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The diameter of the isomorphism class
of a Banach space

By W. B. Johnson and E. Odell*

Dedicated to the memory of V. I. Gurarii

Abstract

We prove that if X is a separable infinite dimensional Banach space then
its isomorphism class has infinite diameter with respect to the Banach-Mazur
distance. One step in the proof is to show that if X is elastic then X contains
an isomorph of c0. We call X elastic if for some K < ∞ for every Banach
space Y which embeds into X, the space Y is K-isomorphic to a subspace of
X. We also prove that if X is a separable Banach space such that for some
K < ∞ every isomorph of X is K-elastic then X is finite dimensional.

1. Introduction

Given a Banach space X, let D(X) be the diameter in the Banach-Mazur
distance of the class of all Banach spaces which are isomorphic to X; that is,

D(X) = sup{d(X1, X2) : X1, X2 are isomorphic toX}
where d(X1, X2) is the infimum over all isomorphisms T from X1 onto X2 of
‖T‖ · ‖T−1‖. It is well known that if X is finite (say, N) dimensional, then
cN ≤ D(X) ≤ N for some positive constant c which is independent of N .
The upper bound is an immediate consequence of the classical result (see e.g.
[T-J, p. 54]) that d(Y, �N

2 ) ≤
√

N for every N dimensional space Y . The lower
bound is due to Gluskin [G], [T-J, p. 283].

It is natural to conjecture that D(X) must be infinite when X is infinite
dimensional, but this problem remains open. As far as we know, this problem
was first raised in print in the 1976 book of J. J. Schäffer [S, p. 99]. The problem
was recently brought to the attention of the authors by V. I. Gurarii, who
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checked that every infinite dimensional super-reflexive space as well as each of
the common classical Banach spaces has an isomorphism class whose diameter
is infinite. To see these cases, note that if X is infinite dimensional and E is
any finite dimensional space, then it is clear that X is isomorphic to E⊕2X0 for
some space X0. Therefore, if D(X) is finite, then X is finitely complementably
universal; that is, there is a constant C so that every finite dimensional space is
C-isomorphic to a C-complemented subspace of X. This implies that X cannot
have nontrivial type or nontrivial cotype or local unconditional structure or
numerous other structures. In particular, X cannot be any of the classical
spaces or be super-reflexive.

In his unpublished 1968 thesis [Mc], McGuigan conjectured that D(X)
must be larger than one when dimX > 1. Schäffer [S, p. 99] derived that
D(X) ≥ 6/5 when dimX > 1 as a consequence of other geometrical results
contained in [S], but one can prove directly that D(X) ≥

√
2. Indeed, it is

clearly enough to get an appropriate lower bound on the Banach-Mazur dis-
tance between X1 := Y ⊕1 R and X2 := Y ⊕2 R when Y is a nonzero Banach
space. Now X1 has a one dimensional subspace for which every two dimen-
sional superspace is isometric to �2

1. On the other hand, every one dimensional
subspace of X2 is contained in a two dimensional superspace which is isometric
to �2

2. It follows that d(X1, X2) ≥ d(�2
1, �

2
2) =

√
2.

The Main Theorem in this paper is a solution to Schäffer’s problem for
separable Banach spaces:

Main Theorem. If X is a separable infinite dimensional Banach space,
then D(X) = ∞.

Part of the work for proving the Main Theorem involves showing that if
X is separable and D(X) < ∞, then X contains an isomorph of c0. This proof
is inherently not local in nature, and, strangely enough, local considerations,
such as those mentioned earlier which yield partial results, play no role in our
proof. We do not see how to prove that a nonseparable space X for which
D(X) < ∞ must contain an isomorph of c0. Our proof requires Bourgain’s
index theory which in turn requires separability.

Our method of proof involves the concept of an elastic Banach space. Say
that X is K-elastic provided that if a Banach space Y embeds into X then Y

must K-embed into X (that is, there is an isomorphism T from Y into X with

‖y‖ ≤ ‖Ty‖ ≤ K‖y‖

for all y ∈ Y ). This is the same (by Lemma 2) as saying that every space
isomorphic to X must K-embed into X. X is said to be elastic if it is
K-elastic for some K < ∞.

Obviously, if D(X) < ∞ then X as well as every isomorph of X is D(X)-
elastic. Thus the Main Theorem is an immediate consequence of
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Theorem 1. If X is a separable Banach space and there is a K so that
every isomorph of X is K-elastic, then X is finite dimensional.

A key step in our argument involves showing that an elastic space X

admits a normalized weakly null sequence having a spreading model not equiv-
alent to either the unit vector basis of c0 or �1. To achieve this we first prove
(Theorem 7) that if X is elastic then c0 embeds into X. It is reasonable to
conjecture that an elastic infinite dimensional separable Banach space must
contain an isomorph of C[0, 1]. Theorem 1 would be an immediate conse-
quence of this conjecture and the “arbitrary distortability” of C[0, 1] proved
in [LP]. Our derivation of Theorem 1 from Theorem 7 uses ideas from [LP] as
well as [MR].

With the letters X, Y, Z, . . . we will denote separable infinite dimensional
real Banach spaces unless otherwise indicated. Y ⊆ X will mean that Y is a
closed (infinite dimensional) subspace of X. The closed linear span of the set
A is denoted [A]. We use standard Banach space theory terminology, as can be
found in [LT]. The material we use on spreading models can be found in [BL].
For simplicity we assume real scalars, but all proofs can easily be adapted for
complex Banach spaces.

2. The main result

The following lemma [Pe] shows that the two definitions of elastic men-
tioned in Section 1 are equivalent.

Lemma 2. Let Y ⊆ (X, ‖·‖) and let | · | be an equivalent norm on (Y, ‖·‖).
Then | · | can be extended to an equivalent norm on X.

Proof. There exist positive reals C and d with d‖y‖ ≤ |y| ≤ C‖y‖ for
y ∈ Y . Let F ⊆ CBX∗ be a set of Hahn-Banach extensions of all elements of
S(Y ∗,|·|) to all of X. For x ∈ X define

|x| = sup
{
|f(x)| : f ∈ F

}
∨ d‖x‖ .

Let n ∈ N and K < ∞. We shall call a basic sequence (xi) block
n-unconditional with constant K if every block basis (yi)n

i=1 of (xi) is K-
unconditional; that is,

‖
n∑

i=1

±aiyi‖ ≤ K‖
n∑

i=1

aiyi‖

for all scalars (ai)n
i=1 and all choices of ±.

The next lemma is essentially contained in [LP]. In fact, by using the
slightly more involved argument in [LP], the conclusion “with constant 2” can
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be changed to “with constant 1 + ε”, which implies that the constant in the
conclusion of Lemma 4 can be changed from 2 + ε to 1 + ε.

Lemma 3. Let X be a Banach space with a basis (xi). For every n there is
an equivalent norm | · |n on X so that in (X, | · |n), (xi) is block n-unconditional
with constant 2.

Proof. Let (Pn) be the sequence of basis projections associated with (xn).
We may assume, by passing to an equivalent norm on X, that (xn) is bimono-
tone and hence ‖Pj − Pi‖ = 1 for all i < j. Let Sn be the class of operators S

on X of the form S =
∑m

k=1(−1)k(Pnk
− Pnk−1) where 0 ≤ n0 < · · · < nm and

m ≤ n. Define
|x|n := sup{‖Sx‖ : S ∈ Sn} .

Thus ‖x‖ ≤ |x|n ≤ n‖x‖ for x ∈ X. It suffices to show that for S ∈ Sn,
|S|n ≤ 2. Let x ∈ span (xn) and |Sx|n = ‖TSx‖ for some T ∈ Sn. Then since
TS ∈ S2n ⊆ Sn + Sn,

‖TSx‖ ≤ 2|x|n .

Lemma 4. For every separable Banach space X and n ∈ N there exists
an equivalent norm | · | on X so that for every ε > 0, every normalized weakly
null sequence in X admits a block n-unconditional subsequence with constant
2 + ε.

Proof. Since C[0, 1] has a basis, the lemma follows from Lemma 3 and the
the classical fact that every separable Banach space 1-embeds into C[0, 1].

Lemma 4 is false for some nonseparable spaces. Partington [P] and
Talagrand [T] proved that every isomorph of �∞ contains, for every ε > 0,
a 1 + ε-isometric copy of �∞ and hence of every separable Banach space.

Our next lemma is an extension of the Maurey-Rosenthal construction
[MR], or rather the footnote to it given by one of the authors (Example 3
in [MR]). We first recall the construction of spreading models. If (yn) is a
normalized basic sequence then, given εn ↓ 0, one can use Ramsey’s theorem
and a diagonal argument to find a subsequence (xn) of (yn) with the following
property. For all m in N and (ai)m

i=1 ⊂ [−1, 1], if m ≤ i1 < · · · < im and
m ≤ j1 < · · · < jm, then∣∣∣∣∣∥∥∥

m∑
k=1

akxik

∥∥∥ −
∥∥∥ m∑

k=1

akxjk

∥∥∥∣∣∣∣∣ < εm.

It follows that for all m and (ai)m
i=1 ⊂ R,

lim
i1→∞

. . . lim
im→∞

∥∥∥ m∑
k=1

akxik

∥∥∥ ≡
∥∥∥ m∑

k=1

akx̃k

∥∥∥
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exists. The sequence (x̃i) is then a basis for the completion of (span (x̃i),
‖ · ‖) and (x̃i) is called a spreading model of (xi). If (xi) is weakly null, then
(x̃i) is 2-unconditional. One shows this by checking that (x̃i) is suppression
1-unconditional, which means that for all scalars (ai)m

i=1 and F ⊂ {1, . . . , m},∥∥∥∥∥∑
i∈F

aix̃i

∥∥∥∥∥ ≤
∥∥∥∥∥

m∑
i=1

aix̃i

∥∥∥∥∥ .

Also, (xi) is 1-spreading, which means that for all scalars (ai)m
i=1 and all n(1) <

· · · < n(m), ∥∥∥∥∥
m∑

i=1

aix̃i

∥∥∥∥∥ =

∥∥∥∥∥
m∑

i=1

aix̃n(i)

∥∥∥∥∥ .

It is not difficult to see that, when (xi) is weakly null, (x̃i) is not equivalent to
the unit vector basis of c0 (respectively, �1) if and only if limm ‖

∑m
i=1 x̃i‖ = ∞

(respectively, limm ‖
∑m

i=1 x̃i‖/m = 0). All of these facts can be found in [BL].

Lemma 5. Let (xn) be a normalized weakly null basic sequence with spread-
ing model (x̃n). Assume that (x̃n) is not equivalent to either the unit vector
basis of �1 or the unit vector basis of c0. Then for all C < ∞ there exist
n ∈ N, a subsequence (yi) of (xi), and an equivalent norm | · | on [(yi)] so that
(yi) is | · |-normalized and no subsequence of (yi) is block n-unconditional with
constant C for the norm | · |.

Proof. Recall that if (ei)n
1 is normalized and 1-spreading and bimonotone

then ‖
∑n

1 ei‖ ‖
∑n

1 e∗i ‖ ≤ 2n where (e∗i )
n
1 is biorthogonal to (ei)n

1 [LT, p. 118].
Thus e =

∑n
1 ei

‖∑n
1 ei‖ is normed by f = ‖∑n

1 ei‖
n

∑n
i=1 e∗i , precisely f(e) = 1 = ‖e‖,

and ‖f‖ ≤ 2. These facts allow us to deduce that there is a subsequence (yi)
of (xi) so that if F ⊆ N is admissible (that is, |F | ≤ minF ) then

fF ≡ ‖
∑

i∈F yi‖
|F |

( ∑
i∈F

y∗i
)

satisfies ‖fF ‖ ≤ 5 and fF (yF ) = 1, where

yF ≡
∑

i∈F yi

‖
∑

i∈F yi‖
.

Indeed, (x̃i) is 1-spreading and suppression 1-unconditional (since (xi)
is weakly null). Given 1/2 > ε > 0 we can find (yi) ⊆ (xi) so that if

F ⊆ N is admissible then (yi)i∈F is 1+ε-equivalent to (x̃i)
|F |
i=1. Furthermore we

can choose (yi) so that if F is admissible then for y =
∑

aiyi, ‖
∑

i∈F aiyi‖ ≤
(2 + ε)‖y‖ (for a proof see [O] or [BL]). Hence ‖fF ‖ ≤ (2 + ε)‖fF |[yi]i∈F

‖ < 5
for sufficiently small ε by our above remarks.

We are ready to produce a Maurey-Rosenthal type renorming. Choose
n so that n > 7C and let ε > 0 satisfy n2ε < 1. We choose a subsequence
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M = (mj)∞j=1 of N so that m1 = 1 and for i 
= j and for all admissible sets F

and G with |F | = mi and |G| = mj ,

a)
‖

∑
k∈F yk‖

‖
∑

k∈G yk‖
< ε , if mi < mj and

b)
‖

∑
k∈F yk‖

‖
∑

k∈G yk‖
mj

mi
< ε , if mi > mj .

Indeed, we have chosen (yi) so that

1
2

∥∥∥ |F |∑
i=1

x̃i

∥∥∥ ≤
∥∥∥∑

i∈F

yi

∥∥∥ ≤ 2
∥∥∥ |F |∑

i=1

x̃i

∥∥∥
and similarly for G. Since (x̃i) is not equivalent to the unit vector basis of c0

(and is unconditional) limm ‖
∑m

1 x̃i‖ = ∞ so that a) will be satisfied if (mk)
increases sufficiently rapidly. Furthermore, since (x̃i) is not equivalent to the
unit vector basis of �1, limm

‖∑m
1 x̃i‖
m = 0 and so b) can also be achieved.

For i ∈ N set Ai = {yF : F is admissible and |F | = mi} and A∗
i = {fF : F

is admissible and |F | = mi}. Let φ be an injection into M from the collection
of all (F1, . . . , Fi) where i < n and F1 < F2 < · · · < Fi are finite subsets of N.
Here F < G means max F < minG. Let

F =
{ n∑

i=1

fFi
: F1 < · · · < Fn, |F1| = m1 = 1, each Fi is admissible

and |Fi+1| = φ(F1, . . . , Fi) for 1 ≤ i < n

}
.

For y ∈ [(yi)] let
‖y‖F = sup

{
|f(y)| : f ∈ F

}
and set

|y| = ‖y‖F ∨ ε‖y‖ .

This is an equivalent norm since for f ∈ F , ‖f‖ ≤ 5n. Also, |yi| = 1 for all i.
Note that if fF ∈ A∗

i and yG ∈ Aj with i 
= j then

|fF (yG)| =
‖

∑
k∈F yk‖
mi

∑
k∈F

y∗k

( ∑
k∈G yk

‖
∑

k∈G yk‖

)
≤ ‖

∑
k∈F yk‖

‖
∑

k∈G yk‖
mi ∧ mj

mi
.

If mi < mj then |fF (yG)| < ε by a). If mi > mj then |fF (yG)| < ε by b).
It follows that if y =

∑n
i=1 yFi

and f =
∑n

i=1 fFi
∈ F then |y| ≥ f(y) = n

and if z =
∑n

i=1(−1)iyFi
, then for all g =

∑n
j=1 fGj

∈ F , |g(z)| ≤ 6 + n2ε < 7.
Indeed, we may assume that g 
= f and if F1 
= G1 then |Gj | 
= |Fi| for all
1 < i ≤ n and 1 ≤ j ≤ n and so by a), b),

|g(z)| =
∣∣∣∣ n∑

j=1

fGj

( n∑
i=1

(−1)iyFi

)∣∣∣∣ ≤ n∑
j=1

n∑
i=1

|fGj
(yFi

)| < n2ε .
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Otherwise there exists 1 ≤ j0 < n so that Fj = Gj for j ≤ j0, |Fj0+1| = |Gj0+1|
and |Fi| 
= |Gj | for j0 + 1 < i, j ≤ n. Using fGj0+1(z) ≤ 5 + nε we obtain

|g(z)| ≤
∣∣∣∣ j0∑

j=1

fGj
(z)

∣∣∣∣ + |fGj0+1(z)| +
∣∣∣∣ n∑

j>j0+1

fGj
(z)

∣∣∣∣
< 1 + 5 + nε + (n − (j0 + 1))nε < 6 + n2ε .

Hence |z| ≤ 7 follows and the lemma is proved since n/7 > C and such vectors
y and z can be produced in any subsequence of (yi).

Our next lemma follows from Proposition 3.2 in [AOST].

Lemma 6. Let X be a Banach space. Assume that for all n, (xn
i )∞i=1 is

a normalized weakly null sequence in X having spreading model (x̃n
i ) which is

not equivalent to the unit vector basis of �1. Then there exists a normalized
weakly null sequence (yi) ⊆ X with spreading model (ỹi) such that (ỹi) is not
equivalent to the unit vector basis of �1. Moreover, there exists λ > 0 so that
for all n,

λ2−n‖
∑

aix̃
n
i ‖ ≤ ‖

∑
aiỹi‖

for all (ai) ⊆ R.

Theorem 7. Let X be elastic, separable and infinite dimensional. Then
c0 embeds into X.

We postpone the proof to complete first the

Proof of Theorem 1. Assume that X is infinite dimensional and every
isomorph of X is K-elastic. Then by Theorem 7, c0 embeds into X. Choose
kn ↑ ∞ so that 2−nkn → ∞. Using the renormings of c0 by

|(ai)|n = sup
{∣∣∣ ∑

F

ai

∣∣∣ : |F | = kn

}
and that X is K-elastic we can find for all n a normalized weakly null sequence
(xn

i )∞i=1 ⊆ X with spreading model (x̃n
i )∞i=1 satisfying

‖
∑

aix̃
n
i ‖ ≥ K−1|(ai)|n

and moreover each (x̃n
i ) is equivalent to the unit vector basis of c0. Thus

by Lemma 6 there exists a normalized weakly null sequence (yi) in X having
spreading model (ỹi) which is not equivalent to the unit vector basis of �1 and
which satisfies for all n,∥∥∥∥ kn∑

1

ỹi

∥∥∥∥ ≥ λK−12−nkn → ∞ .

Thus (ỹi) is not equivalent to the unit vector basis of c0 as well.
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By Lemmas 2 and 5, for all C < ∞ we can find n ∈ N and a renorming Y

of X so that Y contains a normalized weakly null sequence admitting no sub-
sequence which is block n-unconditional with constant C. By the assumption
on X, the space Y must K-embed into every isomorph of X. But if C is large
enough this contradicts Lemma 4.

It remains to prove Theorem 7. We shall employ an index argument
involving �∞-trees defined on Banach spaces. If Y is a Banach space our trees
T on Y will be countable. For some C the nodes of T will be elements (yi)n

1 ⊆ Y

with (yi)n
1 bimonotone basic and satisfying 1 ≤ ‖yi‖ and ‖

∑n
1 ±yi‖ ≤ C for all

choices of sign. Thus (yi)n
1 is C-equivalent to the unit vector basis of �n

∞. T is
partially ordered by (xi)n

1 ≤ (yi)m
1 if n ≤ m and xi = yi for i ≤ n. The order

o(T ) is given as follows. If T is not well founded (i.e., T has an infinite branch),
then o(T ) = ω1. Otherwise we set for such a tree S, S′ = {(xi)n

1 ∈ S : (xi)n
1 is

not a maximal node}. Set T0 = T , T1 = T ′ and in general Tα+1 = (Tα)′ and
Tα = ∩β<αTβ if α is a limit ordinal. Then

o(T ) = inf{α : Tα = φ} .

By Bourgain’s index theory [B1], [B2] (see also [AGR]), if X is separable
and contains for all β < ω1 such a tree of index at least β, then c0 embeds
into X.

We now complete the

Proof of Theorem 7. Without loss of generality we may assume that
X ⊆ Z where Z has a bimonotone basis (zi). Let X be K-elastic. We will
often use semi-normalized sequences in X which are a tiny perturbation of a
block basis of (zi) and to simplify the estimates we will assume below that
they are in fact a block basis of (zi).

For example, if (yi) is a normalized basic sequence in X then we call (di)
a difference sequence of (yi) if di = yk(2i)−yk(2i+1) for some k1 < k2 < · · · . We
can always choose such a (di) to be a semi-normalized perturbation of a block
basis of (zi) by first passing to a subsequence (y′i) of (yi) so that limi→∞ z∗j (y′i)
exists for all j, where (z∗i ) is biorthogonal to (zi), and taking (di) to be a
suitable difference sequence of (y′i). We will assume then that (di) is in fact a
block basis of (zi).

We inductively construct for each limit ordinal β < ω1, a Banach space
Yβ that embeds into X. Yβ will have a normalized bimonotone basis (yβ

i ) that
can be enumerated as (yβ

i )∞i=1 = {yβ,ρ,n
i : ρ ∈ Cβ, n ∈ N, i ∈ N} where Cβ is

some countable set. The order is such that (yβ,ρ,n
i )∞i=1 is a subsequence of (yβ

i )
for fixed ρ and n.

Before stating the remaining properties of (yβ
i ) we need some terminology.

We say that (wi) is a compatible difference sequence of (yβ
i ) of order 1 if (wi)
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is a difference sequence of (yβ
i ) that can be enumerated as follows,

(wi) = {wβ,ρ,n
i : ρ ∈ Cβ, n, i ∈ N}

and such that for fixed ρ and n,

(wβ,ρ,n
i )i is a difference sequence of (yβ,ρ,n+1

i )i .

If (vi) is a compatible difference sequence of (wi) of order 1, in the above sense,
(vi) will be called a compatible difference sequence of (yβ

i ) of order 2, and so
on. (yβ

i ) will be said to have order 0.
Let (vi) be a compatible difference sequence of (yβ

i ) of some finite order.
We set

T
(
(vi)

)
=

{
(ui)s

1 : the ui’s are distinct elements of {vi}∞1 , possibly in

different order, and
∥∥∥∥ s∑

1

±ui

∥∥∥∥ = 1 for all choices of sign
}

.

T
(
(vi)

)
is then an �∞-tree as described above with C = 1. The inductive con-

dition on Yβ, or should we say on (yβ,ρ,n
i ), is that for all compatible difference

sequences (vi) of (yβ,ρ,n
i ) of finite order,

o(T ((vi))) ≥ β .

Before proceeding we have an elementary but key

Sublemma. Let C < ∞ and let (wi) be a block basis of a bimonotone
basis (zi) with 1 ≤ ‖wi‖ ≤ C for all i and let

A = {F ⊆ N : F is finite and ‖
∑
i∈F

±wi‖ ≤ C for all choices of sign}.

Then there exists an equivalent norm | · | on [(wi)] so that (wi) is a bimonotone
normalized basis such that for all F ∈ A,∣∣∣ ∑

F

±wi

∣∣∣ = 1 .

Proof. Define |
∑

aiwi| = ‖(ai)‖∞ ∨ C−1‖
∑

aiwi‖.

We begin by constructing Yω. Let (xi) ⊆ X be a normalized block basis of
(zi). For n ∈ N, let | · |n be an equivalent norm on [(xi)] given by the sublemma
for C = 2n. Thus |

∑
F ±xi|n = 1 if |F | ≤ 2n.

Since X is K-elastic, for all n, ([(xi)], | · |n) K-embeds into X. We thus
obtain for n ∈ N, a sequence (xn

i )i ⊆ X with 1 ≤ ‖xn
i ‖ ≤ K for all i and such

that 1 ≤ ‖
∑

i∈F ±xn
i ‖ ≤ K for all |F | ≤ 2n and all choices of sign. Furthermore
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(xn
i )i is K-basic. By standard perturbation and diagonal arguments we may

for each n pass to a difference sequence (dn
i )i of (xn+1

i )i so that enumerating,
(di) = {dn

i : n, i ∈ N} is a block basis of (zi) with 1 ≤ ‖di‖ ≤ K and with each
(dn

i )i being a subsequence of (di). We have that for |F | ≤ 2n and all signs,

1 ≤
∥∥∥∥∑

i∈F

±dn
i

∥∥∥∥ ≤ K .

We renorm [(di)] by the sublemma for C = K and let the ensuing space
be Yω. We change the name of (di) to (yω

i ) in this new norm and let (yω,1,n
i )i =

(dn
i )i. (yω

i ) has the property that if (wi) is a compatible difference sequence of
(yω

i ) of finite order, then o(T ((wi))) ≥ ω. Indeed, if (wi) = {wω,1,n
i : n ∈ N,

i ∈ N} then for |F | ≤ 2n, ‖
∑

i∈F ±wω,1,n
i ‖ = 1.

Assume that Yβ has been constructed for the limit ordinal β with basis
(yβ

i ) = {yβ,ρ,n
i : p ∈ Cβ, n, i ∈ N} with the requisite properties above.

Let U : Yω → X and V : Yβ → X be K-embeddings. Since in total we
are dealing with a countable set of sequences, namely (yω,1,n

i )i for n ∈ N and
(yβ,ρ,n

i )i for p ∈ Cβ, n ∈ N, by diagonalization and perturbation we can find
a compatible difference sequence (wω

i )i of (yω
i )i of order 1 and a compatible

difference sequence (wβ
i )i of (yβ

i )i of order 1 so that under a suitable reordering,
(di) = (Uwω

i )i ∪ (V wβ
i )i is a block basis of (zi). Moreover each (Uwω,1,n

i )i and
(V wβ,ρ,n

i )i is a subsequence of (di)i.
Adjoin a new point p0 to Cβ and set Cβ+ω = Cβ ∪ {ρ0}. Let dβ+ω,ρ,n

i =
V wβ,ρ,n

i for ρ ∈ Cβ and dβ+ω,ρ0,n
i = Uwω,1,n

i . For |F | ≤ 2n and G ⊆ Cβ ×N×N
for which

∥∥ ∑
(ρ,n,i)∈G

±wβ,ρ,n
i

∥∥ = 1, we have by the triangle inequality that

∥∥∥∥∑
i∈F

±dβ+ω,ρ0,n
i +

∑
(ρ,n,i)∈G

±dβ+ω,ρ,n
i

∥∥∥∥ ≤ 2K .(∗)

It follows that if we let (yβ+ω
i ) be the basis (dβ+ω

i ), renormed by the
sublemma for C = 2K, that Yβ+ω = [(yβ+ω

i )] has the required properties.
Indeed (∗) yields that o(T ((yβ+ω

i ))) ≥ β +2n for n ∈ N and so o(T ((yβ+ω
i ))) ≥

β + ω. Moreover by our induction hypothesis and choice of (dβ+ω,p0,n
i ) the

analogue of (∗) holds for a compatible difference sequence of order 1 or of any
finite order. Thus o(T (zβ+ω

i )) ≥ β + ω for any compatible difference sequence
of (yβ+ω

i ) of finite order.
If β is a limit ordinal not of the form α + ω we let Uα : Yα → X be

a K-embedding for each limit ordinal α < β. We again diagonalize to form
compatible difference sequences (wα

i )i of (yα
i ) of order 1 for each such α so

that (Uαwα
i )α,i is a block basis of (zi) in some order. We let Cβ be a disjoint
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union of the Cα’s and in the manner above obtain Yβ. Again by our induction
hypothesis we will have that o(T ((yβ

i ))) ≥ α for all limit ordinals α < β and
the same holds for all compatible difference sequences of (yβ

i ) of finite order.

3. Concluding remarks and problems

C[0, 1] is, of course, 1-elastic. By virtue of Lemma 4 (or Theorem 1), for
all K, C[0, 1] can be renormed to be elastic but not K-elastic. Are there other
examples of separable elastic spaces?

Problem 8. Let X be elastic (and separable, say). Does C[0, 1] embed
into X?

Using index arguments, we have the following partial result.

Proposition 9. Let X be a separable Banach space, and suppose that
Y =

∑
Xn is a symmetric decomposition of a space Y into spaces uniformly

isomorphic to X. If Y is elastic, then C[0, 1] embeds into X.
In particular, if 1 ≤ p < ∞ and �p(X) is elastic, then C[0, 1] embeds

into X.

Proof. Let us first observe that if C[0, 1] embeds into Y , then C[0, 1] em-
beds into X. Since this is surely well known, we just sketch a proof (which,
incidentally, uses only that the decomposition Y =

∑
Xn of Y is uncondi-

tional): Let Pn be the projection from Y onto Xn and let W be a subspace
of Y which is isomorphic to C[0, 1]. By a theorem of Rosenthal’s [R], it is
enough to show that for some n, the adjoint Pn

∗
|W of the restriction of Pn to

W has nonseparable range. This will be true if there is an m so that Sm
∗
|W has

nonseparable range, where Sm :=
∑m

i=1 Pi. Let Z be a subspace of W which is
isomorphic to �1. If no such m exists, then for every m, the restriction of Sm to
Z is strictly singular (that is, not an isomorphism on any infinite dimensional
subspace of Z), and it then follows that Z contains a sequence (xn) of unit
vectors which is an arbitrarily small perturbation of a sequence (yn) which is
disjointly supported. The sequence (yn), a fortiori (xn), is then easily seen to
be equivalent to the unit vector basis of �1 and its closed span is complemented
in Y since the decomposition is unconditional. It follows that �1 is isomorphic
to a complemented subspace of C[0, 1], which of course is false.

To complete the proof of Proposition 9, we assume that Y is K-elastic and
prove that C[0, 1] embeds into Y . The proof is similar to, but simpler than,
the proof of Theorem 7. First we recall the definition of certain canonical trees
Tα of order α for α < ω1 (see e.g. [JO]). These form the frames upon which
we will hang our bases. The tree T1 is a single node. If Tα has been defined,
we choose a new node z 
∈ Tα and set Tα+1 := Tα ∪ {z}, ordered by z < t for
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all t ∈ Tα and with Tα preserving its order. If β < ω1 is a limit ordinal, we let
Tβ be the disjoint union of {Tα : α < β}. Then if s, t are in Tβ, we say that
s ≤ t if and only if s, t are both in Tα for some α < β and s ≤ t in Tα.

We shall prove by transfinite induction that if (xi)∞i=1 is any normalized
bimonotone basic sequence and α < ω1, there is a Banach space Yα = Yα(xi)
with a normalized bimonotone basis (yα

t )t∈Tα
so that if (γi)n

i=1 is any branch
in Tα then (yα

γi
)n
i=1 is 1-equivalent to (xi)n

i=1 and for all scalars (ar)t∈Tα
,

‖
∑n

i=1 aγi
yα

γi
‖ ≤ ‖

∑
t∈Tα

aty
α
t ‖. Furthermore, each Yα will K-embed into Y .

Just as in the proof of Theorem 7, it then follows from index theory that the
Banach space spanned by (xi)∞i=1 embeds into Y .

Fix any normalized bimonotone basic sequence (xi)∞i=1. Suppose that β

is a limit ordinal and Yα = Yα(xi)∞i=1 has been defined for all α < β. In view
of the hypotheses, the space Y has a symmetric decomposition into spaces
uniformly isomorphic Y , which we can index as Y =

∑
α<β Xα. For each α,

there is an isomorphism Lα from Yα into Xα so that ‖Lα‖ = 1 and ‖L−1
α ‖ is

bounded independently of α. We can put an equivalent norm on Y =
∑

α<β Xα

to make each Lα an isometry and make the decomposition 1-unconditional
(but not necessarily 1-symmetric). Define Yβ to be the closed linear span of
{LαYα : α < β} in Y with its new norm. The space Yβ has the desired basis
indexed by Tβ and Yα must K-embed into Y with its original norm because Y

is K-elastic.
If β = α + 1, we let Yβ(xi)∞i=1 = R ⊕ Yα(xi)∞i=2 with the norm given by

‖(a, y)‖ := ‖y‖ ∨ sup{‖ax1 +
n∑

i=2

yα∗
γi

(y)yα
γi
‖ : (γi)n

i=2 is a branch in Tα}.

Again it is clear that Yβ must K-embed into Y and that Yβ has the desired
basis.

Given metric spaces X and Y , the Lipschitz distance dL(X, Y ) between
them is defined to be the infimum of Lip (f) · Lip (f−1), where the infimum
is taken over all biLipschitz mappings f from X onto Y (the infimum of the
empty set is ∞). Call a Banach space X Lipschitz K-elastic provided that
every isomorph of X has Lipschitz distance at most K to some subset of X,
and say that X is Lipschitz elastic if X is Lipschitz K-elastic for some K < ∞.
It is interesting to note that the analogue of Theorem 1 for Lipschitz elasticity
is false. Indeed, Aharoni [A], [BeLi, Theorem 7.11] proved that every separable
metric space has, for each ε > 0, Lipschitz distance less than 3 + ε to some
subset of c0, while James [J], [BeLi, Proposition 13.6] proved that for each
ε > 0, the space c0 is 1 + ε-equivalent to a subspace of every isomorph of c0.
Consequently, any separable Banach space which contains an isomorphic copy
of c0 is Lipschitz 3 + ε-elastic.
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Problem 10. If X is a separable, infinite dimensional Banach space and
there is a K so that every isomorph of X is Lipschitz K-elastic, must X contain
a subspace isomorphic to c0?

We also do not know whether the Main Theorem has a Lipschitz analogue:

Problem 11. If X is a separable Banach space and there exists K < ∞
so that dL(X, Y ) < K for all spaces Y which are isomorphic (or biLipschitz
equivalent) to X, then must X be finite dimensional?

The space c0 does not have the property mentioned in Problem 11 (use,
for example, the fact [GKL] that for every K < ∞ there exists K ′ < ∞ so that
if a Banach space X is K biLipschitz equivalent to c0 then d(X, c0) ≤ K ′).

Since Schäffer’s problem remains open in the nonseparable setting, we
mention it explicitly as:

Problem 12. Does there exist a nonseparable Banach space X for which
D(X) < ∞?

Also open is:

Problem 13. Does there exist a nonseparable Banach space X and a
K < ∞ so that all isomorphs of X are K-elastic?

Under the generalized continuum hypothesis, it follows from [E] that for
every cardinal ℵ there is a Banach space X of density character ℵ so that every
Banach space of density character ℵ is isometrically isomorphic to a subspace
of X. These provide the only known examples of elastic Banach spaces.

Problem 14. If X is elastic and infinite dimensional, does X contain an
isomorph of every Banach space whose density character is the same as the
density character of X?

As was mentioned earlier, the space �∞ is, for every ε > 0, 1+ε-isomorphic
to a subspace of every isomorph of itself (see [P] and [T]). However, �∞ is
not elastic. To see this, take a biorthogonal system (xα, x∗

α)α<2ℵ0 in �∞ with
‖xα‖ = 1 and ‖x∗

α‖ bounded. Given a natural number m, renorm �∞ by

‖x‖m := max

 1
m
‖x‖∞, sup

|σ|=m

(∑
α∈σ

|x∗
α(x)|2

)1/2
 .

It is not hard to see that (�∞, ‖ · ‖m) is not better than
√

m-normed by any
countable set of norm one functionals, which implies that d((�∞, ‖ · ‖m), Y ) ≥√

m for any subspace Y of �∞. A similar argument shows that �∞(ℵ) is not
elastic for any infinite cardinal number ℵ.
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