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Geometrization of 3-dimensional orbifolds

By Michel Boileau, Bernhard Leeb, and Joan Porti

Abstract

This paper is devoted to the proof of the orbifold theorem: If O is a
compact connected orientable irreducible and topologically atoroidal 3-orbifold
with nonempty ramification locus, then O is geometric (i.e. has a metric of
constant curvature or is Seifert fibred). As a corollary, any smooth orientation-
preserving nonfree finite group action on S3 is conjugate to an orthogonal
action.
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1. Introduction

A 3-dimensional orbifold is a metrizable space equipped with an atlas of
compatible local models given by quotients of R3 by finite subgroups of O(3).
For example, the quotient of a 3-manifold by a properly discontinuous smooth
group action naturally inherits a structure of a 3-orbifold. When the group
action is finite, such an orbifold is called very good. We will consider in this
paper only orientable orbifolds. The ramification locus, i.e. the set of points
with nontrivial local isotropy group, is then a trivalent graph.

In 1982, Thurston [Thu2, 6] announced the geometrization theorem for
3-orbifolds with nonempty ramification locus and lectured about it. Several
partial results have been obtained in the meantime; see [BoP]. The purpose of
this article is to give a complete proof of the orbifold theorem; compare [BLP0]
for an outline. A different proof was announced in [CHK].

The main result of this article is the following uniformization theorem
which implies the orbifold theorem for compact orientable 3-orbifolds. A
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3-orbifold O is said to be geometric if either its interior has one of Thurston’s
eight geometries or O is the quotient of a ball by a finite orthogonal action.

Main Theorem (Uniformization of small 3-orbifolds). Let O be a com-
pact connected orientable small 3-orbifold with nonempty ramification locus.
Then O is geometric.

An orientable compact 3-orbifold O is small if it is irreducible, its bound-
ary ∂O is a (perhaps empty) collection of turnovers (i.e. 2-spheres with three
branching points), and it does not contain any other closed incompressible
orientable 2-suborbifold.

An application of the main theorem concerns nonfree finite group actions
on the 3-sphere S3; see Section 2.3. It recovers all the previously known partial
results (cf. [DaM], [Fei], [MB], [Mor]), as well as the results about finite group
actions on the 3-ball (cf. [MY2], [KS]).

Corollary 1.1. An orientation-preserving smooth nonfree finite group
action on S3 is smoothly conjugate to an orthogonal action.

Every compact orientable irreducible and atoroidal 3-orbifold can be canon-
ically split along a maximal (perhaps empty) collection of disjoint and pair-
wise nonparallel hyperbolic turnovers. The resulting pieces are either Haken
or small 3-orbifolds (cf. Section 2). Using an extension of Thurston’s hyper-
bolization theorem to the case of Haken orbifolds (cf. [BoP, Ch. 8]), we show
that the main theorem implies the orientable case of the orbifold theorem:

Corollary 1.2 (Orbifold Theorem). Let O be a compact connected ori-
entable irreducible 3-orbifold with nonempty ramification locus. If O is topo-
logically atoroidal, then O is geometric.

Any compact connected orientable 3-orbifold, that does not contain any
bad 2-suborbifold (i.e. a 2-sphere with one branching point or with two branch-
ing points having different branching indices), can be split along a finite col-
lection of disjoint embedded spherical and toric 2-suborbifolds ([BMP, Ch. 3])
into irreducible and atoroidal 3-orbifolds, which are geometric if the branching
locus is nonempty, by Corollary 1.2. Such an orbifold is the connected sum of
an orbifold having a geometric decomposition with a manifold. The fact that
3-orbifolds with a geometric decomposition are finitely covered by a manifold
[McCMi] implies:

Corollary 1.3. Every compact connected orientable 3-orbifold which does
not contain any bad 2-suborbifolds is the quotient of a compact orientable
3-manifold by a finite group action.
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The paper is organized as follows. In Section 2 we recall some basic
terminology about orbifolds. Then we deduce the orbifold theorem from our
main theorem.

The proof of the main theorem is based on some geometric properties of
cone manifolds, which are presented in Sections 3–5. This geometric approach
is one of the main differences with [BoP].

In Section 3, we define cone manifolds and develop some basic geometric
concepts. Motivating examples are geometric orbifolds which arise as quotients
of model spaces by properly discontinuous group actions. These have cone
angles ≤ π, and only cone manifolds with cone angles ≤ π will be relevant for
the approach to geometrizing orbifolds pursued in this paper. The main result
of Section 3 is a compactness result for spaces of cone manifolds with cone
angles ≤ π which are thick in a certain sense.

In Section 4 we classify noncompact Euclidean cone 3-manifolds with cone
angles ≤ π. This classification is needed for the proof of the fibration theorem
in Section 10. It also motivates our results in Section 5 where we study the local
geometry of cone 3-manifolds with cone angles ≤ π; there, a lower diameter
bound plays the role of the noncompactness condition in the flat case. Our
main result, cf. Section 5.2, is a geometric description of the thin part in the
case when cone angles are bounded away from π and 0 (Theorem 5.3). As
consequences, we obtain thickness (Theorem 5.4) and, when the volume is
finite, the existence of a geometric compact core (Theorem 5.5). The other
results relevant for the proof of the main theorem are the geometric fibration
theorem for thin cone manifolds with totally geodesic boundary (Corollary
5.37) and the thick vertex lemma (Lemma 5.10) which is a simple result useful
in the case of platonic vertices.

We give the proof of the main theorem in Section 6. Firstly we reduce
to the case when the smooth part of the orbifold is hyperbolic. We view
the (complete) hyperbolic structure on the smooth part as a hyperbolic cone
structure on the orbifold with cone angles zero. The goal is to increase the cone
angles of this hyperbolic cone structure as much as possible. In Section 6.2
we prove first that there exist such deformations which change the cone angles
(openness theorem).

Next we consider a sequence of hyperbolic cone structures on the orbifold
whose cone angles converge to the supremum of the cone angles in the defor-
mation space. We have the following dichotomy: either the sequence collapses
(i.e. the supremum of the injectivity radius for each cone structure goes to
zero) or not (i.e. each cone structure contains a point with injectivity radius
uniformly bounded away from zero).

In the noncollapsing case we show in Section 6.3 that the orbifold an-
gles can be reached in the deformation space of hyperbolic cone structures,
and therefore the orbifold is hyperbolic. This step uses a stability theorem
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which shows that a noncollapsing sequence of hyperbolic cone structures on
the orbifold has a subsequence converging to a hyperbolic cone structure on
the orbifold. We prove this theorem in Section 7.

Then we analyze the case where the sequence of cone structures collapses.
If the diameters of the collapsing cone structures are bounded away from zero,
then we conclude that the orbifold is Seifert fibred, using the fibration theo-
rem which is proved in Section 10. Otherwise the diameter of the sequence of
cone structures converges to zero. Then we show that the orbifold is geomet-
ric, unless the following situation occurs: the orbifold is closed and admits a
Euclidean cone structure with cone angles strictly less than its orbifold angles.

We deal with this last case in Sections 8 and 9 proving that then the
orbifold is spherical (spherical uniformization theorem). For orbifolds with
cyclic or dihedral stabilizer, the proof relies on Hamilton’s theorem [Ha1] about
the Ricci flow on 3-manifolds. In the general case the proof is by induction
on the number of platonic vertices and involves deformations of spherical cone
structures.

Acknowledgements. We wish to thank J. Alze, D. Cooper and H. Weiß
for useful conversations and remarks. We thank the RiP-program at the Math-
ematisches Forschungsinstitut Oberwolfach, as well as DAAD, MCYT (Grants
HA2000-0053 and BFM2000-0007) and DURSI (ACI2000-17) for financial sup-
port.

2. 3-dimensional orbifolds

2.1. Basic definitions. For a general background about orbifolds we refer
to [BMP], [BS1, 2], [CHK], [DaM], [Kap, Ch. 7], [Sco], and [Thu1, Ch. 13]. We
begin by recalling some terminology from these references.

A compact 2-orbifold F 2 is said to be spherical, discal, toric or annular if
it is the quotient by a finite smooth group action of respectively the 2-sphere
S2, the 2-disc D2, the 2-torus T 2 or the annulus S1 × [0, 1].

A compact 2-orbifold is bad if it is not good (i.e. it is not covered by a
surface). Such a 2-orbifold is the union of two nonisomorphic discal 2-orbifolds
along their boundaries.

A compact 3-orbifold O is irreducible if it does not contain any bad 2-
suborbifold and if every orientable spherical 2-suborbifold bounds in O a discal
3-suborbifold, where a discal 3-orbifold is a finite quotient of the 3-ball by an
orthogonal action.

A connected 2-suborbifold F 2 in an orientable 3-orbifold O is compressible
if either F 2 bounds a discal 3-suborbifold in O or there is a discal 2-suborbifold
∆2 which intersects transversally F 2 in ∂∆2 = ∆2 ∩ F 2 and is such that ∂∆2

does not bound a discal 2-suborbifold in F 2.
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A 2-suborbifold F 2 in an orientable 3-orbifold O is incompressible if no
connected component of F 2 is compressible in O.

A properly embedded 2-suborbifold F 2 is ∂-parallel if it co-bounds a prod-
uct with a suborbifold of the boundary (i.e. an embedded product F×[0, 1] ⊂ O
with F × 0 = F 2 and F × 1 ⊂ ∂O), so that ∂F × [0, 1] ⊂ ∂O.

A properly embedded 2-suborbifold (F, ∂F ) ↪→ (O, ∂O) is ∂-compressible
if:

– either (F, ∂F ) is a discal 2-suborbifold (D2, ∂D2) which is ∂-parallel,

– or there is a discal 2-suborbifold ∆ ⊂ O such that ∂∆∩F is a simple arc
α which does not cobound a discal suborbifold of F with an arc in ∂F ,
and ∆ ∩ ∂O is a simple arc β with ∂∆ = α ∪ β and α ∩ β = ∂α = ∂β.

A properly embedded 2-suborbifold F 2 is essential in a compact ori-
entable irreducible 3-orbifold, if it is incompressible, ∂-incompressible and not
∂-parallel.

A compact 3-orbifold is topologically atoroidal if it does not contain an
embedded essential orientable toric 2-suborbifold.

A turnover is a 2-orbifold with underlying space a 2-sphere and ramifica-
tion locus three points. In an irreducible orientable 3-orbifold, an embedded
turnover either bounds a discal 3-suborbifold or is incompressible and of non-
positive Euler characteristic.

An orientable compact 3-orbifold O is Haken if it is irreducible, if every
embedded turnover is either compressible or ∂-parallel, and if it contains an
embedded orientable incompressible 2-suborbifold which is not a turnover.

Remark 2.1. The word Haken may lead to confusion, since it is not true
that a compact orientable irreducible 3-orbifold containing an orientable in-
compressible properly embedded 2-suborbifold is Haken in our meaning (cf.
[BMP, Ch. 4], [Dun1], [BoP, Ch. 8]).

An orientable compact 3-orbifold O is small if it is irreducible, its bound-
ary ∂O is a (perhaps empty) collection of turnovers, and O does not contain
any essential orientable 2-suborbifold. It follows from Dunbar’s theorem [Dun1]
that the hypothesis about the boundary is automatically satisfied once O does
not contain any essential 2-suborbifold.

Remark 2.2. By irreducibility, if a small orbifold O has nonempty bound-
ary, then either O is a discal 3-orbifold, or ∂O is a collection of Euclidean and
hyperbolic turnovers.

A 3-orbifold O is geometric if either it is the quotient of a ball by an
orthogonal action, or its interior has one of the eight Thurston geometries. We
quickly review those geometries.
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A compact orientable 3-orbifold O is hyperbolic if its interior is orbifold-
diffeomorphic to the quotient of the hyperbolic space H3 by a nonelementary
discrete group of isometries. In particular I-bundles over hyperbolic 2-orbifolds
are hyperbolic, since their interiors are quotients of H3 by nonelementary Fuch-
sian groups.

A compact orientable 3-orbifold is Euclidean if its interior has a complete
Euclidean structure. Thus, if a compact orientable and ∂-incompressible 3-
orbifold O is Euclidean, then either O is an I-bundle over a 2-dimensional
Euclidean closed orbifold or O is closed.

A compact orientable 3-orbifold is spherical when it is the quotient of the
standard sphere S3 or the round ball B3 by the orthogonal action of a finite
group.

A Seifert fibration on a 3-orbifold O is a partition of O into closed
1-suborbifolds (circles or intervals with silvered boundary) called fibers, such
that each fiber has a saturated neighborhood diffeomorphic to S1 × D2/G,
where G is a finite group which acts smoothly, preserves both factors, and acts
orthogonally on each factor and effectively on D2; moreover the fibers of the
saturated neighborhood correspond to the quotients of the circles S1 × {∗}.
On the boundary ∂O, the local model of the Seifert fibration is S1 × D2

+/G,
where D2

+ is a half-disc.
A 3-orbifold that admits a Seifert fibration is called Seifert fibred. A Seifert

fibred 3-orbifold which does not contain a bad 2-suborbifold is geometric (cf.
[BMP, Ch. 1, 2], [Sco], [Thu7]).

Besides the constant curvature geometries E3 and S3, there are four other
possible 3-dimensional homogeneous geometries for a Seifert fibred 3-orbifold:
H2 × R, S2 × R, S̃L2(R) and Nil.

The geometric but non-Seifert fibred 3-orbifolds require either a constant
curvature geometry or Sol. Compact 3-orbifolds with Sol geometry are fibred
over a closed 1-dimensional orbifold with toric fiber and thus they are not
topologically atoroidal (cf. [Dun2]).

2.2. Spherical and toric decompositions. Thurston’s geometrization con-
jecture asserts that any compact, orientable, 3-orbifold, which does not contain
any bad 2-suborbifold, can be decomposed along a finite collection of disjoint,
nonparallel, essential, embedded spherical and toric 2-suborbifolds into geo-
metric suborbifolds.

The topological background for Thurston’s geometrization conjecture is
given by the spherical and toric decompositions.

Given a compact orientable 3-orbifold without bad 2-suborbifolds, the
first stage of the splitting is called spherical or prime decomposition, and it
expresses the 3-orbifold as the connected sum of 3-orbifolds which are either
homeomorphic to a finite quotient of S1×S2 or irreducible. We refer to [BMP,
Ch. 3], [TY1] for details.
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The second stage (toric splitting) is a more subtle decomposition of each ir-
reducible factor along a finite (maybe empty) collection of disjoint and nonpar-
allel essential, toric 2-suborbifolds. This collection of essential toric
2-suborbifolds is unique up to isotopy. It cuts the irreducible orbifold into
topologically atoroidal or Seifert fibred 3-suborbifolds; see [BS1], [BMP, Ch. 3].

By these spherical and toric decompositions, Thurston’s geometrization
conjecture reduces to the case of a compact, orientable 3-orbifold which is
irreducible and topologically atoroidal.

Our proof requires a further decomposition along turnovers due to Dunbar
([BMP, Ch. 3], [Dun1, Th. 12]). A compact irreducible and topologically
atoroidal 3-orbifold has a maximal family of nonparallel essential turnovers,
which may be empty. This family is unique up to isotopy and cuts the orbifold
into pieces without essential turnovers.

2.3. Finite group actions on spheres with fixed points.

Proof of Corollary 1.1 from the main theorem. Consider a nonfree action
of a finite group Γ on S3 by orientation-preserving diffeomorphisms. Let O =
Γ\S3 be the quotient orbifold.

If O is irreducible then the equivariant Dehn lemma implies that any
2-suborbifold with infinite fundamental group has a compression disc. Hence
O is small and we apply the main theorem.

Suppose that O is reducible. Since O does not contain a bad 2-suborbifold,
there is a prime decomposition along a family of spherical 2-suborbifolds; see
Section 2.2. These lift to a family of 2-spheres in S3. Consider an innermost
2-sphere; it bounds a ball B ⊂ S3. The quotient Q of B by its stabilizer Γ′

in Γ has one boundary component which is a spherical 2-orbifold. We close it
by attaching a discal 3-orbifold. The resulting closed 3-orbifold O′ is a prime
factor of O. The orbifold O′ is irreducible, and hence spherical. The action
of Γ′ on Õ′ ∼= S3 is standard and preserves the sphere ∂B. Thus the action
is a suspension and Q is discal. This contradicts the minimality of the prime
decomposition.

2.4. Proof of the orbifold theorem from the main theorem. This step of
the proof is based on the following extension of Thurston’s hyperbolization
theorem to Haken orbifolds (cf. [BoP, Ch. 8]):

Theorem 2.3 (Hyperbolization theorem of Haken orbifolds). Let O be
a compact orientable connected Haken 3-orbifold. If O is topologically atoroidal
and not Seifert fibred, nor Euclidean, then O is hyperbolic.

Remark 2.4. The proof of this theorem follows exactly the scheme of the
proof for Haken manifolds [Thu2, 3, 5], [McM1], [Kap], [Ot1, 2] (cf. [BoP,
Ch. 8] for a precise overview).
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Proof of Corollary 1.2 (the orbifold theorem). Let O be a compact ori-
entable connected irreducible topologically atoroidal 3-orbifold. By [BMP,
Ch. 3], [Dun1, Th. 12] there exists in O a (possibly empty) maximal collection
T of disjoint embedded pairwise nonparallel essential turnovers. Since O is
irreducible and topologically atoroidal, any turnover in T is hyperbolic (i.e.
has negative Euler characteristic).

When T is empty, the orbifold theorem reduces either to the main theorem
or to Theorem 2.3 according to whether O is small or Haken.

When T is not empty, we first cut open the orbifold O along the turnovers
of the family T . By maximality of the family T , the closure of each component
of O − T is a compact orientable irreducible topologically atoroidal 3-orbifold
that does not contain any essential embedded turnover. Let O′ be one of these
connected components. By the previous case O′ is either hyperbolic, Euclidean
or Seifert fibred. Since, by construction, ∂O′ contains at least one hyperbolic
turnover T , O′ must be hyperbolic. Moreover any such hyperbolic turnover T

in ∂O′ is a Fuchsian 2-suborbifold, because there is a unique conjugacy class
of faithful representations of the fundamental group of a turnover in PSL2(C).

We assume first that all the connected components of O − T have
3-dimensional convex cores. In this case the totally geodesic hyperbolic turn-
overs are the boundary components of the convex cores. Hence the hyper-
bolic structures on the components of O − T can be glued together along the
hyperbolic turnovers of the family T to give a hyperbolic structure on the
3-orbifold O.

If the convex core of O′ is 2-dimensional, then O′ is either a product
T × [0, 1], where T is a hyperbolic turnover, or a quotient of T × [0, 1] by an
involution. When O′ = T×[0, 1], then the 3-orbifold O is Seifert fibred, because
the mapping class group of a turnover is finite. When O′ is the quotient of
T × [0, 1], then it has only one boundary component and it is glued either to
another quotient of T×[0, 1] or to a component with 3-dimensional convex core.
When we glue two quotients of T × [0, 1] by an involution, we obtain a Seifert
fibred orbifold. Finally, gluing O′ to a hyperbolic orbifold with totally geodesic
boundary is equivalent to giving this boundary a quotient by an isometric
involution.

3. 3-dimensional cone manifolds

3.1. Basic definitions. We start by recalling the construction of metric
cones.

Let k and r > 0 be real numbers; if k > 0 we assume in addition that r ≤
π√
k
. Suppose that Y is a metric space with diam(Y ) ≤ π. On the set Y × [0, r]

we define a pseudo-metric as follows. Given (y1, t1), (y2, t2) ∈ Y × [0, r], let
p0p1p2 be a triangle in the 2-dimensional model space M2

k of constant curvature
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k with d(p0, p1) = t1, d(p0, p2) = t2 and ∠p0 = dY (y1, y2). We put

dY ×[0,r]

(
(y1, t1), (y2, t2)

)
:= dM2

k
(p1, p2).

The metric space Ck,r(Y ) obtained from collapsing the subset Y × {0} to a
point is called the metric cone of curvature k or k-cone of radius r over Y . In
the special case when k > 0 and r = π√

k
, one also has to collapse the subset

Y × { π√
k
} to a point. The point in Ck,r(Y ) corresponding to Y × {0} is called

the tip or apex of the cone. The complete k-cone or simply k-cone Ck(Y ) over
Y is defined as Ck,∞(Y ) := ∪r>0Ck,r(Y ) if k ≤ 0 and as Ck, π√

k
(Y ) if k > 0.

The complete 1-cone over a space is also called its metric suspension.

We define cone manifolds as certain metric spaces locally isometric to iter-
ated cones. To make this precise, we proceed by induction over the dimension.
We first make the convention that the connected 1-dimensional cone manifolds
of curvature 1 are circles of length ≤ 2π or compact intervals of length ≤ π.

Definition 3.1 (Cone manifolds). An n-dimensional conifold of curvature
k, n ≥ 2, is a complete geodesic metric space locally isometric to the k-cone
over a connected (n − 1)-dimensional conifold of curvature 1.

A cone manifold is a conifold which is topologically a manifold.

Conifolds of curvature k = +1, k = 0 or k = −1 are called spherical,
Euclidean or hyperbolic, respectively.

Spelled out in more detail, the definition requires that for every point x in
a n-conifold X there exists a radius ε > 0 and an isometry from the closed ball
Bε(x) to the k-cone Ck,ε(ΛxX) over a metric space ΛxX carrying x to the tip
of the cone. Moreover, ΛxX must be itself an (n − 1)-conifold of curvature 1.

The metric space ΛxX is called the space of directions or link of X at x.1

It can be defined intrinsically as the space of germs of geodesic segments in
X emanating from x equipped with the angular metric. It is implicit in the
definition that the links ΛxX are complete metric spaces. Since they have
curvature 1, it follows that they are compact with diameters ≤ π; see the
discussion at the end of this section.

We note that all conifolds of dimension ≤ 2 are manifolds. The links in
3-dimensional conifolds are, according to the Gauß-Bonnet Theorem (extended
to singular surfaces), topologically 2-spheres, 2-discs or projective planes. If
none of the links is a projective plane, then the conifold is a manifold. The
wider concept of conifold will play no role in this paper; later on, we will only
consider cone manifolds of dimensions ≤ 3.

1The standard geometric notation would be ΣxX, but we already make extensive use of
the letter Σ, namely for the singular locus of an orbifold.
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Example 3.2 (Geometric orbifolds). A geometric orbifold of dimension n

and curvature k is a complete geodesic metric space which is locally isometric
to the quotient of the model space Mn

k by a finite group of isometries.

Unlike topological orbifolds, geometric orbifolds are always global quo-
tients, i.e. they are (even finite) quotients of manifolds of constant curvature
by discrete group actions.

We define the boundary of a conifold by induction over the dimension. The
boundary points of a 1-conifold are the endpoints of its interval components.
The boundary points of a n-conifold, n ≥ 2, are the points whose links have
boundary.

A point x in a conifold X is called a smooth interior point if X is locally at
x isometric to the model space Mn

k of the same curvature and dimension as X,
or equivalently, if the link ΛxX is a unit sphere. If ΛxX is a unit hemisphere,
the point x is a smooth boundary point. All other points are called singular.
We denote by Xsmooth the subset of smooth points, and by ΣX its complement,
the singular locus.

Let us go through this in low dimensions. One-dimensional cone manifolds
contain only regular points. If S is a cone surface, i.e. a cone 2-manifold, then
ΣS is a discrete subset. A singular point is either a corner of the boundary, if
its link is an interval of length < π, or a cone point in the interior, if its link is
a circle of length < 2π. In the latter case, the length of the circle is called the
cone angle.

Consider now a 3-dimensional cone manifold X. In this case, the singular
set ΣX is one-dimensional, namely a geodesic graph. We define Σ(1)

X ⊆ ΣX

as the subset of singular points x whose link ΛxX is the metric suspension of
(complete 1-cone over) a circle. The length of the circle is called the cone angle
at x. We call the closure of a component of Σ(1)

X a singular edge. The cone
angle is constant along edges, and we can thus speak of the cone angle of an
edge. The complement Σ(0)

X := ΣX − Σ(1)
X is discrete and its points are called

singular vertices.
Notice that a cone surface or a cone 3-manifold without boundary is a

geometric orbifold if and only if all cone angles are divisors of 2π. In particular
the cone angles of a geometric 3-orbifold are ≤ π, and due to this fact we will
be mostly interested in cone manifolds with cone angles ≤ π.

Proposition 3.3. Conifolds of curvature k are metric spaces with cur-
vature ≥ k in the sense of Alexandrov.

This can be readily seen by induction over the dimension using the fol-
lowing facts: Since conifolds are metrically complete by assumption, a local
curvature bound implies a global curvature bound (Toponogov’s theorem); the
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k-cones over compact intervals of length ≤ π and circles of length ≤ 2π are
spaces with curvature ≥ k; the k-cone over a space with curvature ≥ 1 is a
space with curvature ≥ k. Note also that spaces with curvature ≥ 1 have
diameter ≤ π, due to the singular version of the Bonnet-Myers theorem; cf.
[BGP, Th. 3.6].

All our geometric considerations will take place within the framework
of metric spaces with curvature bounded below. For this theory, we refer
the reader to the fundamental paper [BGP] and the introductory text [BBI,
Ch. 10].

3.2. Exponential map, cut locus, (cone) injectivity radius. Consider a
connected conifold X of curvature k and dimension ≥ 2.

For a point p ∈ X, according to our requirement on the local geometry of
conifolds, there exists ε > 0 such that the cone Ck,ε(ΛpX) canonically embeds
into X, its tip O being mapped to p. This embedding extends naturally to a
map from a larger domain inside the complete cone Ck(ΛpX) as follows: Let
E(p) ⊆ Ck(ΛpX) be the union of all geodesic segments Oy, such that there
exists a geodesic segment pxy in X with the same length and the same initial
direction modulo the natural identification ΛO(Ck(ΛpX)) ∼= ΛpX. The subset
E(p) is star-shaped with respect to O, and we define the exponential map in p

expp : E(p) −→ X

as the map sending each point y to the respective point xy.
The conjugate radius is defined, purely in terms of the curvature, as

rconj := π√
k

if k > 0 and rconj := ∞ if k ≤ 0, i.e. rconj = diam(Ck(ΛpX)).
The geodesic radius in a point p, 0 < rgeod(p) ≤ rconj, is the radius of the
largest ball in Ck(ΛpX) around O on which expp is defined.

Let x be an interior point of a geodesic segment σ = pq. Then ΛxX

has extremal diameter π and, by the Diameter Rigidity Theorem, is a metric
suspension with the directions of σ in x as poles. The equator of the suspension
consists of the directions at x perpendicular to σ.

For any 0 < d < min(d(p, q), rconj) there exists a sufficiently small δ > 0
such that the “thin” cone Ck,d(Bδ(Λpσ)) is contained in E(p) and embeds via
expp locally isometrically into X. Here Λpσ ∈ ΛpX denotes the direction of σ

at its endpoint p.
If σ has length < rconj, and if σ′ = pq′ is sufficiently Hausdorff close

to σ, then there exists an isometrically immersed (2-dimensional) triangle of
constant curvature k with σ and σ′ as two of its sides. It follows that there do
not exist other geodesic segments with the same endpoints as σ and arbitrarily
Hausdorff close to σ.

We now focus our attention on minimizing geodesic segments. Let p and
q be points with d(p, q) < rconj. Our discussion implies that there are at most
finitely many minimizing geodesic segments σ1, . . . , σm connecting them.
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If x is a point sufficiently close to q, then for every i there exists a locally
isometrically embedded triangle ∆i with x as vertex and σi as opposite side.
Moreover, any minimizing segment τ = px is Hausdorff close to one of the
segments σi and coincides with the side px of the corresponding triangle ∆i.
So, there exists a minimizing segment px Hausdorff close to σj if and only if
∠q(σj , x) = mini ∠q(σi, x).

Let D(p) ⊆ E(p) be the union of all geodesic segments Oy in ΛpX whose
images pxy under expp are minimizing segments. Let Ḋ(p) ⊆ D(p) be the
subset consisting of O and all interior points of such segments Oy. Note that
Ḋ(p) is open and its closure equals D(p). We have D(p)−Ḋ(p) = ∂D(p) except
in the special case when k > 0 and X is a metric suspension with tip p.

Definition 3.4 (Cut locus). The subset CutX(p) = Cut(p) := expp(D(p)
− Ḋ(p)) ⊂ X is called the cut locus with respect to the point p.

In other words, Cut(p) is the complement of the union of p and all min-
imizing half-open segments γ : [0, l) → X with initial point γ(0) = p. More
generally, one can define in this way the cut locus Cut(F ) with respect to a
finite set F ⊂ X. Our discussion above implies:

Proposition 3.5 (Local conicality of cut locus). For any point q ∈
Cut(p) with d(p, q) < rconj there exists ε > 0 such that

CutX(p) ∩ Bε(q) = Ck,ε(CutΛqX(F ))

where F ⊂ ΛqX is the finite set of directions of minimizing segments between
p and q.

If k > 0 and X is a metric suspension with tip p, then Cut(p) consists of
just one point, namely the antipode of p.

In all other cases, induction over the dimension, by Proposition 3.5, yields
that Cut(p) is a possibly empty, locally finite, piecewise totally geodesic poly-
hedral complex of codimension one, and D(p) is a locally finite polyhedron in
Ck(ΛpX) with geodesic faces. The conifold X arises from D(p) by identifica-
tions on the boundary, namely by isometric face pairings.

Definition 3.6 (Dirichlet polyhedron). D(p) ⊆ Ck(ΛpX) is called the
Dirichlet polyhedron with respect to p.

In dimension 2, the Dirichlet polyhedra are polygons. If X is a cone
surface, then the vertices of D(p) correspond to either smooth interior points
of X with ≥ 3 minimizing segments towards p, to boundary points or to cone
points. In the latter cases there may exist only one minimizing segment to p.
If this happens for a cone point, then the angle at the corresponding vertex
of D(p) equals the cone angle. This is the only way, in which concave vertices
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of the Dirichlet polygon can occur: Every vertex of D(p) with angle > π

corresponds to a cone point which is connected to p by exactly one minimizing
segment.

The discussion in dimension 3 is analogous. In particular, if X is a
3-conifold then edges of Dirichlet polyhedra with dihedral angles > π project
via the exponential map to (parts of) singular edges with cone angles > π.
Therefore we have the following strong restriction on the geometry of Dirichlet
polyhedra for cone angles ≤ π:

Proposition 3.7 (Convexity). In the case of cone angles ≤ π, the
Dirichlet polyhedra are convex.

The exponential map is a local isometry near the tip O of Ck(ΛpX).

Definition 3.8 (Injectivity radius). The injectivity radius in p, 0 < rinj(p)
≤ rgeod(p), is the radius of the largest open ball in Ck(ΛpX) around O on which
expp is an embedding; i.e., it is maximal with the property that all geodesic
segments of length < rinj(p) starting in p are minimizing.

Since the cut locus Cut(p) is closed, there exist cut points q at minimal
distance rinj(p) from p. The minimizing segments pq must have angles ≥ π

2

with the cut locus. Since diam(ΛqX) ≤ π, there can be at most two minimizing
segments pq. If there are two, they meet with maximal angle π at q and form
together a geodesic loop with base point p and midpoint q. If there is a unique
minimizing segment pq and if q does not belong to the boundary, then q must
lie on a (closed) singular edge with cone angle ≥ π. Note that this alternative
cannot occur for cone angles < π.

The injectivity radius varies continuously with p on the smooth part and
along singular edges. However it converges to zero, e.g. along sequences of
smooth points approaching the singular locus. In the singular setting, the in-
jectivity radius is not the right measure for the simplicity of the local geometry.
In order to measure up to which scale the local geometry is given by certain
simple models, the following modification turns out to be useful, at least as
long as the cone angles are ≤ π.

Definition 3.9 (Cone injectivity radius). The cone injectivity radius
rcone-inj(p) in p is the supremum of all r > 0 such that the ball Br(p) is
contained in a standard ball, i.e. such that there exist q ∈ X and R > 0 with
the following property: Br(p) ⊆ BR(q) and BR(q) ∼= Ck,R(ΛqX).

3.3. Spherical cone surfaces with cone angles ≤ π. In this section we
will discuss closed cone surfaces Λ with curvature 1 and cone angles ≤ π,
whose underlying topological surface is a 2-sphere. They occur as links of
3-dimensional cone manifolds with cone angles ≤ π, the class of cone manifolds
mostly relevant for us in this paper.
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Proposition 3.10 (Classification). Let Λ be a spherical cone surface
with cone angles ≤ π which is homeomorphic to the 2-sphere. Then Λ is
isometric to either

• the unit 2-sphere S2,

• the metric suspension S2(α, α) of a circle of length α ≤ π, or to

• S2(α, β, γ), the double along the boundary of a spherical triangle with
angles α

2 , β
2 , γ

2 ≤ π
2 .

Proof. The assertion is clear in the smooth case and we therefore assume
that Λ has cone points. Due to Gauß-Bonnet, there can be at most three cone
points.

If Λ has only one cone point c, then Λ − {c} is simply connected and
hence can be developed (isometrically immersed) into S2. A circle of small
radius centered at c cannot close up under the developing map and we obtain
a contradiction. Thus Λ must have two or three cone points.

If Λ has two cone points, we connect them by a minimizing segment σ.
By cutting Λ open along σ we obtain a spherical surface which is topologically
a disc and whose boundary consists of two edges of equal length. It can be
developed into S2 as well, and it follows that the surface is a spherical bigon,
i.e. the metric suspension of an arc. We obtain the second alternative of our
assertion.

If Λ has three cone points, we connect any two of them by a minimizing
geodesic segment. The segments do not intersect and they divide Λ into two
spherical triangles. The triangles are isometric because they have the same
side lengths, and we obtain the third alternative.

A consequence of the classification is the following description for the local
geometry of a cone 3-manifold with cone angles ≤ π.

Corollary 3.11. If p is an interior point in a cone 3-manifold with cone
angles ≤ π, then a sufficiently small ball Bε(p) is isometric to one of the
following (see Figure 1):

– a ball of radius ε in a smooth model space M3
k,

– a singular ball Ck,ε(S2(α, α)) with a singular axis of cone angle α, or

– a singular ball Ck,ε(S2(α, β, γ)) with three singular edges emanating from
a singular vertex in the center.

In particular, the singular locus ΣX is a trivalent graph; i.e., its vertices have
valency at most three.
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Σ Σ

Figure 1

In the remainder of this section, we collect some properties of spherical
cone surfaces used later.

Lemma 3.12. Let Λ be as in Proposition 3.10. Then Λ does not contain
three points with pairwise distances > 2π

3 .

Proof. This is a direct implication of the lower curvature bound 1 because
the circumference of geodesic triangles has length ≤ 2π.

Definition 3.13 (Turnover). A turnover is a cone surface which is home-
omorphic to the 2-sphere and which has three cone points, all with cone angle
≤ π.

Geometrically, a turnover is the double along the boundary of a triangle
in a 2-dimensional model space M2

k with angles ≤ π
2 .

Lemma 3.14. (i) A spherical turnover Λ has diameter ≤ π
2 .

(ii) If Λ is a spherical turnover with diam(Λ) = π
2 , then at least two of the

three cone angles equal π. If two points ξ, η ∈ Λ have maximal distance
π
2 then at least one of them, say ξ, is a cone point, and η lies on the
minimizing segment joining the other two cone points, and these must
have cone angles = π.

Proof. (i) Let ξ, η ∈ Λ and suppose that ζ is a cone point �= ξ, η. Any
geodesic triangle ∆(ξ, η, ζ) has angle ≤ π

2 at ζ. We denote rad(Λ, ζ) :=
max d(ζ, ·). Since rad(Λ, ζ) ≤ π

2 , hinge comparison implies that d(ξ, η) ≤ π
2 .

(ii) In the case of equality it follows that the cone angle at ζ equals π and
that one of the points ξ or η, say ξ, has distance π

2 from ζ. If ξ were not a cone
point, then it would lie on the segment connecting the two cone points �= ζ

and only ζ would have distance π
2 from ξ, contradicting d(ξ, η) = π/2. Hence

ξ must be a cone point, and it follows that η lies on the segment joining ζ and
the cone point �= ζ, ξ.
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Lemma 3.15. For α < π there exists D = D(α) < π
2 such that : If Λ is a

spherical turnover with at least two cone angles ≤ α then diam(Λ) ≤ D(α).

Proof. Λ is the double of a spherical triangle ∆ with two angles ≤ α/2
and third angle ≤ π

2 . Since the angle sum of a spherical triangle is > π, all
angles of ∆ are > π−α

2 . Such triangles can (Gromov-Hausdorff) converge to a
point, but not to a segment. Hence the Gromov-Hausdorff closure of the space
of turnovers as in the lemma is compact and contains as the only additional
space the point. It follows that the diameter assumes a maximum D(α) on
this space of turnovers. By part (ii) of Lemma 3.14, we have D(α) < π

2 .

Lemma 3.16. For α < π and 0 < d ≤ π
2 there exists r = r(α, d) > 0 such

that : If Λ is a spherical turnover with diameter ≥ d and cone angles ≤ α, then
it contains an embedded smooth round disc with radius r.

Proof. The turnover Λ is the double of a spherical triangle ∆ with acute
angles ≤ α/2 and a lower diameter bound. Since the angle sum of spherical
triangles is > π, we also have the positive lower bound π − α for the angles of
∆. Such triangles have a lower bound on their inradius, whence the claim.

3.4. Compactness for spaces of thick cone manifolds. The space of pointed
cone 3-manifolds with bounded curvature is precompact in the Gromov-
Hausdorff topology by Gromov’s compactness theorem; cf. [GLP], because the
volume growth is at most as strong as in the model space. The limit spaces in
the Gromov-Hausdorff closure are spaces with curvature bounded below. We
will show that, under appropriate assumptions, limits of cone 3-manifolds are
still cone 3-manifolds.

Definition 3.17 (Thick). For ρ > 0, a cone manifold X is said to be
ρ-thick (at a point x) if it contains an embedded smooth standard ball of
radius ρ (centered at x). Otherwise X is called ρ-thin.

For κ, i, a > 0 we denote by Cκ,i,a the space of pointed cone 3-manifolds
(X, p) with constant curvature k ∈ [−κ, κ], cone angles ≤ π and base point
p which satisfies rinj(p) ≥ i and area(ΛpX) ≥ a. Let Cκ,i := Cκ,i,4π be the
subspace of cone manifolds with smooth base point; they are i-thick at their
base points.

Theorem 3.18 (Compactness for thick cone manifolds with cone angles
≤ π). The spaces Cκ,i and Cκ,i,a are compact in the Gromov-Hausdorff topology.

The main step in the proof of the theorem is the following result.
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Proposition 3.19 (Controlled decay of the injectivity radius).For κ≥0,
R ≥ i > 0 and a > 0 there exist r′(κ, i, a, R) ≥ i′(κ, i, a, R) > 0 such that the
following holds:

Let X be a closed cone 3-manifold with curvature k ∈ [−κ, κ] and cone
angles ≤ π. Let p ∈ X be a point with rinj(p) ≥ i and area(ΛpX) ≥ a. Then
for every point x ∈ BR(p) the ball Bi′(x) is contained in a standard ball with
radius ≤ r′. In particular , rcone-inj ≥ i′ on BR(p).

By a standard ball we mean the k-cone over a spherical cone surface home-
omorphic to the 2-sphere; cf. Definition 3.9.

Proof. Step 0. It follows from the classification of links, cf. Proposition
3.10, that ΛpX contains a smooth standard disc with radius bounded below in
terms of a, and hence the ball Bi(p) contains an embedded smooth standard
ball with a lower bound on its radius in terms of κ, i and a. We may therefore
assume without loss of generality that p is a smooth point.

Step 1. We have a lower bound vol(BR(x) − Bi/2(x)) ≥ v(κ, i) > 0
because BR(x) − Bi/2(x) contains a smooth standard ball of radius ≥ i/4.
Let Ax ⊆ ΛxX denote the subset of initial directions of minimizing geodesic
segments with length ≥ i/2. The lower bound for the volume of the annulus
BR(x) − Bi/2(x) implies a lower bound area(Ax) ≥ a1(κ, i, R) > 0.

Step 2. By triangle comparison, there exists for ε > 0 a number l =
l(κ, i, ε) > 0 such that: Any geodesic loop of length ≤ 2l based in x has angle
≥ π

2 − ε with all directions in Ax. The same holds for the angles of Ax with
segments of length ≤ l starting in x and perpendicular to the singular locus
ΣX . Thus, if rinj(x) ≤ l, then minimizing segments from x to the closest cut
points must have angles ≥ π

2 − ε with all directions in Ax; cf. our discussion of
the cut locus in Section 3.2. We use this observation to obtain lower bounds
for the injectivity radius.

Lemma 3.20. For a′ > 0 there exists ε = ε(a′) > 0. Let Λ be a spherical
cone surface homeomorphic to the 2-sphere and with cone angles ≤ π. Let
A ⊂ Λ be a subset with area(A) ≥ a′. Then Λ = Nπ

2
−ε(A) if Λ is a turnover.

If Λ has 0 or 2 cone points, then there exists a point η such that Λ−Nπ

2
−ε(A) ⊂

Bπ

2
−ε(η). In the case that Λ has two cone points, η can be chosen as a cone

point.

Proof. When Λ is a turnover, the description in Lemma 3.14 of segments of
maximal length π

2 implies: Points in Λ with radius (Hausdorff distance from Λ)
close to π

2 must be close to one of the three minimizing segments connecting
cone points, i.e., must lie in a region of small area. Hence A contains points
with radius < π

2 − ε for sufficiently small ε > 0 depending on area(A).
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If Λ has 0 or 2 cone points then it is isometric to the unit sphere S2

or the metric suspension of a circle with length ≤ π; cf. the classification in
Proposition 3.10. In both cases the assertion is easily verified.

We choose ε := ε(a1) with a1 = a1(κ, i, R) as in Step 1, and accordingly
l = l(κ, i, ε) = l(κ, i, R).

Step 3. For a singular vertex x Lemma 3.20 implies that rinj(x) ≥ i1 =
i1(κ, i, R) := l(κ, i, R) > 0.

Step 4. Assume that x is a singular point with rinj(x) ≤ i1 = l at distance
≥ i1/4 from all singular vertices, and choose the singular direction ηx ∈ ΛxX

according to Lemma 3.20. By the assumption on the injectivity radius, there
exists a geodesic loop λ of length ≤ 2l based at x or a segment xy of length
≤ l meeting ΣX orthogonally at a point y. Either of them has angles ≥ π

2 − ε

with the directions in Ax and therefore angles ≤ π
2 − ε with the direction ηx.

In the case of a loop, consider the geodesic variation of λ moving its base
point with unit speed in the direction ηx. Since both ends of the loop have
angle ≤ π

2 − ε with ηx, the first variation formula implies that the length of λ

decreases at a rate ≤ −2 sin ε. Similarly, in the case of a segment, rinj decreases
at a rate ≤ − sin ε. It follows that rinj(x) ≥ i1

4 · sin ε =: i2 = i2(κ, i, R).

Step 5. Suppose now that x is a smooth point with rinj(x) ≤ i2 at
distance ≥ i2/4 from ΣX . We choose the direction ηx ∈ ΛxX according to
Lemma 3.20. As in Step 4, we see that rinj decays in the direction ηx with rate
≤ − sin ε. It follows that rinj(x) ≥ i2

4 · sin ε =: i3 = i3(κ, i, R).

Conclusion. The assertion holds for r′ := i1 and i′ := i3.

Proof of Theorem 3.18. Let (Y, q) be an Alexandrov space in the Gromov-
Hausdorff closure of Cκ,i,a. It is the Gromov-Hausdorff limit of a sequence of
pointed cone manifolds (Xn, pn) ∈ Cκ,i,a. For a point y ∈ Y , we pick points
xn ∈ Xn converging to y. The metric ball Bρ(y) ⊂ Y is then the Gromov-
Hausdorff limit of the balls Bρ(xn) in the approximating cone manifolds Xn.

Proposition 3.19 yields numbers r′ ≥ i′ > 0 such that each ball Bi′(xn) is
contained in a standard ball Br′

n
(x′

n) with radius bounded above by r′n ≤ r′.
Moreover, the lower bound on the volumes of the balls Bi(pn) yields a uniform
estimate area(Λx′

n
Xn) ≥ a′(κ, i, a, d(q, y)) > 0.

It is clear from the classification of links in Proposition 3.10 that the space
C2

a′ of spherical cone surfaces homeomorphic to the 2-sphere with cone angles
≤ π and area ≥ a′ is Gromov-Hausdorff compact. Thus, after passing to a
subsequence, we have that the links Λx′

n
Xn converge to a cone surface Λ ∈ C2

a′ .
Moreover, r′n → r′∞ ≤ r′ and kn → k∞ where kn denotes the curvature of Xn.
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It follows that Br′
n
(x′

n) ∼= Ckn,r′
n
(Λx′

n
Xn) → Ck∞,r′

∞
(Λ). This means that Y is

a cone manifold locally at y. It is then clear that Y ∈ Cκ,i,a.

In our context, Gromov-Hausdorff convergence implies a stronger type of
convergence, namely a version of bilipschitz convergence for cone manifolds.
Recall that, for ε > 0, a map f : X → Y between metric spaces is called a
(1 + ε)-bilipschitz embedding if

(1 + ε)−1 · d(x1, x2) < d(f(x1), f(x2)) < (1 + ε) · d(x1, x2)

holds for all points x1, x2 ∈ X.

Definition 3.21 (Geometric convergence). A sequence of pointed cone
3-manifolds (Xn, xn) converges geometrically to a pointed cone 3-manifold
(X∞, x∞) if for every R > 0 and ε > 0 there exists n(R, ε) ∈ N such that
for all n ≥ n(R, ε) there is a (1 + ε)-bilipschitz embedding fn : BR(x∞) → Xn

satisfying:

(i) d(fn(x∞), xn) < ε,

(ii) B(1−ε)·R(xn) ⊂ fn(BR(x∞)), and

(iii) fn(BR(x∞) ∩ Σ∞) = fn(BR(x∞)) ∩ Σn.

Note that the definition also implies the inclusion

fn(BR(x∞)) ⊂ BR(1+ε)+ε(xn).

A standard argument (cf. [BoP, Ch. 3.3]) using the strong local structure
of cone 3-manifolds and the controlled decay of injectivity radius (Proposi-
tion 3.19) shows that within the spaces Cκ,i and Cκ,i,a the Gromov-Hausdorff
topology and the pointed bilipschitz topology are equivalent. We therefore
deduce from Theorem 3.18:

Corollary 3.22. Let (Xn) be a sequence of cone 3-manifolds with curva-
tures kn ∈ [−κ, κ], cone angles ≤ π, and possibly with totally geodesic boundary.
Suppose that, for some ρ > 0, each Xn is ρ-thick at a point xn ∈ Xn.

Then, after passing to a subsequence, the pointed cone 3-manifolds (Xn, xn)
converge geometrically to a pointed cone 3-manifold (X∞, x∞), with curvature
k∞ = lim

n→∞
kn.

Note that the case with totally geodesic boundary follows from the closed
case by doubling along the boundary.

4. Noncompact Euclidean cone 3-manifolds

A heuristic guideline to describe the geometry of the thin part of cone
3-manifolds, (i.e. the possibilities for the local geometry on a uniform small
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scale) is that global results for noncompact Euclidean cone manifolds corre-
spond to local results for cone manifolds of bounded curvature. For instance,
in the smooth case, the fact that there is a short list of noncompact Euclidean
manifolds reflects the Margulis lemma for complete Riemannian manifolds of
bounded curvature.

We show in this section that there is still a short list of noncompact
Euclidean cone 3-manifolds with cone angles ≤ π. The corresponding local
results for cone manifolds with bounded curvature will be discussed in Sec-
tion 5.

Theorem 4.1 (Classification). Every noncompact Euclidean cone 3-mani-
fold E with cone angles ≤ π belongs to the following list :

• smooth flat 3-manifolds, i.e. line bundles over the 2-torus or the Klein
bottle, and plane bundles over the circle;

• complete Euclidean cones C0(Λ) (over spherical cone surfaces Λ with cone
angles ≤ π) which are homeomorphic to S2;

• bundles over a circle or a compact interval with fiber a smooth Euclidean
plane or a singular plane M2

0(θ) with θ ≤ π;

• R times a closed flat cone surface with cone angles ≤ π; bundles over a
ray with fiber a closed flat cone surface with cone angles ≤ π.

By bundles we mean metrically locally trivial bundles. Line bundles refer
to bundles with fiber ∼= R. In the case of bundles over a ray or a compact
interval, the fibers over the endpoints are singular with index two.

We give a short direct proof of the classification without using general
results for nonnegatively curved manifolds such as the Soul Theorem or the
Splitting Theorem, although the ideas are of course related. The existence of
a soul in our special situation is actually a direct consequence of the list given
in Theorem 4.1. Recall that a soul is a totally convex compact submanifold
of dimension < 3 with boundary either empty or consisting of singular edges
with cone angle π.

Corollary 4.2. Every noncompact Euclidean cone 3-manifold with cone
angles ≤ π is a metrically locally trivial bundle over a soul with fiber a complete
cone, or a quotient of such a bundle by an isometric involution.

In particular, the soul is a point if and only if E is a cone.

Before giving the proof of Theorem 4.1 we establish some preliminary
lemmas. Since E is noncompact, there are globally minimizing rays emanating
from every point x ∈ E. We denote by Rx ⊆ ΛxE the closed set of initial
directions of rays starting in x.
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Lemma 4.3. (i) Rx is convex, i.e. with any two directions ξ and η,
possibly coinciding, Rx contains all arcs ξη of length < π.

(ii) If x ∈ ΣE , every cone point of ΛxE at distance < π
2 from Rx belongs

to Rx.

Proof. (i) The convexity of the Dirichlet polyhedron D(x) ⊆ C0(ΛxE), cf.
Section 3.2, implies that Rx is convex.

(ii) Suppose that ξ ∈ ΛxE is a cone point and η is a point in Rx with
d(ξ, η) < π

2 .
We consider first the case when the cone angle at ξ is < π. If ΛxE is the

metric suspension of a circle then there exists a loop of length < π based at η

and surrounding ξ. It follows that ξ is contained in the convex hull of η and
hence ξ ∈ Rx. If ΛxE is a spherical turnover, we cut ΛxE open along Cut(ξ)
and obtain a convex spherical polygon with ξ as cone point. Inside the polygon
we find a loop as before.

We are left with the case that the cone angle at ξ equals π. Let ρξ ⊂
C0(ΛxE) be the singular ray in direction ξ. Observe that, if z is a point on
ρξ different from its initial point x, yz is a segment perpendicular to ρξ and B

is a (small) ball around y, then the convex hull of B in C0(ΛxE) contains z.
Now the ray ρη is contained in D(x). Since D(x) is convex and has nonempty
interior, arbitrarily close to every point of ρη we find interior points of D(x).
Our observation therefore implies that ρξ ⊂ D(x) and ξ ∈ Rx.

Let x be a point with rinj(x) < ∞, i.e. Cut(x) �= ∅ and Rx is a proper
subset of ΛxE. We then have as further restriction on Rx that there exists a di-
rection of angle ≥ π

2 with Rx. This follows from the next result by examination
of the shortest segments to the cut locus:

Lemma 4.4. Suppose that ζ ∈ ΛxE is the initial direction of a geodesic
loop based at x or of a segment xy perpendicular to ΣE at y. Then ∠x(ζ, Rx)
≥ π

2 .

Proof. Let r : [0,∞) → E be a ray starting in x. In the case of a loop λ,
the assertion follows by applying angle comparison to the isosceles geodesic
triangle with λ as one of its side and twice the segment r|[0,t] as the other two
sides, and by letting t → ∞. Comparison is applied to the angles adjacent to
the nonminimizing side λ.

In the second case, the argument is similar. We consider instead the
geodesic triangle with sides xy, r|[0,t] and a minimizing segment yr(t) as third
side, and observe that every direction at the singular point y has angle ≤ π

2

with xy.

Either of the Lemmas 4.3 or 4.4 implies:
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Lemma 4.5. If v is a singular vertex with diam(ΛvE) < π
2 then Rv = ΛvE

and expv is a global isometry ; i.e. E ∼= C0(ΛvE).

With respect to nonvertex singular points, Lemma 4.3 implies:

Lemma 4.6. Let x ∈ Σ(1)
E . Then either there is a singular ray initiating

in x, or all rays emanating in x are perpendicular to σ, where σ is the singular
edge of Σ(1)

E containing x. In the latter case, if the cone angle at σ is < π, then
every direction in x perpendicular to σ is the initial direction of a ray.

Proof of Theorem 4.1. The smooth case is well-known, and we assume
that the singular locus ΣE is nonempty.

Part 1: The case when cone angles are < π. If E contains a singular
vertex, then E is a cone by Lemmas 3.15 and 4.5. If E contains a closed
singular geodesic, then Lemma 4.6 implies that the exponential map is an
isometry from the normal bundle of σ onto E, i.e. E is a metrically locally
trivial bundle over σ with fiber a plane with cone point. We are left with
the case that ΣE consists of lines, i.e. of complete noncompact geodesics. We
assume that E is not a cone; i.e. rinj < ∞ everywhere.

Let σ be a singular edge with cone angle θ. Assume that there exists a ray
in E perpendicular to σ in a point x. The singular model space C0(ΛxE) is
isometric to the product M2

0(θ) × R. Note that M2
0(θ) contains no unbounded

proper convex subset because θ < π. It follows that D(x) splits metrically as
the product of M2

0(θ) with a closed connected subset I of R. Since E is not
a cone, I is a proper subset of R and ∂D(x) consists of one or two singular
planes ∼= M2

0(θ). Under our assumption that cone angles are < π, the points
in ∂D(x) away from the singular axis project to smooth cut points. It follows
that σ closes up, contradiction.

Hence there are no rays in E perpendicular to σ. Lemma 4.6 leaves the
possibility that from each point x ∈ σ emanates at least one singular ray. Let
us denote by A, B ⊆ σ the sets of initial points of singular rays directed to
the respective ends of σ. Both subsets A and B are closed, connected and
unbounded. So either they have nonempty intersection or one of them, say A,
is empty and B = σ. In the latter case, σ would be globally minimizing and
we obtain a contradiction with A = ∅. Only the first case is possible; i.e., there
exists a point x on σ which divides σ into two rays.

Then D(x) contains the entire singular axis of M3
0(θ) and, by convexity, it

splits as D(x) ∼= R × Cx where Cx ⊂ M2
0 (θ) denotes the cross section through

x. Since E is not a cone, Cx is a proper convex subset. It follows that Cx is
compact and hence a finite-sided polygon with one cone point. Accordingly,
∂D(x) consists of finitely many strips of finite width.
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Away from the edges the identifications on ∂D(x) are given by an involu-
tive isometry ι, and on the edges by its continuous extension. It must preserve
the direction parallel to the singular axis of M3

0 (θ). Moreover, ι preserves dis-
tance from x. It follows that ι maps ∂Cx onto itself and Cx projects to an
embedded totally geodesic closed surface S ⊂ E with at least one cone point.
Due to Gauß-Bonnet, S must be a turnover and is in particular two-sided. It
follows that E ∼= R × S.

Part 2: The general case of cone angles ≤ π. We expand the above
analysis and assume again that E is not a cone; i.e. rinj < ∞ everywhere.

For x ∈ E, let us denote by ∂̇D(x) the smooth part of the boundary of
the Dirichlet polyhedron, i.e. the complement of the edges. The identifications
on ∂D are the continuous extension of an involutive self-isometry ι of ∂̇D(x).
Unlike the case of cone angles < π, ι may now have fixed points; the fixed point
set Fix(ι) is a union of segments and projects to the interior points on singular
edges with cone angle π which are connected to x by exactly one minimizing
segment.

Step 1. Let x be an interior point of a singular edge σ with cone angle
θ ≤ π and suppose that x is not the initial point of a singular ray. Then,
starting at x, σ remains in both directions minimizing only for finite time; i.e.,
D(x) intersects the singular axis of C0(ΛxE) ∼= M3

0(θ) in a compact subseg-
ment I. By convexity, we have D(x) ⊆ I × M2

0(θ); compare the proof of part
(ii) of Lemma 4.3. The cross section Cx ⊆ M2

0(θ) of D(x) perpendicular to I

through x is an unbounded convex subset.

Step 1a. If Cx = M2
0(θ), then D(x) ∼= I × M2

0(θ) and ∂D(x) consists of
two copies of M2

0(θ). The involution ι on ∂̇D(x) either exchanges the boundary
planes or it is a reflection on each of them. By a reflection on the singular plane
M2

0(θ) we mean an involutive isometry whose fixed point set is the union of
two rays emanating from the cone point into “opposite” directions with angle
θ
2 . Thus E is a bundle with fiber ∼= M2

0(θ) over a circle or a compact interval;
in the latter case the fibers over the endpoints of the interval are singular with
index two, meaning that they are index-two branched subcovers of the generic
fiber.

Step 1b. If Cx is a proper subset of M2
0(θ), then θ = π because Cx

is unbounded. There is a unique ray r ⊂ D(x) with initial point x. Let H

be the half-plane in M3
0(π) bounded by the singular axis and containing r.

Cutting D(x) open along H yields a convex polyhedron D′ which splits as
D′ ∼= R×P where P denotes the cross section containing I. The cross section
P is a compact convex polygon with I as one of its sides and angles ≤ π

2 at
both endpoints of I.
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The cone manifold E arises from D′ by identifications on the boundary.
As before, away from the edges they are given by an isometric involution ι′

with one-dimensional fixed point set. The involution ι′ carries lines to lines
and, since it preserves distance from x, it also preserves ∂P . The fixed point
set of ι′ consists of midlines of strips in D′ and of edges of P , in our situation
including I. After performing the identifications, P becomes a compact totally
geodesic cone surface S ⊂ E. The boundary ∂S is a union of singular edges
with cone angle π. Every corner of ∂S is the initial point of a singular ray
perpendicular to S, and the angle at the corner equals half the cone angle of
the ray and hence is ≤ π

2 . We obtain that E is a line bundle over S with
singular fibers (rays) over the boundary.

The cone manifold E can be described as a bundle in a different way.
Let us denote by Pt the cross section {t} × P of D′ where we identify P

with P0. Then, for t > 0, the union of the two cross sections P±t projects to a
totally geodesic closed cone surface St ⊂ E. All the surfaces St are canonically
isometric, say to a surface Ŝ. We see that E fibers over [0,∞) with fiber Ŝ;
the singular fiber over 0 is isometric to S and obtained from Ŝ by dividing out
a reflection.

Step 2. In the following we can assume that each singular point initiates
a singular ray. As a consequence, all singular edges emanating from singular
vertices are rays. If there exists a singular vertex v, Lemma 4.3 implies that
Rv = ΛvE and E is a cone, contrary to our assumption. Hence E contains no
singular vertices and ΣE is a union of lines.

As in Part 1 it follows that each singular line σ contains a point x dividing
it into two rays, and D(x) ∼= R × Cx where Cx is the cross section of D(x)
through x. The section Cx is a proper convex subset of M2

0(θ) where θ ≤ π is
the cone angle at σ. It is proper because E is not a cone.

Step 2a. If Cx is bounded, then ∂D(x) is a finite union of strips of finite
width. We argue as in Step 1b and obtain that E splits off an R-factor or
fibers over a ray.

Step 2b. If Cx is unbounded, then θ = π because Cx is a proper subset
of M2

0(θ). Moreover, Cx is a Euclidean surface with one cone point of angle π

and one boundary line; it can be constructed from a flat strip by identifying
one boundary line to itself by a reflection. Hence ∂D(x) is a smooth Euclidean
plane. The involution ι preserves d(x, ·) and therefore fixes the unique point on
∂D(x) closest to x. It follows that ι is a reflection at a line through x, and E

is a plane bundle over a compact interval. Over each endpoint of the interval
there is a singular fiber isometric to a half-plane and bounded by a singular
line with cone angle π.

The proof of Theorem 4.1 is now complete.
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5. The local geometry of cone 3-manifolds
with lower diameter bound

5.1. Umbilic tubes. We start by describing certain simple cone manifolds
which serve as local models and building blocks for the thin part of arbitrary
cone 3-manifolds.

The smooth 3-dimensional model space M3
k of constant curvature k can

be viewed as the complete k-cone over the unit 2-sphere. More generally, we
define for a spherical cone surface Λ the singular model space M3

k(Λ) as the
complete k-cone Ck(Λ). For the metric suspension Λ(α) := C1(S1(α)) of the
circle S1(α) with length α < 2π we obtain the model space M3

k(α) := M3
k(Λ(α))

of curvature k with a singular axis of cone angle α. The singular model spaces
M3

k(Λ) serve as local models for cone 3-manifolds; cf. Corollary 3.11.
Recall that an embedded connected surface S in a model space M3

k is
called umbilic if in each point both principal curvatures are equal. It follows
that the principal curvatures in all points have the same value which we denote
by pc(S). The local extrinsic geometry of the surface is determined by its
principal curvature. Its intrinsic Gauß curvature is given by kS = k + pc(S)2.
We call S spherical, horospherical, respectively hyperspherical, depending on
whether kS > 0, kS = 0 or kS < 0.

The model spaces M3
k admit the following umbilic foliations, i.e. foliations

by umbilic surfaces:

• For all k the spherical foliation by distance spheres around a fixed point;

• for k ≤ 0 the parabolic foliation by parallel planes if k = 0, respectively
by horospheres centered at a fixed point at infinity if k < 0;

• for k < 0 the hyperbolic foliation by equidistant surfaces from a fixed
totally geodesic plane.

The leaves of these foliations are spherical, horospherical, respectively hyper-
spherical.

We proceed to construct certain singular spaces with umbilic foliations.
Fix a cone surface S with curvature kS ≥ k, and let L be a leaf of an umbilic
foliation of M3

k with curvature kS . The type of the foliation depends on the

sign of kS . We can develop the universal cover S̃smooth along L; i.e., there
exists an isometric immersion dev : S̃smooth → L. Let N be a unit normal
vector field along L and consider the metric obtained from pulling back the
Riemannian metric of model space via

S̃smooth × R −→ M3
k

(x, t) �→ exp(tN(dev(x))).
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We choose the maximal open interval I containing 0 such that the Riemannian
metric on S̃smooth×I is nonsingular. This metric has constant curvature k and
descends to Ssmooth × I.

Definition 5.1 (Complete tubes). We call the cone 3-manifold resulting
from metric completion of Ssmooth × I the complete k-tube over S and denote
it by Tubek(S). We refer to the surfaces in Tubek(S) arising as the closures of
Ssmooth × {t} as cross sections.

The tubes have natural foliations by umbilic surfaces equidistant from S;
the leaves are homothetic to S. To each cone point of S corresponds a singular
edge of Tubek(S). If kS > 0, then Tubek(S) is just the complete k-cone over
k
−1/2
S · S, i.e. the surface S rescaled by the factor k

−1/2
S . If kS ≤ 0 (and hence

k ≤ 0) then I = R.

Definition 5.2 (Complete cusps, necks and cylinders). We call Tubek(S)
the complete k-cusp over S if k < kS = 0, the complete k-neck if k ≤ kS < 0,
and the complete (Euclidean) cylinder if k = kS = 0.

By an umbilic tube we mean a closed connected subset of a complete tube
which is a union of leaves of the natural umbilic foliation. We will use the
following terminology for different types of umbilic tubes: A standard ball
is a truncated cone over a spherical cone surface which is homeomorphic to
the 2-sphere. A cusp is a convex umbilic tube inside a complete cusp which is
bounded by one umbilic leaf. A neck is a convex umbilic tube inside a complete
neck bounded by two umbilic leaves; a neck has a totally geodesic central leaf.
A cylinder is an umbilic tube inside a complete Euclidean cylinder bounded
by at most two totally geodesic leaves.

5.2. Statement of the main geometric results. The main result of this
chapter is the following description of the thin part of cone 3-manifolds with
lower diameter bound and cone angles bounded away from π. To simplify the
exposition, we will also assume a lower bound on cone angles.

Theorem 5.3 (Thin part). For κ, D0 > 0 and 0 < β < α < π there exist
constants i = i(κ, α, D0, β) > 0, P = P (κ, α, D0) > 0 and ρ = ρ(κ, α, D0, β)
> 0 such that :

Let X be an orientable cone 3-manifold without boundary which has cur-
vature k ∈ [−κ, 0), cone angles ∈ [β, α] and diam(X) ≥ D0 > 0. Then X

contains a possibly empty, disjoint union Xthin of submanifolds which belong
to the following list :

• smooth Margulis tubes: tubular neighborhoods of closed geodesics and
smooth cusps of rank one or two,
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• tubular neighborhoods of closed singular geodesics,

• umbilic tubes (i.e. standard balls, cusps and necks) with turnover cross
sections and with strictly convex boundary.

Furthermore, the boundary of each component of Xthin is nonempty, strictly
convex with principal curvatures ≤ P , and each of its (at most two) components
is thick in the sense that it contains a smooth point with injectivity radius
≥ ρ (measured in X); each component of Xthin contains an embedded smooth
standard ball of radius ρ; all singular vertices are contained in Xthin, and on
X − Xthin, rcone-inj ≥ i.

The proof will be given in Section 5.7.
We call Xthin the thin part of X and its components thin submanifolds or

Margulis tubes. Notice that some components of Xthin may be balls around
singular vertices with thick links; one may argue whether such components
should be called thin as well.

We deduce two important consequences of Theorem 5.3 which we will use
in the proof of the main theorem.

Corollary 5.4 (Thickness). There exists r = r(κ, α, D0, β) > 0 such
that : If X is as in Theorem 5.3 then X is r-thick , i.e. contains an embedded
smooth standard ball of radius r.

Proof. If Xthin �= ∅, we find a thick smooth point on ∂Xthin. If Xthin = ∅,
there are no singular vertices and the lower bounds on rcone-inj and the cone
angles imply thickness as well.

Corollary 5.5 (Finiteness). Let X be as in Theorem 5.3 and suppose
in addition that vol(X) < ∞. Then X has finitely many ends and all of them
are (smooth or singular) cusps with compact cross sections. In other words, X

has a compact core with horospherical boundary.

Proof. According to Theorem 5.3 each thin submanifold contributes a
definite quantum to the volume of X. Thus Xthin can have only finitely many
components. Finiteness of volume implies moreover that thin submanifolds are
compact or cusps with compact cross sections.

Consider a (globally minimizing) ray r : [0,∞) → X. There is a uniform
lower bound on the volume of balls with radius i and centers outside Xthin,
where i is the constant in Theorem 5.3. Hence, by volume reasons, r enters
Xthin after finite time. A thin submanifold containing a ray is noncompact
and must therefore be a cusp. We conclude that the complement of all cusp
components of Xthin is compact, because otherwise it would contain a ray
which would end up in yet another cusp, a contradiction.
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5.3. A local Margulis lemma for incomplete manifolds. The results in this
section will be applied to the smooth part of cone manifolds.

Let M be an incomplete 3-manifold of constant negative sectional curva-
ture k ∈ [−κ, 0). Our discussion could be carried out for arbitrary curvature
sign. However, we restrict to negative curvature for simplicity and because
this is the only case needed later.

We recall that the developing map is a local Riemannian isometry dev :
M̃ → M3

k. It is unique up to postcomposition with an isometry and in-
duces the holonomy homomorphism hol : Isom(M̃) → Isom(M3

k). The ac-
tion Γ := π1(M) � M̃ of the fundamental group by deck transformations on
the universal cover transfers, via composition with hol, to holonomy action
Γ � M3

k. Whereas the deck action is properly discontinuous and free, the
holonomy action is in general nondiscrete.

Even though M̃ may have complicated geometry, the next result shows
that complete distance balls in M̃ are standard; recall the definitions of various
radii from Section 3.2.

Lemma 5.6. Let x̃ ∈ M̃ be a lift of x ∈ M . Then rinj(x̃) = rgeod(x).

Proof. We have rinj(x̃) ≤ rgeod(x̃) = rgeod(x). The immersion Brgeod(x)(x̃)
� M3

k into model space given by the developing map must be an isometry onto
a round ball. Therefore also rinj(x̃) ≥ rgeod(x).

We will use these standard balls in M̃ to localize the usual arguments in
the Margulis lemma for complete manifolds of bounded curvature.

For δ′ > 0 and for a point y ∈ M̃ with rgeod(y) > δ′, we define Γy(δ′) ⊂ Γ
as the subgroup generated by all elements γ with d(γ y, y) < δ′. It is nontrivial
if the corresponding point in M has small injectivity radius. For r, δ > 0 and
points y ∈ M̃ with rgeod(y) > 2r + δ let us moreover define Ay(r, δ) ⊂ Γ as the
subgroup generated by all elements which have displacement < δ everywhere
on the closed ball B̄r(y). The definition is made so that, if δ is small compared
to r, then the generators of Ay(r, δ) have small rotational part. The groups
Γy and Ay are locally semi-constant: for z sufficiently close to y, Γz ⊇ Γy

holds and Az ⊇ Ay. A pigeonhole argument shows that for sufficiently small
δ′ = δ′(κ, r, δ) > 0 we have: Ay(r, δ) is nontrivial if Γy(δ′) is.

The standard commutator estimate yields:

Proposition 5.7. For R > 0 there exist constants r � δ > 0 also de-
pending on κ such that for every point y ∈ M̃ with rgeod(y) > R the group
Ay(r, δ) is abelian.

Remark 5.8. In the more general situation of variable curvature one ob-
tains that the groups are nilpotent. We are using that nilpotent subgroups of
Isom(M3

k) are abelian.
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We fix R, r, δ > 0 so that 5.7 holds. We define the thin part M̃ thin of M̃

as the open subset of points y with rgeod(y) > R and nontrivial Ay(r, δ), and
the thin part M thin as its projection to M .

There is a natural codimension-one locally homogeneous Riemannian fo-
liation on the thin part. This can be seen as follows.

Consider a point y ∈ M thin, i.e. rgeod(y) > R and Ay = Ay(r, δ) is non-
trivial. Let A′

y ⊂ Isom(M3
k) be the image of Ay under the holonomy homomor-

phism hol. Observe that by Lemma 5.6, hol is injective on isometries φ with
d(φ y, y) < rgeod(y), and hence A′

y is still nontrivial. The group Ay is generated
by small elements which in particular preserve orientation. The classification
of isometries of M3

k implies that A′
y either preserves a unique geodesic (axis)

or the horospheres centered at a unique point at infinity. In both cases there is
a natural choice of a connected abelian subgroup Hy ⊂ Isom(M3

k) containing
A′

y, namely the identity component of the stabilizer of the axis, respectively,
the group of translations along the horospheres. Moreover, there is a corre-
sponding A′

y-invariant locally homogeneous Riemannian foliation Fy of M3
k,

namely by Hy-orbits. The leaves are equidistant surfaces of the axis or they
are horospheres. Fy pulls back by the developing map to a foliation of M̃ thin

near y. The local semi-constancy of Ay implies that these locally defined fo-
liations fit together to form a natural Γ-invariant foliation F̃ of M̃ thin. There
may be one-dimensional singular leaves, namely geodesic segments in M̃ fixed
by small deck transformations; for instance, complete Ay-invariant geodesics
project to short, closed geodesics in M . F̃ descends to a foliation F of M thin.
Note that the regular (two-dimensional) leaves of F are intrinsically flat and
extrinsically strictly convex.

5.4. Near singular vertices and short closed singular geodesics. In this
section, we make the following general assumption:

Assumption 5.9. We assume that X is a cone 3-manifold of constant cur-
vature k ∈ [−κ, κ] with cone angles ≤ π and diam(X) ≥ D0 > 0.

The following result parallels Lemma 4.5:

Lemma 5.10 (Thick vertex). For 0 < d < π
2 there exists i = i(κ, D0, d)

> 0 such that : If v is a singular vertex with diam(ΛvX) ≤ d, then rinj(v) ≥ i.

Proof. Since diam(X) ≥ D0, there exists a point y with d(y, v) ≥ D0/2.
Let x be a point in Cut(v) closest to v. Either x is the midpoint of a geodesic
loop l of length 2rinj(v) based at v, or x belongs to a singular edge with cone
angle π and there is a (unique) minimizing geodesic segment s = vx of length
rinj(v) which is perpendicular to the singular locus at x, cf. our discussion
of the cut locus in Section 3.2. In both cases, we have a geodesic triangle
∆(v, y, x) with ∠x(v, y) ≤ π

2 . By our assumption on the diameter of ΛvX
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moreover, ∠v(y, x) ≤ d holds. Triangle comparison yields a positive lower
bound i(κ, D0, d) for rinj(v) = d(v, x).

Remark 5.11. Lemma 5.10 allows us to apply the compactness results
of Section 3.4 in many situations, for instance to cone manifolds X with a
singular vertex v where the cone angles of at least two adjacent singular edges
are ≤ π − ε < π, since in this case diam(ΛvX) ≤ d(ε) < π

2 ; cf. Lemma 3.15.

Definition 5.12. The normal injectivity radius of a closed (smooth or sin-
gular) geodesic γ is the maximal radius rinj(γ) ∈ (0,∞] up to which the expo-
nential map on the normal bundle of γ is defined and is an embedding, i.e. for
every direction ξ perpendicular to γ and for every 0 < l < rinj(γ) there exists a
geodesic segment of length l with initial direction ξ which minimizes distance
from γ.

Parallel to Lemma 4.6 we have:

Lemma 5.13 (Normal injectivity radius at short singular circles). For 0<

α < π there exist l = l(κ, D0, α) > 0 and n = n(κ, D0, α) > 0 such that :
A singular closed geodesic σ with length ≤ l and cone angle ≤ α < π has

normal injectivity radius ≥ n.

Proof. We will choose l smaller than D0
3 and hence can pick a point y at

distance d(y, σ) ≥ D0
3 from σ.

Consider a minimizing segment τ = wy from a point w ∈ σ to y. We
apply comparison to the geodesic triangle with sides τ, σ, τ . This can be done
although the side σ is of course not minimizing. We obtain (for both angles
between σ and τ at w):

∠w(σ, τ) ≥ π

2
− ε(κ, D0, l)(1)

with ε = ε(κ, D0, l) > 0 and ε → 0 as l → 0.
We proceed as in the proof of Lemma 5.10. Let x be a point in Cut(σ)

closest to σ. Either x is the midpoint of a segment of length 2rinj(σ) which is
perpendicular to σ at both endpoints, or x belongs to a singular edge with cone
angle π and there is a minimizing segment wx of length rinj(σ) perpendicular
to σ at w and to ΣX at x. In both cases there exists a point w ∈ σ and a
geodesic triangle ∆ = ∆(w, y, x) with the properties: (i) d(w, y) ≥ D0/3; (ii)
d(w, x) = rinj(σ); (iii) ∠x(w, y) ≤ π

2 ; and (iv) the side wx is perpendicular
to σ.

We use property (iv) to bound the angle of ∆ at w from above: The
link ΛwX at w is the metric suspension of a circle of length ≤ α, and hence
(1) implies ∠w(y, x) ≤ α/2 + ε. By choosing l = l(κ, D0, α) > 0 sufficiently
small, we can assure, for instance, that (v) ∠w(y, x) ≤ (α+π)/4 < π

2 . Triangle
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comparison using the properties (i)-(v) yields a positive lower bound n(κ, D0, α)
for rinj(σ).

5.5. Near embedded umbilic surfaces. In this section, X denotes an ori-
entable cone 3-manifold without boundary which has curvature k ∈ [−κ, κ]
and cone angles ≤ π. We do not need to assume a lower diameter bound.

Definition 5.14 (Umbilic surface). Suppose that S ⊂ X is an embedded
compact connected surface such that (S − ∂S) ∩ ΣX is discrete and ∂S is a
union of singular edges with cone angle π. We call the surface S umbilic if
Ssmooth := S − ∂S − ΣX is umbilic.

If S is umbilic it follows that S−∂S meets the singular locus orthogonally
in nonvertex singular points. Moreover ∂S can be nonempty only in the totally
geodesic case.

Nearby equidistant surfaces of umbilic surfaces are also umbilic. We say
that two compact connected embedded umbilic surfaces in a cone manifold are
parallel if their union bounds an embedded umbilic tube.

In the first part of our discussion, we make the following assumption.
Results in the general case will be deduced afterwards.

Assumption 5.15. Suppose that S is separating and not totally geodesic.

Since S is not totally geodesic, it is two-sided. It has a convex and a
concave side defined as follows: We say that a locally defined unit normal
vector field N along S points to the convex side if the principal curvature of S

with respect to N is positive, i.e. if the shape operator DN , defined on tangent
spaces to S at smooth points, is a positive multiple of the identity. We call the
other side of S concave.

Analogously to the cut locus with respect to a point, comparing our dis-
cussion in Section 3.2, one can define the cut locus Cut(S) with respect to the
umbilic surface S. Let U(S) be the union of S and all half-open geodesic seg-
ments γ : [0, l) → X emanating from S in orthogonal direction, γ(0) ∈ S, and
minimizing the distance to S. It is an open subset of X. We call the metric
completion D(S) of U(S) the Dirichlet domain relative to S. It canonically
embeds into Tubek(S) and there is a natural quotient map

φ : D(S) −→ X.(2)

The cut locus Cut(S) is defined as the complement X − U(S). Since S sep-
arates X, each connected component of the cut locus is either a locally fi-
nite totally geodesic 2-complex or a point corresponding to a tip of Tubek(S)
contained in D(S); with every tip, D(S) contains the entire component of
Tubek(S) − S.
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The upper bound π on cone angles implies that D(S) is convex.
We will denote by Xconv(S), Cutconv(S), Dconv(S) and ∂convD(S) the por-

tions of X, the cut locus, Dirichlet domain and its boundary on the convex
side of S, and similarly by Xconc(S), Cutconc(S), Dconc(S) and ∂concD(S) the
portions on the concave side.

The next two lemmas concern the component Xconc(S) on the concave
side.

Lemma 5.16. If S is spherical or horospherical, then it bounds a standard
ball, respectively a cusp embedded in X.

Proof. The Dirichlet domain D(S) is convex and therefore contains the
convex hull of S in Tubek(S). Since S is not hyperspherical, the convex hull
fills out the whole component of Tubek(S) on the concave side of S. This is
a standard ball or cusp, according to whether S is spherical or horospherical,
and it embeds into X via the map (2).

The umbilic surface S can be hyperspherical only if k < 0. In this case we
define ρ = ρ(k,pc(S)) as the distance from S to the totally geodesic central
leaf Lcentral in Tubek(S). We denote by T the umbilic tube between S and
Lcentral.

Lemma 5.17. (i) If S is hyperspherical then d(S, Cutconc(S)) ≥ ρ and
the map (2) is an embedding on T − Lcentral. It is an embedding on T if
d(S, Cutconc(S)) > ρ.

(ii) Rigidity : If d(S, Cutconc(S)) = ρ, then ∂concD(S) = Lcentral. The
map (2) restricts on Lcentral to a 2-fold ramified covering over Cutconc(S). The
corresponding identifications on Lcentral are given by an orientation-reversing
isometric involution τ ; its fixed point set is either empty or a piecewise geodesic
one-manifold and maps homeomorphically onto the boundary of Cutconc(S)
which is a union of singular edges with cone angle π.

Proof. (i) T is the closed convex hull of S in Tubek(S) and therefore
belongs to D(S). This implies the first part of the assertion.

(ii) Note that as soon as D(S) contains a neighborhood of a point of
Lcentral, then it contains a neighborhood of the entire leaf Lcentral and thus
d(S, Cutconc(S)) > ρ. We are using here that S is connected. Therefore,
if d(S, Cutconc(S)) = ρ, then Lcentral = ∂concD(S). Thus Xconc(S) arises
from T by boundary identifications on Lcentral, and Lcentral maps via (2) onto
Cutconc(S). It is clear that the identifications on Lcentral arise from an isomet-
ric involution τ . It must be orientation-reversing because X is orientable by
assumption.
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Now we investigate the cut locus on the convex side of S. Let Sk,P be
a complete umbilic surface with principal curvature pc(Sk,P ) = P > 0 in the
smooth model space M3

k, and let y be a point on the convex side at distance
h > 0 from Sk,P . Consider the convex hull C of Sk,P and y. It is rotationally
symmetric, and we define ψ = ψ(k, P, h) ∈ (0, π

2 ] ∪ {π} as its opening angle,
i.e. we set ψ := π if y is an interior point of C – which can only happen if
k > 0 – and define ψ as the radius of the disc ΛyC otherwise.

We are interested in lower bounds for ψ. Since the function ψ(k, P, h) is
not monotonic in all variables, ψ̂(κ, P, h):=inf−κ≤k≤κ,0<P ′≤P,0<h′≤h ψ(k, P ′, h′).
Then for all κ, P > 0:

lim
h→0

ψ̂(κ, P, h) =
π

2
.(3)

Lemma 5.18. If pc(S) ≤ P and if x ∈ Cut(S) with d(x, S) ≤ h, then the
angle at x between Cut(S) and any shortest segment from x to S is ≥ ψ̂ =
ψ̂(κ, P, h). In particular, the angle at x between any two shortest segments to
S is ≥ 2ψ̂.

Proof. A shortest segment from x to S corresponds to a point x̄ ∈ ∂D(S).
Let ξ denote the direction at x̄ of the perpendicular to S. The Dirichlet domain
D(S) contains the convex hull of S and x̄ which in turn contains, locally at x̄,
the cone over the disc of radius ψ̂ around ξ in Λx̄Tubek(S). This shows the
first assertion, and the second is a direct consequence.

We use Lemma 5.18 to bound the number of shortest segments from a
point x to S and to rule out branching of the cut locus sufficiently close to S.
We obtain the following description of the geometry of Cut(S) near S:

Lemma 5.19. There exists h = h(κ, P ) > 0 with the following property :
If pc(S) ≤ P and if x ∈ Cut(S) with d(x, S) < h, then there are at most two
shortest segments from x to S.

If there are exactly two shortest segments τ1 and τ2, then Cut(S) is totally
geodesic near x. If in addition x is singular, then τ1 ∪ τ2 forms a singular
segment orthogonal to S at both endpoints and with x as midpoint.

If there is only one shortest segment τ , then either τ is smooth and x is
an interior point of a singular edge σ with cone angle ≥ 2ψ̂, or x is a singular
vertex, τ a singular segment, and the other two singular segments σ1 and σ2

emanating from x have cone angles ≥ 2ψ̂. In the first case, Cut(S) is near x

a totally geodesic half-disc bounded by σ; in the second case it is a sector, that
is, the k-cone over an arc of length ≤ α(τ)

2 ≤ π
2 bounded by σ1 and σ2, where

α(τ) denotes the cone angle at τ .
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Proof. Using (3), we choose h > 0 sufficiently small so that ψ̂(κ, P, h) > π
3 .

According to Lemma 5.18 any two shortest segments from x to S have angle
> 2π

3 , and hence by Lemma 3.12 there can be at most two of them.
Regarding the second part, the assertion is clear for smooth points x.

Suppose therefore that x is singular and that there are two shortest segments
τ1 and τ2 from x to S. Since diam(ΛxX) > π

2 , x cannot be a singular vertex;
cf. Lemma 3.14. Hence x lies on a singular edge σ and divides it into singular
segments σ1 and σ2.

Note that if the metric suspension of a circle of length ≤ π contains
two points with distance > 2π

3 , then each pole of the suspension lies within
distance < π

3 of one of the points. Thus, after reindexing if necessary, we have
∠x(σi, τi) < π

3 . By Lemma 5.18, the σi cannot belong to Cut(S) near x. Hence
τi ⊂ σi.

Suppose now that there is just one shortest segment τ from x to S. If x is
an interior point of a singular edge σ with cone angle β then, near x, the cut
locus is a totally geodesic half-disc bounded by σ. The angle between τ and
Cut(S) at x is hence ≤ β

2 , and Lemma 5.18 implies β ≥ 2ψ̂.
We are left with the case that x is a singular vertex. By Lemma 5.18,

the link ΛxX has injectivity radius > π
3 at the direction tangent to τ , and an

area estimate implies that τ must be singular. (A spherical turnover with cone
angles ≤ π has area ≤ 1

4area(S2), which equals the area of a smooth spherical
disc with radius π

3 . Hence the direction of τ at x cannot be a smooth point of
ΛxX.) Our previous argument shows that the cone angles at singular points
near x and not on τ are ≥ 2ψ̂. The rest follows.

Corollary 5.20. There exists h = h(κ, P ) > 0 such that : If pc(S) ≤ P

then, up to distance h from S, Cut(S) is a totally geodesic surface, possibly
with boundary.

Next, we observe that, due to the convexity of D(S), Cut(S) cannot bend
away from S too fast. If S has small diameter, or bounded diameter and
small principal curvature, this will force the cut locus to close up as soon as it
approaches S sufficiently.

Lemma 5.21. For h > 0 there exist d1 = d1(κ, P, h) > 0 and h̃ =
h̃(κ, P, h) > 0 such that :

If 0 < pc(S) ≤ P , diam(S) ≤ d1 and d(S, Cutconv(S)) ≤ h̃, then every
segment emanating from S in the perpendicular direction to the convex side
hits the cut locus within distance < h. Moreover, Cutconv(S) is a compact
totally geodesic surface, possibly with boundary, which is entirely contained in
the tubular neighborhood Nh(S) of radius h around S.
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Proof. Suppose that there exists a unit speed segment τ : [0, h] → D(S)
of length h emanating in the perpendicular direction to the convex side of S.
Moreover, consider another such segment τ̃ : [0, l] → D(S) of length l which
connects S to the nearest point of ∂convD(S). We then have d(τ(0), τ̃(0)) ≤
diam(S) ≤ d1, and, due to the convexity of D(S), ∠τ̃(l)(τ̃(0), τ(h)) ≤ π

2 . The
segments τ and τ̃ are opposite sides of a (two-dimensional) quadrangle Q of
constant curvature k embedded in Tubek(S); the side connecting τ(0) and τ̃(0)
is concave with curvature pc(S) ≤ P . Elementary geometry in the models M2

k

implies: If d1 = d1(κ, P, h) is chosen small enough, then l can be bounded
below by a positive constant h̃(κ, P, h).

The second part of the assertion follows from Corollary 5.20. Namely, we
replace h by h′ := min(h, h(κ, P )), where h(κ, P ) is taken from Corollary 5.20,
and adjust d1 and h̃ accordingly.

We need the following variant of Lemma 5.21 for umbilic surfaces with
small principal curvatures instead of small diameters:

Lemma 5.22. For d0 > 0 and h > 0 there exist P0 = P0(κ, d0, h) > 0 and
h̃ = h̃(κ, d0, h) > 0 such that :

If 0 < pc(S) ≤ P0, diam(S) ≤ d0 and d(S,Cutconv(S)) ≤ h̃, then every
segment emanating from S in the perpendicular direction to the convex side
hits the cut locus within distance < h. Moreover, Cutconv(S) is a compact
totally geodesic surface, possibly with boundary, which is entirely contained in
the tubular neighborhood Nh(S).

Proof. The first part of the assertion is proven as for Lemma 5.21. Note
that P0 and h̃ may be chosen monotonically decreasing as h decreases. Thus,
to obtain the second part, we may decrease h, if necessary, below the value
h(κ, P0) from Corollary 5.20, and then decrease P0 and h̃ accordingly.

We now suppose in addition that X has cone angles ≤ α < π. The results
discussed above then simplify.

If S is hyperspherical, and hence k < 0, we obtain on the concave side:

Addendum 5.23 (to Lemma 5.17). (i) In the rigidity case of 5.17,
Cutconc(S) is a closed nonorientable totally geodesic surface, and the natural
map S ∼= Lcentral → Cutconc(S) is a regular two-fold covering.

(ii) There exists d0 = d0(κ, α) > 0 such that : If diam(S) ≤ d0, then the
rigidity case in 5.17 cannot occur, i.e. the tube T embeds.

Proof. (i) The orientation-reversing involution τ on Lcentral cannot have
fixed points because there are no singular edges with cone angle π.

(ii) Let us assume the rigidity case. We have diam(Cutconc(S)) < diam(S).
We apply the Gauß-Bonnet Theorem to Cutconc(S) and note that, for d0 suf-
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ficiently small, the contribution of its smooth part to the curvature integral is
a small negative number, say ∈ (α − π, 0), and the contribution of each cone
point belongs to the interval [2π − α, 2π). Since Cutconc(S) is nonorientable,
it must be a projective plane and have curvature integral 2π. But with one
cone point, the curvature integral would amount to < 2π, and with at least
two cone points to > (α − π) + 2(2π − α) > 2π. We get a contradiction.

On the convex side of S, Lemma 5.19 implies for the cut locus near S:

Lemma 5.24. There exists h = h(κ, P, α) > 0 such that : If pc(S) ≤ P

then, up to distance h from S, Cut(S) is totally geodesic without boundary.

Proof. We choose h sufficiently small so that ψ̂(κ, P, h) > α/2; com-
pare (3). This rules out in 5.19 the possibility of cut points near S with a
unique minimizing segment to S.

From Lemma 5.21 on the closing up of the cut locus near umbilic surfaces
of small diameter we deduce:

Lemma 5.25. There exist d2 = d2(κ, P, α) > 0 and h̃ = h̃(κ, P, α) > 0
such that : If pc(S) ≤ P and diam(S) ≤ d2, then d(S, Cutconv(S)) > h̃.

Proof. We use the constant h = h(κ, P, α) from Lemma 5.24 and ac-
cordingly the constants d1 = d1(κ, P, h) = d1(κ, P, α) and h̃ = h̃(κ, P, h) =
h̃(κ, P, α) from Lemma 5.21.

Suppose that diam(S) ≤ d2 and d(S, Cutconv(S)) ≤ h̃. Lemmas 5.24 and
5.21 imply for d2 ≤ d1 that Cutconv(S) is a closed totally geodesic surface
contained in Nh(S). Then ∂convD(S) is a closed totally geodesic surface as
well, and it follows that k > 0.

Since Cutconv(S) is nonorientable, the Gauß-Bonnet theorem and the up-
per cone angle bound π imply that it is a projective plane with at most one
cone point. Hence it is an index two subcover of the complete k-cone of a circle
of length ≤ α and has diameter π

2
√

k
. On the other hand, diam(Cutconv(S)) <

diam(S) + 2h ≤ d2 + 2h. This yields a contradiction if d2 is chosen small
enough.

We drop now our assumption 5.15 that S separates X and is not totally
geodesic. On the other hand, we restrict to the case of negative curvature and
impose an upper cone angle bound < π. We are interested in the situation
when S has small diameter and controlled principal curvature. Our discussion
above leads to the following description of the geometry near such surfaces,
which is the main result of this section:

Proposition 5.26 (Neighborhoods of umbilic surfaces with small diam-
eter). For κ, P > 0 and α < π there exists d = d(κ, P, α) > 0 such that :
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Let X be an orientable cone 3-manifold without boundary which has curva-
ture k ∈ [−κ, 0) and cone angles ≤ α. Suppose that S ⊂ X is a (not necessarily
separating) umbilic surface with 0 ≤ pc(S) ≤ P and diam(S) < d. Then S is
an umbilic leaf in an embedded umbilic tube T ⊂ X with convex boundary and
the property that each of its at most two boundary components has diameter d.

Remark 5.27. Note that for d sufficiently small, S is either horospheri-
cal or a turnover. This follows by applying Gauß-Bonnet as in the proof of
Addendum 5.23. In particular, S is always two-sided.

Proof. Step 1. Suppose that S separates and is not totally geodesic. We
choose d smaller than the constant d0(κ, α) in 5.23. By combination of 5.16,
5.17 and 5.23, there exists an embedded umbilic tube T0 ⊂ X with S as
boundary component and the following properties: T0 is a ball if S is spherical,
a cusp if S is horospherical, and a neck if S is hyperspherical. T0 has strictly
convex boundary with at most two components. Their principal curvatures
are <

√
κ if S is hyperspherical and ≤ pc(S) otherwise; hence in all cases they

are ≤ P ′ = P ′(κ, P ) := max(P,
√

κ). We may also assume that their diameters
are < d.

We decrease d below the constant d2(κ, P ′, α) from 5.25. By applying
Lemma 5.25 to the boundary components of T0 and repeating this procedure
finitely many times, we obtain that T0 can be enlarged to an embedded tube T

whose boundary components have diameter ≥ d and principal curvature < P ′.

Step 2. Suppose now that S does not separate but still is not totally
geodesic. Consider the cyclic covering p : X̂ → X associated to the homo-
morphism π1(X) → Z given by the oriented intersection number with S. Any
connected component Ŝ of p−1(S) is an umbilic surface isometric to S which
separates X̂, and our previous discussion applies. First of all, neither com-
ponent of X̂ obtained by cutting along Ŝ is a ball or cusp, and thus S is
hyperspherical. Furthermore, by Step 1, X̂ contains an embedded neck T̂ with
Ŝ as an umbilic leaf and boundary components of diameter d.

Sublemma 5.28. There exists d3 = d3(κ, P ′, α) > 0 such that : Any two
separating umbilic surfaces S1, S2 ⊂ X̂ with pc(Si) ≤ P ′ and diam(Si) ≤ d3

are disjoint or coincide.

Proof. We choose d3 ≤ min(d2, h̃) with the constants from 5.25. Suppose
that S1 and S2 are not disjoint. Then S1 is contained in Nd3(S2) =: Z which,
by Step 1, is an umbilic tube.

The tube Z, or more precisely the universal cover of Zsmooth, develops
into a layer of width 2d3 in model space M3

k bounded by two leaves L1 and L2

of an umbilic foliation Fmodel. The universal cover of Ssmooth
1 develops along

a complete umbilic surface U and leaves out at most a discrete set. It follows
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that U is contained in the layer. If d3 is sufficiently small, U cannot bound a
ball contained in the layer, because U has principal curvature ≤ P ′. Thus U

separates the Li. In the case when the foliation Fmodel is not spherical, this
already means that U must be one of its leaves, i.e. is parallel to the Li.

If Fmodel is spherical, then L1, L2 and also U are round spheres, and
we need one more observation to see that U is concentric with the Li. We
consider the function f = d(L1, ·) on model space. Since the development of
the universal cover of Ssmooth

1 into U is equivariant with respect to its deck
group, the restriction of f to U must have a minimum and maximum point
within distance ≤ d3. This forces U to be concentric with the Li if d3 is small
enough. It then follows that S1 and S2 are parallel and thus coincide.

We decrease d further so that d ≤ d3. All umbilic leaves of T̂ have diameter
≤ d and principal curvature <

√
κ ≤ P ′. Sublemma 5.28 therefore implies,

that any two translates of T̂ by a nontrivial deck transformation of X̂ → X

are disjoint. It follows that T̂ projects to an embedded neck in X around S,
and we are done in this case, too.

Step 3. Finally assume that S is totally geodesic. If d is sufficiently small,
our assumptions that S is two-sided apply; cf. Remark 5.27. We deduce the
claim by applying the above discussion to nearby equidistant surfaces of S.

This completes the proof of Proposition 5.26.

5.6. Finding umbilic turnovers. As in Section 5.5, let X denote an ori-
entable cone 3-manifold without boundary which has curvature k ∈ [−κ, κ]
and cone angles ≤ π.

We are interested in conditions which imply the existence of umbilic turn-
overs with small diameter and controlled principal curvature. We will find them
as cross sections to minimizing singular segments with cone angle bounded
away from π in regions of small injectivity radius; cf. our main result Proposi-
tion 5.33.

We start with some observations about the geometry near the middle of
minimizing segments in X which express aspects of an almost product struc-
ture.

Lemma 5.29. For d, ε > 0 there exists l(κ, d, ε) > 0 such that :
Let λ be a (not necessarily shortest) geodesic loop of length ≤ l based at x,

and let τ be a minimizing segment of length ≥ d with x as initial point. Then
∠x(τ, λ) ≥ π

2 − ε.

This means that the angle of τ with both initial directions of λ is ≥ π
2 − ε.

Proof. The assertion follows by application of angle comparison to the
triangle with sides τ, λ, τ . This triangle has two minimizing sides, namely
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twice τ , and the nonminimizing side λ. We apply comparison at the two
angles adjacent to λ.

Lemma 5.30. For 0 < L < π√
κ

and ε > 0 there exists e = e(κ, L, ε) > 0
such that :

If q±, x ∈ X are points satisfying d(q−, q+) = L and d(x, q±) ≥ L
4 and if

α± = xq± are not necessarily minimizing geodesic segments such that

length(α+) + length(α−) ≤ d(q−, q+) + e,(4)

then ∠x(α+, α−) > π − ε.

Restricting to nonpositive curvature, we do not need an upper bound
for L.

Proof. Step 1. Suppose that one of the segments α± is minimizing.
We then can apply angle comparison to the geodesic triangle ∆(q−, x, q+)
which has α± as two of its sides and as third side a minimizing segment
q−q+. Inequality (4) implies that the comparison angle at x is ≥ φ(κ, L, e)
with lime→0 φ(κ, L, e) = π. By choosing e sufficiently small, we obtain that
∠x(α+, α−) ≥ π − ε

3 .

Step 2. The general case can be deduced by considering minimiz-
ing segments ᾱ± from x to q±. Then we have ∠x(ᾱ−, ᾱ+) ≥ π − ε

3 and
∠x(ᾱ±, α∓) ≥ π− ε

3 . It follows that ∠x(ᾱ±, α±) ≤ 2ε
3 and ∠x(α+, α−) ≥ π−ε,

as desired.

We now focus our attention on singular minimizing segments and investi-
gate the cut locus with respect to their midpoints.

Lemma 5.31. For L, ε > 0 there exists h = h(κ, L, ε) > 0 such that :
Let p be the midpoint of a minimizing singular segment σ = q−q+ of

length ≥ L. Let x be a point with d(p, x) ≤ h. Suppose that there are at least
three minimizing segments px, or that x is singular and there are at least two
minimizing segments px.

Then the cone angle at σ is ≥ π − ε.

Proof. We may assume that L < π√
κ
, say L ≤ π

2
√

κ
. This is relevant only

in the positive curvature case.

Step 1. We denote the cone angle at σ by θ. The Dirichlet polyhedron
D(p) associated to p can be regarded as a convex polyhedron in the model
space M3

k(θ) with singular axis of cone angle θ; cf. Section 3.2.
The minimizing segments σi from p to x correspond to points x̄i in ∂D(p).

Each of the segments σi determines a so-called Voronoi cell Vi in the link ΛxX.
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By definition, Vi consists of those directions at x whose angle with σi is strictly
less than the angle with all other minimizing segments from x to p. Vi is an
open convex spherical polygon. The link Λx̄i

D(p) is canonically identified with
the closed spherical polygon V̂i arising as the metric completion of Vi.

The Dirichlet polyhedron D(p) contains at least the subsegment q+q− of
the singular axis, and maybe more. Inside D(p) there are unique geodesic seg-
ments x̄iq±. Note that the corresponding segments in X need not be minimiz-
ing. However, they are almost minimizing and their initial directions η±,i ∈ V i

at x are almost gradient directions for the distance functions −d(q±, ·). Namely,
Lemma 5.30 implies that for any ε1 > 0 (a constant to be fixed later) we have

∠(η+,i, η−,i) > π − ε1(5)

if h = h(κ, L, ε1) > 0 is chosen sufficiently small.
For each pair of points x̄i and x̄j , i �= j, there are several geodesic segments

in D(p) connecting them. They correspond to loops in X with base point x.
At least two of the segments x̄ix̄j have length < 2h. Combining Lemmas 5.29,
5.30 and the proof of the latter one, we obtain, after further decreasing h if
necessary, that such segments x̄ix̄j have angle ∈ (π

2 − 3ε1,
π
2 + 3ε1) with both

segments x̄iq±. In this sense these segments x̄ix̄j are almost horizontal, where
we regard the singular axis as vertical.

Step 2. Let us consider the case that x is smooth and there exist (at
least) three minimizing segments σ1, σ2, σ3 between p and x.

We next construct an almost horizontal geodesic triangle ∆ in D(p), with
vertices x̄i, which winds once around the singular axis. Each point x̄i lies on
a half-plane, or hemisphere if k > 0, Hi in M3

k(θ) is bounded by the singular
axis. Notice that the Hi are pairwise different because of the horizontality
of the segments x̄ix̄j and the convexity of the Dirichlet polyhedron. Between
x̄i and x̄j we choose the segment which does not intersect the third half-
plane (hemisphere) H6−i−j . The resulting triangle ∆ is contained in D(p) by
convexity. Notice that its sides are in general not minimizing. Each side x̄ix̄j

of ∆ determines directions ζij ∈ V i, respectively, ζ̂ij ∈ V̂i. We saw in Step 1
that

|∠x(η±,i, ζ̂ij) −
π

2
| < 3ε1.(6)

Let φi denote the angle of the triangle ∆ at the vertex x̄i measured in D(p),
i.e. the angle between the two directions ζ̂ij ∈ V̂i, j �= i. In view of (5)
and (6) we conclude that the convex spherical polygon Vi almost contains
a bigon with angle φi. Hence, for ε1 (and accordingly h) sufficiently small,
area(Vi) ≥ 2φi − ε/3. Since

∑
i area(Vi) ≤ area(ΛxX) = 4π, we obtain

angle sum(∆) ≤ 2π + ε/2.
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On the other hand, ∆ is almost horizontal in D(p). We embed the 2-dimensional
singular model M2

k(θ) as a cross section of M3
k(θ) so that it contains, say, x̄1.

The nearest point projection of ∆ to M2
k(θ) almost preserves angles. Due

to Gauß-Bonnet, horizontal triangles with small diameter have angle sum
� π + (2π − θ), and therefore

angle sum(∆) ≥ 3π − θ − ε/2

if h is sufficiently small. It follows that θ ≥ π − ε as claimed.

Step 3. The argument is analogous in the case when x is singular and
there are two minimizing segments between p and x: ∆ becomes an almost
horizontal bigon winding once around the singular axis; such bigons have angle
sum � 2π − θ, i.e. ≥ 2π − θ − ε

2 for h sufficiently small; on the other hand,
since area(ΛxX) ≤ 2π, the angle sum must be ≤ π + ε

2 ; therefore θ ≥ π− ε, as
claimed.

Corollary 5.32. For L > 0 and 0 < α < π there exists h = h(κ, L, α)
> 0 such that :

If p is the midpoint of a minimizing singular segment of length ≥ L and
cone angle ≤ α, then the ball Bh(p) contains no point x with at least three
minimizing segments between x and p, and no singular point x with at least
two minimizing segments between x and p. The intersection Cut(p)∩Bh(p) is a
totally geodesic surface whose boundary (if nonempty) is geodesic and consists
of singular segments.

Notice that there are no singular vertices close to p, because the links at
vertices have diameter ≤ π

2 (Lemma 3.14) whereas the links at points near p

have almost diameter π (Lemma 5.30).
We come to the main result of this section.

Proposition 5.33 (Umbilic cross sections). For L, d > 0 and 0 < α < π

there is i = i(κ, α, L, d) > 0 such that:
Let p be the midpoint of a minimizing singular segment σ of length ≥ L

and cone angle ≤ α, and assume that rinj(p) < i. Then there exists an umbilic
turnover S through p with diam(S) ≤ d.

Remark 5.34. Lemma 5.16 implies that the principal curvature of the
cross section S is bounded in terms of κ and L. Namely, if pc(S) were too
large, then S would bound a singular ball of radius < L/2.

Proof. Let q± denote the endpoints of σ and θ its cone angle. We study the
Dirichlet polyhedron D(p) which we regard as a convex polyhedron in M3

k(θ).

Step 1. Near p the edges of D(p) are almost vertical. By 5.32, near
p the interior points on faces of D(p) correspond to smooth cut points, and
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the points on boundary edges correspond to singular cut points. (We must
also allow degenerate edges with dihedral angle π.) Let x̄ be a point on a
boundary edge γ̄ of D(p) with d(p, x̄) < h, h as in 5.32, and let x be the
corresponding point in X which lies on a singular edge γ. The segments xq±
in X corresponding to the segments x̄q± have angle � π by 5.30. This forces
their directions at x to be close to the singular poles of ΛxX. This means that
γ̄ is almost vertical.

Step 2. The cross sections of D(p) are small. By assumption there exists
a cut point y ∈ Cut(p) with d(p, y) < i. Let ȳ be a corresponding point in
∂D(p). The cross section Cȳ of D(p) through ȳ and perpendicular to σ is a
convex polygon with cone point of angle θ. Observe that, since θ < π, the
circumradius and the inradius of the polygon control each other. Hence, for
i > 0 sufficiently small, the polygon Cȳ has small diameter << h. Notice that
Cȳ has at least one vertex.

Step 3. The cross sections are bigons. Our discussion implies that, near p,
cross sections of D(p) are compact convex polygons and ∂D(p) is a union of
finitely many geodesic strips which are almost vertical. According to 5.32,
the boundary identifications on ∂D(p) inside Bh(p) are given by an involutive
isometry ι : ∂D(p) ∩ Bh(p) → ∂D(p) ∩ Bh(p) which fixes the boundary edges.
It follows that there are exactly two strips which are exchanged by ι.

Step 4. D(p) is rigid. Let v1 and v2 be the vertices of the cross section Cȳ,
τ and τ ′ its sides, and let σi be the edge of ∂D(p) through vi. We denote by
Hi the half-plane (respectively, hemisphere if k > 0) in M3

k(θ) bounded by the
singular axis and containing vi. Since τ and τ ′ are exchanged by the isometry ι,
they must have the same length. It follows that H1 and H2 are opposite to each
other in the sense that they meet at σ with angle θ

2 . Furthermore, each edge
σi has equal angles with τ and τ ′ and thus σi ⊂ Hi. It follows that ι extends
to an isometry of the whole model space M3

k(θ), namely to the reflection at
H1 ∪ H2.

Step 5. Conclusion. Consider the unique umbilic foliation F of M3
k(θ)

orthogonal to σ and σ1. It is also orthogonal to the boundary strips of D(p)
and hence to σ2. Let L denote the leaf of F through p. Then L ∩ D(p)
projects to an umbilic turnover S in X. If i is chosen sufficiently small, we
have diam(S) < d.

5.7. Proof of Theorem 5.3: Analysis of the thin part. In this section we
combine the previous results to analyze the thin part of X. The proof of
Theorem 5.3 is organized in five steps:

Step 1. Around singular vertices. Let v ∈ X be a singular vertex. The
space of directions ΛvX then has diameter ≤ D(α) < π

2 ; cf. Lemma 3.15. By
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the Thick Vertex Lemma 5.10, v is the center of an embedded (closed) standard
ball with radius r1(κ, α, D0) > 0. To make the balls around the various vertices
disjoint, we define Bv as the closed ball of radius r1

2 centered at v. The umbilic
boundary spheres ∂Bv are convex and have principal curvature ≤ P1(κ, r1) =
P1(κ, α, D0) >

√
κ.

Step 2. Organizing small umbilic turnovers. Let us now consider the um-
bilic turnovers S ⊂ X with pc(S) < P1. If d2 = d2(κ, α, P1) = d2(κ, α, D0) > 0
is chosen small enough, then according to Proposition 5.26 any such turnover
S with diameter < d2 is a leaf in the natural foliation of an embedded umbilic
tube TS ⊂ X. Moreover, TS has one or two boundary components which are
strictly convex with diameter d2.

The argument used to prove 5.28 shows that, after decreasing d2 suffi-
ciently, any two turnovers S in consideration are either disjoint or coincide.
The same holds then for the tubes TS . It shows as well that the TS are disjoint
from the balls Bv with diam(∂Bv) > d2. On the other hand, the singular balls
Bv with diam(∂Bv) ≤ d2 are contained in a tube TS . In the following, we
forget about the balls Bv contained in tubes TS . Denoting by V1 the union of
the remaining balls Bv and the tubes TS , we see that they are pairwise disjoint.

Notice that for umbilic turnovers as considered here, i.e. with cone angles
≤ α, controlled principal curvature ≤ P1 and small upper diameter bound
d2, diameter and thickness control each other. This is seen as in the proof of
Lemma 3.16; the lower bound on the cone angles follows from Gauß-Bonnet
and the fact that the Gauß curvature is bounded. As a consequence, there is
a lower bound for the thickness of the components of ∂V1. We also get a lower
bound for the thickness of the components of V1 by leaving out “short” umbilic
necks, i.e. necks with central leaves of diameter, say, > d2

2 .

Step 3. Around short closed singular geodesics. We choose l1 = l1(κ, α, D0)
> 0 small enough so that 5.13 implies that the normal injectivity radius of
closed singular geodesics γ with period ≤ 2l1 is > 2n1(κ, α, D0) > 0. The closed
tubular n1-neighborhoods N̄n1(γ) around these geodesics are then pairwise
disjoint, and we denote their union by V2. Note that the injectivity radii of
their boundaries are everywhere ≤ i1(κ, l1, n1) with liml1→0 i1(κ, l1, n1) = 0.

By choosing l1 sufficiently small, we may achieve that

V1 ∩ V2 = ∅.

This can be seen as follows: The singular closed geodesics of period ≤ 2l1
lie outside V1. If V1 ∩ V2 were nonempty, then an embedded smooth 2-torus
T (equidistant to a short singular closed geodesic) with controlled principal
curvatures and small area would intersect (touch) an umbilic turnover S′ with
controlled principal curvature and lower diameter bound. Moreover, the dis-
tance between T and ΣX would be bounded away from zero so that, from the
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thickness of S′, we would get a lower bound on the injectivity radius at the
touching point. This contradicts the thinness of the torus T .

Step 4. Bounding the injectivity radius on the rest of the singular locus.
First we show that, in the spirit of Lemma 4.6, a singular edge either closes
up with short period or minimizes up to a certain length.

Sublemma 5.35. There exists l = l(κ, α, D0) > 0 such that for every
l′ ≤ l: If the singular edge σ does not close up with period ≤ 2l′ then, for every
point x ∈ σ, there is a minimizing subsegment of length > l′ with x as initial
point.

Proof. Let σ1 = xy1 and σ2 = xy2 be the maximal minimizing subsegments
of σ emanating from x in the two antipodal singular directions. Suppose that
both have length ≤ l′. Due to our diameter assumption, there exists a segment
τ = xz of length ≥ D0/2 starting in x.

We regard σ1, σ2, τ also as segments in the Dirichlet polyhedron D(x) and
denote their respective endpoints on ∂D(x) by ȳ1, ȳ2, z̄.

Since D(x) has a singular axis with cone angle ≤ α, the convex hull C(z̄)
of z̄ in D(x) is a totally geodesic disc which intersects σ orthogonally in a cone
point c and which has geodesic boundary with a corner at z̄. The convexity of
the Dirichlet polyhedron implies that ∠ȳi

(x, z̄) ≤ π
2 . By consideration of the

geodesic triangle ∆(x, ȳi, z̄) in D(x) it follows that ∠x(τ, σi) ≥ φ(κ, D0, l) with
φ → π

2 as l → 0. We obtain furthermore that C(z̄) contains a disc of radius
r(κ, α, D0, l) > 0 centered at c.

We investigate ∂D(x) near the singular axis. For a point w̄ ∈ ∂D(x)
near ȳi, say with d(x, w̄) ≤ 2l, we consider the convex hull of w̄ and z̄. It is
contained in D(x), and we obtain that the space of directions Λw̄D(x) contains
a standard disc of radius ρ(κ, α, D0, l) > 0. Moreover, liml→0 ρ(κ, α, D0, l) = π

2 .
Note hereby that r(κ, α, D0, l) increases as l → 0 and in particular remains
uniformly bounded below by a positive constant. We choose l = l(κ, α, D0)
small enough so that ρ(κ, α, D0, l) > α/2. Then the metric suspensions of
circles of length ≤ α, and hence the links of singular points in X cannot
contain a smooth ρ-disc. It follows that w̄ cannot project to a singular point
in Cut(x) unless it is singular itself, i.e. coincides with a point ȳi. On the
other hand, the points yi are singular, and thus the boundary identifications
on ∂D(x) can identify the points ȳi at most with each other and with no other
points in ∂D(x). Since all cut points near the yi are smooth it follows that the
yi cannot be singular vertices. Hence ȳ1 and ȳ2 have to be identified, and σ

closes up with period ≤ 2l′. Note that the argument also shows that Cut(x) is
totally geodesic near y1 = y2.
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We further decrease l1 until l1 ≤ l with the constant l of Sublemma 5.35.
This amounts to removing from V2 some of its components.

We then have that every singular point x outside V1∪V2 is the initial point
of a minimizing singular segment σ of length ≥ l1. Let m be the midpoint of
this segment. If there were an umbilic turnover S through m and ⊥ σ, then
pc(S) < P1 and diam(S) ≥ d2 because m �∈ V1. Proposition 5.33 implies a
lower bound i2 = i2(κ, α, l1, d2) = i2(κ, α, D0) > 0 for rinj(m).

We now use the lower bound β on cone angles to control rinj(x) in terms
of rinj(m). There is a smooth standard ball of radius ≥ r2(κ, α, D0, β) > 0 em-
bedded in the singular standard ball Bi2(m). Proposition 3.19 implies a lower
bound for rcone-inj(x). Since x �∈ V1, this yields a lower bound i3(κ, α, D0, β)
> 0 for rinj(x).

After feeding the baby, if necessary, we choose r3(κ, α, D0, β) with 0 <

r3 < min( i3
3 , n1) and define V3 as the closure of the union of all balls of radius

r3 centered at singular points outside V1∪V2. Since r3 < n1, we have V2∩V3 = ∅
because Nn1(∂V2) contains no singular points, and so

(V1 ∪ V3) ∩ V2 = ∅.
Our construction yields that (i) V1∪V2∪V3 contains the tubular r3

2 -neighborhood
of ΣX , and (ii) there is a lower bound for rinj on ∂(V1 ∪ V3). On the other
hand, ∂V2 can become arbitrarily thin.

Step 5. Foliating the thin part away from the singular locus. We have
rgeod ≥ r3

2 on the complement Y of V1∪V2∪V3. The local Margulis lemma, cf.
the discussion in Section 5.3, implies that there exist constants i4 = i4(κ, r3) =
i4(κ, α, D0, β) > 0, l2 = l2(κ, r3) = l2(κ, α, D0, β) > 0, l2 << i4, and an
open subset Y thin ⊆ Y carrying a natural locally homogeneous codimension-
one foliation F , possibly with singular one-dimensional leaves, which enjoy the
following properties: (i) {rinj < i4} ∩ Y ⊂ Y thin; (ii) F is locally equivalent
to a foliation of model space M3

k by equidistant surfaces of a geodesic or a
horosphere; (iii) intrinsically, the regular leaves of F are flat, and they admit
foliations by parallel geodesics of length < l2 (without singular leaves since X

is orientable). Note that these one-dimensional foliations need not be unique
on compact leaves. Since rinj is bounded below on ∂(V1 ∪ V3), we can arrange
by choosing the constants i4, l2 sufficiently small that

Y thin ∩ (V1 ∪ V3) = ∅.
It can happen that Y thin intersects a component C of V2. Then ∂C ⊂ Y thin

and the natural foliation of C by equidistant surfaces around the singular core
geodesic extends F . We denote by V ′

2 the union of all these components C of
V2 and conclude that F extends to a foliation F̂ of Y thin ∪ V̄ ′

2 =: Ŷ thin. Notice
that the completeness of X implies that the regular leaves of F̂ are complete,
since they stay away from ∂(V1 ∪ V3).
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Our discussion implies that the connected components of Ŷ thin are smooth
cusps of rank one or two (i.e. quotients of horoballs) or tubular neighborhoods
of closed (smooth or singular) geodesics. The singular leaves of F are short
closed smooth geodesics. The boundary of Ŷ thin is a union of complete leaves
and we have rinj ≥ i4 on ∂Ŷ thin. Each component of Ŷ thin has nonempty
boundary, because the leaves of F̂ are strictly convex and rinj increases towards
the convex side.

We define Xthin as V1 ∪ V2 ∪ Ŷ thin with those components omitted which
are tubular neighborhoods of closed smooth geodesics with length, say, > i4.
We already removed short umbilic necks earlier. All other components are
uniformly thick.

This concludes the proof of Theorem 5.3.

5.8. Totally geodesic boundary. In this section we allow a totally geodesic
boundary for X and apply the discussion in Section 5.5 to investigate the
geometry near boundary components.

Proposition 5.36 (I-bundle). For d0 > 0 there exists h̃ = h̃(κ, d0) > 0
such that :

Let X be a cone 3-manifold of curvature k ∈ [−κ, 0] with totally geodesic
boundary and cone angles ≤ π. Suppose that ∂X contains a connected com-
ponent S with diam(S) ≤ d0 and d(S, Cut(S)) ≤ h̃. Then ∂X = S, Cut(S)
is a compact totally geodesic surface, possibly with boundary, ∂Cut(S) is a
union of singular edges, and X carries a natural structure as a singular bundle
X → Cut(S) with fiber a compact interval.

Proof. Consider the cut locus Cut(∂X) with respect to the entire bound-
ary. Note that d(S, Cut(∂X)) ≤ d(S, Cut(S)). The discussion of Section 5.5
applies since we can replace boundary components of X by nearby equidistant
umbilic surfaces. We choose h > 0 arbitrarily and then h̃ as the constant pro-
vided by Lemma 5.22. Combining Lemma 5.22 and the description of the cut
locus in Lemma 5.19 we obtain the assertion. The bundle structure is given
as follows: The fiber over x ∈ Cut(S) is the union of the (one or two) shortest
segments from x to S.

Note that the boundary identifications on D(S) correspond, via the near-
est point projection ∂D(S) → S, to an isometric involution ι on S.

If k < 0, cut points at maximal distance from S must be corners of
∂Cut(S), and in particular ∂Cut(S) �= ∅ is a nonempty union of singular
edges.

In the case that k ≤ 0, X is orientable and S is a turnover, ι reverses
orientation and two possibilities can occur: Either ι fixes all three cone points



242 MICHEL BOILEAU, BERNHARD LEEB, AND JOAN PORTI

and Cut(S) is a triangle, or ι fixes one cone point and exchanges the other two.
In the latter case, Cut(S) is a disc with one cone point and one corner.

In subsection 6.3 we will need the following version of Proposition 5.36.

Corollary 5.37. Suppose that k < 0. Then for 0 < β < π there exists
ρ = ρ(k, β) > 0 such that : Let X be a cone manifold of curvature k with
totally geodesic boundary and cone angles ∈ [β, π]. Suppose that ∂X contains
a turnover S. If X is ρ-thin, i.e. contains no embedded smooth standard ball
of radius ρ, then the conclusion of Proposition 5.36 holds.

Moreover, given ε > 0, there exists ρ1 = ρ1(k, β, ε) > 0 such that if X is
ρ1-thin then the cone angles at the singular edges in the boundary of Cut(S)
are ≥ π − ε.

Proof. The lower bound β on cone angles yields an upper bound d0 =
d0(k, β) for the diameter of the turnover S. We are done by Proposition 5.36 if
d(S, Cut(S)) ≤ h̃(−k, d0). We suppose therefore that d(S, Cut(S)) > h̃(−k, d0).

We certainly have Cut(S) �= ∅ because X is ρ-thin. Denoting n :=
d(S, Cut(S)), we consider the family of embedded umbilic surfaces Sr, 0 <

r < n, equidistant to S with distance r from S. They have uniformly bounded
principal curvatures pc(Sr) <

√
−k, and the ratio diam(Sr)/diam(S) is a func-

tion of k and r, monotonically increasing in r.
We choose h smaller than the constant h(−k,

√
−k) given in Corollary 5.20,

and let d1 = d1(−k,
√
−k, h) and h̃ = h̃(−k,

√
−k, h) be the constants from

Lemma 5.21. By choice of ρ sufficiently small we assure that the surfaces
Sr are uniformly thin and, in view of the lower bound on cone angles, have
diameter < d1. Lemma 5.21, applied to Sr for r → n, then implies the conclu-
sion of Proposition 5.36. The additional assertion regarding the cone angles
at ∂Cut(S) follows from Lemma 5.19 by choice of the constant h sufficiently
small so that ψ̂(−k,

√
−k, h) > π

2 − ε
2 ; cf. (3).

6. Proof of the main theorem

Let O be a compact, connected, orientable, small 3-orbifold with nonempty
ramification locus Σ. The singular locus Σ is a trivalent graph properly em-
bedded in |O|. Let Σ(0) denote the set of vertices of Σ and Σ(1) = Σ − Σ(0)

the union of open edges. We regard circle components of the singular locus as
edges which close up.

We consider the manifold M = |O| − Σ(1) − N (Σ(0)), i.e. we remove the
edges of Σ and an open ball neighborhood of each vertex. The manifold M is
noncompact, with boundary ∂M = (∂N (Σ(0)) ∪ ∂O) − Σ(1) a finite collection
of thrice punctured spheres.
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6.1. Reduction to the case when the smooth part is hyperbolic. The fol-
lowing proposition allows us to reduce the proof of the main theorem to the
case where M admits a complete hyperbolic structure with finite volume and
totally geodesic boundary.

Proposition 6.1. Either the manifold M has a complete hyperbolic struc-
ture with finite volume and with totally geodesic boundary, or O admits a Seifert
fibration, an I-bundle structure, or a spherical structure (i.e. a quotient of S3

or B3 by an orthogonal action).

Proof. Let M = O−N (Σ) be a compact core of M . The boundary ∂M is
the union of compact pairs of pants (which are a compact core of ∂M) together
with a collection P ⊂ ∂M of tori and annuli, corresponding to the boundary
of a neighborhood of edges in Σ.

Lemma 6.2. Either M is Seifert fibred or (M, P ) is an atoroidal pared
manifold.

We recall that an atoroidal pared manifold is a pair (M, P ) such that:

– M is a compact orientable irreducible 3-manifold.

– P ⊂ ∂M is a disjoint union of incompressible tori and annuli such that
no two components of P are isotopic in M .

– M is homotopically atoroidal and P contains all torus components of
∂M .

– There is no essential annulus (A, ∂A) ⊂ (M, P ).

We remark that with this definition, an atoroidal pared manifold is never
Seifert fibred.

Proof. The manifold M is irreducible and topologically atoroidal because
so is O. With the assumption that M is not Seifert fibred, M is homotopically
atoroidal, and we prove that (M, P ) is an atoroidal pared manifold. First we
show that P is incompressible in M . A compressible annulus in P would give
a teardrop in O, contradicting irreducibility of O. If a torus component of P

was compressible, then the irreducibility of M would imply that M is a solid
torus, hence Seifert fibred. It only remains to check that the pair (M, P ) is
anannular. Let (A, ∂A) ⊂ (M, P ) be an essential annulus; we distinguish three
cases according to whether ∂A is contained in a) torus components of P , b)
annulus components of P , or c) a torus and an annulus of P . In the first case, a
classical argument using the atoroidality of M implies that M is Seifert fibred
[BS1, Lemma 7]. In case b), adding two meridian discal orbifolds to A along
∂A would give a bad or an essential spherical 2-suborbifold, contradicting
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the irreducibility of O. Case c) reduces to case b), by consideration of the
essential annulus obtained by gluing two parallel copies of A with the annulus
P0 −N (∂A), where P0 is the torus component of P that meets ∂A.

End of the proof of Proposition 6.1. We consider both possibilities of
Lemma 6.2. When M is Seifert fibred, then the fibration of M extends to a
fibration of the orbifold O by adding the components of Σ as fibers, because
O is irreducible.

When (M, P ) is an atoroidal pared 3-manifold, since M is Haken, by
Thurston’s hyperbolization theorem for atoroidal Haken pared 3-manifolds (cf.
[Thu2, 3, 4, 5], [McM1], [Kap], [MB], [Ot1, 2]), the interior of M admits a
complete hyperbolic structure with parabolic locus P . The convex core of
this metric may have dimension two or three. If it has dimension three, then
this gives a hyperbolic metric on M with totally geodesic boundary and cusp
ends, because the boundary is a union of three times punctured spheres, and
therefore the Teichmüller space of ∂M is a point.

If the convex core has dimension two, then M is an I-bundle. Since ∂M is
a union of three times punctured spheres, and such punctured spheres do not
have free involutions, it follows that M is a product of the interval with a three
times punctured sphere. Hence there are three possibilities. In the first case
∂O = ∅ and O is the suspension of a turnover. This turnover must be spherical
and it is clear that O is spherical itself. If ∂O has precisely one component,
then O is a standard quotient of a ball (hence spherical). Finally, the last case
happens when ∂O has two components. In this case O is an I-bundle over a
turnover, the turnover is Euclidean or hyperbolic, and O is also Euclidean or
hyperbolic.

6.2. Deformations of hyperbolic cone structures. From now on we assume
that the manifold M admits a complete hyperbolic structure of finite volume
with totally geodesic boundary.

Starting with the hyperbolic metric on M , we define in this section a
deformation space of hyperbolic cone structures on O and prove an openness
property.

Definition 6.3. A hyperbolic cone structure on O is a hyperbolic cone
3-manifold X with totally geodesic boundary together with an embedding
i : (X, ΣX) ↪→ (|O|,Σ) such that |O| − X is a (possibly empty) collection of
vertices, open ball neighborhoods of vertices and Euclidean 2-orbifolds in ∂O.

If i is a homeomorphism, we call the cone structure a cone metric on O.

The choice of a hyperbolic cone structure on O assigns cone angles to the
edges of Σ. Usually we will consider situations when the cone angles are less
than or equal to the orbifold angles. In order to be able to work with small cone
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angles, we allow in our definition of cone structure small deviations between
the topologies of O and X; i.e., we do not require i to be a homeomorphism.
That is, we observe that in a cone manifold the sum of the cone angles of the
singular edges adjacent to a vertex of ΣX is > 2π, because the link of a vertex
is a spherical turnover. Thus, if v is a vertex component of |O|−X, we require
the hyperbolic structure on the punctured neighborhood of v to be a cusp; the
cone angle sum for the singular edges adjacent to v then equals 2π. If |O|−X

contains the open ball neighborhood Bv of a vertex v, we require the boundary
turnover ∂Bv to be totally geodesic; the cone angle sum is < 2π in this case.
If S is a Euclidean 2-orbifold in ∂O − X, then we request that the hyperbolic
structure near S is also a cusp.

Notice that all boundary components of X are turnovers because O is
small.

There are analogous definitions for Euclidean and spherical cone structures
on O; however in these cases it will be enough for us to consider cone metrics.

We regard the complete hyperbolic structure of finite volume and geodesic
boundary on M as a hyperbolic cone structure on O with all cone angles equal
to zero.

Let m1, . . . , mq be the ramification indices of the edges of Σ (with respect
to a fixed numbering). Throughout the proof of the orbifold theorem we will
consider the following set of hyperbolic cone structures with fixed ratios for
the cone angles. Define:

J (O) =

{
t ∈ [0, 1]

∣∣∣∣∣ there exists a hyperbolic cone structure on O
with cone angles

(
2πt
m1

, . . . , 2πt
mq

) }
.

A hyperbolic cone structure on O induces a noncomplete hyperbolic struc-
ture on M . In particular it has a holonomy representation π1(M) → PSL2(C).
The variety of representations Hom(π1(M),PSL2(C)) is an affine algebraic set,
possibly reducible. The group PSL2(C) acts on Hom(π1(M),PSL2(C)) by con-
jugation, and we are interested in the quotient. The topological quotient is not
Hausdorff, and one therefore considers the algebraic quotient

X (M) = Hom(π1(M),PSL2(C))//PSL2(C)

which is again an affine algebraic set. Note that the irreducible representations
form a Zariski open subset of Hom(π1(M),PSL2(C)). Namely, Homirr(π1(M),
PSL2(C)) is the inverse image of a Zariski open subset X irr(M) ⊆ X (M),
and X irr(M) is the topological quotient of Homirr(π1(M),PSL2(C)). Notice
that the holonomy representation ρ0 of the (metrically) complete hyperbolic
structure on M is irreducible.

The polynomial functions on X (M), one-to-one, correspond to the polyno-
mial functions on Hom(π1(M),PSL2(C)) invariant under the PSL2(C)-action.
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Given γ ∈ π1(M), we define the trace-like function τγ : X (M) → C as the
function induced by

Hom(π1(M),PSL2(C))→C
ρ �→ trace(ρ(γ)2).

Let µ1, . . . , µq be a family of meridian curves, one for each component
of Σ(1).

Theorem 6.4 (Local parametrization). The map

τµ = (τµ1 , . . . , τµq
) : X (M) → Cq

is locally bianalytic at [ρ0].

This result is the main step in the proof of Thurston’s hyperbolic Dehn
filling theorem (see [BoP, App. B] or [Kap] for the proof). It implies in par-
ticular the following special case of Thurston’s Generalized Hyperbolic Dehn
Filling Theorem.

Corollary 6.5. The set J (O) contains a neighborhood of 0.

Proof. We have τ([ρ0]) = (2, . . . , 2). Consider the path

γ : [0, ε) → Cq

t �→ (2 cos 2πt
m1

, . . . , 2 cos 2πt
mk

)
(7)

where ε > 0 is sufficiently small. The composition τ−1
µ ◦ γ gives a path of

conjugacy classes of representations. It can be lifted to a path of represen-
tations t �→ ρt, because there are slices to the action of PSL2(C) on the
representation variety. (Existence of slices follows from Luna’s theorem, as
PSL2(C) ∼= SO(3, C) is an affine reductive group.) The representations ρt are
the holonomies of incomplete hyperbolic structures on M . By construction,
the holonomies of the meridians are rotations with angles 2πt/m1, . . . , 2πt/mq.
By a standard result, the deformation of holonomies is, locally near t = 0, in-
duced by a deformation of hyperbolic cone structures on O with cone angles
2πt/mj .

Lemma 6.6. There exists a unique irreducible curve D ⊂ Cq such that
γ([0, 1]) ⊂ D.

Proof. For n ∈ N, we consider the Chebyshev-like polynomial

pn(x) = 2 cos(n arccos(x/2)).

It has the following property:

trace(An) = pn(trace(A)), ∀A ∈ SL2(C), ∀n ∈ N.
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An easy computation shows that p′n(2) = n, and therefore

{z ∈ Cq | pm1(z1) = · · · = pmq
(zq)}

is an algebraic curve with (2, . . . , 2) as a smooth point. We take D to be the
unique irreducible component containing (2, . . . , 2). Then γ([0, ε)) ⊂ D for
small ε > 0. Since γ is an analytic curve, it remains in D.

We define the algebraic curve C ⊂ X (M) to be the irreducible component
of τ−1

µ (D) that contains [ρ0]. By construction, [ρt] ∈ C for small t ≥ 0.
For technical reasons, we define the following variant of J (O). Here v0

denotes the volume of the complete hyperbolic structure on M .

J0(O) =

t ∈ [0, 1]

∣∣∣∣∣∣∣
there exists a hyperbolic cone structure on O
with cone angles

(
2πt
m1

, . . . , 2πt
mq

)
, holonomy in C

and volume ≤ v0

 .

(8)

The condition that the holonomy is in the curve C will be used in Theorem 6.7,
because holomorphic maps on curves are open (openness does not hold for maps
on higher dimensional varieties).

Note that [0, ε) ⊂ J0(O) for small ε > 0 because, according to Schläfli’s
formula, the volume of the continuous family of cone structures with holonomies
ρt decreases.

Theorem 6.7 (Openness). The set J0(O) is open to the right.

Proof. As remarked above, openness of J0(O) at t = 0 is a consequence
of Thurston’s hyperbolic Dehn filling, and we only prove openness at t > 0.

Consider the path

γ : [t, t + ε)→D ⊂ Cq

s �→ (2 cos(s2π/m1), . . . , 2 cos(s2π/mq))

defined for some ε > 0. By construction, the image of γ is contained in the
curve D ⊂ Cq of Lemma 6.6. Since τµ : C → D is nonconstant, it is open, and
therefore γ can be lifted to C. We can lift it further to a path

γ̃ : [t, t + ε)→Hom(π1(M),PSL2(C))

s �→ ρs.

To justify this second lift, notice that the holonomy ρt is irreducible (be-
cause the corresponding cone structure has finite volume) and therefore the
PSL2(C)-action is locally free. By construction, ρs(µi) is a rotation of angle
2πs
mi

. Therefore the cone structure on O with holonomy ρt can be deformed to
a continuous family of cone structures on O with holonomies ρs. By Schläfli’s
formula volume decreases and thus [t, t + ε) ⊂ J0(O) for ε > 0 sufficiently
small.
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A straightforward consequence of Theorem 6.7 is:

Corollary 6.8. If supJ0(O) ∈ J0(O) then 1 ∈ J0(O) and O is hyper-
bolic.

The next step in the proof is the analysis of degenerating sequences of cone
structures on O, namely sequences (tn) in J0(O) that converge to t∞ �∈ J0(O).
This analysis is carried out in the next section, using the results of Sections 7,
8 and 10.

6.3. Degeneration of hyperbolic cone structures. We continue the discus-
sion of deforming hyperbolic cone structures on O while keeping the ratios of
the cone angles fixed.

Let (tn) be a sequence in J0(O). Let X(tn) be a hyperbolic cone structure
on O corresponding to tn ∈ J0(O), with the properties as in (8).

Definition 6.9. We say that a sequence of cone 3-manifolds Xn collapses
if, for every ρ > 0, only finitely many Xn are ρ-thick; cf. Definition 3.17.

Proposition 6.10 (Degeneration implies collapse). If tn → t∞ �∈ J0(O),
then the sequence (X(tn)) collapses.

Proof. Assume that (X(tn)) does not collapse. Then, up to passing to a
subsequence, the cone manifolds X(tn) are ρ-thick for some ρ > 0. According
to Corollary 3.22, (X(tn)) subconverges to a hyperbolic cone 3-manifold X∞.
Since in the definition of J0(O) we impose an upper volume bound on the cone
structures, we have that vol(X∞) < ∞.

Moreover, if t∞ < 1, the cone angles of X(tn) are all bounded away from π,
and if t∞ = 1, then they converge to the orbifold angles of O. This allows us
to apply Theorem 7.1 in Section 7 below. According to this theorem, X∞
yields a hyperbolic cone structure on O and t∞ ∈ J0(O), which contradicts
the hypothesis.

We analyse now the situation when the sequence (X(tn)) collapses and
treat the cases with and without boundary separately.

The case with boundary is handled by the following geometric fibration
result.

Proposition 6.11 (I-bundle). If ∂X(tn) �= ∅ for all n, then t∞ = 1
and O is a twisted I-bundle over the quotient of a turnover by an orientation-
reversing involution.

Proof. Since the sequence (X(tn)) collapses and ∂X(tn) is a collection of
turnovers, for n sufficiently large Corollary 5.37 applies to X(tn). It shows that
the boundary ∂X(tn) consists of a single turnover and that X(tn) is a singular
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Figure 2. The two I-bundles over the quotient of a turnover

interval bundle over the cut locus Cut(∂X(tn)) with respect to ∂X(tn). The cut
locus Cut(∂X(tn)) is naturally homeomorphic to the quotient of the turnover
∂X(tn) by an orientation-reversing isometric involution.

Moreover, since the X(tn) are negatively curved, ∂Cut(∂X(tn)) is a non-
empty collection of singular edges; cf. the discussion after Proposition 5.36. By
Corollary 5.37, their cone angles converge to π as n → ∞. Thus tn → 1. It
follows that the boundary turnovers of the X(tn) correspond to a hyperbolic
boundary turnover of O. Hence the X(tn) provide not only cone structures
but cone metrics on O, and O is an I-bundle over a quotient of a turnover, as
claimed.

Remark 6.12. A turnover always has an isometric involution which fixes
all three cone points and reverses orientation. The quotient is a triangular
2-orbifold.

The turnover is the double along the boundary of a geodesic triangle, and
if the triangle has a reflection symmetry, then the turnover has a corresponding
orientation-reversing involution which fixes one cone point and exchanges the
other two. In this case the quotient is a disc with a corner and one cone point.
Figure 2 illustrates the orientable I-bundles over such 2-orbifolds.

Now we discuss the case without boundary, i.e. we assume that ∂X(tn) = ∅
for all n. Note that all cusps of the X(tn) are singular because O is small. Since,
without loss of generality, the sequence (tn) is strictly increasing, only finitely
many X(tn) can have cusps and the cusps correspond to singular vertices of O.
After passing to a subsequence, we may assume that the X(tn) have no cusps
at all; i.e., they are closed cone manifolds, O is a closed orbifold and the X(tn)
provide cone metrics on O. In particular, the pairs (|O|,Σ) and (X(tn),ΣX(tn))
are homeomorphic for all n.

Definition 6.13. We say that the cone 3-manifold X has ω-thick links,
ω > 0, if in every point x ∈ X the link ΛxX is ω-thick; cf. Definition 3.17.
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Theorem 6.14 (Fibration). For ω, D0 > 0 there exists δ = δ(ω, D0) > 0
such that :

Suppose that O is closed and admits a cone metric (X, i) of constant cur-
vature k ∈ [−1, 0) with cone angles less than or equal to the orbifold angles.
If the cone 3-manifold X has ω-thick links, diam(X) ≥ D0 and if X is δ-thin,
then O is Seifert fibred.

We postpone the proof of this theorem to Section 10. Assuming it, we
continue our argument.

Proposition 6.15. If ∂X(tn) = ∅ for all n, then one of the following
holds:

– either there exists a Euclidean cone metric on O with cone angles strictly
less than the orbifold angles,

– or O has a Euclidean or a Seifert fibred structure.

Proof. Case 1. Collapse with lower diameter bound. Assume that

diam(X(tn)) ≥ D0 > 0

for all n. In order to apply Theorem 6.14, we check that X(tn) has ω-thick
links for some uniform ω > 0. Since tn < t∞ and the cone angles for the cone
metrics Xn are proportional to tn, we have a uniform lower bound 2π + ε,
ε > 0, for the cone angle sum of the singular edges adjacent to any vertex with
respect to all cone metrics X(tn). By Gauß-Bonnet, we obtain a lower bound
for the area of links at singular vertices of the X(tn), and this converts into a
lower bound for the thickness of these links. Since the cone angles of the X(tn)
are bounded away from zero, the cone manifolds X(tn) have uniformly thick
links. Hence Theorem 6.14 applies and we obtain that O is Seifert fibred.

Case 2. Collapse to a point. Assume that diam(X(tn)) → 0. Then we
consider the sequence

X(tn) =
1

diam(X(tn))
X(tn)

of rescaled cone 3-manifolds with constant curvature kn = −diam(X(tn))2 ∈
[−1, 0) and diameter equal to 1. If the sequence (X(tn)) collapses, then for
n sufficiently large Theorem 6.14 applies as above to show that O is Seifert
fibred.

If the rescaled sequence X(tn) does not collapse, then by the compactness
result 3.22, a subsequence converges geometrically to a closed Euclidean cone
3-manifold X∞ with diameter 1, and X∞ yields a Euclidean cone metric on
O. Either the cone angles of X∞ are strictly less than the orbifold angles of O
(t∞ < 1), or X∞ corresponds to a Euclidean orbifold structure on O with the
same branching indices as O (t∞ = 1), and so O is Euclidean.



GEOMETRIZATION OF 3-DIMENSIONAL ORBIFOLDS 251

The last step of the proof of the main theorem is given by:

Theorem 6.16 (Spherical uniformization). Let O be a closed, orientable
small 3-orbifold. If there exists a Euclidean cone metric on O with cone angles
strictly less than the orbifold angles, then O is spherical.

This theorem is proved in Sections 8 and 9. The flowchart in Figure 3
represents the logic of the proof of the main theorem given in this section.

Figure 3. Flowchart of the proof of the main theorem
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7. Topological stability of geometric limits

In this section we discuss the change of the topological type of cone man-
ifolds under geometric limits. More specifically, we consider a sequence of
compact hyperbolic cone 3-manifolds Xn with cone angles ≤ π. We suppose
furthermore that the sequence (Xn) is noncollapsing, i.e. that for a uniform
radius ρ > 0 the Xn contain embedded smooth standard balls Bρ(xn).

Due to the compactness theorem (Corollary 3.22), after passing to a sub-
sequence, the pointed cone manifolds (Xn, xn) geometrically converge

(Xn, xn) −→ (X∞, x∞).(9)

Their limit X∞ is again a hyperbolic cone 3-manifold with cone angles ≤ π.
We know furthermore that the singular sets converge, Σn → Σ∞, and the cone
angles converge as well.

If the limit X∞ is compact, then topological stability holds; that is,
(Xn,Σn) is homeomorphic to (X∞,Σ∞) for sufficiently large n. In the follow-
ing, we will study the situation when X∞ is noncompact. In order to obtain
topological stability, we need to impose further assumptions. The main result
of this section is:

Theorem 7.1 (Stability in the noncompact limit case). Let (Xn)n∈N be
a sequence of compact oriented hyperbolic cone 3-manifolds with totally geodesic
boundary and with cone angles ∈ [ω, π], ω > 0, which geometrically converges,
as in (9), to a noncompact cone 3-manifold . Assume that :

(1) The cone manifolds Xn yield hyperbolic cone structures on the same com-
pact small orbifold O.

(2) There is a uniform upper volume bound vol(Xn) ≤ v.

(3) Either the cone angles of the Xn are ≤ α < π, or they converge to the
orbifold angles of O.

Then, X∞ yields a hyperbolic cone structure on O as well.

Remark 7.2. One can show that the second assumption is implied by the
first one using a straightening argument for triangulations under the develop-
ing map; cf. [Koj] for the cyclic case. However, this is irrelevant in our later
applications, because there we will have a uniform volume bound by construc-
tion.

The proof of Theorem 7.1 occupies the entire section and will be divided
into several steps.
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7.1. The case of cone angles ≤ α < π. We consider now the case that the
Xn have cone angles ≤ α < π. Here the geometric results of Subsection 5.2
will come to bear.

Geometric finiteness of the limit. The uniform upper volume bound for
Xn implies that the limit cone manifold has finite volume:

vol(X∞) ≤ v.

Since O is small, the boundary components of Xn are turnovers. The lower
bound on cone angles yields an upper bound on their diameters, and it follows
that the boundary components of X∞ are also turnovers. Since the cone angles
of X∞ are bounded away from π, finite volume implies geometric finiteness,
i.e. X∞ has finitely many ends and all ends are cusps. Here, we apply the
finiteness corollary (Cor. 5.5).

In each cusp Ci ⊂ X∞ we fix a horospherical cross section Hi far out
in the thin part, along which we truncate Ci. Denote by N∞ the resulting
compact core of X∞. The Hi are Euclidean tori or turnovers. By geometric
convergence, for sufficiently large n, there are (1 + εn)-bilipschitz embeddings

fn : N∞ ↪→ Xn,

εn → 0, and we can arrange that Hi,n := fn(Hi) is a leaf of the canonical,
locally-homogeneous foliation of the thin part of Xn (namely, either a horo-
sphere in a cusp or a torus equidistant to a short geodesic, possibly singular;
cf. Theorem 5.3).

Hyperbolizing the smooth part. We denote by Y the manifold obtained
from X∞−N (Σ(0)

∞ )−Σ(1)
∞ by truncating the singular cusps along horospherical

turnovers. Here, we remove open singular cusps. The boundary of Y is a union
of thrice-punctured spheres because, due to our assumption on cone angles, the
cross sections of singular cusps are turnovers.

Proposition 7.3. The manifold Y admits a metrically complete hyper-
bolic structure with totally geodesic boundary and finite volume.

Proof. We first deal with the (easy) case that Y has empty boundary.
This happens if and only if X∞ has no singular vertices, no singular cusps and
empty boundary. There is nothing to show if X∞ has no singular locus. If
there is a singular locus, one can perturb the hyperbolic metric on the smooth
part to a complete Riemannian metric with upper negative curvature bound
and finite volume. Since Y is Haken, it follows from Thurston’s uniformization
theorem that Y admits a complete hyperbolic metric of finite volume.

We assume from now on that ∂Y �= ∅. Let Y be a compact core of Y . The
boundary ∂Y is the union of compact pairs of pants (which are a compact core
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of ∂Y ) together with a collection P ⊂ ∂Y of tori and annuli, corresponding to
the boundary of a neighborhood of edges and circles in Σ∞ and to cross sections
of smooth cusps. We shall prove that (Y , P ) is an atoroidal pared manifold (see
Lemma 6.2 for the definition). Then Proposition 7.3 follows from Thurston’s
hyperbolization theorem for atoroidal Haken pared 3-manifolds.

The argument will involve several steps. Part of the information on the
topology of Y is obtained from a weak geometric structure, part of it is deduced
from the fact that X∞ arises as a limit of cone manifold structures on small
orbifolds.

Step 1. Y is homotopically atoroidal. We shall show in Proposition 7.10
(in Subsection 7.3) that Y admits a nonpositively curved metric, possibly sin-
gular, which is negatively curved away from the boundary tori. Consider a
π1-injective map h : T ↪→ Y of a 2-torus. The group π1(T ) ∼= Z2 acts dis-
cretely on Ỹ and hence it preserves a 2-flat (cf. the preliminaries of [LS]). This
2-flat covers a boundary torus and it follows that h can be homotoped into a
boundary torus.

Step 2. Y is irreducible. Let S ⊂ Y be an embedded 2-sphere. We may
assume that we have the inclusion of compact cores Y ⊂ N∞. The sphere fn(S)
bounds a smooth ball Bn in Xn (for n large). We are done, if Bn ⊂ fn(N∞)
for some n. Otherwise, each Bn contains a smooth cross section Hi,n, which is
a leaf of the canonical foliation of the thin part (see above). After passing to
a subsequence, we may assume that Bn contains Hi0,n for a fixed i0. This is
absurd because Hi0 has nontrivial holonomy, and so has Hi0,n for large n.

Step 3. P is incompressible. Each component Pi ⊂ P corresponds to
either cross sections of smooth cusps or tubular neighborhoods of singular
edges and circles of the cone manifold X∞. Hence the holonomy of primitive
elements of π1(Pi) is nontrivial.

Step 4. The pair (Y , P ) is anannular. Let (A, ∂A) ⊂ (Y , P ) be an essential
annulus; we distinguish three cases according to whether ∂A is contained in
a) torus components of P , b) annulus components of P , or c) a torus and an
annulus of P . In the first case a classical argument using the atoroidality of
Y implies that Y would be Seifert fibred [BS1, Lemma 7], contradicting Step
1. In case b), the annulus A gives rise to an embedded 2-sphere with two cone
points in X∞ and hence (via geometric convergence (9)) in O. Such a 2-sphere
bounds an embedded ball with a singular axis because O is small. It follows
that A is parallel to a component of P . Case c) reduces to case b), as in the
proof of Lemma 6.2.

Controlling the geometry of the approaching cone manifolds globally. The
Gromov-Hausdorff convergence (9) gives us uniform control on the geometry of
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all Xn a priori only on the portions fn(N∞). Taking into account the structure
of the thin part of cone manifolds and using the smallness of O, we will be
able to describe also the geometry of the complements Xn − fn(N∞) and see
that it is very restricted.

Lemma 7.4. Each component of Xn − fn(N∞) is contained in the thin
part of Xn, and it is either

• a singular ball,

• a singular neck containing a turnover ⊆ ∂Xn,

• or a (singular or smooth) solid torus.

Remark 7.5. A singular cusp cannot occur in the conclusion of Lemma 7.4
because we assume the Xn to be compact.

Proof. If Hi is a turnover, then Hi,n is an umbilic turnover. We go
through the three possible cases: If Hi,n is spherical, then it bounds a singular
ball in Xn. The turnover Hi,n cannot be horospherical because Xn is compact.
If Hi,n is hyperspherical, then there is an umbilic tube bounded by Hi,n and a
totally geodesic turnover in ∂Xn. Here we use that O is small.

If Hi is a torus, then Hi,n ⊂ Xn is an almost horospherical torus. It cannot
be precisely horospherical, again because Xn is compact. Hence Hi,n bounds
a (smooth or singular) solid torus Vi,n ⊂ Xn.

If Hi is a torus, denote by λi,n ⊂ Hi,n a geodesic which is a meridian of
(i.e. compresses in) the solid torus Vi,n bounded by Hi,n. Furthermore, denote
by λ̃i,n ⊂ Hi a geodesic such that fn(λ̃i,n) is homotopic to λi,n. The lengths
of λ̃i,n and λi,n are comparable in terms of the bilipschitz constant of fn.

Lemma 7.6. For all i, lim
n→∞

length(λi,n) = ∞.

Proof. The radii of the solid tori Vi,n tend to ∞ as n → ∞. Using the
lower bound on cone angles if Vi,n is singular, we obtain the assertion.

Comparing the topology with the limit. Using these geometric observa-
tions, we now describe the change of topology during the transition (X∞,Σ∞)
� (Xn,Σn) = (|O|,Σ). We remove from the cone manifolds Xn and the trun-
cated cone manifold N∞ disjoint small open standard balls around the singular
vertices, and denote by Σ′

n and Σ′
∞ the singular loci which remain in the re-

sulting manifolds Xn −Nε(Σ
(0)
n ) and N∞ −Nε(Σ

(0)
∞ ). Lemma 7.4 implies that

the transition (
N∞ −Nε(Σ(0)

∞ ),Σ′
∞

)
�

(
Xn −Nε(Σ(0)

n ),Σ′
n

)
(10)
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is accomplished by gluing (smooth or singular) solid tori to the boundary tori
of N∞ (i.e. to the smooth Hi).

Correspondingly, the transition

N∞ −Nε(Σ(0)
∞ ) − Σ∞︸ ︷︷ ︸

=:Y∞

� Xn −Nε(Σ(0)
n ) − Σn(11)

between the smooth parts is made by gluing (smooth) solid tori to some of the
boundary tori and removing the remaining boundary tori.

Every smooth cusp of X∞ corresponds to a smooth boundary torus of N∞.
According to Lemma 7.6, we may pass to a subsequence such that the Dehn
fillings at every such torus (by smooth or singular solid tori) are pairwise
different.

We distinguish three cases:

Case 1. Infinitely many Dehn fillings by smooth solid tori. We look
at the smooth parts. Then by Proposition 7.3 we have the situation that in-
finitely many Dehn filings at the same finite volume hyperbolic manifold pro-
duce homeomorphic manifolds. This contradicts Thurston’s hyperbolic Dehn
filling theorem, which implies that those manifolds have different hyperbolic
volumes.

Case 2. X∞ has smooth cusps and all Dehn fillings use singular solid tori.
Let Y∞ := N∞ −Nε(Σ

(0)
∞ ) − Σ∞ and let Yn := fn(Y∞) be its image under the

bilipschitz embedding fn. By our description of (11), fn|Y∞ may be isotoped
to an embedding

f ′
n : Y∞ ↪→ Xn −Nε(Σ(0)

n ) − Σn

whose image is the complement of a union of open tubular neighborhoods of sin-
gular circles. We use our assumption that the cone manifolds Xn have the same
topological type as the orbifold O, i.e. we have an embedding (Xn,ΣXn

) ↪→
(|O|,ΣO), that we compose with f ′

n to obtain a new embedding

ιn : Y∞ ↪→ M := |O| − N (Σ(0)) − Σ(1)(12)

onto the complement of a disjoint union of singular solid tori.
The ιn are homotopy equivalences. Note that Y∞ is homotopy equivalent

to a complete hyperbolic manifold with finite volume and totally geodesic
boundary; this follows, without using Proposition 7.3, directly from the original
assumption that M is hyperbolic. We consider the homotopy equivalence

ι−1
n ◦ ι1 : Y∞ −→ Y∞

where ι−1
n denotes a homotopy inverse for ιn. After passing to a subsequence,

and possibly replacing the first embedding ι1, we may assume that the ι−1
n ◦ ι1

preserve the toral boundary components. Lemma 7.6 implies that the induced
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self homotopy equivalences of each boundary torus are pairwise distinct. On
the other hand, by Mostow Rigidity, there are, up to homotopy, only finitely
many self homotopy equivalences of Y∞, and we obtain a contradiction.

Case 3. X∞ has no smooth cusp. In this situation, (10) says that X∞
and Xn have the same topological type. This finishes the proof of Theorem 7.1
when cone angles are bounded above away from π.

7.2. The case when cone angles approach the orbifold angles. In this
case X∞ is a hyperbolic orbifold that has a thin-thick decomposition, by the
hypothesis about the cone angles and the bound on the volume. Let N∞ be a
compact core of X∞ obtained by truncating its cusps along horospherical cross
sections Hi. The Hi are now smooth tori, pillows or turnovers. By geometric
convergence, for n large enough, we have (1 + εn)-bilipschitz embeddings

fn : (N∞,Σ∞ ∩ N∞) → (Xn,Σn),

with εn → 0. Since Xn is a cone structure on O, we view the image fn(N∞) ⊂
Xn as a suborbifold of O, which we denote by Nn ⊂ O. As a 3-orbifold, Nn is
homeomorphic to N∞.

Lemma 7.7. For n sufficiently large, each component of O − int(Nn) is
irreducible.

Proof. We assume that O − int(Nn) contains a spherical 2-suborbifold
F 2 which is essential. Since O is irreducible, F 2 bounds a discal 3-orbifold
∆3, which contains Nn, for n sufficiently large. Let ρn denote the holonomy
representation of Xn. We have that ρn◦fn∗ fixes a point of H3, because fn(N∞)
is contained in a discal 3-orbifold. This is impossible, because ρn◦fn∗ converges
to the holonomy representation of N∞, which cannot fix a point of H3.

From the smallness of O and the previous lemma we obtain:

Corollary 7.8. Every component of O − int(Nn) is either a finite quo-
tient of a solid torus (i.e. a solid torus or a solid pillow, possibly singular) or
a singular neck containing a Euclidean turnover in ∂O.

According to this corollary, if all the horospherical sections Hi are turn-
overs then N∞ ∼= O and X∞ is a cone structure on O.

Now we assume that some of the horospherical sections H1, . . . , Hp are
tori or pillows and we look for a contradiction. For i = 1, . . . , p, let λi,n be an
essential curve on Hi so that fn(λi,n) bounds a finite quotient of a solid toral
component of O − int(Nn). First we prove the analogue of Lemma 7.6.

Lemma 7.9. For each i, lim
n→∞

λi,n = ∞.
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Proof. Suppose that the lemma is false. Then, by passing to a subse-
quence and changing the indices of the Hi, we can assume that the curves λ1,n

represent a fixed class λ1 ∈ π1(H1) independent of n. Let ρn and ρ∞ denote
the holonomy representation of Xn and X∞, respectively. Since the curves
fn(λ1) are compressible in O, their holonomies ρn(fn(λ1)) are either trivial or
elliptic with an angle that does not converge to zero. The holonomy ρ∞(λ1)
is nontrivial and parabolic. Thus we obtain a contradiction because ρ∞(λ1) is
the limit of ρn(fn(λ1)).

According to this lemma, Dehn fillings on the hyperbolic orbifold N∞
along infinitely many different meridian curves produce always the same orb-
ifold O. This contradicts the hyperbolic Dehn filling theorem for orbifolds
[DuM] (cf. [BoP, App. B]) because the results of surgery along those curves can
be distinguished either by an estimate of the volume (obtained from Schläfli’s
formula) or the length of the shortest geodesics.

7.3. Putting a CAT(−1)-structure on the smooth part of a cone mani-
fold. Let X be a hyperbolic cone 3-manifold with cone angles ≤ π and totally
geodesic boundary. To simplify our discussion, we will assume that X is ge-
ometrically finite in the sense that it has finitely many ends and all ends are
cusps. The next proposition is used in Subsection 7.1 to show that the smooth
part of X is homotopically atoroidal.

Proposition 7.10. The compact core of Xsmooth admits a metric of non-
positive curvature with piecewise totally geodesic boundary. Moreover, the met-
ric is strictly negatively curved away from the boundary tori corresponding to
the smooth cusps and singular closed geodesics of X.

Step 1. Removing neighborhoods of the singular vertices and truncating
singular cusps. Consider first a vertex v ∈ Σ(0)

X . We choose a small positive
number ρv < 1

2rinj(v) and denote by w1, w2, w3 ∈ Σ(1) the three singular points
at distance ρv from v. We take the convex hull of {w1, w2, w3} inside the closed
ball Bρv

(v), and denote by Uv the interior of the convex hull. Its closure Ūv

can be obtained by doubling a hyperbolic simplex along three of its faces; ∂Uv

is the union of two geodesic triangles glued along their boundaries.
Consider now a singular cusp C ⊂ X with horospherical cross section H.

Since X is orientable, H is a Euclidean cone sphere with three or four cone
points. As before we form the convex hull of H ∩ ΣX inside C and denote its
interior by UC . Then ∂UC is piecewise geodesic with vertices in H ∩ ΣX .

By taking out the neighborhoods Uv around all singular vertices v and
truncating all singular cusps C, we obtain a hyperbolic cone manifold

X ′ := X −
⋃
v

Uv −
⋃
C

UC

with piecewise totally geodesic concave boundary.
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Step 2. Removing neighborhoods around the singular edges. The cone
manifold X ′ has no singular vertices any more. Its singular locus ΣX′ :=
ΣX ∩ X ′ consists of closed singular geodesics and of singular segments with
endpoints in the boundary. We now treat the latter ones.

Consider a singular edge σ = ww′ in X ′ ∩ ΣX with endpoints in w, w′ ∈
∂X ′. We will work inside a tubular ρσ-neighborhood T of σ in X ′ with small
radius ρσ. Choose an interior point m of σ and a little totally geodesic disc
∆ orthogonal to σ and centered at m. Consider one of the endpoints of σ,
say w. The boundary of X ′ is concave at w. (This includes the possibility of
its being totally geodesic, which we regard as weak concavity.) The link Λw

of w ∈ X ′ is a spherical polygon (in most cases a bigon) with one cone point
and concave boundary. We denote its vertices by ξ1, ξ2, . . . , ξk. (In the totally
geodesic case, ∂Λw is a circle and the ξi are not well-defined; we then choose
two opposite points ξ1 and ξ2 on the circle.) For 0 < δi << ρσ, let yi ∈ T ∩∂X ′

be the points with d(w, yi) = δi and
−→
wyi= ξi. If the δi are sufficiently small,

then there exist boundary points zi ∈ ∂X ′ ∩ T near w′ and geodesic segments
ci = yizi inside T intersecting ∆ orthogonally. Exchanging the roles of w

and w′, we construct analogously geodesic segments c′1, . . . , c′l, with l ≥ 2.
We coordinate the δi and δ′i so that the k + l segments c1, . . . , ck, c

′
1, . . . , c′l

intersect ∆ at the same distance from m. Now we form the convex hull of
c1, . . . , ck, c

′
1, . . . , c′l inside T and denote its interior by Uσ. Since the k + l

segments intersect ∆ orthogonally, the boundary of Uσ is the union of k + l

totally geodesic quadrilaterals.
We perform this construction for all singular edges σ so that the closed

neighborhoods Ūσ are disjoint. Removing the neighborhoods Uσ for all singular
edges with endpoints in ∂X ′ yields a compact cone manifold

Xcarved := X ′ −
⋃
σ

Uσ

with piecewise totally geodesic boundary.

Lemma 7.11. The cone manifold Xcarved is locally CAT(−1) near the
boundary.

Proof. Since Xcarved is everywhere locally conical, we have to check that
the links at all boundary points are CAT(1). This is nontrivial only at the
boundary vertices. In our notation above, these are the points yi and zi. The
link of both yi and zi in X ′ is a concave bigon when they lie on an edge of
∂X ′, and a half-sphere when they lie on a totally geodesic piece of ∂X ′. In the
first case, the link in Xcarved is the intersection of two concave bigons, such
that each bigon contains precisely one vertex of the other one. This link is a
quadrilateral, with two opposite vertices of angle > π and two other vertices of
angle < π. Since each bigon contains precisely one vertex of the other one, the
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secant between the concave vertices divides the quadrilateral into two convex
triangles. Hence the link contains no nonconstant closed geodesics of length
< 2π — actually no nonconstant closed geodesics at all — and therefore it is
CAT(1) due to a criterion by Gromov; cf. [Gr2, §4.2 A and B]. In the other
case, when the vertex lies in a totally geodesic piece of ∂X ′, its link in Xcarved

is the intersection of a half-sphere with a concave bigon (with precisely one
vertex in the half-sphere), and the argument is similar.

Step 3. Modification near closed singular geodesics at smooth cusps. We
truncate the smooth cusps along horospherical torus cross sections, respec-
tively, removing open tubular neighborhoods of small radii around the singular
closed geodesics. Then, by a standard double warped product construction,
we perturb the metric locally near the new boundary components to a non-
positively curved Riemannian metric with totally geodesic flat boundary. We
obtain a compact nonpositively curved Riemannian manifold Xcore with piece-
wise totally geodesic boundary. The boundary components are either totally
geodesic (flat or hyperbolic), or piecewise totally geodesic hyperbolic. Lemma
7.11 implies that Xcore is CAT(0). Topologically, Xcore is a compact core for
Xsmooth. This concludes the proof of Proposition 7.10.

8. Spherical uniformization

This section and the following one are devoted to proof of the spherical
uniformization theorem:

Spherical uniformization (Theorem 6.16). Let O be a closed, ori-
entable connected small 3-orbifold. If there exists a Euclidean cone structure
on O with cone angles strictly less than the orbifold angles of O, then O is
spherical.

Note first that a Euclidean cone structure X on O could have a boundary.
If ∂X is nonempty, then it consists of totally geodesic turnovers. Due to our
assumptions, X has cone angles < π, and the classification of noncompact
Euclidean cone manifolds (cf. Section 4 above) implies that X is the product
of a Euclidean turnover with an interval. In this case O is a suspension of a
spherical turnover and therefore obviously spherical.

From now on we assume that the Euclidean cone structure X on O is
closed. Then X and O have the same homeomorphism type (as pairs of topo-
logical space and singular locus), and we can consider X as a Euclidean cone
metric on O.

For the proof of Theorem 6.16 we distinguish three cases which are listed
in Definition 8.2.
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Definition 8.1. A singular vertex of a (locally) orientable 3-orbifold is
called

• dihedral if its local isotropy group is a dihedral group, and

• platonic otherwise. (Its local isotropy group then is the group of orientation-
preserving isometries of a platonic solid.)

Definition 8.2. A (locally) orientable 3-orbifold is called

• of cyclic type if its singular locus is not empty and has no vertex,

• of dihedral type if it has singular vertices and all vertices are dihedral,

• of platonic type if it has a platonic singular vertex.

The cyclic case relies on Hamilton’s theorem, as in [BoP]. We reduce
the dihedral case to the cyclic one, by using a finite covering argument. The
platonic case relies on a deformation argument of spherical cone structures on
O given in Section 9.

Previous to all these cases, in the next subsection we prove that π1(O) is
finite.

8.1. Nonnegative curvature and the fundamental group. In this section,
we relax the condition on cone angles and consider Euclidean cone 3-manifolds
with cone angles ≤ α < 2π. In particular, these are Alexandrov spaces of
nonnegative curvature, and we will prove the following result in the spirit of
the Bonnet-Myers bounded diameter theorem for Riemannian manifolds with
lower positive curvature bound.

Proposition 8.3. Let X be a connected Euclidean cone 3-manifold with
cone angles ≤ α < 2π and nonempty singular set ΣX . Suppose that Γ is
an infinite discrete group acting properly discontinuously on X by isometries.
Then Γ is virtually cyclic.

If Γ acts moreover cocompactly, then X splits isometrically as the product
Y × R of the real line with a closed Euclidean cone surface Y .

Proof. Step 1. There are no singular vertices. Suppose that X contains
singular vertices and consider a diverging sequence x1, x2, . . . of distinct ver-
tices in the same Γ-orbit. We fix a base point p ∈ X and denote by vi ∈ Λp

the direction of the segment pxi. We may assume without loss of generality
that the vi converge,

vi −→ v∞,(13)
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and that di+1

di
→ ∞. Applying triangle comparison (in the Euclidean plane) to

the triangles ∆(p, xi, xi+1) for large i, we obtain that

lim inf
i→∞

(
∠p(xi, xi+1) + ∠xi

(p, xi+1)
)
≥ π.

In view of (13), this means that ∠xi
(p, xi+1) → π. On the other hand, by

the Diameter Rigidity Theorem for CAT(1)-spaces, we have that diam(Λxi
) =

d < π, a contradiction. This shows that Σ(0)
X is empty.

Step 2. ΣX has finitely many connected components. The argument is
similar. Assume that there are infinitely many connected components σi of
ΣX and consider shortest segments pxi from p to σi. Let wi be the direction
of pxi at xi. After passing to a subsequence, we conclude as before that
∠xi

(p, xi+1) → π. This is absurd because, due to our upper bound on cone
angles, we have rad(Λxi

, wi) ≤ max(α
2 , π

2 ) where the radius rad(Λxi
, wi) of Λxi

at wi is defined as the Hausdorff distance from Λxi
to the one point subset

{wi}. Thus ΣX has finitely many connected components.

Step 3. It follows that a finite index subgroup of Γ preserves one (each)
singular component. The discontinuity of the action implies that the compo-
nents of ΣX are complete geodesics and that Γ is virtually cyclic.

If the action of Γ is in addition cocompact then X is quasi-isometric to
R and has therefore two ends. We apply the Splitting Theorem, cf. [BBI,
Th. 10.5.1], to conclude that X splits as a metric product of R and an Alexan-
drov space Y of nonnegative curvature. Then Y must be a closed Euclidean
cone surface.

The first step in the proof of Theorem 6.16 is the following lemma:

Lemma 8.4. Let O be a closed orientable irreducible 3-orbifold. If there
exists a closed Euclidean cone structure on O with cone angles strictly less than
the orbifold angles of O, then π1(O) is finite.

Proof. The Euclidean cone structure X on O (with cone angles strictly
less than the orbifold angles of O) lifts to a Euclidean cone structure X̃ on the
universal cover Õ. The Euclidean cone manifold X̃ has cone angles ≤ ω < 2π,
for some constant 0 < ω < 2π. In addition, the fundamental group π1(O) acts
isometrically on X̃.

If π1(O) is infinite, then Proposition 8.3 shows that π1(O) is virtually
cyclic and that X̃ splits as a metric product R × Ỹ 2, where Ỹ 2 is a closed
Euclidean cone 2-manifold. Since the action of π1(O) preserves this product,
Ỹ 2 covers a totally geodesic surface Y in X. The cone surface Y is a Eu-
clidean cone structure on a spherical turnover. This turnover is essential in O,
contradicting the irreducibility.
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8.2. The cyclic case. Suppose that O is of cyclic type. The following
lemma due to M. Feighn allows us to apply geometrization results for manifolds.

Lemma 8.5 ([Fei]). If a closed orientable 3-orbifold of cyclic or dihedral
type has finite fundamental group, then it is very good.

Remark 8.6. A closed, orientable, irreducible very good 3-orbifold with
finite fundamental group is small. This is a consequence of the equivariant
Dehn Lemma (cf. [JR], [MY1]).

We lift the Euclidean cone metric to the universal covering of O, which
is a compact manifold denoted by Õ. Thus we have a π1(O)-invariant Eu-
clidean cone metric on Õ with cone angles < 2π. This metric can easily be
desingularized to a π1(O)-invariant smooth Riemannian metric of nonnegative
sectional curvature, because the singular components are circles. More pre-
cisely, the singular locus is locally a product of a singular disc with R. This
disc is isometric to the neighborhood of the tip of a cone in Euclidean space
described by the equation z = k

√
x2 + y2, z ≥ 0. It suffices to round the tip

of the cone with a metric of nonnegative curvature invariant by rotations, that
only depends on the distance to the singular locus.

By Hamilton’s theorem [Ha1, 2], it follows that Õ admits a π1(O)-invariant
smooth metric locally modelled on S3, S2 × R or R3. Only the spherical case
is possible because π1(O) is finite. Thus O is spherical in the cyclic case.

8.3. The dihedral case. Suppose that O is of dihedral type.
There exists a singular edge e0 ⊂ Σ with the following properties:

– e0 has two different endpoints, and

– the branching index of every other edge of Σ adjacent to e0 is 2.

To prove the existence of e0, notice that any edge with label > 2 satisfies the
properties. In addition, if all labels are = 2, there is always an edge with
different endpoints.

The covering provided in the following result will be useful for the reduc-
tion to the cyclic case.

Proposition 8.7. There exists a finite regular covering

p : Ô → O

of orbifolds such that Ô is small of cyclic type and its branching locus is Σ̂ =
p−1(e0). In addition p preserves the ramification index of e0.

Proof. Let O′ be the orbifold obtained from O by removing the open edge
e0 from the branching locus. (This change of the orbifold structure amounts
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to putting the label 1 on e0.) Since all edges of O adjacent to an endpoint of
e0 have label 2, O′ is still an orbifold.

Lemma 8.8. The fundamental group of O′ is finite.

Proof. We use the same Euclidean cone metric on O as above and consider
it as a singular metric of nonnegative curvature on O′. We argue by contra-
diction as in the proof of Lemma 8.4. If π1(O′) were infinite, Õ′ would split
metrically as a product R × Y ′. This is absurd because the metric on Õ′ has
singular vertices.

Since O′ is of dihedral type and π1(O′) is finite, O′ is very good by
Lemma 8.5. The universal covering of O′ induces a finite regular covering
p :Ô → O, where Ô is a closed orientable 3-orbifold with underlying space the
universal covering of O′, and branching locus Σ̂ = p−1(e0). Notice that Σ̂ is a
finite collection of disjoint embedded circles, by the choice of e0. Therefore Ô
is of cyclic type.

Lemma 8.9. Ô is small.

Proof. Since O is irreducible and very good, by the equivariant sphere
theorem (cf. [DD], [JR], [MY3]) the universal cover Õ of O (which is also the
universal cover of Ô) is an irreducible 3-manifold.

Suppose that F ⊂ Ô is a spherical 2-suborbifold. Since Õ is irreducible, F

bounds a ball quotient Q which is a cyclic 3-suborbifold. The Smith conjecture
[MB] implies that Q is a discal suborbifold. (It also follows from the orbifold
theorem in the cyclic case whose proof we have already completed, respectively
from Corollary 1.1 in the introduction.) Hence Ô is irreducible.

Remark 8.10. Irreducibility of Ô also follows from the irreducibility of
O by an equivariant spherical 2-orbifold theorem ([Mai], [TY2]), whose proof
relies on PL least area techniques for 2-orbifolds that generalize the notion of
PL least area surfaces introduced in [JR]. However, for completeness, we use
here the fact that O is very good with finite fundamental group to give a direct
argument.

To see that Ô is small, suppose that F ⊂ Ô is an essential 2-suborbifold.
By irreducibility, F cannot be spherical or bad and therefore has infinite fun-
damental group. Since π1(Ô) is finite, F lifts to a compressible surface in
the universal covering. The equivariant Dehn lemma implies that F has a
compressing disc.

This finishes the proof of Proposition 8.7.
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We consider the compact 3-orbifold O0 = O−N (e0) obtained by removing
a regular neighborhood of the singular edge e0.

Lemma 8.11. The orbifold O0 = O − N (e0) is Haken and topologically
atoroidal.

Proof. We first prove the irreducibility of O0. Let S ⊂ O0 be a spherical
2-suborbifold. It bounds a discal 3-suborbifold in O, since O is irreducible.
If it does not bound a discal 3-orbifold in O0, then a neighborhood N (e0) is
contained in the interior of a discal 3-suborbifold of O. This is impossible,
since e0 is a singular edge with two distinct vertices in Σ.

It is clear that O0 does not contain any Euclidean or hyperbolic turnover,
because O cannot contain such a turnover by smallness.

To see that O0 is topologically atoroidal, suppose that T ⊂ O0 is a nonsin-
gular torus or a pillow which is incompressible in O0. Since O is small, T must
be compressible in O, and the compression discal 2-suborbifold must meet e0.
Hence, by irreducibility of O, T bounds a solid pillow containing e0 and thus
is parallel to ∂O0. The case that T is a smooth torus cannot occur.

Now we can apply Thurston’s hyperbolization for Haken orbifolds; cf.
[BoP, Ch. 8]. It follows that O0 is Seifert or hyperbolic.

The Seifert case is quickly treated: O is obtained from O0 by gluing a solid
pillow P to its boundary. If the meridian of the pillow ∂O0 is homotopic to the
fiber of O0 then the irreducibility of O implies that O0 contains no essential
annulus. It follows that O0 is a solid pillow itself. Solid pillows admit many
Seifert fibrations, and we can modify the Seifert fibration so that the fiber is
not a meridian of the solid pillow P . Hence the Seifert fibration extends to O.
Since a Seifert fibred 3-orbifold with finite fundamental group is spherical, O
is spherical, i.e. the orbifold theorem holds in this case. Hence from now on
we make the following:

Assumption 8.12. The orbifold O0 admits on its interior a complete hy-
perbolic structure of finite volume.

We proceed now with the proof as in Section 6.2 by starting to increase
the cone angle along the singular edge e0 and by analyzing the degenerations.

We fix some notation. Let m0 be the ramification index of the edge e0. For
t ∈ [0, 1], let X(t) denote a hyperbolic cone structure on O, having the same
prescribed cone angles as the orbifold O along the edges and circles of Σ − e0

and cone angle 2π
m0

t along the edge e0. X(0) denotes the complete hyperbolic
structure of finite volume on the interior of O0.

In order to study the deformations of the hyperbolic cone structure X(t)
while increasing t, we consider the variety of representations Hom(π1(O0),
PSL2(C)) and the variety of characters X (O0). As in Theorem 6.4, the (square
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of the) trace of the meridian around e0 is a local parameter for X (O0) near
the complete structure; cf. [BoP, Th. B.2.7]. Hence the irreducible component
C of X (O0) that contains the holonomy of O0 is a curve.

As in Section 6.2, we define

I(O) :=

t ∈ [0, 1]

∣∣∣∣∣∣∣∣
there exists a hyperbolic cone structure on O
with cone angle 2πt

m0
along e0 and cone angles equal

to the orbifold angles at all other edges,
with holonomy in C and volume ≤ v0


where v0 denotes the volume of the complete structure.

By hypothesis, 0 ∈ I(O), hence I(O) �= ∅. Exactly as in Theorem 6.7
one proves that I(O) is open to the right. Since π1(O) is finite, O is not
hyperbolic and 1 �∈ I(O). Let t∞ := sup I(O). We have that t∞ �∈ I(O) by
(right) openness.

Lemma 8.13. For any sequence (tn) in I(O) with tn → t∞, the sequence
of cone manifolds (X(tn))n∈N collapses.

Proof. Assume that X(tn) does not collapse. After choosing base points xn

in the thick parts of X(tn) and passing to a subsequence, (X(tn), xn) converges
geometrically to a pointed hyperbolic cone 3-manifold (X∞, x∞) with finite
volume. The manifold X∞ cannot be compact because t∞ �∈ I(O).

We use the finite cover p : Ô → O of Proposition 8.7 and denote by X̂(t) =
p−1(X(t)) the lifted hyperbolic cone structure on Ô. The X̂(tn) converge to
a finite regular covering X̂∞ of X∞. Since all cone angles of each X̂(tn) are
equal, the stability theorem (Thm. 7.1) applies and X̂∞ is a hyperbolic cone
structure on Ô. Now X̂∞ is not compact, and its ends are singular cusps which
correspond to singular vertices of Ô. But Ô is of cyclic type, a contradiction.

Let (tn) be a sequence as above. We distinguish two cases according to
whether the sequence diam(X(tn)) is bounded below away from zero or not.

If diam(X(tn)) ≥ D > 0 for some uniform D, then the fibration theorem
implies that O is a Seifert fibred 3-orbifold. Since π1(O) is finite, it follows
that O is spherical.

Otherwise, up to taking a subsequence, we can assume that diam(X(tn))
→ 0. Then we consider the rescaled sequence 1

diam(X(tn))X(tn). If this rescaled
sequence collapses, then the fibration theorem still implies that O is Seifert
fibred, and hence spherical.

If the rescaled sequence does not collapse, then a subsequence converges to
a closed Euclidean cone manifold X(t∞) homeomorphic to O. We have t∞ < 1,
because π1(O) is finite. Thus X(t∞) lifts to a π1(O)-invariant Euclidean cone
metric on the universal covering Õ with singular locus a link and cone angle
t∞2π < 2π. We conclude as in the cyclic case that O is spherical.
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8.4. The platonic case. Suppose that O is of platonic type. The proof of
Theorem 6.16 in this case is by induction on the number of platonic vertices
in the branching locus.

At each platonic vertex we have one singular edge with label 2 and two
edges with label 3, 4 or 5. We fix a singular edge e of O with label ne > 2 such
that at least one of its adjacent vertices is platonic.

Let O′ be the orbifold obtained from O by replacing the branching index
ne of e by 2. We want to apply the induction hypothesis to O′, because it has
fewer platonic vertices than O. To do it, we need the following lemma:

Lemma 8.14. The orbifold O′ is small.

Proof. By assumption, O and hence also O′ are closed. The lemma follows
from the fact that, for closed orbifolds, smallness is a property independent of
the labels of the branching locus.

Notice that O′ has orbifold angles greater than or equal to those of O
because one label has decreased. Thus the Euclidean cone structure on O
given in the hypothesis of Theorem 6.16, when viewed on O′ still has cone
angles strictly less than the orbifold angles. It follows from the induction
hypothesis that O′ is spherical.

The induction step, and hence the conclusion of the proof of Theorem
6.16, is due to the following result which we will prove in Section 9.3.

Proposition 8.15. The spherical structure on O′ can be deformed, through
a continuous family of spherical cone metrics, to a spherical structure on O.

9. Deformations of spherical cone structures

This section is devoted to proving Proposition 8.15. Some preliminaries
on varieties of representations are required.

9.1. The variety of representations into SU(2). Let Γ be a finitely gen-
erated group. The variety of representations Hom(Γ,SU(2)) is compact. The
group SU(2) acts on Hom(Γ,SU(2)) by conjugation, and the quotient

X (Γ,SU(2)) = Hom(Γ,SU(2))/SU(2)

is also compact, but in general not algebraic.

The variety of characters. The action by conjugation of SL(2, C) on the
variety of representations Hom(Γ,SL(2, C)) is algebraic. The quotient

X (Γ,SL(2, C)) = Hom(Γ,SL(2, C))//SL(2, C)

of this action provided by geometric invariant theory carries a natural struc-
ture as an affine algebraic subset of CN defined over Q [MoS]; points can be
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interpreted as characters of representations Γ → SL(2, C). The conjugacy class
of a representation Γ → SU(2) is determined by its character, and we have a
natural inclusion

X (Γ,SU(2)) ⊆ X (Γ,SL(2, C)).(14)

Trace functions. For γ ∈ Γ, the trace function

Hom(Γ,SL(2, C))→C
ρ �→ trace(ρ(γ))

induces an algebraic function

Iγ :X (Γ,SL2(C)) → C.

The ambient space CN . The embedding of X (Γ,SL(2, C)) into CN is
realized by taking as coordinates the functions Iγ , where γ runs through the
words of length at most three in the generators of Γ [GM].

Since traces of matrices in SU(2) are real, we have the embedding

X (Γ,SU(2)) ⊂ X (Γ,SL2(C)) ∩ RN

of X (Γ,SU(2)) into a real algebraic variety. One can show that X (Γ,SL2(C))∩
RN = X (Γ,SU(2)) ∪ X (Γ,SL2(R)) [MoS]. The following lemma implies that
X (Γ,SU(2)) is locally R-algebraic as characters of non-abelian representations.

Lemma 9.1 ([Po1, lemme 5.25]). Let [ρ] ∈ X (Γ,SU(2)) be the conjugacy
class of a nonabelian representation. There exists an open neighborhood U ⊂
RN of [ρ] such that :

X (Γ,SU(2)) ∩ U = X (Γ,SL2(C)) ∩ RN ∩ U.

9.2. Lifts of holonomy representations into SU(2)×SU(2) and spin struc-
tures. We recall that an element (A, B) ∈ SU(2) × SU(2) ∼= Spin(4) acts on
SU(2) ∼= S3 by

x �→ AxB−1.

In particular, the kernel of the action is the order two subgroup {±(Id, Id)}.
The following lemma is classical:

Lemma 9.2. The element (A, B) ∈ SU(2)×SU(2) acts on SU(2) ∼= S3 as
a rotation (i.e. has fixed points) if and only if trace(A) = trace(B). Trace and
rotation angle are related by

trace(A) = ±2 cos
(α

2

)
.(15)
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One can view SO(4) as the frame bundle on S3 = SO(4)/SO(3). The
unique spin structure on S3 is given by the canonical projection Spin(4) →
SO(4). Given a spherical manifold N , not necessarily complete, with holonomy
representation ρ : π1(N) → SO(4), the spin structures on N correspond to lifts
of ρ to a representation into Spin(4). (The lift can be obtained from a spin
structure by developing it, using the natural connection, onto Spin(4) and
taking its holonomy.)

Let pi : SU(2) × SU(2) → SU(2) denote the projection to the i-th factor,
for i = 1, 2.

Lemma 9.3. Let φ : π1(M) → SU(2) × SU(2) be the lift of the holonomy
of a spherical cone manifold. Then both p1◦φ and p2◦φ are non-abelian unless
Σ is a link and M = X − Σ is Seifert fibred.

Proof. Assume for instance that p1 ◦ φ is abelian. This means that the
image of p1 ◦ φ is contained in a diagonalizable subgroup ∼= S1. Therefore φ

preserves the corresponding Hopf fibration on S3. It follows easily from this
that Σ is a link and M is Seifert fibred (cf. [Po2, Lemma 9.1]).

Let µ1, . . . µq be meridians for the singular edges and circles in Σ.

Theorem 9.4 (Local parametrization). Let O be a spherical orbifold such
that M = O−Σ is not Seifert fibred. If φ : π1(M) → SU(2)×SU(2) is a lift of
the holonomy, then both [p1 ◦φ] and [p2 ◦φ] are smooth points of X (M,SU(2)).
Moreover,

(Iµ1 , . . . , Iµq
) : X (M,SU(2)) → Rq

is a local diffeomorphism at both points [p1 ◦ φ] and [p2 ◦ φ].

This theorem is an infinitesimal rigidity result for spherical orbifolds, and
its proof is postponed to the last subsection 9.5. It will be obtained from a
cohomology computation, using the fact that spherical orbifolds are finitely
covered by S3.

9.3. The deformation space of spherical structures. The aim of this section
is to prove Proposition 8.15. We adopt the notation of Section 8.4. Let µe

denote the meridian of the edge e. We recall that X (M, SU(2)) is contained
in the real algebraic set V = X (M,SL2(C)) ∩ RN ; cf. (14). Let φ0 be the lift
to SU(2) × SU(2) of the holonomy representation of O′ corresponding to the
choice of spin structure on M . Its conjugacy class [φ0] is contained in

X (M, SU(2) × SU(2)) = X (M, SU(2)) ×X (M,SU(2)) ⊆ V × V.

According to Theorem 9.4, X (M,SU(2) × SU(2)) is locally bianalytic to R2q

at [φ0] and, due to Lemma 9.1, is a neighborhood of [φ0] in V × V .
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Let p1 : SU(2) × SU(2) → SU(2) denote the projection to the first factor.
Consider the algebraic subset

W =

([ρ1], [ρ2]) ∈ V × V

∣∣∣∣∣∣
Iµi

([ρ1]) = Iµi
([ρ2]), for each meridian µi

Iµi
([ρ1]) = Iµi

([p1(φ0)]), for each meridian
µi �= µe

 .

By Lemma 9.2, these equations are the algebraic conditions for a representation
of π1(M) in SU(2)× SU(2) to be the lift of a representation in SO(4) with the
properties:

– the images of the meridians are rotations;

– the rotation angles of all meridians are fixed except for the meridian µe

of the edge e.

Let W0 be the irreducible component of W containing [φ0]. By Theorem
9.4, W0 is a real algebraic curve and Iµe

◦ p1 restricted to W0 is a smooth local
parameter near [φ0]. In particular it is nonconstant on W0.

A neighborhood of [φ0] in W0 can be lifted to a curve of representations
π1(M) → SU(2) × SU(2) which are lifts of holonomies of spherical cone struc-
tures on O′. The fact that the trace Iµe

◦ p1 is a smooth local parameter on
W0 near [φ0] implies that the cone angle at e is a (continuous) local parameter
for the family of spherical cone structures near the orbifold structure. It takes
values in a neighborhood of π.

We take S± to be the connected component of the semi-algebraic set

{([ρ1], [ρ2]) ∈ W0 | 0 ≤ ±Iµe
([ρ1]) ≤ 2 cos(π/ne)}

that contains [φ0]. One of these two sets, say S+, contains representations
arising from cone metrics with cone angle < π at e.

Lemma 9.5. All representations in S+ are lifts of holonomy representa-
tions for spherical cone structures on O′ with cone angle at e in [2π

ne
, π].

Proof. Let A be the subset of representations in S+ that are such lifts. By
our previous discussion, A contains a neighborhood of the endpoint [φ0] of S+.

Openness of A. Lemmas 9.1 and 9.3 imply that perturbations of repre-
sentations in A still take values in SU(2)× SU(2). Moreover, perturbations of
holonomy representations are induced by perturbations of cone structures; cf.
[CEG], [Po2].

Closedness of A. Consider a sequence of points [φn] ∈ A converging to
[φ∞] ∈ S+. We have to show that [φ∞] ∈ A.

For n ∈ N, let Xn be the spherical cone manifold with holonomy lift φn.
The Xn are Alexandrov spaces with curvature ≥ 1 and therefore have diameter
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≤ π. Hence if the sequence (Xn)n∈N does not collapse then, up to a subse-
quence, it geometrically converges to a spherical cone manifold X∞ with the
same topological type and holonomy lift φ∞. Thus [φ∞] ∈ A in this case.

Assume now that the sequence (Xn) collapses. In the spherical case, this
is equivalent to vol(Xn) → 0, because

vol(Xn) ≤ 2π inj(Xn).

This formula can be proved by using the Dirichlet domain centered at some
point x ∈ Xn of smallest injectivity radius, since this domain embeds isomet-
rically in a lens in S3 of width 2 inj(x).

Denote by αn the cone angle of e for the cone structure Xn. We may
assume that (αn) converges and distinguish two cases.

Case 1. αn → π. We will apply Schläfli’s formula, relying on the
algebraic structure of our deformation space. S+ is contained in the algebraic
curve W0. Hence, after passing to a subsequence, we may assume that the
[φn] lie on an analytic path with endpoint [φ∞]. Since the trace Iµe

◦ p1 is a
nonconstant analytic function on W0, its critical points do not accumulate and
we can assume that it is monotonic on this path. So the cone angle at e is
monotonically increasing towards π. Schläfli’s formula then implies that the
volume of the cone structure increases, as we approach [φ∞]. This contradicts
collapse.

Case 2. αn → α∞ < π. Since at least one of the singular vertices in
O adjacent to e is platonic, each Xn has at least one vertex with two cone
angles uniformly bounded away from π. Since (Xn) collapses by assumption,
the thick vertex lemma (Lemma 5.10) implies that diam(Xn) → 0.

Now we rescale Xn by the (inverse of the) diameter. By application of
the thick vertex lemma again, the rescaled sequence converges to a compact
Euclidean cone manifold, which is a Euclidean structure on O with cone angles
greater than or equal to the orbifold angles of O.

Sublemma 9.6. This Euclidean cone structure on O has curvature ≤ 0
in the orbifold sense (i.e. it is locally the quotient of a CAT(0) space by a finite
group of isometries).

Proof. By Gromov’s criterion [Bal], all we have to check is that the link of
each point is CAT(1) in the orbifold sense (i.e. a quotient of a CAT(1) space
by the isotropy group). The links are quotients of the unit sphere except at
the points of e. The CAT(1) property for the links of interior points of e is
clear because the cone angle is greater than or equal to the orbifold angle. It
is clear for the same reason at a dihedral endpoint of e. (There may be at
most one.) At platonic endpoints of e it follows from Proposition 9.10 if e has



272 MICHEL BOILEAU, BERNHARD LEEB, AND JOAN PORTI

different endpoints, and from its addendum if e is a loop, to be proved in the
next subsection.

By the sublemma and from Haefliger’s version of the Cartan-Hadamard
theorem [Hae], π1(O) is infinite. We obtain a contradiction, because π1(O) is
finite by Lemma 8.4. Thus (Xn) does not collapse. This finishes the proof of
Lemma 9.5.

Lemma 9.7. The map

α : S+ −→
[
2π

ne
, π

]
given by the cone angle at e is surjective.

Proof. Recall that S+ is a closed connected subset of the real algebraic
curve W0. Moreover, S+ is compact because it is contained in the subset of
conjugacy classes of SU(2) × SU(2)-valued representations. As an algebraic
curve, W0 is homeomorphic to a graph with finitely many vertices. It follows
that S+ is a compact graph.

Consider the subset

S+
0 := α−1

((
2π

ne
, π

))
⊂ S+.

The complement S+ − S+
0 is finite, because the nonconstant analytic trace

function has discrete level sets.
Since S+

0 is locally algebraic, Sullivan’s local Euler characteristic theorem
[Sul] implies that vertices of S+

0 have even valency. It follows that S+
0 is a

(noncompact) graph with an even number of ends. Recall that a neighborhood
of [φ0] in S+ is a curve starting in [φ0], and therefore precisely one end of S+

0

converges to [φ0]. As a consequence, there exists another end of S+
0 converging

to a point [φ1] ∈ S+ − S+
0 different from [φ0]. We have that

α([φ1]) ∈
{

2π

ne
, π

}
.

We are done if α([φ1]) = 2π
ne

. If α([φ1]) = π, we obtain a contradiction from
the following result.

Theorem 9.8 (de Rham, cf. [Rot]). A spherical structure on a closed
orientable connected smooth 3-orbifold is unique up to isometry.

That is, since a spin structure has been fixed on M , the nonconjugate
representations φ0 and φ1 correspond to nonisometric spherical structures on
the orbifold O′. This concludes the proof of Lemma 9.7.
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Proposition 8.15 is a direct consequence of the results in this section.

9.4. Certain spherical cone surfaces with the CAT(1) property. The results
of this subsection have been used in Sublemma 9.6 to show that a certain
Euclidean cone structure on the orbifold O is a metric that satisfies locally the
CAT(0) property, by showing that the links are CAT(1).

Let Λ be a spherical cone surface with cone angles > 2π. Such a surface
has curvature ≤ 1 in the local sense. We discuss some examples when Λ has the
CAT(1) property, i.e. satisfies global triangle comparison with upper curvature
bound 1.

Due to a general criterion for piecewise spherical complexes, Λ is CAT(1)
if and only if it contains no nonconstant closed geodesic with length < 2π;
cf. [Gr2, §4.2 A and B]. An elegant way to check the CAT(1) property was
discovered by Rivin in his thesis:

Theorem 9.9 (Rivin, cf. [RH]). The polar dual of a compact convex poly-
hedron in H3 is CAT(1).

The result extends to ideal polyhedra; cf. [ChD, Thm. 4.1.1].
The polar dual or Gauß image G(P ) of a convex polyhedron P in H3 is

constructed as follows, generalizing the Gauß map for convex polyhedra in
Euclidean space. For every vertex v of P we take the set G(v) of all outer unit
normal vectors at v. Equipped with its natural metric as a subset of the unit
tangent sphere, G(v) is a spherical polygon. The sides of G(v) correspond to
the edges of P adjacent to v. If the vertices v1 and v2 are joined by an edge
e, we glue the polygons G(v1) and G(v2) along their sides corresponding to e.
The resulting spherical complex is G(P ), and it is easily seen to be a spherical
cone surface with cone points of angles > 2π.

As an example, relevant in Sublemma 9.6, we determine the polar dual
of the platonic solids. Let P be a regular polyhedron in H3. (P can be a
tetrahedron with face angles < π

3 , a cube with face angles < π
2 , an octahedron

with face angles < π
3 , a dodecahedron with face angles < 3π

5 , or an icosahedron
with face angles < π

3 .) The isometry group Isom(P ) acts on the dual G(P ) as
a reflection group. Let ∆(P ) be the quotient 2-orbifold. It is a triangle with
reflector boundary equipped with a spherical metric. Each one of the three
vertices of ∆(P ) corresponds respectively to the vertices, edge midpoints and
face centers of P . The angles of the triangle equal the orbifold angles at the
first two vertices, but the third angle is bigger than the corresponding orbifold
angle. In other words, in the orbifold sense, the metric is smooth everywhere
except at the third vertex, and there it has concentrated negative curvature.

For instance, if P is a (possibly ideal) icosahedron with face angles < π
3 ,

then G(P ) is a piecewise spherical dodecahedron composed of regular pen-
tagons with angles ∈ (2π

3 , π]. The orbifold ∆(P ) has angles π
5 , π

2 and third
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angle ∈ (π
3 , π

2 ]. The various cases yield the following examples of piecewise
spherical metrics on S2 with the CAT(1) property.

Proposition 9.10. Let ∆ be a spherical 2-orbifold which is topologically
a triangle with reflector boundary. Suppose that ∆ is equipped with a spherical
metric so that the boundary is geodesic, all angles are ≤ π

2 , and the metric
is smooth everywhere except at one vertex where it has concentrated negative
curvature (in the orbifold sense).

Then the pull -back of the metric to the universal covering orbifold ∆̃ ∼= S2

satisfies the CAT(1) property.

Only the case when ∆ is cyclic is not given by the platonic solids. But in
this case, ∆̃ is the suspension of a circle with length > 2π, hence also CAT(1).

The next example is related.

Addendum 9.11. Let ∆ be as in the proposition and with local isotropy
groups D2, D3 and D3 at the vertices. Suppose that the spherical metric has
angle π

2 at the D2-vertex and equal angles ∈ (π
3 , π

2 ] at the two vertices with
D3-isotropy. Then the same conclusion holds.

Proof. By folding these orbifolds along their symmetry axis, one ob-
tains index-two ramified coverings over the orbifolds with vertex isotropies
(D2, D3, D4). The angles of the quotient orbifolds satisfy the assumptions in
Proposition 9.10. The quotients have the same universal cover, and the asser-
tion follows from Proposition 9.10.

9.5. Proof of the local parametrization theorem.

Proof of Theorem 9.4. Let ρ = pi ◦ φ : π1(M) → SU(2), for i = 1 or 2.
The proof has three main steps. In Step 1 we show that the dimension of the
Zariski tangent space of X (M,SU(2)) at [ρ] equals the number of meridians.
In Step 2 we prove that [ρ] is a smooth point of X (M, SU(2)). In Step 3 we
check that the differential forms {dIµ1 , . . . , dIµq

} are a basis for the cotangent
space.

Step 1. Computation of the Zariski tangent space of X (M, SU(2)) at [ρ].
The Zariski tangent space is given by the cohomology group H1(M ; Ad ◦ ρ)
where we work with coefficients in the Lie algebra su(2) twisted by the adjoint
representation Ad ◦ ρ.

First compute the cohomology H∗(O; Ad ◦ ρ). Notice that Ad◦ρ :π1(M)
→ Aut(su(2)) factors through π1(M) → π1(O) because we may compose the
holonomy representation of the spherical structure on O (which in general does
not lift to Spin(4)) with the (first or second) projection SO(4) → PSU(2) and
Ad:

π1(O) −→ SO(4) −→ PSU(2) −→ Aut(su(2)).



GEOMETRIZATION OF 3-DIMENSIONAL ORBIFOLDS 275

We use simplicial homology. Let K be a triangulation of the underlying space
of O compatible with the branching locus and let K̃ be its lift to the universal
cover Õ ∼= S3. We consider the following chain and cochain complexes:

C∗(K; Ad ◦ ρ) = su(2) ⊗π1(O) C∗(K̃; Z),

C∗(K; Ad ◦ ρ) = Homπ1(O)(C∗(K̃; Z), su(2)).

The homology of C∗(K; Ad ◦ ρ) is denoted by H∗(O; Ad ◦ ρ) and the cohomol-
ogy of C∗(K; Ad ◦ ρ) by H∗(O; Ad ◦ ρ). From the differential point of view,
H∗(O; Ad ◦ ρ) is the cohomology of the su(2)-valued differential forms on S3

which are π1(O)-equivariant.

Lemma 9.12. H∗(O; Ad ◦ ρ) ∼= 0.

Proof. There is a canonical projection C∗(S3, su(2)) → C∗(O,Ad◦ρ) and,
since π1(O) is finite, an averaging map C∗(O,Ad ◦ ρ) → C∗(S3, su(2)) which
is a section for the projection. According to [Bro, Prop. 10.4 in Ch. 3], the
induced map

H∗(O,Ad ◦ ρ) −→
(
H∗(S3, su(2))

)π1(O) ∼= H∗(S3, R) ⊗ su(2)π1(O)

is an isomorphism. The Lie algebra su(2) does not have nontrivial elements
invariant by Ad ◦ ρ, because ρ is non-abelian (Lemma 9.3).

Let N (Σ) be a tubular neighborhood of Σ and let N = O − N (Σ). We
remark that N is compact and that the inclusion N ⊂ M is a homotopy
equivalence, so that H∗(M ; Ad ◦ ρ) ∼= H∗(N ; Ad ◦ ρ).

From the previous lemma and by application of Mayer-Vietoris to the pair
(N,N (Σ)), there is a natural isomorphism

H∗(N ; Ad ◦ ρ) ⊕ H∗(N (Σ); Ad ◦ ρ) ∼= H∗(∂N ; Ad ◦ ρ)(16)

induced by inclusion.
Consider the following piece of the exact sequence of the pair (N, ∂N):

0 −→ H1(N ; Ad ◦ ρ) i∗−→ H1(∂N ; Ad ◦ ρ) δ−→ H2(N, ∂N ; Ad ◦ ρ).(17)

The injectivity of i∗ comes from (16). Poincaré duality implies that
H1(N ; Ad ◦ ρ) and H2(N, ∂N ; Ad ◦ ρ) are dual, H1(∂N ; Ad ◦ ρ) is dual to
itself, and moreover δ and i∗ are dual maps. Hence δ is surjective and

dimH2(N, ∂N ; Ad ◦ ρ) = dimH1(N ; Ad ◦ ρ) =
1
2

dimH1(∂N ; Ad ◦ ρ).(18)

Proposition 9.13. If Σ has q edges and circles, then

dimH1(M ; Ad ◦ ρ) = q.
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Proof. We have to show that dimH1(∂N ; Ad ◦ ρ) = 2q. Since ∂N =
∂N (Σ) and the homology is the direct sum of the homology of the connected
components, it suffices to compute dim H1(∂N (Σ); Ad ◦ ρ) assuming that Σ is
connected.

If Σ is a circle, then ∂N (Σ) is a torus and ρ|π1(∂N (Σ)) is abelian and non-
trivial. Thus H0(∂N (Σ); Ad◦ρ) ∼= su(2)Ad◦ρ ∼= R. By duality, dimH2(∂N (Σ);
Ad ◦ ρ) = 1. Since the torus has zero Euler characteristic, it follows that
dimH1(∂N (Σ); Ad ◦ ρ) = 2.

When Σ is a trivalent graph with v vertices, then it has q = 3v/2 edges.
Note that the restriction ρ|π1(∂N (Σ)) is irreducible. (Namely, the holonomy
lift of the neighborhood of a vertex takes values in the stabilizer of a point
∼= SU(2) and has irreducible image. The stabilizer is a diagonal subgroup in
Spin(4) ∼= SU(2)×SU(2) and projects isomorphically onto both factors.) Thus
H0(∂N (Σ); Ad◦ρ) ∼= su(2)Ad◦ρ ∼= 0. By duality, H2(∂N (Σ); Ad◦ρ) ∼= 0. Since
χ(∂N (Σ)) = 2χ(Σ) = 2(v − q) = −v = −2q

3 , we get dim H1(∂N (Σ); Ad ◦ ρ) =
−χ(∂N (Σ)) · dim(su(2)) = 2q.

Step 2. Smoothness of X (M, SU(2)) at [ρ]. The cohomology group
H1(M ; Ad ◦ ρ) is naturally identified with the Zariski tangent space of
X (M, SU(2)) at [ρ]. For an element in H1(M ; Ad ◦ ρ), there is an infinite
sequence of obstructions to be integrable (cf. [Dou], [Ab], [HPS], [Gol]). These
obstructions are natural and live in the second cohomology group.

Note that H2(N (Σ); Ad ◦ ρ) = 0 because the orbifold N (Σ) is finitely
covered by a manifold homotopy equivalent to a 1-dimensional complex. Hence
(16) provides an isomorphism

H2(M ; Ad ◦ ρ) ∼= H2(∂N ; Ad ◦ ρ).

The obstructions to integrability vanish for ∂N because ∂N is a surface ([Gol]
and [HPS]). Naturalness of the obstructions then implies that they also van-
ish for M . Thus every element in H1(M ; Ad ◦ ρ) is formally integrable as a
power series, and by a theorem of Artin [Ar] it is actually integrable.
Since H1(M ; Ad ◦ ρ) has dimension q, it follows that [ρ] is a smooth point
of X (M,SU(2)) with local dimension q.

Step 3. A basis for T ∗
[ρ]X (M, SU(2)). By Step 2, there is a natural iso-

morphism

T ∗
[ρ]X (M, SU(2)) ∼= H1(M ; Ad ◦ ρ).

Lemma 9.14. The set {dIµ1 , . . . , dIµq
} is a basis for H1(M ; Ad ◦ ρ).

Proof. As before we identify H∗(M ; Ad ◦ ρ) ∼= H∗(N ; Ad ◦ ρ). Dual to
(16), we have the isomorphism

H1(∂N ; Ad ◦ ρ) ∼= H1(N ; Ad ◦ ρ) ⊕ H1(N (Σ); Ad ◦ ρ).
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The map ι∗ : H1(∂N ; Ad ◦ ρ) → H1(N (Σ); Ad ◦ ρ) of cotangent spaces is
induced by the restriction map X (N (Σ),SU(2)) → X (∂N, SU(2)). Since the
meridians have finite order in π1(N (Σ)), the trace functions Iµj

are constant
on X (N (Σ),SU(2)). Hence ι∗(dIµj

) = 0. Since dimH1(N ; Ad ◦ ρ) = q by
Proposition 9.13, the proof reduces to the following lemma:

Lemma 9.15. The differential forms {dIµ1 , . . . , dIµq
} are linearly inde-

pendent in H1(∂N ; Ad ◦ ρ).

Proof. For each meridian µj , we construct a deformation of the restriction
ρ|∂N that is parametrized by the trace functions Iµj

and leaves all other merid-
ians constant. We proceed on each component, assuming that the deformation
on the other components is trivial.

First we consider the case that µ is a meridian around a singular circle, so
that the corresponding boundary component T 2 ⊂ ∂N is a torus. We wish to
deform ρ|T 2 . We choose λ so that λ and µ generate π1(T 2). The elements ρ(µ)
and ρ(λ) commute and can therefore be simultaneously diagonalized. Thus
ρ(µ) and ρ(λ) can be varied independently inside a circle subgroup of SU(2).
The matrix ρ(µ) has eigenvalues ±e±i α

2 and trace ±2 cos α
2 where α is the cone

angle; cf. (15). Since 0 < α ≤ π there are variations of ρ(µ) with nonzero
derivative of the trace function Iµ.

Now we deal with a surface of genus g ≥ 2 in ∂N . We take a decomposition
of this surface in pairs of pants, so that the curves of the decomposition are
the meridians (each pair of pants P corresponds to a singular vertex and ∂P

consists of meridians). The deformations we require are easily constructed if
we prove that X (P,SU(2)) is locally parametrized by the trace functions of the
components of ∂P . Choose generators a and b of π1(P ), so that a, b and ab

represent the three components of ∂P . Since a and b generate a free group, it
is well known that

(Ia, Ib, Iab) : X (P,SL2(C)) −→ C3

is an isomorphism of algebraic varieties defined over Q; see for instance [GM].
This isomorphism implies that, for each γ ∈ π1(P ), Iγ is a polynomial on
Ia, Ib, Iab with coefficients in Q. Thus

(Ia, Ib, Iab) : X (P,SL2(C)) ∩ RN −→ R3

is also an isomorphism. The irreducibility of ρ|π1(P ) and Lemma 9.1 imply that
(Ia, Ib, Iab) : X (P,SU(2)) → R3 is a local diffeomorphism at the conjugacy class
of the restriction ρ|π1(P ).

This finishes the proof of Theorem 9.4.
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10. The fibration theorem

Throughout this section, O denotes a closed orientable small 3-orbifold
O and X a cone metric on O of constant curvature in [−1, 0) and with cone
angles less than or equal to the orbifold angles of O. Since we assume that
X is a cone metric on O and not only a cone structure, cf. Definition 6.3, the
pairs (|O|,Σ) and (X, ΣX) are homeomorphic, and in particular X is closed.
The main result of this section is:

Fibration theorem (Theorem 6.14). For ω, D0 > 0 there exists δ =
δ(ω, D0) > 0 such that : If X has ω-thick links (cf. Definition 6.13), diam(X) ≥
D0 and if X is δ-thin, then O is Seifert fibred.

10.1. Local Euclidean structures. The local geometry of thin cone mani-
folds is modelled on noncompact Euclidean cone manifolds; cf. [ChG, part 2,
Prop. 3.4] in the case of manifolds.

Recall that by Corollary 4.2 every noncompact Euclidean cone 3-manifold
E3 with cone angles ≤ π has a soul S.

Lemma 10.1. For every ε > 0 and R > 1, there exists δ0 = δ0(ε, R, ω) > 0
such that : If δ < δ0, X is a cone manifold of curvature in [−1, 0) with ω-thick
links, diam(X) ≥ D0 and X is δ-thin, then each x ∈ X has a neighborhood
Ux ⊂ X, and a (1 + ε)-bilipschitz homeomorphism

f : Ux → Nνx
(S)

where Nνx
(S) is the normal cone fiber bundle, of radius νx ∈ (0, 1) depending

on x, of the soul S of a noncompact Euclidean cone 3-manifold. In addition
dimS = 1 or 2, and

max
(
d(f(x), S),diam(S)

)
≤ νx/R.

Proof. Assume that the assertion is false. Then there exist ε > 0, R > 1
and a sequence of cone manifolds Xn with diameter ≥ D0, curvature in [−1, 0)
and ω-thick links such that Xn is 1

n -thin, and there exist points xn ∈ Xn for
which the conclusion of the lemma does not hold.

The fact that Xn is 1
n -thin and has ω-thick links implies that also the

radii of embedded singular standard balls in Xn are ≤ rn → 0. Let λn > 0
be the supremum of all radii r such that Br(xn) is contained in a (smooth or
singular) standard ball. We have that λn → 0. The sequence of rescaled cone
manifolds ( 1

λn
Xn, xn) with base points subconverges to a limit space (E, x∞).

Observe that the balls B1(xn) ⊂ 1
λn

Xn are uniformly thick, as shown by the
following sublemma.

Sublemma 10.2. Assume that the cone 3-manifold X has curvature k ∈
[−κ, κ], cone angles ≤ π and ω-thick links. Suppose that the distance ball



GEOMETRIZATION OF 3-DIMENSIONAL ORBIFOLDS 279

Br(p) ⊂ X is contained in a standard ball. Then Br(p) is δ-thick with δ =
δ(κ, ω, r) > 0.

Proof. We may assume that X is a complete singular cone. The smooth
points in X with injectivity radius < δ are contained in a tubular neighborhood
of radius ρ(ω, δ) around the singularity where limδ→0 ρ(ω, δ) = 0, because X

has ω-thick links. We choose δ < r
2 sufficiently small such that ρ(ω, δ) < r

2 .

It follows with the compactness theorem (Corollary 3.22) that E is a
3-dimensional Euclidean cone manifold.

Since E is not compact, we can apply Theorem 4.1 which gives the clas-
sification of noncompact Euclidean cone 3-manifolds with cone angles ≤ π.
The space E is not a complete cone because balls around x∞ with radii
> 1 are not contained in a standard ball. Hence the soul S of E has di-
mension 1 or 2. Let N ⊂ E be a tubular neighborhood around S with
radius ρ > R · diam(S ∪ {x∞}). We use now that the convergence is bilip-
schitz. For sufficiently large n, there exists a (1 + ε)-bilipschitz embedding
(N, x∞) ↪→ ( 1

λn
Xn, xn), and hence (λnN, x∞) ↪→ (Xn, xn). Hence xn satisfies

the conclusion of the lemma with νxn
= λnρ → 0, a contradiction.

We apply this lemma to each point of X with some constants R > 1, ε > 0
to be specified later. Consider the thickening

Wx := f−1(Nλνx
(S))

of the soul of Ux where 0 < λ < 1
R . We will also view Wx as a suborbifold

of O.
The local models E have 1- or 2-dimensional soul and therefore belong to

the following list by Theorem 4.1:

– When S is 2-dimensional and orientable, then E is isometric to the prod-
uct S×R. The possible Euclidean cone surfaces S are a torus T 2, a pillow
S2(π, π, π, π), i.e. a Euclidean surface homeomorphic to S2 with four cone
points of angle π, and a Euclidean turnover S2(α, β, γ) with cone angles
α, β and γ satisfying α + β + γ = 2π.

– When S is 2-dimensional but nonorientable (possibly with mirror bound-
ary), then E = S̃ × R/ι, where S̃ is the orientable double covering of S

and ι is an involution that preserves the product structure and reverses
the orientation of each factor. Hence E is a twisted line bundle over S.

– When dim(S) = 1, then either S = S1 or S is an interval with mirror
boundary (a quotient of S1). In the former case, E is either a solid torus
or a singular solid torus. In the latter, E is either a solid pillow or a
singular solid pillow.
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Not all of these possibilities can occur: Wx contains no turnover, because
O is small and singular vertices of X have thick links (i.e. the addition of cone
angles of edges adjacent to a singular vertex is > 2π + ω′).

Lemma 10.3. If ε = ε(ω) > 0 is small enough, then the soul S of the local
model for Wx is neither a turnover nor the quotient of a turnover.

Proof. Assume the contrary. By hypothesis, O is closed and small. Hence
every turnover in O bounds a discal suborbifold. Using the bilipschitz homeo-
morphism from Wx to the local model, we see that the sum of cone angles of
the turnover is close to 2π. This contradicts the ω-thickness of links.

By looking at the remaining possibilities, we deduce:

Corollary 10.4. Each Wx admits a Seifert fibration (in the orbifold
sense). In particular, ∂Wx is a union of smooth tori and pillows.

Lemma 10.5. (i) If Wx contains a singular vertex, then O − int(Wx) is
Haken.

(ii) Assume that O is cyclic. If ε = ε(ω) > 0 is small enough, R = R(ω)
is large enough and if Wx ∩ Σ �= ∅, then O − int(Wx) is Haken.

Proof. The main point is to prove that O− int(Wx) is irreducible. For this
we have to show that Wx is not contained in a discal suborbifold. Since the
pairs (O, Wx) and (O, Ūx) are homeomorphic, this amounts to showing that Ux

is not contained in a discal suborbifold, and we can use the metric properties
of Ux.

If Ux contains a singular vertex, this vertex and at least one singular edge
lie in the soul. Hence Ux contains an entire singular edge or loop and therefore
cannot be included in a discal suborbifold. This proves irreducibility in case (i).

Now we proceed with case (ii). Suppose that O is of cyclic type, Ux meets
the singular locus and is contained in the discal suborbifold ∆. Topologically, ∆
is a singular ball with one axis a. Hence Ux cannot contain an entire singular
edge. By looking at the possible local models we see that Ux contains at
least two singular segments of length > νx whose midpoints m1 and m2 have
distance between them < νx

R (1 + ε). By developing the smooth part of X into
model space, and composing the developing map with the projection onto the
axis fixed by the holonomy representation, we find a 1-Lipschitz function on
X whose restriction to a is linear with slope 1. It follows that a is distance
minimizing inside ∆ and hence d∆(m1, m2) > νx, a contradiction. This finishes
the proof of irreducibility in case (ii).

Since O− int(Wx) has a boundary, all that remains to check for the Haken
property is that there are no Euclidean or hyperbolic turnovers. This follows
from the smallness of O in both cases (i) and (ii).
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10.2. Covering by virtually abelian subsets. In this section, we study
general properties of coverings by virtually abelian subsets. The arguments in
this section closely follow [Gr1] and [BoP].

We assign a special role to one of the subsets Wx along which we will cut
O later on. Namely, we choose x0 ∈ X as follows: If O has singular vertices,
we require that Wx0 contain a singular vertex and that its radius νx0 be almost
maximal:

νx0 ≥ 1
1 + ε

sup{νx|Wx ∩ Σ(0) �= ∅}.

If O is cyclic, we make an analogous choice for Wx0 among all Wx that intersect
the singular locus. We denote W0 = Wx0 , O0 = O − int(W0), ν0 = νx0 . In
view of Lemma 10.5, O0 is Haken.

Definition 10.6. We say that a subset S ⊂ O is virtually abelian in O0

if, for each connected component Z of S ∩ O0, the image of π1(Z) → π1(O0)
in the fundamental group of the corresponding component of O0 is virtually
abelian. Moreover, for x ∈ X we define:

va(x) = sup{r > 0 | Br(x) is virtually abelian in O0}

and

r(x) = inf
(

va(x)
8

, 1
)

.

Lemma 10.7. Let x, y ∈ X. If Br(x)(x) ∩ Br(y)(y) �= ∅, then

(a) 3/4 ≤ r(x)/r(y) ≤ 4/3;

(b) Br(x)(x) ⊂ B4r(y)(y).

Proof. We may assume that r(x) ≤ r(y), and moreover r(x) = 1
8va(x) < 1.

By the triangle inequality,

va(x) ≥ va(y) − r(x) − r(y),

so that

8r(x) = va(x) ≥ 8r(y) − r(x) − r(y) ≥ 6r(y).

This shows part (a). Part (b) follows because 2r(x) + r(y) < 4r(y).

Lemma 10.8. For R sufficiently large, W0 ⊂ B r(x0)
9

(x0).

Proof. This follows because va(x0) ≥ 1
1+ενx0(1 − 1

R) and W0 is contained
in the ball of radius 3(1 + ε)νx

R around x0.



282 MICHEL BOILEAU, BERNHARD LEEB, AND JOAN PORTI

We proceed to construct coverings of X. We have already distinguished a
point x0 ∈ W0. Consider sequences {x0, x1, . . . } starting with x0, such that:

the balls B 1
4
r(x0)(x0), B 1

4
r(x1)(x1), . . . are pairwise disjoint.(19)

A sequence satisfying (19) is finite, by Lemma 10.7 and compactness of X.

Lemma 10.9. If the sequence {x0, x1, . . . , xp} is maximal for property
(19), then the balls B 2

3
r(x0)(x0), . . . , B 2

3
r(xp)(xp) cover X.

Proof. Let x ∈ X be an arbitrary point. By maximality, there exists
a point xj such that B 1

4
r(x)(x) ∩ B 1

4
r(xj)(xj) �= ∅. By Lemma 10.7 we have

r(x) ≤ 4
3r(xj) and d(x, xj) ≤ 1

4(r(x)+ r(xj)) ≤ 7
12r(xj). Thus x ∈ B 2

3
r(xj)(xj).

We fix now a sequence x0, x1, . . . , xp maximal for property (19) and con-
sider the covering of X by the open sets

• V0 = Br(x0)(x0) and

• Vi = Br(xi)(xi) − W0 for i = 1, . . . , p.

Lemmas 10.8 and 10.9 imply that the open sets V0, . . . , Vp cover X. We
denote ri := r(xi) and Bi := Br(xi)(xi).

Lemma 10.10. There is a universal bound N on the number of balls Bi

that can intersect a fixed ball Bk.

Proof. For every ball Bi intersecting Bk, Bi ⊂ B2ri+rk
(xk) ⊆ B4rk

(xk). On
the other hand, the points xi are separated from each other, since d(xi1 , xi2) ≥
1
4(ri1 + ri2) ≥ 3

8rk. Thus the number of such xi is bounded above by:

vol(B4rk
(xk))

vol(B 3
16

rk
(xi))

≤ vol(B8rk
(xi))

vol(B 3
16

rk
(xi))

≤ vκ(8rk)
vκ

(
3
16rk

) .

Here vκ(r) denotes the volume of the ball of radius r in the 3-space of constant
curvature κ ∈ [−1, 0), and the last inequality follows from Bishop-Gromov.
Since rk ≤ 1, the ratio vκ(8rk)/ vκ(3

4rk) is bounded.

In particular, the dimension of our covering is universally bounded by N .
We want to decrease the dimension of the covering {V0, . . . , Vp} while keeping
the properties that the covering sets are virtually abelian and only one of them
meets W0.

Using a partition of unity (φi) subordinate to (Vi) one can construct a
map

f =
1∑
i φi

(φ0, . . . , φp) : X → ∆ ⊂ Rp+1,(20)
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where ∆ is the unit simplex. The image of f is contained in the nerve of
the covering K ⊂ ∆, which has dimension ≤ N . We start by controlling the
Lipschitz constant of the map f : X → K.

Lemma 10.11. There exists a constant LN > 0 such that the partition of
unity can be chosen so that the restriction f |Vk

is LN

rk
-Lipschitz.

We first need the following geometric property of our covering:

Sublemma 10.12. Every x ∈ X belongs to an open set Vk such that
d(x, ∂Vk) ≥ rk/3.

Proof. If x ∈ B 2
3
r0

(x0) we choose k = 0. Suppose that x �∈ B 2
3
r0

(x0).
Then there exists k with x ∈ B 2

3
rk

(xk). The assertion is trivial if Bk and B0

are disjoint. We assume therefore also that Bk∩B0 �= ∅. Then by Lemma 10.8:

d(x, W0) ≥ d(x, x0) −
1
9
r0 ≥ 2

3
r0 −

1
9
r0 ≥ 3

4
· 5
9
rk >

1
3
rk.

Hence d(x, ∂Vk) ≥ 1
3rk.

Proof of Lemma 10.11. Let τ : [0, 1] → [0, 1] be an auxiliary 4-Lipschitz
function which vanishes in a neighborhood of 0 and satisfies τ |[ 1

3
,1] ≡ 1. We put

φk := τ( 1
rk

d(∂Vk, ·)) on Vk and extend it trivially to X. Then φk is 4
rk

-Lipschitz.
Let x ∈ Vk. Then at most N + 1 functions φi are nonzero in x, and all of

them have Lipschitz constant ≤ 4
3 · 4

rk
. The claim follows since the functions

(x0, . . . , xN ) �→ xk∑N
i=0 xi

are Lipschitz on {x ∈ RN+1 | xi ≥ 0 ∀i ∧
∑N

i=0 xi ≥ 1}.

We now homotope f into the 3-skeleton K(3) by an inductive procedure
while controlling the local Lipschitz constant.

Lemma 10.13. For d ≥ 4 and L > 0, there exists L′ = L′(d, L) > 0 such
that the following is true:

Suppose that g : X → K(d) is a continuous map which is L
rk

-Lipschitz
on Vk and has the property that the inverse image of the open star of the
vertex vVk

∈ K(0) is contained in Vk. Then g can be homotoped to a map
g̃ : X → K(d−1) with the same properties, L being replaced by L′.

Proof. It suffices to find a constant θ > 0 such that every d-dimensional
simplex σ ⊂ K contains a point z at distance ≥ θ from both ∂σ and the
image of g. To push g into the (d − 1)-skeleton we compose it on σ with
the central projection from z. This will increase the Lipschitz constant by a
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factor bounded in terms of d, and it reduces the inverse images of open stars
of vertices.

If θ does not satisfy the desired property for some d-simplex σ, then
image(g)∩int(σ) must contain a subset of at least C(d)· 1

θd points with pairwise
distances ≥ θ. Let A ⊂ X be a set of inverse images, one for each point. Let
vVk

be a vertex of σ. Then A ⊂ Vk ⊆ Bk. Since f is L
rk

-Lipschitz continu-
ous on Vk, the points of A are separated by distance 1

Lrkθ. Since rk ≤ 1, volume

comparison implies that A contains at most C · (L
θ )3 points. The inequality

C(d) · 1
θd ≤ C · (L

θ )3 yields a positive lower bound θ0(d, L) for θ. Hence any
constant θ < θ0 has the desired property.

Lemma 10.14. For sufficiently small ε > 0 there exists a constant C =
C(ε) > 0 such that

vol(Vi) ≤ C
1
R

r3
i

for all i.

Proof. We first show that W0 does not enter too far into the other sets
Uxi

given in Lemma 10.1.

Sublemma 10.15. There exists a constant c = c(ε) > 0 such that, if
R > 1 is sufficiently large, then d(xi, W0) ≥ c νxi

for all i �= 0.

Proof. By Lemma 10.8, W0 ⊂ B r0
9
(x0) and we obtain:

d(xi, W0) ≥ d(xi, x0) −
1
9
r0 ≥ 1

4
r0 −

1
9
r0 >

1
8
r0 ≥ 1

64(1 + ε)
νx0 .

For the last estimate, we use the fact that va(x0) ≥ 1
1+ενx0 and, since νx0 ≤ 1,

r0 = inf(va(x0)
8 , 1) ≥ 1

8(1+ε)νx0 .
We now assume that W0 intersects Uxi

because otherwise there is nothing
to show. If W0 ⊂ Uxi

then, according to our choice of W0, we can compare the
radii νx0 and νxi

by νx0 ≥ 1
1+ενxi

, and the assertion holds with c < (8(1+ε))−2.
We are left with the case that W0 �⊂ Uxi

but intersects the ball of radius,
say, νxi

4 around xi. Then we can bound the ratio diam(W0)
νxi

from below by:

(1 + ε)
νxi

R
+

νxi

4
+ diam(W0) ≥

νxi

1 + ε
.

By definition of W0 we have diam(W0) ≤ (1 + ε) 2
Rνx0 . Combining these esti-

mates, we obtain a lower bound for d(xi,W0)
νxi

, as claimed.

The sublemma implies that ri ≥ c νxi
. By the Bishop-Gromov inequality,

vol(Vi) ≤ vol
(
Bri

(xi)
)
≤ vol

(
Bc νxi

(xi)
) vκ(ri)
vκ(c νxi

)
≤ vol

(
Bc νxi

(xi)
)
c1

r3
i

ν3
xi
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for some uniform c1 > 0, where vκ(r) denotes the volume of the ball of radius
r in the space of constant curvature κ ∈ [−1, 0). By the geometry of the local
models, it follows that

vol
(
Bc νxi

(xi)
)
≤ vol(Uxi

) ≤ c2
ν3

xi

R

for some c2 > 0. Thus vol(Vi) ≤ c1 c2
r3

i

R .

Now we can further homotope f into the 2-skeleton.

Proposition 10.16. For suitable constants ε > 0 and R > 1, the map f

in (20) is homotopic to a map

f̃ : X → K(2)

with the property that the inverse image of the open star of the vertex vVk
∈ K(0)

is contained in Vk.

Proof. The inverse image under f of the open star of vVk
is contained in Vk.

Using Lemma 10.13 repeatedly, we can homotope f to a map f̂ : X → K(3)

which is locally Lipschitz and satisfies f̂−1(star(vVk
)) ⊂ Vk. More precisely,

there is a universal constant L̂ such that f̂ is L̂
rk

-Lipschitz on Vk.
It suffices to show that no 3-simplex σ ⊂ K is contained in the image of f̂ .

The inverse image f̂−1(int(σ)) lies in the intersection of sets Vj where vVj
runs

through the vertices of σ. Let Vk be one of these. With Lemma 10.14 it follows
that

vol(image(f̂) ∩ σ) ≤ vol(f̂(Vk)) ≤ (
L̂

rk
)3 vol(Vk) ≤ CL̂3 1

R

with uniform constants C and L̂. So, if R is large enough, vol(image(f̂)∩σ) <

vol(σ).

Note that f maps W0 to the vertex vV0 because W0 intersects none of the
sets Vj with j �= 0. The proposition therefore implies the following properties
which will be crucial below.

(i) f̃(W0) = {vV0}.

(ii) For every vertex v of K, f̃−1(star(v)) is virtually abelian in O0.

10.3. Vanishing of simplicial volume. The orbifold O0 is Haken and there-
fore has a JSJ-splitting into Seifert and hyperbolic suborbifolds.

Proposition 10.17. All components in the JSJ splitting of O0 are Seifert.
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Proof. Since the orbifold O0 is Haken, it is very good and there is a finite
covering

p : N → O0

by a manifold [McCMi]. The boundary ∂N is a union of tori. The JSJ splitting
of O0 pulls back to the JSJ splitting of N . We have to show that no hyperbolic
components occur in the JSJ splitting of N .

We may assume that the boundary of N is incompressible because other-
wise N is a solid torus and the assertion holds. We construct a closed manifold
N̄ by Dehn filling on N as follows. Let Y ⊂ N be a component of the JSJ
splitting which meets the boundary, Y ∩∂N �= ∅. If Y is hyperbolic we choose,
using the hyperbolic Dehn filling theorem, the Dehn fillings at the tori of
Y ∩∂N such that the resulting manifold Ȳ remains hyperbolic. If Y is Seifert,
we fill in such a way that Ȳ is Seifert and the components of ∂Y − ∂N remain
incompressible. This can be done because the base of the Seifert fibration of
Y is neither an annulus nor a disc with zero or one cone point. The manifold
N̄ has a JSJ splitting along the same tori as N and with the same number of
hyperbolic (and also Seifert) components.

It suffices to show that N̄ has zero simplicial volume, because then [Gr1,
§3.5] and [Kue] imply that N̄ contains no hyperbolic component in its JSJ
splitting. To this purpose we will apply Gromov’s vanishing theorem; see
[Gr1, §3.1], [Iva].

We compose f̃ with the projection p and extend the resulting map N →
K(2) to a map

h : N̄ → K(2)

by sending the filling solid tori to the vertex vV0 . Note that h is continuous
because f̃(∂O0) = {vV0}. The inverse images under h of open stars of vertices
are virtually abelian as subsets of N̄ , because they are already virtually abelian
in N and the filling tori intersect only one of the subsets. These subsets yield
an open covering of N̄ with covering dimension ≤ 2. By Gromov’s theorem,
the simplicial volume of N̄ vanishes.

Conclusion of the proof of Theorem 6.14. Since O0 is graphed and O
results from O0 by gluing in a Seifert orbifold it follows that O is graphed.
Since O is moreover atoroidal, it must be Seifert.
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[Koj] S. Kojima, Deformations of hyperbolic 3-cone-manifolds, J. Differential Geom. 49
(1998), 469–516.

[Kue] T. Kuessner, Relative simplicial volume, Ph.D. Thesis, Tübingen, 2001.
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