin [Al1], E.C. Dade [Da] and J.F. Carlson [Ca1], namely the classification
of torsion endo-trivial modules for a finite p-group over a field of characteris-
tic p. Our results also imply, at least when p is odd, the complete classification
of torsion endo-permutation modules.

We refer to [CaTh] and [BoTh] for an overview of the problem and its
importance in the representation theory of finite groups. Let us only mention
that the classification of endo-trivial modules is the crucial step for under-
standing the more general class of endo-permutation modules, and that endo-
permutation modules play an important role in module theory, in particular
as source modules, in block theory where they appear in the description of
source algebras, and in both derived equivalences and stable equivalence of
block algebras, for which many new developments have appeared recently.

Let G be a finite p-group and k be a field of characteristic p. Recall that
a (finitely generated) kG-module M is called endo-trivial if Endk(M) ∼= k ⊕ F

as kG-modules, where F is a free module. Typical examples of endo-trivial
modules are the Heller translates Ωn(k) of the trivial module. Any endo-trivial
kG-module M is a direct sum M = M0 ⊕ L, where M0 is an indecomposable
endo-trivial kG-module and L is free. Conversely, by adding a free module
to an endo-trivial module, we always obtain an endo-trivial module. This de-
fines an equivalence relation among endo-trivial modules and each equivalence
class contains exactly one indecomposable module up to isomorphism. The set
T (G) of all equivalence classes of endo-trivial kG-modules is a group with mul-
tiplication induced by tensor product, called simply the group of endo-trivial
kG-modules. Since scalar extension of the coefficient field induces an injective
map between the groups of endo-trivial modules, we can replace k by its alge-
braic closure. So we assume that k is algebraically closed. We refer to [CaTh]
for more details about T (G).
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Dade [Da] proved that if A is a noncyclic abelian p-group then T (A) ∼= Z,
generated by the class of Ω1(k). For any p-group G, Puig [Pu] proved that the
abelian group T (G) is finitely generated (but we do not use this here since it
is actually a consequence of our main results). The torsion-free rank of T (G)
has been determined recently by Alperin [Al2] and the remaining problem lies
in the structure of the torsion subgroup Tt(G).

Let us first recall some important known cases (see [CaTh]). If G = 1
or G = C2, then T (G) = 0. If G = Cpn is cyclic of order pn, with n ≥ 1
if p is odd and n ≥ 2 if p = 2, then T (Cpn) ∼= Z/2Z (generated by the
class of Ω1(k)). If G = Q2n is a quaternion group of order 2n ≥ 8, then
T (Q2n) = Tt(Q2n) ∼= Z/4Z ⊕ Z/2Z. If G = SD2n is a semi-dihedral group
of order 2n ≥ 16, then T (SD2n) ∼= Z ⊕ Z/2Z and so Tt(SD2n) ∼= Z/2Z. Our
first main result asserts that these are the only cases where nontrivial torsion
occurs.

Theorem 1.1. Suppose that G is a finite p-group which is not cyclic,
quaternion, or semi -dihedral. Then Tt(G) = {0}.

As explained in [CaTh], the computation of the torsion subgroup Tt(G)
is tightly connected to the problem of detecting nonzero elements of T (G) on
restriction to a suitable class of subgroups. A detection theorem was proved
in [CaTh] and it was conjectured that the detecting family should actually only
consist of elementary abelian subgroups of rank at most 2 and, in addition when
p = 2, cyclic groups of order 4 and quaternion subgroups Q8 of order 8. This
conjecture is correct and the largest part of the present paper is concerned
with the proof of this conjecture.

It is in fact only for the cases of cyclic, quaternion, and semi-dihedral
groups that one needs to include cyclic groups Cp or C4 and quaternion sub-
groups Q8 in the detecting family. For all the other cases, we are going to
prove the following.

Theorem 1.2. Suppose that G is a finite p-group which is not cyclic,
quaternion, or semi -dihedral. Then the restriction homomorphism∏

E

ResG
E : T (G) −→

∏
E

T (E) ∼=
∏
E

Z

is injective, where E runs through the set of all elementary abelian subgroups
of rank 2.

In order to explain the right-hand side isomorphism, recall that T (E) ∼= Z
by Dade’s theorem [Da]. Notice that Theorem 1.1 follows immediately from
Theorem 1.2.

In the case of the theorem, T (G) is free abelian and the method of Alperin
[Al2] describes its rank by restricting drastically the list of elementary abelian
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subgroups which are actually needed on the right-hand side (see also [BoTh]
for another approach). However, for a complete classification of all endo-
trivial modules, there is still an open problem. Alperin’s method shows that
T (G) is a full lattice in a free abelian group A by showing that some explicit
subgroup S(G) of the same rank satisfies S(G) ⊆ T (G) ⊆ A. But there is still
the problem of describing explicitly the finite group T (G)/S(G) ⊆ A/S(G).
However, this additional problem only occurs if G contains maximal elementary
subgroups of rank 2 (see [Al2] or [BoTh] for details). In all other cases the
rank of T (G) is one and we have the following result.

Corollary 1.3. Suppose that G is a finite p-group for which every maxi-
mal elementary abelian subgroup has rank at least 3. Then T (G) ∼= Z, generated
by the class of the module Ω1(k).

For the proof of Theorem 1.2, we first use the results of [CaTh] which pro-
vide a reduction to the case of extraspecial and almost extraspecial p-groups.
These are the difficult cases for which we need to prove that the groups can be
eliminated from the detecting family. When p is odd, this was already done
in [CaTh] for extraspecial p-groups of exponent p2 and almost extraspecial
p-groups. So we are left with the remaining cases and we have to prove the
following theorem, which is in fact the main result we prove in the present
paper.

Theorem 1.4. Suppose the following :

(a) If p = 2, G is an extraspecial or almost extraspecial 2-group and G is not
isomorphic to Q8.

(b) If p is odd , G is an extraspecial p-group of exponent p.

Then the restriction homomorphism∏
H

ResG
H : T (G) −→

∏
H

T (H)

is injective, where H runs through the set of all maximal subgroups of G.

As mentioned earlier, the classification of endo-trivial modules has imme-
diate consequences for the more general class of endo-permutation modules.
The second goal of the present paper is to describe the consequences of the
main results for the classification of torsion endo-permutation modules. We
prove a detection theorem for the Dade group of all endo-permutation mod-
ules and also a detection theorem for the torsion subgroup of the Dade group.
For odd p, this yields a complete description of this torsion subgroup, by the
results of [BoTh].
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Theorem 1.5. If p is odd and G is a finite p-group, the torsion sub-
group of the Dade group of all endo-permutation kG-modules is isomorphic
to (Z/2Z)s, where s is the number of conjugacy classes of nontrivial cyclic
subgroups of G.

One set of s generators is described in [BoTh]. Since an element of or-
der 2 corresponds to a self-dual module, we obtain in particular the following
corollary.

Corollary 1.6. If p is odd and G is a finite p-group, then an indecom-
posable endo-permutation kG-module M with vertex G is self-dual if and only
if the class of M in the Dade group is a torsion element of this group.

This is an interesting result in view of the fact that many invariants lying
in the Dade group (e.g. sources of simple modules) are either known or expected
to lie in the torsion subgroup, while it is not at all clear why the modules should
be self-dual.

When p = 2, the situation is more complicated but we obtain that any
torsion element of the Dade group has order 2 or 4. Moreover, the detection
result is efficient in some cases, but examples also show that it is not always
sufficient to determine completely this torsion subgroup.

Theorem 1.4 is the result whose proof requires most of the work. The
result has to be treated separately when p = 2 or when p is odd. However, the
strategy is similar and many of the same methods are of use for the proof in
both cases. After a preliminary Section 2 and two sections about the cohomol-
ogy of extraspecial groups, the proof of Theorem 1.4 occupies Sections 5–11.
We use a large amount of group cohomology, including some very recent results,
as well as the theory of support varieties of modules. The crucial role of Serre’s
theorem on products of Bocksteins appears once again and we actually need a
bound for the number of terms in this product that was recently obtained by
Yalçin [Ya] for (almost) extraspecial groups. Also, the module-theoretic coun-
terpart of Serre’s theorem described in [Ca2] plays a crucial role. All these
results allow us to find an upper bound for the dimension of an indecompos-
able endo-trivial module which is trivial on restriction to proper subgroups.
For the purposes of the present paper, we shall call such a module a critical
module. The main goal is to prove that there are no nontrivial critical modules
for extraspecial and almost extraspecial 2-groups, except Q8, and also none for
extraspecial p-groups of exponent p (with p odd).

The existence of a bound for the dimension of a critical module had been
known for more than 20 years and was used by Puig [Pu] in his proof of the
finite generation of T (G). The new aspect is that we are now able to control
this bound for (almost) extraspecial groups. One of the differences between
the case where p = 2 and the case where p is odd lies in the fact that the
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cohomology of extraspecial 2-groups is entirely known, so that a reasonable
bound can be computed, while for odd p some more estimates are necessary.
Another difference is due to the fact that we have three families of groups to
consider when p = 2, but only one when p is odd, because the other two were
already dealt with in [CaTh].

The other main idea in the proof of Theorem 1.4 is the following. Un-
der the assumption that there exists a nontrivial critical module M , we can
construct many others using the action of Out(G) (which is an orthogonal or
symplectic group since G is (almost) extraspecial), and then construct a very
large critical module by taking tensor products. The dimension of this large
module exceeds the upper bound mentioned above and we have a contradic-
tion. It is this part in which the theory of varieties associated to modules
plays an essential role. We use it to analyze a suitable quotient module M

which turns out to be periodic as a module over the elementary abelian group
G = G/Φ(G).

Once Theorem 1.4 is proved, the proof of Theorem 1.2 requires much
less machinery and appears in Section 12. It is very easy if p is odd and, if
p = 2, it is essentially an inductive argument using a group-theoretical lemma.
Theorem 1.1 also follows easily.

The paper ends with two sections about the Dade group of all endo-
permutation modules, where we prove the results mentioned above.

We wish to thank numerous people who have shared ideas and opinions
in the course of the writing of this paper. Special thanks are due to Cédric
Bonnafé, Roger Carter, Ian Leary, Gunter Malle, and Jan Saxl. The first
author also wishes to thank the Humboldt Foundation for supporting his stay
in Germany while this paper was being written.

2. Preliminaries

Recall that G denotes a finite p-group, and k an algebraically closed field
of characteristic p. In this section we write down some of the facts about
modules and support varieties that we will need in later developments. All
kG-modules are assumed to be finitely generated.

Recall that every projective kG-module is free, because G is a p-group, and
that injective and projective modules coincide. Moreover, an indecomposable
kG-module M is free if and only if tG1 ·M �= 0, where tG1 =

∑
g∈G g (a generator

of the socle of kG). More generally, if M is a kG-module and if m1, . . . , mr

∈ M are such that tG1 m1, . . . , t
G
1 mr are linearly independent, then m1, . . . , mr

generate a free submodule F of M of rank r. Moreover F is a direct summand
of M because F is also injective.

Suppose that M is a kG-module. If P
θ−→ M is a projective cover of

M then we let Ω(M) denote the kernel of θ. We can iterate the process and
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define inductively Ωn(M) = Ω(Ωn−1(M)), for n > 1. Suppose that M
µ−→ Q

is an injective hull of M . Recall that Q is a projective as well as injective
module. Then we let Ω−1(M) be the cokernel of µ. Again we have inductively
that Ω−n(M) = Ω−1(Ω−n+1(M)) for n > 1. The modules Ωn(M) are well
defined up to isomorphism and they have no nonzero projective submodules.
In general we write M = Ω0(M)⊕P where P is projective and Ω0(M) has no
projective summands.

The basic calculus of the syzygy modules Ωn(M) is expressed in the fol-
lowing.

Lemma 2.1. Suppose that M and N are kG-modules. Then Ωm(M) ⊗
Ωn(N) ∼= Ωm+n(M ⊗ N) ⊕ (free).

Here M ⊗ N is meant to be the tensor product M ⊗k N over k, with the
action of the group G defined diagonally, g(m ⊗ n) = gm ⊗ gn. The proof of
the lemma is a consequence of the facts that M ⊗k − and − ⊗k N preserve
exact sequences and that M ⊗ N is projective whenever either M or N is a
projective module.

The cohomology ring H*(G, k) is a finitely generated k-algebra and for
any kG-modules M and N , Ext∗kG(M, N) is a finitely generated module over
H*(G, k) ∼= Ext∗kG(k, k). We let VG(k) denote the maximal ideal spectrum of
H*(G, k). For any kG-module M , let J(M) be the annihilator in H*(G, k) of
the cohomology ring Ext∗kG(M, M). Let VG(M) = VG(J(M)) be the closed
subset of VG(k) consisting of all maximal ideals that contain J(M). So VG(M)
is a homogeneous affine variety. We need some of the properties of support
varieties in essential ways in the course of our proofs. See the general references
[Be], [Ev] for more explanations and details.

Theorem 2.2. Let L, M and N be kG-modules.

(1) VG(M) = {0} if and only if M is projective.

(2) If 0 → L → M → N → 0 is exact then the variety of any one of L, M or
N is contained in the union of the varieties of the other two. Moreover,
if VG(L) ∩ VG(N) = {0}, then the sequence splits.

(3) VG(M ⊗ N) = VG(M) ∩ VG(N).

(4) VG(Ωn(M)) = VG(M) = VG(M∗) where M∗ = Homk(M, k) is the k-dual
of M .

(5) If VG(M) = V1 ∪V2 where V1 and V2 are nonzero closed subsets of VG(k)
and V1 ∩V2 = {0}, then M ∼= M1 ⊕M2 where VG(M1) = V1 and VG(M2)
= V2.
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(6) A nonprojective module M is periodic (i.e. for some n > 0, Ωn(M) ∼=
Ω0(M)) if and only if its variety VG(M) is a union of lines through the
origin in VG(k).

(7) Let ζ ∈ Extn
kG(k, k) = Hn(G, k) be represented by the (unique) cocycle

ζ : Ωn(k) −→ k and let L = Ker(ζ), so that there is an exact sequence

0 −→ L −→ Ωn(k)
ζ−→ k −→ 0 .

Then VG(L) = VG(ζ), the variety of the ideal generated by ζ, consisting
of all maximal ideals containing ζ.

We are particularly interested in the case in which the group G is an
elementary abelian group. First assume that p = 2 and G = 〈x1, . . . , xn〉 ∼=
(C2)n. Then H*(G, k) ∼= k[ζ1, . . . , ζn] is a polynomial ring in n variables. Here
the elements ζ1, . . . , ζn are in degree 1 and by proper choice of generators we
can assume that resG,〈xi〉(ζj) = δij · γi where γi ∈ H1(〈xi〉, k) is a generator for
the cohomology ring of 〈xi〉. Indeed if we assume that the generators are chosen
correctly, then for any α = (α1, . . . , αn) ∈ kn, uα = 1 +

∑n
i=1 αi(xi − 1) ∈ kG,

U = 〈uα〉, we have that

resG,U (f(ζ1, . . . , ζn)) = f(α1, . . . , αn)γt
α

where f is a homogeneous polynomial of degree t and γα ∈ H1(U, k) is a
generator of the cohomology ring of U .

Now suppose that p is an odd prime and let G = 〈x1, . . . , xn〉 ∼= (Cp)n.
Then

H*(G, k) ∼= k[ζ1, . . . , ζn] ⊗ Λ(η1, . . . , ηn) ,

where Λ is an exterior algebra generated by the elements η1, . . . , ηn in degree
1 and the polynomial generators ζ1, . . . , ζn are in degree 2. We can assume
that each ζj is the Bockstein of the element ηj and that the elements can be
chosen so that resG,〈xi〉(ζj) = δij ·γi where γi ∈ H2(〈xi〉, k) is a generator for the
cohomology ring of 〈xi〉. Similarly, assuming that the generators are chosen
correctly, for any α = (α1, . . . , αn) ∈ kn, uα = 1 +

∑n
i=1 αi(xi − 1) ∈ kG,

U = 〈uα〉, we have that

resG,U (f(ζ1, . . . , ζn)) = f(αp
1, . . . , α

p
n)γt

α

where f is a homogeneous polynomial of degree t and γα ∈ H1(U, k) is a
generator of the cohomology ring of U .

Associated to a kG-module M we can define a rank variety

V r
G(M) =

{
α ∈ kn | M↓〈uα〉 is not a free 〈uα〉-module

}
∪ {0}

where uα is given as above and where M↓〈uα〉 denotes the restriction of M to
the subalgebra k〈uα〉 of kG. Then we have the following result for any p.
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Theorem 2.3. Let M be any kG-module. If p = 2 then, V r
G(M) = VG(M)

as subsets of kn. If p > 2 then the map VG(M) −→ V r
G(M) given by α �→

αp = (αp
1, . . . , α

p
n) is an inseparable isogeny (both injective and surjective). In

particular, for α �= 0, αp ∈ VG(M) (α ∈ VG(M) if p = 2) if and only if M↓〈uα〉
is not a free k〈uα〉-module.

We should emphasize that if v is a unit in kG such that

v ≡ uα mod(Rad(kG)2)

then M↓〈v〉 is a free k〈v〉-module if and only if αp �∈ VG(M) (α �∈ VG(M) if
p = 2). So for example the element x1x2x3 fails to act freely on M if and only
if (1, 1, 1, 0, . . . , 0) ∈ VG(M).

3. Extraspecial groups in characteristic 2

In this section and the next, we are interested in the structure and coho-
mology of extraspecial and almost extraspecial p-groups. These are precisely
the p-groups G with the property that G has a unique normal subgroup Z of
order p such that G/Z is elementary abelian. Note that the dihedral group D8

of order 8 and, more generally, the Sylow p-subgroup of GL(3, p) are extraspe-
cial p-groups. The quaternion group Q8 of order 8 and the cyclic group Cp2

of order p2 also have the required property. Indeed, for p = 2 any extraspecial
or almost extraspecial group is constructed from copies of D8, Q8 and C4 by
taking central products. In this section we concentrate on the case p = 2 and
look more deeply into the structure of the extraspecial and almost extraspecial
group and their cohomology.

Suppose that G1 and G2 are 2-groups with the property that each has a
unique normal subgroup of order 2. Let 〈zi〉 ∈ Gi be the subgroups. Then the
central product G1 ∗ G2 is defined by

G1 ∗ G2 = (G1 × G2)/〈(z1, z2)〉.
It is not difficult to check that D8 ∗D8

∼= Q8 ∗Q8 and that D8 ∗C4
∼= Q8 ∗C4.

Moreover, C4 ∗ C4 has a central elementary abelian subgroup of order 4 and
hence is not of interest to us (it is neither extraspecial nor almost extraspecial).
We are left with three types. They are:

Type 1. G = D8 ∗ D8 ∗ · · · ∗ D8 of order 22n+1 where n is the number of
factors in the central product.

Type 2. G = D8 ∗ · · · ∗ D8 ∗ Q8 of order 22n+1 where n is the number of
factors in the central product.

Type 3. G = D8 ∗ · · · ∗ D8 ∗ C4 of order 22n+2 where n is the number of
factors isomorphic to D8.

The groups of type 1 and 2 are the extraspecial groups (see [Go1]) while
the groups of type 3 are what we call the almost extraspecial groups.
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The groups are also characterized by an associated quadratic form in the
following way. Each group is a central extension

0 −→ Z −→ G
µ−→ E −→ 0

where Z = 〈z〉 is the unique central normal subgroup of order 2 and E ∼= Fm
2

is elementary abelian. Recall that a quadratic form on E (as a vector space
over F2) is a map q : E −→ F2 with the property that

q(x + y) = q(x) + q(y) + b(x, y)

where b : E×E −→ F2 is a symmetric bilinear form. Here the quadratic form q

expresses the class of the extension as given in the above sequence. That is, if
x̃, ỹ are elements of G and if µ(x̃) = x and µ(ỹ) = y, then

x̃2 = zq(x) and [x̃, ỹ] = zb(x,y).

Notice here that we are writing the operation in G as multiplication. Given the
structure of the groups, it is not difficult to write down the associated quadratic
forms. With respect to a choice of basis, E can be identified with Fm

2 and in
the sequel we make this identification. Thus we write x = (x1, . . . , xm) for the
elements of E.

Lemma 3.1. Let G be an extraspecial or almost extraspecial group of
order 2m+1. Then the quadratic form q associated to G is given on x =
(x1, . . . , xm) ∈ Fm

2 = E as follows.

For type 1, q(x) = x1x2 + · · · + x2n−1x2n (m = 2n).

For type 2, q(x) = x1x2 + · · · + x2n−3x2n−2 + x2
2n−1 + x2n−1x2n

+x2
2n (m = 2n).

For type 3, q(x) = x1x2 + · · · + x2n−1x2n + x2
2n+1 (m = 2n + 1).

Now on the k-vector space V = km of dimension m, let q, b denote the same
forms but with the field of coefficients expanded from F2 to k. Let F : k → k

be the Frobenius homomorphism, F (a) = a2. If ν = (x1, . . . , xm) ∈ V , let F

act on ν by F (ν) = (x2
1, x

2
2, . . . , x

2
m). Recall that a subspace W ⊆ V is isotropic

if q(w) = 0 for all w ∈ W . The following is not difficult:

Lemma 3.2. Let h be the codimension in V of a maximal isotropic sub-
space of V . The values of h for the quadratic forms associated to the above
groups are:

h = n for G of type 1 (m = 2n),

h = n + 1 for G of type 2 (m = 2n) or type 3 (m = 2n + 1).

Moreover 2h is the index in G of a maximal elementary abelian subgroup.
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We are now prepared to state the theorem of Quillen on the cohomology.
See [BeCa] for one treatment.

Theorem 3.3 ([Qu]). Let G be an extraspecial or almost extraspecial
group of order 2m+1. If ν = (x1, . . . , xm), then

H*(G, k) = k[x1, . . . , xm]/(q(ν), b(ν, F (ν)), . . . , b(ν, F h−1(ν))) ⊗ k[δ]

where δ is an element of degree 2h that restricts to a nonzero element of Z.
Moreover the elements q(ν), b(ν, F (ν)), . . . , b(ν, F h−1(ν)) form a regular se-
quence in k[x1, . . . , xm] and H*(G, k) is a Cohen-Macaulay ring.

The following will be vital for the proof of our main results.

Theorem 3.4. Let G be an extraspecial or almost extraspecial 2-group.
Define t = tG to be the natural number given as follows. If G is of type 1 of
order 22n+1, let

tG =

{
2n−1 + 1 for n ≤ 4 ,

2n−1 + 2n−4 for n ≥ 4 .

If G is of type 2 of order 22n+1 or of type 3 of order 22n+2, then let

tG =

{
3 for n = 1 ,

2n + 2n−2 for n ≥ 2 .

Then there exist nonzero elements ζ1, . . . , ζt ∈ H1(G, F2) such that ζ1 . . . ζt

= 0. Moreover, in the isomorphism H1(G, F2) ∼= Hom(G, F2), each ζi corre-
sponds to a homomorphism whose kernel is a maximal subgroup of G and is
the centralizer of a noncentral involution in G.

Proof. The proof is contained in the paper [Ya]. For the groups of type 1,
tG is actually equal to the cohomological length, that is, the least number of
nonzero elements in H1(G, F2) such that the product of those elements is zero
(see [Ya, Th. 1.3]).

Now, suppose that G has type 2 or 3. Then tG in our theorem is equal to
the cardinality s(G) of a representing set in G (see [Ya, Props. 6.2 and 6.3]).
A representing set for G is a collection of elements of G that contains at least
one noncentral element from each elementary abelian subgroup of G. But now
Proposition 1.1 of [Ya] shows that the cohomological length is at most s(G).

The point of the last statement is that the centralizer of any maximal
elementary abelian subgroup of G is contained in the centralizers of some ele-
ments in a representing set. Because the cohomology ring H∗(G, F2) is Cohen-
Macaulay (see Theorem 3.3), any element whose restriction to the centralizer of
every maximal elementary abelian subgroup of G vanishes, is the zero element
(see Theorem 3.4 in [Ya]). Hence if we choose the elements ζi to correspond to
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the centralizers of the elements in a representing set as in the last statement,
then their product is zero as desired.

The next theorem will be very important to the proof of the general case.
It is part of the effort to get an explicit upper bound on the dimensions of
critical modules.

Theorem 3.5. Let G be an extraspecial or almost extraspecial group of
order 2m+3 and let H be the centralizer of a noncentral involution in G. Then
H ∼= C2 × U where U is an extraspecial or almost extraspecial group of or-
der 2m+1 of the same type as G. Assume that m ≥ 2 and, if m = 2, that
U �∼= D8. Then for 2 ≤ r ≤ tG,

Dim Hr(H, k) ≤
(

m + r

r

)
−

(
m + r − 2

r − 2

)
.

Proof. The structure of the centralizer H can be verified directly from
what we know of G. For one thing it can be checked that all noncentral
involutions in G are conjugate by an element in the automorphism group of G

and hence their centralizers are all isomorphic.
Throughout the proof we use the notation in Theorem 3.3, for the coho-

mology of the group U , so that H∗(U, k) is generated by x1, . . . , xm and δ, with
deg(δ) = 2h (where h is the value associated to the group U as in Lemma 3.2).
We know that

H∗(H, k) ∼= H∗(U, k) ⊗ H∗(C2, k)

and moreover we know that H∗(C2, k) ∼= k[y] is a polynomial ring in one
variable y in degree 1. We want to focus on the polynomial ring S generated
by x1, . . . , xm, y. We have a homomorphism from S to H∗(H, k) whose kernel
contains the elements q(ν) and β(ν, F (ν)) where ν = (x1, . . . , xm). Let Q

denote the image of S in H∗(H, k). For this argument, let S# = S/(q(ν)) and
let S## = S/(q(ν), β(ν, F (ν))). If R denotes any of these graded rings, we let
Rr denote the homogeneous part of R in degree exactly r. Note that Rr = 0
if r < 0.

First notice that DimSr =
(
m+r

m

)
=

(
m+r

r

)
. Because q(ν) and β(ν, F (ν))

are two terms of a regular sequence of elements in S we must have that

Dim S#
r = DimSr − Dim Sr−2

and
Dim S##

r = DimS#
r − Dim S#

r−3

for all r ≥ 2. Moreover DimSr ≥ Dim S##
r ≥ Dim Qr for all values of r.

By Theorem 3.4, tG ≤ 2tU (with equality in most cases) and moreover,
by Lemma 3.2, we see that tU < 2h in all cases. The choice that r ≤ tG now
means that

r ≤ tG ≤ 2tU < 2 · 2h = 2 · deg(δ)
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and this implies that we must have either Dim Hr(H, k) = DimQr , if r <

deg(δ), or Dim Hr(H, k) = DimQr+Dim(δ·Qr−deg(δ)), if deg(δ) ≤ r < 2deg(δ).
Notice also that deg(δ) = 2h ≥ 4 in all cases because we assumed that m ≥ 2
and U �∼= D8 (if U ∼= D8, then h = 1 and deg(δ) = 2). Hence we have that

Dim Hr(H, k) ≤ Dim Qr + DimQr−deg(ζ)

≤ Dim S#
r − Dim S#

r−3 + DimS#
r−deg(ζ) − Dim S#

r−deg(ζ)−3

≤ Dim S#
r − Dim S#

r−3 + DimS#
r−deg(ζ)

≤ Dim S#
r =

(
m + r

r

)
−

(
m + r − 2

r − 2

)
.

The last inequality follows from the facts that r − deg(δ) ≤ r − 3 and that
Dim S#

s is an increasing function of s.

Corollary 3.6. Suppose that G and H are as in the theorem. If 2 ≤
r ≤ tG, then

r∑
i=0

Dim Ωi(kH)↑G
H ≤

(
m + r − 1

m

)
|G| + 2.

Proof. For any i we have an exact sequence

0 −→ Ωi+1(kH) −→ Pi −→ Ωi(kH) −→ 0

where Pi is the degree i term in a minimal kH-projective resolution of the
trivial kH-module kH . Recall that DimPi = Dim Hi(H, k) · |H|. Then by the
theorem, for r = 2s + 1,

r∑
i=0

Dim Ωi(kH) =
s∑

j=0

(
Dim Ω2j+1(kH) + Dim Ω2j(kH)

)
=

s∑
j=0

Dim P2j

≤ Dim P0 +
s∑

j=1

[(m + 2j

2j

)
−

(
m + 2j − 2

2j − 2

)]
|H|

= |H| +
[(m + 2s

2s

)
−

(
m

0

)]
|H|

=
(

m + r − 1
r − 1

)
|H| =

(
m + r − 1

m

)
|H| .

On the other hand if r = 2s is even, then we use the fact that Dim P1 =(
m+1

1

)
|G| and we obtain similarly

r∑
i=0

Dim Ωi(kH) = Dim k + DimP1 +
s∑

j=2

Dim P2j−1

≤ 1 +
(

m + 2s − 1
2s − 1

)
|H| = 1 +

(
m + r − 1

m

)
|H|.
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In both cases, inducing from H to G, the dimension of Ωi(kH)↑G
H is doubled

and the result follows.

4. Extraspecial groups in odd characteristic

Our aim in this section is to get results similar to those of the last section
for extraspecial p-groups in the case that the prime p is not 2. As in the
characteristic 2 case, for any positive integer n there are two isomorphism
types of extraspecial groups of order p2n+1 and one isomorphism type of almost
extraspecial group of order p2n+2. For each n, one of the two nonisomorphic
groups of order p2n+1 has exponent p2 and the other one has exponent p. In
the earlier paper [CaTh] we showed that Theorem 1.4 holds for extraspecial
groups of exponent p2 and almost extraspecial groups (i.e. for these groups
there are no nontrivial critical modules). As a consequence, the only groups
of interest to us are the extraspecial groups of order p2n+1 and exponent p.

Up to isomorphism, there is exactly one extraspecial group G1 of order
p3 and exponent p. It is generated by elements x, y and z, which satisfy the
relations that z is in the center of G1, zp = xp = yp = 1 and [x, y] = z. It is
isomorphic to the Sylow p-subgroup of the general linear group GL(3, p). For
n > 1, the extraspecial group of order p2n+1 is a central product

Gn = G1 ∗ G1 ∗ . . . ∗ G1

of n copies of G1 as in the last section. That is, Gn is the quotient group
obtained by taking the direct product of n copies of G1 and then identifying
the centers (see [Go1]). The center of Gn is a cyclic subgroup Z = 〈z〉 of order
p and Gn/Z is an elementary abelian p-group of order p2n.

We need an analogue to Theorem 3.4 for our case.

Theorem 4.1. For G = G1, let tG = 2(p + 1), while for G = Gn, n > 1,
let tG = (p2 + p − 1)pn−2. Then there exist nonzero elements η1, . . . , ηt ∈
H1(G, Fp) such that β(η1) . . . β(ηt) = 0 where t = tG. Moreover, in the iso-
morphism H1(G, Fp) ∼= Hom(G, Fp), each ηi corresponds to a homomorphism
whose kernel is a maximal subgroup of G and is the centralizer of a noncentral
element of order p in G.

Proof. The proof of the theorem is contained in the paper by Yalçin as
Theorem 1.2 of [Ya]. In this case the dimension of H1(G, Fp,) is the same as
that of Hom(G, Fp) which is 2n.

As in the last section we are going to need estimates on the dimensions
of the cohomology groups Hr(Gn, k) where k is a field of characteristic p. We
begin with the case of the extraspecial group G = G1 of order p3. Ian Leary
[Le1] has given a complete description of the cohomology ring H*(G, k) except
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that he did not fully compute the Poincaré series, which is something that we
need. The calculation is, of course, implicit in his work, and he did calculate
it in the special case that p = 3 [Le2]. Note that our results agree with his in
that situation.

Theorem 4.2. The Poincaré series for the cohomology ring of the group
G = G1 is given by the rational function

∞∑
n=0

Dim Hn(G, k) tn =
1 + t + 2t2 + 2t3 + t4 + t5 + · · · + t2p−1

(1 − t)(1 − t2p)
.

Proof. We will not repeat the long list of relations given by Leary (The-
orem 6 of [Le1]). However we will use exactly the notation of that paper and
the interested reader can follow the computation. The strategy is first to ig-
nore the contribution of the regular element z in degree 2p. This element is a
nondivisor of zero as it restricts nontrivially to the center of G. We also know
that it is regular from the given relation and from the fact that it is represented
on the E2 of the spectral sequence, by an element in E0,2p

2 which survives to
the E∞ page of the spectral sequence. Consequently, the Poincaré series f(t)
of H*(G, k) is obtained by multiplying 1/(1 − t2p) times the Poincaré series of
the subalgebra A generated by all of the given generators other than z.

Next we consider the subalgebra A as a module over the subring R gen-
erated by x and x′. Note that x and x′ are in degree 2 and satisfy the
relation xpx′ − xx′p = 0 in degree 2p + 2. So the Poincaré series for R is
f1 = (1 − t2p+2)/(1 − t2)2. This is also the series for the R-submodule M1

generated by the element 1 in degree 0. The first thing that needs to be es-
tablished from the relations is that the R-generators are the elements of the
sequence

S = [1, y, y′, Y, Y ′, X, X ′, yY ′, XY ′, XX ′, d4, c4, d5, . . . , cp−1, dp]

of length 2p+3. Let Mi be the R-submodule generated by the first i elements
of the sequence, and let fi be the Poincaré series for Mi/Mi−1. Then the
desired Poincaré series for A is f1 + f2 + · · · + f2p+3. Note that f1 has been
calculated.

• For f2, we note that xy′ = x′y and xpy′ = x′py. So x′(xp−1−x′p−1)y = 0.
Therefore f2 = t(1 − t2p)/(1 − t2)2.

• Since xy′ = x′y ∈ M2, we have that f3 = t/(1 − t2).

• Similarly to the calculation for f2, we have that f4 = t2(1− t2p)/(1− t2)2

and f6 = t3(1 − t2p)/(1 − t2)2.

• For f5, note that x2Y ′ = xx′Y ∈ M4 and xx′Y ′ ∈ M4. Therefore f5 =
t3 + t2/(1 − t2).
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• The calculation for f7 is similar to that for f3 and we get that f7 =
t3/(1 − t2).

• For i := 8, . . . , 2p + 3, it should be checked that xSi, x
′Si ∈ Mi−1 where

Si is the ith element of the sequence S. Consequently, fi = tji , where ji

is the degree of Si. Note that j8 = 3 while ji = i − 4 for i ≥ 9.

Finally it is necessary to verify that

f1 + f2 + · · · + f2p+3 = (1 + t + 2t2 + 2t3 + t4 + · · · + t2p−1)/(1 − t)

by routine but tedious calculation.

We need to derive two facts from the above theorem. The first is an upper
bound which is not optimal but will be sufficient for our purposes.

Corollary 4.3. For G = G1,

Dim Hr(G, k) ≤ 2(r + 1) = 2
(

r + 1
1

)
.

Moreover, Dim Hr(G, k) = 2r if 1 ≤ r ≤ 3 and Dim Hr(G, k) = r + 3 if
4 ≤ r ≤ 2p − 1.

Proof. Consider the series expansion

g(t) =
1 + t + 2t2 + 2t3 + t4 + · · · + t2p−1

1 − t
=

∞∑
r=0

art
r .

A routine computation yields the value of the coefficients a0 = 1, ar = 2r if
1 ≤ r ≤ 3, ar = r + 3 if 4 ≤ r ≤ 2p − 1, and ar = 2p + 2 if r ≥ 2p − 1. The
Poincaré series for the cohomology ring of G1 is obtained by multiplying g(t)
with 1

1−t2p =
∑∞

i=0 t2ip. Therefore Dim Hr(G, k) = ar for r ≤ 2p − 1 and this
proves the second statement of the lemma. Moreover, for arbitrary r, writing
r = j + q(2p) with 0 ≤ j < 2p, we have that

Dim Hr(G, k) = aj + qa2p ≤ (j + 3) + q(2p + 2) ≤ 2(r + 1) .

Corollary 4.4. For G = G1, Dim Ω2p(k) = p3(p + 1) + 1.

Proof. If Pj is the j-th term of a minimal projective resolution of k, we
have Dim(Pj) = Dim Hj(G, k) |G| and so Dim Ωj+1(k) = Dim Hj(G, k)|G| −
Dim Ωj(k). Using this relation and the dimensions given in the previous corol-
lary, we obtain Dim Ω2(k) = p3 + 1 and then by induction Dim Ω2j−1(k) =
(j + 1)p3 − 1 and Dim Ω2j(k) = (j + 1)p3 + 1 for 2 ≤ j ≤ p.

In the rest of the section, we require the following well known combinato-
rial identity.
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Lemma 4.5. For all integers c, i, j ≥ 0,∑
a+b=c

(
a + i

i

)(
b + j

j

)
=

(
c + i + j + 1

i + j + 1

)
.

Proof. Recall that if P is a polynomial ring in n variables, then the
number of monomials of degree r is

(
r+n−1

n−1

)
. Now the tensor product of a

polynomial ring in i + 1 variables with a polynomial ring in j + 1 variables
yields a polynomial ring in i+ j +2 variables. The identity follows by counting
the number of monomials of degree c.

We also need to know the dimension of the cohomology groups of elemen-
tary abelian groups.

Lemma 4.6. Let p be an odd prime and let E be an elementary abelian
p-group of rank m. Then Dim Hr(E, k) =

(
r+m−1

m−1

)
.

Proof. Recall that H∗(E, k) ∼= k[ζ1, . . . , ζm]⊗Λ(η1, . . . , ηm) where ζ1, . . . , ζm

are in degree 2 and η1, . . . , ηm are in degree 1. A basis of Hr(E, k) consists
of the elements ζa1

1 . . . , ζam
m ηe1

1 , . . . , ηem
m where 0 ≤ ai ≤ r/2, 0 ≤ ei ≤ 1

and
∑m

i=1(2ai + ei) = r. This basis is in bijection with the set of mono-
mials of degree r in k[x1, . . . , xm] by mapping the above basis element to
x2a1+e1

1 . . . x2am+em
m . Now the number of monomials of degree r is

(
r+m−1

m−1

)
.

Our main result in this section gives estimates for the dimensions of the
cohomology of the centralizers of p-elements.

Theorem 4.7. Let G = Gn be an extraspecial group of order p2n+1 and
exponent p. Let H be the centralizer of a noncentral element of order p in G.
Then H ∼= Cp × Gn−1. Moreover,

Dim Hm(H, k) ≤ 2
(

m + 2n − 2
2n − 2

)
.

Proof. As with the characteristic 2 case, the structure of the centralizer
H can be verified directly from what we know of G. All noncentral elements
of order p in G are conjugate by an element in the automorphism group of G

and hence their centralizers are isomorphic.
Next we need to approximate the dimensions of the cohomology groups

of the group Gn−1 for n ≥ 1. The estimate in Corollary 4.3 will serve in the
case that n = 2. Let N be a normal subgroup of Gn−1 such that N ∼= G1. We
can take N to be the first factor in the central product that expresses Gn−1.
Then Gn−1/N ∼= C

2(n−2)
p , an elementary abelian group of order p2(n−2). The

Lyndon-Hochschild-Serre spectral sequence of the extension of Gn−1/N by N
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has E2 term

Er,s
2 = Hr(Gn−1/N, Hs(N, k)) ⇒ Hr+s(Gn−1, k).

As k-vector spaces, it is true that Er,s
2

∼= Hr(Gn−1/N, k) ⊗ Hs(N, k) because
N commutes with the other factors of the central product. So we have that

Dim Hm(Gn−1, k) ≤
∑

r+s=m

Dim(Er,s
2 )

=
∑

r+s=m

Dim Hr(Gn−1/N, k) Dim Hs(N, k)

≤
∑

r+s=m

(
r + 2(n − 2) − 1

2(n − 2) − 1

)
2
(

s + 1
1

)
= 2

(
m + 2n − 3

2n − 3

)
,

using Lemma 4.6, Corollary 4.3 and the combinatorial identity of Lemma 4.5.
Now Hm(H, k) ∼=

⊕
r+s=m Hr(Gn−1, k) ⊗ Hs(Cp, k). Therefore,

Dim Hm(H, k) =
∑

r+s=m

Dim Hr(Gn−1, k) · Dim Hs(Cp, k)

≤
∑

r+s=m

2
(

r + 2n − 3
2n − 3

)(
s

0

)
= 2

(
m + 2n − 2

2n − 2

)
,

again by Corollary 4.3 and Lemma 4.5.

Corollary 4.8. Suppose that G and H are as in the theorem. If r ≥ 1,
then

r∑
i=0

Dim Ωi(kH)↑G
H ≤ 2p2n+1

(
r + 2n − 2

2n − 1

)
.

Proof. Suppose that · · · → P1 → P0 → k → 0 is a minimal kH-
projective resolution of the trivial module k. Then we know that Dim Ω0(k) +
Dim Ω1(k) = DimP0. For j ≥ 2, Ωj(kH) is a submodule of Pj−1. The dimen-
sion of Pj is precisely |H|Dim Hj(H, k) and the dimension of Ωj(kH)↑G

H is p

times the dimension of Ωj(kH). So from the theorem we have that

r∑
i=0

Dim Ωi(kH)↑G
H ≤ p|H|

r−1∑
i=0

Dim Hi(H, k)

≤ p2n+1
r−1∑
i=0

2
(

i + 2n − 2
2n − 2

)(
r − 1 − i

0

)
= 2p2n+1

(
r + 2n − 2

2n − 1

)
,

by the identity 4.5.
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5. New endo-trivial modules from old endo-trivial modules

Here we start the proof of Theorem 1.4. Suppose that G is an extraspecial
or almost extraspecial p-group and that G �∼= Q8. Let Z = 〈z〉 be the Frattini
subgroup of G, of order p, with elementary abelian quotient G = G/Z of
rank m. Let x1, . . . , xm ∈ G such that G = 〈x1, . . . , xm〉. Recall that Z is the
unique normal subgroup of order p. Moreover every maximal subgroup of G

contains Z and G is not elementary abelian. Some of the results in this section
hold more generally if G has a Frattini subgroup Z of order p, but we leave
this generalization to the reader.

Let M be an endo-trivial kG-module whose class in T (G) lies in the kernel
of the restriction to proper subgroups. This means that M↓G

H
∼= k ⊕ (free) for

every maximal subgroup H of G. For the purpose of the proof of Theorem 1.4
(Sections 5–11), we make the following definition:

Definition 5.1. We say that a kG-module M is critical if it is an inde-
composable endo-trivial module such that M↓G

H
∼= k⊕(free) for every maximal

subgroup H of G.

Actually, the last condition implies that the module M is endo-trivial
because its restriction to every elementary abelian subgroup is isomorphic to
k⊕(free), hence endo-trivial (see Lemma 2.9 of [CaTh]). In fact M is a torsion
endo-trivial module by a theorem of Puig [Pu], but we do not need this fact in
our arguments. By factoring out all free summands of an endo-trivial module
M , one can always assume that M is indecomposable and this is why we do
so. We shall often omit to mention this indecomposability condition, to the
effect that we shall usually only prove that a module satisfies the condition on
restriction to maximal subgroups in order to deduce that it is critical. Since
our aim is to prove that the kernel above is trivial, we have to show that
any critical kG-module M is isomorphic to k as a kG-module. We will often
assume, by contradiction, the existence of a nontrivial critical kG-module.

In this section, we prove several results concerning the structure of a
critical module M and the construction of new modules with the same property.
For some of the results, we only need to assume that M↓G

H
∼= k ⊕ (free) for a

single subgroup H of G.
For any critical kG-module M , and more generally for any kG-module M

such that M↓G
Z
∼= k ⊕ (free), we let M ′ = {m ∈ M | (z − 1)p−1m = 0} and we

set
M = M/M ′ .

We let − : M −→ M be the quotient map. Since (z − 1)M = 0, the module
M can be viewed as a kG-module. A large part of this paper is devoted to an
analysis of the properties of the module M .
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Lemma 5.2. Let M be a kG-module. Suppose that M↓G
Z
∼= k ⊕ (free).

(a) The module M has two filtrations

K1 ⊂ K2 ⊂ . . . ⊂ Kp−1 ⊂ Kp = M

∪ ∪ ∪
{0} ⊂ Ip−1 ⊂ Ip−2 ⊂ . . . ⊂ I1

where Ki = {m ∈ M | (z − 1)im = 0} is the kernel of multiplication by
(z − 1)i (in particular Kp−1 = M ′) and Ii = (z − 1)iM is the image of
multiplication by (z − 1)i.

(b) Ki/Ip−i
∼= k for any i = 1, . . . , p−1. Moreover Kp−1/Ip−1

∼= k ⊕
(I1/Ip−1).

(c) The module I1 = (z−1)M is free as a module over the ring kZ/(z−1)p−1.
Moreover , Ii/Ii+1

∼= M for any i = 1, . . . , p−1.

(d) The module M/K1 is isomorphic to I1. In particular it is free as a module
over the ring kZ/(z − 1)p−1 and Ki+1/Ki

∼= M for any i = 1, . . . , p−1.

(e) Dim(M) = p Dim(M) + 1.

Proof. (a) Note that Ki and Ii are submodules because z is central in kG.
We have Ip−i ⊂ Ki because (z − 1)p = 0. The filtrations are clear.

(b) In order to prove (b), it suffices to restrict to the subgroup Z. But we
have M↓G

Z = k ⊕ F for some free kZ-module F , and therefore

Ki = k ⊕ (z − 1)p−iF , Ip−i = (z − 1)p−iF .

Moreover it is clear that Kp−1/Ip−1 = K1/Ip−1 ⊕ (I1/Ip−1) ∼= k ⊕ (I1/Ip−1).

(c) Multiplication by (z − 1)i induces a map

M −→ (z − 1)iM/(z − 1)i+1M = Ii/Ii+1

and we claim that its kernel is M ′. Again, in order to prove this, it suffices to
restrict to the subgroup Z and consider the decomposition M↓G

Z = k ⊕ F as
above. Then the kernel is k ⊕ (z − 1)F = M ′. It is also clear that

(z − 1)M = (z − 1)F ∼= F/(z − 1)p−1F

and this is free over the ring kZ/(z − 1)p−1.

(d) Multiplication by (z − 1) induces an isomorphism M/K1
∼= I1.

(e) Since M↓G
Z = k ⊕ F , we have that Dim(M) = Dim(F/(z−1)F ) =

Dim(F )/p and Dim(M) = p Dim(M) + 1.

Lemma 5.3. Let M be a kG-module. Suppose that there is a maximal
subgroup H of G such that M↓G

H
∼= k ⊕ (free).
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(a) M ∼= k ⊕ (free) as a kG-module if and only if M is a free kG-module.
More precisely, M has a free summand with r generators as a kG-module
if and only if M has a free summand with r generators as a kG-module.
In particular, if M is indecomposable, then M has no projective sum-
mands.

(b) M �∼= k⊕(free) as a kG-module if and only if M is a periodic kG-module.

Proof. (a) It is easy to see that if M has a free summand L ∼= (kG)r as a
kG-module then M has a free summand L/(z − 1)L ∼= (kG)r as a kG-module.

The converse is essentially contained in Lemma 3.3 of [CaTh] and we recall
the argument. Assume that M = N ⊕ L where L is free and N has no free
summands. Then tG1 · N = 0 where

tG1 =
∑
g∈G

g = (z − 1)p−1
m∏

i=1

(xi − 1)p−1 ,

xi being a lift in G of the generator xi of G. Let X =
m∏

i=1

(xi − 1)p−1. If

N has a free submodule then X · N �= 0, since X = tG1 . But if X · N �= 0
then, via the isomorphism N ∼= (z − 1)p−1N of Lemma 5.2, we would obtain
(z − 1)p−1X · N = tG1 · N �= 0, which is a contradiction.

(b) The hypothesis on M↓G
H implies that M is free on restriction to H/Z.

But H = H/Z is a maximal subgroup of G = G/Z, so G/H is a cyclic group
of order p. Tensoring with M the exact sequence

0 −→ k −→ k[G/H] −→ k[G/H] −→ k −→ 0 ,

we obtain an exact sequence with M at both ends and free kG-modules in the
middle, because k[G/H] ⊗ M ∼= M↓G

H
↑G

H
. If now M �∼= k ⊕ (free), then M

is not zero and is not free as a kG-module, by part (a), so M is periodic. If
conversely M is periodic, then M is not free and M �∼= k ⊕ (free) by part (a).

Lemma 5.4. Suppose that p = 2 and that M is a nontrivial critical
kG-module. Then the number of generators of M is the same as the number
of generators of M and is equal to 4 Dim(M)/|G|. Moreover Dim(Ω(M)) =
Dim(Ω−1(M)) = Dim(M) − 2.

Proof. Let H be a maximal subgroup of G. Since M↓G
H

∼= k ⊕ (free), we
know that M is free as a module over kH. Thus, the number of generators of
M as a kH-module is Dim(M)/|H|. Our first claim is that G acts trivially on
M/Rad(kH)M . Thus, the number of generators of M as a kG-module is also
Dim(M/Rad(kH)M) = Dim(M)/|H|. In order to prove the claim, we note
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that the group G/H acts on M/Rad(kH)M . If there were a free summand
generated by the class of an element m, then m would generate a free summand
of M as a module over kG, contrary to part (c) of the previous lemma. Since
the group G/H has order 2, the only possibility is that G/H acts trivially on
M/Rad(kH)M .

Now our second claim is that, given a set of generators of M , some lifts
of those generators in M will generate M . If we asume this, it follows that
the number of generators of M is Dim(M)/|H| = 4 Dim(M)/|G|. If r =
4 Dim(M)/|G|, then the projective cover of M is the free module (kG)r. Using
Lemma 5.2 we obtain

Dim(Ω(M)) = Dim((kG)r) − Dim(M)

= 4 Dim(M) − 2 Dim(M) − 1 = Dim(M) − 2

as desired. Finally, since the dual module M∗ also satisfies the assumptions of
the lemma, we have that

Dim(Ω−1(M)) = Dim(Ω−1(M)∗)

= Dim(Ω(M∗)) = Dim(M∗) − 2 = Dim(M) − 2

and this completes the proof.
We are left with the proof of the second claim. Let L be the submod-

ule of M generated by some lifts in M of the generators of M . Assume by
contradiction that L �= M . Since M↓G

H = k ⊕ F for some free kH-module F ,
we have M↓G

H
= F/(z − 1)F and so we can choose the lifts of the generators

of M so that L↓G
H = F . Now for any other maximal subgroup H ′ of G, we

have M↓G
H′ = k ⊕ F ′ for some free kH ′-module F ′. The subgroup H ∩ H ′ is

nontrivial because it contains Z and there are two decompositions

M↓G
H∩H′ = T↓H

H∩H′ ⊕ F↓H
H∩H′ = T ′↓H′

H∩H′ ⊕ F ′↓H′

H∩H′

where T , respectively T ′, denotes a trivial one-dimensional module for kH,
respectively kH ′. By comparing the fixed points MH∩H′

and the relative traces
tH∩H′

1 · M in both decompositions, we see that T ′↓H′

H∩H′ cannot be contained
in F↓H

H∩H′ and therefore

M↓G
H∩H′ = T ′↓H′

H∩H′ ⊕ F↓H
H∩H′

(see Lemma 8.2 in [CaTh] for details). Since F is the restriction of a kG-
submodule, this is a decomposition of M as a kH ′-module, namely

M↓G
H′ = T ′ ⊕ L↓G

H′ .

By the Krull-Schmidt theorem, we deduce that L↓G
H′ is free. Since this holds for

any maximal subgroup H ′ and since G is not elementary abelian, Chouinard’s
theorem (see [Be] or [Ev]) implies that L is free as a kG-module and so M ∼= k

⊕L. But M is indecomposable and nontrivial by assumption. This contradic-
tion completes the proof of the claim.
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For our next theorem, we first need a technical lemma.

Lemma 5.5. Let W be a kG-module satisfying the following two condi-
tions:

(a) W/(z − 1)W = U1 ⊕ U2 where U1 and U2 are kG-submodules such that
the varieties satisfy VG(U1) ∩ VG(U2) = {0}.

(b) For some r ≤ p, there is (z − 1)rW = 0 and W is free as a module over
the ring kZ/(z − 1)r.

Then W = W1 ⊕ W2 where W1 and W2 are kG-submodules of W such that
Wi/(z − 1)Wi

∼= Ui for i = 1, 2.

Proof. We use induction on r. There is nothing to prove if r = 1 so we
assume r ≥ 2. By induction, W/(z − 1)r−1W = V1 ⊕ V2 where V1 and V2 are
kG-submodules of W/(z − 1)r−1W such that Vi/(z − 1)Vi

∼= Ui for i = 1, 2.
Now, since W is free as a module over kZ/(z − 1)r, multiplication by (z − 1)
induces an isomorphism W/(z − 1)r−1W ∼= (z − 1)W and we write Li for the
image of Vi. So (z − 1)W = L1 ⊕ L2.

Let π : W → W/(z − 1)W = U1 ⊕U2 be the canonical surjection. Passing
to the quotient by L1, we obtain a short exact sequence

0 −→ L2 −→ W/L1
π̃−→ U1 ⊕ U2 −→ 0

where π̃ is induced by π. Let K = {x ∈ W/L1 | (z − 1)x = 0}. We claim that
π̃(K) = U1. Let x ∈ K and let w ∈ W be a lift of x. Then (z−1)w ∈ L1. Since
multiplication by (z−1) induces an isomorphism W/(z−1)r−1W ∼= (z−1)W ,
the class of w in W/(z − 1)r−1W is in V1. It follows that π(w) ∈ U1, hence
π̃(x) ∈ U1, proving the claim.

Therefore we obtain a short exact sequence

0 −→ (z − 1)r−2L2 −→ K
π̃−→ U1 −→ 0

because L2 ∩ Ker(z − 1) = (z − 1)r−2L2. This is a sequence of kG-modules
since (z − 1)K = 0 by construction. Now multiplication by (z − 1)r−1 induces
an isomorphism W/(z − 1)W ∼= (z − 1)r−1W mapping U2 onto (z − 1)r−2L2.
By applying our assumption on the varieties of U1 and U2 we deduce that the
sequence splits (see Theorem 2.2). Let σ be a section of π̃ : K → U1 and let
W1 be the inverse image of σ(U1) in W , so that W1/L1 = σ(U1). We have
obtained a short exact sequence

0 −→ L1 −→ W1
π−→ U1 −→ 0 .

We can construct similarly a submodule W2 and a short exact sequence

0 −→ L2 −→ W2
π−→ U2 −→ 0 .
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Then π(W1 ∩ W2) = 0, so that W1 ∩ W2 ⊆ Ker(π) = L1 ⊕ L2. But since
Wi ∩ Ker(π) = Li, we obtain W1 ∩ W2 = 0. For reasons of dimensions (or by
a direct argument), the direct sum W1 ⊕ W2 must be the whole of W .

Theorem 5.6. Let M be a critical kG-module and suppose that M =
M1 ⊕ M2 where M1 and M2 are kG-submodules. Suppose that the varieties
satisfy

VG(M1) ∩ VG(M2) = {0}.

Then there exist critical kG-modules N1 and N2 such that N i
∼= M i for 1 ≤

i ≤ 2.

Proof. As before, let M ′ = {m ∈ M | (z − 1)p−1m = 0}. Let M1 ⊆ M

be the inverse image of M1 under the quotient map M −→ M/M ′ = M . Let
M2 be the inverse image of M2. Then M ′ = M1 ∩ M2 and M1/M

′ ∼= M1,
M2/M

′ = M2.
By Lemma 5.2, (z − 1)M is free over kZ/(z − 1)p−1 and

(z − 1)M/(z − 1)2M ∼= M/M ′ = M = M1 ⊕ M2 .

Therefore Lemma 5.5 applies and we have (z − 1)M = W1 ⊕ W2 such that
Wi/(z − 1)Wi

∼= M i for i = 1, 2. Now define N1 = M1/W2 and N2 = M2/W1.
If ri = Dim(M i), then Dim(M) = r1 + r2 and by Lemma 5.2 we obtain
Dim(M) = pr1 +pr2 +1 and Dim((z−1)M) = (p−1)r1 +(p−1)r2. Therefore
we have Dim(M1) = pr1 + (p − 1)r2 + 1 and Dim(M2) = (p − 1)r1 + pr2 + 1.
Also Dim(Wi) = (p − 1)ri ; hence Dim(Ni) = pri + 1 for i = 1, 2.

We claim that N1↓G
H

∼= k⊕(free) for every maximal subgroup H of G (and
similarly for N2). Let H = 〈z, y1, . . . , ym−1〉 where y1, . . . , ym−1 are generators
of H = H/Z. The assumption on M↓G

H implies that M is free as a kH-module.

Therefore M1 and M2 must be free as kH-modules. Let Y =
m−1∏
i=1

(yi − 1)p−1

so that Y = tH1 and Y (z − 1)p−1 = tH1 . Then we get

Dim(M1) = |H| · Dim(Y · M1) .

Now (z−1)p−1N1
∼= (z−1)p−1M1 because N1 = M1/W2 and (z−1)p−1W2 = 0.

Therefore

tH1 · N1 = Y (z − 1)p−1N1
∼= Y (z − 1)p−1M1

∼= Y · M1 = Y · M1 .

It follows that

|H|Dim(tH1 ·N1) = p · |H| ·Dim(Y ·M1) = p ·Dim(M1) = pr1 = Dim(N1)− 1 .

Therefore N1↓G
H has a free submodule of dimension Dim(N1) − 1. The only

way this can happen is if N1↓G
H

∼= k ⊕ (free).
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Now we prove that N1
∼= M1 (and similarly for N2). We have to compute

the submodule N ′
1 = {x ∈ N1 | (z − 1)p−1x = 0}. But N1 = M1/W2 and

we have W2 ⊆ M ′ ⊆ M1 and (z − 1)p−1M ′ = 0. Therefore M ′/W2 ⊆ N ′
1

and N1 = N1/N
′
1 is a quotient of N1/(M ′/W2) ∼= M1/M

′ = M1. In order to
prove that this is not a proper quotient, it suffices to prove that N1 and M1

have the same dimension. But by the previous part of the proof, we know that
N1↓G

H
∼= k⊕ (free) for every maximal subgroup H. By Lemma 5.2 this implies

Dim(N1) =
Dim(N1) − 1

p
= r1 = Dim(M1) ,

as was to be shown.
Finally we conclude that N1 is critical. Indeed, since M has no free

summand as a kG-module, N1 cannot have a free summand and therefore N1

has no free summand as a kG-module by Lemma 5.3. This implies that N1 is
critical since we know that N1↓G

H
∼= k ⊕ (free) for every maximal subgroup H.

Theorem 5.7. Let M1 and M2 be critical kG-modules and suppose that
the varieties satisfy

VG(M1) ∩ VG(M2) = {0}.
Then M1 ⊗ M2

∼= M ⊕ (free) where M is a critical kG-module such that
M ∼= M1 ⊕ M2.

Proof. Let rj = Dim(M j) for j = 1, 2. Thus Dim(Mj) = prj +1. Consider
the filtration of M1 as in Lemma 5.2

{0} ⊂ (z − 1)p−1M1 ⊂ K1 ⊂ · · · ⊂ Kp−1 ⊂ Kp = M1 ,

where Ki = {m ∈ M1 | (z − 1)im = 0}. This induces a filtration on M1 ⊗ M2

{0} ⊂ (z − 1)p−1M1 ⊗ M2 ⊂ K1 ⊗ M2 ⊂ · · · ⊂ Kp−1 ⊗ M2 ⊂ M1 ⊗ M2 ,

with all quotients but one isomorphic to M1 ⊗ M2. We need to prove the
following.

Lemma 5.8. M1⊗M2 = F ⊕L where L ∼= M1 and F is a free kG-module
of dimension pr1r2 such that (z − 1)p−1F = M1 ⊗ (z − 1)p−1M2.

Proof. By hypothesis VG(M1) ∩ VG(M2) = {0} and hence M1 ⊗ M2 is
projective as a kG-module. Choose elements m1, . . . , mr ∈ M1⊗M2 such that
m1, . . . ,mr is a free kG-basis for M1⊗M2. Here mi = mi+(M1⊗M ′

2) denotes
the class of mi in M1 ⊗ M2 = (M1 ⊗ M2)/(M1 ⊗ M ′

2).

As before, let X =
m∏

i=1

(xi − 1)p−1 so that X = tG1 and X(z − 1)p−1

= tG1 . Then Xm1, . . . ,Xmr are linearly independent in M1⊗M2. Since z acts
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trivially on M1, multiplication by (z − 1)p−1 induces an isomorphism M1 ⊗
M2

∼= M1⊗(z−1)p−1M2 and it follows that X(z−1)p−1m1, . . . , X(z−1)p−1mr

are linearly independent in M1 ⊗ (z − 1)p−1M2. Therefore tG1 m1, . . . , t
G
1 mr

are linearly independent in M1 ⊗ M2. So the kG-submodule F of M1 ⊗ M2

generated by m1, . . . , mr is a free kG-module. Moreover we have (z−1)p−1F =
M1 ⊗ (z − 1)p−1M2.

Consider now the exact sequence of kG-modules

0 −→ M1 ⊗ (z − 1)p−1M2 −→ M1 ⊗ (M2)Z −→ M1 ⊗ k −→ 0 ,

where (M2)Z = {x ∈ M2 | (z − 1)x = 0}. Since the kernel is free over kG,
the sequence splits and we have M1 ⊗ (M2)Z ∼= (z − 1)p−1F ⊕ L where L is
a submodule isomorphic to M1. If we had F ∩ L �= 0, then we would have
Soc(F )∩L �= 0; hence (z−1)p−1F∩L �= 0, a contradiction. Therefore F∩L = 0
and M1 ⊗ M2 contains a submodule F ⊕ L.

We now show that F ⊕L = M1 ⊗M2 by proving that both modules have
the same dimension. We have Dim(F ) = p · Dim(M1 ⊗ M2) = pr1r2 and
therefore

Dim(F ⊕ L) = pr1r2 + r1 = r1(pr2 + 1) = Dim(M1) Dim(M2) ,

as was to be shown.

Now, continuing with the proof of the theorem, we note that each quo-
tient (Ki+1 ⊗ M2)/(Ki ⊗ M2) is isomorphic to M1 ⊗ M2, hence contains a
free submodule Fi of dimension pr1r2 by the lemma. Now remember that
projective modules are also injective and, as a result, if a projective module is
a direct summand of a section of a module V , then it is a direct summand of V .
Thus we can lift the free module Fi and obtain a free submodule Fi of
M1⊗M2 mapping isomorphically onto Fi under the quotient map M1⊗M2 →
(M1⊗M2)/(Ki⊗M2). Similarly, (z−1)p−1M1⊗M2 is isomorphic to M1⊗M2,
hence contains a free submodule F0 of dimension pr1r2 by the lemma. There-
fore we have

M1 ⊗ M2 = M ⊕ F

where F = F0 ⊕ · · · ⊕ Fp−1 is free of dimension p2r1r2 and M is a submodule
of dimension (pr1 + 1)(pr2 + 1) − p2r1r2 = p(r1 + r2) + 1.

Since, for any maximal subgroup H of G, we have Mj↓G
H

∼= k ⊕ (free) for
j = 1, 2, the same holds for M1 ⊗ M2 and hence M↓G

H
∼= k ⊕ (free). We are

going to prove that M ∼= M1 ⊕M2. This will imply that M is critical. Indeed
M j has no kG-free summand, because Mj is critical (j = 1, 2), so M1⊕M2 has
no kG-free summand and therefore M has no kG-free summand by Lemma 5.2.
This forces the endo-trivial module M to be indecomposable.

Instead of working with M , we consider the isomorphic module
(z − 1)p−1M and our goal now is to prove that (z − 1)p−1M ∼= M1 ⊕ M2.
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We work with the submodule K1 ⊗ M2 of our filtration and we first analyze
its submodule K1 ⊗K ′

1, where K ′
1 = {m ∈ M2 | (z − 1)m = 0} is the analog of

K1 for M2. Notice that K1 ⊗ K ′
1 is a kG-module with a filtration

(z − 1)p−1M1 ⊗ (z − 1)p−1M2 ⊂
(
(z − 1)p−1M1 ⊗ K ′

1

)
+

(
K1 ⊗ (z − 1)p−1M2

)
⊂ K1 ⊗ K ′

1 .

In the filtration, the bottom submodule is free over kG and is equal to
(z − 1)p−1F0 by the lemma. The middle quotient of this filtration is the direct
sum of

((z−1)p−1M1 ⊗ K ′
1)/((z−1)p−1M1 ⊗ (z−1)p−1M2)

∼= (z−1)p−1M1 ⊗ k ∼= M1

and

(K1 ⊗ (z−1)p−1M2)/((z−1)p−1M1 ⊗ (z−1)p−1M2)
∼= k ⊗ (z−1)p−1M2

∼= M2 .

This direct sum can be lifted in K1⊗K ′
1, because the submodule (z−1)p−1F0 =

(z−1)p−1M1 ⊗ (z−1)p−1M2 is kG-free and so the sequence

0 −→ (z − 1)p−1F0 −→ K1 ⊗ K ′
1 −→ (K1 ⊗ K ′

1)/(z − 1)p−1F0 −→ 0

splits. Therefore K1 ⊗ K ′
1 contains a submodule V1 ⊕ V2 with Vj

∼= M j and
(V1 ⊕ V2) ∩ (z − 1)p−1F0 = 0. It follows that (V1 ⊕ V2) ∩ Soc(F0) = 0 and so
(V1 ⊕ V2) ∩ F0 = 0.

We now have V1⊕V2⊕F0 ⊂ K1⊗M2 and therefore V1⊕V2⊕F0 intersects
trivially F1⊕· · ·⊕Fp−1 because this free module has been lifted from quotients
of (M1 ⊗ M2)/(K1 ⊗ M2). This shows that M1 ⊗ M2 contains the submodule
V1 ⊕ V2 ⊕F0 ⊕F1 ⊕ · · · ⊕Fp−1 = V1 ⊕ V2 ⊕F . Therefore V1 ⊕ V2 is isomorphic
to a submodule of M .

Now we show that V1 ⊕ V2 ⊂ (z − 1)p−1(M1 ⊗ M2). Since z acts trivially
on K ′

1, we have (z−1)p−1(M1⊗K ′
1) = (z−1)p−1M1⊗K ′

1 and this contains V1 by
construction of V1. Similarly V2 ⊂ K1 ⊗ (z − 1)p−1M2 = (z − 1)p−1(K1 ⊗M2).
Passing to the quotient by F , we deduce that V1 ⊕ V2 is isomorphic to a
submodule of

(z − 1)p−1
(
(M1 ⊗ M2)/F

)
= (z − 1)p−1

(
(M ⊕ F )/F

) ∼= (z − 1)p−1M .

In order to prove that this submodule is the whole of (z−1)p−1M , it suffices to
prove that they have the same dimension. But Vj

∼= M j has dimension rj (for
j = 1, 2) and we know that Dim(M) = p(r1 + r2) + 1. Therefore Dim(M) =
r1 +r2 and we are done. This shows that (z−1)p−1M ∼= V1⊕V2 and completes
the proof of the theorem.
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Theorem 5.6 and Theorem 5.7 provide the basic tools for constructing a
large critical module from any given finite set of such modules, as follows.

Theorem 5.9. For every i = 1, . . . , t, let Mi be a nontrivial critical kG-
module. Let �i be a line in the variety of the periodic kG-module M i and assume
that �i �= �j for i �= j. Then there exists a nontrivial critical kG-module M

such that VG(M) =
⋃t

i=1 �i. Moreover, Dim(M) ≥ t|G|/2 + 1 if p = 2 and
Dim(M) ≥ t|G| + 1 if p is odd.

Proof. Recall that M i is periodic by Lemma 5.3, and hence VG(M i) is
a union of lines. By Theorem 2.2, M i = Li ⊕ Ni such that VG(Li) = �i and
the variety of Ni is the union of the other lines (if any; otherwise simply set
Li = M i). By Theorem 5.6, there exists a critical kG-module Ui such that
U i = Li.

Now by Theorem 5.7 and the assumption that the lines �i are distinct, we
obtain a critical kG-module M such that

U1 ⊗ U2 ⊗ · · · ⊗ Ut = M ⊕ (free)

and M = U1 ⊕ U2 ⊕ · · · ⊕ U t so that VG(M) =
⋃t

i=1 �i.
Since Ui↓G

H
∼= k⊕(free) where H is a maximal subgroup of G, Dim(Ui)−1

is a multiple of |H| and therefore Dim(U i) is a multiple of |H|/p = |G|/p2. It
follows that Dim(M) ≥ t|G|/p2 and Dim(M) ≥ t|G|/p+1. We can do better if
p is odd because Ui is an endo-trivial module and so Dim(Ui) ≡ ±1 (mod |G|)
by Lemma 2.10 in [CaTh]. A plus sign is forced here and therefore Dim(Ui)−1
is a multiple of |G|. The same argument then yields Dim(M) ≥ t|G| + 1.

Remark. By a theorem of Puig [Pu], the torsion subgroup Tt(G) is finite.
Therefore, there are actually finitely many possible choices for the modules Mi

in the last theorem. It then follows from the theorem that one can construct
an indecomposable torsion endo-trivial module M such that VG(M) contains
VG(N) for any torsion endo-trivial module N . Moreover, Dim(M) ≥ t|G|/2+1,
respectively t|G|+1, where t is the number of components of VG(M). However,
in view of the main theorem of this paper, it will turn out that Tt(G) = 0 and
so M ∼= k.

6. Lower bounds on dimensions of critical modules

In this section we prove a theorem that is essential to the general cases of
our main result. Basically it says that, if an extraspecial group or an almost
extraspecial group has a nontrivial critical module, then it has one of large
dimension. For the proof, we need a few lemmas.
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Lemma 6.1. Suppose that M is a nontrivial critical kG-module and let �

be a line in VG(M). Then � is not contained in any Fp-rational subspace of
VG(k).

Proof. Note that VG(k) = km where |G| = pm+1. An Fp-rational subspace
(i.e. a subspace defined by a linear equation with Fp-coefficients) corresponds
to a maximal subgroup H ⊆ G. That is, the Fp-rational subspaces of VG(k) are
precisely the subspaces of the form res∗

G,H
(VH(k)). If � were in res∗

G,H
(VH(k))

then it would have to be the case that VH(M↓G
H

) �= {0} and hence M↓G
H

would not be free as a kH-module. By Lemma 5.3, this would contradict the
hypothesis that M↓G

H
∼= k ⊕ (free) where H is the inverse image of H in G.

Recall that a p′-group is a group of order prime to p.

Lemma 6.2. Suppose that � is a line through the origin in VG(k) = km

and suppose that � is not contained in any Fp-rational subspace of km. Then
the stabilizer S of � for the action of GLm(Fp) on km is a cyclic p′-subgroup.

Proof. Suppose that y ∈ GLm(Fp) stabilizes � and that v is a point on �.
Then v is an eigenvector of y with eigenvalue λ. That is, simply, y · v = λv.
So the line � is a kS-submodule for the action of S on km, corresponding to a
homomorphism ρ : S −→ GL(�) ∼= k∗ mapping y ∈ S to the eigenvalue λ.

We claim that ρ is injective on the stabilizer S. For suppose that ρ(y) =
λ = 1. Then, viewing y as a matrix, we have that (y−Im)v = 0. If y is not the
identity then some row (a1, a2, . . . , am) of y − Im is not zero. But then v is in
the subspace defined by the equation a1x1 + a2x2 + · · · + amxm = 0. Because
the coefficients of y are in Fp we have a contradiction.

Now S is isomorphic to a finite subgroup of k∗ and therefore it must consist
of roots of unity. Thus it is a cyclic p′-group and we are done.

Recall that for any automorphism α of G, the conjugate module Nα is
defined to be the k-vector space N with the action of G given by g ·n = α(g)n
for g ∈ G and n ∈ N . If α is an inner automorphism of G, then Nα ∼= N and
it follows that the group Out(G) of outer automorphisms of G acts on the set
of isomorphism classes of kG-modules. We shall also write Ny for a conjugate
module defined by an outer automorphism y ∈ Out(G).

Since G is extraspecial or almost extraspecial, we control Out(G) in the
following sense. Recall that if p = 2, there is an associated quadratic form on
the F2-vector space G/Z(G) (see Lemma 3.1). If p is odd, there is a symplectic
form b on the Fp-vector space G/Z(G) defined by [x̃, ỹ] = zb(x,y), where x, y ∈
G/Z(G), x̃, ỹ ∈ G are elements of G that lift x and y, and z is a generator
of Z(G).
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Lemma 6.3. Let G be an extraspecial or almost extraspecial p-group. Let
Out0(G) be the subgroup of Out(G) consisting of outer automorphisms fixing
the center Z(G) pointwise.

(a) If p is odd and G is extraspecial of exponent p, then Out0(G) is iso-
morphic to the symplectic group OG associated to the symplectic form
corresponding to G.

(b) If p = 2, Out0(G) is isomorphic to the orthogonal group OG associated
to the quadratic form corresponding to G.

Proof. When G is extraspecial, this is one of the main results in Winter’s
paper [Wi]. If G is almost extraspecial, the arguments given in Sections 3F
and 4 of [Wi] extend and yield the same result. Alternatively, this appears
explicitly in Exercise 5 of Chapter 8 of [As].

Theorem 6.4.Suppose that there exists a nontrivial critical kG-module N .

(a) If p is odd, there exists a critical kG-module M such that

Dim(M) > |G| · |OG|
|C|

where OG is the symplectic group associated to G and C is a cyclic
p′-subgroup of OG of maximal order.

(b) If p = 2, there exists a critical kG-module M such that

Dim(M) >
|G|
2

· |OG|
|C|

where OG is the orthogonal group associated to G and C is an odd order
cyclic subgroup of OG of maximal order.

Proof. Let � be a line in VG(N). Notice that if y ∈ OG then Ny is also
a nontrivial kG-module such that Ny↓G

H
∼= k ⊕ (free). But then y(�) is in the

variety VG(Ny). If B denotes the stabilizer of � in OG, we obtain a family of
modules Ny indexed by the set of cosets OG/B. So by Theorem 5.9, there
exists a critical kG-module M such that VG(M) =

⋃
y∈OG/B y(�). Moreover,

Dim M >
|OG|
|B| · |G|

2
if p = 2 and DimM >

|OG|
|B| · |G| if p is odd.

By Lemma 6.1, the line � is not contained in any Fp-rational subspace of
VG(k) = km. Thus by Lemma 6.2, the group B = S ∩ OG is cyclic of order
prime to p. If C is of maximal order among cyclic p′-subgroups of OG, we
deduce the lower bound of the statement.

For use in the following sections, we need to have some estimates of the
orders of the orthogonal and symplectic groups and their cyclic p′-subgroups.
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Proposition 6.5. Let G be an extraspecial or almost extraspecial p-group.
Let OG be the orthogonal or symplectic group associated to G.

1. If p is odd and G is extraspecial of exponent p and order p2n+1, then
OG = Sp(2n, Fp) and

|OG| = pn2
n∏

i=1

(p2i − 1) .

2. If p = 2 and G ∼= D8 ∗ · · · ∗ D8 is extraspecial of order 22n+1 (type 1),
then OG = O+(2n, F2) and

|OG| = 2 · 2n(n−1)(2n − 1)
n−1∏
i=1

(22i − 1) .

3. If p = 2 and G ∼= D8 ∗ · · · ∗D8 ∗Q8 is extraspecial of order 22n+1 (type 2),
then OG = O−(2n, F2) and

|OG| = 2 · 2n(n−1)(2n + 1)
n−1∏
i=1

(22i − 1) .

4. If p = 2 and G ∼= D8 ∗ · · · ∗D8 ∗C4 is almost extraspecial of order 22n+2

(type 3), then OG = Sp(2n, F2) and

|OG| = 2n2
n∏

i=1

(22i − 1) .

Moreover, if C is any cyclic p′-subgroup of OG, then |C| ≤ (p + 1)n.

Proof. In the first three cases, we have OG = Sp(2n, Fp), respectively
OG = O±(2n, F2), essentially by definition (see also [Wi]). In the third case,
we obtain OG = O(2n + 1, F2) ∼= Sp(2n, F2) (see Theorem 11.9 of Taylor’s
book [Ta]) where orders of the four groups appear on pages 70 and 141. The list
can also be found in any of a number of text books on Chevalley groups or finite
simple groups (e.g. Gorenstein’s book [Go2]). The types of the groups of Lie
type in the four cases listed are Cn(p), Dn(2), 2Dn(2) and Cn(2), respectively.
In the first case the corresponding simple group is OG/{±1}. In the next two
cases the corresponding simple group has index 2 in OG, while the group is
simple in the fourth case.

For the statement about the cyclic p′-subgroups, note first that elements
of order prime to p are semi-simple, hence contained in a maximal torus. Now,
for a Chevalley group of rank n over the field Fq, the order of a maximal torus
is equal to

|det(w−1F − 1)| = |det(F − w)|
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where F (x) = xq is the Frobenius morphism, w is an element of the correspond-
ing Weyl group, and where F and w act on the cocharacter group of a fixed
maximal torus of the corresponding algebraic group (see Proposition 3.3.5 in
Carter’s book [Cart]). Since w has finite order, we obtain a product

∏n
i=1(q−ζi)

for suitable roots of unity ζi (the eigenvalues of w). In our case, q = p and
the rank n is the same as the integer n of the statement. Therefore if C is any
cyclic p′-subgroup of OG, we get

|C| ≤ |det(F − w)| =
∣∣ n∏

i=1

(p − ζi)
∣∣ ≤ n∏

i=1

(p + 1) = (p + 1)n ,

as was to be shown.

7. Upper bounds on dimensions of critical modules

Throughout the section we assume that G is a p-group and that k is an
algebraically closed field of characteristic p.

We will need the following results. Recall that a nonzero element ζ of
H1(G, Fp) corresponds to a maximal subgroup of G in the sense that there is a
unique maximal subgroup H of G such that resG,H(ζ) = 0. When p is odd, we
also need the Bockstein map β : H1(G, Fp) −→ H2(G, Fp) (see [Be] or [Ev]).

Theorem 7.1. Suppose that G is a p-group which is not elementary abelian.
Suppose that η1, . . . , ηt are nonzero elements in H1(G, Fp) and have the prop-
erty that

η1 . . . ηt = 0 if p = 2,

β(η1) . . . β(ηt) = 0 if p is odd.

(a) Assume that p = 2. For each i, let Hi be the maximal subgroup of
G corresponding to ηi. Then there is a projective module P such that
k ⊕ Ω1−t(k) ⊕ P has a filtration

{0} = L0 ⊆ L1 ⊆ · · · ⊆ Lt
∼= k ⊕ Ω1−t(k) ⊕ P

where Li/Li−1
∼= (Ω1−i(k))↑G

Hi
for each i = 1, . . . , t.

(b) Assume that p is odd. For each i, let Ki be the maximal subgroup of G

corresponding to ηi and set H2i = H2i−1 = Ki. Then there is a projective
module P such that k ⊕ Ω1−2t(k) ⊕ P has a filtration

{0} = L0 ⊆ L1 ⊆ · · · ⊆ L2t
∼= k ⊕ Ω1−2t(k) ⊕ P

where Li/Li−1
∼= (Ω1−i(k))↑G

Hi
for each i = 1, . . . , 2t.

Proof. This is the essence of Lemma 3.10 of [Ca2]. That lemma is stated
for ZG-modules but this does not really matter since we can tensor the whole
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thing with k. Because the emphasis of our theorem is different from that of
the results of [Ca2] we give a brief sketch of the proof here. However, all of
the ideas as well as the details are given in the paper [Ca2].

(a) We first give the proof when p = 2 and then indicate how to modify
the arguments for odd p. Each of the cohomology elements ηi corresponds to
an exact sequence

0 −→ F2 −→ F2↑G
Hi

−→ F2 −→ 0 .

Now we splice all of these together and tensor with k to get a sequence of the
form

0 −→ k −→ k↑G
Ht

−→ . . . −→ k↑G
H2

−→ k↑G
H1

−→ k −→ 0 ,

which represents the element η1 . . . ηt = 0 in Ht(G, k). Note that we are using
the same notation ηi for the element of H1(G, F2) and its image under the
change of rings in H1(G, k). Now we consider the complex C obtained by
truncating the ends off of the sequence. That is, Ci = k↑G

Hi+1
for i = 0, . . . , t−1

and Ci = 0 otherwise. We see that the homology of C is a result of the
truncations. That is, Hi(C) = k if either i = 0 or i = t − 1 and Hi(C) = 0
otherwise.

The next step is to collapse the complex C into a single module. This is
accomplished exactly as in the paragraphs preceding Proposition 3.7 of [Ca2].
That is, we tensor, over k, the complex C with a projective resolution of the
trivial module k. This gives us a projective resolution of the complex C and it
has the same homology as C. Thus, in degrees above t, it is exact and is the
projective resolution of a module U , which we can take to be the image of the
tth boundary map of the total complex. The only problem with U is that it
is in the wrong degree. So we take W = Ω−t(U). This is the module that we
want.

There are now two things to note about W . First because the terms of
the complex C are induced from the maximal subgroup H1, . . . , Ht, the module
W has a filtration by the modules k↑G

Hi
suitably translated by Ω, exactly as

described in the statement of the theorem. That is, the projective resolution of
the complex C as constructed above is filtered by the projective resolutions of
the terms of the complex, suitably translated. See the proof of Proposition 3.8
of [Ca2] for this part.

Next we note that the module W is isomorphic to k⊕Ω1−t(k)⊕P for some
projective module P . This is because the original sequence that represented
η1 . . . ηt splits and hence the projective resolution of the complex is, in high
degrees, a projective resolution of the homology groups of the complex, suitably
translated. See Proposition 3.8 of [Ca2] for this part. This proves the theorem
if p = 2.
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(b) If p is odd, the cohomology element ηi has to be replaced by its Bock-
stein β(ηi) which corresponds to an exact sequence

0 −→ Fp −→ Fp↑G
Ki

−→ Fp↑G
Ki

−→ Fp −→ 0 .

Again we splice all of these together and tensor with k. Using our numbering
of the subgroups Hi, we obtain a sequence of the form

0 −→ k −→ k↑G
H2t

−→ . . . −→ k↑G
H2

−→ k↑G
H1

−→ k −→ 0 ,

which represents the element β(η1) . . . β(ηt) = 0 in H2t(G, k). The complex C is
obtained by truncating the ends off of the sequence and the rest of the argument
is the same, except that the integer t has to be replaced by 2t throughout.

The upper bounds wanted for the dimensions of our critical modules is
contained in the following.

Theorem 7.2. Suppose that G is a p-group which is not elementary abelian.
Suppose that η1, . . . , ηt ∈ H1(G, Fp) are nonzero and have the property that

η1 . . . ηt = 0 if p = 2,

β(η1) . . . β(ηt) = 0 if p is odd.

Let r = t if p = 2 and r = 2t if p is odd. Let H1, . . . , Hr be the maximal sub-
groups of G as in the previous theorem. Suppose that M is an indecomposable
kG-module with the property that M↓G

Hi

∼= k ⊕ (free) for every i. Then for
any s,

Dim Ωs(M) + Dim Ωs−r+1(M) ≤
r∑

i=1

Dim (Ωs+1−i(k)↑G
Hi

) .

Proof. Let P be a projective module such that W = k ⊕Ω1−r(k)⊕ P has
a filtration as in the last theorem. Then tensoring W and all of the factors in
the filtration with Ωs(M) we get that

{0} = L0 ⊗ Ωs(M) ⊆ L1 ⊗ Ωs(M) ⊆ · · · ⊆ Lr ⊗ Ωs(M)
∼= W ⊗ Ωs(M) ∼= Ωs(M) ⊕ Ωs+1−r(M) ⊕ (free).

Then we have

(Li ⊗ Ωs(M))/(Li−1 ⊗ Ωs(M)) ∼= (Li/(Li−1) ⊗ Ωs(M)
∼= Ω1−i(k)↑G

Hi
⊗ Ωs(M)

∼= Ω1−i(Ωs(M↓G
Hi

))↑G
Hi

⊕ Q

∼= Ωs+1−i(k)↑G
Hi

⊕ Q′

for some projective modules Q and Q′. Now the important thing to remember
is that kG is a self injective algebra and hence projective modules are also
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injective. As a result, if a projective module is a direct summand of a section
of a module V , then it is a direct summand of V . The consequence of this is
that (after stripping away the unnecessary projective modules Q′) we can get
that, for some projective module R, the module Ωs(M)⊕Ωs+1−r(M)⊕R has
a filtration

{0} = X0 ⊆ X1 ⊆ · · · ⊆ Xr
∼= Ωs(M) ⊕ Ωs+1−r(M) ⊕ R

where Xi/Xi−1
∼= Ωs+1−i(k)↑G

Hi
. The statement about dimensions follows

immediately.

8. Special cases of 2-groups of small order

In this section we consider some special cases of 2-groups that we need to
treat separately, for they are not covered by the general argument of Section 10.
For each of the groups we show Theorem 1.4 directly. We discuss the groups of
order 8, the almost extraspecial group D8 ∗C4 of order 16 and the extraspecial
group D8 ∗ D8 of order 32 (type 1).

Let us start with the groups of order 8. First Q8 is excluded by assump-
tion (and there is actually a nontrivial critical kQ8-module of dimension 5;
see [CaTh]). For G = D8 the structure of T (D8) is known (see [CaTh]) and
every nontrivial endo-trivial kD8-module is nontrivial on restriction to one of
the two elementary abelian 2-subgroups of D8. Thus the only critical module
is the trivial one. Alternatively, we can also prove the result in the following
way.

Proposition 8.1. Let G = D8. Then there exists no nontrivial critical
kG-module.

Proof. Let M be a critical kG-module. By Theorem 3.4, the number
of cohomology classes whose product vanishes is equal to tG = 2. Applying
Theorem 7.2 with s = 1, we get

Dim Ω1(M) + Dim M ≤ Dim Ω1(kH1)↑G
H1

+ Dim k↑G
H2

for some maximal subgroups H1 and H2. Since Hi has order 4, Ω1(kHi
) has

dimension 3 and we obtain

Dim Ω1(M) + Dim M ≤ 6 + 2 = 8 .

By Lemma 5.4, Dim Ω1(M) = Dim M − 2. So Dim M ≤ 5. This part of
the argument is essentially the same as the one appearing in Theorem 5.3 of
[CaTh].
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If we assume now that there exists a nontrivial critical kG-module, then
by Theorem 6.4, there exists a nontrivial critical kG-module M of dimension

Dim M >
|G|
2

· |OG|
|C| = 4 · 2 = 8 ,

since |OG| = 2 by Proposition 6.5. This contradicts the previous upper bound.

We turn now to the group G = D8 ∗ D8 of order 32.

Proposition 8.2. Let G = D8 ∗ D8. Then there exists no nontrivial
critical kG-module.

Proof. Let M be a critical kG-module. By Theorem 3.4, the number of
cohomology classes whose product vanishes is equal to tG = 3. Applying now
Theorem 7.2 with s = 1, we get

Dim Ω1(M) + Dim Ω−1(M) ≤ Dim Ω1(k)↑G
H1

+ Dim k↑G
H2

+ Dim Ω−1(k)↑G
H3

for some maximal subgroups H1, H2, and H3. Since Hi has order 16, Ω±1(kHi
)

has dimension 15 and we obtain

Dim Ω1(M) + Dim Ω−1(M) ≤ 30 + 2 + 30 = 62 ,

so that Dim Ω1(M) ≤ 62.
If we assume now that there exists a nontrivial critical kG-module, then

by Theorem 6.4, there exists a nontrivial critical kG-module M of dimension

Dim M >
|G|
2

· |OG|
|C| ≥ 16 · 72

9
= 128 ,

by Proposition 6.5. So Dim Ω1(M) > 126 by Lemma 5.4, a contradiction.

In the last case, G is the almost extraspecial group D8∗C4 of order 16. The
method of the previous cases does not work because the orthogonal group OG

is too small. Instead of using the action of OG, we shall give an argument
using the action of a Galois group.

Lemma 8.3. Let G = D8∗C4. If M is a critical kG-module, then Dim M

≤ 17.

Proof. By Theorem 3.4, the number of cohomology classes whose product
vanishes is equal to tG = 3. Applying now Theorem 7.2 with s = 1, we get

Dim Ω1(M) + Dim Ω−1(M) ≤ Dim Ω1(k)↑G
H1

+ Dim k↑G
H2

+ Dim Ω−1(k)↑G
H3

for some maximal subgroups H1, H2, and H3. Since Hi has order 8, Ω±1(k)
has dimension 7 and we obtain

Dim Ω1(M) + Dim Ω−1(M) ≤ 14 + 2 + 14 = 30 .
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By Lemma 5.4, Dim Ω1(M) = Dim Ω−1(M) = Dim M−2. So Dim Ω1(M) ≤
15 and Dim M ≤ 17.

Proposition 8.4. Let G = D8 ∗ C4. Then there exists no nontrivial
critical kG-module.

Proof. Suppose that there is such a module N . We need to look at
VG(N) ⊆ VG(k) ∼= k3. Suppose that p = (α, β, γ) is a point in VG(N). By
dividing by α we may assume that α = 1, so that p = (1, β, γ) ∈ VG(N).
Notice that p /∈ res∗G,H(VH(NH)) for any maximal subgroup H since NH is
a free kH-module. Therefore p is not in any F2-rational subspace of k3, and
hence β and γ cannot both be in the field with four elements (otherwise 1, β, γ

would be linearly dependent over F2). It follows that if F : k3 −→ k3 is the
Frobenius map, F (a, b, c) = (a2, b2, c2), then p, F (p) and F 2(p) lie on different
lines in VG(k).

Next we need to notice that using the Frobenius homomorphism we can
create a new module from N , by letting it act on the coefficients of the action of
the elements of G on N . That is, if the module N is defined by a representation
G −→ GL(N), and if we consider the homomorphism F : GL(N) −→ GL(N)
that takes a matrix (aij) to (a2

ij), we let NF be the module defined by the
composition. It is not difficult to see that NF is also critical. Moreover, F (p)
is a point in VG(NF ). It follows that the lines through p, F (p), and F 2(p) are all
lines in the variety of the quotient module L for some nontrivial critical module
L. Thus by Theorem 5.9, kG has a nontrivial critical module of dimension at
least 25. This contradicts Lemma 8.3.

9. The groups of order p3 for odd p

When the prime p is odd, there is one special case in the proof of The-
orem 1.4 that must be handled with extra care. This involves the groups of
order p3. The problem is that the general estimates of the dimensions of crit-
ical modules used later are not sufficient to handle this case. The result that
we want is the following.

Proposition 9.1. Let G = G1, an extraspecial group of order p3 and
exponent p, for p an odd prime. Then there exists no nontrivial critical kG-
module.

The proof proceeds in several steps. Throughout assume that a nontrivial
critical kG-module exists and use Theorem 6.4 to obtain one of large dimension,
as follows.
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Lemma 9.2. If a nontrivial critical kG-module exists, then there exists
a critical kG-module M whose dimension is at least equal to (p − 1)p4 + 1.
Moreover Dim Ω(M) ≥ (p − 1)p4 − 1 and Dim Ω−1(M) ≥ (p − 1)p4 − 1.

Proof. By Theorem 6.4 there exists a critical module M whose dimension
is at least |G| |Sp(2, Fp)|/|C| where C is a cyclic p′-subgroup of the symplec-
tic group Sp(2, Fp) of maximal order. Now Sp(2, Fp) = SL(2, Fp) has order
p(p2 − 1) and its cyclic p′-subgroup of maximal order has order p + 1. So the
dimension of M must be greater than (p − 1)p4 and must be congruent to 1
modulo p.

Now to compute the dimension of Ω(M), we notice from the proof of
Theorem 6.4 that the variety of the module M is the union of at least p(p− 1)
distinct lines in VG(k) = k2. So M = U1⊕· · ·⊕U t where, for each i, VG(U i) is
a single line and t > p(p− 1). Now, as in the proof of Theorem 5.9, DimU i =
rip

2 for some ri (we use here the fact that Ui is endo-trivial and p is odd).
Because U i is not a free kG-module (and, in fact, has no free submodules) and
because a projective cover of U i has dimension p2 Dim U i/Rad(U i), we must
have DimU i/Rad(U i) > ri. Therefore U i is minimally generated by at least
ri + 1 generators and the number of generators of M is at least

m =
t∑

i=1

(ri + 1) =

(
t∑

i=1

ri

)
+ t .

Now M/Rad(M) is a quotient of M/Rad(M), so the minimal number of gen-
erators of M is at least m. As a result, the number of copies of kG appearing
in the projective cover of M must be at least m. Now the dimension of M is
p3(

∑t
i=1 ri) + 1 and so the dimension of Ω(M) is at least

p3m−Dim(M) = p3

((
t∑

i=1

ri

)
+ t

)
−p3

(
t∑

i=1

ri

)
−1 = tp3−1 ≥ (p−1)p4−1 .

By applying the same argument to the dual module M∗ (which also satisfies
the properties we need), we obtain

Dim Ω−1(M) = Dim Ω−1(M)∗ = Dim Ω(M∗) ≥ (p − 1)p4 − 1 .

This proves the lemma.

Lemma 9.3.

Dim Ω2p(M) + Dim Ω−1(M) ≤ p3(p2 + p + 1).

Proof. From any one of the papers [Le1], [Ya], [BeCa] we have that there
exist η1, . . . ηp+1 ∈ H1(G, k) such that β(η1) . . . β(ηp+1) = 0. In Leary [Le1] the
relation is given as xpx′ − xx′p = 0. Now applying Theorem 7.2 with t = p + 1
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(hence r = 2t = 2(p + 1)) and choosing s = 2p in that theorem, we get

Dim Ω2p(M) + Dim Ω−1(M) ≤
2p+2∑
i=1

Dim(Ω2p+1−i(k)↑G
Hi

) ,

where Hi is a maximal subgroup of G corresponding to the appropriate ηj .
In our case, every Hi is an elementary abelian group of order p2, and hence
the dimensions on the right-hand side of the inequality are independent of the
particular ηj . Because Dim Hj(Hi, k) = j + 1 (see Lemma 4.6), we have that
(for Hi = H)

Dim Ω2j−1(kH) + Dim Ω2j(kH) = p2 Dim H2j−1(H, k) = p2(2j) .

Induction to G multiplies the dimensions by p. Consequently the right-hand
side of the above inequality has the form
2p+2∑
i=1

Dim(Ω2p+1−i(k)↑G
Hi

)

= p Dim Ω−1(kH) + p Dim k + p

p∑
j=1

(
Dim Ω2j−1(kH) + Dim Ω2j(kH)

)
= p

(
p2 − 1 + 1 +

p∑
j=1

2p2j
)

= p3 + 2p3(p)(p + 1)/2 = p3(1 + p2 + p)

as desired.

At this point we should notice that the two lemmas above are not sufficient
to give us the contradiction wanted. We need some further analysis of the
dimension of Ω2p(M). For this purpose we recall that there exists an element
ζ ∈ H2p(G, k) which has the property that its restriction resG,Z(ζ) is not zero
where Z = 〈z〉 is the center of G. In Leary’s paper [Le1], the element that
he calls z will do. The element ζ can also be obtained by applying the Evens
norm map to an element in the degree 2 cohomology of a maximal elementary
abelian subgroup whose restriction to Z is not trivial.

The element ζ can be represented by a unique cocycle ζ : Ω2p(k) −→ k.
Hence we have an exact sequence

0 −→ L −→ Ω2p(k)
ζ−→ k −→ 0

where L is the kernel of ζ. Now by Theorem 2.2, VG(L) = VG(ζ), the variety
of the ideal generated by ζ. In particular, the restriction L↓G

Z is free as a
kZ-module. This fact can also be derived from the observation that the above
sequence is split as a sequence of kZ-modules because the restriction of ζ to
Z is not zero and Ω2p(k)↓G

Z
∼= k ⊕ (free).
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Let L = L/(z − 1)L ∼= (z − 1)p−1L. Then L is a kG-module where
G = G/Z.

Lemma 9.4. The kG-module L has no projective submodules, and more-
over,

VG(L) ⊆
⋃

res∗
G,E

VE(k)

where the union is over the set of all subgroups E = E/Z where E is a maximal
subgroup of G.

Notice that every maximal subgroup of G is elementary abelian and the
union in the lemma is over all subgroups of order p in G. Thus the right-hand
side of the containment is the union of all of the Fp-rational lines in VG(k) ∼= k2.
It can be proved that the two sides are actually equal, but we do not need to
know this.

Proof. If L had a kG-projective submodule then L and hence also Ω2p(k)
would have projective kG-submodules. That is, if tG1 L �= 0 then also tG1 L �= 0.
But clearly this is impossible.

Now suppose that � ⊆ VG(k) is a line that is not Fp-rational. Let N be
a kG-module such that VG(N) = � (e.g. take N = kG/(σ − 1) where 〈σ〉 is
a cyclic shifted subgroup corresponding to the line �). Then the restriction
N↓G

E
is a free kE-module for any maximal subgroup E of G. So, viewing N

as a kG-module by inflation, we have that VE(N↓G
E) is the line determined

by the center Z, because Z acts trivially on N↓G
E . Therefore N is periodic

as a kG-module and we must have that VG(N) = res∗G,Z(VZ(k)), the line
determined by the center Z. Because L is free on restriction to Z we know
that VG(L)∩ VG(N) = {0} and hence L⊗N is a free kG-module. Now Z acts
trivially on N and hence (z−1)(L⊗N) = ((z−1)L)⊗N . Thus, L ⊗ N ∼= L⊗N

is a free kG-module. It follows from Theorem 2.2 that VG(L) ∩ VG(N) = {0}.
Hence the line � is not in VG(L) and this holds for all lines in VG(k) which are
not Fp-rational. Thus the variety VG(L) must be contained in the union of the
Fp-rational lines.

Lemma 9.5. If M is a critical kG-module, VG(M) ∩ VG(L) = {0} and
M ⊗ L ∼= L ⊕ (free).

Proof. We first show that M ⊗ L is a free kG-module. That is, L is free
as a kZ-module and M ⊗ L ∼= M ⊗L. But from Lemmas 9.4 and 6.1 we have
that VG(M)∩VG(L) = {0}. Hence M ⊗L is free as a kG-module. Thus M ⊗L

is free as a kG-module.
It follows that M ⊗ L has a filtration

0 ⊆ ((z − 1)p−1M) ⊗ L ⊆ · · · ⊆ ((z − 1)M) ⊗ L ⊆ M ′ ⊗ L ⊆ M ⊗ L
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where M ′ = {m ∈ M |(z − 1)p−1m = 0}. All of the factors are isomorphic to
M ⊗ L and hence are projective, except for the factor

(M ′ ⊗ L)/((z − 1)M ⊗ L) ∼= (M ′/(z − 1)M) ⊗ L ∼= k ⊗ L ∼= L .

The lemma follows from the fact that free modules are also injective and hence
any free composition factor is a direct summand.

Now tensoring the sequence given above with M we get an exact sequence

0 −→ M ⊗ L −→ M ⊗ Ω2p(k)
1⊗ζ−→ M −→ 0 .

Any projective submodule of M ⊗ L is also a direct summand of the middle
term and can be factored out. So we have an exact sequence of the form

0 −→ L −→ Ω2p(M) ⊕ P −→ M −→ 0 ,

for some projective module P . It remains to prove the following.

Lemma 9.6. In the preceding exact sequence, the projective module P is
zero.

Proof. Because the module L is free as a kZ-module the sequence is split
as a sequence of kZ-modules. So multiplication by z − 1 is an exact functor
on this sequence. Hence we have a sequence

0 −→ (z−1)p−1L −→ (z−1)p−1Ω2p(M)⊕(z−1)p−1P −→ (z−1)p−1M −→ 0 ;

that is,
0 −→ L −→ Ω2p(M) ⊕ P −→ M −→ 0 ,

which is a sequence of kG-modules. Because VG(L) ∩ VG(M) = {0} by the
previous lemma, we must have that the sequence splits. Thus,

L ⊕ M ∼= Ω2p(M) ⊕ P .

But L ⊕ M has no projective kG-submodules by Lemma 9.4. Hence P = {0}
and therefore also P = {0}.

Proof of Proposition 9.1. By Lemma 9.6, Dim Ω2p(M) = DimL+DimM .
By Lemma 4.4, Dim Ω2p(k) = p3(p + 1) + 1, and so DimL = p3(p + 1) by
definition of L. Now by Lemma 9.2, Dim M ≥ p4(p−1)+1 and Dim Ω−1(M) ≥
p4(p − 1) − 1. Hence we have that

Dim Ω2p(M) + Dim Ω−1(M)≥ p3(p + 1) + p4(p − 1) + 1 + p4(p − 1) − 1

= p3(2p2 − p + 1) .

This inequality, however, is a contradiction to Lemma 9.3 since we are assuming
that p ≥ 3.
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10. The general case in characteristic 2

We are now prepared to prove the general case by induction and complete
the proof of the detection Theorem 1.4 when p = 2. Throughout, k has
characteristic 2. Let G be an extraspecial or almost extraspecial group of
order 2m+1. The theorem that we are trying to prove is the following. It is
equivalent to Theorem 1.4.

Theorem 10.1. If G is an extraspecial or almost extraspecial 2-group and
if G is not isomorphic to Q8, then there are no nontrivial critical kG-modules.

Three cases have to be treated separately, namely the groups of order at
most 16 as well as D8 ∗D8. But these cases have been dealt with in Section 8.
Therefore we can now assume that m ≥ 4 and that m > 4 for the groups of
type 1. This allows us to use Corollary 3.6.

The strategy of the proof is expressed in the following.

Proposition 10.2. Let G be an extraspecial or almost extraspecial group
of order 2m+1, with m = 2n. Assume that m ≥ 4 and m > 4 if G is of
type 1. Let tG be the number of cohomology classes whose product vanishes, as
described in Theorem 3.4, and let

σG =
(

tG + m − 4
m − 2

)
|G| + 2 and τG =

|G|
2

· |OG|
3n

.

If τG > σG then there exists no nontrivial critical kG-module.

Proof. Let t = tG. In view of Theorem 3.4, there exist nonzero elements
η1, . . . , ηt ∈ H1(G, F2) such that η1 . . . ηt = 0 and each ηi corresponds to a
maximal subgroup Hi. Moreover each subgroup Hi is the centralizer of a
noncentral involution in G and by Theorem 3.5, Hi

∼= C2 ×U where U has the
same type as G. So Hi

∼= H1 for each i.
Suppose that M is a critical kG-module. Then by Theorem 7.2 with

t = tG and s = t − 1, we have

Dim M ≤ Dim Ωt−1(M) + Dim M ≤
t∑

i=1

Dim (Ωt−i(k)↑G
Hi

) .

Since all the subgroups Hi are isomorphic to H1, we obtain

Dim M ≤
t−1∑
j=0

Dim (Ωj(k)↑G
H1

) .
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Now by Corollary 3.6, which applies in view of our assumption on m (with m,
in the corollary, replaced by m − 2 and r = tG − 1), we obtain

t−1∑
j=0

Dim (Ωj(k)↑G
H1

) ≤ |G| ·
(

m − 2 + tG − 1 − 1
m − 2

)
+ 2 = σG .

It follows that DimM ≤ σG.
If there exists a nontrivial critical kG-module, then by Theorem 6.4, there

exists a nontrivial critical kG-module M of dimension

Dim M >
|G|
2

· |OG|
|C| ≥ |G|

2
· |OG|

3n
= τG > σG .

This contradicts the upper-bound obtained above.

We have now reduced the problem to the proof that τG > σG for all the
groups G as above. This is a purely numerical problem which only requires
estimating the numbers τG and σG. We start with a lemma which will be
useful for estimating σG.

Lemma 10.3. Let t and m be integers with t ≥ 4 and m ≥ 6. Then(
2t + m − 2

m

)
(

t + m − 4
m − 2

) < 2m−3 t2 .

Proof. Expanding the left-hand side and eliminating the common fac-
tor (m − 2)!, we get the following expression. Notice that we can bound each
of the first m−5 fractions by 2 (using m ≥ 6), the next three by 3 (using t ≥ 4),
and bound 1/m(m − 1) by 1/30. Thus we get the following.

2t + m − 2
t + m − 4

· 2t + m − 3
t + m − 5

· . . . · 2t + 4
t + 2

· 2t + 3
t + 1

· 2t + 2
t

· 2t + 1
t − 1

· 2t

m
· 2t − 1
m − 1

< 2m−5 33 4t2

30
< 2m−3t2 .

For the proof that τG > σG, we proceed with cases.

10.1. Groups of type 1. Let Gn = D8 ∗ · · · ∗ D8 be the central product of
n copies of D8, with n ≥ 3. Remember that the cases n = 1 and n = 2 were
treated in Propositions 8.1 and 8.2. For convenience, we write G = Gn and let
σn = σGn

and τn = τGn
. We prove that σn < τn by induction, starting with

two cases.
If n = 3, then t = tG = 5 by Theorem 3.4 and we have that

τ3 = 26 · 27 · 7 · 3 · 15
33

> 213 · 11 ,
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σ3 =
(

5 + 6 − 4
6 − 2

)
· 27 + 2 = 35 · 27 + 2 < 213 · 11 < τ3 .

If n = 4, then t = tG = 9 by Theorem 3.4 and

τ4 = 28 · 213 · 15 · 3 · 15 · 63
34

= 221 · 525 ,

σ4 =
(

9 + 8 − 4
8 − 2

)
· 29 + 2 = 1716 · 29 + 2 < τ4 .

For n ≥ 4, we have tGn+1 = 2tGn
by Theorem 3.4, and this allows for an

inductive argument. We assume that σn < τn and we prove that σn+1 < τn+1.
The course of our proof is to show that

σn+1 − 2
σn − 2

< 24n <
τn+1

τn

from which we get σn+1 − 2 < 24nσn − 24n+1 < 24nτn − 2 < τn+1 − 2 and we
are done. So we are left with the proof of the two inequalities above.

From the value of τn given by Proposition 6.5, we obtain

τn+1

τn
=

|Gn+1|
|Gn|

· 2(n+1)n+1

2n(n−1)+1
· 2n+1 − 1

2n − 1
· 22n − 1

3

> 22 · 22n · 2 · 22n − 1
4

= 24n+1 − 22n+1 > 24n .

On the other hand, setting m = 2n and tGn
= tn = 2n−1+2n−4 (Theorem 3.4),

we obtain by Lemma 10.3

σn+1 − 2
σn − 2

=
|Gn+1|
|Gn|

·

(
2tn + m − 2

m

)
(

tn + m − 4
m − 2

)
< 4 · 2m−3 · t2n = 22n−1(2n−1 + 2n−4)2 < 22n−1 22n < 24n .

10.2. Groups of type 2. Let Gn = D8 ∗ · · · ∗D8 ∗Q8 be the central product
of n − 1 copies of D8 and one of Q8, with n ≥ 2. Let G = Gn, σn = σGn

,
τn = τGn

, and tn = tGn
= 2n + 2n−2 (see Theorem 3.4).

We start with the case n = 2, for which we need to replace τ2 by the
slightly larger value

τ ′
2 =

|G2|
2

· |OG|
|C|

where C is a cyclic subgroup of OG of maximal odd order. By Corollary 12.43 of
Taylor’s book [Ta], OG has a simple subgroup of index 2 isomorphic
to PSL(2, F4) (that is, A5, and in fact OG is isomorphic to the symmetric
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group S5). Therefore |C| = 5 and we get τ ′
2 = 384. On the other hand t2 = 5

and we have

σ2 =
(

5 + 4 − 4
4 − 2

)
· 25 + 2 = 322 < τ ′

2 .

The argument of Proposition 10.2 goes through with τ ′
2 instead of τ2.

Now we prove that σn < τn by induction, starting with n = 3:

τ3 = 26 · 27 · 9 · 3 · 15
33

= 213 · 15 ,

σ3 =
(

10 + 6 − 4
6 − 2

)
· 27 + 2 = 495 · 27 + 2 < τ3 .

If now n ≥ 3 the course of our proof is to show that
σn+1 − 2
σn − 2

< 24n − 22n <
τn+1

τn

from which we conclude the proof as in the previous case. Here is the compu-
tation:

τn+1

τn
=

|Gn+1|
|Gn|

· 2(n+1)n+1

2n(n−1)+1
· 2n+1 + 1

2n + 1
· 22n − 1

3

> 22 · 22n · 1 · 22n − 1
4

= 24n − 22n .

On the other hand, we obtain by Lemma 10.3

σn+1 − 2
σn − 2

=
|Gn+1|
|Gn|

·

(
2tn + m − 2

m

)
(

tn + m − 4
m − 2

)
< 4 · 2m−3 · t2n = 22n−1(2n + 2n−2)2

= 24n−1 + 24n−2 + 24n−5 + 22n − 22n < 24n − 22n .

10.3. Groups of type 3. Let Gn = D8 ∗ · · · ∗D8 ∗C4 be the central product
of n copies of D8 and one of C4. Let G = Gn, σn = σGn

, τn = τGn
, and

tn = tGn
= 2n + 2n−2 (see Theorem 3.4). Note that m = 2n + 1 for type 3.

We prove that σn < τn by induction, starting with n = 2. Remember that
the case in which n = 1 was treated in Proposition 8.4. First we have that

τ2 = 25 · 24 · 3 · 15
32

= 2560 ,

σ2 =
(

5 + 5 − 4
5 − 2

)
· 26 + 2 = 1282 < τ2 .

If now n ≥ 2 we show that
σn+1 − 2
σn − 2

< 24n+2 <
τn+1

τn
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from which we make our conclusions as in the previous cases. Here is the
computation. First note that

τn+1

τn
=

|Gn+1|
|Gn|

· 2(n+1)2

2n2 · 22(n+1) − 1
3

> 22 · 22n+1 · 22n+1

4
= 24n+2 .

On the other hand, we obtain by Lemma 10.3

σn+1 − 2
σn − 2

=
|Gn+1|
|Gn|

·

(
2tn + m − 2

m

)
(

tn + m − 4
m − 2

)
< 4 · 2m−3 · t2n = 22n(2n + 2n−2)2 < 22n 22(n+1) = 24n+2 .

This completes the proof of Theorem 10.1 and hence also the proof of Theo-
rem 1.4 when p = 2.

11. The general case in odd characteristic

In this section we complete the proof of Theorem 1.4 for odd p. We
assume throughout that the field k has characteristic p and that G = Gn is
an extraspecial group of order p2n+1 and exponent p. Our aim is to prove the
following.

Theorem 11.1. If G = Gn, then there are no nontrivial critical kG-
modules.

If n = 1, the result follows from Section 9. Thus we can assume n ≥ 2.
The proof follows the same basic pattern as in the last section. We define σn

and τn such that σn is an upper bound for the dimension of any critical module
and τn is a lower bound for the dimension of some nontrivial critical module
if nontrivial critical modules exist. Then we prove that σn < τn. First we give
the definitions.

For n ≥ 2 let

σn = 2|Gn|
(

tn + 2n − 3
2n − 1

)
where tn = 2(p2 + p − 1)pn−2. Let τn be given by the rule

τn =
|Gn| |Sp(2n, Fp)|

cn

where cn = (p + 1)n except in the case in which p = 3 and n = 2. In that case
let cn = p2 + 1 = 10. Then we have the following.



868 JON CARLSON AND JACQUES THÉVENAZ

Proposition 11.2. If n ≥ 2 and τn > σn, then there exists no nontrivial
critical kGn-module.

Proof. Let t = tn/2 = (p2 + p − 1)pn−2. By Theorem 4.1, we know that
there exist nonzero elements η1, . . . , ηt ∈ H1(G, F2) such that β(η1) . . . β(ηt)
= 0 and each ηi corresponds to a maximal subgroup Hi. Moreover each sub-
group Hi is the centralizer of a noncentral element of order p in G and by
Theorem 4.7, Hi

∼= Cp × Gn−1. So Hi
∼= H1 for each i.

If M is a critical kGn-module, then by Theorem 7.2 with r = 2t = tn and
s = tn − 1,

Dim M ≤ Dim Ωtn−1(M) + Dim M ≤
tn∑

i=1

Dim (Ωtn−i(k)↑G
Hi

) .

Since all the subgroups Hi are isomorphic to H1, we obtain

Dim M ≤
tn−1∑
j=0

Dim (Ωj(k)↑G
H1

) .

By Corollary 4.8,

tn−1∑
j=0

Dim (Ωj(k)↑G
H1

) ≤ 2|G| ·
(

tn − 1 + 2n − 2
2n − 1

)
= σn .

It follows that DimM ≤ σn.
On the other hand, if we assume that there exists a nontrivial critical kGn-

module, then by Theorem 6.4, there exists a nontrivial critical kG-module M

of dimension

Dim M > |G| · |OG|
|C|

where C is a cyclic p′-subgroup in Sp(2n, Fp) of maximal order. In the case
that p = 3 and n = 2, we know from character tables or from direct analysis
on Sp(4, F3) that C has order at most 10. In all other cases we know by
Proposition 6.5 that the order of C is at most (p + 1)n. So in either case,
Dim M > τn. Hence if σn < τn then we have a contradiction.

So it remains to prove that τn > σn. We will proceed by induction begin-
ning with the following.

Lemma 11.3. τ2 > σ2.

Proof. If p = 3, then σ2 = 860, 706 while τ2 = 1, 259, 712, and so the
lemma holds in that case (note that it is here that we need the special choice
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made for τ2). So suppose that p ≥ 5. Then

σ2

p11
=

1
p11

2p5

(
2(p2 + p − 1) + 1

3

)
=

2
3!

(2 +
2
p
− 1

p2
)(2 +

2
p
− 2

p2
)(2 +

2
p
− 3

p2
) <

1
3
3 · 3 · 3 = 9 .

On the other hand,

τ2

p11
=

p5

p11

p4(p2 − 1)(p4 − 1)
(p + 1)2

= p2
(1 − 1

p2
)(1 − 1

p4
)

(1 +
1
p
)2

> p2
(
4
5
)2

(
4
3
)2

= 9
p2

25
> 9

by the fact that p ≥ 5 and hence 1 + 1/p < 4/3 and 1 − 1/p ≥ 4/5. So again
τ2 > σ2.

Lemma 11.4. For n ≥ 2,
σn+1

σn
<

τn+1

τn
.

Proof. Notice first that a special computation is needed if p = 3 and n = 2.
In that case, by direct calculation, we have that σ3 = 49, 157, 255, 862 while
τ3 = 313, 380, 128, 880. It is then easy to check the lemma in this particular
case.

More generally, we calculate that

τn+1

τn
=

|Gn+1|
|Gn|

p(n+1)2

pn2

(p2 − 1) . . . (p2n+2 − 1)/(p + 1)n+1

(p2 − 1) . . . (p2n − 1)/(p + 1)n

= p2 · p2n+1 · (p2n+2 − 1)/(p + 1) >
1
2
p4n+4.

The above estimate is that, since p ≥ 3, we have 1/(p + 1) > 1/(
√

2p) and
p2n+2 − 1 > p2n+2/

√
2.

At the same time, setting t = tn and noting that tn+1 = ptn, we have

σn+1

σn
=

2p2n+3

2p2n+1

(
tp+2n−1

2n+1

)(
t+2n−3
2n−1

)
=

p2

(2n + 1)(2n)
(tp + 2n − 1)(tp + 2n − 2)

(tp + 2n − 3)
(t + 2n − 3)

. . .
tp

t

(tp − 1)
(t − 1)

.

Now we note that (tp+b)/(t+b) ≤ tp/t = p for all b ≥ 0. Also (tp−1)/(t−1) <
3
2
p because t ≥ 3. Moreover,

tp + 2n − 1 = 2(p2 + p − 1)pn−2p + 2n − 1

= 2pn+1

(
1 +

1
p
− 1

p2
+

2n − 1
2pn+1

)
< 2pn+1(2) = 4pn+1.
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So we have that
σn+1

σn
<

p2

(2n + 1)(2n)
(4pn+1)(4pn+1)(p2n−2)(

3
2
p)

=
16 · 3/2

(2n + 1)(2n)
p4n+3 ≤ 24

20
p4n+3 <

1
2
p4n+4 .

Finally
σn+1

σn
<

1
2
p4n+4 <

τn+1

τn
, as required.

Proof of Theorem 11.1. Remember the case in which n = 1 was treated
in Proposition 9.1. We have shown that τ2 > σ2 and that τn+1/τn > σn+1/σn

for all n ≥ 2. So, by induction, assume that τn > σn. We get that τn+1 =
(τn+1/τn)τn > (σn+1/σn)σn = σn+1. Therefore, τn > σn for all n. The theorem
follows from Proposition 11.2.

The proof of Theorem 1.4 is now complete in all cases.

12. The detection theorem and the vanishing theorem

Having now settled Theorem 1.4, we can move to the main detection
theorem (Theorem 1.2) and the vanishing theorem (Theorem 1.1). Recall that
they assert that if G is not cyclic, quaternion or semi-dihedral, then T (G) is
detected on restriction to all elementary abelian subgroups E of rank 2, and
that the torsion subgroup of T (G) is trivial.

Let us first prove a general version of the detection theorem.

Theorem 12.1. For any p-group G, the restriction homomorphism∏
H

ResG
H : T (G) −→

∏
H

T (H)

is injective, where H runs through the set of all subgroups of G which are
elementary abelian of rank 2, cyclic of order p with p odd, cyclic of order 4,
and quaternion of order 8.

Proof. First note that that there is nothing to prove if G is cyclic of order
1 or 2, because T (G) = {0}. There is also nothing to prove if G is in the
detecting family of the statement. So we can assume that G is not elementary
abelian of rank 2, Cp, C4, or Q8. By an obvious induction argument, it suffices
to prove that ∏

H

ResG
H : T (G) −→

∏
H

T (H)

is injective, where H runs through the set of all maximal subgroups of G.
If G = Cpn is cyclic (with n ≥ 2 for p odd and n ≥ 3 if p = 2), then

ResCpn

Cpn−1
: T (Cpn) −→ T (Cpn−1) is an isomorphism (both groups are isomor-

phic to Z/2Z generated by the class of Ω1(k)). If G is extraspecial or almost
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extraspecial, the result follows from the main theorem of this paper (Theo-
rem 1.4) if either p = 2 or p is odd and G has exponent p. If p is odd and
G has exponent p2 (extraspecial or almost extraspecial), then the result was
proved in Section 4 of [CaTh].

So we can assume that G is neither cyclic, nor elementary abelian of
rank 2, nor extraspecial, nor almost extraspecial. In that case, the result was
proved as Theorem 3.2 of [CaTh].

This theorem provides a direct proof of the following result, which was
first proved by Puig [Pu] using an argument of commutative algebra.

Corollary 12.2. The abelian group T (G) is finitely generated.

As observed by Puig, this easily implies the finite generation of the Dade
group of all endo-permutation modules (see Corollary 2.4 in Puig [Pu]).

Proof. T (H) is finitely generated whenever H is in the detecting family.
Now a subgroup of a finitely generated group is finitely generated.

Theorem 12.1 is the intermediate statement which we need for our induc-
tive proof of Theorem 1.2. We first need to prove the result in two special
cases.

Proposition 12.3. Suppose that G ∼= Q8 × C2 or G ∼= D8 ∗ C4. Then
T (G) is detected on restriction to all elementary abelian subgroups E of rank 2.

Proof. Suppose that M is a nontrivial endo-trivial module such that
M↓G

E
∼= k⊕ (free) for every elementary abelian subgroup E of rank 2. Assume

that M has minimal dimension among such modules. On restriction to a max-
imal subgroup of the form C4×C2, we must have that M↓G

C4×C2
∼= k ⊕ (free),

because T (C4×C2) −→ T (E) is an isomorphism for E = C2×C2 ⊂ C4×C2. It
follows that Dim(M) ≡ 1 (mod 8). It also follows that M↓G

C4
∼= k ⊕ (free) for

any cyclic subgroup C4, because C4 is contained in a maximal subgroup of the
form C4×C2.

Since M is nontrivial, it must be detected on some restriction (Theo-
rem 12.1). So there exists a quaternion subgroup H ∼= Q8 in G such that
M↓G

H is nontrivial. Then M↓G
H

∼= Ω2(kH)⊕ (free), because Ω2(kH) is the only
indecomposable endo-trivial kH-module other than kH itself whose dimension
is congruent to 1 modulo 8 (see [CaTh, §6]).

Let z be the generator of the center of H (which is also central in G). We
consider the variety VG(M) ⊆ VG(k) ∼= k3 where, as in Section 5, G = G/〈z〉
and M ∼= (z − 1)M . On restriction to H, we have VH(M) = VH( Ω2(kH) )
and Ω2(kH) is a periodic kH-module by Lemma 5.3. Since Ω2(kH) is invariant
under Galois automorphisms, so is Ω2(kH), and therefore VH(M) is a union of
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lines permuted by Galois automorphisms. But these lines are not F2-rational
(by Lemma 6.1 applied to the kH-module Ω2(kH), which is critical), hence not
fixed by Galois automorphisms. It follows that there are at least two lines in
VH(M) (and in fact exactly two, which are F4-rational, because this is the only
possibility for the 4-dimensional module Ω2(kH) ). Now VG(M) also contains
at least two lines since it contains res∗

G,H
(VH(M)). So M ∼= M1 ⊕ M2 where

VG(M1) is one of the two lines. Now following the procedure of Theorem 5.6
we can construct a nontrivial endo-trivial kG-module N1 such that N1 = M1.
Moreover N1 is trivial on restriction to every elementary abelian subgroup.
But Dim(N1) < Dim(M), contrary to the choice of M .

We also need a group-theoretical lemma.

Lemma 12.4. Let G be a semi-direct product G = Q2n � C2 for some
n ≥ 3 and some action of C2 on Q2n. Then one of the following properties
holds:

(a) G contains a semi-dihedral subgroup S such that S ⊇ Q8 ⊆ Q2n.

(b) G contains a subgroup Q8 ∗ C4 with Q8 ⊆ Q2n.

(c) G contains a subgroup Q8 × C2 with Q8 ⊆ Q2n.

Proof. Let u be a generator of C2. We use induction on n and first
consider the case n = 3. If the action of u on Q8/Z(Q8) is nontrivial, then we
can choose two generators x and y of Q8 such that uxu−1 = y. In that case G

is semi-dihedral and we are in case (a). If now u acts trivially on Q8/Z(Q8),
then u fixes each of the three cyclic subgroups of order 4 of Q8. If u acts
trivially on Q8, then G = Q8 ×C2 and we are in case (c). Otherwise it easy to
see that u must invert two of the cyclic subgroups of order 4 and fix pointwise
the third one, say 〈x〉. But then the actions of u and x coincide, so that ux−1

acts trivially and G = Q8 ∗ C4, which is case (b).
Assume now that n ≥ 4. Let x and y be generators of Q2n with x2n−1

= 1,
y2 = x2n−2

and yxy−1 = x−1. All elements of the form xby have order 4
(where 0 ≤ b ≤ 2n−1). Conjugation by u must satisfy uxu−1 = xa for some
odd integer a and uyu−1 = xby for some b. Since u2 = 1, we must have the
following congruences modulo 2n−1 :

a ≡ ±1 , 2n−2 ± 1 and (a + 1)b ≡ 0 .

If a ≡ −1 and b is odd, we can replace x by xb and we get a standard presenta-
tion of the semi-dihedral group SD2n+1 , so we are in case (a). Otherwise b must
be even, because this is forced by the condition (a + 1)b ≡ 0 if a �≡ −1. There-
fore conjugation by u stabilizes the subgroup Q2n−1 generated by x2 and y.
The result now follows by induction applied to the group Q2n−1 � 〈u〉.
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Now we come to the detection theorem (Theorem 1.2 of the introduction).

Theorem 12.5. Suppose that G is a p-group which is not cyclic, quater-
nion, or semi-dihedral. Then T (G) is detected on restriction to all elementary
abelian subgroups E of rank 2.

Proof. We use induction on the order of G. First recall that the result is
known if G is abelian or dihedral (see [CaTh]); so we assume that G is neither
abelian nor dihedral.

Let M be an endo-trivial module such that ResG
E [M ] = 0 for every elemen-

tary abelian subgroup E of rank 2, where [M ] denotes the class of M in T (G).
It suffices to prove that ResG

H [M ] = 0 for every maximal subgroup H of G,
because then [M ] = 0 by Theorem 12.1. For every maximal subgroup H which
is not cyclic, quaternion, or semi-dihedral, M↓G

H satisfies the same assumption
as M , so that ResG

H [M ] = 0 by induction. Now, we are left with the cases
where the maximal subgroup H is cyclic, quaternion, or semi-dihedral.

Assume first that H ∼= Cpn is cyclic. By a well-known result of group the-
ory (see Theorem 4.4 in Chapter 5 of [Go1]), G is either abelian, or isomorphic
to a group P to be described below, or in addition when p = 2, isomorphic to
D2n+1 , Q2n+1 , or SD2n+1 . The cases of the cyclic group Cpn+1 , the quaternion
group Q2n+1 , or the semi-dihedral group SD2n+1 , are excluded by our hypoth-
esis. The cases of an abelian group or a dihedral group D2n+1 have already
been dealt with. So we are left with the case G = P = H �Cp, with respect to
the action uxu−1 = x1+pn−1

, where x is a generator of H and u is a generator
of Cp. This case occurs if n ≥ 2 when p is odd and n ≥ 3 when p = 2. Now G

also contains a maximal subgroup K = 〈xp〉×〈u〉 ∼= Cpn−1 ×Cp and we already
know that ResG

K [M ] = 0. Therefore

ResG
Cpn−1

[M ] = ResK
Cpn−1

ResG
K [M ] = 0 .

But we also have ResG
Cpn−1

= ResH
Cpn−1

ResG
H and

ResH
Cpn−1

: T (H) −→ T (Cpn−1)

is an isomorphism since both T (H) and T (Cpn−1) are cyclic of order 2 generated
by the class of Ω1(k) (because n ≥ 2 and n ≥ 3 if p = 2). It follows that
ResG

H [M ] = 0.
Assume now that H ∼= SD2n is semi-dihedral. We know that the torsion

subgroup Tt(H) is cyclic of order 2 generated by the class of an endo-trivial
module whose dimension is congruent to 1 modulo 2n−1 (see [CaTh, §7]).
This class cannot be in the image of ResG

H , because all endo-trivial modules
for G have dimension congruent to ±1 modulo 2n, by Lemma 2.10 in [CaTh].
It follows that the image of ResG

H is contained in 〈 [Ω1
H(k)] 〉 ∼= Z, because

T (H) = Tt(H) ⊕ 〈 [Ω1
H(k)] 〉. But now the restriction map

ResH
E : 〈 [Ω1

H(k)] 〉 −→ T (E) = 〈 [Ω1
E(k)] 〉
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is an isomorphism where E is an elementary abelian subgroup of rank 2. Since
ResH

E ResG
H [M ] = 0, we must have ResG

H [M ] = 0 as required. Note that the
same argument shows that ResG

S [M ] = 0 for any semi-dihedral subgroup S

of G.
Assume finally that H ∼= Q2n is quaternion. Since G is neither cyclic nor

quaternion, its 2-rank cannot be 1 (see Chapter 5 of [Go1]) and so there exists
an element of order 2 outside H. Therefore G ∼= Q2n � C2 for some action of
C2 on Q2n . By Lemma 12.4, G contains a subgroup R which is isomorphic to
Q8 ∗ C4, Q8 × C2, or semi-dihedral, and such that R ⊇ Q8 ⊆ H. In the first
two cases we have ResG

R[M ] = 0 by Proposition 12.3 and in the third we have
ResG

R[M ] = 0 by the argument above. It follows that

ResH
Q8

ResG
H [M ] = ResG

Q8
[M ] = ResR

Q8
ResG

R[M ] = 0 .

We know that T (H) ∼= Z/4Z ⊕ Z/2Z, where Z/4Z is generated by the class
of Ω1

H(k) and Z/2Z is generated by the class of an endo-trivial module of
dimension 2n−1 + 1 (see [CaTh, §6]). Again this class cannot be in the image
of ResG

H , because all endo-trivial modules for G have dimension congruent to
±1 modulo 2n. Thus the image of ResG

H is contained in Z/4Z = 〈 [Ω1
H(k)] 〉.

But now the restriction map

ResH
Q8

: 〈 [Ω1
H(k)] 〉 −→ 〈 [Ω1

Q8
(k)] 〉

is an isomorphism. Since ResH
Q8

ResG
H [M ] = 0, we must have ResG

H [M ] = 0 as
required.

We immediately deduce the vanishing theorem (Theorem 1.1 of the intro-
duction).

Corollary 12.6. If G is not cyclic, quaternion or semi-dihedral, then
the torsion subgroup of T (G) is trivial.

Proof. By the theorem, we know that T (G) is embedded in a product of
copies of T (E) ∼= Z, where E is elementary abelian of rank 2.

We can now prove Corollary 1.3 of the introduction.

Corollary 12.7. Suppose that G is a finite p-group for which every max-
imal elementary subgroup has rank at least 3. Then T (G) ∼= Z, generated by
the class of the module Ω1(k).

Proof. The assumption implies that G cannot be cyclic, quaternion or
semi-dihedral. Therefore, by the theorem, T (G) is detected on restriction
to elementary abelian subgroups of rank 2. The rest of the proof follows
Alperin [Al2] and we recall the argument (also used in [BoTh]). The par-
tially ordered set of all elementary abelian subgroups of rank at least 2 is con-
nected, in view of the assumption and by a well-known result of the theory of
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p-groups. For any such subgroup H, the restriction map T (H) −→ T (E) ∼= Z
to an elementary abelian subgroup of rank 2 is an isomorphism. It follows that
all restrictions to such rank 2 subgroups E are equal.

13. The Dade group

In this section, we prove detection theorems for the Dade group D(G) of
all endo-permutation modules and we determine its torsion subgroup when p

is odd. We refer to [BoTh] for details about D(G). Let us only mention that
the torsion-free rank of D(G) has been determined in [BoTh] so that we are
particularly interested in the torsion subgroup Dt(G). We first state an easy
consequence of Theorem 12.1.

Theorem 13.1. Let G be a finite p-group.

(a) The product of all restriction-deflation maps∏
K/H

DefKK/H ResG
K : D(G) −→

∏
K/H

D(K/H)

is injective, where K/H runs through the set of all sections of G which
are elementary abelian of rank 2, cyclic of order p with p odd, cyclic of
order 4, or quaternion of order 8.

(b) For the torsion subgroup, the product of all restriction-deflation maps∏
K/H

DefKK/H ResG
K : Dt(G) −→

∏
K/H

Dt(K/H)

is injective, where K/H runs through the set of all sections of G which
are cyclic of order p if p is odd, quaternion of order 8 or cyclic of order 4
if p = 2.

Proof. The argument is exactly the same as the one given in Theorem 1.6
of [BoTh] or in Theorem 10.1 of [CaTh].

We now deduce Corollary 1.6 of the introduction.

Corollary 13.2. Let G be a finite p-group.

(a) If p is odd , any nontrivial torsion element in D(G) has order 2. In other
words, for any indecomposable endo-permutation kG-module M with ver-
tex G, the class of M is a torsion element if and only if M is self-dual.

(b) If p = 2, any nontrivial torsion element in D(G) has order 2 or 4.

Proof. The nontrivial elements of D(Cp) have order 2, while those of
D(Q8) and D(C4) have order 2 or 4. Moreover, an element of order 2 corre-
sponds to a self-dual module by definition of the group law.
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If p is odd, the detection theorem above allows for a complete description
of the torsion subgroup of D(G) (Theorem 1.5 of the introduction), by the
partial results already obtained in [BoTh].

Theorem 13.3. If p is odd and G is a finite p-group, the torsion subgroup
of D(G) is isomorphic to (Z/2Z)s, where s is the number of conjugacy classes
of nontrivial cyclic subgroups of G.

Note that explicit generators are described in [BoTh].

Proof. Theorem 6.2 in [BoTh] asserts that a certain quotient Dt(G) of
the torsion subgroup Dt(G) is isomorphic to (Z/2Z)s, where s is as above.
So we only have to prove that Dt(G) = Dt(G). But by definition, Dt(G) =
Dt(G)/ Ker(ψ), where ψ is the product of all restriction-deflation maps

ψ =
∏
K/H

DefKK/H ResG
K : Dt(G) −→

∏
K/H

Dt(K/H)

where K/H runs through the set of all sections of G which are cyclic of order p.
Now ψ is injective by Theorem 13.1 and the result follows.

Our purpose now is to improve Theorem 13.1 by restricting the kind of
section needed on the right-hand side. However, we will also change the target
by including all groups having torsion endo-trivial modules, namely cyclic,
quaternion, and semi-dihedral groups.

If S = 〈x〉 is cyclic of order pn, then

D(S) = Dt(S) ∼=
n∏

i=1

Tt(S/〈xpi〉) ,

and we let πS : Dt(S) → Tt(S) denote the projection onto the factor indexed
by i = n. The situation is easier if S is a quaternion or semi-dihedral group,
since Dt(S) = Tt(S) by [CaTh, §10]. In this case, we write πS : Dt(S) → Tt(S)
for the identity map.

Theorem 13.4. Let G be a finite p-group. If p is odd, let X be the class
of all subgroups H of G such that NG(H)/H is cyclic. If p = 2, let X be
the class of all subgroups H of G such that NG(H)/H is cyclic of order ≥ 4,
quaternion of order ≥ 8, or semi-dihedral of order ≥ 16. Let [X/G] be a system
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of representatives of conjugacy classes of subgroups in X . Then the map∏
H∈[X/G]

πNG(H)/H DefNG(H)
NG(H)/H ResG

NG(H) :

Dt(G) −→
∏

H∈[X/G]

Tt(NG(H)/H)

is injective.

Proof. Let ϕ denote the map in the statement and let a ∈ Ker(ϕ), so that
πNG(H)/H DefResG

NG(H)/H(a) = 0 for every H ∈ X , where we write for sim-
plicity DefResG

K/H = DefKK/H ResG
K for every section K/H. By Theorem 13.1

above, it suffices to prove that DefResG
K/H(a) = 0 for every section K/H iso-

morphic to Cp, C4 or Q8. We are going to show that DefResG
NG(H)/H(a) = 0 and

the result will follow from this since DefResG
K/H = ResNG(H)/H

K/H DefResG
NG(H)/H .

For simplicity of notation, we write now L = NG(H).
We use induction on the index |G : H|. If H has index p, there is nothing

to prove because L = G, πG/H = id, and

DefResG
G/H(a) = πG/H DefResG

G/H(a) = 0 ,

by assumption if p is odd and by the fact that D(G/H) = {0} if p = 2. Let F

be a subgroup such that H < F ≤ L. By induction, DefResG
NG(F )/F (a) = 0 and

consequently DefResG
NL(F )/F (a) = 0. This holds for every such F and therefore

DefResG
L/H(a) ∈

⋂
H<F≤L

Ker(DefResL/H
NL(F )/F ) = T (L/H) .

The last equality is a well-known characterization of T (L/H) as a subgroup
of D(L/H) (see Lemma 2.1 in [CaTh] and note that this characterization is
also at the heart of the proof of Theorem 13.1). Since a was chosen to be a
torsion element in D(G), we have proved that DefResG

L/H(a) ∈ Tt(L/H).
If L/H is not cyclic, quaternion, or semi-dihedral, then Tt(L/H) = {0}

by Theorem 1.1 and so DefResG
L/H(a) = 0. The same holds if L/H is cyclic of

order 2. If L/H is quaternion or semi-dihedral, then πL/H is the identity map
and πL/H DefResG

L/H(a) = 0 by assumption, so DefResG
L/H(a) = 0. If L/H is

cyclic of order ≥ 3, then πL/H : Dt(L/H) → Tt(L/H) restricts to the identity
on Tt(L/H). Since πL/H DefResG

L/H(a) = 0 by assumption, we obtain again
DefResG

L/H(a) = 0.

In order to illustrate the efficiency of Theorem 13.4 compared to Theo-
rem 13.1, suppose that G is abelian. Then there are numerous sections of G

isomorphic to Cp or C4 and the map in Theorem 13.1 is an injection in a
much larger group, whereas the map in Theorem 13.4 hits exactly every cyclic
quotient of G and is an isomorphism (Dade’s theorem).
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If G is a dihedral 2-group, there are many sections of G isomorphic to C4,
but NG(H)/H is never cyclic of order ≥ 4, quaternion, or semi-dihedral, so
that X is empty and Dt(G) = {0}, a result also obtained in [CaTh, §10].

Theorem 13.4 allows us to handle also a case where the structure of Dt(G)
was not previously known.

Proposition 13.5. Suppose that G is an extraspecial 2-group of type 1,
that is, a central product of copies of D8. Then Dt(G) = {0}.

Proof. We claim that X is empty and so Dt(G) = {0}. If H is a sub-
group of G containing Z(G), then H is a normal subgroup, G/H is elementary
abelian, and H /∈ X . If H does not contain Z(G), then for any g ∈ NG(H), we
have that [g, h] ∈ H ∩ Z(G) = {1}. Thus NG(H) = CG(H) and in particular
H is abelian, actually elementary abelian, since the square of every element of
H belongs to H ∩ Z(G) = {1}. Using the quadratic form on G/Z(G), it is not
hard to prove that if n is the number of copies of D8 in the central product and
if H = (C2)k, then CG(H) = H×L where L is a central product of n−k copies
of D8 (possibly n−k = 0 and L = Z(G)). Therefore NG(H)/H is extraspecial
and H /∈ X . This proves that X is empty.

14. Two examples

Theorem 13.4 is not sufficient to determine Dt(G) in all cases when p = 2.
This seems to be in contrast to the case of an odd prime, for which the solution
of the detection conjecture for T (G) allows for a complete description of Dt(G)
(Theorem 1.5).

Our purpose is to illustrate the situation with the extraspecial groups of
type 2 and the almost extraspecial groups (type 3). For simplicity, we shall
only deal with the smallest of the groups, namely D8 ∗ Q8 and D8 ∗ C4, but
our results can easily be generalized to the other groups of types 2 and 3.

If follows from Theorem 13.4 that the product of all restriction-deflation
maps ∏

H∈[X/G]

DefNG(H)
NG(H)/H ResG

NG(H) : Dt(G) −→
∏

H∈[X/G]

Dt(NG(H)/H)

is injective. In the opposite direction, there is the sum of all maps obtained by
composing inflation maps InfNG(H)

NG(H)/H and tensor induction TenG
NG(H), namely∑

H∈[X/G]

TenG
NG(H) InfNG(H)

NG(H)/H :
⊕

H∈[X/G]

Dt(NG(H)/H) −→ Dt(G) .

We let D0
t (G) be the image of this map. The question of the surjectivity of

this map does not seem to be easy and this is why we have to introduce the
subgroup D0

t (G). In similar situations for odd primes, or for the Dade group
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tensored with Q, we can prove the surjectivity of the map (see Sections 4 and 6
of [BoTh]), so it seems natural to conjecture that D0

t (G) = Dt(G). In our two
examples, we shall be able to compute D0

t (G) but it is not easy to know if
Dt(G) is larger or not.

In order to compute the image by restriction-deflation of elements of
D0

t (G), we need a technical formula which is derived from the results of [BoTh].
There is a general formula describing the restriction-deflation of an element of
the form TenG

K InfKK/H(x), but for simplicity we only consider two very special
cases. The Frobenius map λ �→ λpn

is an endomorphism of k and we let

γpn : D(G) −→ D(G)

be the group homomorphism induced by the Frobenius map, as defined in
Section 3 of [BoTh].

Lemma 14.1. Let G be a p-group and let K and H be subgroups of G such
that H is a normal subgroup of K.

(a) Let P and R be subgroups of G such that R is a normal subgroup of P .
Assume that K and P satisfy KP = G (a single double coset). Assume further
that the inclusions P ∩ K → K and P ∩ K → P induce isomorphisms

(P ∩ K)/(R ∩ H) ∼−→ K/H and (P ∩ K)/(R ∩ H) ∼−→ P/R

respectively. Then the following maps from D(K/H) to D(P/R) are equal :

DefPP/R ResG
P TenG

K InfKK/H = γ|R:R∩H| IsoP/R
(P∩K)/(R∩H) (IsoK/H

(P∩K)/(R∩H))
−1 ,

where the two latter maps are induced by the isomorphisms (P∩K)/(R∩H) ∼−→
P/R and (P ∩ K)/(R ∩ H) ∼−→ K/H respectively.

(b) Let L be a normal subgroup of K. Then the following maps from
D(K/H) to D(K/L) are equal :

DefKK/L InfKK/H = InfK/L
K/HL DefK/H

K/HL .

Proof. (a) Since there is a single double coset, the Mackey formula implies
that

DefPP/R ResG
P TenG

K InfKK/H = DefPP/R TenP
P∩K ResK

P∩K InfKK/H .

Now Proposition 3.10 in [BoTh] asserts that

DefPP/R TenP
Q = γ|R:Q∩R| TenP/R

QR/R IsoQR/R
Q/Q∩R DefQQ/Q∩R .

Applying this with Q = P ∩ K, we have that QR = P and Q ∩ R = R ∩ H,
because of the assumed isomorphism (P ∩K)/(R∩H) ∼−→ P/R, and therefore

DefPP/R TenP
P∩K = γ|R:R∩H| IsoP/R

P∩K/R∩H DefP∩K
P∩K/R∩H .
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Composing on the right with ResK
P∩K InfKK/H , it is easy to see that

DefP∩K
P∩K/R∩H ResK

P∩K InfKK/H = (IsoK/H
P∩K/R∩H)−1 ,

using either the definitions of the maps or the methods of Corollary 3.9 in [BoTh].
It follows that

DefPP/R TenP
P∩K ResK

P∩K InfKK/H = γ|R:R∩H| IsoP/R
P∩K/R∩H (IsoK/H

P∩K/R∩H)−1 ,

and the result follows.
(b) This follows either from the definitions of the maps or from the meth-

ods of Corollary 3.9 in [BoTh].

Now we can start with our first example D8 ∗ C4. Let S1, S2, S3 be rep-
resentatives of the three conjugacy classes of noncentral subgroups of order 2
(the two classes in D8 and the product of a generator of C4 with an element
of order 4 in D8).

Proposition 14.2. Let G = D8 ∗ C4 be the almost extraspecial group of
order 16. Then D0

t (G) is cyclic of order 2, generated by the class of the module
TenG

S1×C4
InfS1×C4

S1×C4/S1
(Ω1

S1×C4/S1
(k)).

Proof. We have that NG(Si) = Si × C4 and so NG(Si)/Si
∼= C4 and Si is

in the class X of Theorem 13.4. These are the only subgroups in X (because
every other nontrivial subgroup H contains the Frattini subgroup and G/H is
elementary abelian). Therefore Theorem 13.4 yields an injective map

3∏
i=1

DefSi×C4

Si×C4/Si
ResG

Si×C4
: Dt(G) −→

3∏
i=1

Dt(Si × C4/Si) ∼= (Z/2Z)3 ,

each factor Dt(Si × C4/Si) ∼= Dt(C4) being cyclic of order 2 generated by
the class of Ω1

Si×C4/Si
(k). Now by definition D0

t (G) is generated by the three
elements

TenG
Si×C4

InfSi×C4

Si×C4/Si
(Ω1

Si×C4/Si
(k)) (1 ≤ i ≤ 3) .

We claim that they are all equal and have order 2. This will complete the
proof of the proposition.

In order to prove the claim, we show that the image of any of these three
elements by the injective map above is equal to the “diagonal element”

(Ω1
S1×C4/S1

(k) , Ω1
S2×C4/S2

(k) , Ω1
S3×C4/S3

(k) ) .

This follows from a straightforward application of Lemma 14.1. If i �= j, we
obtain

DefSj×C4

Sj×C4/Sj
ResG

Sj×C4
TenG

Si×C4
InfSi×C4

Si×C4/Si
(Ω1

Si×C4/Si
(k))

= γ|Sj :1| IsoSj×C4/Sj

C4/1 (IsoSi×C4/Si

C4/1 )−1(Ω1
Si×C4/Si

(k))

= γ2(Ω1
Sj×C4/Sj

(k)) = Ω1
Sj×C4/Sj

(k) ,
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using the fact that Ω1(k) is defined over the prime field F2 and hence is fixed by
the Frobenius map γ2. In the case i = j, we have for any k[Si×C4]-module M ,

ResG
Si×C4

TenG
Si×C4

(M) = M ⊗ gM ,

where g is a representative of the nontrivial class of G/Si×C4 and gM denotes
the conjugate module. Therefore, ignoring inflation for simplicity, we obtain

DefSi×C4

Si×C4/Si
ResG

Si×C4
TenG

Si×C4
InfSi×C4

Si×C4/Si
(Ω1

Si×C4/Si
(k))

= DefSi×C4

Si×C4/Si

(
Ω1

Si×C4/Si
(k) ⊗ g(Ω1

Si×C4/Si
(k))

)
= DefSi×C4

Si×C4/Si

(
Ω1

Si×C4/Si
(k)

)
⊗ DefSi×C4

Si×C4/Si

(
Ω1

Si×C4/gSig−1(k)
)

= Ω1
Si×C4/Si

(k) ⊗ DefSi×C4

Si×C4/Si
(Ω1

Si×C4/gSig−1(k)) .

But the second factor is trivial because, by part (b) of Lemma 14.1 with K =
Si × C4, we have

DefKK/Si
InfKK/gSig−1 = InfK/Si

K/Si(gSig−1) DefK/gSig−1

K/Si(gSig−1)

and a deflation of the class of Ω1(k) is trivial (see Lemma 1.3 of [BoTh]).

In this example, we see that Dt(G) embeds in three copies of Z/2Z and
that D0

t (G) ∼= Z/2Z. So in order to prove the conjectural equality D0
t (G) =

Dt(G), we would have to improve Theorem 13.4 by showing the injectivity of
the restriction-deflation map to a single section Si × C4/Si. In this specific
example, we have been able to do this by a rather delicate argument not given
here.

The methods are similar with our second example D8 ∗ Q8, but another
complication occurs. Recall that Dt(Q8) is generated by the class of Ω1

Q8
(k),

which has order 4, and the class of a certain 5-dimensional module M , which
has order 2 (see [CaTh, §6]). Moreover M is defined over the field F4 (so
we assume here that k contains F4) and M is not invariant under the Galois
automorphism γ2. Actually γ2(M) ∼= Ω2(M), another 5-dimensional module,
and Ω2(k), M , Ω2(M) are the three elements of order 2 in Dt(Q8) ∼= Z/4Z ⊕
Z/2Z.

Let S1, . . . , S5 be representatives of the five conjugacy classes of noncentral
subgroups of order 2 (the two classes in D8 and the product of an element of
order 4 in D8 with one of the three possible elements of order 4 in Q8).

Proposition 14.3. Let G = D8 ∗ Q8 be the extraspecial group of order
32 (type 2). Then

D0
t (G) ∼= Z/4Z ⊕ Z/2Z

generated by the class of the module

TenG
NG(S1)

InfNG(S1)
NG(S1)/S1

(Ω1
NG(S1)/S1

(k)) (order 4)
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and by the class

TenG
NG(S1)

InfNG(S1)
NG(S1)/S1

(MNG(S1)/S1
) (order 2),

where MNG(S1)/S1
is the module M viewed as a module for the group NG(S1)/S1,

which is isomorphic to Q8.

Proof. We have that NG(Si) = Si × C (for some subgroup C isomorphic
to Q8) and so NG(Si)/Si

∼= Q8 and Si is in the class X of Theorem 13.4.
These are the only subgroups in X , because every other nontrivial subgroup
H contains the Frattini subgroup and G/H is elementary abelian. Therefore,
by Theorem 13.4, the map

5∏
i=1

DefNG(Si)
NG(Si)/Si

ResG
NG(Si)

: Dt(G) −→
5∏

i=1

Dt(NG(Si)/Si) ∼= (Dt(Q8))5

is injective. Now by definition D0
t (G) is generated by the classes of the modules

TenG
NG(Si)

InfNG(Si)
NG(Si)/Si

(X) (1 ≤ i ≤ 5) ,

where X is either Ω1(k) or M (viewed in Dt(NG(Si)/Si) ).
If X = Ω1(k), we always obtain the same element, independently of i,

mapping to the diagonal element consisting of Ω1(k) in each component under
the injective map above. The proof of this follows exactly the same argument
as the one used in the proof of Proposition 14.2, with the following minor
modification. For every pair Si, Sj with i �= j, the group generated by Si and
Sj is isomorphic to D8. Its centralizer C is isomorphic to Q8, and we have
NG(Si) = Si×C and NG(Sj) = Sj ×C. It follows that we can use Lemma 14.1
(with P/Q = NG(Si)/Si , K/H = NG(Sj)/Sj , P ∩ K = C). The rest of the
argument is similar to that used in Proposition 14.2.

If now X = M , we again use Lemma 14.1, but the computation changes
because of the presence of the Galois automorphism γ2 which does not fix
the class of M . Moreover, for each i, we need to fix a choice of isomorphism
NG(Si)/Si

∼= Q8 in order to be able to make a consistent computation. We skip
the details and only give the result. It turns out that, under the injective map
above, the image of TenG

NG(Si)
InfNG(Si)

NG(Si)/Si
(M) is the 5-tuple (M, M, M, M, M),

again independent of i. It follows that we obtain just one extra generator
of D0

t (G), of order 2.

In this example, Dt(G) is sandwiched between D0
t (G) ∼= Z/4Z⊕Z/2Z and

(Z/4Z ⊕ Z/2Z)5. The question of the equality Dt(G) = D0
t (G) remains open.

University of Georgia, Athens, GA
E-mail address: jfc@sloth.math.uga.edu
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