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Stable ergodicity of certain
linear automorphisms of the torus

By Federico Rodriguez Hertz*

Abstract

We find a class of ergodic linear automorphisms of TN that are stably
ergodic. This class includes all non-Anosov ergodic automorphisms when N =
4. As a corollary, we obtain the fact that all ergodic linear automorphism of
TN are stably ergodic when N ≤ 5.

1. Introduction

The purpose of this paper is to give sufficient conditions for a linear au-
tomorphism on the torus to be stably ergodic. By stable ergodicity we mean
that any small perturbation remains ergodic. So, let a linear automorphism
on the torus TN = RN/ZN be generated by a matrix A ∈ SL(N, Z) in the
canonical way. We shall denote also by A the induced linear automorphism.
It is known after Halmos [Ha] that A is ergodic if and only if no root of unity
is an eigenvalue of A. However, it was Anosov [An] who provided the first ex-
amples of stably ergodic linear automorphisms. Indeed, the so-called Anosov
diffeomorphisms (of which hyperbolic linear automorphisms are a particular
case) are both ergodic and C1-open which gives rise to their stable ergodicity.

Circa 1969, Pugh and Shub began studying stable ergodicity of diffeomor-
phisms. They wondered, for instance, whether

A =


0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8


was stably ergodic in T4. More generally, Hirsh, Pugh and Shub posed in [HPS]
the following question:

Question 1. Is every ergodic linear automorphism of TN stably ergodic?

*This work has been partially supported by IMPA/CNPq.
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This paper gives a positive answer to this question under some restrictions.
Let us introduce some notation to be more precise. We shall call A pseudo-
Anosov if it verifies the following conditions: A is ergodic, its characteristic
polynomial pA is irreducible over the integers, and pA cannot be written as
a polynomial in tn for any n ≥ 2. There is a reason for calling such an A a
pseudo-Anosov linear automorphism. Indeed, if h is a homeomorphism of a
surface S, then it induces an action h∗ over the first homology group of S,
H1(S, Z). Since H1(S, Z) � Z2g, where g is the genus of S, we can consider
h∗ as inducing a linear automorphism Ah on T2g in the canonical way. But
if Ah is a pseudo-Anosov linear automorphism on T2g, then h is isotopic to a
pseudo-Anosov homeomorphism of S (see for instance [CB]).

We shall denote by Ec the eigenspace corresponding to the eigenvalues of
modulus one, and call it the center space. We obtain the following results:

Theorem 1.1. All pseudo-Anosov linear automorphisms A : TN → TN

such that dimEc = 2 are C5-stably ergodic if N ≥ 6.

Theorem 1.2. All pseudo-Anosov linear automorphisms A : T4 → T4

are C22-stably ergodic.

Moreover, as we shall have after Corollaries A.7 and A.5 of Appendix A,
all ergodic A acting on T4 are either Anosov or pseudo-Anosov and all ergodic
A acting on T5 are Anosov. Hence, we get as a corollary:

Theorem 1.3. All ergodic linear automorphism of TN are stably ergodic
for N ≤ 5.

In this way, we solve Question 1 about stable ergodicity on TN for N ≤ 5.
We wonder if, in fact, the assumption about differentiability could be reduced.
There are clues indicating this is a reasonable result to expect. One of them
is, for instance, that what we obtain with our hypothesis is far stronger than
ergodicity. On the other hand, we may find analogies with the case of diffeo-
morphisms with irrational rotation number of the circle, where a C2 hypothesis
implies ergodicity with respect to Lebesgue measure [He].

The same remark about the assumption of differentiability holds for N ≥6.
We believe that techniques in this paper could be used to show Theorem 1.1
holds even when dropping the assumption that A is pseudo-Anosov. Moreover,
though maybe requiring tools in the spirit of [RH] and [Vi], Theorem 1.1
might follow equally well from the less restrictive assumption of A|Ec being
an isometry. We point out that Shub and Wilkinson have proved, under this
assumption, that any ergodic linear automorphism is approximated by a stably
ergodic diffeomorphism [SW].
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As a final remark, observe that Theorem 1.1 makes sense only for N

even, since N odd implies all pseudo-Anosov linear automorphisms are Anosov
(see Corollary A.4 of Appendix A). Observe also that there exist matrices in
the hypothesis of Theorem 1.1 for any even N ≥ 6 (see Proposition A.8 of
Appendix A).

The following theorem will be our starting point:

Theorem A ([PS]). If f ∈ Diff2
m(M) is a center bunched, partially hy-

perbolic, dynamically coherent diffeomorphism with the essential accessibility
property then f is ergodic.

What we shall see is that for A in the hypotheses of Theorems 1.1 and
1.2 there exists a Cr neighborhood of diffeomorphisms verifying conditions of
Theorem A. But before getting deeper into the sketch of the proof we shall
briefly explain the meaning of these conditions.

A partially hyperbolic diffeomorphism f is one that admits a Df -invariant
decomposition of the tangent bundle TM = Es

f ⊕ Ec
f ⊕ Eu

f , such that Df |Es
f

and Df−1|Eu
f

are contractions and moreover they contract more sharply than
Df on the center bundle Ec

f . This is a C1 open condition. Now as any
ergodic linear automorphism is partially hyperbolic (see [Pa]), there will be
a C1 neighborhood of A consisting of partially hyperbolic diffeomorphisms.

A partially hyperbolic diffeomorphism f is said to be center bunched if it
satisfies a rather technical condition, which states basically that the behavior
of Df along the center bundle is almost an isometry compared with the rate
of expansion and contraction of the other spaces. Again this is a C1 open
condition and as the center bundle of an ergodic linear automorphism is the
center space, it follows that any ergodic linear automorphism is center bunched
and so are its perturbations.

The dynamic coherence condition deals with the integrability of the center
bundle. It is not a priori an open condition. However, it becomes an open
condition if, for instance, the center bundle is tangent to a C1 foliation ([HPS,
Ths. 7.1, 7.2]). This is the case of the ergodic linear automorphisms, where
the center, if not trivial, is tangent to the foliation by planes parallel to the
center space.

So we are left to check the essential accessibility property, which is, in fact,
the main task in this paper. Let us introduce its definition. Consider a partially
hyperbolic diffeomorphism f and let F̃s, F̃u be the invariant foliations tangent
to Es

f , Eu
f respectively. We shall say that a point ỹ ∈ TN is su-accessible from

x̃ ∈ TN if there exists a path γ : I → TN , from now on an su-path, piecewise
contained in s- or u-leafs. This defines an equivalence relation on TN . We
shall say f verifies the accessibility property if the torus itself is an su-class.
More generally, we say that f has the essential accessibility property if each
su-saturated set in TN has either null or full Lebesgue measure.
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We observe that an ergodic linear automorphism A has the accessibility
property if and only if A is Anosov. So A does not have the accessibility prop-
erty, but it has the essential accessibility property. We mention that the linear
automorphisms we deal with, are the first examples of partially hyperbolic, sta-
bly ergodic systems not having the accessibility property. However, there are
stably ergodic systems that are not partially hyperbolic. We can mention the
example in [BV] where there is a dominated splitting with an expanding invari-
ant bundle; or even the example in [Ta] where there is no hyperbolic invariant
subbundle at all. We must point out that these examples are nonuniformly
hyperbolic and moreover, they display some kind of accessibility.

To prove the essential accessibility property, we first prove that the parti-
tion by accessibility classes is essentially minimal; that is, an open su-saturated
set (satisfying some extra condition) is either the empty set or the whole space.
Then we show that each accessibility class is essentially a manifold and that
the dimension of the accessibility classes depends semicontinuously. Using
this we show that either there is only one accessibility class, and hence f has
the accessibility property, or else the partition into accessibility classes is in
fact a foliation. In this case we use KAM theory to prove that this foliation
is smoothly conjugated to the corresponding foliation for A, the linear auto-
morphism. As the foliation for A is ergodic (see [Pa]), we get the essential
accessibility property. We get also, as a corollary, that in case there is not
accessibility, the perturbation must be topologically conjugated to A.

Acknowledgements. This is my Ph.D. thesis at IMPA under the guidance
of Jacob Palis. I am very grateful to him for many valuable commentaries
and all his encouragement. I am also indebted to Mike Shub for patiently
listening to the first draft of the proof and his helpful remarks. I wish to thank
Enrique Pujals for several useful conversations and Raul Ures for showing me
the dynamics of the pseudo-Anosov homeomorphisms of surfaces. Finally, I
would like to thank the referees and Jana Rodriguez Hertz for helping me to
improve the readability of this paper.

2. Preliminaries

We say that a diffeomorphism f : M → M is partially hyperbolic if there
is a continuous Df -invariant splitting

TM = Eu
f ⊕ Ec

f ⊕ Es
f

in which Es
f and Eu

f are nontrivial bundles and

m(Duf) > ‖Dcf‖≥m(Dcf) > ‖Dsf‖,
m(Duf) > 1 > ‖Dsf‖,
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where Dσf is the restriction of Df to Eσ
f for σ = s, c or u,

‖Dσf‖ = sup
x,v �=0

|Dσ
xf(v)|
|v|

is the norm of this linear operator and m(Dσf) is the conorm of the linear
operator; i.e.,

m(Dσf) = inf
x,v �=0

|Dσ
xf(v)|
|v| .

For a partially hyperbolic diffeomorphism define Ecs
f = Ec

f ⊕ Es
f and Ecu

f =
Ec

f ⊕Eu
f . A partially hyperbolic diffeomorphism is dynamically coherent if the

distributions Ec
f , Ecs

f and Ecu
f are all integrable, with the integral manifolds of

Ecs
f and Ecu

f foliated, respectively, by the integral manifolds of Ec
f and Es

f and
by the integral manifolds of Ec

f and Eu
f . As observed in the introduction, any

C1 perturbation f : TN → TN of an ergodic linear automorphism A is partially
hyperbolic, center bunched and dynamically coherent.

Let us recall some definitions and results: first of all the existence of the
invariant foliations F̃σ in TN tangent to the Eσ

f invariant bundles respectively
for σ = s, u, c, cs, cu. The foliations are a priori only continuous but each leaf
is as differentiable as f , and depends continuously with f . Also, as we shall
work mostly in the universal covering of the torus, i.e. RN , let us denote by
p : RN → TN the covering projection. We call Fσ, σ = s, u, c, cs, cu, the lift
of the corresponding invariant foliations of the torus to RN . Notice that each
leaf of Fσ is not the preimage by p of the corresponding leaf of F̃σ in TN but
only a connected component of this preimage. Call the leaf of Fσ through the
point x, W σ(x) for σ = s, u, c, cs, cu and the leaf of F̃σ through the point x̃,
W̃ σ(x).

We have defined the su-accessibility relation in the introduction, let us
define the same relation in RN , that is, y ∈ RN is su-accessible from x ∈ RN

if there exists a path γ : I → RN , (an su-path), piecewise contained in s- or
u-leafs. Let us call the accessibility class of a point x in RN by C(x). Notice
again that for a point x ∈ RN , C(x) is the lift of the accessibility class of the
corresponding point x̃ = p(x) ∈ TN and not the preimage of this accessibility
class by the covering projection.

Also call F : RN → RN a lift of f assuming without loss of generality that
F (0) = 0.

Call Eσ = Eσ
A, σ = s, u, c, cs, cu, and Esu = Es⊕Eu, the invariants spaces

of A. The same methods of construction of the invariant foliations of [HPS]
allow us to write (see Appendix B, Proposition B.1)

γs : RN × Es → Ecu, γcs : RN × Ecs → Eu,

γu : RN × Eu → Ecs, γcu : RN × Ecu → Es,

γc : RN × Ec → Esu,
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such that if γσ(x, ·) = γσ
x , σ = s, u, c, cs, cu then

W σ(x) = x + graph(γσ
x ) = {x + v + γσ

x (v), v ∈ Eσ},

γσ(x+n, v) = γσ(x, v) and γσ(x, 0) = 0. Put in Es, Eu, Ec some norm making
A|Es and A−1|Eu contractions and A|Ec an isometry. Let us define for v ∈ RN ,
|v| = |vs|+|vu|+|vc| where v = vs+vu+vc with respect to RN = Es⊕Eu⊕Ec.
In the same way define for v ∈ Ecs, |v| = |vs| + |vc| and the same for Ecu. It
is not hard to verify (see Appendix B) the following:

Lemma 2.1. There exist κ = κ(f) such that κ(f) → 0 as f
C1

→ A and
C > 0 that only depends on the C1 size of the neighborhood of A such that for
v ∈ Eσ,

(1) |γσ
x (v)| ≤ C log |v| for σ = s, u, |v| ≥ 2,

(2) |γσ
x (v)| ≤ κ for σ = c, cs, cu for any v,

(3) |(γu
x(v))s| ≤ κ for any v,

(4) |(γs
x(v))u| ≤ κ for any v,

(5) |γσ
x (v)| ≤ κ|v| for σ = s, u, c, cs, cu for any v.

We have another lemma which will be proved in Appendix B

Lemma 2.2. For any x, y ∈ RN ,

(1) #W s(x) ∩ W cu(y) = 1,

(2) #W u(x) ∩ W cs(y) = 1.

Define

πs : RN → W cu(0), πs(x) = W s(x) ∩ W cu(0),

πu : RN → W cs(0) in the same way and

πsu : RN → W c(0), πsu = πs ◦ πu.

Define also jσ
x : Eσ → RN , jσ

x (v) = x + v + γσ
x (v), σ = s, u, c, cs, cu the

parametrizations of the invariant manifolds.
On the other hand we have that if f is Cr and sufficiently C1 near A then

Fs restricted to W cs(x) is a Cr foliation and the same holds for the Fu foliation
(see [PSW] and Appendix B). Moreover, given C > 0, if f is Cr close to A then
the s and u holonomy maps between the center manifolds of points whose
center manifolds are at distance less than C, whenever defined, are uniformly
Cr close to the ones of A. More precisely:
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Lemma 2.3. Given C > 0 and ε > 0 there is a neighborhood of A in the
Cr topology such that for any f in this neighborhood, x and y with |x− y| ≤ C,
x ∈ W cu(y),

πu
xy : W c(x) → W c(y), πu

xy(z) = W u(z) ∩ W c(y)

P u
xy : Ec → Ec, P u

xy = (jc
y)

−1 ◦ πu
xy ◦ jc

x

and if
P u

xy(z) = z + (x − y)c + ϕu
xy(z)

then ‖ϕu
xy‖Cr < ε where the sup-norm in all derivatives of order less than or

equal to r is used. The same holds for the s-holonomy ; that is, given x ∈
W cs(y),

πs
xy : W c(x) → W c(y), πs

xy(z) = W s(z) ∩ W c(y),

P s
xy : Ec → Ec, P s

xy = (jc
y)

−1 ◦ πs
xy ◦ jc

x

and if
P u

xy(z) = z + (x − y)c + ϕs
xy(z)

then ‖ϕs
xy‖Cr < ε.

Proof. See Appendix B.

For n ∈ ZN define

xn = W u(n) ∩ W cs(0), πu
n : W c(n) → W c(xn)

πs
n : W c(xn) → W c(0)

as above and

Tn : Ec → Ec, Tn = (jc
0)

−1 ◦ πs
n ◦ πu

n ◦ Ln ◦ jc
0

where Ln : RN → RN , Ln(x) = x + n. The Tn’s work as holonomies of the
partition by accessibility classes; that is, if you take an su-path from p(0) to
W̃ c(p(0)) formed by two legs, the first unstable and the second stable such
that closing the su-path with an arc inside W̃ c(p(0)) joining the final point of
the su-path to p(0) it is homotopic to the curve generated by −n, then Tn is
just holonomy along this su-path. We make this choice of path, there is not a
canonical choice of path, and any reasonable choice should work.

As a consequence of the preceding lemma we have

Corollary 2.4. Tn is Cr for all n ∈ ZN ; moreover,

Tn(z) = z + nc + ϕn(z)

and for any ε > 0 and R > 0 there is a neighborhood of A in the Cr topology
such that if f is in this neighborhood, then ‖ϕn‖Cr < ε whenever |n| ≤ R.
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In the case the partition by accessibility classes is in fact a foliation, which
means that the Tn’s commute (i.e. Tn◦Tm = Tm◦Tn = Tn+m), we shall use the
linearization theorem of Arnold and Moser (see [He]) to get a smooth conjugacy
of the Tn’s to the corresponding TA

n ’s of the linear automorphism. Then we
shall build the smooth conjugacy of the foliation by accessibility classes of f

to the one of A using this conjugacy.
Define for x ∈ R, |‖ x |‖ = infk∈Z |x + k|. As usual, we say that α ∈ Rc

satisfies a diophantine condition with exponent β if |‖ n · α |‖ ≥ c
|n|c+β for some

c > 0 and for any n ∈ Zc, n 	= 0, where x ·y denotes the standard inner product
on Rc and |n| =

∑c
i=1 |ni|.

For α ∈ Rc, define Rα : Rc → Rc, Rα(x) = x + α. Also, denote Cr
b (Rc, Rc)

by the set of Cr bounded functions.

Theorem 2.5 (KAM ([He, p. 203])). Given β > 0, β /∈ Z, α ∈ Rc

satisfying a diophantine condition with exponent β and θ = c + β, there is
V ⊂ C2θ

b (Rc, Rc) a neighborhood of the 0 function such that given ϕ ∈ V sat-
isfying ϕ(x + n) = ϕ(x) for n ∈ Zc, there exist λ ∈ Rc and η ∈ Cθ

b (Rc, Rc)
satisfying η(x + n) = η(x) for any n ∈ Zc, η(0) = 0 and such that h = id + η,
h is a diffeomorphism and Q = Rα + ϕ then Q = Rλ ◦ h−1 ◦Rα ◦ h. Moreover
given ε > 0 there is δ > 0 such that if the C2θ size of ϕ is less than δ then the
Cθ size of η and the modulus of λ is less than ε.

Let us list some properties of A.

Lemma 2.6. For any n ∈ ZN , n 	= 0, and l ∈ Z, l 	= 0, S ={
∑N−1

i=0 kiA
iln :

ki ∈ Z for i = 0, . . . N − 1} is a subgroup of maximal rank.

Proof. The proof follows easily from the fact that the characteristic poly-
nomial of Al is irreducible for any nonzero l. See Appendix A, Lemma A.9 for
more details.

Moreover, we may suppose without loss of generality that A satisfies the
following:

(1) Aei = ei+1 for i = 1, . . . , N − 1,

(2) AeN = −
∑N−1

i=0 piei+1, PA(z) =
∑N

i=0 piz
i the characteristic polynomial

of A.

Indeed, taking n ∈ ZN , n 	= 0, defining L : RN → RN by L(ei) = Ai−1n for
i = 1, . . . N and taking B = L−1AL we easily see that B induces a linear au-
tomorphism and satisfies the properties listed above. Besides, given f isotopic
to A, we have its lift F = A + ϕ, where ϕ is ZN -periodic and we may work
with G = B+ ϕ̂ where ϕ̂ = L−1ϕ◦L is ZN -periodic, and ergodicity of G would
imply ergodicity of f as is easily seen.
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In this paper, C stands for a generic constant that only depends on the
size of the neighborhood of A.

3. Holonomies

In this section we shall prove some properties about the holonomies needed
in the following sections. We recommend that the reader omit this section in
a first reading.

Proposition 3.1. There exists C > 0 only depending on the C1 size of
the neighborhood of A and β = β(f) such that β(f) → 0 as f

C1

→ A and such
that, given x, y ∈ RN , x ∈ W s(y), the following properties are satisfied for
πs : W c(x) → W c(y),

(1) If ds(x, y) ≤ 2 then Lip(πs) ≤ C.

(2) If ds(x, y) ≥ 1 then Lip(πs) ≤ C
(
ds(x, y)

)β
.

And the same properties hold if x ∈ W u(y) when u and s are interchanged.

Proof. The proof of (1) is a consequence of Lemma 2.3. Let us prove (2).
Take 0 < λ < 1 such that |DF |Es | < λ and 0 < γ = γ(f) such that exp(−γ) <

|DF |Ec | < exp(γ) and we may suppose that γ(f) → 0 as f
C1

→ A. Let us take
n ≥ 0 the first integer that satisfies ds(Fn(y), Fn(x)) < 1. Then we have that
given w, z ∈ W c(x), dc(Fn(w), Fn(z)) ≤ exp(nγ)dc(w, z). Now, using (1), we
have that

dc
(
πs(Fn(w)), πs(Fn(z))

)
≤ Cdc(Fn(w), Fn(z)),

and so

dc(πs(w), πs(z)) = dc
(
F−n(πs(Fn(w))), F−n(πs(Fn(z)))

)
≤ exp(nγ)dc(πs(Fn(w)), πs(Fn(z)))

≤C exp(nγ)dc(Fn(w), Fn(z))

≤C exp(2nγ)dc(w, z).

Let us estimate n. By the definition of n we get that n ≤ log ds(y,x)
− log λ + 1 and so,

calling β = − 2γ
log λ we get

dc(πs(w), πs(z)) ≤ C exp(2nγ)dc(w, z) ≤ C exp(γ)
(
ds(x, y)

)β
dc(z, w)

which is the desired claim.

Corollary 3.2. There exists C > 0 that only depends on the neighbor-
hood of A such that for any n ∈ ZN

(1) If |ns|, |nu| ≥ 2 then Lip(Tn) ≤ C(|ns||nu|)β,
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(2) If |ns| ≤ 2 and |nu| ≥ 2 then Lip(Tn) ≤ C|nu|β,

(3) If |nu| ≤ 2 and |ns| ≥ 2 then Lip(Tn) ≤ C|ns|β,

(4) If |ns|, |nu| ≤ 2 then Lip(Tn) ≤ C,

where β is as in Proposition 3.1.

Proof. We prove the first affirmation, the others follow by the same
method. We have xn = W u(n) ∩ W cs(0) and yn = W s(xn) ∩ W c(0). So,
using Proposition 3.1, we only have to estimate du(n, xn) and ds(xn, yn). Now
we have that xn = n+vu+γu

0 (vu) = vcs+γcs
0 (vcs) and yn = xn+vs+γs

xn
(vs) =

vc+γc
0(v

c). So, by Lemma 2.1, |(xn−n)u| ≤ |nu|+κ and |(xn−yn)s| ≤ |ns|+2κ.
The corollary follows from the fact that 1

C |(x − y)σ| ≤ dσ(x, y) ≤ C|(x − y)σ|
for σ = s, u, c, cs, cu and some constant C > 0 that only depends on the C1

size of the neighborhood of A.

For L > 0 and x ∈ RN define W σ
L (x) = jσ

x (Bσ
L(0)) for σ = s, u, c, cs, cu

where jσ
x : Eσ → RN , jσ

x (v) = x + v + γσ
x (v), σ = s, u, c, cs, cu are the

parametrizations of the invariant manifolds. Moreover, W σ
L (A) =

⋃
x∈A W σ

L (x).
Given S ⊂ ZN , a subgroup of maximal rank, let us define TN

S = RN/S the
torus generated by the lattice S. Set ν(S) = vol(TN

S ).

Lemma 3.3. There is b > 0 depending only on the size of the neighborhood
of A such that if L(ε) = ε−b then, given x ∈ RN and S ⊂ ZN a subgroup of
maximal rank, for ε > 0 small enough,

W s
ε (W u

L(ε)(W
c
ε (x))) ∩

(
W s

ε (W u
L(ε)(W

c
ε (x))) + n

)
	= ∅

for some n ∈ S, n 	= 0.

Proof. We only have to prove that there is some set V ⊂ W s
ε (W u

L(ε)(W
c
ε (x)))

such that vol(V ) > ν(S). Call W = W s
ε (W u

L(ε)(W
c
ε (x))). We have the follow-

ing:

Claim 1. There is a constant C > 0 depending only on the C1 distance
of f to A such that for any z ∈ W u

L(ε)
2

(x), with δ = CL(ε)−βε, where β is as

in Proposition 3.1, Bδ(z) ⊂ W .

Let us leave the proof of the claim until the end, and show how the lemma
follows from this claim. Using the fact that W u

L(ε)
2

(x) = ju
x(Bu

L(ε)
2

(x)) we see

easily that there are points z1, . . . , zn ∈ W u
L(ε)

2

(x), n ≥ C
(
L(ε)δ−1

)u, where C

is some constant that only depends on the C1 size of the neighborhood of A

and dimEu = u such that W u
δ (zi) ∩ W u

δ (zj) = ∅ if i 	= j. Now we claim that
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B δ

3
(zi)∩B δ

3
(zj) = ∅ if i 	= j. To prove this, we have zi = zj + au + γu

zj
(au) and

hence
|j−1

zj
(zi) − j−1

zj
(zj)| = |au| = |(zj − zi)u| ≤ |zi − zj ;

so if the balls in RN intersect, then W u
δ (zi) and W u

δ (zj) must intersect contra-
dicting the choice of the zi. Call V =

⋃n
i=1 B δ

3
(zi) ⊂ W . Let us estimate the

volume of V . Call γ = b(u− β(N − u))− (N − u). If β is small enough which
means if f is close enough to A and if b is big enough then we have that γ > 0,
and for instance b = N

u , β ≤ u2

2N(N−u) so that γ ≥ u
2 . Thus,

vol(V ) =
n∑

i=1

vol(B δ

3
(zi)) ≥ CnδN ≥ C

(
L(ε)δ−1

)u
δN = Cε−γ .

If ε is small enough, as γ > 0, we get that vol(V ) > ν(S). So we are left with
the proof of the claim. Let us prove that for any z ∈ W u

L(ε)
2

(x), and for any

y ∈ W c
ε (x), W u

2L(ε)
3

(y) ∩ W c(z) 	= ∅. Call w = W u(y) ∩ W c(z) 	= ∅ and let us

show that w ∈ W u
2L(ε)

3

(y). We have that

w = y + bu + γu
y (bu) = z + hc + γc

z(h
c),

z = x + au + γu
x(au), y = x + rc + γc

x(rc),

and we have to estimate |bu|. Now,

bu = zu − yu + (γc
z(h

c))u = au − (γc
x(rc))u + (γc

z(h
c))u

and so |bu| ≤ |au| + 2κ ≤ 2L(ε)
3 if ε is small enough which gives us the inter-

section. Call πu
z : W c(z) → W c(x) the unstable holonomy map. By Propo-

sition 3.1 we have that Lip(πu
z ) ≤ CL(ε)β and so calling δ1 = 1

C L(ε)−βε, we
get πu

z (W c
δ1

(z)) ⊂ W c
ε (x) and hence that W c

δ1
(z) ⊂ W u

2L(ε)
3

(W c
ε (x)). Take now

y such that |y − z| ≤ cδ1 for some positive c to be fixed, and define

w = W s(y) ∩ W cu(z), r′ = W u(w) ∩ W c(x), r = W u(w) ∩ W c(z).

So we want to prove that y ∈ W s
ε (w), w ∈ W u

L(ε)(r
′) and r′ ∈ W c

ε (x). To this
end, we use r and so, we prove that r ∈ W c

δ1
(z) and that du(w, r) is small

enough so that w ∈ W u
L(ε)(r

′). Now,

y = w + as + γs
w(as), w = z + bcu + γcu

z (bcu)

and so

as = ys − zs − γcu
z (bcu),

bcu = (w − z)cu = ycu − zcu − γs
w(as)

and by Lemma 2.1

|as| ≤ |ys − zs| + κ|bcu|,
|bcu| ≤ |ycu − zcu| + κ|as|,
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which gives us

|as| + |bcu| ≤ 1
1 − κ

|y − z|

and hence

|as| ≤ c1δ1,

|bcu| ≤ c1δ1

where c1 = c
1−κ . Thus, we get y ∈ W s

c1δ1
(w) ⊂ W s

ε (w) if ε is small enough. On
the other hand,

r = z + gc + γc
z(g

c) = w + hu + γu
w(hu)

so that

gc = wc − zc + (γu
w(hu))c = (bcu)c + (γu

w(hu))c,

hu = zu − wu + (γc
z(g

c))u = (bcu)u + (γc
z(g

c))u.

Hence

|gc| ≤ c1δ1 + κ|hu|,
|hu| ≤ c1δ1 + κ|gc|,

which gives us

|gc| + |hu| ≤ c1δ1

1 − κ
or

|gc| ≤ c

(1 − κ)2
δ1,

|hu| ≤ c

(1 − κ)2
δ1.

So, taking c sufficiently small, we get r ∈ W c
δ1

(z) and r ∈ W u
δ1

(w) ⊂ W u
ε (w).

Finally, as r ∈ W c
δ1

(z), we have r′ ∈ W c
ε (x) and

r = r′ + gu + γu
r′(gu).

Now, |gu| ≤ 2L(ε)
3 and hence, as

w = r + tu + γu
r (tu) = r′ + lu + γu

r′(lu),

we have lu = tu + gu and tu = −hu, and so

|lu| ≤ ε +
2L(ε)

3
< L(ε)

if ε is small enough. Thus, w ∈ W u
L(ε)(r

′).

Corollary 3.4. Fix ε > 0 and n as in Lemma 3.3; then |nu| ≤ 3L(ε),
|ns| ≤ 4κ and |nc| ≤ C|nsu|.

Proof. It follows in the same spirit as the proof of Corollary 3.2.
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We have another lemma.

Lemma 3.5. There is C > 0 that only depends on the C1 size of the
neighborhood of A such that given x ∈ Ec, n ∈ ZN ,

(1) |Tn(x) − (x + nc)| ≤ C log(|ns||nu|) + C, if |ns|, |nu| ≥ 3,

(2) |Tn(x) − (x + nc)| ≤ C log |nu| + C, if |nu| ≥ 3 and |ns| ≤ 3,

(3) |Tn(x) − (x + nc)| ≤ C log |ns| + C, if |ns| ≥ 3 and |nu| ≤ 3,

(4) |Tn(x) − (x + nc)| ≤ C, if |nu|, |ns| ≤ 3.

Proof. We prove the first one; the other follow in the same way. Fix n ∈
Zn, suppose |ns|, |nu| ≥ 3; take xc ∈ Ec and x = jc

0(x
c), y = W u(x+n)∩W cs(0)

and z = W s(y) ∩ W cu(0). Then we have that Tn(x) = zc. Now

z − (x + n) = y − (x + n) + vs + γs
y(v

s) = −(x + n) + wcu + γcu
0 (wcu),

y − (x + n) = au + γu
x(au) = −(x + n) + bcs + γcs

0 (bcs).

Hence

(z − (x + n))c = (y − (x + n))c + (γs
y(v

s))c,

(y − (x + n))c = (γu
x(au))c,

au =−xu − nu + γcs
0 (bcs),

vs =−ys + γcu
0 (wcu),

ys =xs + ns + (γu
x(au))s.

As x ∈ W c(0) we have that |xs|, |xu| ≤ κ. So by Lemma 2.1 of Section 2,

|(z − (x + n))c| ≤ |(y − (x + n))c| + |γs
y(v

s)|
≤C log |au| + C log |vs|
≤C log(|nu| + 2κ) + C log(κ + |ys|)
≤C log(|nu| + 2κ) + C log(|ns| + 3κ)

from which the result follows.

4. A minimal property of the system

Theorem 4.1. Let U be a nonempty open connected su-saturated subset
of RN and suppose there is S ⊂ ZN a subgroup of ZN of maximal rank such
that U + S = U . Then U = RN .

For the proof of the theorem we need the following proposition. In this
proposition, πq(U) are the qth homotopy groups of U .
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Proposition 4.2. Let U be a nonempty, open, connected subset of RN

and suppose U satisfies the following properties:

a) πq(U) = {0} for any q ≥ 1,

b) U + S = U for some subgroup S ⊂ ZN of maximal rank,

then U = RN .

Proof. Without loss of generality we may suppose S = ZN . Call Ũ = p(U)
where p : RN → TN is the covering projection. Now, we have that p : U → Ũ ,
the restriction of p to U , is a covering projection too. So, as πq(U) = {0} for any
q ≥ 1, we get, by Corollary 11 in Chapter 7, Section 2 of [Sp], that πq(Ũ) = {0}
for q ≥ 2. Moreover, it is not hard to see that i# : π1(Ũ) → π1(TN ) = ZN is
an isomorphism where i# is the action of the inclusion map i : Ũ → TN in the
homotopy groups. Because Ũ is open and connected and πq(TN ) = {0} for
q ≥ 2 we get that i : Ũ → TN is a weak homotopy equivalence as defined after
Corollary 18 in Chapter 7, Section 6 of [Sp]. As TN is a CW complex, using
Corollary 23 in Chapter 7, Section 6 of [Sp] we get that i# : [TN ; Ũ ] → [TN ; TN ]
is an isomorphism, where [P ;X] is the set of homotopy classes of maps from P

to X. Hence, there is g : TN → Ũ such that i◦g is homotopic to id : TN → TN .
Now, by degree theory, this implies that i ◦ g must be surjective and hence
Ũ = TN which is equivalent to U = RN .

So, we only have to prove property a) of the proposition. To this end, we
first prove that πq(U) = {0} for q ≥ 2 and then that π1(U) = {0}. This last
property is the hard one.

Lemma 4.3. πs : RN → W cu(0), πu : RN → W cs(0) and πsu : RN →
W c(0) are fibrations (or Hurewicz fiber spaces) as defined at the beginning of
Section 2 in Chapter 2 of [Sp], and so they are weak fibrations (or Serre fiber
spaces) as defined after Corollary 4 in Chapter 7, Section 2 of [Sp].

Proof. Once we prove the lemma for πs and πu, the case of πsu follows
from Theorem 6 in Chapter 2, Section 2 of [Sp]. Let us prove then that πs is a
fibration. Take X a topological space, g′ : X → RN and G : X × I → W cu(0)
such that G(x, 0) = πs ◦ g′(x) for x ∈ X. We have to prove that there exists
G′ : X × I → RN such that G′(x, 0) = g′(x) for x ∈ X and πs ◦G′ = G. Define
G′(x, t) = W s(G(x, t)) ∩ W cu(g′(x)). It is not hard to see that this G′ makes
the desired properties. The case of πu is completely analogous.

Lemma 4.4. Given any open and connected s-saturated set E, πq(E) =
πq(E ∩ W cu(0)) for any q ≥ 1. The same property holds if E is u-saturated
when W cu is replaced by W cs. If E is su-saturated, then πq(E) = πq(E∩W c(0))
for any q ≥ 1.
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Proof. Since E is s-saturated, it is not hard to see that πs|E is a weak
fibration and πs(E) = E ∩ W cu(0). So, take x ∈ E ∩ W cu(0). As (πs)−1(x) =
W s(x) is contractible since it is homeomorphic to Rs we have by Theorem 10
of Chapter 7, Section 2 of [Sp], the following sequence

0 = πq((πs)−1(x))
i#→ πq(E)

πs
#→ πq(E ∩ W cu(0)) ∂→ πq−1((πs)−1(x)) = 0

which is exact and hence we have the desired result. The proof when E is
u-saturated is analogous and the case E is su-saturated follows by application
of the same method to πu|E∩W cu(0).

Corollary 4.5. Any U as in Theorem 4.1 satisfies πq(U) = {0} for
q ≥ 2.

Proof. By the preceding lemma πq(U) = πq(U ∩ W c(0)) for any q ≥ 1.
Because W c(0) is homeomorphic to R2 we have πq(U) = πq(U ∩W c(0)) = {0}
for any q ≥ 2.

Now, we want to prove that D = U ∩ W c(0) is simply connected which
is equivalent to proving that the complement of D in the Riemann sphere is
connected (regarding W c(0) as R2), or what is equivalent, that any connected
component of the complement of D is not bounded.

Recall the definition of Tn : Ec → Ec,

Tn = (jc
0)

−1 ◦ πs
n ◦ πu

n ◦ Ln ◦ jc
0

where Ln : RN → RN , Ln(x) = x + n, for n ∈ ZN , xn = W u(n) ∩ W cs(0)
πu

n = πu|W c(n), πs
n = πs|W c(xn) and jc

0 : Ec → RN , jc
0(v) = v + γc

0(v) is the
parametrization of the center manifold of 0, W c(0).

Let us call Dc = (jc
0)

−1(D) and recall that C(y) is the accessibility class
of y. Let us state the following proposition which solves our problem.

Proposition 4.6. For any x ∈ Ec and δ > 0 there are n ∈ S, n 	= 0,
k ∈ Z, k > 0 and ηi : [0, 1] → Ec, i = 0, . . . k − 1 such that ηi([0, 1]) ⊂
j−1
0

(
(C(j0(x))+S)∩W c(0)

)
, ηi(0) ∈ Bc

δ(Tin(x)) and ηi(1) = T(i+1)n(x). More-
over |Tkn(x) − x| → ∞ as δ → 0.

Before the proof of this proposition, let us show how it solves our problem.

Corollary 4.7. Any connected component of the complement of D is
not bounded.

Proof. Take B ⊂ W c(0) a connected component of the complement of
D and call Bc = j−1

0 (B). Take x ∈ Bc and suppose by contradiction that B

is bounded. Let R > 0 be such that Bc ⊂ Bc
R(x), the ball of center x and

radius R. Using the preceding proposition we have that for any δ > 0 there are
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n ∈ S, n 	= 0 and k ∈ Z, k > 0 such that Cδ =
⋃k

i=0 Bc
δ(Tin(x)) ∪

⋃k−1
i=0 ηi[0, 1]

is connected and |Tkn(x) − x| → ∞ as δ → 0. So, for δ small enough we get
that Ĉδ, the connected component of Cδ ∩ Bc

2R(x) that contains x, satisfies
Ĉδ ∩ Sc

2R(x) 	= ∅, where Sc
2R(x) is the boundary of Bc

2R(x). Then, looking at
the Hausdorff space of the compact subsets of Bc

2R(x) we see that there is a
subsequence δi → 0 such that Ĉδi

→ Ĉ in the Hausdorff topology. Because of
the properties of the Hausdorff topology, we get that Ĉ is connected, x ∈ Ĉ,
Ĉ ⊂ (Ec � Dc), and so Ĉ ⊂ Bc, and Ĉ ∩ Sc

2R(x) 	= ∅, thus contradicting the
boundedness of B.

Let us begin the proof of Proposition 4.6.

Lemma 4.8. There is a constant c > 0 that only depends on A such that
r = N−1

2 , |nc| ≥ c
|n|r for any n ∈ ZN , n 	= 0.

Proof. See Lemma 3 of [Ka] or Lemma A.10 of Appendix A.

Proof of Proposition 4.6. Take δ > 0 and define ε > 0 by δ = εγ , γ =
1−β(s+4b), where β is as in Proposition 3.1, b is as in Lemma 3.3, s = rb+1
and r is as in Lemma 4.8. Moreover, we may suppose, if f is sufficiently close to
A that γ > 0. Take n ∈ S as in Lemma 3.3 for this ε. Also, take ε−s

2 ≤ k ≤ ε−s.
Thus, by (2) of Lemma 3.5 we have that

|Tkn(x) − x| ≥ |knc| − C log |knu| − C

≥ k
C

|n|r − bC log 3Cε−1 − C log k − C

≥ ε−s C

|nsu|r − bC log ε−1 − sC log ε−1 − C − bC log 3C

≥ ε−sCεrb − (b + s)C log ε−1 − C − bC log 3C

= Cε−1 − (b + s)C log ε−1 − C.

Since εγ = δ, we have |Tkn(x) − x| → ∞ as δ → 0. Let us prove now the
other part of the lemma. By Lemma 3.3, we have

W s
ε

(
W u

L(ε)(W
c
ε (j0(x)))

)
∩ W s

ε

(
W u

L(ε)(W
c
ε (j0(x) + n))

)
	= ∅.

Take z in this intersection. Then there are points y, w, y′, w′ such that

z ∈ W s
ε (y), z ∈ W s

ε (y′), y ∈ W u
L(ε)(w), y′ ∈ W u

L(ε)(w
′ + n)

and j−1
0 (w) ∈ Bc

ε(x), j−1
0 (w′) ∈ Bc

ε(x). Now, let us define

S : W c(n) → W c(0), S = πu
2 ◦ πs ◦ πu

1 ,

where

πu
1 : W c(n) → W c(y′), πs : W c(y′) → W c(y), πu

2 : W c(y) → W c(0)
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are the respective holonomies. By hypothesis we have that S(w′ + n) = w.
Moreover, using Proposition 3.1, we have Lip(S) ≤ CL(ε)2β . Furthermore,

S(j0(x) + n) ∈ C(j0(x) + n) ∩ W c(0)

and hence

j0 ◦ Tin ◦ j−1
0 ◦ S(j0(x) + n)) ∈ C(j0(x) + (i + 1)n) ∩ W c(0).

Now, take 0 ≤ i ≤ k − 1 and call x̂i+1 = Tin ◦ j−1
0 (S(j0(x) + n)). Then

dc(x̂i+1, Tin(x))≤ dc
(
x̂i+1, Tin ◦ j−1

0 S(w′ + n)
)

+dc(Tin(j−1
0 (w)), Tin(x))

≤Lip(Tin)Lip(j−1
0 )Lip(S)Lip(j0)dc(j−1

0 (w′), x)

+Lip(Tin)dc(j−1
0 (w), x)

≤Lip(Tin)
(
CLip(S) + 1

)
ε.

Now using Corollary 3.2 we get

dc(x̂i+1, Tin(x)) ≤ (CkL(ε))β
(
CL(ε)2β + 1

)
ε ≤ Cε1−β(s+3b).

If ε is small enough, we obtain

dc(x̂i+1, Tin(x)) < ε1−β(s+4b) = εγ = δ.

Finally, as we shall see in the next section, Lemma 5.5, there is a path
η̂i : [0, 1] → W c(0), η̂i([0, 1]) ⊂ C(j0(x) + (i + 1)n), such that η̂i(0) = j0(x̂i+1)
and η̂i(1) = j0

(
T(i+1)n(x)

)
. So, taking ηi = j−1

0 ◦ η̂i we get the desired result.

As a corollary of the proof of Lemma 3.3 we have the following:

Corollary 4.9. Any su-saturated open subset of RN has infinite volume.

Corollary 4.10. For any open su-saturated U ⊂ RN and S ⊂ ZN sub-
group of maximal rank, there is 0 	= n ∈ S such that U ∩ U + n 	= ∅.

Proof. pS : RN → TN
S , the covering projection to the torus generated

by the lattice S, cannot be injective when restricted to U because if it were
injective we would get volTN

S
(pS(U)) = volRN (U) = ∞.

Corollary 4.11. Any open or closed F -invariant su-saturated U ⊂ RN

satisfying U + ZN = U is either empty or the whole RN .

Proof. We prove the case U is open; the case U is closed follows from
work with the complement. Take V ⊂ U a connected component of U . As
V is open and su-saturated we have by Corollary 4.10 that there is n ∈ ZN ,
n 	= 0, such that V +n∩V 	= ∅ and so V = V +n since V +n ⊂ U . Moreover,
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as the nonwandering set of f is TN we have that there are k ∈ Z, k 	= 0 and
l ∈ ZN such that [F k(V ) + l] ∩ V 	= ∅ and hence F k(V ) + l = V because
F k(V ) + l ⊂ U . From this, and the properties of A, it is not hard to see that
there is a subgroup S ⊂ ZN of maximal rank satisfying V + S = V . In fact,
S = {

∑N−1
i=0 kiA

ikn : ki ∈ Z for i = 0, . . . N − 1}. So, using Theorem 4.1 we
get the corollary since V is open, connected, su-saturated and V + S = V .

Corollary 4.12. If C(0) is open then C(0) = RN . And hence f has the
accessibility property.

Proof. By Corollary 4.10 there is n ∈ ZN such that C(0) + n ∩ C(0) 	= ∅
and so C(0)+n = C(0). Because F (C(0)) = C(0) there is a subgroup S ⊂ ZN

of maximal rank satisfying C(0) + S = C(0). Hence, as C(0) is connected,
using Theorem 4.1 we get that C(0) = RN .

5. Structure of the accessibility classes

In this section we shall prove that either C(0) is open, and hence the whole
RN by Corollary 4.12, or #

(
C(x) ∩ W c(0)

)
= 1 for any x ∈ RN .

Theorem 5.1. Either C(0) = RN and hence f has the accessibility prop-
erty, or #

(
C(x) ∩ W c(0)

)
= 1 for any x ∈ RN .

The proof of the theorem essentially splits into two propositions:

Proposition 5.2. For any x ∈ RN one of the followings holds:

(1) C(x) is open,

(2) C(x) ∩ W c(0) is the injective image of either S1, (−1, 1), [0, 1] or [0, 1),

(3) #
(
C(x) ∩ W c(0)

)
= 1.

Moreover, denoting M the set of points satisfying property 3, M is closed,
su-saturated, F -invariant and M + ZN = M . Hence by Corollary 4.11 M is
either empty or RN .

Let us mention that in case (2) more is true; that is, C(x) ∩ W c(0) is a
topological one-dimensional manifold without boundary; i.e., it is homeomor-
phic to either S1 or (−1, 1). Moreover, by the differentiability of the holonomies
between center manifolds, it can be proved that they are in fact differentiable
manifolds. But we only need the way we state it. Indeed, we have the following
proposition:

Proposition 5.3. In the above proposition, case (2) cannot hold for 0;
i.e., either
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(1) C(0) is open;

(2) #
(
C(0) ∩ W c(0)

)
= 1.

Before the proof of the propositions, let us prove the theorem:

Proof of Theorem 5.1. We must prove that either C(0) = RN or M = RN .
We know that M is either empty or the whole RN . Let us suppose that
M 	= RN , hence M = ∅ and so, 0 must satisfy either (1) or (2) of Proposi-
tion 5.2. But by Proposition 5.3 we have that 0 must satisfy (1) and hence
C(0) is open and by Corollary 4.12 C(0) = RN .

Lemma 5.4. For any x ∈ RN , C(x) ∩ W c(0) is open if and only if C(x)
is open.

Proof. If C(x) is open then C(x)∩W c(0) is open by definition of relative
topology. If C(0) ∩ W c(x) is open, then (πsu)−1(C(x) ∩ W c(0)) = C(x) and
hence C(x) is open.

Lemma 5.5. Given x ∈ W c(0) and y ∈ C(x) ∩W c(0) there is ε0 > 0 and
γ : W c

ε0
(x) × I → W c(0) continuous such that γ(x, 0) = x, γ(x, 1) = y and

γ(z, I) ⊂ C(z) for any z ∈ W c
ε0

(x) where I = [0, 1].

Proof. We first build a path in W c(0) from x to y. Since y ∈ C(x), there
is an su path η : I → RN such that η(0) = x and η(1) = y. Take πsu ◦ η

which gives the desired path. For the construction of γ as in the lemma, just
remember that the stable and unstable foliations are continuous, so that if we
take a point close enough to x, we can build a path close to η and then project
it to W c(0) as we did with η.

Lemma 5.6. If int(C(x) ∩ W c(0)) 	= ∅ then C(x) ∩ W c(0) is open.

Proof. Let z and ε > 0 be such that W c
ε (z) ⊂ C(x) ∩ W c(0) and take y ∈

C(x). Then there is ε0 > 0 and γ : W c
ε0

(z) × I → W c(0) continuous such that
γ(y, 0) = y, γ(y, 1) = z and γ(w, I) ⊂ C(w) for any w ∈ W c

ε0
(y). As γ(·, 1) = γ̃

is continuous, γ̃−1(W c
ε (z)) is open and y ∈ γ̃−1(W c

ε (z)) ⊂ C(x) ∩ W c(0). So
C(x) ∩ W c(0) is open.

By an arc we mean a homeomorphic image of [0, 1]. In what follows let
us identify W c(0) with Ec for the sake of simplicity.

Lemma 5.7. Suppose C(x) ∩ W c(0) is not open and let ηi : I → C(x) ∩
W c(0) be injective i = 1, 2. Then η1(I) ∩ η2(I) = ∅ or η1(I) ∪ η2(I) is either
an arc or a circle.
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Proof. Let x and ηi, i = 1, 2, be as in the lemma. Suppose that η1(I) ∩
η2(I) 	= ∅ but that the conclusion of the lemma does not hold. We claim the
following:

Claim 2. There are closed subintervals I1, I2 ⊂ I, and points a ∈ I1,
b ∈ I2 such that η1(I1) ∩ η2(I2) = {η1(a)} = {η2(b)} and either a ∈ ∂I1 and
b ∈ int(I2) or a ∈ int(I1) and b ∈ ∂I2.

We leave the proof of the claim until the end. Without loss of generality
we may suppose that a ∈ ∂I1 and b ∈ int(I2). Moreover, let us make a
reparametrization that sends I1 to [0, a] and I2 to [0, 1]. We use the same
notation η1 and η2 for these reparametrizations. Take ε0 and γ : Bc

ε0
(η1(a)) ×

I → W c(0) as in Lemma 5.5, such that γ(η1(a), 1) = η2(0). Given ε1 > 0 small
enough we can define

b−(ε1) = sup{s < b such that η2(s) /∈ Bc
ε1

(η1(a))}

and
b+(ε1) = inf{s > b such that η2(s) /∈ Bc

ε1
(η1(a))}.

Furthermore, define

a−(ε1) = sup{s < a such that η1(s) /∈ Bc
ε1

(η1(a))}.

Bc
ε1

(η1(a))

η1(a−(ε1), a]

(
η2 b−(ε1), b+(ε1)

 

U1

U2

a , tγ(η1( ) [0, ])

Bc
ε(γ(η1(a), t))

Bc
δ(η1(a))

Notice that

U = Bc
ε1

(η1(a)) �
(
η1(a−(ε1), a] ∪ η2

(
b−(ε1), b+(ε1)

))
has exactly three connected components. Suppose now that there is t > 0
such that γ(η1(a), [0, t]) ⊂ Bc

ε1
(η1(a)) and γ(η1(a), t) ∈ U1 for U1 a connected
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component of U . Take ε > 0 such that

Bc
ε(γ(η1(a), [0, t])) ⊂ Bc

ε1
(η1(a)), Bc

ε(γ(η1(a), t)) ⊂ U1

and take δ > 0 such that if z ∈ Bc
δ(η1(a)) then γ(z, s) ∈ Bc

ε(γ(η1(a), s)) for
s ∈ [0, t]. Take now U2 another connected component of U ; then for any
z ∈ U2 ∩ Bc

δ(η1(a)) we have that γ(z, [0, t]) ⊂ Bc
ε1

(η1(a)) and γ(z, t) ∈ U1.
Hence, as γ(z, [0, t]) is connected we have that

γ(z, [0, t]) ∩
(
η1(a−(ε1), a] ∪ η2

(
b−(ε1), b+(ε1)

))
	= ∅

and so U2∩Bc
δ(η1(a)) ⊂ C(x)∩W c(0) contradicting that it has empty interior.

So there is not such a t. This implies that when

t+ = inf{t > 0 such that γ(η1(a), t) /∈ Bc
ε1

(η1(a))},

then
γ(η1(a), [0, t+)) ⊂ η1(a−(ε1), a] ∪ η2

(
b−(ε1), b+(ε1)

)
.

Suppose first that γ(η1(a), [0, t+))∩η2(b−(ε1), b] 	= ∅ (the other cases will follow
in a similar way). As before, we have that

V = Bc
ε1

(η1(a)) �
(
η1(a−(ε1), a] ∪ η2[b, b+(ε1)

)
has two connected components and that there is 0 < t′ < t+ such that
γ(η1(a), t′) ∈ η2(b−(ε1), b) ⊂ V1 which is one of the connected components
of V . Because t′ < t+, there is ε > 0 such that

Bε(γ(η1(a), [0, t′])) ⊂ Bc
ε1

(η1(a)).

Now, this case follows by the same arguments as in the preceding case.

Proof of Claim 2. Call Ki = η−1
i (η1(I)∩η2(I)). Taking U as a connected

component of the complement of K1, we have that U is an interval, with c < d

its endpoints. Let us assume that U ⊂ (0, 1). If η−1
2 (η1(c)) is not an endpoint

of I, then take I1 = [c, c+d
2 ], I2 = I, a = c and b = η−1

2 (η1(c)). Otherwise,
we have that η−1

2 (η1(c)) is an endpoint of I and we may suppose it is 0. If
η−1
2 (η1(d)) is not an endpoint of I, take I1 = [ c+d

2 , d], I2 = I, a = d and
b = η−1

2 (η1(d)). Otherwise, we have that η−1
2 (η1(d)) is an endpoint of I and it

must be 1. So we have that η2(0) = η1(c) and η2(1) = η1(d).
Take another connected component of the complement of K1, if any, and

call it V . Call the endpoints of V r < s and assume r ∈ K1. Again, if
η−1
2 (η1(r)) is not an endpoint of I, we are done; if not, we have that η1(r) =

η2(0) or η1(r) = η2(1), and so, r = c or r = d, but r 	= c because V ∩ U = ∅.
Then, take I1 = [ c+d

2 , r+s
2 ], I2 = I, a = d and b = 1. If r /∈ K1, then r = 0

and s ∈ K1. In this case, either η−1
2 (η1(s)) is not an endpoint of I and we

are done, or s = c and we take I1 = [ r+s
2 , c+d

2 ], I2 = I, a = c and b = 0. So
if U ⊂ (0, 1) we may assume that there is not another connected component



86 FEDERICO RODRIGUEZ HERTZ

and hence U = Kc
1 and η2(0) = η1(c) and η2(1) = η1(d). From here it is

not hard to see that we can concatenate η1 and η2 to build a circle. So we
may assume that there is no connected component of the complement of K1

inside (0, 1). Hence there are at most two connected components. And we may
assume that the same holds for K2. If K1 = I then η1(I) ⊂ η2(I) and we are
done. So we may assume that U = [0, d) is a connected component of Kc

1 and
that η1(d) = η2(1), if not, we can argue as before. But then 1 ∈ K2 and hence,
either K2 = I and we are done again, or [0, r) is a connected component of the
complement of K2. Now, η−1

1 (η2(r)) is an endpoint of I and also it is in K1

so that η2(r) = η1(1) because 0 is not in K1. Now, K1 = [d, 1] and K2 = [r, 1]
and from here it is not hard to see that η1(I) ∪ η2(I) must be an arc.

Proof of Proposition 5.2. Suppose that (1) and (3) do not hold; then by
the preceding lemma the proof of the proposition follows in the spirit of the
proof that the only one dimensional manifolds are the ones in (2). That M is
su-saturated, F -invariant and M + ZN = M is almost obvious. To prove that
it is closed, we prove that the complement is open. But by Lemma 5.5 it is
not hard to see that the complement is in fact open.

Corollary 5.8. If f is sufficiently close to A then C(0) ∩ W c(0) is not
homeomorphic to [0, 1].

Proof. As F (C(0)∩W c(0)) = C(0)∩W c(0), if C(0)∩W c(0) were homeo-
morphic to [0, 1] then we would have to have that either the endpoints are fixed
or permuted by F . As the only point fixed by F is 0 and F has no period-two
orbits we get that this is impossible.

Now, we are going to prove Proposition 5.3. Arguing by contradiction
suppose in the sequel that C(0) ∩ W c(0) = η(J) where η : J → W c(0) is
injective, η(0) = 0 and J = (−1, 1) if C(0)∩W c(0) is homeomorphic to (−1, 1),
J = [0, 1) otherwise. Notice that in the case C(0) ∩ W c(0) is homeomorphic
to a circle, we do not have that η is a homeomorphism. Moreover, define
H = η([0, 1)) and suppose, working with f2 if necessary, that F (H) = H.

We may suppose that W c(0) has the euclidean structure inherited from
Ec. Now, we may chose f close enough to A in order to get the following claim.

Claim 3. For θ ∈ [0, 2π) define the line with slope θ,

l(θ) = {(r cos(θ), r sin(θ)) : r ≥ 0},

with S(θ) the sector bounded between l(θ) and F (l(θ)), and I(θ) = intS(θ). A
priori there are two sectors, one satisfying the following : there is n ≥ 2 such
that F (I(θ))∩I(θ) = ∅ and

⋃n
i=0 F i(S(θ)) = W c(0). Clearly n does not depend

on θ, not on F .
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Define H(t) = η((0, t]). As F (H) = H and the only fixed point of F is 0
we may suppose, working with f−1 if necessary, that F (H(t)) ⊃ H(t).

Lemma 5.9. For any θ and t > 0, H(t) ∩ l(θ) 	= ∅.

Proof. Let θ and t > 0 be given and suppose that H(t) ∩ l(θ) = ∅. Then

H(t) ∩ F (l(θ)) ⊂ F (H(t) ∩ l(θ)) = ∅.

Hence H(t) ⊂ I(θ) or H(t) ∩ S(θ) = ∅. The first possibility cannot happen
because F (I(θ))∩ I(θ) = ∅ and then H(t) = H(t)∩ F (H(t)) = ∅. Neither can
the second one because in this case

F−k(H(t)) ∩ S(θ) ⊂ H(t) ∩ S(θ) = ∅.

Hence H(t) ∩ F k(S(θ)) = ∅ and H(t) = H(t) ∩
⋃n

i=0 F i(S(θ)) = ∅.

Corollary 5.10. For any χ : [0, ε) → W c(0) C1, with χ(0) = 0, χ̇(0) 	= 0,
s > 0 and δ > 0, χ([0, δ)) ∩ H(s) 	= ∅.

Proof. Take χ, δ and s as in the corollary. Call χ′ = F ◦χ. As χ̇(0) 	= χ̇′(0)
there is ρ > 0 such that χ[0, ρ) ∩ χ′[0, ρ) = {0}. Moreover, calling CC(D, x)
the connected component of D that contains x, we can take τ small enough so
that

R = Bc
τ (0) �

[
CC

(
χ[0, ρ) ∩ Bc

τ (0), 0
)
∪ CC

(
χ′[0, ρ) ∩ Bc

τ (0), 0
)]

has exactly two connected components. Moreover, if τ is small enough, there
are θ0 and θ1 such that l(θ0)∩Bc

τ (0)�{0} and l(θ1)∩Bc
τ (0)�{0} do not lie in

the same connected component of R. We may suppose that ρ < δ. Take s0 < s

such that H(s0) ⊂ Bc
τ (0). Suppose by contradiction that H(s0) ∩ χ[0, ρ) = ∅,

then, as F (H(s0)) ⊃ H(s0) we have that H(s0)∩χ′[0, ρ) = ∅. By the preceding
lemma, H(s0) ∩ l(θ0) 	= ∅ and as H(s0) is connected it must lies in the same
connected component in which lies l(θ0)∩Bc

τ (0)�{0}, thus contradicting that
H(s0) ∩ l(θ1) 	= ∅.

Given x ∈ C(0)∩W c(0) there is a C1 diffeomorphism Px : W c(0) → W c(0)
such that Px(0) = x and Px(z) ∈ C(z) for any z ∈ W c(0). To build such a
diffeomorphism, take an su-path from 0 to x and mark the corners; then define
the diffeomorphism sliding along the s or u-foliation from the center manifold
of a corner to the center manifold of the following corner. In other words, take
γ : [0, 1] → RN , call 0 = x0, x1, . . . , xn = x the corners of γ ennumerated by
the order of [0, 1], and define π0 : W c(0) → W c(x1) sliding along the s-foliation
if the first leg of γ is an s-path or the u-foliation if it is a u-path. Then repeat
the procedure from x1 to x2 thus defining π1 : W c(x1) → W c(x2) and so on
until you reach xn = x. As the holonomies used in the construction are at
least C1 and the definition of accessibility class, the composition of the πi’s
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give the desired Px. Notice that Px is a diffeomorphism because we can make
the inverse process in order to get the inverse of Px.

With this Px and the corollary above we get the following:

Corollary 5.11. For any t ∈ (0, 1) and any χ : [0, ε) → W c(0) C1, with
χ(0) = η(t), χ̇(0) 	= 0, s > 0 and δ > 0, χ((0, δ)) ∩ η(t − s, t + s) 	= ∅.

So, let us get the contradiction to the hypothesis that C(0) ∩ W c(0) is
neither open nor {0}.

Proof of Proposition 5.3. Take a point z in W c(0) that is not in C(0).
Now take the line segment from z to 0 and t0 ∈ (0, 1). Run along the line
segment from z to 0 and stop the first time you touch η[0, t0]. Suppose this
point is η(t1). Now take the line segment from η(t1) to z and call it l. Then
l ∩ η[0, t0] = {η(t1)} but by the above corollary, this implies that t1 = t0 and
so η(t0) is in the line segment from z to 0. As t0 was an arbitrary point in
(0, 1) we have that η[0, 1) is contained in the line segment from z to 0 thus
contradicting Lemma 5.9.

6. Case C(0) is trivial

We suppose in this section that #
(
C(x) ∩ W c(0)

)
= 1 for any x ∈ RN .

Lemma 6.1. Tn ◦ Tm = Tn+m for all n ∈ ZN .

Proof. Notice that Tn(x) = C(x + n) ∩ W c(0). Hence

Tn ◦ Tm(x) =C(Tm(x) + n) ∩ W c(0)

= C(C(x + m) ∩ W c(0) + n) ∩ W c(0)

= (C(x + m) + n) ∩ W c(0) = Tn+m(x)

thus proving the claim.

Define the linear transformation L : Ec → R2 by L(ec
1) = (1, 0) and

L(ec
2) = (0, 1). Let L(nc) = αn and Pi = L◦Tei

◦L−1, Q̃n = L◦Tn ◦L−1. Also,
take C > 0. We choose the Cr neighborhood of A small enough to obtain the
following: There is

h : R2 → R2, h = x + η such that:

(1) h−1 ◦ P1 ◦ h = R(1,0),

(2) h−1 ◦ P2 ◦ h = R(0,1),

(3) h−1 ◦ Q̃n ◦ h = Qn is in some given Cr neighborhood of Rαn
if |n| ≤ C,

and the Cr neighborhood of A is small enough.
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(4) |η(z)| ≤ C log+ |z| + C,

(5) η(0) = 0.

Let us show how to build such an h. In the sequel, when we say that a
diffeomorphism is Cr close to the identity, we mean that when the Cr neigh-
borhood of A is sufficiently small we can take the diffeomorphism as close as
wanted to the identity.

Now, P1(x, y) = (x, y) + (1, 0) + ϕ1(x, y) and we can take ‖ϕ1‖Cr as small
as wanted. Take ε < 1

2 small and define ψ : R → R, C∞ such that ψ(x) = 0
if x < ε and ψ(x) = 1 if x > 1 − ε. We require (taking ε small enough) that
‖ψ‖Cr ≤ C for some fixed constant that only depends on r. Take ĥ1(x, y) =
(x, y) + ψ(x)ϕ1(x, y). If the Cr norm of ϕ1 is sufficiently small, then ĥ1 is a Cr

diffeomorphism, Cr close to de identity. By definition we have that if |x| ≤ ε

then

P1 ◦ ĥ1 = ĥ1 ◦ R(1,0).(1)

Define now ĥ(x, y) = P
[x]
1 (ĥ1(x − [x], y)) where [x] stands for the integral

part of x. We claim that ĥ|[−ε<x<1+ε] = ĥ1, ĥ is a Cr diffeomorphism and
P1 ◦ ĥ = ĥ ◦R(1,0). The first claim is obvious if 0 ≤ x < 1. If −ε < x < 0 then
we have that

ĥ(x, y) = P−1
1 (ĥ1(x + 1, y)) = ĥ1(x, y)

by (1). In the same way we get the first claim if 1 ≤ x < 1 + ε. That ĥ is Cr is
essentially by definition, because if (x, y) satisfies that x /∈ Z, then there is a
neighborhood of (x, y) such that [x′] = [x] for any (x′, y′) in this neighborhood.
Also, if x ∈ Z and the neighborhood of (x, y) is such that |x − x′| < ε/2, for
(x′, y′) in this neighborhood, and by the first part of the claim, the property
follows. That ĥ is in fact a diffeomorphism also follows in the same way; just
notice that defining n such that P−n

1 (z, w) ∈ ĥ1[0 ≤ x < 1] we have that

ĥ−1(z, w) = ĥ−1
1 ◦ P−n

1 (z, w) + n.

Now, ĥ−1 ◦ P1 ◦ ĥ = R(1,0). Define P ′
2 = ĥ−1 ◦ P2 ◦ ĥ. By the commutativity,

P ′
2(x + (1, 0)) = P ′

2(x) + (1, 0) so that P ′
2 induces a diffeomorphism of the

cylinder. Next, taking the circle [y = 0] and working as above, we can build a
Cr diffeomorphism h′ : R2 → R2 with h′(0, 0) = (0, 0) such that

h′(x + (1, 0)) = h′(x) + (1, 0), P ′
2 ◦ h′ = h′ ◦ R(0,1)

and h′|[−ε<x,y<1+ε] is Cr close to the identity. So taking h = ĥ ◦ h′ we have
that h is a Cr diffeomorphism which is restricted to some small neighborhood
of the standard square, is Cr close to the identity and

h−1 ◦ P1 ◦ h = R(1,0), h−1 ◦ P2 ◦ h = R(0,1).
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Notice that the third condition must be verified only in a neighborhood of the
standard square and that it is verified because of Corollary 2.4 and the fact that
h may be chosen as close to the identity as desired. That h(0) = 0 follows again
by construction. Let us prove that h satisfies condition 4. Set x = (x1, x2) and
n = [x1]e1 + [x2]e2. Then, using the first property and Lemma 3.5, we have
that

|η(x)|= |h(x) − x| = |P [x1]
1 ◦ P

[x2]
2 ◦ h(x − ([x1], [x2])) − x|

≤
∣∣LTn ◦ L−1h(x − ([x1], [x2])) − x

∣∣
≤‖L‖

∣∣Tn ◦ L−1h(x − ([x1], [x2])) −
(
L−1h(x − ([x1], [x2])) + nc

)∣∣
+|h(x − ([x1], [x2])) − (x − ([x1], [x2]))|

≤C‖L‖ log |n| + |η(x − ([x1], [x2]))| ≤ C‖L‖ log |x| + C.

6.1. Case N ≥ 6.

Lemma 6.2. If N ≥ 6 there is n ∈ ZN such that if the linear transfor-
mation L : Ec → R2 is defined by L(ec

1) = (1, 0), and L(ec
2) = (0, 1) and

L(nc) = α, then α satisfies a diophantine condition with exponent δ for any
δ > 0. Clearly, n only depends on A.

Proof. The proof of the lemma will be carried out in Appendix A.

Now, using the KAM theorem, we have that Q = Qn = Rλ ◦h−1
1 ◦Rα ◦h1

with ‖h1 − id‖C1 < 1
2 .

Lemma 6.3. Let Q : Rc → Rc, Q = Rλ ◦ h−1
1 ◦ Rα ◦ h1 and suppose

‖h1 − id‖C1 < δ. Then

|Qk(x) − (x + kα)| ≥ k|λ|(1 − δ) + δ(|λ| − 2)

and
|Qk(0)| ≤ k(|λ| + |α| + 2δ)

for all k ≥ 0.

Proof. Denote h1 = x + ϕ and notice that Q(x) = x + α + λ + ϕ(x) −
ϕ(Q(x) − λ) and so

Qk(x) =x + kα + kλ +
k−1∑
j=0

ϕ(Qj(x)) −
k−1∑
j=0

ϕ(Qj+1(x) − λ)

= x + kα + kλ +
k−1∑
j=1

[ϕ(Qj(x)) − ϕ(Qj(x) − λ)]

+ϕ(x) − ϕ(Qk(x) − λ)
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so that∣∣∣k−1∑
j=1

[ϕ(Qj(x)) − ϕ(Qj(x) − λ)] + ϕ(x) − ϕ(Qk(x) − λ)
∣∣∣ ≤ (k − 1)|λ|δ + 2δ

and thus we get the first estimate. The second one follows easily by the same
method.

The following lemma gives another bound.

Lemma 6.4. There is C > 0 such that for any k ≥ 1, |Q̃k
n(0) − kα| ≤

C log k + C.

Proof. It is essentially a special case of Lemma 3.5.

Finally,

|Q̃k
n(0) − kα|= |h(Qk(0)) − kα| = |Qk(0) + η(Qk(0)) − kα|

≥ k|λ|/2 +
1
2
(|λ| − 2) − |η(Qk(0))|

≥ k|λ|/2 +
1
2
(|λ| − 2) − C log+ |Qk(0)| − C

≥ k|λ|/2 +
1
2
(|λ| − 2) − C log k

−C log(|λ| + |α| + 1) − C

= k|λ|/2 − C log k − C

and thus this implies that λ = 0.

6.2. Case N = 4. Because Lemma 6.2 is false for N = 4, we need to use
another argument here. What we do in this case is to show how the proof in
[Mo] of the linearization of commuting circle diffeomorphisms applies in our
case. We follow the notation of [Mo] in this subsection.

We say that φ : R2 → R2 such that φ(x + n) = φ(x) + n for any n ∈ Z2

and x ∈ R2 has rotation vector α ∈ R2 if

lim
k→+∞

φk(x) − x

k
→ α

uniformly in x.

Theorem 6.5. Let φν : R2 → R2, be two C22 diffeomorphisms such that
when φν(x) = x + αν + φ̂ν(x),

(1) φν(x + n) = φν(x) + n for ν = 1, 2, any n ∈ Z2 and x ∈ R2,

(2) φ1 ◦ φ2 = φ2 ◦ φ1,

(3) φ̂ν is close to 0 in the C22-supnorm for ν = 1, 2.
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Assume also that φν has rotation vector αν and that the following diophantine
condition holds:

max
ν=1,2

|‖ k · αν |‖ ≥ c

|k|2

for any k ∈ Z2, k 	= 0. Then there is a C1 diffeomorphism h : R2 → R2 such
that

(1) h(x + n) = h(x) + n for any n ∈ Z2 and x ∈ R2,

(2) φν ◦ h = h + αν for i = 1, 2.

So the theorem says that two commuting diffeomorphisms of the 2-torus
with diophantine rotation vectors and close to these diophantine rotations are
smoothly and simultaneously conjugated to the rotations.

As we said, for the proof we show how to adapt the proof of Moser to our
setting. So, we have τ = 2 in formula (1.3) of page 106 of [Mo]. On page 115
of [Mo] formula (3.5) becomes

V0 = C∞
0 (T2, R); V1 = C∞

0 (T2, R2); V2 = C∞
0 (T2, so(2)).

The operators L, A, B, L∗, A∗, B∗ and M are defined in the same way. In
Lemma 3.1 we take σ = 4 + 1

30 . Let us show how the proof of Lemma 3.1
applies in our case.

v =
∑

j∈Z2, j �=0

vje
2πij·x,

Mv =
∑

j∈Z2, j �=0

µjvje
2πij·x,

µj = 4[sin2(πα1 · j) + sin2(πα2 · j)] ≥
c

|j|2 ,

|M−1v|r ≤C
∑

j∈Z2, j �=0

µ−1
j |vj ||j|r,

≤C
∑

j∈Z2, j �=0

|j|−(2+ 1
30

)|v|σ+r ≤ C|v|σ+r.

Now, on page 117, the smoothing operators are defined in the same way, with
S1 changed by T2 and R by R2. The construction of the smooth solution ũ is
as well, everything defined componentwise. On page 118, everything works as
well. The only difference is the fact that ψν has rotation number αν implies
ψ̂ν has a zero. In our case, we apply Lemma 3.5 which, modulo changing the
constants, is invariant under conjugacy. Thus we obtain the fact that each
component of ψ̂ν has a zero. Hence we have

|ψ̂|0 ≤ 2|ψ̂ − c|0.
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Finally on page 119, we define εs = εκs

but now, κ = 1 + 109
242 ,

Ns = ε−ξ
s , l = 22, σ = 4 +

1
30

,

where ξ = 2(l+5)
l2 = 27

242 and in formula (3.20) we change |û(s)|1 < ε
1/2
s to

|û(s)|1 < ε
4/11
s . Hence everything works and we get the conjugacy h : R2 → R2

whenever |φ̂ν |0 and |φ̂ν |l are sufficiently small.
So in our case, φν = Qnν

for ν = 1, 2. In order to get the smooth conju-
gancy, we need the following lemma:

Lemma 6.6. There exist n1, n2 such that if we take the linear transfor-
mation L : Ec → R2 defined by L(ec

1) = (1, 0), and L(ec
2) = (0, 1) and call

L(nc
1) = α1, L(nc

2) = α2, then there is a constant c > 0 such that

max
ν=1,2

|‖ k · αν |‖ ≥ c

|k|2

for any k ∈ Z2, k 	= 0.

The proof of the lemma will be carried out in the appendix.
Thus we fit in Theorem 6.5 and hence get a smooth diffeomorphism h1 :

R2 → R2 satisfying

(1) h1(x + n) = h1(x) + n for any n ∈ Z2 and x ∈ R2,

(2) φν ◦ h1 = h1 + αν for i = 1, 2.

6.3. End of the proof. Call h2 = L−1 ◦ h1 ◦ h−1 ◦ L in either case. As
the Tn’s form a commutative group of diffeomorphisms and the Rnc ’s acts
transitively on Ec we get that h2 ◦ Tn = Rnc ◦ h2 for all n ∈ ZN . Now define
h3 : W c(0) → Ec by h3 = h2 ◦ j−1

0 and hc : RN → Ec by hc = h3 ◦ πsu. We
have that

hc◦Ln = h2◦j−1
0 ◦πsu◦Ln = h2◦Tn◦j−1

0 ◦πsu = Rnc ◦h2◦j−1
0 ◦πsu = Rnc ◦hc.

Moreover, hc|W cσ(x) is C1 for any x ∈ RN , σ = u, s and y ∈ C(x) if and only
if hc(x) = hc(y). Indeed, it is not hard to see that Lip(hc|W cσ

L (x)) ≤ C(L) and
Lip

(
(hc|W c

L(x))−1
)
≤ C(L) for some constant C(L) that only depends on the

size of the neighborhood of A and L. We claim that hc ◦ F = Ac ◦ hc. By
definition, we only have to prove it in W c(0). Now,

hc(F (πsu(n))) = hc(πsu(An)) = hc(An) = Acnc = Achc(n) = Achc(πsu(n)).

As πsu(ZN ) is dense in W c(0) (this is because hc(πsu(ZN )) = {nc : n ∈ ZN}
and hc|W c(0) is a diffeomorphism), we get the desired claim. Now, denoting
F = A + ψ and solving the cohomological equations

Asϕs − ϕs ◦ F = ψs and Auϕu − ϕu ◦ F = ψu
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which can be solved as in the Anosov case or as in Hartman-Grobman’s
theorem, we get hs(x) = xs + ϕs(x) and hu(x) = xu + ϕu(x). Defining
H1 : RN → RN by H1 = hs + hu + hc, H1 is a homeomorphism, H1(x + n) =
H1(x)+n for all n ∈ ZN which means that H1 induces a homeomorphism of the
torus and that H1 ◦F = A ◦H1 and hence f is conjugated to A. The problem
now is that, as in the Anosov case, a priori, H1 has no regularity property other
than just being continuous; hence we now define H2 : RN → RN by H2(x) =
xs +xu +hc(x). H2 is again a homeomorphism, and H2(x+n) = H2(x)+n for
all n ∈ ZN and so it induces a homeomorphism of the torus. Because of the
properties listed above we have H2(C(x)) = H2(x)+Esu. So if we prove some
regularity property for H2, using the fact that x + Esu, x ∈ RN , induces an
ergodic foliation of the torus, we get the essential accessibility property. We
claim that H2 is bi-Lipschitz. To prove this claim, notice that, as H2 induces
a homeomorphism of the torus, it only has to be proved in a neighborhood of
a fundamental domain of the torus. Moreover, we only have to prove that it
is locally bi-Lipschitz by compactness. So, take x, y and x̂ = W s(x)∩W cu(y);
then hc(x) = hc(x̂). Moreover, x̂ = x+vs +γs

x(vs) = y+wcu +γcu
y (wcu). Thus,

|x̂ − y|= |wcu + γcu
y (wcu)| ≤ (1 + κ)|wcu|,

|wcu|= |(x − y)cu + γs
x(vs)| ≤ |(x − y)cu| + κ|vs|,

|vs|= |(y − x)s + γcu
y (wcu)| ≤ |(y − x)s| + κ|wcu|,

and
|wcu| + |vs| ≤ 1

1 − κ
|x − y|,

and |wcu| ≤ 1
1−κ |x − y|. Hence

|x̂ − y| ≤ 1 + κ

1 − κ
|x − y|

and so we may suppose that x and y are close enough to get x̂ ∈ W cu
1 (y) and

thus, |hc(x̂) − hc(y)| ≤ C(1)|x̂ − y|. As H2(x) = xs + xu + hc(x) we get that
H2 is Lipschitz.

Let us prove now that |H2(x) − H2(y)| ≥ c0|x − y| for some constant c0.
As |H2(x)−H2(y)| ≥ |(x− y)su|, we may suppose that |(x− y)su| ≤ |(x− y)c|.
Define x′ = W u(x̂)∩W c(y); then x′ = x̂ + vu + γu

x̂(vu) = y + wc + γc
y(w

c). So,
again we may suppose x and y so close that

|hc(x) − hc(y)|= |hc(x′) − hc(y)| ≥ 1
C(1)

|x′ − y|,

|x − y| ≤ 2|(x − y)c|,
|(x − y)c|= |(wcu − γs

x(vs))c| ≤ |(x̂ − y)c| + κ|(x̂ − y)s|,
|(x̂ − y)c|= |wc − (γu

x̂(vu))c| ≤ |(x′ − y)c| + κ|(x′ − y)u|,
|(x̂ − y)s|= |(γc

y(w
c) − γu

x̂(vu))s| ≤ κ
(
|(x′ − y)c| + |(x′ − y)u|

)
.
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Hence

|(x − y)c| ≤ |(x′ − y)c| + κ|(x′ − y)u| + κ2
(
|(x′ − y)c| + |(x′ − y)u|

)
≤ 2|x′ − y|.

And so, taking c0 = 1
4C(1) we get that H−1

2 is Lipschitz and hence that H2 is
bi-Lipschitz. In fact, it can be proved that H2 is a C1 diffeomorphism. To do
this, just notice that hc|W c(x) is a C1 diffeomorphism and hc|W σ(x), σ = s, u

is constant for any x ∈ RN . Thus, the partial derivatives are continuous and
hence hc is C1 and so H2 is C1. Working in the same way with H−1

2 we get the
desired claim.

Appendix A. Diophantine approximations

In this appendix we will prove some results about diophantine approxi-
mations.

Theorem A.1. Let αi, i = 1, . . . , n, be real algebraic numbers and sup-
pose that 1, α1, . . . , αn are linearly independent over the rationals. Then, given
δ > 0 there is a constant c = c(δ, α1, . . . , αn) such that for any n + 1 integers
q1, . . . , qn, p with q = max(|q1|, . . . , |qn|) > 0

|q1α1 + · · · + qnαn + p| ≥ c

qn+δ
.

Proof. See Chapter VI, Corollary 1E of [Sc].

Proposition A.2. Let P be a polynomial of degree N , with integer coef-
ficients, irreducible over the integers. Suppose that one root of P is a complex
number of modulus one, say λ. Set c1 = 2Re(λ) where Re stands for the
real part of the number. Then, for any Q with integer coefficients such that
Q(c1) = 0, deg Q ≥ N

2 .

Proof. Take Q such that Q(c1) = 0 and deg Q = d. Then, as c1 = λ+λ−1,
we get that T (x) = xdQ(x + x−1), deg T = 2d and T (λ) = 0. As P is
irreducible, 2d ≥ N .

Let us define some tools that will be useful in what follows. For any given
θ ∈ C, |θ| = 1 let us denote ck(θ) = 2Re(θk) and ak(θ) = Im(θk)

Im(θ) where Im

stands for the imaginary part of the number. We have that ak and ck satisfy
the following recurrence relation:

(1) a0 = 0, a1 = 1, c0 = 2,

(2) ak+1 = ck + ak−1 for k ≥ 2,

(3) ck = c1ak − 2ak−1 for k ≥ 1.
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From this recurrence relation we obtain polynomials with integer coefficients
Rk and Ik that do not depend on θ such that ak = Ik(c1) and ck = Rk(c1).
Moreover, deg(Rk) = k, deg(Ik) = k−1 and when αk

i and βk
i are the coefficients

of Rk and Ik respectively, we have the following:

(1) αk
k = 1 and βk

k−1 = 1 for k ≥ 1,

(2) αk
k−2i−1 = 0 and βk

k−2i−2 = 0 for k ≥ 1, 0 ≤ 2i ≤ k − 1.

Given a polynomial P with a root λ with modulus 1 set ck = ck(λ) and
ak = ak(λ).

Corollary A.3. If P is a polynomial with integer coefficients, irreducible
over the integers and deg P is odd then it has no root of modulus one.

Proof. Take P a polynomial with integer coefficients, suppose deg P =
2r + 1 and that λ is a root of P with modulus 1. Write P (z) =

∑2r+1
k=0 pkz

k.
Then

0 = λ−rP (λ) =
r∑

k=0

pkλ
r−k +

2r+1∑
k=r+1

pkλ
k−r

=
r∑

k=0

pr−kλ
k +

r+1∑
k=1

pk+rλ
k

where λ is the conjugate of λ. As λ is also a root of P , we obtain, in the same
way

0 = λ
−r

P (λ) =
r∑

k=0

pr−kλ
k +

r+1∑
k=1

pk+rλ
k
.

So, from both we obtain that

0 =
r∑

k=0

pr−k(λ
k − λk) +

r+1∑
k=1

pk+r(λk − λ
k)

= p2r+1(λr+1 − λ
r+1) +

r∑
k=1

(pr+k − pr−k)(λk − λ
k)

= 2i

[
p2r+1Im(λr+1) +

r∑
k=1

(pr+k − pr−k)Im(λk)
]
.

Now,

0 = p2r+1Ir+1(c1) +
r∑

k=1

(pr+k − pr−k)Ik(c1) = Q(c1).
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Hence, as deg Ik = k−1 and p2r+1 	= 0, since deg P = 2r+1, deg Q = r. Thus,
using Proposition A.2 we get a contradiction, thus proving the corollary.

Corollary A.4. If N is odd and A ∈ SL(N, Z) has irreducible charac-
teristic polynomial then, A is Anosov.

Proof. This is clear from the preceding corollary.

Corollary A.5. Any ergodic linear automorphism of T5 is Anosov.

Proof. Taking a power, we may suppose that detA = 1. If the character-
istic polynomial of A is irreducible, then the result follows from the preceding
corollary; so let us assume that it is reducible. Then P = LQ where either
deg Q = 1,deg L = 4 or deg Q = 2,deg L = 3. In the first case 1 or −1 must
be a root of Q and hence of A contradicting ergodicity; so we cannot have this
decomposition. In the second case the leading coefficient of Q is 1 and the
independent term is ±1. Hence, if Q has a root with modulus 1, it is a root of
unity, contradicting ergodicity; so the roots of Q do not have modulus 1. As
the independent term of L is also ±1, if it has a root with modulus 1, it cannot
be real. Hence the conjugate is also a root and then, ±1 must be a root of L,
again contradicting ergodicity. So in this case A is Anosov too.

Corollary A.6. If P is a polynomial of even degree, deg P = 2r, with
integral coefficients, with a root λ of modulus one, then there is a polynomial
Q with integral coefficients such that Q(c1) = 0 and deg Q = r. Moreover, if
P is irreducible, with P (z) =

∑2r
k=0 pkz

k, pr+k = pr−k for k = 1, . . . , r, Q is
irreducible, and then Q is such that its leading coefficient equals p2r.

Proof. Here we work as in the proof of Corollary A.3. Write P (z) =∑2r
k=0 pkz

k. Then

0 = λ−rP (λ) = pr +
r−1∑
k=0

pkλ
r−k +

2r∑
k=r+1

pkλ
k−r

= pr +
r∑

k=1

pr−kλ
k +

r∑
k=1

pk+rλ
k

and as λ is also a root of P , we obtain, in the same way

0 = λ
−r

P (λ) = pr +
r∑

k=1

pr−kλ
k +

r∑
k=1

pk+rλ
k
.
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Thus, from both statements we obtain that

0 = 2pr +
r∑

k=1

(pr+k + pr−k)(λk + λ
k)

= 2pr +
r∑

k=1

(pr+k + pr−k)2Re(λk)

= 2pr +
r∑

k=1

(pr+k + pr−k)Rk(c1) = 2Q(c1).

As deg Rk = k, deg Q ≤ r and thus we get the first part of the corollary.
For the second part we have

0 =
r∑

k=1

(pr+k − pr−k)(λk − λ
k)

= 2i

[ r∑
k=1

(pr+k − pr−k)Im(λk)
]

= 2iIm(λ)
[ r∑

k=1

(pr+k − pr−k)Ik(c1)
]

= 2iIm(λ)L(c1).

As deg Ik = k − 1, deg L ≤ r − 1. So, by Proposition A.2 we get that L ≡ 0
and so pr+k = pr−k for k = 1, . . . r. Now,

Q(z) = pr +
r∑

k=1

pr+kRk(z)

has degree r and hence has minimal degree among the allowed, and so it must
be irreducible. As αr

r = 1, we get that the leading coefficient of Q is p2r.

Corollary A.7. Any ergodic linear automorphism of T4 is Anosov or
pseudo-Anosov.

Proof. We work as in the case of T5. Now, with A2 we may suppose
its determinant is 1. Suppose it is neither Anosov nor pseudo-Anosov. If its
characteristic polynomial is irreducible then we have that P (z) = z4 + az2 + 1
but then, if λ is a root of P , it must be a root of unity, or its modulus must be
different from 1. So the characteristic polynomial must be reducible, P = LQ,
but then, deg L = 2, deg Q = 2 and we are done.

Proposition A.8. For any d ≥ 3 there is a linear automorphism of T2d

as in the hypothesis of Theorem 1.1.

Proof. Here we will work as in Lemma A.6. For d odd, define Q(z) = zd−2
and for d even, define Q(z) = zd − d2d−1z + 2. We shall prove that for any d,



STABLE ERGODICITY 99

there are polynomials satisfying the required properties such that when λ is
the root of modulus one and c1 = 2Re(λ), then Q(c1) = 0. We claim that for
any d, Q has one and only one real root c1 with modulus less than or equal
to 2 and it satisfies |c1| < 2. For d odd this is obvious as the only real root
of Q is 21/d. For d even, notice that Q has only one minimum and it is 2 and
Q(2) = 2 − (d − 1)2d < 0 so Q has exactly two real roots, one less than 2 and
the other bigger than 2. Moreover, Q has only positive real roots and so we
get the desired claim.

We claim now that for any d, Q is irreducible. Suppose by contradiction
that Q is reducible, Q = LR. We may suppose that the absolute value of the
leading coefficients of L and R are both 1 and that L(0) = 2 and R(0) = 1.
But this will imply (as is not hard to see) that all the coefficients of L must
be even, thus contradicting that its leading coefficient is ±1. Let us define
P (x) =

∑2d
k=0 pkx

k where pd+k = pd−k for k = 1, . . . , d, and Q(z) = pd +∑d
k=1 pd+kRk(z) where the Rk are defined as after the proof of Proposition A.2.

Now in order to find the pk’s, we have to solve a (d+1)× (d+1)-equation,
with integral coefficients (the coefficients of the Rk) and this is written in a
triangular form and has only ones in the diagonal. So, it has a solution in the
integers, and we may choose a solution having p2d = p0 = 1. We claim that
P has only two roots with modulus one (λ and λ) that are not roots of unity,
that P is irreducible and is not a polynomial of a power. To prove this claim,
first notice that Q is just the polynomial found in Corollary A.6. So, if P has
another root with modulus 1 other than λ and λ then Q must have another
real root with modulus less than or equal to 2. Moreover, it must have in fact
two roots, because if not, λ = λ and hence λ = ±1 and so |c1| = 2. If P

were reducible, then there would be a polynomial P ′ with deg P ′ < deg P and
P ′(λ) = 0 and then we would get a polynomial Q′ with deg Q′ < deg Q with
Q′(c1) = 0, thus contradicting the irreducibility of Q. If it were a polynomial
of a power, then it would have to have more than two roots with modulus 1.
In fact, if P (x) = T (xn), n ≥ 2, and µ is such that µn = λn, if the only such
µ are λ and λ then we must have that n = 2 and that λ2 ± 1 = 0 and thus,
as 2d ≥ 4, this contradicts the irreducibility of P . If λ were a root of unity,
then by the irreducibility of P , all the roots of P must be roots of unity and as
P has exactly two roots with modulus 1, the multiplicity of λ must be bigger
that 1 thus contradicting the irreducibility. Now, defining A by

(1) Aei = ei+1 for i = 1, . . . , N − 1,

(2) AeN = −
∑N−1

i=0 piei+1,

we see that the characteristic polynomial of A is just P .

Lemma A.9. A is pseudo-Anosov if and only if the characteristic polyno-
mial of Al is irreducible for any l ∈ Z, l > 0.
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Proof. If the characteristic polynomial of Al is irreducible for any
l > 0 then the characteristic polynomial of A, PA, is irreducible. Suppose
that PA(x) = Q(xn) for some n ≥ 2. We have that PAn(xn) = PA(x)H(x) =
Q(xn)H(x) where H(x) = det

(∑n−1
k=0 xkA−k

)
. But then, it is not hard to see

that H(x) = T (xn) for some polynomial T and hence that PAn = QT , thus
contradicting that PAn is irreducible.

Suppose now that A is pseudo-Anosov but PAl is reducible for some l > 0.
Then, it is not hard to see that there is a nontrivial subgroup S ⊂ ZN such
that AlS = S. Moreover there is a subgroup R such that:

RN = [S] ⊕ A[S] ⊕ · · · ⊕ Al−1[S] ⊕ [R]

where [S] is the subspace generated by S, and hence PA(x) = Q(xl)T (x), with
Q and T the characteristics polynomials of Al|S and A|R respectively. As PA

is irreducible and is not a polynomial of a power we get a contradiction.

Lemma A.10 (Lemma 4.8). For any δ > 0 there is a constant c = c(A, δ)
such that r = N

2 − 1, |nc| ≥ c
|n|r+δ for any n ∈ ZN , n 	= 0.

Proof. Call λ the eigenvalue with modulus 1 and ek the standard basis of
RN . Then, because of the form of A we have Ake1 = ek+1 for k = 0, . . . , N −1.
So, given n ∈ ZN , n =

∑N−1
k=0 nk+1ek+1, we have nc = (

∑N−1
k=0 nk+1λ

k)ec
1. Then

|nc| ≥ C|
∑N−1

k=0 nk+1λ
k|. Now, by Corollary A.6, ck

1 = Pk(c1) for any k ≥ 0
where Pk is a polynomial with integral coefficients of degree less than or equal
to N

2 − 1. So, we can write

2Re

(N−1∑
k=0

nk+1λ
k

)
=

N−1∑
k=0

nk+1Rk(c1) =
N/2−1∑

k=0

L1
k(n)ck

1

and

Im

(N−1∑
k=0

nk+1λ
k

)
= Im(λ)

N−1∑
k=0

nk+1Ik(c1) = Im(λ)
N/2−1∑

k=0

L2
k(n)ck

1

where Li
k is a homogeneous form for k = 0, . . . , N

2 −1, i = 1, 2. Finally, as c1 is
the root of a polynomial with integral coefficients, irreducible over the integers
and with degree N

2 , we can use Theorem A.1 and thus get that whenever
M1 = max(|L1

1(n)|, . . . , |L1
N/2−1(n)|) > 0,∣∣∣∣N−1∑

k=0

nk+1λ
k

∣∣∣∣ ≥ ∣∣∣∣Re

(N−1∑
k=0

nk+1λ
k

)∣∣∣∣ =
1
2

∣∣∣∣N/2−1∑
k=0

L1
k(n)ck

1

∣∣∣∣ ≥ c

M r+δ
1

and whenever M2 = max(|L2
1(n)|, . . . , |L2

N/2−1(n)|) > 0∣∣∣∣N−1∑
k=0

nk+1λ
k

∣∣∣∣ ≥ ∣∣∣∣Im

(N−1∑
k=0

nk+1λ
k

)∣∣∣∣ =
1

Im(λ)

∣∣∣∣N/2−1∑
k=0

L2
k(n)ck

1

∣∣∣∣ ≥ c

M r+δ
2
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as |Li
k(n)| ≤ C|n| for any k, i = 1, 2. Now, C does not depend on n, and the

result follows whenever there is some k ≥ 1 and i is such that Li
k(n) 	= 0. If

Li
k(n) = 0 for any k ≥ 1 and i = 1, 2 but Li

0(n) 	= 0 the result also follows. So
we must deal with the case that Li

k(n) = 0 for any k ≥ 0 and i = 1, 2, but this
implies that nc = 0 and this cannot happen since in this case we have that
n ∈ Esu, and the irreducibility of A implies that Esu = RN which contradicts
the assumption.

Lemma A.11 (Lemma 6.2). If N ≥ 6 there is n ∈ ZN such that if the
linear transformation L : Ec → R2 is defined by L(ec

1) = (1, 0), and L(ec
2) =

(0, 1) and L(nc) = α, then α satisfies a diophantine condition with exponent δ

for any δ > 0.

Proof. Take n = e2 + e4. Once we define the linear transformation that
sends ec

1 to (1, 0), ec
2 to (0, 1), it is not hard to see that it sends nc to (−c1, c

2
1).

Now, by Proposition A.2 we have that 1,−c1, c
2
1 are linearly independent over

the rationals. So, using Theorem A.1 we get the lemma.

Lemma A.12 (Lemma 6.6). If N = 4 there exist n1, n2 such that if the
linear transformation L : Ec → R2 defined by L(ec

1) = (1, 0), and L(ec
2) = (0, 1)

and L(nc
1) = α1, L(nc

2) = α2, then there is a constant c > 0 such that

max
ν=1,2

|‖ k · αν |‖ ≥ c

|k|2

for any k ∈ Z2, k 	= 0.

Proof. Take n1 = (−p1, 1 − p2,−p1,−1) and n2 = (1, 0, 1, 0) where the
characteristic polynomial of A is P (z) = z4 + p1z

3 + p2z
2 + p1z + 1. Then we

have that L(nc
1) = (c1, 0) and L(nc

2) = (0, c1) where c1 is as before for λ the
root of P of modulus 1. Now we have Q(c1) = c2

1 + p1c1 + p2 − 1 = 0 and as
Q is irreducible, this implies that there exists c > 0 such that |‖ qc1 |‖ ≥ c

q2 for
any q ∈ Z, q 	= 0. Given k ∈ Z2, k 	= 0 we get that |‖ k · α1 |‖ ≥ c

k2
1
≥ c

|k|2 if
k1 	= 0 and the same holds for α2 if k2 	= 0. As k 	= 0 we have the desired
result.

Appendix B. Invariant manifolds

In this section we will show how to get the invariant foliations and how
to prove regularity properties in their holonomies. We will follow [HPS] and
[PSW].
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Proposition B.1. If f is sufficiently Cr close to A then there exists

γs : RN × Es → Ecu, γcs : RN × Ecs → Eu,

γu : RN × Eu → Ecs, γcu : RN × Ecu → Es,

γc : RN × Ec → Esu,

such that if γσ(x, ·) = γσ
x , σ = s, u, c, cs, cu then

W σ(x) = x + graph(γσ
x ) = {x + v + γσ

x (v), v ∈ Eσ},

γσ(x + n, v) = γσ(x, v) and γσ(x, 0) = 0. Each γσ is continuous in the first
variable and Cr in the second one. Moreover, Lip(γσ

x ) ≤ κ where κ = κ(f) and

κ(f) → 0 as f
C1

→ A.

Proof. By the invariant manifold theory, it is known that there exist ε > 0
and γσ : TN × Eσ(ε) → Eν , where σ and ν are related in the obvious way,
with all the desired regularities. So we only have to prove the existence of the
global transformations, i.e. that the invariant manifolds are locally a graph is
a known fact. What is new here is that they are global graphs. We shall prove
the existence of γu. The existence of the others follows in an analogous way
changing the spaces accordingly. Let us define the space

G =
{

γ : Eu → Ecs continuous, such that
|γ|∗ < ∞, Lip(γ) < ∞ and |γ|1 < ∞

}
where |γ|∗ = sup

v �=0

|γ(v)|
|v| , Lip(γ) is the Lipschitz constant of γ and |γ|1 =

sup
|v|≥2

|γ(v)|
log |v| . It is not hard to see that G with the norm | · |∗ is a Banach space.

Define (on the Banach bundle TN × G) the graph transform Γ:

TN × G
Γ−→ TN × G

↓ ↓
TN f−→ TN

defined in the following way: for x and γ ∈ G,

gu
x,γ : Eu → Eu gu

x,γ(w) = Auw + ϕu(x + w + γ(w)) − ϕu(x)

and

Γ(γ)(x, v) = Acsγ
(
(gu

x,γ)−1(v)
)
+ϕcs

(
x+(gu

x,γ)−1(v)+γ
(
(gu

x,γ)−1(v)
))

−ϕcs(x).

There are constants κ = κ(f) satisfying κ(f) → 0 as f
C1

→ A and C > 0
that only depend on the C1 size of the neighborhood of A such that

G(κ, C) =
{
γ such that |γ|∗ ≤ κ, Lip(γ) ≤ κ and |γ|1 ≤ C

}
;
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G(κ, C) is closed in G and invariant under the action of the graph transform.
Moreover, Γ acts here as a contraction. So there exists a section η : TN →
G(κ, C) invariant under the graph transform. Define γu(x, v) = η(p(x))(v)
where p : RN → TN is the covering projection. The continuous dependence on
f follows from the continuity of the invariant section in section theorems.

Lemma B.2 (Lemma 2.2). For any x, y ∈ RN ,

(1) #W s(x) ∩ W cu(y) = 1,

(2) #W u(x) ∩ W cs(y) = 1.

Proof. As always we are going to prove only the first one. To prove that
x, y ∈ RN intersect we must solve the following equation:

x + vs + γs
x(vs) = y + wcu + γcu

y (wcu).

Let vs = ys − xs + γcu
y (wcu) and define l : Ecu → Ecu by

l(wcu) = wcu + xcu − ycu + γs
x(ys − xs + γcu

y (wcu)) = wcu + r(wcu).

As we see easily, using the preceding proposition, Lip(r) ≤ κ2; so if κ < 1 we
have that l is a homeomorphism. Hence there exists wcu such that l(wcu) = 0.
It is not hard to see now that this wcu and vs = ys − xs + γcu

y (wcu) are the
only ones solving the above equation.

Lemma B.3 (Lemma 2.1). There exists κ = κ(f) such that κ(f) → 0 as

f
C1

→ A and C > 0 that only depends on the C1 size of the neighborhood of A

such that for v ∈ Eσ,

(1) |γσ
x (v)| ≤ C log |v| for σ = s, u, |v| ≥ 2,

(2) |γσ
x (v)| ≤ κ for σ = c, cs, cu for any v,

(3) |(γu
x(v))s| ≤ κ for any v,

(4) |(γs
x(v))u| ≤ κ for any v,

(5) |γσ
x (v)| ≤ κ|v| for σ = s, u, c, cs, cu for any v.

Proof. The proof of (1) and (5) follows from Proposition B.1. The proof
of (3) and (4) follows from (2) as the stable and unstable manifolds subfoliate
the center-stable and center-unstable manifolds. And the proof of (2) follows
essentially by the proof of the stability of the plaque expansive foliations in
[HPS]. Nevertheless, let us give a proof of (2) that is a little bit simpler in
this case. It follows essentially the idea of the proof of the Hartman-Grobman
theorem.
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Let us prove it for the case of σ = cu, the case of cs works as well. Denote
F = A + ψ and let us solve the cohomological equation

Asϕs − ϕs ◦ F = ψs.

Now,

ϕs = −
+∞∑
k=0

(As)kψs ◦ F−(k+1)

and ϕs(x + n) = ϕs(x) for any n ∈ ZN , so that

‖ϕs‖0 ≤ 1
1 − ‖As‖‖ψ

s‖0

where ‖ · ‖0 is the sup-norm. Thus, if f is sufficiently C0 close to A then we
may suppose ‖ϕs‖ ≤ κ/2. Define hs : RN → Es by hs(x) = xs + ϕs(x). Then
hs ◦ F = Ashs. We claim that if x ∈ W cu(y) then hs(x) = hs(y). Indeed

|hs(x) − hs(y)|= |(As)nhs(F−n(x)) − (As)nhs(F−n(x))|
≤ ‖As‖n

(
|F−n(x) − F−n(y)| + κ

)
≤‖As‖n

(
µn|x − y| + κ

)
where µ = sup ‖DF−1|Ecu

f
‖ is as close to 1 as we want if f is C1 close to A.

Hence as ‖As‖µ < 1 we have that hs(x) = hs(y). Now, we claim that if
hs(x) = hs(y) then W cu(x) = W cu(y). Take x and y such that hs(x) = hs(y).
When z = W s(x) ∩ W cu(y), we claim that z = x. As z ∈ W cu(y),

0 = |hs(Fn(x)) − hs(Fn(z))|
= |(Fn(x) − Fn(z))s + (ϕs(Fn(x)) − ϕs(Fn(z)))|
≥ |(Fn(x) − Fn(z))s| − κ ≥ C|Fn(x) − Fn(z)| − κ.

This last inequality follows because z ∈ W s(x). But then, letting n → −∞
we get a contradiction if x 	= z. So we get that hs(x) = hs(y) if and only
if W cu(x) = W cu(y). Call now Hs : RN → RN , Hs(x) = xcu + hs(x).
Using those last properties, it is not hard to see that Hs(x + n) = Hs(x) + n

and that Hs is a homeomorphism. Moreover, if y ∈ W cu(x), then Hs(y) =
(y−x)cu +Hs(x); thus we get that Hs(W cu(x)) ⊂ Hs(x)+Ecu. On the other
hand, if z ∈ Hs(x) + Ecu then zs = (Hs(x))s = hs(x), and so, if Hs(y) = z

then hs(y) = (Hs(y))s = zs = hs(x) and hence, y ∈ W cu(x). So we have
that Hs(W cu(x)) = Hs(x) + Ecu. Also, (Hs)−1(y) = ĥs(y) + ycu for some
ĥs(y) = ys + ϕ̂s(y), and so,

W cu(x) = (Hs)−1(Hs(x) + Ecu)

= {x + v + ϕs(x) + ϕ̂s(Hs(x) + v) st v ∈ Ecu}.
Hence we get that γcu

x (v) = ϕs(x) + ϕ̂s(Hs(x) + v), and the proof then follows
from the fact that ϕ̂s(y) = −ϕs((Hs)−1(y)).
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Now for the case σ = c, working in the same way, call ϕu the solution of
the cohomological equation

Auϕu − ϕu ◦ F = ψu.

Define hsu : RN → Esu by hsu(x) = xs + xu + ϕs(x) + ϕu(x) = hs(x) + hu(x).
Now, hsu(x) = hsu(y) if and only if W c(x) = W c(y), just because W cs(x) ∩
W cu(x) = W c(x). Next, let Hsu : RN → RN , Hsu(x) = xc + hsu(x). It
follows from the properties above that Hsu(x + n) = Hsu(x) + n and that
Hsu is a homeomorphism. Moreover we have Hsu(W c(x)) = Hsu(x) + Ec and
(Hsu)−1(y) = ĥsu(y) + yc for some ĥsu(y) = ysu + ϕ̂su(y), and so,

W c(x) = (Hsu)−1(Hsu(x)+Ec) = {x+v+ϕsu(x)+ϕ̂su(Hsu(x)+v) st v ∈ Ec}.

Hence, γc
x(v) = ϕsu(x) + ϕ̂su(Hsu(x) + v), and the proof then follows from the

fact that ϕ̂su(y) = −ϕsu((Hsu)−1(y)).

Lemma B.4 (Lemma 2.3). Given C > 0 and ε > 0 there is a neighbor-
hood of A in the Cr topology such that for any f in this neighborhood, x and y

with |x − y| ≤ C, x ∈ W cu(y),

πu
xy : W c(x) → W c(y), πu

xy(z) = W u(z) ∩ W c(y),

P u
xy : Ec → Ec, P u

xy = (jc
y)

−1 ◦ πu
xy ◦ jc

x,

and if
P u

xy(z) = z + (x − y)c + ϕxy(z),

then ‖ϕxy‖Cr < ε where the sup-norm in all derivatives of order less than or
equal to r is used. The same holds for the s-holonomy.

Proof. To prove this lemma, we will use the Hs built at the end of the
proof of the preceding lemma and Theorem 6.7 on page 86 of [HPS]. Fix x and
y and let us try to prove that their holonomy satisfies the required property.
We omit the subindex xy whenever there is no confusion. Let us try to see
what ϕ is. Define φ : Ec × Ec → Ec by

φ(v, w) = v + (x − y)c − w +
[
γu

(
jc
x(v),

(
y + γc

y(w) − x − γc
x(v)

)u
)]c

.

Then it is not hard to see that P u satisfies φ(v, P u(v)) = 0. So, using the
implicit function theorem, we get that if φ is Cr and the derivative with respect
to the second variable is invertible, then P u is Cr. Moreover, it is not hard
to see that if φ is close enough in the Cr-sup-norm to v + (x − y) − w, then
this last property is satisfied and the Cr-sup-norm of ϕ will be small. So let us
examine this last property. We see that the Cr-sup-norm in v and w of

(v, w) →
[
γu

(
x + v + γc

x(v),
(
y + γc

y(w) − x − γc
x(v)

)u
)]c
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can be taken as small as wanted once the distance between x and y is fixed
and f is close to A. To this end, first notice that the image of the map
(v, w) →

(
y − x − γc

x(v) + γc
y(w)

)u is contained in the ball Bu
(y−x)u(2κ). So,

if the Cr-sup-norms of γc
x and γc

y are small enough and the Cr-sup-norm of
γu|W c(x)×Bu

(y−x)u (2κ) is small enough too, then, we get the desired property.
That the Cr-sup-norms of γc

x and γc
y are small follows from Lemma B.1 and

Lemma B.3. Let us focus our attention on γu. Define F̂ = Hs ◦ F ◦ (Hs)−1,
F̂ : W → W , where W =

⊔
(p + Ecu) is the disjoint union of the translate of

the center-unstable space. It is a nonseparable (c + u)-dimensional manifold.
Moreover, Hs, looking like a diffeomorphism from W ′ =

⊔
W cu(p) onto W , is

Cr and moreover, if F is Cr close to A, then F̂ is also Cr close to A (looking at F̂

and A as diffeomorphisms from W onto W ). Now, we build the graph transform
over W essentially as we did in the proof of Proposition B.1 (changing G to
Ĝ, where Ĝ is defined as G but changing Ecs to Ec; we also change TN to W )
and it turns out that this satisfies all the hypotheses of Theorem 6.7 of [HPS].
So, there is a Cr section ηF̂ : W → Ĝ depending continuously on F̂ . Using the
properties of the norm on Ĝ we get the desired property for γu

F̂
and hence for

γu using Hs : W ′ → W .
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