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The Schrödinger propagator
for scattering metrics

By Andrew Hassell and Jared Wunsch*

Abstract

Let g be a scattering metric on a compact manifold X with boundary, i.e.,
a smooth metric giving the interior X◦ the structure of a complete Rieman-
nian manifold with asymptotically conic ends. An example is any compactly
supported perturbation of the standard metric on Rn. Consider the operator
H = 1

2∆ + V , where ∆ is the positive Laplacian with respect to g and V is a
smooth real-valued function on X vanishing to second order at ∂X. Assuming
that g is nontrapping, we construct a global parametrix U(z, w, t) for the kernel
of the Schrödinger propagator U(t) = e−itH , where z, w ∈ X◦ and t �= 0. The
parametrix is such that the difference between U and U is smooth and rapidly
decreasing both as t → 0 and as z → ∂X, uniformly for w on compact subsets
of X◦. Let r = x−1, where x is a boundary defining function for X, be an
asymptotic radial variable, and let W (t) be the kernel e−ir2/2tU(t). Using the
parametrix, we show that W (t) belongs to a class of ‘Legendre distributions’
on X × X◦ × R�0 previously considered by Hassell-Vasy. When the metric is
trapping, then the parametrix construction goes through microlocally in the
nontrapping part of the phase space.

We apply this result to determine the singularities of U(t)f , for any tem-
pered distribution f and for any fixed t �= 0, in terms of the oscillation of f near
∂X. If the metric is nontrapping then we precisely determine the wavefront
set of U(t)f , and hence also precisely determine its singular support. More
generally, we are able to determine the wavefront set of U(t)f for t > 0, resp.
t < 0 on the non-backward-trapped, resp. non-forward-trapped subset of the
phase space. This generalizes results of Craig-Kappeler-Strauss and Wunsch.

1. Introduction

Let (X, g) be a scattering manifold of dimension n. Thus, X is a compact
n-dimensional manifold with boundary, and g is a metric in the interior of X

*This research was supported in part by a Fellowship and a Linkage grant from the
Australian Research Council (A. H.) and by NSF grant DMS-0100501 (J. W.)
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taking the form

g =
dx2

x4
+

h

x2

near the boundary. Here x is a boundary defining function, y are local coor-
dinates on the boundary Y = ∂X extended to X and h is a 2-cotensor that
restricts to a metric (i.e., is positive definite) on Y . We shall assume that x is a
globally defined, smooth function on X that vanishes only at ∂X, and denote
r = x−1, which is analogous to the radial variable on Euclidean space. The
metric takes a more familiar form when written in terms of r:

g = dr2 + r2h(r−1, y, dr, dy),

where h is smooth in the first variable and y (smoothness in x = 1/r ∈ [0, ε)
is of course a much stronger condition than smoothness in r ∈ (ε−1,∞)). In
fact, one can choose coordinates locally so that g takes the form

g = dr2 + r2h(r−1, y, dy) =
dx2

x4
+

h(x, y, dy)
x2

;(1.1)

here h is a metric in the y variables depending parametrically (and smoothly)
on x (see [11] for a proof). Thus, g is asymptotically conic; it approaches the
conic metric dr2 + r2h0, where h0 = h(0, y, dy), as r → ∞. The boundary ∂X

is then at geometric infinity, with each point of ∂X representing an asymptotic
direction of geodesics. Euclidean space, with its standard metric or any short
range perturbation of it, is an example. We shall assume henceforth that
coordinates have been chosen so that the representation (1.1) for the metric
holds. Let ∆ denote the positive Laplacian with respect to g, and let H =
1
2∆ + V , where V ∈ x2C∞(X; R). Thus V is a short-range potential1. We
consider the time-dependent Schrödinger equation

(Dt + H)u(z, t) = 0, u(z, 0) = f(z) ∈ C−∞(X),(1.2)

where z ∈ X, t ∈ R, Dt = −i ∂
∂t and f is a given distribution on X. Let

U(t) = e−itH be the propagator for H. We wish to construct a parametrix
U(t) for U(t) which captures all the singularities of U ; in particular, we want
U(t) − U(t) to have a kernel which vanishes rapidly both as t → 0 and as we
approach ∂X. However, to simplify the construction we shall let only one of
the variables (z, w) ∈ X2, say the left variable z, approach infinity, while we
shall only require uniformity over compact subsets in the w variable.

To state our main theorem, we choose a function φ ∈ C∞(X) which is
zero in a neighbourhood of the boundary of X, we let r = x−1 as above, and

1Gravitational long-range potentials and metrics in the sense of [7] can also be treated;
see [9].
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we define the kernel W (t) = e−ir2/2tU(t). We remark that we regard U(t)
and W (t) as acting on half-densities, so the kernels contain a Riemannian
half-density factor |dgzdgwdt|1/2 in each variable. Then our main result is

Theorem 1.1. Assume that the metric g is nontrapping. Then the kernel
φ(w)W (t) is a fibred -scattering Legendrian distribution on X×X◦×R+ of order
(3
4 , 1

4) in the sense of [8], associated to the Legendre submanifold φL defined in
Lemma 3.5.

Remark. In the trapping case, one can still construct a parametrix mi-
crolocally in the nontrapping region; see Section 5.

In more prosaic language, Theorem 1.1 says that the propagator is given
by oscillatory integrals of certain rigidly prescribed forms. Near t = 0, and
with both variables w, z away from the boundary of X, these take the form of
a Legendrian distribution (see Melrose-Zworski [16])

t−n/2−k/2(2π)−k

∫
K

eiΦ(z,w,v)/ta(z, w, v, t)dv,

where the integral is over a compact set K ⊂ Rk. Here, Φ and a are smooth
in all their variables. Near the diagonal, Φ is given by dist(w, z)2/2, as in
the flat Euclidean case, no v variables are required, and there is no integral.
Associated to Φ is a Legendrian submanifold of T ∗X × T ∗X × R, here given
explicitly by

L = {(w, ξ, z, ζ, τ) | (z, ζ) = expg(w, ξ), τ =
|ξ|2
2

}

(this is a somewhat noninvariant description, for precise details see §3). The
function Φ becomes nonsmooth outside the injectivity radius; geometrically
this corresponds to the Legendrian L becoming nonprojectable (i.e. the projec-
tion from the Legendrian to the base X×X is no longer a diffeomorphism). The
Legendrian, however, remains perfectly smooth; it is no longer parametrized
by a function just of w and z, but one needs extra variables v (precisely, one
needs at least k extra variables locally where k is the dimension of the null
space of the differential of the projection from the Legendrian to the base).

When z approaches the boundary of X, we use local coordinates (x, y) as
described above, and sometimes use r = x−1, the asymptotic ‘radial’ variable.
In this region the propagator takes a more complicated form. We show that
W (t) is a finite sum of oscillatory integrals of the form

t−n/2−k/2(2π)−k

∫
K

eiψ(x,y,w,v)/xta(x, y, w, v, t)dv,(1.3)

where again ψ and a are smooth in all their variables, and one integrates over
a compact set K ⊂ Rk. Notice that ψ depends on all variables apart from t.



490 ANDREW HASSELL AND JARED WUNSCH

Next, we address the question of determining the wavefront set of u(·, t) at
a fixed nonzero (say, positive) time t in terms of the wavefront set of the initial
data f . We are particularly interested in the case of ‘interior singularities’,
lying above a point in the interior of X. It is well known that equation (1.2)
has infinite speed of propagation, so to answer this question we must look for
singularities of f at the boundary of X. Dually, since U(t) = U(−t)∗, we can
consider interior singularities of f and determine the boundary singularities
of u(t) that they produce. It is known from [22] that if there is an interior
singularity (w, η) for f , then for all positive times t there are quadratic oscil-
lations of frequency 1/2t in u(·, t) at infinity in the asymptotic direction of the
geodesic emanating from (w, η). Roughly speaking, the quadratic oscillations
look like eir2/2t in a conic neighbourhood of the asymptotic direction y; more
precisely, this result is phrased in terms of the ‘quadratic scattering wavefront
set’ (see [22]).

The limitation of the result of [22] is that different singularities along a sin-
gle geodesic, or along a different geodesic with the same asymptotic direction,
produce identical quadratic oscillation, hence consideration of the quadratic
wavefront set alone will not result in precise propagation results. To analyse
the finer structure of u(·, t), we divide u(·, t) by the explicit quadratic oscilla-
tory factor eir2/2t, and find that the resulting function has oscillations which
are linear in r that contain the desired information on the location of the inte-
rior singularity. The presence of linear oscillations of a function f is measured
by the scattering wavefront set WFsc(f) (see [15]), a closed subset of Tsc ∗

∂XX.
(This bundle, defined in §2, is the restriction to ∂X of an n-dimensional bundle
over X which is a compressed and scaled version of the cotangent bundle T ∗X.)
We show that the asymptotics of geodesic flow on X determine two contact
transformations Sf and Sb, which we call the forward and backward sojourn
relations, from the sets F, resp. B ⊂ S∗X◦ consisting of points in the cosphere
bundle which are not forward, resp. backward trapped under geodesic flow, to
Tsc ∗

∂XX. They are related by F = −B and Sf (ζ) = −Sb(−ζ). The definition
of Sf in local coordinates is as follows: Let γ(s) be the arclength-parametrized
geodesic emanating from (w, η) ∈ S∗X◦, let y = (y1, . . . , yn−1) be local coordi-
nates on ∂X and let (y, ν, µ = (µ1, . . . , µn−1)) be the induced coordinates on
Tsc ∗

∂XX as in (2.1). Then Sf (w, η) = (y0, ν, µ) if and only if

y0 = lim
s→+∞

γ(s) ∈ ∂X

is the asymptotic direction of the geodesic,

ν = lim
s→+∞

(
s − r(γ(s))

)
, r =

1
x

(1.4)

is the ‘sojourn time’ of the geodesic, and

µi =
∑

j

hij lim
s→+∞

(y0 − y(γ(s)))j)/x(1.5)
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measures its angle of approach to ∂X. (That the point y0 ∈ ∂X should be
thought of as the asymptotic direction of the geodesic can be seen easily in
the special case when X is the radial compactification of Rn.) Note that the
sojourn time, thought of as depending on a geodesic and a point along it, is
closely related to the classical Busemann function of differential geometry; see
for example [18, Chap. 1, §2]. We use the term ‘sojourn relation’ for Sf since
the coordinate ν is analogous to the sojourn time considered by Guillemin [5].

Theorem 1.2. Let f be a tempered distribution on X and set u(·, t) =
e−itHf . Let ζ = (w, η) ∈ B ⊂ S∗X◦ be a non-backward -trapped point of S∗X◦.
For any fixed t > 0,

ζ ∈ WF(u(·, t)) if and only if
1
t
Sb(ζ) ∈ WFsc(e

ir2/2tf).(1.6)

Here the factor t−1 acts by scaling the fibre variables. Similarly, if ζ ∈ F, then
for t < 0,

ζ ∈ WF(u(·, t)) if and only if
1
|t|Sf (ζ) ∈ WFsc(e

ir2/2tf).(1.7)

Remark. The condition on the right-hand side of (1.6) or (1.7) is not
manifestly coordinate invariant. The sojourn relation changes under a change
of coordinates, but so does the scattering wavefront set of eir2/2tf , in such
a way that the condition as a whole is coordinate invariant. A manifestly
invariant description may be given in terms of the affine bundle of Lemma 3.3.

Example. Consider the free Hamiltonian H = 1
2∆ on Rn. The propagator

in this case is

U(t) = (2πt)−n/2ei|z−w|2/2t, whence W (t) = (2πt)−n/2e−iz·w/tei|w|2/2t.

It is not hard to check that W (t) satisfies the conclusion of Theorem 1.1 in
this case. Consider initial data

f = (2πT )−n/2e−i|z−w|2/2T , T > 0.

Then the solution at time t = T is a delta function centred at w, hence its
wavefront set is

{(w, ẑ) | ẑ ∈ Sn−1}.

In the free case, the backward sojourn relation is given by

Sb(w, ẑ) =
(
y = −ẑ, ν = −w · ẑ, µ = w − (w · ẑ)ẑ

)
,

and we easily check that (1.6) holds in this case.
Most previous work on Schrödinger parametrices has focused on the case

of flat space with a potential perturbation, where the geometric situation is
substantially simpler. Very detailed parametrix constructions in this setting
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have been made by Fujiwara [4], Zelditch [24], Trèves [21] and Yajima [23]. In
the case of curved space, very little was known. Kapitanski-Safarov [13] have
shown that on Rn with a compactly-supported, nontrapping potential pertur-
bation, the fundamental solution is smooth for t > 0, and have exhibited a
parametrix modulo C∞(Rn) [12]. Such a parametrix, however, is not suffi-
ciently specified at infinity to yield results about smoothness of the solution of
the general Cauchy problem at t > 0.

Regularity results for the Schrödinger propagator for nonflat metrics in the
form of Strichartz estimates have been obtained recently by Staffilani-Tataru
[19] and Burq-Gérard-Tzvetkov [1]. Staffilani and Tataru [19] proved Strichartz
estimates for e−itHf where H is the Laplacian of a C2, compactly supported,
nontrapping perturbation of the standard metric on Rn, using the FBI trans-
form and Littlewood-Paley decompositions to handle the rough metric. Burq,
Gérard and Tzvetkov obtained Strichartz estimates, with a loss of derivatives
compared to the flat Euclidean case, for compact manifolds or perturbations
of the Laplacian on Rn, without any nontrapping assumption.

Various authors have considered the question of determining the singular-
ities of u = e−itHf in terms of f . The first results about microlocal smoothness
of u(t) for t > 0 and general initial data were those of Craig-Kappeler-Strauss
[3], who showed that, on an asymptotically Euclidean space, decay of the ini-
tial data in a microlocal incoming cone yields microlocal smoothness along
the whole pencil of geodesics emanating from that cone for all t > 0. This
result was refined in [22], where the second author showed that absence of
the quadratic-scattering wavefront set (see Section 2.2) allowed one to con-
clude absence at varying times and along varying pencils of geodesics. This
approach, while it specified in terms of the Cauchy data when and in what
direction singularities might appear in X◦, failed to say anything about where
they might land. These propagation results have been extended to the analytic
category by Robbiano-Zuily [17].

Our Theorem 1.2 gives a complete solution to the propagation problem
in the case when the metric g is nontrapping, and in general, a complete
characterization of the singularities of u(t) in the non-backward-trapped set F
for t > 0, and in the non-forward-trapped set B for t < 0. Our results imply
those of [22], and hence those of [3]2, since the hypothesis on f required in [22]
for microlocal smoothness of u(t) along all geodesics emanating from y ∈ ∂X

implies that in fact (y, ν, µ) /∈ WFsce
ir2/2tf for all (ν, µ). Hence Theorem 1.2

yields the main boundary to interior propagation result of [22] as a special
case.

We thank Richard Melrose, András Vasy and Steve Zelditch for useful
conversations, and the Erwin Schrödinger Institute, the Mathematics Depart-

2although we require more decay of our potential than is assumed in [3].
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ment at SUNY Stony Brook and the Mathematical Sciences Institute at the
Australian National University for their hospitality.

2. Contact structures and Legendrian distributions

We recall the definition of various structures associated to manifolds with
boundary and corners needed in this paper. For further details, see Melrose
[15], Melrose-Zworski [16], Hassell-Vasy [7], [8].

2.1. Scattering structure and Legendrian distributions. Let X be a
d-dimensional manifold with boundary, and let x be a boundary defining func-
tion for X. We identify a collar neighborhood of ∂X with ∂X × [0, ε) so that
specifying y1, . . . yd−1 local coordinates in ∂X gives local coordinates (x, y)
for X. The Lie algebra of scattering vector fields Vsc(X) consists of vector
fields of the form ax2∂x +

∑
xbi∂yi

with a, bi ∈ C∞(X). Such vector fields can
be described as the set of C∞ sections of a vector bundle Tsc X. The dual of
this bundle we denote Tsc ∗X; sections of it are locally spanned over C∞(X) by
dx/x2 and dyi/x. Hence any point q ∈ Tsc ∗

x,yX has a unique expression

q = νd

(
1
x

)
+

∑
µi

dyi

x
(2.1)

which yields local coordinates (x, y, ν, µ) for Tsc ∗X, ν and µ being linear on
each fibre. We say that a half-density α on X is a scattering half-density if it is
a smooth and nonvanishing section of the bundle (∧n( Tsc ∗X))1/2; such sections
have the form a|dxdy1 . . . dyd−1/xd+1|1/2, where a ∈ C∞(X) is nonvanishing.
The restriction of Tsc ∗X to the boundary of X is denoted Tsc ∗

∂XX.
We define Ċ∞(X) =

⋂
l�0 xlC∞(X), with its natural Fréchet topology,

and denote by C−∞(X) its topological dual. We sometimes refer to these as
the space of Schwartz functions and the space of tempered distributions on X,
by analogy with Euclidean space.

Now we recall some facts about the scattering calculus scΨm,l(X; Ωsc 1/2(X))
acting on half-densities, which is indexed by two orders (m, l), the interior order
m (which for a differential operator is the order of the highest derivative that
occurs) and the boundary order l. The half-density factor will be understood
from now on, and dropped from notation. The space Ψm,l(X) is the same as
xlΨm,0(X), and Ψm,0(X) is a ‘microlocalization’ of the scattering differential
operators of order m on X; it contains in particular all mth order differential
operators generated over C∞(X) by Vsc(X). Operators P ∈ scΨm,l(X) are
determined up to scΨm,l+1(X) by the boundary symbol p, which is a smooth
function on the boundary of the scattering cotangent bundle, Tsc ∗

∂XX, and up
to scΨm,l+2(X) by the boundary symbol p together with the boundary subprin-
cipal symbol, which is again a smooth function psub on Tsc ∗

∂XX. The operator
P is said to be elliptic at q ∈ Tsc ∗

∂XX if p(q) �= 0. The scattering wavefront
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set WFsc(u) of a distributional half-density u is defined by the condition that
q ∈ Tsc ∗

∂XX is not in WFsc(u) if and only if there is an A ∈ scΨ0,0(X) such
that A is elliptic at q and Au ∈ Ċ∞(X), the space of Schwartz functions on X◦.
The scattering wavefront set of u is always a closed subset of Tsc ∗

∂XX. We also
have a scale of Sobolev spaces Hm

sc (X), defined by u ∈ Hm
sc (X) if and only if

V1 · · ·Vmu ∈ L2(X) for all V1, . . . , Vm ∈ Vsc(X), or equivalently, if Pu ∈ L2(X)
for all P ∈ Ψm,0(X). (Here L2(X) is defined with respect to the Riemannian
measure dg.)

For the purposes of this paper, we will often take the manifold with bound-
ary to be X◦ × X◦ × R�0 (this space is not compact, but that is irrelevant
here). In that case the boundary defining function is t and local coordinates
on the boundary will be denoted (z, w), where z ∈ Rn is a local coordinate for
the first factor and w ∈ Rn is a local coordinate for the second. In this case we
use coordinates (t, z, w, τ, ζ, η) where we write points q′ ∈ Tsc ∗(X◦×X◦×R�0)

q′ = τd

(
1
t

)
+

n∑
i=1

ζi
dzi

t
+

n∑
j=1

ηj
dwj

t
.(2.2)

Returning to the general situation, there is a contact structure defined at
the boundary Tsc ∗

∂XX of Tsc ∗X. It is defined by the contact one-form

χ = ω(x2∂x, ·)� {x = 0},(2.3)

where ω is the symplectic form on T ∗X (which is canonically isomorphic to
Tsc ∗X over X◦). In local coordinates χ =

∑
µidyi − dν, so χ is clearly nonde-

generate. A change of boundary defining function x → ax changes χ according
to χ → aχ, so the contact structure defined by χ is completely natural. A
Legendrian submanifold of Tsc ∗

∂XX is defined, as usual, to be a smooth sub-
manifold of maximal dimension, namely dimX−1, such that the contact form
χ vanishes on it. Any Legendrian submanifold L has a local nondegenerate
parametrization in a neighbourhood of any q ∈ L. This, by definition, is a
function ψ(y, v), with v ∈ Rk for some k � 0, such that

the differentials d
( ∂ψ

∂vi

)
, i = 1, . . . , k are linearly independent whenever

dvψ = 0, and L =
{ (

y, d

(
ψ

x

))
| dvψ = 0

}
locally near q.

(2.4)

The simplest situation is when L is projectable in the sense that the projection
(y, ν, µ) → y from Tsc ∗

∂XX to ∂X restricts to a diffeomorphism from L to ∂X.
Then y is a coordinate on L, so ν is given by a function ψ(y) on L. In this case,
no extra variables v are required, and L is given by {(y, d(ψ/x))} locally. If
the kernel of the differential of the projection (y, ν, µ) → y restricted to L has
dimension k then at least k extra variables are required to locally parametrize
L near q.



SCHRÖDINGER PROPAGATOR 495

A (half-density) Legendrian distribution of order m associated to L is a
half-density uα, where α is a scattering half-density and u is a finite sum of
terms

∑
i ui + u0, where u0 ∈ Ċ∞(X) and ui is given by an certain type of

oscillatory integral associated to a local parametrization of L:

ui = (2π)−kxm−k/2+d/4

∫
K

eiψ(y,v)/xa(y, v, x) dv.(2.5)

Here a is a smooth function of x, y, v with compact support and ψ is a
nondegenerate parametrization of L on the support of a. The set of half-
density Legendrian distributions of order m associated with L is denoted
Im(X, L; Ωsc 1/2(X)), or just Im(L) when the space X is understood (in this
paper, Legendrian distributions will always be half-densities).

Legendrian distributions have a well-defined symbol map σm taking values
in smooth sections of a line bundle S[m](L) over L. This bundle is given by
S[m](L) = Ωsc 1/2(L)⊗|N∗(∂X)|m−d/4⊗M⊗E, where Ω1/2(L) denotes the half-
density bundle over L, N∗X is the conormal bundle, M is the Maslov bundle
and E is the bundle described in [7]. To define the symbol, we choose d − 1
functions λj in (y, v)-space which together with dvi

ψ give local coordinates in
(y, v)-space. Then {λj} are local coordinates on L via the identification (2.4).
The symbol is given, using the identification (2.4) and up to Maslov factors,
by

σm(u) = a(0, y, v)
∣∣∣∣det

∂(λ, ∂vψ)
∂(y, v)

∣∣∣∣−1/2

|dλ|1/2 � {∂ψ/∂v = 0}.(2.6)

The symbol of u ∈ Im(L) determines u modulo Im+1(L). Consideration of how
the symbol changes under changes of parametrization ψ, changes of coordinates
(x, y), and changes of coordinates λ, show that the symbol lives in the bundle
S[m](L) above [7]. If L is locally projectable, then the situation simplifies.
We may take coordinates λ on L to be y, and the v variables are absent, the
determinant factor above is 1 and the symbol becomes

a(0, y)|dy|1/2.

The important bundle in the factorization of S[m](L) here is |N∗(∂X)|m−d/4;
in particular this tells us that if we change boundary defining function from x

to xa−1(y) then a symbol of order m changes by a factor am−d/4.
We now recall the symbol calculus for a scattering pseudodifferential op-

erator P ∈ scΨ∗,0(X) acting on a Legendrian distribution u ∈ Im(L). In fact,
we only need to consider the case when the symbol p of P vanishes identically
on L, and in view of our application in §4, we use coordinates (2.2) appropri-
ate to the manifold M = X◦ × X◦ × R�0. Then the Hamilton vector field of
the function p (extended into the interior of Tsc ∗M arbitrarily), Hp, vanishes
to first order at the boundary of Tsc ∗M , so we define the rescaled Hamilton
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vector field scHp to be x−1Hp restricted to Tsc ∗
∂MM . Then Pu ∈ Im+1(L) with

symbol

σm+1(Pu) =
(
− iLscHp

− i(
1
2

+ m − d

4
)
∂p

∂τ
+ psub

)
σm(u) ⊗ |dt|.(2.7)

Here d = 2n + 1 is the dimension of M , and LHp
denotes the Lie derivative

acting on half-densities. The operation of tensoring with |dt| is simply the
natural isomorphism between S[m](L) and S[m+1](L).

2.2. Quadratic scattering structure. We only touch on this very briefly
since we only make fleeting use of it in this paper. The quadratic-scattering
Lie algebra is defined by Vqsc = xVsc(X). It is the space of smooth sections
of a vector bundle Tqsc X which is locally spanned (near the boundary) by
x3∂x and x2∂yi

. The dual bundle is denoted Tqsc ∗X; sections of this bundle
are locally spanned over C∞(X) by dx/x3 and dyi/x2. The vector fields in
Vqsc(X) lie in a calculus of quadratic scattering pseudodifferential operators
much like the scattering calculus, and with a boundary symbol and associated
wavefront set lying in Tqsc ∗

∂XX. It is in terms of this wavefront set that the
propagation results of [22] are couched, but it will not directly concern us here.

2.3. Manifolds with corners with fibred boundaries. Above, we have looked
at X◦ × X◦ × R�0. However, in our analysis of the Schrödinger propagator
U(z, w, t), we wish to let the first variable z approach the boundary of X.
Hence we need to study the manifold

X2
t = X × X◦ × R�0.(2.8)

We denote the two boundary hypersurfaces of X2
t at t = 0 and at x = 0

by mf and sf, the ‘main face’ and the ‘side face’, respectively, and we denote
the corner mf ∩ sf by K. Thus mf = X × X◦, sf = ∂X × X◦ × R�0 and
K = ∂X × X◦. We shall see that the geometry of this manifold arising from
the structure of the Schrödinger operator Dt + H is that of a manifold with
corners with fibred boundaries; see [7] and [8] for a discussion of the general
situation. Here, we restrict ourselves to describing the particular situation of
X2

t , which is considerably simpler.
We first describe the relevant fibration. Define φ : sf → ∂X × X◦ by

projection off the last factor:

φ(y, w, t) = (y, w) ∈ ∂X × X◦.(2.9)

We then define a Lie algebra φV of smooth vector fields on X2
t as follows: if V

is a smooth vector field on X2
t , then

(2.10) V ∈ φV if and only if V (xt) = O(x2t2), V is tangent to

the fibration φ at x = 0 and V vanishes at t = 0.
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This Lie algebra is independent of the choice of boundary defining function x.
Corresponding to this Lie algebra is a vector bundle φTX2

t such that φV is
canonically identified with the space of smooth sections of φTX2

t . In local
coordinates, this is spanned (near the boundary x = 0) by

xt ∂yi
, xt ∂wi

, t(t∂t − x∂x), tx2∂x.(2.11)

Note that t2∂t and tx∂x are not separately in φV (since they do not satisfy
(2.10)), but their difference is. The dual bundle φT ∗X2

t is spanned over C∞(X2
t )

by the one-forms

d

(
1
xt

)
= −xdt + tdx

x2t2
, d

(
1
t

)
,

dyi

xt
,

dwi

xt
,

which pair nondegenerately with (2.11). Thus every point in φT ∗X2
t near

{x = 0} may be expressed

σd

(
1
xt

)
+ τd

(
1
t

)
+ µ

dyi

xt
+ ξ

dwi

xt

(µ and ξ are used since we are reserving the symbols µ and ξ for later use),
which yields local coordinates (x, y, w, t, σ, µ, ξ, τ) on φT ∗X2

t . A fibred-scat-
tering half-density is defined to be a section of

∧2n+1(φT ∗X2
t ), n = dimX,

which is smooth and nonvanishing. Near the boundary, such a half-density
has the form

a
∣∣∣dx dy dw dt

t2n+2x2n+1

∣∣∣1/2
, where a ∈ C∞(X2

t ) is everywhere nonzero.

On φT ∗
mfX

2
t , (that is, at t = 0), ω(xt2∂t, ·) is a contact form (i.e. nonde-

generate) for x > 0, but it degenerates at x = 0. This is evident from its local
coordinate expression

ω(xt2∂t, ·) � {t = 0} = dσ + xdτ + µdy + ξdw.

As described in [8], although this is degenerate at φT ∗
KX2

t , that is, at φT ∗
mfX

2
t

∩ {x = 0}, there is a natural fibration β from φT ∗
KX2

t to a bundle γ over K,
with a nondegenerate contact form on γ such that ω(xt2∂t, ·) restricted to
{t = 0, x = 0} is the lift of the contact form from γ to φT ∗

KX2
t . Here the

bundle γ is naturally isomorphic to Tsc ∗
∂X×X◦(X×X◦), the contact form is the

natural contact form (2.3) on Tsc ∗
∂X×X◦(X × X◦) and the fibration β is given

by

β(0, y, w, 0, σ, µ, ξ, τ) = (y, w, σ, µ, ξ)(2.12)

in the coordinates above.
A fibred-scattering Legendrian submanifold J of φT ∗X2

t , as defined in [8],
is a submanifold of φT ∗

mfX
2
t which is Legendrian with respect to the contact

form ω(xt2∂t, ·) for x > 0, which meets the boundary of φT ∗
mfX

2
t at x = 0
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transversally, and such that the fibration β, restricted to ∂J , is a diffeomor-
phism from ∂J to a Legendrian submanifold G of Tsc ∗

∂X×X◦(X × X◦) (with
respect to the natural contact structure on Tsc ∗

∂X×X◦(X × X◦)).
A local nondegenerate parametrization of J near q ∈ ∂J , is a function

ψ(x, y, w, v), with v ∈ Rk for some k � 0, such that, locally near q,

the differentials d

(
∂ψ

∂vi

)
, 1 � i � k are linearly independent

and J =
{ (

y, d

(
ψ

xt

))
| dvψ = 0

}
.

(2.13)

It then follows that the function ψ(0, y, w, v) parametrizes the Legendrian G.
A Legendrian distributional half-density of order (m, r) associated to J is

a half-density uα̃, where α̃ is a fibred-scattering half-density and u is a finite
sum of terms

∑
j uj + u0 + uf , where u0 is a Legendrian distribution of order

m associated to the interior of J (where the structure is locally of scattering
type, so this has already been defined), uf is a fibred Legendrian distribution
of order r associated to G, which is supported away from mf (defined below),
and uj is given by an certain type of oscillatory integral associated to a local
parametrization of J . Namely, uj is given by

(2π)−ktm−kj/2+(2n+1)/4xr−k/2+(2n−1)/4

∫
E

eiψj(x,y,w,v)/xtaj(x, y, w, v, t) dv.

(2.14)

Here v ∈ Rkj , E ⊂ Rkj is compact, aj is a smooth function of x, y, w, v with
compact support and ψ is a nondegenerate parametrization of L on the support
of a. Similarly, uf is given by a sum of terms of the form

(2π)−kxr−k/2+(2n−1)/4

∫
E

eiψj(0,y,w,v)/xtbj(x, y, w, v, t) dv,(2.15)

with b smooth and supported away from t = 0. It is straightforward to check
that (2.14) and (2.15) are compatible. Note that, for fixed t > 0, the expression
(2.15) is a Legendrian distribution of order r− 1/4 associated to the Legendre
submanifold t−1G, where t−1 acts by scaling in the fibre variables.

Fibred-scattering Legendrian distributions of order (m, r) on L have a
well-defined symbol map σm taking values in xr−mC∞(L;S[m](L)) over L,
which is defined by continuity from the symbol map in the interior of L. (This
makes sense because the fibred-scattering structure at mf and away from sf
is just the scattering structure.) The bundle S[m](L) in the fibred-scattering
setting is given by S[m](L) = Ω1/2

b (L)⊗|N∗ mf|m−N/4⊗|N∗ sf|m−N/4⊗M ⊗E,
where Ω1/2

b (L) denotes the b-half-density bundle over L; a smooth nonzero
section near the boundary is |dλdx/x|1/2, where λ are coordinates on ∂L, ex-
tended into the interior of L. The symbol determines u ∈ Im,r(L) up to an
element of Im+1,r(L).
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3. Geometry of the time-dependent Schrödinger operator

3.1. Flowout from the diagonal. Let P = t2(Dt + H). We consider this
operator as an element of order (2, 0) of the scattering calculus for the manifold
with boundary X◦ × X◦ × R�0. We shall use coordinates z, w, t, ζ, η, τ in the
scattering cotangent bundle, as in (2.2). The boundary symbol of P at t = 0
is

p(z, w, ζ, η, τ) = −τ +
1
2
|ζ|2g.

The Hamiltonian flow, rescaled by factor of t−1, is given by

ż =
1
2

∂|ζ|2g
∂ζ

ẇ = 0

ṫ = t

ζ̇ = ζ − 1
2

∂|ζ|2g
∂z

η̇ = η

τ̇ = |ζ|2g.

(3.1)

The free Schrödinger propagator cnt−n/2ei|z−w|2/2t is a Legendrian distribution
parametrized by the phase function |z−w|2/2. We look for an analogue in the
general case.

Lemma 3.1. There exists a smooth Legendre submanifold L of Tsc ∗
{t=0}X

◦

×X◦ × R�0 contained in {p = 0} that is parametrized by the phase function
Φ(z, w) = d(z, w)2/2 near the diagonal z = w.

Proof. Since p(z, w, dzΦ, dwΦ,Φ) = 0, the function Φ parametrizes a Leg-
endrian contained in {p = 0} in the region where Φ is smooth, that is, within
the injectivity radius. We define L to be the flowout along bicharacteristics
from this region. L is given as a set by

(z, ζ̂) = expsg/2(w, η̂0), |η| = |ζ| = s,(3.2)

τ =
s2

2
, η̂ = −η̂0, s ∈ [0,∞), (w, η̂0) ∈ S∗X◦.

Since the Hamilton vector field never vanishes for s > 0, and since τ → ∞ as
s → ∞, the entire flowout is smooth.

3.2. Behaviour of L near the boundary. We next analyze the behaviour
of L near the boundary of X in the first factor. To do this, we introduce the
Lie algebra of vector fields given by the C∞(X ×X ×R�0)-span of the vector
fields

t2x2∂t, tx3∂x, tx2∂y, tx2∂w.

There is a vector bundle of which these are smooth sections forming a basis at
every point. Let B denote the dual of this bundle; then a basis of the smooth
sections of B is given locally near the boundary of X by

dt

t2x2
,

dx

x3t
,
dyi

x2t
,
dwj

x2t
.
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Hence an arbitrary q ∈ B may be written3

q =
κ

x2
d(

1
t
) +

λ dx

x3t
+

µ dy

x2t
+

ξ dw

x2t
.(3.3)

Then x, y, w, t, λ, µ, ξ, κ are smooth coordinates on B, up to the corner t =
x = 0. We remark that the bundle B is a scaled cotangent bundle mixing
scattering behaviour at the face t = 0 with quadratic scattering behaviour at
x = 0.

There is a natural vector bundle isomorphism from Tsc ∗(X◦ ×X◦ ×R�0)
to B over X◦ given by

(z, w, t, ζ, η, τ) → (z, w, t, xζ, xη, x2τ)(3.4)

in terms of the coordinates given above. Thus, the map rescales the cotangent
variables by a power of x as we approach x = 0 — linear rescaling for the spatial
cotangent variables and quadratic for the temporal cotangent variable. This
counteracts the growth of these variables as the boundary x = 0 is approached,
since we see from (3.2) that ζ, η grow linearly and τ quadratically in s (which
expected to be asymptotic to x−1 as s → ∞). Thus, if we map L into B via the
isomorphism (3.4), we can expect it to remain ‘bounded’ at x = 0. By abuse of
notation, we denote the image of L under (3.4) also by L. The Legendrian L,
now regarded as a submanifold of B, is generated by Hamiltonian flow of x2P

starting from the diagonal.
Owing to the special structure (1.1) of the scattering metric g, the bound-

ary symbol of x2P equals

−κ +
1
2
(λ2 + hijµiµj)(3.5)

where hij is a smooth function of x and y. This yields (rescaled) Hamilton
equations in B

ẋ = λx

ẏi = hijµj

ẇ = 0

ṫ = t

λ̇ = λ + 2κ − 2hijµiµj −
x

2
∂hij

∂x
µiµj

µ̇i = (1 + 2λ)µi −
1
2
∂yi

hjkµjµk

ξ̇ = (1 + 2λ)ξ

κ̇ = λ2 + 2λκ + hijµiµj .

(3.6)

The next lemma justifies our hope that the Legendrian L stays bounded
in B as we approach the boundary, x → 0.

Lemma 3.2. Along every nontrapped bicharacteristic ray inside the
Legendrian L, we have x → 0, ξ → 0, λ → −1, µ → 0.

3The variable µ here is not the same as the µ from Sections 1 and 2.
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Proof. Along every nontrapped ray, we have x → 0. Hence, there are
points along the ray where x is arbitrarily small and where ẋ < 0. Since
ẋ = λx, there are points along the ray where x is arbitrarily small and where
λ < 0.

Now we look at the equation for λ. Since the ray lies inside the charac-
teristic variety of x2P , we can substitute 2κ = λ2 + hijµiµj on the right-hand
side of (3.6). Hence

λ̇ = λ + λ2 − hijµiµj −
x

2
∂hij

∂x
µiµj .(3.7)

Since hij(x) is positive definite for small x, uniformly over ∂X (since ∂X is
compact),

−hijµiµj −
x

2
∂hij

∂x
µiµj � 0 for x < ε.

Thus, starting from a point on the ray where x < ε and λ < 0, we have

ẋ = λx, λ̇ � λ + λ2 if x < ε.

These equations imply that λ remains negative and that x is decreasing from
this point forwards on the ray. Moreover, since λ + λ2 < 0 for −1 < λ < 0, we
see that lim sup λ � −1. In particular, from some point on, λ < −3/4. This
implies that ξ → 0 along the ray.

Now consider the equation for µ. It implies that(
hijµiµj

)· = 2(1 + 2λ)hijµiµj + xλ
∂hij

∂x
µiµj .

Since eventually λ < −3/4 and x < ε, positivity of hij implies that the right-
hand side is � −1/2hijµiµj , say, from some point on, so µ → 0. Returning to
the equation (3.7) for λ, we see that µ → 0 implies that λ → −1, since (3.7)
with the µ terms removed has an attracting fixed point at λ = −1.

3.3. Smoothness at the boundary. Throughout this subsection, we assume
that the metric g is nontrapping.

Let Σ(P ) be the zero set of the boundary symbol of x2P on B ∩ {t = 0}.
We identify this set with Tqsc ∗(X × X◦) by mapping

κ

x2
d(

1
t
) +

λ dx

x3t
+

µ dy

x2t
+

ξ dw

x2t
to

λ dx

x3
+

µ dy

x2
+

ξ dw

x2
.

In terms of coordinates, we map (x, y, w, κ, λ, µ, ξ) to (x, y, w, λ, µ, ξ). This is
an isomorphism on Σ(P ) since κ is given by |(λ, µ)|2gx,y

/2 on Σ(P ). The image
of L under this identification is then a Lagrangian in Tqsc ∗(X ×X◦) (which we
shall denote L̃). We emphasize that this Lagrangian lies over the interior of
X × X◦, not at the boundary. In terms of parametrizations, if Φ/t is a local
parametrization for L, then Φ is a local parametrization of L̃.
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It turns out that L̃ is not obviously smooth at x = 0. To remedy this, we
shall blow up the submanifold

S = {x = 0, λ = −1, µ = 0, ξ = 0}(3.8)

where L̃ meets the boundary (by Lemma 3.2). We shall use Melrose’s nota-
tion and terminology; thus, we denote the manifold with corners obtained by
blowing up the submanifold S by[

Tqsc ∗(X × X◦);S
]
;

explicitly, this is the manifold with corners obtained by removing S and re-
placing it with its inward-pointing spherical normal bundle, with a natural C∞

structure (see [14]). This inward-pointing spherical normal bundle becomes a
new boundary hypersurface of the blown-up space which we refer to as the
‘front face’ of the blowup. The lift to this blown-up space of the original
boundary hypersurface ∂X × X◦ will be denoted s̃f.

Lemma 3.3. Let (X, g) be a manifold with boundary, with a nontrapping
scattering metric. Let S ⊂ Tqsc ∗(X × X◦) be given by (3.8), where x is a
boundary defining function such that |dx/x2|g = 1 at ∂X. Then

XtS ≡
[

Tqsc ∗(X × X◦);S
]
\ s̃f(3.9)

is an affine bundle over X ×X◦, isomorphic (but not naturally isomorphic) to
the scattering cotangent bundle Tsc ∗(X × X◦). The Lagrangian L̃ lifts to the
space (3.9) to be a smooth manifold with boundary, such that ∂L̃ is contained
in the boundary of Tsc ∗(X×X◦) and such that L̃ is transversal to the boundary
there.

Proof. Performing the blowup amounts to introducing the coordinates on
XtS in a neighbourhood of the front face. The induced map from XtS to X×X◦

is a fibration in which each fibre is diffeomorphic to R2n. To specify the affine
structure we introduce the coordinates Λ = (λ+1)/x, M = µ/x, Ξ = ξ/x which
are smooth on XtS up to x = 0. The affine structure is defined by deeming
Λ, M and Ξ to be affine coordinates on each fibre. This is well defined since a
smooth change of variables in (x, y, w, λ, µ, ξ) which is linear on each fibre of

Tqsc ∗(X ×X◦) induces a smooth change of variables in (x, y, w,Λ, M,Ξ) which
is affine on each fibre. (Observe that a coordinate change such as x → x+αx2

induces a translation Λ → Λ + α + O(x), so the coordinate changes are not in
general linear on the fibres.) In terms of the new coordinates, a point

q =
λ dx

x3
+

µ · dy

x2
+

ξ · dw

x2
∈ Tqsc ∗(X × X◦)

becomes

q = −dx

x3
+ Λ

dx

x2
+ M · dy

x
+ Ξ · dw

x
.(3.10)
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Mapping q to Λdx/x2 +Mdy/x+Ξdx/x defines an affine bundle isomorphism
between the blown-up space XtS defined in (3.9) and Tsc ∗(X × X◦). It is
not, however, a canonical isomorphism — this is clear, since the scattering
cotangent bundle has a linear structure which XtS lacks. We remark that if we
performed the blowup at the zero section of the quadratic-scattering cotangent
bundle, that is, at λ = 0 instead of λ = −1, then the resulting space as in (3.9)
would be naturally isomorphic to the scattering cotangent bundle.

Next, we show that L̃ has the regularity specified in the statement of
the lemma. Our method of proof is to lift the vector field V in (3.6) to the
space

[
Tqsc ∗(X × X◦);S

]
, and divide by a boundary defining function for

the front face, obtaining a new vector field W . Clearly integral curves of V

are the same as integral curves of W . We claim that W is a smooth vector
field on

[
Tqsc ∗(X × X◦);S

]
which is tangent to s̃f but transverse to the front

face. Consequently, every integral curve of W must meet the boundary of[
Tqsc ∗(X × X◦);S

]
in the interior of the front face. Moreover, the fact that

W is smooth and nonvanishing at the front face implies that the flowout L̃ is
smooth up to the front face and meets it transversally. Hence to prove the
lemma, it is sufficient to prove the claim above.

Proving the claim is simply a matter of computing the vector field (3.6)
in various coordinate systems valid in different regions of the blown-up space[

Tqsc ∗(X × X◦);S
]
. In a neighbourhood of any point in the interior of the

front face, we may use coordinates Λ, M,Ξ defined above. In terms of these
coordinates, the vector field takes the form

(3.11)

V = (−x + Λx2)∂x + xhijMj∂yi
+ x

(
−hijMiMj +

x

2
∂hij

∂x
MiMj

)
∂Λ

+x

(
ΛMi −

1
2

∂hjk

∂yi
MjMk

)
∂Mi

+ xΛΞ · ∂Ξ.

Dividing by x, which is locally a boundary defining function for the front face
in this region, shows that W = V/x is a smooth vector field in this region
which is transverse to the boundary.

Near the corner of
[

Tqsc ∗(X ×X◦);S
]
, i.e. near the boundary of the front

face, we need several different coordinate patches. Let

ρ =
√

x2 + (λ + 1)2 + |ξ|2 + |µ|2,

and let s = λ + 1. When s � ρ/4, then coordinates s1, r1 = x/s1, M1 =
µ/s1,Ξ1 = ξ/s1 may be used. When |µ| � ρ/4, then valid coordinates are
s2 = |µ|, r2 = x/s2,Λ2 = (λ + 1)/s2, µ̂ = µ/s2,Ξ2 = ξ/s2 may be used,
and when |ξ| � ρ/4, then valid coordinates are s3 = |ξ|, r3 = x/s3,Λ3 =
(λ+1)/s3, M3 = µ/s3, ξ̂ = ξ/s3. The union of these coordinate patches covers
a neighbourhood of the corner of

[
Tqsc ∗(X × X◦);S

]
.
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In the first set of coordinates, (s1, r1, M1,Ξ1), the vector field V takes the
form (where the subscript 1 is dropped for notational convenience)

V = (−s + s2k)∂s − rsk∂r + shijMj∂yi
(3.12)

+s((1 − sk)Mi −
1
2

∂hjk

∂yi
MjMk)∂Mi

+ s(1 − sk)Ξi∂Ξi
.

The vector field W = V/s is tangent to s̃f and transverse to the front face in
the region of validity of these coordinates. The calculation for the second and
third set of coordinates is similar, and is left to the reader.

Now let G be the boundary of L̃: G = ∂L̃ ⊂ Tsc ∗
∂X×X◦(X × X◦).

Lemma 3.4. The submanifold G of Tsc ∗
∂X×X◦(X × X◦) is Legendrian.

Proof. The contact form on Tsc ∗
∂X×X◦(X × X◦) is given by ω(x2∂x, ·),

where the symplectic form ω is now given by

ω =
dΛ ∧ dx

x2
+

dM ∧ dy

x
+

dΞ ∧ dw

x
− Mdx ∧ dy

x2
− Ξdx ∧ dw

x2
(3.13)

which we obtain by taking the differential of (3.10). Since V in (3.11) is of
the form −x∂x + xV ′′, where V ′′ is tangent to the boundary of Tsc ∗(X ×X◦),
and xω by (3.13) is nondegenerate on vector fields tangent to the boundary,
uniformly up to the boundary, we find that the contraction of ω and x2∂x

satisfies
ω(x2∂x, ·) = −xω(V, ·) + xα

where α is a smooth one-form on Tsc ∗(X × X◦). Let W be a vector tangent
to G. Then

ω(x2∂x, W ) = −xω(V, W ) + xα(W ).

The first term vanishes since G ⊂ L̃, both V and W are tangent to L̃, and
L̃ is Lagrangian. The second term vanishes at x = 0. This proves that G is
Legendrian.

3.4. Asymptotics of geodesic flow and the Legendrian G. The variables Λ
and M have geometric meaning on the Legendrian G in terms of the asymptotic
behaviour of geodesics. Notice that, by (3.2), the value of τ on the Legendrian
L is given by d(z, w)2/2. Thus, κ is given by

κ = x2τ = x2 d(z, w)2

2
.

Near the boundary G of the Legendrian, we have by (3.5)

κ =
1
2
(λ2 + hijµiµj) =

1
2
(
(−1 + xΛ)2 + x2hijMiMj

)
.
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This implies that

d(z, w) =
1
x
− Λ + O(x).(3.14)

Thus we interpret −Λ on G as a ‘sojourn time’, the time that the geodesic
spends in the interior of the manifold before emerging into the conic region.

Remark. It is instructive to note that under a change of boundary defining
function x → x̃ = x + αx2 which preserves the normal form (1.1) we find that
the sojourn time changes as follows: letting t be a unit speed parameter along
the geodesic flow, we compute

lim t − 1
x̃

= lim t − 1
x

x

x̃
= −α + lim t − 1

x
;

hence we easily verify that this ‘sojourn time,’ while ill-defined as a function,
does transform as a coordinate on the affine bundle XtS�x=0, as we know it
must.

To interpret the coordinate M , we notice that according to (3.11) we have

ẏi = hijµj = xhijMj ,

ẋ = −x + O(x2),
which implies dyi/dx = −hijMj + O(x).(3.15)

Hence M measures the angle at which the geodesic strikes the boundary, or
more geometrically, M is a coordinate on the pencil of ‘asymptotically parallel’
rays with a fixed final direction y. The coordinate y, of course, is just the
limiting direction of the geodesic, while w and −Ξ̂, which are constant under
the flow, give the initial conditions of the geodesic.

3.5. Fibred scattering structure. There is yet another way of viewing the
Legendrian L, in terms of the fibred-scattering structure of X2

t described in
Section 2.3. We show that one can map the Legendrian L ⊂ B to a fibred-
scattering Legendrian φL of φT ∗X2

t . To define this map, we use local coordi-
nates (x, y, w, t). Let

q =
κ

x2
d(

1
t
) +

λ dx

x3t
+

µ dy

x2t
+

ξ dw

x2t
,(3.16)

be a point in B, using coordinates as in (3.3). We map q ∈ L ⊂ B to

q 
→ q +
1
2

dt

x2t2
+

dx

x3t
= q − 1

2
d

(
1

x2t

)
∈ φT ∗X2

t .(3.17)

Lemma 3.5. Assume that the metric g is nontrapping. Then the image
of (3.17) is a smooth fibred -scattering Legendrian submanifold φL of φT ∗X2

t .

Remark. Notice that the terms dt/t2x2 and dx/x3t in (3.16) are too ‘big’
for the fibred scattering space φT ∗X2

t . The addition of terms as in (3.17) can-
cels the big part of these terms and yields something which remains ‘bounded’
in φT ∗X2

t up to x = 0.
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Proof. We use the blowup coordinates Λ, M,Ξ as before. Thus,

λ = −1 + xΛ

µ = xM

ξ = xΞ

κ =
1
2
(
λ2 + hijµiµj

)
= −1

2
− xΛ + x2(Λ2 + hijMiMj).

Now we add 1
2dt/x2t2 + dx/x3t to q in (3.16), and get

q 
→ Λ
xdt + tdx

x2t2
+ (Λ2 + hijMiMj)

dt

t2
+ M

dy

xt
+ Ξ

dw

xt
.

Thus there is a diffeomorphism between L̃ and φL, given in local coordinates
by

(x, y, w,Λ, M,Ξ) 
→ (x, y, w,Λ,Λ2 + hijMiMj , M,Ξ),

so φL is smooth up to the boundary and meets it transversally. The submani-
fold φL is a Legendrian distribution. Indeed, if Ψ locally parametrizes L away
from the boundary of B, then Ψ − 1/(2x2t) locally parametrizes φL. Finally,
under our identifications, the image of the boundary of φL under β is identical
with G from Lemma 3.4, which is a Legendrian submanifold. This proves that
φL is a fibred-scattering Legendre submanifold.

3.6. Trapped rays. If the metric g has trapped rays, then we need to
localize the constructions of this section in the nontrapping region. We define
L to be as in Lemma 3.1, but taking only those (w, η̂) ∈ F, rather than all
(w, η̂) ∈ S∗X◦. (Recall that F denotes the set of points in S∗X◦ that are
not trapped under the forward geodesic flow.) We then define L̃, φL and G in
terms of L as before. Then Lemmas 3.3, 3.4 and 3.5 continue to hold except
we lose smoothness of L, L̃ and φL at the set corresponding to s = 0 in (3.2).
Moreover, if we localize to a compact subset of F, then the corresponding
pieces of L, L̃ and φL are compact.

Lemma 3.6. The map Sf defined by

Sf (w, Ξ̂) = (y, Λ, M) ⇐⇒ (y, w,Λ, M,−Ξ) ∈ G,
Ξ
|Ξ| = Ξ̂(3.18)

is a contact diffeomorphism S∗X◦ ⊃ F 
→ Tsc ∗
∂X(X) satisfying (1.4) and (1.5).

Similarly, Sb(w, Ξ̂) = −Sf (w,−Ξ̂) is a contact diffeomorphism.

Proof. For each (w, Ξ̂) ∈ F there is a unique point (y, w,−Λ,−M, Ξ) ∈ G

found by following the bicharacteristic emanating from (w, Ξ̂) until it hits
the front face of XtS; uniqueness and smoothness are a consequence of the
transversality of the vector field W in the proof of Lemma 3.3. Invertibility
of the map Sf follows from the previous discussion. In fact, given (y, Λ, M) ∈
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Tsc ∗
∂X(X), y determines a pencil of geodesics with asymptotic direction y, M

picks out a unique geodesic within the pencil and then Λ indicates how far
along the geodesic one must travel to get to the initial point w. The direction
Ξ at w is the direction of that geodesic at w. Hence for each (y, Λ, M) there
is a unique (w, Ξ̂) with Sf (w, Ξ̂) = (y, Λ, M). Comparison between (2.1) and
(3.10) shows that Λ = −ν when interpreted as a coordinate on Tsc ∗X, hence
(3.14) implies (1.4), while (3.15) implies (1.5).

The fact that Sf is contact follows directly from the definition (3.18) and
the fact that G is Legendrian (see [6, p. 149], for a discussion in the symplectic
case).

4. Propagator (nontrapping case)

In this section, we shall construct a parametrix U(z, w, t) for the
Schrödinger propagator, where we restrict the second variable w to some arbi-
trary open set G with compact closure in X◦. We require that U solves

PU(z, w, t)≡ t2(Dt + Hz)U(z, w, t)(4.1)

= E(z, w, t) ∈ tNxNC∞(X × G × R�0) for all N,

or in other words, the error term E is smooth and rapidly decreasing both as
t → 0 and as the z variable tends to infinity. The restriction to t > 0 is only
for convenience. In addition U should satisfy the initial condition

U(·, w, t) → δw in C−∞(X) as t → 0, for all w ∈ G.(4.2)

In this section, we deal with the case in which the metric is globally nontrap-
ping; we sketch the changes necessary to localize the construction in F in the
following section.

The parametrix will be a sum of four terms, U = U1 + U2 + U3 + U4.
Correspondingly, the construction is divided into four steps. We first construct
a U1 supported near t = 0 and near the diagonal, satisfying the initial condition
(4.2) and solving

PU1 = E1 + R1,(4.3)

where E1 satisfies the condition for the error term in (4.1), and R1(z, w, t) is
supported in ι(X, g)/4 � d(z, w) � ι(X, g)/2, where ι is the injectivity radius
of (X, g). In the second step, we solve

PU2 = −R1 + E2 + R2,(4.4)

with zero initial conditions, where E2 satisfies the condition for the error term
in (4.1), and with R2(z, w, t) supported in d(z, w) � ι(X, g)/4, t � 1 and with
x � 2ε. (Here, and henceforth, we use (x, y) as local coordinates for the z

variable when it is close to the boundary.) In the third step, we solve

PU3 = −R2 + E3 + R3,(4.5)
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with zero initial conditions, where E3 satisfies the condition for the error term
in (4.1), and with R3(z, w, t) supported in x � 4ε. Finally, we solve

PU4 = −R3 + E4,(4.6)

with zero initial conditions, where E4 satisfies the condition for the error term
in (4.1). Clearly the sum U1 + U2 + U3 + U4 satisfies the conditions for a
parametrix.

4.1. Step 1 — near the diagonal. We start by constructing a formal
solution to

P Ũ1(z, w, t) = t2(Dt + H)Ũ1(z, w, t) = 0, t > 0,

near z = w, with initial condition a delta function δw(z). Our ansatz is

Ũ1 = t−n/2eiΦ(z,w)/t
∞∑

j=0

tjaj(z, w).(4.7)

By a formal solution we mean that each coefficient of tj vanishes (near z = w)
after applying the operator. Applying the operator, we find

tn/2P Ũ1 = eiΦ(z,w)/t(−Φ + g(∇zΦ,∇zΦ))
∞∑

j=0

tjaj(4.8)

+ it
(
− g(∇Φ,∇)a0 +

n

2
a0 +

1
2
(∆Φ)a0

)
+

∞∑
j=1

itj+1
(
− g(∇Φ,∇)aj +

(n

2
− j

)
aj

+
1
2
(∆Φ)aj +

i

2
∆aj−1 − iV aj−1

)
.

This gives us a sequence of equations to be solved, one for each power of t.
The first equation is the eikonal equation, −Φ + g(∇zΦ,∇zΦ) = 0. This has
an exact solution

Φ =
1
2
d(z, w)2,(4.9)

which is smooth when d(z, w) is smaller than the injectivity radius of (X, g).
Motivated by the form of the free propagator on Rn, we let this be our Φ.

The coefficients of tj in the remainder are successively transport equations
for a0, a1, and so on. Consider the transport equation for a0. Fix a w and
choose normal coordinates for z centred at z = w. Then

∆ =
∑

j

D2
zj

+ O(z)Dz and Φ(z, w) = |z|2/2 + O(|z|3),
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so
∆zΦ(z, w) + n = O(z) and g(∇Φ,∇) =

∑
j

(zj + O(|z|2))∂zj
.

Thus, the transport equation for a0 has the form

(zi + O(|z|2)) ∂

∂zi
a0 = f · a0, f =

1
2
∆Φ +

n

2
= O(z),

where all terms are smooth. This has a unique smooth solution near the
diagonal satisfying

a0(z, z) = 1 for all z ∈ X◦.(4.10)

By the stationary phase lemma (see for example [10, Th. 7.7.5]), if Φ and
a0 satisfy (4.9) and (4.10) and all aj are supported within half the injectivity
radius of the diagonal, the initial condition (4.2) is satisfied.

The other transport equations take the form

(zi + O(|z|2)) ∂

∂zi
aj + jaj = f · aj −

i

2
∆zaj−1 − iV aj−1, f as above.

We inductively suppose that a0, . . . , aj−1 are smooth. Then there is a unique
smooth solution aj of this equation, establishing the inductive hypothesis
for aj .

To define U1, we take our formal solution Ũ1, and multiply by a smooth
function χ(z, w) which is equal to 1 when d(z, w) � ι(X, g)/4, and equal to 0
when d(z, w) � ι(X, g)/2. Then we take U1 to be an asymptotic sum of the
formal series so obtained. The error term we decompose into E1 + R1, where
R1 is given by all terms containing a derivative of χ, and E1 is the remainder.
Since Ũ1 is a formal solution, E1 is O(t∞) as t → 0, while R1 is supported away
from the diagonal. This completes Step 1.

4.2. Step 2 — at the main face. Here we solve away the error term R1. We
regard R1 as a half-density by multiplication by the Riemannian half-density
|dgzdgwdt|1/2. Then R1 has an asymptotic expansion of the form

t−n/2+1eiΦ(z,w)/t
∞∑

j=0

tjrj(z, w)|dgzdgwdt|1/2.(4.11)

It is therefore a Legendrian distribution, associated to the Legendrian L of
Lemma 3.1 — see [16], or Section 2.1 for a brief description.

We now need to specify how our differential operator P acts on half-
densities; we shall do this by specifying a flat (i.e. covariant constant) half-
density. One natural choice would be to specify that the Riemannian half-
density |dgzdgwdt|1/2 is flat. However, we shall make a different choice here
since we want to apply the symbol calculus from [7], where it is assumed that



510 ANDREW HASSELL AND JARED WUNSCH

the flat half-density is a scattering density (that is, a bounded nonvanishing
section of the scattering half-density bundle). Thus, we specify instead that∣∣∣∣dgzdgwdt

t2n+2

∣∣∣∣1/2

is flat, i.e. ∇
∣∣∣∣dgzdgwdt

t2n+2

∣∣∣∣1/2

= 0.(4.12)

For convenience we define

α =
∣∣∣∣dgzdgwdt

t2n+2

∣∣∣∣1/2

.(4.13)

Hence, we want to solve

P
(
R2α

)
= −R1α,(4.14)

or equivalently(
P + i(n + 1)t

)(
R2|dgzdgwdt|1/2) = −R1|dgzdgwdt|1/2.(4.15)

The additional term i(n + 1)t is a subprincipal term, since it vanishes to first
order at t = 0.

Writing R1 in terms of α and using (2.14) we see that R1 ∈ I7/4(L).
The Legendrian L is characteristic for P (that is, the symbol p of P vanishes
on L, by construction of L), so we look for U2 ∈ I3/4(L; scΩ1/2) whose symbol
satisfies the transport equation (2.7) along L. In our situation, scHp is given
by (3.1), while ∂p/∂τ = 1, and the subprincipal symbol psub = i according
to formula (2.9) of [7]. Therefore, by (3.1), we can solve away the error term
R1 ∈ I7/4(L) with a Legendrian distribution u0 of order 3/4, by solving the
ODE

−i
(
LHp

− n

2

)
σ3/4(u0) = σ7/4(R1)(4.16)

with ‘initial condition’ that the symbol of u0 vanishes in a neighbourhood
of {z = w, ζ = η = 0}. All bicharacteristics originate here and tend to the
boundary {x = 0} by the nontrapping assumption, so there is a unique smooth
solution with this property. It follows that in the region x � ε, we have

Pu0 −R1 ∈ I7/4+1(L).

Inductively, assuming that uk ∈ I3/4(L) solves

Puk −R1 ∈ I7/4+k+1(L)

in the region x � ε, we can find a uk+1 ∈ I3/4(L) which solves

Puk+1 −R1 ∈ I7/4+k+2(L)

in the region x � ε, by solving

−i
(
LHp

+ k − n

2

)
σ3/4+k+1(vk) = σ7/4+k+1

(
Puk −R1

)
(4.17)
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and letting uk+1 = uk + vk. The vk can then be asymptotically summed to
yield a u ∈ I3/4(L) which solves

Pu −R1 ∈ tNC∞({x � ε} × G × R�0) for all N.

We choose a cutoff function χ2 ∈ C∞(X) which is equal to 1 when x � 2ε and
0 when x � ε. Define

U2 = χ2u,

then U2 satisfies
PU2 = −R1 + R2 + E2,

where R2 is a Legendre distribution of order 7/4 supported in ε � x � 2ε (the
R2 error comes from derivatives hitting the cutoff function χ2). Our new error
term R2 is now localized near the corner.

4.3. Step 3 — near the corner. Recall that we expect the fundamental
solution to have quadratic oscillations at spatial infinity, i.e. at x = 0. In fact,
we expect that e−i/2tx2

U(t) is a somewhat simpler kernel than U itself, near
infinity. Therefore, we look for U3 in the form

U3|dgzdgwdt|1/2 = ei/2tx2Ũ3|dgzdgwdt|1/2,

where Ũ3 solves

e−i/2tx2
(
Pei/2tx2

(Ũ3α)
)

= e−i/2tx2( −R2α
)
.

Here α is the half-density (4.13). Then in terms of Ũ3 we have(
t2Dt − txDx + t2H + it

n + 2
2

− txq
)
Ũ3 = −e−i/2tx2R2.(4.18)

Here q = Dx log
√

h and the term i(n+1)t comes from the fact that we have
chosen the scattering half-density α rather than the Riemannian half-density
to be covariantly constant, as in Step 2. Note that the differential operators
appearing in (4.18) are generated by the fibred-scattering vector fields on X2

t

appearing in (2.11). This is not too surprising, since the analytic operation
of multiplying U3 by e−i/2tx2

corresponds to the geometric operation of (3.17)
which maps the Lagrangian L̃ to a smooth Legendrian φL in φT ∗X2

t . Since φL

is well-behaved in φT ∗X2
t , in the sense of being smooth up to the boundary,

we can expect the corresponding operator (4.18) to be well-behaved in terms
of the fibred-scattering structure on φT ∗X2

t .

Lemma 4.1. The kernel e−i/2tx2R2 is an element of I7/4,∞(φL), as defined
in [7].

Proof. If Ψ parametrizes the Legendrian L, then Ψ−1/(2tx2) parametrizes
φL according to Lemma 3.5. Hence e−i/2tx2R2 is Legendrian with respect to φL,
of order 7/4 at mf according to the calculation in Step 2. Since R2 vanishes
in a neighbourhood of x = 0, it is order ∞ at sf.
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Thus, it makes sense to seek the solution Ũ3 to (4.18) in the space I3/4,∗(φL).
Here the value of ∗, specifying the rate of decay of the symbol as x → 0, is
determined by the transport equation which is regular singular at x = 0.

To do this, we must analyze the Hamilton vector field of our operator on φL

near the boundary at x = 0. This is given (modulo some identifications) by the
vector field V in (3.11), which is x∂x+xW , where W is tangent to the boundary.
To determine the subprincipal symbol, observe that the adjoint of t(xDx−in/2)
with respect to the Riemannian density is t(xDx−in/2)+O(tx) near the corner,
hence the Weyl symbol of t(xDx − in/2) is ν + O(tx) where ν is the variable
dual to x. Hence the subprincipal symbol of t(xDx − in/2) at mf vanishes at
the boundary of mf (that is, at x = 0). Also, the subprincipal symbol of t2H

vanishes identically on the main face. So the boundary subprincipal symbol of
the operator in (4.18) is equal to i+O(x). Thus, we look for a u0 ∈ I3/4,∗(φL)
satisfying

(
−iL−x∂x+xW − i

(1
2

+
3
4
− 2n + 1

4

)
+ i + xq̃

)
σ3/4(u0) = σ7/4(e−i/2tx2R2).

(4.19)

This gives an equation of the form(
Lx∂x+xW +

n

2
+ xq̃

)
σ3/4(u0) = −iσ7/4(e−i/2tx2R2),

so by (2.6), σ3/4(u0) is of the form a0x
−n/2

∣∣x−1dxdλ
∣∣1/2|dt|3/4−(2n+1)/4, where

a0 is smooth, and λ are coordinates on the boundary of φL, extended into the
interior. Here we have explicitly included the power of |dt| in the formula since
we now need to change boundary defining function from t to ρ = tx, in order
to apply formulae from [7]. Doing this, we find that σ3/4(u0) is of the form
a0x

−1/2
∣∣x−1dxdλ

∣∣1/2|dρ|3/4−(2n+1)/4, where a0 is smooth. By the (corrected)
symbol calculus for fibred Legendrians given by Proposition 3.4 of [7]4, this
implies that u0 ∈ I3/4,1/4(φL), and that

(
t2Dt − txDx + t2H + it

n + 2
2

− txq
)
u0 + e−i/2tx2R2 ∈ I7/4+1,1/4(φL).

(4.20)

Inductively, we look for ul ∈ I3/4,1/4(φL) such that

(
t2Dt − txDx + t2H + it

n + 2
2

− txq
)
ul + e−i/2tx2R2 ∈ I7/4+l+1,1/4(φL).

(4.21)

4The power of ρ in the final nonzero term of the exact sequence of Proposition 3.4 of [7]
is incorrect. It should be r − m, not m − r.
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In fact, we will show more — we will show that there is ul as above whose
(full) symbol is of the form

a(ρ, x)x−1/2
∣∣x−1dxdλ

∣∣1/2|dρ|3/4−(2n+1)/4, with a smooth.(4.22)

The important point here is that a is a smooth function of ρ and x, not just
a smooth function of t and x. To show this, we use the boundary defining
function ρ rather than t for the main face, even though it is degenerate at the
corner t = x = 0. In terms of the coordinates ρ, x, y, w near the corner, partial
derivatives transform as

tDt

∣∣
x,y

= ρDρ

∣∣
x,y

xDy

∣∣
x,t

= xDy

∣∣
ρ,x

xDx

∣∣
y,t

= xDx

∣∣
y,ρ

+ ρDρ

∣∣
x,y

.

(4.23)

We also write V = x2Ṽ where Ṽ ∈ C∞(X) by assumption. Hence the operator
in (4.21) takes the form

(4.24)

P̃ =−ρDx +
ρ2

2

(
(xDx + ρDρ)2 + i(n − 2)(xDx + ρDρ) + ∆h(x) + Ṽ

)
+iρ

n + 2
2x

− ρq.

Any Legendrian distribution u in I3/4,1/4(φL) can be written, modulo

x∞t∞C∞(X × R�0),

as a finite sum of oscillatory integrals of the form (written as a Taylor series
in ρ)

u =
∫

K
eiψ(x,y,w,v)/ρρn/2+1−k/2

∞∑
j=0

ρjaj(x, y, w, v) dv(4.25)

where ψ parametrizes φL, K ⊂ Rk is bounded, and aj ∈ x−n/2−1−jC∞. We
claim that in fact, aj ∈ x−n/2−1C∞, or in other words, that the full symbol of
u is smooth in x and ρ.

The equation to be solved is

P̃ u = −e−i/2tx2R2 =
∫

K
eiψ(x,y,w,v)/ρρn/2+2−k/2

∞∑
j=0

ρjbj(x, y, w, v) dv(4.26)
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where the bj are supported in x � ε. Substituting (4.24) for P̃ , we find that
the left-hand side is given by∫

K
eiψ(x,y,w,v)/ρρn/2+1−k/2(4.27)

·
{(

− ψx +
1
2
(xψx − ψ)2 +

1
2
|dyψ|2h(x)

)
+ ρ

(
− Dx + (xψx − ψ)(xDx + ρDρ) + 〈∇yψ, Dy〉h(x)

+ i
n + 2
2x

+ f
)

+ ρ2Q

} ∞∑
j=0

ρjaj(x, y, w, v) dv,

where Q is a second order operator generated over C∞(x, y) by xDx, ρDρ, and
Dy and f ∈ C∞(x, y). Since ψ parametrizes a Legendrian which is characteristic
for P̃ , the expression

−ψx +
1
2
(xψx − ψ)2 +

1
2
|dyψ|2h(x)(4.28)

vanishes when dvψ = 0. As ψ satisfies the nondegeneracy condition (2.13), the
function (4.28) can be expressed

k∑
l=1

al
∂ψ

∂vl
with al smooth.

We then write al(∂vi
ψ)eiψ/ρ = alρDvi

eiψ/ρ and integrate by parts in v. These
terms then become O(ρ) terms. Let us write W = (xψx−ψ)xDx+〈∇yψ, Dy〉h(x)

+
∑

l alDvl
. The equation becomes

∞∑
j=0

ρj

{(
− Dx + W + i

n + 2
2x

+ fj

)
+ ρQj

}
aj =

∞∑
j=0

ρjbj .(4.29)

Here fj are smooth and Qj is a second order operator generated by xDx, Dy

and Dv with smooth coefficients. Thus, we need to solve(
− xDx + xW + i

n + 2
2

+ xf0

)
a0 = xb0,(

− xDx + xW + i
n + 2

2
+ xfj

)
aj = xbj + xQjaj−1.

(4.30)

Here bj is supported in x ∈ [ε, 2ε] and our initial condition for aj is that it
vanish for x > 2ε. These are regular singular ODEs for the aj . The first
equation certainly has a solution which is in x−n/2−1C∞. Assuming that aj

is in x−n/2−1C∞, it follows from (4.30) that aj+1 ∈ x−n/2−1C∞, since the
right-hand side of (4.30) is in x−n/2C∞ and the indicial root of the regular
singular operator on the left-hand side is −n/2 − 1. Hence the claim follows
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by induction. (Notice that this induction would not work if we did not make
the stronger assumption (4.22) on the symbol of u.)

Thus, we let Ũ3 be an asymptotic sum of the formal series (4.25) con-
structed above, supported say in t � 1. This is certainly in I3/4,1/4(φL) and
solves the equation(

t2Dt − txDx + t2H + it
n + 2

2
− txq

)
Ũ3 = −e−i/2tx2R2 + E3 + R̃3,(4.31)

where R̃3 ∈ I∞,1/4(φL). This completes Step 3.

4.4. Step 4 — near spatial infinity. Now we have an error term R̃3 ∈
I∞,1/4(φL), and we seek a solution to(

t2Dt − txDx + t2H + it
n + 2

2
− txq

)
Ũ4 = −R̃3 ∈ x∞t∞C∞(X2

t ).(4.32)

We seek a solution Ũ4 in the space I∞,1/4(φL).
We can write −R̃3 as a finite sum of terms of the form∫

K
eiψ(x,y,w,v)/ρρ−k/2

∞∑
j=0

ρjbj(t, y, w, v) dv(4.33)

where we have expanded the symbol as a Taylor series in ρ. Here each bj is
O(t∞) at t = 0. In terms of the coordinates (t, ρ, y),

tDt

∣∣
ρ,y

= tDt

∣∣
x,y

− xDx

∣∣
t,y

,

so the operator in (4.32) takes the form

t2Dt

∣∣
ρ
+ it

n + 2
2

+ (ρ2Dρ)2 + hij(ρDyi
)(ρDyj

) +
ρ

t
Q − ρq(4.34)

where Q is a second order differential operator generated over C∞(x, y) by the
vector fields ρ2Dρ and ρDy. Hence, we wish to solve(

t2Dt

∣∣
ρ
+ it

n + 2
2

+ (ρ2Dρ)2 + hijρ2Dyi
Dyj

+
ρQ

t
− ρq

)
(4.35)

·
∫
K

eiψ/ρ
∞∑

j=0

ρj− k

2 aj(t, y, w, v) dv

=
∫

K
eiψ/ρ

∞∑
j=0

ρj− k

2 bj(t, y, w, v) dv, ψ = ψ(x, y, w, v).

Equation (4.35) holds (as a formal series in ρ) provided we have(
t2Dt + it

n + 2
2

+ c(y, w, v)
)
a0 = b0,(

t2Dt + it
n + 2

2
+ c(y, w, v)

)
aj = bj + Rj(a0, . . . , aj−1),

(4.36)
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where c(y, w, v) = ψ(0, y, w, v)2 +hijψyi
(0, y, w, v)ψyj

(0, y, w, v) is independent
of t. The operator Rj here is the coefficient of ρj in the expansion of Q and is
such that tj+1Rj is a second order differential operator in y with coefficients
smooth in (y, t). We show inductively that there is a solution with each aj ∈
t∞C∞. Indeed, the equation for a0 is explicitly solved by

a0(t) = t(n+2)/2eic/t

∫ t

0
ie−ic/sb0(s)s−n/2+3 ds

which is in t∞C∞ since b0 ∈ t∞C∞. Inductively assuming that a0, . . . , aj−1

are in t∞C∞, then it follows from the formula above, with b0 replaced by bj +
Rj(a0, . . . , aj−1) that aj ∈ t∞C∞. Let Ũ4 be an asymptotic sum of the series
on the left-hand side of (4.35). Then Ũ4 solves (4.32) up to an x∞t∞C∞ error
term. This completes the construction of the parametrix in the nontrapping
case.

4.5. Exact solution. We have now shown that

(Dt + H)U(x, y, w, t) = e(x, y, w, t) ∈ Ċ∞(R�0 × X × G)(4.37)

= Ċ∞(R�0; Ċ∞(X × G)).

The exact propagator U(t) is given in terms of the parametrix U(t) by Duhamel’s
formula

U(t) = U(t) + i

∫ t

0
U(s)

(
Dt + H)U(t − s) ds.(4.38)

It follows from a commutator argument due to Craig, [2, Th. 14], that,
letting

Hk =
k⋂

s=0

xk−sHs
sc(X),

we have for all k > 0

U(t) : Hk → L∞
loc(Rt;Hk).(4.39)

Note that
⋂

k Hk = Ċ∞, so in particular

U(t) : Ċ∞(X) → Ċ∞(X) for all t � 0.(4.40)

Lemma 4.2. Let e ∈ Ċ∞(R�0; Ċ∞(X × G)). Then

Ke(t)(z, w) ≡
∫ t

0
ds

∫
X

U(s)(z, z′)e(t−s)(z′, w) dg(z′) ∈ Ċ∞(R�0; Ċ∞(X×G)).

Proof. Let us fix w ∈ G; then we may regard e(z, w, t) as an element of
tnĊ∞(R�0;Hk) for any n, k ∈ N. First we establish that Ke ∈ tnL∞(R�0;Hk).
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We compute for t ∈ [0, T ]

‖Ke(t)‖Hk
�

∫ t

0
‖U(s)e(t − s)‖Hk

ds

� CT

∫ t

0
‖e(t − s)‖Hk

ds

= O(tn) for all n ∈ N.

This shows that Ke ∈ tnL∞(t;Hk) for every k and n. Derivatives of t and
w can now be estimated similarly and uniform estimates then follow from the
relative compactness of G.

We conclude from (4.38) and Lemma 4.2 that

U(t) − U(t) ∈ Ċ∞(R�0; Ċ∞(X × G)).

This proves that the kernel of U(t) is such that e−i/2x2tU(t) ∈ I3/4,1/4(φL),
which completes the proof of Theorem 1.1.

5. The trapping case

We now sketch briefly the changes to be made in the parametrix con-
struction in case there exist trapped geodesics. In this case, given a properly
supported Z ∈ Ψ0(G) with WF′Z ⊂ F, the non-forward-trapped part of the
phase space, we wish to construct a partial parametrix UZ such that

(Dt + H)UZ(z, w, t) = e(z, w, t) ∈ Ċ∞(R�0; Ċ∞(X × G)),

with initial condition

UZ(t)f → Zf in C−∞(X) as t → 0.

It then follows by Duhamel’s principle that UZ−U(t)Z ∈ Ċ∞(R�0; Ċ∞(X×G)).
The only modification necessary in the construction comes at the end of

Step 1. We begin with a result about the composition of pseudodifferential
operators in the boundary with the simple Legendrian distributions appearing
in Step 1.

Lemma 5.1. Let k(z, w, t) = tsa(z, w, t)eiΦ(z,w)/t such that a and Φ are
smooth, a is compactly supported and dwΦ �= 0 on the support of a. Let B ∈
Ψ0(X) be a properly supported, classical pseudodifferential operator. Then

v =
∫

X
k(z, w, t)B(w, w′) dg(w)

has the form
v = tsã(z, w, t)eiΦ(z,w)/t, ã smooth,

with
WFsc(v) ⊂ WFsc(k) ∩ {(z, w, ζ, η, τ) | (w, η) ∈ WF′(B)}.
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Proof. The result follows directly from the lemma of stationary phase.
Alternatively, we may regard z and t as smooth parameters and regard v as
BT (k), the transpose of B acting on the distribution k. Recall that when B

is a zeroth order classical pseudodifferential operator and c, φ ∈ C∞ with c

compactly supported and dφ �= 0 on supp c,

B
(
c(w)eiφ(w)/t

)
= c̃(w, t)eiφ(w)/t

where c̃ ∈ C∞(R�0 × X) and c̃(w, t) = O(t∞) for all w such that (w, dwφ) /∈
WF′B. (See [20, Chap. 8, §7].) The lemma now follows directly.

To construct UZ , we construct U1 as in Step 1 of the previous section and
consider U1 ◦ Z. The error term R1 ◦ Z = (Dt + H)U1 ◦ Z is then a Legendre
distribution associated to L, by the lemma just proved (since dwΦ �= 0 on the
support of the symbol of R1). Moreover the lemma shows that the scattering
wavefront set of (Dt + H)U1 ◦ Z lies on the portion of L emanating from
(w, η) ∈ WF′(Z), which is contained in the non-forward trapped set. Now
we proceed with Steps 2, 3 and 4 with R1 ◦ Z substituted for R1. As no
trapped rays lie in the microsupport of R1 ◦Z however, we need only solve the
transport equation in Step 2 along the remaining, nontrapped, rays. The rest
of the construction proceeds as before.

Thus, we have shown that UZ is the sum of two terms, one of which has
the form U1 ◦Z where U1 is a Legendrian distribution as in subsection 4.1, and
the other is a fibred-scattering Legendrian distribution of order (3

4 , 1
4).

Remark. It is not true that U1 ◦Z is a Legendrian distribution associated
to L, since dzΦ = 0 at z = w. In fact, U1 ◦ Z is a Legendrian conic pair
associated to (∆, L), where ∆ is the diagonal Legendrian {(z, ζ, z,−ζ, κ = 0)}.
Since we do not need this fact, we omit the proof.

6. Egorov theorem

Let W (t) = e−i/2tx2
U(t). Suppose A is a properly supported pseudodif-

ferential operator on X◦, microsupported in O × O with O ⊂ B. We will
show that B = W (t)AW (t)∗ is a scattering pseudodifferential operator of the
same order as A, and that the symbol and microsupport of B are given by
the pullback of the symbol and microsupport of A by the sojourn relation,
scaled by the factor t−1. Indeed we prove a more general result. To state it,
suppose that S is a contact diffeomorphism from O ⊂ S∗X◦ → Tsc ∗

∂XX. Then,
by definition, S∗χ, the pullback of the contact form on Tsc ∗

∂XX, is equal to a
multiple fη̂ · dw of the contact form on S∗X. Associated to S is a Legendrian
submanifold G of Tsc ∗

∂X×X◦X × X◦, given by

G = {(y, w, ν, µ,−fη) | (w, η) ∈ O, (y, ν, µ) = S(w, η)}.(6.1)

Indeed this is the correspondence of Lemma 3.6.
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Proposition 6.1. Let S be a contact diffeomorphism S : O ⊂ S∗X◦ →
Tsc ∗

∂XX and let G be the Legendre submanifold given by (6.1). Suppose that
W ∈ I0(X ×X◦, G; Ωsc 1

2 ×Ω
1
2 ), and suppose that A ∈ Ψm(X◦; Ω

1
2 ) is properly

supported and microsupported in O. Then

WAW ∗ ∈ scΨ−∞,m(X; Ωsc 1
2 ) with symbol |σ(W )(qG)|2 · σ(A)(S−1(q))(6.2)

where qG is the point on G corresponding to q. Conversely, if

Ã ∈ scΨ−∞,m(X; Ωsc 1
2 )

has compact microsupport contained in the range of S, then modulo a kernel
in Ċ∞(X × X), W ∗ÃW ∈ Ψm(X◦) is a properly supported pseudodifferential
operator with symbol

σ(W ∗ÃW )(ζ) = σ(Ã)(S(ζ)) · |σ(W )(ζG)|2.(6.3)

The proof proceeds as follows: we reduce to the case X = Rn, the ra-
dial compactification of Euclidean space, by localization; applying the Fourier
transform and results of Melrose-Zworski [16], we then deduce the result from
the standard Egorov theorem.

To begin, we need a lemma, in effect a version of Proposition 10 of [16]
with parameters, which tells us what happens when we pull back a Legendrian
distribution on Rn × Rn by the Fourier transform F . The Fourier transform
invariantly maps half-densities on a vector space to half-densities on the dual
space. We recall from [16] that it can be interpreted as a Fourier integral op-
erator associated to the Legendre diffeomorphism L : Tsc ∗

∂RnRn → S∗((Rn)∗)
given by L(ẑ, ζ) = (ζ,−ẑ), where ẑ ∈ Sn−1, the radial compactification of Rn,
and ζ ∈ (Rn)∗, the dual space.

Lemma 6.2. Let S, G and W be as in Proposition 6.1 for X = Rn, and
let F be the Fourier transform. Then

F ◦ W ∈ I0((Rn)∗ × Rn, GL; Ω
1
2 ) + S((Rn)∗ × Rn),

where GL is the Lagrangian associated to the graph of the contact transforma-
tion L ◦ S, L is the Legendre diffeomorphism, and S denotes Schwartz space.

Proof of Lemma 6.2. Without loss of generality we may assume that W

can be written in terms of a single parametrization. Then W can be written

(2π)−
k

2

∫
Rk

eiφ(ẑ,w,v)|z|a(ẑ,
1
|z| , w, v)|z| k

2 dv |dz dw|
1
2 ,

a smooth, compactly supported, modulo S(Rn × Rn), so F ◦ W is given by

(2π)−n/2−k/2

∫∫
e−iz·ζ+iφ(ẑ,w,v)|z|a(ẑ, |z|−1, w, v)|z|k/2 dv dz |dζ|

1
2 |dw|

1
2
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modulo S((Rn)∗ × Rn). Imitating the proof of Proposition 10 of [16], we set
ṽ = v|z| so that F ◦ W is given, modulo S((Rn)∗ × Rn), by

(2π)−n/2−k/2

∫∫
e−iz·ζ+iφ(ẑ,w,ṽ/|z|)|z|a(ẑ, |z|−1, w, ṽ/|z|)|z|−k/2 dṽ dz |dζ|

1
2 |dw|

1
2 .

(6.4)

The phase is now homogeneous of degree one in (z, ṽ) and parametrizes the
Lagrangian GL while the amplitude a(ẑ, |z|−1, w, ṽ/|z|)|z|−k/2 has order −k/2
with k + n phase variables z, ṽ. Hence (6.4) is a Lagrangian distribution of
Lagrangian order 0.

Proof of Proposition 6.1. By a microlocal partition of unity, we may
assume that WF′A ⊂ O, a small subset of S∗X◦. Then S(O) lies over a small
closed set in ∂X. Without loss of generality, we may assume that the support
of the kernel W (z, w) in the z variable lies within a small neighborhood W ,
covered by a single coordinate chart (x, y), of this closed set, since introducing
a spatial cutoff introduces only residual terms in WAW ∗. By identifying W

with a neighbourhood of a point of the boundary of Rn and identifying a
neighbourhood of π(O) with a neighbourhood of the origin in Rn, we may
assume that that A ∈ Ψ0(Rn) is properly supported and that W is as in
Lemma 6.2.

Now we write
WAW ∗ = F∗(FW )A(FW )∗F ,

and apply the standard Egorov theorem to the middle three factors to conclude
that this takes the form

F∗ÃF ,

where Ã ∈ Ψm(Rn) + S(Rn × Rn) is, up to a Schwartz kernel, a pseudodiffer-
ential operator with principal symbol

ã(q) =σ(A)(L−1(S−1(q))) · σ((FW )(FW )∗)(q)

= σ(A)(L−1(S−1(q))) · |σ(W )(qG)|2.

Proposition 8 of [16] now shows that

F∗ÃF ∈ scΨ−∞,m(Rn)

with principal symbol

σ(A)(S−1(q)) · |σ(W )(qG)|2.

This proves (6.2). The proof of (6.3) is similar, proceeding from the expression

W ∗ÃW = W ∗F∗FÃF∗FW.
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7. Wavefront set bound

In this section we prove Theorem 1.2. First we prove a preliminary result
on the propagator at a fixed time t �= 0. We define the contact transformations
St for t �= 0 as follows: for t > 0 and q ∈ S∗X◦, let St(q) with domain F be
given by St(q) = t−1Sf (q) where Sf is the contact transformation defined in
Lemma 3.6 and the scaling by t−1 acts in the fibre variables. For t < 0, let
St with domain B be given by St(q) = |t|−1Sb(q). Let Gt, t �= 0, be the
Legendrian (6.1) determined by St.

Lemma 7.1. Let Z ∈ Ψ0(X◦) be properly supported, and microsupported
inside F. For fixed t > 0, the operator W (t)Z is in I0(X ×X◦;Gt). Similarly,
if Z ′ ∈ Ψ0(X◦) is properly supported, and microsupported inside B, then for
fixed t < 0, the operator W (t)Z ′ is in I0(X × X◦;Gt).

Proof. The construction of the parametrix shows that W (t)Z is given by
a finite sum of oscillatory integrals∫

K�Rk

eiψ(0,y,w,v)/xtx−k/2a(x, y, w, v, t) dv
∣∣dx dy dw

xn+1

∣∣1/2
,

where ψ and a are constructed in Sections 4.3 and 4.4. (Here, because t > 0,
we may replace ψ(x, y, w, v) by ψ(0, y, w, v) in the phase.) According to the
remark below equation (2.15), this is a Legendre distribution associated to the
Legendre submanifold Gt, of order zero. The proof for t < 0 is similar.

The proof of Theorem 1.2 is now straightforward.

Proof of Theorem 1.2. We only prove the theorem for t > 0, since the
argument is similar for t < 0. Let W (t) = e−i/2tx2

U(t) as above. Then since
both U(t) and the multiplication operator e−i/2tx2

are unitary and map Ċ∞(X)
to itself, the same is true of W (t). For simplicity we shall first assume that the
metric is nontrapping.

Suppose that q /∈ WF(u(·, t)) for some t > 0. Then there is a properly
supported A ∈ Ψ0(X) which is elliptic at q and such that Au(·, t) ∈ Ċ∞(X).

Since f = U(−t)u, we have f = e−i/2tx2
W (−t)u, or u = W (−t)∗ei/2tx2

f .
Hence

Au = AW (−t)∗ei/2tx2
f ∈ Ċ∞(X).

Applying W (−t), we see that also W (−t)AW (−t)∗ei/2tx2
f ∈ Ċ∞(X). By

Proposition 6.1, W (−t)AW (−t)∗ = Ã is a scattering pseudodifferential op-
erator of order zero, which is elliptic at S−t(q). We have just shown that
Ã(ei/2tx2

f) ∈ Ċ∞(X), so by definition of the scattering wavefront set, we see
that S−t(q) /∈ WFsc(e

i/2tx2
f). Conversely, assume that S−t(q) /∈ WFsc(e

i/2tx2
f).
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Then there exists a scattering pseudodifferential operator Ã with compact mi-
crosupport which is elliptic at S−t(q) and such that Ã(ei/2tx2

f) ∈ Ċ∞(X). By
Proposition 6.1, we may write Ã = W (−t)AW (−t)∗, with A = A′ + A′′ ∈
Ψ0(X◦) + Ċ∞(X × X), where A′ is properly supported and elliptic at q and
A′′ has a Schwartz kernel. Hence W (−t)AW (−t)∗ei/2tx2

f = W (−t)Au(·, t)
is in Ċ∞(X), which implies (using (4.40)) that Au(·, t) ∈ Ċ∞(X). Hence
q /∈ WF(u(·, t)).

Now we do not assume that the metric is nontrapping, but assume in-
stead that the point q is not backward-trapped. Then since the set B of
non-backward-trapped points is open, one can choose A as above so that
WF′A ⊂ B. In fact, one can find in addition a properly supported pseu-
dodifferential operator Z such that Z is equal to the identity microlocally on
WF′(A) and such that WF′Z ⊂ B. Then ZAZu(·, t) ∈ Ċ∞(X). Repeating the
argument above, we see that

W (−t)ZAZW (−t)∗ei/2tx2
f ∈ Ċ∞(X).

In the trapping case, W (−t)Z is a Legendre distribution associated to S−t,
so by Proposition 6.1, W (−t)ZAZW (−t)∗ is a scattering pseudodifferential
operator which is elliptic at S−t(q), and the rest of the argument goes as
before.
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