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Iwasawa’s Main Conjecture

for elliptic curves
over anticyclotomic Zp-extensions
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Introduction

Let E be an elliptic curve over Q, let p be an ordinary prime for E, and
let K be an imaginary quadratic field. Write K∞/K for the anticyclotomic
Zp-extension of K and set G∞ = Gal(K∞/K).
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Following a construction of Section 2 of [BD1] which is recalled in Sec-
tion 1, one attaches to the data (E, K, p) an anticyclotomic p-adic L-function
Lp(E, K) which belongs to the Iwasawa algebra Λ := Zp[[G∞]]. This element,
whose construction was inspired by a formula proved in [Gr1], is known, thanks
to work of Zhang ([Zh, §1.4]), to interpolate special values of the complex
L-function of E/K twisted by characters of G∞.

Let Sel(K∞, Ep∞)∨ be the Pontrjagin dual of the p-primary Selmer group
attached to E over K∞, equipped with its natural Λ-module structure, as
defined in Section 2. It is a compact Λ-module; write C for its characteristic
power series, which is well-defined up to units in Λ.

Let N0 denote the conductor of E, set N = pN0 if E has good ordinary
reduction at p, and set N = N0 if E has multiplicative reduction at p so that
p divides N0 exactly. It will be assumed throughout that the discriminant of
K is prime to N , so that K determines a factorisation

N = pN+N−,

where N+ (resp. N−) is divisible only by primes different from p which are
split (resp. inert) in K.

The main goal of the present work is to prove (under the mild technical
Assumption 6 on (E, K, p) given at the end of this introduction) Theorem 1
below, a weak form of the Main Conjecture of Iwasawa Theory for elliptic
curves in the ordinary and anticyclotomic setting.

Theorem 1. Assume that N− is the square-free product of an odd number
of primes. The characteristic power series C divides the p-adic L-function
Lp(E, K).

The hypothesis on N− made in Theorem 1 arises naturally in the an-
ticyclotomic setting, and some justification for it is given at the end of the
introduction.

Denote by Lp(E, K, s) the p-adic Mellin transform of the measure defined
by the element Lp(E, K) of Λ. Let r be the rank of the Mordell-Weil group
E(K). The next result follows by combining Theorem 1 with standard tech-
niques of Iwasawa theory.

Corollary 2. ords=1Lp(E, K, s) ≥ r.

A program of study of Lp(E, K, s) in the spirit of the work of Mazur, Tate
and Teitelbaum [MTT] is outlined in [BD1], and partially carried out in [BD2]–
[BD5]. In particular, Section 4 of [BD1] formulates a conjecture predicting the
exact order of vanishing of Lp(E, K, s) at s = 1. More precisely, set E+ = E

and let E− be the elliptic curve over Q obtained by twisting E by K. Write



IWASAWA’S MAIN CONJECTURE FOR ELLIPTIC CURVES 3

r± for the rank of E±(Q), so that r = r+ + r−. Set r̃± = r± + δ±, where

δ± =
{

1 if E± has split multiplicative reduction at p,

0 otherwise.

Finally set ρ := max(r̃+, r̃−) and r̃ := r̃++r̃−. Conjecture 4.2 of [BD1] predicts
that

ords=1Lp(E, K, s) = 2ρ = r̃ + |r̃+ − r̃−|.(1)

This conjecture indicates that Lp(E, K, s) vanishes to order strictly greater
than r, if either r̃ > r or if r̃+ �= r̃−. The first source of extra vanishing is
accounted for by the phenomenon of exceptional zeroes arising when p is a
prime of split multiplicative reduction for E over K, which was discovered by
Mazur, Tate and Teitelbaum in the cyclotomic setting [MTT]. The second
source of extra vanishing is specific to the anticyclotomic setting, and may
be accounted for by certain predictable degeneracies in the anticyclotomic p-
adic height, related to the fact that Sel(K∞, Ep∞)∨ fails to be semisimple as a
module over Λ when r+ �= r−. (Cf. for example [BD1

2 ].)
A more careful study of the Λ-module structure of Sel(K∞, Ep∞), which

in the good ordinary reduction case is carried out in [BD0] and [BD1
2 ], yields

the following refinement of Corollary 2 which is consistent with the conjectured
equality (1).

Corollary 3. If p is a prime of good ordinary reduction for E, then

ords=1Lp(E, K, s) ≥ 2ρ.

Let O be a finite extension of Zp, and let χ : G∞ −→ O× be a finite order
character, extended by Zp-linearity to a homomorphism of Λ to O. If M is
any Λ-module, write

Mχ = M ⊗χ O,

where the tensor product is taken over Λ via the map χ.
Let LLIp(E/K∞) denote the p-primary part of the Shafarevich-Tate group

of E over K∞. A result of Zhang ([Zh, §1.4]) generalising a formula of Gross
established in [Gr1] in the special case where N is prime and χ is unramified,
relates χ(Lp(E, K)) to a nonzero multiple of the classical L-value L(E/K, χ, 1)
(where one views χ as a complex-valued character by choosing an embedding
of O into C). Theorem 1 combined with Zhang’s formula leads to the following
corollary, a result which lends some new evidence for the classical Birch and
Swinnerton-Dyer conjecture.

Corollary 4. If L(E/K, χ, 1) �= 0, then E(K∞)χ and LLIp(E/K∞)χ are
finite.
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Remarks. 1. The restriction that χ be of p-power conductor is not essential
for the method that is used in this work, so that it should be possible, with
little extra effort, to establish Corollary 4 for arbitrary anticyclotomic χ, and
for the χ-part of the full Shafarevich-Tate group and not just its p-primary
part, by the techniques in the proof of Theorem 1.

2. Corollary 4 was also proved in [BD2] by a different, more restrictive
method which requires the assumption that p is a prime of multiplicative re-
duction for E/K which is inert in K. Hence, in contrast to the previous
remark, the method of [BD2] cannot be used to obtain the finiteness of the full
Shafarevich-Tate group of E, but only of its p-primary part for a finite set of
primes p.

3. The nonvanishing of L(E/K, χ, 1) seems to occur fairly often. For
example, Vatsal has shown ([Va1, Th. 1.4]) that L(E/K, χ, 1) is nonzero for
almost all χ when χ varies over the anticyclotomic characters of p-power con-
ductor for a fixed p.

Another immediate consequence of Theorem 1 is that Sel(K∞, Ep∞) is a
cotorsion Λ-module whenever Lp(E, K) is not identically 0, so that in partic-
ular one has

Corollary 5. If Lp(E, K) is nonzero, then the Mordell-Weil group
E(K∞) is finitely generated.

Remark . The nonvanishing of Lp(E, K) has been established by Vatsal.
See for example Theorem 1.1 of [Va2] which even gives a precise formula for
the associated µ-invariant.

Assumptions. Let Ep be the mod p representation of GQ attached to E.
For simplicity, it is assumed throughout the paper that (E, K, p) satisfies the
following conditions.

Assumption 6. (1) The prime p is ≥ 5.

(2) The Galois representation attached to Ep has image isomorphic to
GL2(Fp).

(3) The prime p does not divide the minimal degree of a modular parametri-
sation X0(N0) −→ E.

(4) For all primes � such that �2 divides N , and p divides � + 1, the module
Ep is an irreducible I�-module.

Remarks. 1. Note that these assumptions are satisfied by all but finitely
many primes once E is fixed, provided that E has no complex multiplications.
They are imposed to simplify the argument and could probably be relaxed.
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This is unlike the condition in Theorem 1 which – although it may appear
less natural to the uninitiated – is an essential feature of the situation being
studied. Indeed, for square-free N−, the restriction on the parity of the number
of primes appearing in its factorisation is equivalent to requiring that the sign
in the functional equation of L(E, K, χ, s), for χ a ramified character of G∞,
be equal to 1. Without this condition, the p-adic L-function Lp(E, K, s) would
vanish identically. See [BD1] for a discussion of this case where it becomes
necessary to interpolate the first derivatives L′(E, K, χ, 1).

2. The analogue of Theorem 1 for the cyclotomic Zp-extension has been
proved by Kato. Both the proof of Theorem 1 and Kato’s proof of the cyclo-
tomic counterpart are based on Kolyvagin’s theory of Euler systems.

3. The original “Euler system” argument of Kolyvagin relies on the pres-
ence of a systematic supply of algebraic points on E — the so-called Heegner
points defined over K and over abelian extensions of K. As can be seen from
Corollaries 4 and 5, the situation in which we have placed ourselves precludes
the existence of a nontrivial norm-compatible system of points in E(K∞). One
circumvents this difficulty by resorting to the theory of congruences between
modular forms and the Cerednik-Drinfeld interchange of invariants, which, for
each n ≥ 1, realises the Galois representation Epn in the pn-torsion of the
Jacobian of certain Shimura curves for which the Heegner point construction
becomes available. By varying the Shimura curves, we produce a compatible
collection of cohomology classes in H1(K∞, Epn), a collection which can be
related to special values of L-functions and is sufficient to control the Selmer
group Sel(K∞, Ep∞). It should be noted that this geometric approach to the
theory of Euler systems produces ramified cohomology classes in H1(K∞, Epn)
directly without resorting to classes defined over auxiliary ring class field ex-
tensions of K∞; in particular, Kolyvagin’s derivative operators make no ap-
pearance in the argument. In the terminology of [MR], the strategy of this
article produces a “Kolyvagin system” without passing through an Euler sys-
tem in the sense of [Ru]. This lends some support for the suggestion made in
[MR] that Kolyvagin systems are the more fundamental objects of study.

Acknowledgements. It is a pleasure to thank Professor Ihara for some
useful information on his work, as well as Kevin Buzzard, Ben Howard and the
anonymous referees for many helpful comments which led to some corrections
and significant improvements in the exposition.

1. p-adic L-functions

1.1. Modular forms on quaternion algebras. Let N− be an arbitrary
square-free integer which is the product of an odd number of primes, and let
N+ be any integer prime to N−. Let p be a prime which does not divide
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N+N− and write N = pN+N−. Let B be the definite quaternion algebra
ramified at all the primes dividing N−, and let R be an Eichler Z[1/p]-order
of level N+ in B. The algebra B is unique up to isomorphism, and the Eichler
order R is unique up to conjugation by B×, by strong approximation (cf. [Vi,
Ch. III, §4 and §5]).

Denote by T the Bruhat-Tits tree of B×
p /Q×

p , where

Bp := B ⊗ Qp � M2(Qp).

The set V(T ) of vertices of T is indexed by the maximal Zp-orders in Bp, two
vertices being adjacent if their intersection is an Eichler order of level p. Let
→
E (T ) denote the set of ordered edges of T , i.e., the set of ordered pairs (s, t)
of adjacent vertices of T . If e = (s, t), the vertex s is called the source of e and
the vertex t is called its target; they are denoted by s(e) and t(e) respectively.

The tree T is endowed with a natural left action of B×
p /Q×

p by isometries
corresponding to conjugation of maximal orders by elements of B×

p . This action

is transitive on both V(T ) and
→
E (T ). Let R× denote the group of invertible

elements of R. The group Γ := R×/Z[1/p]× – a discrete subgroup of B×
p /Q×

p

in the p-adic topology – acts naturally on T and the quotient T /Γ is a finite
graph.

Definition 1.1. A modular form (of weight two) on T /Γ is a Zp-valued

function f on
→
E (T ) satisfying

f(γe) = f(e), for all γ ∈ Γ.

Denote by S2(T /Γ) the space of such modular forms. It is a free Zp-module
of finite rank. More generally, if Z is any ring, denote by S2(T /Γ, Z) the space
of Γ-invariant functions on

→
E (T ) with values in Z.

Duality. Let e1, . . . , es be a set of representatives for the orbits of Γ
acting on

→
E (T ), and let wj be the cardinality of the finite group StabΓ(ej).

The space S2(T /Γ) is endowed with a Zp-bilinear pairing defined by

〈f1, f2〉 =
s∑

i=1

wif1(ei)f2(ei).(2)

This pairing is nondegenerate so that it identifies S2(T /Γ) ⊗ Qp with its
Qp-dual.

Hecke operators. Let � �= p be a prime which does not divide p. Choose an
element M� of reduced norm � in the Z[1/p]-order R that was used to define Γ.
The double coset ΓM�Γ decomposes as a disjoint union of left cosets:

ΓM�Γ = γ1Γ ∪ · · · ∪ γtΓ.(3)
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Here t = � + 1 (resp. �, 1) if � does not divide N+N− (resp. divides N+, N−).
The function f|� defined on

→
E (T ) by the rule

f|�(e) =
t∑

i=1

f(γ−1e)(4)

is independent of the choice of M� or of the representatives γ1, . . . , γt, and the
assignment f �→ f|� is a linear endomorphism of S2(T /Γ), called the �th Hecke
operator at � and denoted T� if � does not divide N , and U� if � divides N+N−.

Associated to the prime p there is a Hecke operator denoted Up and defined
by the rule

(Upf)(e) =
∑

s(e′)=t(e)

f(e′),(5)

where the sum is taken over the p edges e′ with source equal to the target
of e, not including the edge obtained from e by reversing the orientation. The
Hecke operators T� (with �� |N) are called the good Hecke operators. They are
self-adjoint for the pairing on S2(T /Γ) defined in (2):

〈T�f1, f2〉 = 〈f1, T�f2〉.(6)

Oldforms and Newforms. Let S2(V/Γ, Z) denote the space of Γ-invariant
Z-valued functions on V(T ), equipped with a Z-valued bilinear pairing as in
(2) with edges replaced by vertices. There are two natural “degeneracy maps”
s∗, t∗ : S2(V/Γ) −→ S2(T /Γ) defined by

s∗(f)(e) = f(s(e)), t∗(f)(e) = f(t(e)).

A form f ∈ S2(T /Γ, Z) is said to be p-old if there exist Γ-invariant functions
f1 and f2 on V(T ) such that

f = s∗(f1) + t∗(f2).(7)

A form which is orthogonal to the oldforms (i.e., is orthogonal to the image of
s∗ and t∗) is said to be p-new. The form f is p-new if and only if f is harmonic
in the sense that it satisfies

s∗(f)(v) :=
∑

s(e)=v

f(e) = 0, t∗(f)(v) :=
∑

t(e)=v

f(e) = 0, ∀v ∈ V(T ).(8)

This can be seen by noting that s∗ and t∗ are the adjoints of the maps s∗ and
t∗ respectively.

p-isolated forms. Let T be the Hecke algebra acting on the space S2(T /Γ).
A form f in this space is called an eigenform if it is a simultaneous eigenvector
for all the Hecke operators, i.e.,

T�(f) = a�(f)f, for all �� |N,

U�(f) =α�(f)f, for all �|N,
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where the eigenvalues a�(f) and α�(f) belong to Zp. Such an eigenform deter-
mines a maximal ideal mf of T by the rule

mf := 〈p, T� − a�(f), U� − α�(f)〉 .

Definition 1.2. The eigenform f is said to be p-isolated if the completion
of S2(T /Γ) at mf is a free Zp-module of rank one.

In other words, f is p-isolated if there are no nontrivial congruences be-
tween f and other modular forms in S2(T /Γ). Note that this is really a prop-
erty of the mod p eigenform in S2(T /Γ, Fp) associated to f , or of the maximal
ideal mf , so that it makes sense to say that mf is p-isolated if it is attached to
(the reduction of) a p-isolated eigenform.

The Jacquet-Langlands correspondence. The complex vector space
S2(H/Γ0(N)) of classical modular forms of weight 2 on H/Γ0(N)) is simi-
larly endowed with an action of Hecke operators, which will also be denoted
by the symbols T�, U� and Up by abuse of notation. Let φ be an eigenform
on Γ0(N) which arises from a newform φ0 of level N0. It is a simultaneous
eigenfunction for all the good Hecke operators T�. Assume that it is also an
eigenfunction for the Hecke operator Up. Write a� for the eigenvalue of T�

acting on φ, and αp for the eigenvalue of Up acting on φ.

Remark. If p does not divide N0, so that φ is not new at p, then the
eigenvalue αp is a root of the polynomial x2−apx+p, where ap is the eigenvalue
of Tp acting on φ0. If p divides N0, then φ = φ0 and the eigenvalue αp is equal
to 1 (resp. −1) if the abelian variety attached to φ by the Eichler-Shimura
construction has split (resp. nonsplit) multiplicative reduction at p.

Proposition 1.3. Let φ be as above. Then there exists an eigenform f

in S2(T /Γ, C) satisfying

T�f = a�(φ)f for all �� |N,

U�f = α�(φ)f for all �|N+, Upf = αp(φ)f.
(9)

The form f with these properties is unique up to multiplication by a nonzero
complex number. Conversely, given an eigenform f ∈ S2(T /Γ, C), there exists
an eigenform φ ∈ S2(H/Γ0(N)) satisfying (9).

Proof. Suppose first that p divides N0, so that φ is a newform on Γ0(N).
Let R0 be an Eichler Z-order of level pN+ in the definite quaternion algebra
of discriminant N−. Write R̂0 = R0 ⊗ Ẑ =

∏
� R0 ⊗Z�, and B̂ := R̂0 ⊗Q. The

Jacquet-Langlands correspondence (which, in this case, can be established by
use of the Eichler trace formula as in [Ei]; see also [JL] and the discussion in
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Chapter 5 of [DT]) implies the existence of a unique function

f : B×\B̂×/R̂×
0 −→ C(10)

satisfying T�f = a�f for all �� |N , and Upf = αpf (where the operators T� and
Up are the general Hecke operators defined in terms of double cosets as in [Sh]).
Strong approximation identifies the double coset space appearing in (10) with
the space R×\B×

p /(R0)×p . The transitive action of B×
p on the set of maximal

orders in Bp by conjugation yields an action of B×
p on T by isometries, for

which the subgroup (R0)×p is equal to the stabiliser of a certain oriented edge.

In this way B×
p /(R0)×p is identified with

→
E (T ), and f can thus be viewed as

an element of S2(T /Γ, C).
If p does not divide N0, let ap denote the eigenvalue of Tp acting on φ0,

and let R0 denote now the Eichler order of level N+ in the quaternion algebra
B. As before, to the form φ0 is associated a unique function

f0 : B×\B̂×/R̂×
0 −→ C(11)

satisfying T�f = a�f for all �� |N0. As before, strong approximation makes it
possible to identify f0 with a Γ-invariant function on V(T ). In this description,
the action of Tp on f0 is given by the formula

Tp(f0(v)) =
∑
w

f0(w),

where the sum is taken over the p + 1 vertices w of T which are adjacent to v.
Define functions fs, ft :

→
E (T ) −→ C by the rules:

fs(e) = f0(s(e)), ft(e) = f0(t(e)).

The forms fs and ft both satisfy T�(g) = a�g for all �� |N , and span the two-
dimensional eigenspace of forms with this property. A direct calculation reveals
that

Upfs = pft, Upft = −fs + apft.

The function f = fs − αpft satisfies Upf = αpf, and is, up to scaling, the
unique eigenform in S2(T /Γ, C) with this property.

The converse is proved by essentially reversing the argument above: to an
eigenform f ∈ S2(T /Γ, C) is associated a function on the adelic coset space
attached to B× as in (10); the Jacquet-Langlands correspondence (applied now
in the reverse direction) produces the desired φ ∈ S2(H/Γ0(N)).

The Shimura-Taniyama conjecture. Let E be an elliptic curve as in the
introduction. For each prime � which does not divide N , set

a� = � + 1 − #E(F�).

If E has good ordinary reduction at p, let αp ∈ Zp be the unique root of the
polynomial x2 − apx + p which is a p-adic unit. Set αp = 1 (resp. −1) if E has
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split (resp. nonsplit) multiplicative reduction at p. The following theorem is a
consequence of the Shimura-Taniyama conjecture in view of Proposition 1.3.

Proposition 1.4. There exists an eigenform f in S2(T /Γ) satisfying

T�f = a�f, for all �� |N, Upf = αpf,

f /∈ pS2(T /Γ).

The form f with these properties is unique up to multiplication by a scalar
in Z×

p .

Proof. Proposition 1.3 shows that there exists a form f ∈ S2(T /Γ, C)
satisfying the conclusion of Proposition 1.4. The eigenvalues a� belong to Z,
and, since E is ordinary at p, the eigenvalue αp belongs to the ring of integers
O of a quadratic extension of Q in which p splits completely. Hence, the form
f can be chosen to lie in S2(T /Γ,O). After applying the unique embedding of
O into Zp which sends αp to a p-adic unit, and rescaling f appropriately, one
obtains a form in S2(T /Γ) satisfying the conclusion of Proposition 1.4.

1.2. p-adic Rankin L-functions. An eigenform f in S2(T /Γ) is said to be
ordinary if the eigenvalue αp of Up acting on f is a p-adic unit. This section
recalls the definition of the p-adic Rankin L-function attached to an ordinary
form on T /Γ and a quadratic algebra K ⊂ B.

If A is any Z-algebra, let

A� = A ⊗ Z�, Â = A ⊗ Ẑ ⊂
∏
�

A�.(12)

Let K be a quadratic algebra of discriminant prime to N which embeds in B.
Since B is definite of discriminant N−, the algebra K is an imaginary quadratic
field in which all prime divisors of N− are inert. Let OK denote the ring of
integers of K and let O = OK [1/p] be the maximal Z[1/p]-order in K.

Let G̃∞ denote the group

G̃∞ = K̂×/(Q̂× ∏
��=p

O×
� K×).(13)

Fix an embedding

Ψ : K −→ B satisfying Ψ(K) ∩ R = Ψ(O).(14)

Such a Ψ exists if and only if all the primes dividing N+ are split in K. By
passing to the adelisation the embedding Ψ induces a map

Ψ̂ : G̃∞ −→ B×\B̂×/

Q̂× ∏
� �=p

R×
�

 .(15)
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By strong approximation ([Vi, Ch. III, §4]), the double coset space appearing
on the right has a fundamental region contained in B×

p ⊂ B̂×. In fact, strong
approximation yields a canonical identification

η : B×\B̂×/

Q̂× ∏
��=p

R×
�

 −→ Γ\B×
p /Q×

p .(16)

The modular form f ∈ S2(T /Γ) determines a pairing between G̃∞ and
→
E (T )

by the rule

[σ, e]f := f(ηΨ̂(σ)e) ∈ Zp.(17)

The embedding Ψ induces an embedding of K×
p into B×

p and hence yields an
action of K×

p /Q×
p on T . This action fixes a single vertex if p is inert in K, and

no vertex if p is split in K. Let

Un := (1 + pnOK ⊗ Zp)×/(1 + pnZp)×(18)

denote the standard compact subgroup of K×
p /Q×

p of level n. Choose a se-
quence e1, e2, . . . , en, . . . of consecutive edges on T satisfying

StabK×
p /Q×

p
(ej) = Uj , j = 1, . . . , n, . . . .(19)

Since αp is a p-adic unit, the pairing defined by equation (17) can be used to
define a Zp-valued distribution ν̃f on G̃∞ by the rule

ν̃f (σUj) := α−j
p [σ, ej ]f ,(20)

for all compact open subsets of G̃∞ of the form σUj with σ ∈ G̃∞. The
distribution relation for ν̃f is ensured by the fact that f is an eigenform for the
Up operator with eigenvalue αp. The distribution ν̃f gives rise to an element
L̃f in the completed integral group ring Zp[[G̃∞]] by the rule

(L̃f )n :=
∑

g∈G̃n

ν̃f (gUn) · g,

where G̃n := G̃∞/Un so that G̃∞ is the inverse limit of the finite groups G̃n.
Let ∆ denote the torsion subgroup of G̃∞, and let

G∞ = G̃∞/∆ � Zp.(21)

Write Lf for the natural image of L̃f in the Iwasawa algebra

Λ = Zp[[G∞]] � Zp[[T ]],

and denote by νf the associated measure on G∞. Note that a different choice
of edges ej satisfying (19) has the effect of multiplying Lf by an element of
G∞, so that Lf is only well-defined up to multiplication by such elements.
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Functional equations. The Iwasawa algebra is equipped with the invo-
lution θ �→ θ∗ sending any σ ∈ G∞ to σ−1. Let ε = ±1 be the sign in the
functional equation of the classical L-function L(E/Q, s) attached to E/Q.
Conjecturally, the value of ε determines the parity of the rank of E/Q. More
precisely, this rank should be even if ε = 1, and odd if ε = −1. Set εp = ε if
E does not have split multiplicative reduction over Qp, and set εp = −ε other-
wise. The sign εp is interpreted in [MTT] as the sign in the functional equation
for the Mazur-Swinnerton-Dyer p-adic L-function attached to E/Q. While this
L-function differs markedly from the p-adic Rankin L-function considered in
this article, one still has

Lemma 1.5. The equality

L∗
f = εpLf

holds in Λ, up to multiplication by an element of G∞.

Proof. See Proposition 2.13 and equation (11) of [BD1].

Definition 1.6. The anticyclotomic Rankin L-function attached to f and
K is the element Lp(f, K) of Λ defined by

Lp(f, K) = LfL∗
f .

Remarks. 1. Note that Lp(f, K) is a well-defined element of Λ, since
multiplying Lf by σ ∈ G∞ has the effect of multiplying L∗

f by σ−1. Thus the
ambiguity in the definition of Lf arising from the choice of end in T satisfying
(19) is cancelled out.

2. Definition 1.6 extends naturally, mutatis mutandis, to any eigenform
g in S2(T /Γ, Z), where Z is any ring in which the eigenvalue of Up acting on
g is invertible. In this case the anticyclotomic Rankin L-function Lp(g, K) is
simply an element of the completed group ring Z[[G∞]].

Let µf,K be the Zp-valued measure on G∞ associated to Lp(f, K). The
function Lp(f, K, s) is defined to be the p-adic Mellin transform of µf,K :

Lp(f, K, s) :=
∫

G∞

gs−1dµf,K(g)

where gs−1 := exp((s − 1) log(g)), and log : G∞ → Qp is a choice of p-adic
logarithm.

Interpolation properties. Let φ be the normalised eigenform on Γ0(N)
attached to f via the Jacquet-Langlands correspondence of Proposition 1.3,
and let Ωf = 〈φ, φ〉 denote the Peterson scalar product of φ with itself. It
is known (cf. [Zh, §1.4]) that the measure µf,K on G∞ satisfies the following
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p-adic interpolation property:

|
∫

G̃∞

χ(g)dµf,K(g)|2 .= L(f, K, χ, 1)/(
√

Disc(K)Ωf ),

for all ramified finite order characters χ of G̃∞. Here the values of χ and µf,K

are viewed as complex numbers by fixing an embedding of Q̄p in C, and the
absolute value taken on the left-hand side is the complex one. The symbol
.= indicates an equality up to a simple algebraic fudge factor expressed as a
product of terms comparatively less important than the quantities explicitly
described in the formulas. Note in particular that dividing L(f, K, χ, 1) by the
complex period Ωf yields an algebraic number.

Elliptic curves. If E is an elliptic curve as in the introduction, let fE be
the modular form in S2(T /Γ) attached to it by Proposition 1.4. The p-adic
L-function attached to E and K is defined by:

Lp(E, K) := Lp(fE , K), Lp(E, K, s) := Lp(fE , K, s).(22)

Remark. Note that Lp(E, K) is only well-defined up to multiplication
by a unit in Z×

p , since the same is true of the form fE attached to it by
Proposition 1.4.

2. Selmer groups

2.1. Galois representations and cohomology. Let f be an ordinary eigen-
form in S2(T /Γ) with coefficients in Zp, and let K be a quadratic imaginary
field in which all primes dividing N− (resp. N+) are inert (resp. split). To
these two objects a p-adic L-function Lp(f, K) was attached in Section 1. This
section introduces an invariant of a more arithmetic nature — the so-called
Selmer group attached to f and K.

Galois representations. To f is attached a continous representation of
the Galois group GQ:

Vf � Q2
p,

with determinant the p-adic cyclotomic character and satisfying

trace((Frob�)|Vf
) = a�(f), for all �� |N.(23)

This representation is constructed by invoking Proposition 1.3 to associate to
f a classical eigenform φ ∈ S2(H/Γ0(N)) with the same Hecke eigenvalues as
f at the good primes. The representation Vf arises in the Jacobian of J0(N)
by the well-known construction of Eichler and Shimura ([DDT, §3.1]).
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The action of the compact group GQ is continous for the p-adic topology
on Vf and hence preserves a Zp-lattice Tf . Let

Af = Vf/Tf � (Qp/Zp)2(24)

be the divisible GQ-module attached to f , and let Af,n := Af [pn] denote the
pn-torsion submodule of Af . It will be convenient occasionally to denote Af

by Af,∞. Likewise write Tf,n = Tf/pnTf and set Tf,∞ := Tf . Note that for
n < ∞, the modules Af,n and Tf,n are isomorphic as GQ-modules, but the Af,n

fit naturally into an inductive system while the Tf,n are part of a projective
system. It is therefore useful to maintain the notational distinction between
the two.

The fact that f is ordinary at p implies that Af,n is ordinary, in the sense
that it has a quotient A

(1)
f,n which is free of rank one over Z/pnZ and on which

the inertia group Ip at p acts trivially. The kernel of the natural projection
Af,n −→ A

(1)
f,n is a free module of rank one over Z/pnZ, denoted A

(p)
f,n, on which

Ip acts via the the p-adic cyclotomic character

ε : GQ −→ Z×
p

describing the action of GQ on the p-power roots of unity.
In our treatment of the Selmer group attached to f and K, it is convenient

to make the following technical assumption on f :

Assumption 2.1. The Galois representation Af,1 is surjective. Further-
more, for all � dividing N0 exactly, the Galois representation Af,1 has a unique
one-dimensional subspace A

(�)
f,1 on which Gal(Q̄�/Q�) acts via ε or −ε.

Remarks. 1. Note that Assumption 2.1 is automatically satisfied for � if
Af,1 is ramified at �, because Af,n arises from the Tate module of an abelian
variety which acquires purely toric reduction over the quadratic unramified
extension of Q�. If Af,1 is unramified at �, then the Frobenius element at �

acts on Af,1 with eigenvalues ±1 and ±�, and the condition in Assumption 2.1
stipulates that p should not divide �2 − 1.

2. For the same reason as explained in Remark 1, the maximal submodule
A

(�)
f,n on which GQ�

acts via ±ε is free of rank one over Z/pnZ.

Lemma 2.2. Suppose that E satisfies Assumption 6 of the introduction.
Then Assumption 2.1 is satisfied by the modular form f attached to E.

Proof. Note that in this case Tf is simply isomorphic to the Tate mod-
ule of E. The assumption that p does not divide the degree of the modular
parametrisation of E implies that the newform on Γ0(N0) attached to E is
p-isolated. By Ribet’s level-lowering theorem [Ri2], it follows that the Galois
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representation attached to Af,1 is ramified at all primes dividing N0, and hence
Lemma 2.2 follows from Remark 1 after the statement of Assumption 2.1.

Zp-extensions. Class field theory identifies the group G̃∞ of (13) with the
Galois group of the maximal abelian extension K̃∞ of K which is unramified
outside of p and which is of “dihedral type” over Q. The subfield K∞ := K̃∆

∞
is called the anticyclotomic Zp-extension of K. Its Galois group over K is
identified with the group G∞ � Zp of equation (21). Let Km be the mth layer
of K∞/K, so that Gal(Km/K) � Z/pmZ.

Galois cohomology. For each m ∈ N and n ∈ N∪ {∞}, let H1(Km, Af,n)
and H1(Km, Tf,n) denote the usual continuous Galois cohomology groups of
Gal(K̄m/Km) with values in these modules. (Note that

H1(Km, Af ) := lim
−→
n

H1(Km, Af,n), H1(Km, Tf ) := lim
←−
n

H1(Km, Tf,n).)

To study the behaviour of these groups as Km varies over the finite layers of
the anticyclotomic Zp-extension, it is convenient to introduce the groups

H1(K∞, Af,n) := lim
−→
m

H1(Km, Af,n), Ĥ1(K∞, Tf,n) = lim
←−
m

H1(Km, Tf,n),

where the direct limit is taken with respect to the natural restriction maps,
and the inverse limit is taken with respect to the norm (corestriction) maps.
The compatible actions of the group rings Zp[Gm] on the groups H1(Km, Af,n)
and H1(Km, Tf,n) yield an action of the Iwasawa algebra Λ = Zp[[G∞]] on both
of the groups H1(K∞, Af,n) and Ĥ1(K∞, Tf,n).

Local cohomology groups. For each rational prime �, set

Km,� := Km ⊗ Q� = ⊕λ|�Km,λ,

where the direct sum is taken over all primes λ of Km dividing �, and write
for any GKm

-module X:

H1(Km,�, X) := ⊕λ|�H
1(Km,λ, X).

Set

H1(K∞,�, Af,n) = lim
−→
m

H1(Km,�, Af,n), Ĥ1(K∞,�, Tf,n) = lim
←−
m

H1(Km,�, Tf,n)

for the local counterparts of H1(K∞, Af,n) and Ĥ1(K∞, Tf,n). The Iwasawa
algebra Λ acts naturally on these modules in a manner which is compatible
with the restriction maps. For each rational prime �, write

H1(Im,�, Af,n) := ⊕λ|�H
1(Im,λ, Af,n),

where Im,λ denotes the inertia group at λ.
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Tate duality. Let � be a rational prime, and let n ∈ N ∪ {∞}. The finite
Galois modules Tf,n = Af,n are isomorphic to their own Kummer duals: the
Weil pairing gives rise to a canonical GQ-equivariant pairing

Tf,n × Af,n −→ Z/pnZ(1) = µpn .

Combining this with the cup product pairing in cohomology gives rise to the
collection of local Tate pairings at the primes above � over the finite layers Km

in K∞:

〈 , 〉m,� : H1(Km,�, Tf,n) × H1(Km,�, Af,n) −→ Qp/Zp,(25)

which gives rise, after passing to the limit with m, to a perfect pairing

〈 , 〉� : Ĥ1(K∞,�, Tf,n) × H1(K∞,�, Af,n) −→ Qp/Zp.

These pairings satisfy the rule

〈λκ, s〉� = 〈κ, λ∗s〉�,
for all λ ∈ Λ, and hence give an isomorphism of Λ-modules

Ĥ1(K∞,�, Tf,n) −→ H1(K∞,�, Af,n)∨,

where the Pontrjagin dual X∨ of a Λ-module X is itself endowed with a Λ-
module structure by the rule

λf(x) := f(λ∗x), for all λ ∈ Λ, f ∈ X∨, x ∈ X.

2.2. Finite/singular structures. Let �� |N be a rational prime. The singu-
lar part of H1(Km,�, Af,n) is the group

H1
sing(Km,�, Af,n) := H1(Im,�, Af,n)GK� .

There is a natural map arising from restriction — the so-called residue map —

∂� : H1(Km,�, Af,n) −→ H1
sing(Km,�, Af,n).

Let H1
fin(Km,�, Af,n) denote the kernel of ∂�. The classes in H1

fin(Km,�, Af,n)
are sometimes called the finite or unramified classes.

Of course, identical definitions can be made in which Af,n is replaced by
Tf,n. By passing to the limit as m −→ ∞ (with either a direct or an inverse
limit) the definition of the residue map ∂� extends both to H1(K∞,�, Af,n) and
to Ĥ1(K∞,�, Tf,n) and the groups

H1
fin(K∞,�, Af,n), Ĥ1

fin(K∞,�, Tf,n),

H1
sing(K∞,�, Af,n), Ĥ1

sing(K∞,�, Tf,n)

are defined in the natural way.
Let � be a prime dividing N0 exactly. Recall in this case (in view of

Assumption 2.1) the distinguished line A
(�)
f,n consisting of elements on which
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GQ�
acts via ±ε. The ordinary part of H1(K∞,�, Af,n) is defined to be the

group
H1

ord(K∞,�, Af,n) := H1(K∞,�, A
(�)
f,n).

Finally, at the prime p, set

H1
ord(K∞,p, Af,n) := res−1

p

(
H1(I∞,p, A

(p)
f,n)

)
,

where resp : H1(K∞,p, Af,n) −→ H1(I∞,p, Af,n) is induced from the restriction
maps at the (finitely many) primes of K∞/K above p.

Proposition 2.3. If � is a prime not dividing N , the groups
H1

fin(K∞,�, Af,n) and Ĥ1
fin(K∞,�, Tf,n) are annihilators of each other under

the local Tate pairing 〈 , 〉�. The same is true of H1
ord(K∞,�, Af,n) and

Ĥ1
ord(K∞,�, Tf,n) for �||N . In particular, H1

fin(K∞,�, Af,n) and Ĥ1
sing(K∞,�, Tf,n)

are the Pontryagin duals of each other.

Proof. The result over the finite layers Km follows from standard proper-
ties of the local Tate pairing (cf. [DDT, §2.3]), and is then deduced over K∞
by passage to the limit.

Proposition 2.3 yields a perfect pairing of Λ-modules (denoted by the same
symbols 〈 , 〉� by abuse of notation)

〈 , 〉� : Ĥ1
sing(K∞,�, Tf,n) × H1

fin(K∞,�, Af,n) −→ Qp/Zp.(26)

The following lemma makes explicit the structure of the local cohomology
groups Ĥ1(K∞,�, Tf,n) and H1(K∞,�, Af,n).

Lemma 2.4. Suppose that � is a rational prime which does not divide N .
If � is split in K/Q, then

Ĥ1
sing(K∞,�, Tf,n) = 0, H1

fin(K∞,�, Af,n) = 0.

Proof. Because (�) = λ1λ2 is split in K/Q, the Frobenius element attached
to λ1 topologically generates a subgroup of finite index in G∞. Hence K∞,�

is isomorphic to a direct sum of a finite number of copies of the unramified
Zp-extension of Q�. Since Af,n is of exponent pn, any unramified cohomology
class in H1(Km,�, Af,n) becomes trivial after restriction to H1(Km′,�, Af,n) for
m′ sufficiently large. This implies the second assertion; the first follows from
the nondegeneracy of the local Tate pairing displayed in (26).

The primes � which are inert in K/Q exhibit a markedly different be-
haviour, because they split completely in the anticyclotomic tower. It is the
presence of such primes which accounts for some of the essential differences
between the anticyclotomic theory and the more familiar Iwasawa theory of
the cyclotomic Zp-extension.
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Lemma 2.5. If � does not divide N and is inert in K/Q, then

Ĥ1
sing(K∞,�, Tf,n) � H1

sing(K�, Tf,n) ⊗ Λ,

and
H1

fin(K∞,�, Af,n) � Hom(H1
sing(K�, Tf,n) ⊗ Λ, Qp/Zp).

Proof. Since � is inert in K and K∞/Q is an extension of dihedral type,
the Frobenius element at � in Gal(K∞/Q) is of order two and hence � splits
completely in K∞/K. The choice of a prime λm of Km above � thus deter-
mines an isomorphism H1(Km,�, Tf,n) −→ H1(K�, Tf,n) ⊗ Zp[Gm]. Choosing
a compatible sequence of primes λm of Km which lie above each other, one
obtains an isomorphism

Ĥ1(K∞,�, Tf,n) � H1(K�, Tf,n) ⊗ Λ,

from the definition of the completed group ring Λ. The first isomorphism of
the lemma now follows by passing to the singular parts of the cohomology,
while the second is a consequence of Proposition 2.3.

Admissible primes. A rational prime � is said to be n-admissible relative
to f if it satisfies the following conditions:

(1) � does not divide N = pN+N−;

(2) � is inert in K/Q;

(3) p does not divide �2 − 1;

(4) pn divides � + 1 − a� or � + 1 + a�.

A 1-admissible prime will simply be called admissible (so that in particular
any n-admissible prime is admissible).

Note that if � is n-admissible, the module Tf,n is unramified at � and the
Frobenius element over Q at � acts semisimply on this module with eigenvalues
±� and ±1 which are distinct modulo p. From this a direct calculation shows
that:

Lemma 2.6.The local cohomology groups H1
sing(K�, Tf,n) and H1

fin(K�, Tf,n)
are both isomorphic to Z/pnZ.

Proof. The group H1
sing(K�, Tf,n) is identified with H1(I�, Tf,n)GK� . Since

Tf,n is unramified at �, this first cohomology group is identified with a group
of homomorphisms, which necessarily factor through the tame inertia group
at �. The Frobenius element over K at (�) acts on this tame inertia group as
multiplication by �2, while it acts on Tf,n with eigenvalues �2 and 1. The result
follows from this, in light of the fact that p does not divide �2 − 1. Similarly,
the group H1

fin(K�, Af,n) is identified with the GK�
-coinvariants of Af,n which

are also isomorphic to Z/pnZ.
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Lemma 2.7. The local groups Ĥ1
sing(K∞,�, Tf,n) and Ĥ1

fin(K∞,�, Tf,n) are
each free of rank one over Λ/pnΛ.

Proof. Since � is inert in K/Q, Lemma 2.5 implies that Ĥ1(K�,∞, Tf,n) is
isomorphic to H1(K�, Tf,n) ⊗ Λ. The result now follows from Lemma 2.6.

Remarks. 1. Note that the n-admissible primes are not the primes
appearing in Kolyvagin’s study of the Selmer groups of elliptic curves, where
the condition that pn divides � + 1 was imposed.

2. The notion of admissible prime introduced here is similar to the one
introduced in [BD0, Def. 2.20], the main difference arising from the fact that
the local cohomology groups H1

fin(K�, Af,n) and H1
sing(K�, Tf,n) are both free

of rank one (and not two) over Z/pnZ.

2.3. Definition of the Selmer group. Let � be a prime not dividing N .
Composing restriction from K∞ to K∞,� with ∂� yields residue maps on the
global cohomology groups, still denoted ∂� by an abuse of notation,

∂� :H1(K∞, Af,n) → H1
sing(K∞,�, Af,n),(27)

∂� : Ĥ1(K∞, Tf,n) → Ĥ1
sing(K∞,�, Tf,n).(28)

Note that if � is split in K/Q, the residue map of (28) is 0 by Lemma 2.4.
If ∂�(κ) = 0 for κ ∈ H1(K∞, Af,n) (resp. Ĥ1(K∞, Tf,n)), let

v�(κ) ∈ H1
fin(K∞,�, Af,n) (resp. Ĥ1

fin(K∞,�, Tf,n))

denote the natural image of κ under the restriction map at �.

Definition 2.8. The Selmer group Self,n attached to f , n and K∞ is the
group of elements s in H1(K∞, Af,n) satisfying

(1) ∂�(s) = 0 for all rational primes � not dividing N .

(2) The class s is ordinary at the primes �|N−p.

(3) The class s is trivial at the primes �|N+.

Caveat. Note that the group Self,n depends on the value of N , hence on the
modular form f itself, and not just on the Galois representation Af,n attached
to it. The same remark holds for the compactified Selmer group Ĥ1

S(K∞, Tf,n)
defined below:

Definition 2.9. Let S be a square-free integer which is relatively prime
to N . The compactified Selmer group Ĥ1

S(K∞, Tf,n) attached to f , S and K∞
is the group of elements κ in Ĥ1(K∞, Tf,n) satisfying

(1) ∂�(κ) = 0 for all rational primes � not dividing SN ;
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(2) The class κ is ordinary at the primes �|N−p.

(3) The class κ is arbitrary at the primes � dividing N+, and at the primes
dividing S.

Global reciprocity. Let κ ∈ Ĥ1(K∞, Tf,n) and let s ∈ H1(K∞, Af,n) be
global cohomology classes. For each rational prime q, let κq and sq denote the
restrictions of these cohomology classes to the (semi-)local cohomology group
attached to the prime q. The global reciprocity law of class field theory implies
that ∑

q

〈κq, sq〉q = 0,(29)

where the sum is taken over all the rational primes. In particular, if κ belongs
to Ĥ1

S(K∞, Tf,n) and s belongs to Self,n, then since the local conditions defining
these two groups are orthogonal at the primes not dividing S, and since s has
trivial residue at the primes dividing S, formula (29) becomes:∑

q|S
〈∂q(κ), vq(s)〉q = 0.

Of particular interest is the following special case:

Proposition 2.10. Suppose that κ belongs to Ĥ1
� (K∞, Af,n). Then

〈∂�(κ), v�(s)〉� = 0,

for all s ∈ Self,n.

The strategy of the proof of Theorem 1 is to produce, for sufficiently many
primes � that are inert in K, cohomology classes κ(�) ∈ Ĥ1

� (K∞, Af,n) whose
residue ∂�(κ(�)) can be related to the p-adic L-function Lp(f, K) constructed
in Section 1. Thanks to Proposition 2.10, the elements ∂�(κ(�)) yield relations
in a presentation for Sel∨f,n.

3. Some preliminaries

3.1. Λ-modules. If X is any module over a ring R, let FittR(X) denote the
Fitting ideal of X over R. If R = Λ and X is finitely generated, let Char(X)
denote the characteristic ideal attached to X.

Proposition 3.1. Let X be a finitely generated Λ-module and let L be
an element of Λ. Suppose that ϕ(L) belongs to FittO(X ⊗ϕ O), for all homo-
morphisms ϕ : Λ −→ O, where O is a discrete valuation ring. Then L belongs
to Char(X).
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Proof. If X is not Λ-torsion, then FittΛ(X) = 0. Since

FittO(X ⊗ϕ O) = ϕ(FittΛ(X)),

it follows that ϕ(L) = 0 for all ϕ. This implies (by the Weierstrass preparation
theorem, for example) that L = 0. Hence one may assume without loss of
generality that X is a Λ-torsion module. In that case the structure theory of
Λ-modules ensures the existence of an exact sequence of Λ-modules:

X
j−→ ⊕iΛ/(gi) −→ C −→ 0,(30)

where C and ker j are finite Λ-modules and the gi are nonzero distinguished
polynomials or powers of p. By definition, g :=

∏
i gi is a generator of Char(X).

Since C is finite, its Λ-Fitting ideal can be generated by two elements ι1 and
ι2 having no common irreducible factors. By tensoring the exact sequence (30)
with O one finds that

ϕ(ιi)FittO(X ⊗ϕ O) ⊂ (ϕ(g)), for i = 1, 2.

It follows by assumption that ϕ(g) divides ϕ(ιiL) for all ϕ. Hence (as can be
seen by using the Weierstrass preparation theorem) g divides ιiL for i = 1, 2,
and therefore g divides L.

3.2. Controlling the Selmer group. Suppose now that Af,1 satisfies the
irreducibility condition 2 of Assumption 6.

Theorem 3.2. Let s be a nonzero element of H1(K, Af,1). There exist
infinitely many n-admissible primes � relative to f such that ∂�(s) = 0 and
v�(s) �= 0.

Proof. Let Q(Af,n) be the extension of Q fixed by the kernel of the Galois
representation Af,n. It is unramified at the primes not dividing N . Since the
discriminant of K is assumed to be prime to N , the fields Q(Af,n) and K are
linearly disjoint. Letting M denote the compositum of these fields, there is
therefore a natural inclusion

Gal(M/Q) = Gal(K/Q) × Gal(Q(Af,n)/Q) ⊂ {1, τ} × AutZ/pnZ(Af,n),

so that elements of Gal(M/Q) can be labelled by certain pairs (τ j , T ) with
j ∈ {0, 1} and T ∈ AutZ/pnZ(Af,n). Let Ms be the extension of M cut out by
the image s̄ of s under restriction to H1(M, Af,1) = Hom(Gal(M̄/M), Af,1).
Assume without loss of generality that s belongs to a specific eigenspace for
the action of τ , so that

τs = δs, for some δ ∈ {1,−1}.

Under this assumption, the extension Ms is Galois over Q, not merely over K.
In fact, by the assumption that Af,1 is an irreducible GQ-module, Gal(Ms/Q)



22 M. BERTOLINI AND H. DARMON

is identified with the semi-direct product

Gal(Ms/Q) = Af,1 � Gal(M/Q),(31)

where the quotient Gal(M/Q) acts on the abelian normal subgroup Af,1 of
Gal(Ms/Q) by the rule

(τ j , T )(v) = δjT̄ v.(32)

Here T̄ denotes the natural image of T in AutFp
(Af,1). By part 2 of Assump-

tion 6 on the Galois representation Af,1, the group Gal(Ms/Q) contains an
element of the form (v, τ, T ), where

1. The automorphism T has eigenvalues δ and λ, where λ ∈ (Z/pnZ)×

is not equal to ±1 mod p and has order prime to p. (Note that here the
assumption that p > 3 is needed.)

2. The vector v ∈ Af,1 is nonzero and belongs to the δ-eigenspace for T̄ .

Let �� |N be a rational prime which is unramified in Ms/Q and satisfies

Frob�(Ms/Q) = (v, τ, T ).(33)

By the Chebotarev density theorem, there exist infinitely many such primes.
In fact, the set of such primes has positive density. The fact, immediate from
(33), that Frob�(M/Q) = (τ, T ) implies that � is an admissible prime. To see
that v�(s) �= 0, choose a prime λ of M above �, and let d be the (necessarily
even) degree of the corresponding residue field extension. Then

Frobλ(Ms/M) = (v, τ, T )d = v + δT̄ v + T̄ 2v + · · · + δT̄ d−1v = dv.

Let s̄ denote the image of s in

H1(M, Af,1) = Hom(Gal(M̄/M), Af,1)

under restriction. Since d is prime to p by property 1 of T , it follows that
s̄(Frobλ(Ms/M)) = ds̄(v) �= 0, so that the restriction at λ of s̄ is nonzero.
Hence, so is v�(s), a fortiori.

Global cohomology groups. By [BD0, Def. 2.22], a finite set S of primes
is said to be n-admissible relative to f if

1. All � ∈ S are n-admissible relative to f .

2. The map Sel(K, Af,n) −→ ⊕�∈SH1
fin(K�, Af,n) is injective.

A direct argument based on Theorem 3.2 shows that n-admissible sets
exist. (See also the proof of Lemma 2.23 of [BD0].) In fact, any finite collection
of n-admissible primes can be enlarged to an n-admissible set.

Proposition 3.3. If S is an n-admissible set, then the group Ĥ1
S(K∞, Tf,n)

is free of rank #S over Λ/pnΛ.
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Proof. The fact that H1
S(Km, Tf,n) is free over Z/pnZ[Gm] is essentially

Theorem 3.2 of [BD0], whose proof carries over, mutatis mutandis, to the
present context with its slightly modified notion of admissible prime. Propo-
sition 3.3 follows by passing to the limit as m −→ ∞.

Theorem 3.4. Let mΛ denote the maximal ideal of Λ. Then

(1) The natural map from H1(K, Af,1) → H1(K∞, Af,n)[mΛ] induced by re-
striction is an isomorphism.

(2) If S is an n-admissible set, the natural map from Ĥ1
S(K∞, Tf,n)/mΛ to

H1(K, Tf,1) induced by corestriction is injective.

Proof. Let IΛ denote the augmentation ideal of Λ. The inflation-restriction
sequence from K to Km gives the exact sequence

H1(Km/K, A
GKm

f,n )−→H1(K, Af,n)
j−→ H1(Km, Af,n)[IΛ] −→

−→H2(Km/K, A
GKm

f,n ).

By part 2 of Assumption 6 in the introduction, the module A
GKm

f,n is trivial.
(Otherwise, the Galois representation attached to Af,n would have solvable im-
age, contradicting the hypotheses that were made in the introduction.) Hence
the map j is an isomorphism. Taking the GK-cohomology of the exact sequence

0 −→ Af,1 −→ Af,n
p−→ Af,n−1 −→ 0

and using the fact that AGK

f,1 = 0 once again, we see that the natural map

H1(K, Af,1) −→ H1(K, Af,n)[p](34)

is an isomorphism. It follows that the natural map

H1(K, Af,1) −→ H1(Km, Af,n)[mΛ]

is an isomorphism as well. Part 1 of Theorem 3.4 follows by taking the direct
limit as m −→ ∞.

Part 2 of Theorem 3.4 follows directly from Proposition 3.3.

3.3. Rigid pairs. Let Wf := ad0(Af,1) = Hom0(Af,1, Af,1) be the adjoint
representation attached to Af,1, i.e., the vector space of trace zero endomor-
phisms of Af,1. It is a three-dimensional Fp-vector space endowed with a
natural action of GQ arising from the conjugation of endomorphisms. Write
W ∗

f := Hom(Wf , µp) for the Kummer dual of Wf .
Recall that Af,1 is ordinary at p, so that there is an exact sequence of

Ip-modules

0 −→ A
(p)
f,1 −→ Af,1 −→ A

(1)
f,1 −→ 0
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where A
(p)
f,1 represents the subspace on which Ip acts via the cyclotomic char-

acter ε, and A
(1)
f,1 represents the Ip-coinvariants of Af,1. Let

W
(p)
f := Hom(A(1)

f,1, A
(p)
f,1).

It is an Ip-submodule of Wf ; let W
(1)
f := Wf/W

(p)
f . The classes in H1(Qp, Wf )

whose restriction at p belong to H1(Ip, W
(p)
f ) are called ordinary at p.

Likewise, if � is a prime which divides N exactly, recall the submodules
A

(�)
f,1 and A

(1)
f,1 on which GQ�

acts by ±ε and ±1 respectively. (These submodules
are well-defined, by virtue of Assumption 2.1.) Set

W
(�)
f := Hom(A(1)

f,1, A
(�)
f,1).

The classes in H1(Q, Wf ) whose restriction at � belongs to H1(Q�, W
(�
f ) are

called ordinary at �.
If � is an admissible prime for f , the eigenvalues of Frob� acting on the

Galois representation Af,1 are ±1 and ±�. Recall also that �2 �= 1 belongs
to F×

p . Therefore, the eigenvalues of Frob� acting on Wf (resp. W ∗
f ) are the

distinct elements 1, �, and �−1 (resp. �, 1 and �2) of F×
p . Let W

(�)
f and W

∗(�)
f

denote the one-dimensional Fp-subspace on which Frob� acts with eigenvalue �.
The classes in H1(Q, Wf ) whose restrictions at � belong to H1(Q�, W

(�)
f ) are

called ordinary at �. (In [Ram, §3], these classes are referred to as null cocycles.)
Note that H1(Q�, Wf ) decomposes as a direct sum of two one-dimensional
Fp-subspaces,

H1(Q�, Wf ) = H1
fin(Q�, Wf )⊕H1

ord(Q�, W
(�)
f ),

where
H1

fin(Q�, Wf ) := H1(Qnr
� /Q�, Wf )

is the space of unramified cocycles. A similar remark holds for W ∗
f .

Let S be a square-free product of admissible primes for f .

Definition 3.5. The S-Selmer group attached to Wf , denoted SelS(Q, Wf ),
is the subspace of cohomology classes ξ ∈ H1(Q, Wf ) satisfying

(1) For all � which do not divide NS, the image of ξ in H1(Q�, Wf ) belongs
to H1

fin(Q�, Wf ).

(2) The class ξ is ordinary at the primes � dividing NS exactly.

(3) The class ξ belongs to the kernel of the restriction to H1(I�, Wf ) if � is
a prime such that �2 divides N+.

Similar definitions can be made for SelS(Q, W ∗
f ). Note that H1(Q�, W

(�)
f )

and H1(Q�, W
∗(�)
f ) are orthogonal to each other under the local Tate pairing.
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Proposition 3.6. The modular form f is p-isolated if and only if
Sel1(Q, Wf ) is trivial.

Proof. Let R denote the universal ring attached to deformations ρ of the
Galois representation Af,1, satisfying

(1) The determinant of ρ is the cyclotomic character describing the action
of GQ on the p-power roots of unity.

(2) ρ is unramified outside NS.

(3) ρ is ordinary at p, i.e., the restriction of ρ to Ip is of the form
(

ε ∗
0 1

)
.

(4) For all � dividing N+N−S exactly, the restriction of ρ to a decomposition

group at � is ordinary, i.e., is of the form
(

ε ∗
0 1

)
.

The ring R is a complete local Noetherian Zp-algebra with residue field Fp.
Let m denote the maximal ideal of R. Standard results of deformation theory
(cf. Lemma 2.39 and Sections 2.6 and 2.7 of [DDT]) identify m/(p, m2) with
the Pontryagin dual of SelS(Q, Wf ). It follows that R = Zp if and only if
SelS(Q, Wf ) is trivial. When S = 1, a calculation as in [W, §3] shows that
the ring R surjects onto the ring Tf of Hecke operators acting on the space
S2(T /Γ), completed at the maximal ideal attached to f . A deep result of Wiles
([W], [DDT, Th. 3.42]) asserts that this surjection is an isomorphism. Hence
the fact that R = Zp is equivalent to the fact that Tf = Zp, which in turn is
equivalent to the fact that the modular form f is p-isolated.

If S is a square-free product of admissible primes for Af,1, let Sel(S)(Q, Wf )
denote the Selmer group defined in the same way as SelS(Q, Wf ) above, but
with no condition imposed at the primes of S. Let Sel[S](Q, Wf ) denote the
subgroup of SelS(Q, Wf ) consisting of classes that are trivial at the primes in S.
This notation can be combined: thus, if S1, S2, S3 are pairwise coprime square-
free products of admissible primes, the group SelS1(S2)[S3](Q, Wf ) is given the
obvious meaning. Similar definitions can be made with Wf replaced by W ∗

f .
Note that the Selmer groups Sel(S)(Q, Wf ) and Sel[S](Q, W ∗

f ) are dual Selmer
groups in the sense of [DDT, §2.3], and the same is true of SelS(Q, Wf ) and
SelS(Q, W ∗

f ).

Proposition 3.7. If f is p-isolated, and � is an admissible prime for f ,
then Sel(�)(Q, Wf ) and Sel(�)(Q, W ∗

f ) are one-dimensional Fp-vector spaces.

Proof. It follows from a direct calculation of orders of local cohomology
groups, combined with Theorem 2.18 of [DDT], that the groups Sel1(Q, Wf )
and Sel1(Q, W ∗

f ) have the same cardinality. By Proposition 3.6, both these
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groups are trivial. Applying Theorem 2.18 of [DDT] once more, and using the
fact that p divides (� + 1)2 − a2

� , one finds that

#Sel(�)(Q, Wf )/#Sel[�](Q, W ∗
f ) = p.

Hence Sel(�)(Q, Wf ) is one-dimensional over Fp. The same argument, with Wf

and W ∗
f interchanged, shows that Sel(�)(Q, W ∗

f ) is one-dimensional as well.

Suppose that f is p-isolated so that the conclusion of Proposition 3.7 holds.
If � �= �1 is any admissible prime, write

v� : Sel(�1)(Q, Wf ) −→ H1
fin(Q�, Wf ), v∗� : Sel(�1)(Q, W ∗

f ) −→ H1
fin(Q�, W

∗
f )

for the natural maps induced from restriction at �.

Proposition 3.8. (1) If Sel�1(Q, Wf ) �= 0, and v�2 and v∗�2 are both
nonzero, then Sel�1�2(Q, Wf ) = 0.

(2) If Sel�1(Q, Wf ) = 0, and v�2 is 0, then either Sel�1�2(Q, Wf ) = 0 or
Sel�2(Q, Wf ) is one-dimensional.

Proof. 1. Since �1 is admissible, we may invoke Proposition 3.7 and let
ξ1 and ξ∗1 be generators of Sel(�1)(Q, Wf ) and Sel(�1)(Q, W ∗

f ) respectively. Note
that ξ1 belongs to Sel�1(Q, Wf ) (i.e., the restriction of ξ1 at �1 is ordinary)
since Sel�1(Q, Wf ) �= 0. A calculation using Theorem 2.18 of [DDT] shows
that Sel�1(Q, Wf ) and Sel�1(Q, W ∗

f ) have the same dimension, and hence ξ∗1
also belongs to H1

�1
(Q, W ∗

f ).
By Theorem 2.18 of [DDT],

#Sel�1(�2)(Q, Wf )/#Sel�1[�2](Q, W ∗
f ) = p.

The assumption that v�2(ξ
∗
1) �= 0 implies that #Sel�1[�2](Q, W ∗

f ) = 0. Hence
Sel�1(�2)(Q, Wf ) = Sel�1(Q, Wf ) is one-dimensional and spanned by ξ1. Now
the assumption that v�2(ξ1) �= 0 shows that Sel�1�2(Q, Wf ) = 0.

2. It is convenient to distinguish two cases:

a) If Sel�2(Q, Wf ) = 0, then the space Sel(�1)�2 is one-dimensional by Theo-
rem 2.18 of [DDT]. The assumption that v�2(ξ1) = 0 shows that in fact
ξ1 generates Sel(�1)�2(Q, Wf ). But ξ1 does not belong to Sel�1(�2)(Q, Wf )
since if it did it would also belong to Sel�1(Q, Wf ) which is trivial by
assumption. Hence

Sel�1�2(Q, Wf ) = Sel(�1)�2(Q, Wf ) ∩ Sel�1(�2)(Q, Wf ) = 0.

b) If Sel�2(Q, Wf ) �= 0, it is necessarily one-dimensional since it lies in the
one-dimensional space Sel(�2)(Q, Wf ).
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Definition 3.9. A pair (�1, �2) of admissible primes is said to be a rigid
pair if the Selmer group Sel�1�2(Q, Wf ) is trivial.

In addition to Theorem 3.2 guaranteeing the existence of a plentiful sup-
ply of n-admissible primes sufficient to control the Selmer group Self,n, there
arises the need for the somewhat more technical Theorems 3.10 and 3.11 be-
low guaranteeing the existence of a large supply of rigid pairs of n-admissible
primes in certain favorable circumstances.

Theorem 3.10. Suppose that f is a p-isolated eigenform in S2(T /Γ), and
let �1 be an admissible prime for f . Let s be a nonzero class in H1(K, Af,1).
For any n, there exist infinitely many n-admissible primes �2 such that

(1) ∂�2(s) = 0 and v�2(s) �= 0.

(2) Either (�1, �2) is a rigid pair, or Sel�2(Q, Wf ) is one-dimensional.

Proof. Assume as in the proof of Theorem 3.2 that s belongs to a fixed
eigenspace for complex conjugation, so that τs = δs for some δ ∈ {1,−1}.
Write M = K(Af,n) and let Ms be the Galois extension of M cut out by s as
in the proof of Theorem 3.2.

The fact that f is p-isolated implies, by Proposition 3.7, that the Selmer
groups Sel(�1)(Q, Wf ) and Sel(�1)(Q, W ∗

f ) are one-dimensional over Fp. Let ξ

and ξ∗ denote as before generators of these spaces. The image ξ̄, ξ̄∗ of ξ, ξ∗

in H1(M, Wf ) = Hom(GM , Wf ) and H1(M, W ∗
f ) cuts out extensions Mξ and

Mξ∗ of M whose Galois groups are identified, via ξ̄ and ξ̄∗, with Wf and W ∗
f

respectively.
Let Ms,ξ,ξ∗ denote the compositum of Ms, Mξ, and Mξ∗ over M . Since

the Galois representations Af,1, Wf and W ∗
f are absolutely irreducible and

pairwise nonisomorphic, the Galois group of Ms,ξ,ξ∗ over Q is isomorphic to
the semi-direct product

Gal(Ms,ξ,ξ∗/Q) = (Af,1 × Wf × W ∗
f ) � Gal(M/Q),

where the action of the quotient Gal(M/Q) on the abelian normal subgroup
(Af,1 × Wf × W ∗

f ) is given by

(τ j , T )(v, w, w∗) = (δjT̄ v, T̄wT̄−1, T̄w∗T̄−1 det(T )).

Case 1. Suppose that ξ belongs to Sel�1(Q, Wf ), so that ξ∗ also belongs
to Sel�1(Q, W ∗

f ). The group Gal(Ms,ξ,ξ∗/Q) contains an element of the form
(v, w, w∗, τ, T ), where

1. The transformation T acting on Af,n has eigenvalues δ and λ, where λ

is an element of (Z/pnZ)× of order prime to p which is �= ±1.
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2. The vector v belongs to the unique line in Af,1 on which T acts by δ.

3. The vector w (resp. w∗) belongs to the unique line in Wf (resp. W ∗
f )

which is fixed by T .

Let �2 be a rational prime satisfying

Frob�2(Ms,ξ,ξ∗/Q) = (v, w, w∗, τ, T ).(35)

There are infinitely many such primes �2, by the Chebotarev density theorem.
Now, note that

1. By the same reasoning as in the proof of Theorem 3.2, the prime �2 is
n-admissible and v�2(s) �= 0.

2. A similar argument shows that v�2(ξ) �= 0 and v�2(ξ
∗) �= 0. From this

it follows, by part 1 of Proposition 3.8, that Sel�1�2(Q, Wf ) = 0. Hence
(�1, �2) is a rigid pair, and Theorem 3.10 follows.

Case 2. Suppose that ξ does not belong to Sel�1(Q, Wf ), so that ξ∗ also
does not belong to Sel�1(Q, W ∗

f ). Keeping the notations of Case 1, let �2 be a
rational prime satisfying

Frob�2(Ms,ξ,ξ∗/Q) = (v, 0, 0, τ, T ).(36)

There are infinitely many such primes �2, by the Chebotarev density theo-
rem. Note that the prime �2 is n-admissible and v�2(s) �= 0, and that v�2(ξ)
and v�2(ξ

∗) both vanish. It follows from part 2 of Proposition 3.8 that either
Sel�1�2(Q, Wf ) is trivial – i.e., (�1, �2) is a rigid pair – or that Sel�2(Q, Wf ) is
one-dimensional.

Theorem 3.11. Suppose that f is a p-isolated eigenform in S2(T /Γ), and
let �1 be an admissible prime for f . Let s be a nonzero class in H1(K, Af,1).
Suppose further that Sel�1(Q, Wf ) is one-dimensional over Fp. Then there exist
infinitely many n-admissible primes �2 such that

(1) ∂�2(s) = 0 and v�2(s) �= 0.

(2) (�1, �2) is a rigid pair.

Proof. This follows directly from the analysis of Case 1 in the proof of
Theorem 3.10.

Congruences between modular forms. Let �1, �2 be distinct n-admissible
primes relative to f , such that pn divides �1 + 1 − ε1a�1(f) and �2 + 1 −
ε2a�2(f), for ε1 and ε2 equal to ±1. Let B′ be the definite quaternion algebra
of discriminant Disc(B)�1�2, let R′ be an Eichler Z[1/p]-order of level N+ in
B′ and let Γ′ := (R′)×/Z[1/p]×. The theory of congruences between modular
forms yields the following proposition:
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Proposition 3.12. There exists an eigenform g ∈ S2(T /Γ′, Z/pnZ) such
that the equalities modulo pn hold :

Tqg ≡ aq(f)g (q � |N�1�2), Uqg ≡ aq(f)g (q|N),(37)

U�1g ≡ ε1g, U�2g ≡ ε2g.

If furthermore the pair (�1, �2) is a rigid pair, then g can be lifted to an eigen-
form with coefficients in Zp satisfying (37) above. This form is p-isolated.

Proof. The existence of the mod pn eigenform g, which relies on the
concepts and notation introduced in Sections 5 and 9, is given in Theorem 9.3.
This g corresponds to a surjective algebra homomorphism f�2,�1 : T�2,�1 −→
Z/pnZ, where T�2,�1 is the Hecke algebra defined in the proof of Theorem 9.3.
If (�1, �2) is a rigid pair, this algebra is isomorphic to Zp and therefore f�2,�1

lifts to characteristic 0 so that g can be lifted (uniquely) to a form in S2(T /Γ′).

4. The Euler system argument

4.1. The Euler system. Section 7 describes the construction of certain
global cohomology classes

κ(�) ∈ Ĥ1
� (K∞, Tf,n),

indexed by the n-admissible primes � attached to f . The proof of Theorem 1
relies crucially on the existence of these classes and on their behaviour under
localisation described in Theorems 4.1 and 4.2 below. Both theorems are in-
stances of explicit reciprocity laws relating these explicit cohomology classes
to special values of L-functions, and form the technical heart of the proof of
Theorem 1.

Observe that when � is an n-admissible prime, the local cohomology group
Ĥ1(K∞,�, Tf,n) decomposes as a direct sum

Ĥ1(K∞,�, Tf,n) = Ĥ1
fin(K∞,�, Tf,n)⊕Ĥ1

ord(K∞,�, Tf,n)

= Ĥ1
fin(K∞,�, Tf,n)⊕Ĥ1

sing(K∞,�, Tf,n).

The map ∂� is simply the projection onto the second factor, while v� can be
extended naturally to a map

v� : Ĥ1(K∞,�, Tf,n) −→ Ĥ1
fin(K∞,�, Tf,n) = Ĥ1(K∞,�, Tf,n)/Ĥ1

ord(K∞,�, Tf,n)

defined as the projection onto the first factor.

Theorem 4.1. If � is an n-admissible prime, then v�(κ(�)) = 0. The
equality

∂�(κ(�)) = Lf (mod pn)

holds in Ĥ1
sing(K∞,�, Tf,n) � Λ/pnΛ, up to multiplication by elements of Z×

p

and G∞.
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Note that the ambiguity in the statement of Theorem 4.1 is unavoidable,
since the identification of H1

sing(K∞,�, Tf,n) with Λ/pnΛ, and the element Lf ,
are both only defined up to multiplication by elements in Z×

p and G∞.
Theorem 4.1 is proved in Section 8.
The second theorem describes the localisation of κ(�1) at an n-admissible

prime �2 which is different from �1. Recall the discrete subgroup Γ′ of PSL2(Qp)
and the Z/pnZ-valued eigenform g in S2(T /Γ′, Z/pnZ) attached to f and
(�1, �2) in Proposition 3.12.

Theorem 4.2. The equality

v�2(κ(�1)) = Lg

holds in Ĥ1
fin(K∞,�2 , Tf,n) � Λ/pnΛ, up to multiplication by elements of Z×

p

and G∞.

Theorem 4.2 is proved in Section 9.
Since the definition of g is symmetric in �1 and �2, one obtains the following

reciprocity formula for the classes κ(�):

Corollary 4.3. For all pairs of n-admissible primes �1, �2 attached to f ,
the equality

v�1(κ(�2)) = v�2(κ(�1))

holds in Λ/pnΛ, up to multiplication by elements of Z×
p and G∞.

4.2. The argument. To an ordinary eigenform f ∈ S2(T /Γ) with coeffi-
cients in Zp one has associated two invariants: the p-adic L-function Lp(f, K)
∈ Λ (Section 1) and the Selmer group Self,n (Section 2). This section explains
the proof of Theorem 1. In our approach based on congruences between mod-
ular forms, it is indispensable to prove the following generalisation which is
stronger insofar as it applies to all p-isolated modular eigenforms in S2(T /Γ)
with coefficients in Zp satisfying Assumption 2.1.

Theorem 4.4. Let f be an ordinary eigenform in S2(T /Γ) with coeffi-
cients in Zp which is p-isolated, and satisfies Assumption 2.1. The character-
istic power series of Sel∨f,∞ divides the p-adic L-function Lp(f, K).

Proof. By Proposition 3.1, it suffices to show that

ϕ(Lf )2 belongs to FittO(Sel∨f,∞ ⊗ϕ O),(38)

for all homomorphisms ϕ of Λ into a discrete valuation ring O. For this it is
enough to show that

ϕ(Lf )2 belongs to FittO(Sel∨f,n ⊗ϕ O), for all n ≥ 1.(39)
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Fix O, ϕ, and n. Write π for a uniformiser of O, and let e := ordπ(p) be the
ramification degree of O over Zp. Write

tf := ordπ(ϕ(Lf )).

Assume without loss of generality that

1. tf < ∞. (Otherwise, ϕ(Lf ) = 0 and (39) is trivially verified.)

2. The group Sel∨f,n ⊗O is nontrivial. (Otherwise, its Fitting ideal is equal
to O and (39) is trivially verified.)

Theorem 4.4 (or rather, equation (39)) is proved by induction on tf . We
begin by describing the construction of certain cohomology classes attached to
an admissible prime �. Let � be any (n+ tf )-admissible prime, and enlarge {�}
to an (n + tf )-admissible set S. Let

κ(�) ∈ Ĥ1
� (K∞, Tf,n+tf

) ⊂ Ĥ1
S(K∞, Tf,n+tf

)

be the cohomology class attached to � as in Section 4.1, and denote by κϕ(�)
the natural image of this class in

M := Ĥ1
S(K∞, Tf,n+tf

) ⊗ϕ O.

Note that this module is free over O/p(n+tf ), by Proposition 3.3. By Theo-
rem 4.1,

ordπ(κϕ(�)) ≤ ordπ(∂�κϕ(�)) = ordπ(ϕ(Lf )) = tf ,

so that t := ordπ(κϕ(�)) ≤ tf . Choose an element κ̃ϕ(�) ∈ M satisfying

πtκ̃ϕ(�) = κϕ(�).

Now, κ̃ϕ(�) is well defined modulo the πt-torsion subgroup of M, which is
contained in the kernel of the natural homomorphism

Ĥ1
S(K∞, Tf,n+tf

) ⊗ϕ O −→ Ĥ1
S(K∞, Tf,n) ⊗ϕ O.

To remove this ambiguity, let κ′
ϕ(�) be the natural image of the class κ̃ϕ(�) in

Ĥ1
S(K∞, Tf,n) ⊗ O. The key properties of the class κ′

ϕ(�) are summarised in
Lemmas 4.5 and 4.6 below.

Lemma 4.5. The class κ′
ϕ(�) enjoys the following properties:

(1) ordπ(κ′
ϕ(�)) = 0.

(2) ∂qκ
′
ϕ(�) = 0, for all q � | �N−.

(3) v�(κ′
ϕ(�)) = 0.

(4) ordπ(∂�κ
′
ϕ(�)) = tf − t.
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Proof. The first property follows from the fact that ordπ(κϕ(�)) = t. The
second is a direct consequence of the fact that κ(�) belongs to Ĥ1

� (K∞, Tf,n+tf
),

while the third and fourth follow from Theorem 4.1.

Lemma 4.6. The element ∂�(κ′
ϕ(�)) belongs to the kernel of the natural

homomorphism

η� : Ĥ1
sing(K∞,�, Tf,n) ⊗ϕ O −→ Sel∨f,n ⊗ϕ O.

Proof. Let Iϕ denote the kernel of ϕ. By the global reciprocity law of class
field theory, the class κ̃ϕ(�) satisfies∑

q|S
〈∂q(κ̃ϕ(�)), sq〉q = 0,(40)

for all s ∈ Self,n+tf
[Iϕ]. (Here, sq simply denotes the natural image of s in

H1
fin(Kq,∞, Af,n+tf

).) On the other hand, πtκ̃ϕ(�) = κϕ(�) has trivial residue at
all the primes q �= �. Hence, for such primes, the element ∂q(κ̃ϕ(�)) annihilates

πtH1
fin(K∞,q, Af,n+tf

)[Iϕ] ⊃ H1
fin(K∞,q, Af,n)[Iϕ].

Hence, if s belongs to Self,n[Iϕ], the terms in the sum (40) corresponding to
the primes q �= � are zero. Hence so is the term corresponding to �. It follows
that ∂�(κ′

ϕ(�)) annihilates the image of Self,n[Iϕ] in H1
fin(K∞,�, Af,n), as was to

be shown.
We now turn to the proof of (39), in the case where tf = 0, which provides

the basis for the induction argument.

Proposition 4.7. If tf = 0 (i.e., Lf is a unit), then Sel∨f,n is trivial.

Proof. Since Lf is a unit, Theorem 4.1 implies that ∂�(κϕ(�)) generates
Ĥ1

sing(K∞,�, Tf,n) ⊗ϕ O, for all n-admissible primes �. Hence the map η� of
Lemma 4.6 is trivial for all such primes. This is enough to conclude that Sel∨f,n

is trivial. For otherwise, Nakayama’s lemma implies that the group

Sel∨f,n/mΛ = (Self,n[mΛ])∨

is nonzero. Let s be a nontrivial element of Self,n[mΛ]. By part 1 of Theo-
rem 3.4, s can be viewed as an element of H1(K, Af,1). Invoking Theorem 3.2,
choose an n-admisible prime � such that v�(s) �= 0. The nondegeneracy of the
local Tate pairing implies that η� is nonzero, a contradiction.

Turning now to the general case of equation (39), let Π be the set of
rational primes � satisfying the following conditions:

(1) � is (n + tf )-admissible.

(2) The quantity t = ordπ(κϕ(�)) is minimal, among all primes satisfying
condition 1.



IWASAWA’S MAIN CONJECTURE FOR ELLIPTIC CURVES 33

Note that the set Π is nonempty, by Theorem 3.2. Let t be the common value
of ordπ(κϕ(�)) for � ∈ Π.

Lemma 4.8. t < tf .

Proof. Suppose not. Then ordπ(κϕ(�)) = tf , for all (n + tf )-admissible
primes �. Let s be a nonzero element of H1(K, Af,1) ∩ Self,n, which exists
by Theorem 3.4. Invoking Theorem 3.2, choose an (n + tf )-admissible prime
� such that v�(s) �= 0. By Lemma 4.5, the natural image of ∂�(κ′

ϕ(�)) in
H1(K�, Tf,1) ⊗ϕ O is nonzero. By Lemma 4.6, it is also orthogonal to v�(s)
with respect to the local Tate pairing, contradicting the fact that the vectors
∂�(κ′

ϕ(�)) and v�(s) are both supposed to be nonzero and that the Tate pairing
is a perfect duality between these two one-dimensional vector spaces over O/π.

Lemma 4.9. There exist primes �1, �2 ∈ Π such that (�1, �2) is a rigid
pair.

Proof. Choose any �1 in Π, and let s denote the natural image of κ′
ϕ(�1)

in

Ĥ1
S(K∞, Tf,n) ⊗ϕ O/(π) =

(
Ĥ1

S(K∞, Tf,n)/mΛ

)
⊗ (O/π)

⊂H1(K, Tf,1) ⊗ (O/π),

where the last inclusion (cf. part 2 of Theorem 3.4) is induced from the core-
striction map and the natural projection Tf,n −→ Tf,1. Observe that the class
s is a nonzero element of H1(K, Tf,1) ⊗ (O/π) which satisfies ∂q(s) = 0 for
all q � | �1N . Invoking Theorem 3.10, choose an n + tf -admissible prime �2 such
that

1. v�2(s) �= 0, and

2. either (�1, �2) is a rigid pair, or Sel�2(Q, Wf ) is one-dimensional.

The reader will note that:

t = ordπ(κϕ(�1)) ≤ ordπ(κϕ(�2)) ≤ ordπ(v�1(κϕ(�2))).(41)

The first inequality holds by the minimality assumption made in the choice of
the prime �1. The second inequality is a consequence of the fact that v�1 is a
homomorphism. By the reciprocity law of Corollary 4.3, and the choice of �2,

ordπ(v�1(κϕ(�2))) = ordπ(v�2(κϕ(�1))) = ordπ(κϕ(�1)).(42)

(To see the second equality, note that the inequality

ordπ(v�2(κϕ(�1))) ≥ ordπ(κϕ(�1))
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is clear, and that strict inequality holds precisely when v�2(s) = 0.) Combining
(41) and (42), it follows that the inequalities must be equalities throughout,
so that

t = ordπ(κϕ(�1)) = ordπ(κϕ(�2)).

Hence �2 belongs to Π. If (�1, �2) is a rigid pair, we are done. Otherwise,
the group Sel�2(Q, Wf ) is one-dimensional. In that case one can repeat the
argument above, with �1 replaced by �2, invoking this time Theorem 3.11
instead of 3.10 to obtain a pair (�2, �3) satisfying the conclusion of Lemma 4.9.
This completes the proof of the lemma.

Let (�1, �2) be a rigid pair of (n + tf )-admissible primes in Π, whose ex-
istence is guaranteed by Lemma 4.9. By Theorem 4.2, note that t = tg =
ordπ(ϕ(Lg)), where g is the p-isolated eigenform in S2(T /Γ′) attached to f

and (�1, �2) by Proposition 3.12.
Let Sel[�1�2] denote the subgroup of Self,n consisting of classes which are

locally trivial at the primes dividing �1 and �2. By definition, there is a natural
exact sequence of Λ-modules

0 −→ Sf
�1�2

−→ Sel∨f,n −→ Sel∨[�1�2] −→ 0,(43)

where Sf
�1�2

denotes the kernel of the natural surjection of duals of Selmer
groups. Note the natural surjection given by local Tate duality:

ηf : (Ĥ1
sing(K∞,�1 , Af,n) ⊕ Ĥ1

sing(K∞,�2 , Af,n)) −→ Sf
�1�2

induced from the inclusion

(Sf
�1�2

)∨ ⊂ H1
fin(K∞,�1 , Af,n) ⊕ H1

fin(K∞,�2 , Af,n).

The domain of ηf is isomorphic to (Λ/pnΛ)2, by Lemma 2.7. Let ηϕ
f denote

the map induced from ηf after tensoring by O via ϕ. The domain of ηϕ
f is

isomorphic to (O/pnO)2. By Lemma 4.6, the kernel of ηϕ
f contains the vectors

(∂�1κ
′
ϕ(�1), 0) and (0, ∂�2κ

′
ϕ(�2)) in(

Ĥ1
sing(K∞,�1 , Af,n) ⊕ Ĥ1

sing(K∞,�2 , Af,n)
)
⊗ϕ O � (O/pnO)2.

By part 3 of Lemma 4.5,

tf − tg = ordπ(∂�1κ
′
ϕ(�1)) = ordπ(∂�2κ

′
ϕ(�2)).

Hence

π2(tf−tg) belongs to the Fitting ideal of Sf
�1�2

⊗ϕ O.(44)

One may repeat the above argument with the modular form g. Thus we
have an exact sequence similar to (43) but involving g instead of f :

0 −→ Sg
�1�2

−→ Sel∨g,n −→ Sel∨[�1�2] −→ 0,(45)
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as well as a surjection given by local Tate duality:

ηg : (Ĥ1
fin(K∞,�1 , Af,n) ⊕ Ĥ1

fin(K∞,�2 , Af,n)) −→ Sg
�1�2

.

By global reciprocity, the kernel of the map ηϕ
g obtained from ηg after tensoring

by O via ϕ contains the elements

(v�1κ
′
ϕ(�1), v�2κ

′
ϕ(�1)) = (0, v�2κ

′
ϕ(�1))

as well as (v�1κ
′
ϕ(�2), 0). But

ordπ(v�2κ
′
ϕ(�1)) = ordπ(v�1κ

′
ϕ(�2)) = tg − t = 0.

It follows from this that the module Sg⊗ϕO is trivial, and the natural surjection

Sel∨g,n ⊗ϕ O −→ Sel∨[�1�2] ⊗ϕ O is an isomorphism.(46)

Recall that, by Lemma 4.8,

tg < tf ,

and that the eigenform g satisfies all the hypotheses of Theorem 4.4, including
Assumption 2.1, in light of the fact that �1 and �2 are admissible. One is thus
in a position to invoke the induction hypothesis to conclude that

ϕ(Lg)2 belongs to the Fitting ideal of Sel∨g,n ⊗ϕ O.(47)

The theory of Fitting ideals implies that

π2tf = π2(tf−tg)π2tg

∈ FittO(Sf
�1�2

⊗O)FittO(Sel∨g,n ⊗O), by (44) and (47)

= FittO(Sf
�1�2

⊗O)FittO(Sel∨[�1�2] ⊗O), by (46)

⊂FittO(Sel∨f,n ⊗O), by (43).

Hence (39) is proved: ϕ(Lf )2 belongs to the Fitting ideal of Sel∨f,n ⊗ϕ O.
Theorem 4.4 follows.

5. Shimura curves

The construction and the properties of the Euler system used in the argu-
ment of Section 4 are based on the geometry over Z of certain Shimura curves,
which are reviewed in this section.

Let M be a positive integer, and let M = M+M− be an integer decompo-
sition of M such that M− is a squarefree product (possibly empty) of an even
number of prime factors. Following [Ro] and [BD1], one may attach to such a
decomposition a Shimura curve XM+,M− . If M− is equal to 1, XM+,M− is the
classical modular curve X0(M) of level M . In the general case, XM+,M− is the
Shimura curve with level M+-structure associated to the indefinite quaternion
algebra of discriminant M−.
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5.1. The moduli definition. The curve X = XM+,M− has the following
moduli interpretations.

Models over Z[ 1
M ]. Let B be the indefinite quaternion algebra over Q

of discriminant M−. Fix a maximal order Rmax in B, and an Eichler order
R of level M+ contained in Rmax. Write F = FZ[ 1

M
] for the functor from the

category of schemes over Z[ 1
M ] to the category of sets which associates to a

scheme S the set of isomorphism classes of triples (A, ι, C), where:

(1) A is an abelian scheme over S of relative dimension 2,

(2) ι : Rmax → End(A) is an action of Rmax on A,

(3) C is a level M+-structure on A, that is, a subgroup scheme of A of order
(M+)2 which is stable and cyclic for the action of Rmax.

If M− is strictly greater than 1, the functor F is coarsely representable by a
smooth projective scheme XZ[ 1

M
] over Z[ 1

M ], with smooth fibers. Let H∞ be
the complex upper half-plane, and let R×

1 be the group of norm 1 elements in
R. Fix an embedding of B in M2(R), and write Γ∞,1 for the natural image
of R×

1 in PGL2(R). The group Γ∞,1 acts discontinuously (on the right) on
H∞, and the complex points X(C) of the generic fiber X = XQ are identified
with the Riemann surface H∞/Γ∞,1. For more information, see [BC, Ch. III]
and [Bu].

If M− is equal to 1, then B is isomorphic to the split quaternion algebra
M2(Q), and one may assume that Rmax corresponds to the standard maximal
order M2(Z). A triple (A, i, C) as above is then of the form (E×E, ι, CE×CE)
where E is an elliptic curve, CE is a level M -structure on E, and the action
ι is the natural matrix action of M2(Z) on E × E. Thus, the functor F is
coarsely representable by the affine modular curve Y0(M)Z[ 1

M
]. The projective

completion X0(M)Z[ 1
M

] of Y0(M)Z[ 1
M

], obtained by adding a finite set of cusps,
is a moduli space for generalized elliptic curves with level M -structure. See
[DR] and [Bu].

Models over Z� for � | M+. Assume that � is a prime dividing exactly M+.
(This is the only case which is relevant to the arguments of this paper.)

The reader is referred to [Ed, §§3 and 4], [DR], [KM], and [Bu] for the
definition of the variant of the moduli functor F which can be used in this
case. The resulting canonical model XZ�

is a nodal model of X, in the sense
of [Ed]. That is:

(1) XZ�
is proper and flat over Z�, and its generic fiber is X (viewed as a

curve over Q�),

(2) the irreducible components of the special fiber XF�
of XZ�

are smooth,
and the only singularities of XF�

are ordinary double points.



IWASAWA’S MAIN CONJECTURE FOR ELLIPTIC CURVES 37

More precisely, the special fiber XF�
consists of two copies of the irreducible

curve (XM+/�,M−)F�
intersecting transversally at the supersingular points, which

are identified via the Frobenius morphism at �. (Note that XM+/�,M− has
good reduction at �, and a description of (XM+/�,M−)F�

follows from the model
(XM+/�,M−)Z[ 1

M/�
] given above.)

Models over Z� for � | M−. Assume that M− is strictly greater than 1.
Fix a prime � dividing M−. As before, one may define a model XZ�

of X over
Z� via moduli. The new moduli functor FZ�

on schemes over Z� is defined
similarly to FZ[ 1

M
], except for the requirement that the action ι be special in

the sense of [BC, §III.3]. The functor FZ�
is coarsely representable by a scheme

XZ�
, which is a nodal model of X. A more precise description of XZ�

is given in
Section 5.2 where, in particular, it is explained that the irreducible components
of XF�

are rational curves.

5.2. The Cerednik-Drinfeld theorem. (References: see [JoLi1] and [BC] for
details, and [BD3, §4] for an exposition.) Assume that M− is strictly greater
than 1, and let � be a prime dividing M−. Let B be the definite quaternion
algebra over Q of discriminant M−/�, and let R be an Eichler order in B

of level M+�. Set B� = B ⊗ Z� and R� = R ⊗ Z�, and fix an isomorphism
κ� : B�

∼−→ M2(Q�) mapping R� onto the standard Eichler order of level � in
M2(Z�), consisting of matrices which are upper triangular modulo �. Write
Γ�, respectively, Γ�,1 for the image of R[1� ]

×, respectively, R[1� ]
×
1 in PGL2(Q�),

where R[1� ]
×
1 is the subgroup of norm 1 elements in R[1� ]

×.
Let C� be a completion of an algebraic closure of Q�, and let Ĥ� be the

�-adic upper half-plane, viewed as a formal scheme over Z�. The generic fiber of
Ĥ� is identified with a rigid analytic space H� over Q� whose C�-valued points
are

H�(C�) = P1(C�) − P1(Q�) = C� − Q�.

The special fiber of Ĥ� consists of an infinite sequence of projective lines, inter-
secting at ordinary double points. The �-adic group Γ�,1 acts discontinuously
on Ĥ� and H� on the right. The action on H�(C�) is given by the rule

zγ =
az + b

cz + d
, where γ−1 is represented by

(
a b

c d

)
.

The quotients Ĥ�/Γ�,1 and H�/Γ�,1 exist in the category of formal schemes and
of rigid analytic spaces, respectively. Since the irreducible components of the
special fiber of Ĥ� have finite stabilizer in Γ�,1, it follows that the irreducible
components of the special fiber of H�/Γ�,1 are rational curves.

Write X̂Z�
for the formal completion of XZ�

along its special fiber, where
XZ�

is the model of X over Z� introduced in Section 5.1. Let Xan be the rigid
analytic space over Q� associated to X. Fix a quadratic unramified extension
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Q�2 of Q�, and denote by Z�2 the ring of integers of Q�2 and by F�2 its residue
field.

Theorem 5.1. The formal schemes X̂Z�
and Ĥ�/Γ�,1 are naturally iso-

morphic over Z�2. In particular, Xan is isomorphic to H�/Γ�,1 over Q�2 , and
XF�

is isomorphic to the special fiber of Ĥ�/Γ�,1 over F�2.

Theorem 5.1 can be proved by comparing the moduli definition of XZ�

given in Section 5.1 with Drinfeld’s interpretation [Dr] of Ĥ�, where the base-
change of Ĥ� to the maximal unramified extension of Z� is identified with the
classifying space of certain formal groups of dimension 2 and height 4 which are
endowed with an action of the local order Rmax ⊗Z�. To obtain the version of
the Cerednik-Drinfeld theorem given here, one must descend the isomorphism
obtained from the above comparison to Z�, using the arguments of Jordan and
Livné in [JoLi1]; see also [BC, Ch. III].

5.3. Character groups. Let � be a prime dividing M exactly, and let
XZ�2

be a fixed nodal model of X over the unramified quadratic extension Z�2

of Z�. (It is convenient to extend scalars from Z� to Z�2 , also in view of the
isomorphism of Theorem 5.1.) The dual graph G� = G�(X) of X at � is defined
to be the finite graph determined by the following properties:

(1) The set of vertices V(G�) is the set of irreducible (geometric) components
of the special fiber XF�2

.

(2) The set of (unoriented) edges E(G�) is the set of singular points of XF�2
.

(3) Two vertices v and v′ are joined by an edge e if v and v′ intersect at the
singular point e.

Let xy = �νe be a local equation for XZ�2
at the double point e. The assignment

e �→ νe equips the graph G� with a weight function ν : E(G�) → N.
Fix an orientation on G�, that is, a pair of maps s, t : E(G�) → V(G�) such

that s(e) and t(e) are the ends of the edge e, called the source and the target
of e, respectively.

Let Z[V(G�)] and Z[E(G�)] be the module of formal divisors with integer
coefficients supported on V(G�) and E(G�), respectively. Let Z[V(G�)]0 and
Z[E(G�)]0 be the submodule of degree zero divisors in Z[V(G�)] and Z[E(G�)],
respectively. Let

∂∗ : Z[E(G�)] → Z[V(G�)]0

be the Z-linear boundary map defined by the rule ∂∗(e) = t(e) − s(e).
Let J = J(X) be the jacobian of X, and let JZ�2

be the Néron model
of J over Z�2 . Write JF�2

for the special fiber of J , J0
F�2

for the connected
component of the origin in JF�2

, and Φ� = Φ�(X) for the group of connected
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(geometric) components JF�2
/J0

F�2
. Denote by X� = X�(X) the character group

Hom(TF�2
, Gm) of J at �, where TF�2

is the maximal torus of J0
F�2

.

Proposition 5.2. The module X� is isomorphic to the kernel of ∂∗, and
hence fits into the exact sequence

0 → X� → Z[E(G�)]
∂∗−→ Z[V(G�)]0 → 0.

Sketch of proof. The module X� is canonically identified with the integral
homology group H1(G�, Z). Since the kernel of the map ∂∗ (which depends on
the choice of orientation on G�) computes H1(G�, Z), the proposition follows.
(For more details, see [Ed, §1].)

The character group X� for � | M+. Let XZ�2
be (the base change of) the

model of X at a prime � dividing exactly M+, introduced in Section 5.1. Let
S� = S�(X) be the set of supersingular points of the special fiber XF�2

. By the
facts recalled in Section 5.1, S� is equal to E(G�); furthermore, V(G�) contains
two elements, say v1 and v2. Fix an orientation on G� so that s(e) = v1 and
t(e) = v2 for all edges e.

Proposition 5.3. The character group X� is identified with the group
Z[S�]0 of degree zero divisors with Z-coefficients supported on S�.

Proof. In view of the above remarks, Proposition 5.3 follows directly from
Proposition 5.2.

The character group X� for � | M−. Let T� be the Bruhat-Tits tree of
PGL2(Q�).

Proposition 5.4. The dual graph G� is identified with T�/Γ�,1.

Proof. This follows from Theorem 5.1, by the fact that T� is identified with
the dual graph of the special fiber of the formal scheme Ĥ� (see [BC, Ch. I]).

From now on, fix the following orientation on E(G�). Let v0 be the vertex
of T� corresponding to the local maximal order M2(Z�). Say that a vertex of
T� is even or odd depending on whether its distance from v0 is even or odd,
respectively. Since the elements of Γ�,1 have determinant 1, they send even
vertices of T� to even ones, and odd vertices to odd ones. Thus, there is a well
defined notion of even and odd vertex for the quotient graph G�. Define the
source and target maps s, t : E(G�) → V(G�) so that s(e) is the even vertex of
e and t(e) is the odd vertex of e.

Write δ∗ for the restriction to Z[E(G�)]0 of the map ∂∗ (relative to the
above choice of orientation).
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Proposition 5.5. The module X� fits into the exact sequence

0 → X� → Z[E(G�)]0
δ∗−→ Z[V(G�)]0.

Proof. By the choice of orientation made above, the elements of H1(G�, Z)
belong to Z[E(G�)]0. Proposition 5.5 follows directly from Proposition 5.2.

5.4. Hecke operators and the Jacquet-Langlands correspondence. (Refer-
ences: see [Ri1], [Ri2] and [JoLi3].) Assume that M− is strictly greater than 1,
and let � be a prime dividing M−. This section is concerned with the study of
natural families of Hecke operators acting on the terms of the exact sequence of
Proposition 5.5. The natural Hecke algebra acting by Picard functoriality on
the jacobian J = Pic0(X) induces an action on the character group X�. On the
other hand, in order to define an action of Hecke operators on Z[E(G�)]0 and
Im(δ∗), one must use the interpretation of these modules in terms of double
coset spaces provided by Lemma 5.6.

Remark. A Hecke correspondence T on X induces endomorphisms T and
ξ of J via Picard (contravariant) and Albanese (covariant) functoriality. The
reader is referred to the discussion in [Ri2, pp. 445–6] for details on the defini-
tions. Unless stated otherwise, the Hecke actions considered in this section and
in the following ones will be induced from the Hecke action on J obtained from
Picard functoriality. If wM+,1 denotes the Atkin-Lehner involution defined in
[BD1, §1.5], the relation

wM+,1TwM+,1 = ξ

holds. (This can be seen by imitating the arguments in Proposition 3.54
of [Sh].) In particular, the Hecke operators corresponding to the primes which
do not divide M+ induce the same endomorphism via Picard and Albanese
functoriality. (For the primes dividing M−, this can also be checked by ob-
serving that the corresponding Hecke operators are involutions; in this case, a
general property of curves shows that the two functorialities induce the same
endomorphism.) In view of the above remarks, the detailed discussion of Hecke
actions contained in Chapters 3 and 4 of [Ri2] extends to the more general set-
ting of this paper.

Let B, R and κ� be as in Section 5.2, and let R be the Eichler order of
level M+ which contains R and is mapped by κ� to M2(Z�). Use the notation
of formula (12).

Lemma 5.6. (1) The set E(G�) is identified with the double coset space
R̂×\B̂×/B×.

(2) The set V(G�) is identified with the disjoint union
(
R̂

×\B̂×/B×)
×{0, 1}

of the double coset space R̂
×\B̂×/B× with itself.
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Proof. Strong approximation (see [Vi, p. 61]) yields the identifications

R̂×\B̂×/B× = R×
� \B×

� /R[
1
�
]×, R̂

×\B̂×/B× = R×
� \B×

� /R[
1
�
]×.

Let G̃� be the graph T�/Γ�, and let
→
E (G̃�) be the set of oriented edges of G̃�.

Using the map κ�, one obtains the identifications

R̂×\B̂×/B× =
→
E (G̃�), R̂

×\B̂×/B× = V(G̃�).

To conclude, observe that E(G�) is identified with
→
E (G̃�) by mapping the unori-

ented edge {v, w} (mod Γ�,1) to the oriented edge (v, w) (mod Γ�) if v is even,
and to (w, v) (mod Γ�) if v is odd (see [BD4, Lemma 2.2] for more details).
Moreover, the disjoint union V(G̃�)×{0, 1} is identified with V(G�) by mapping
(ṽ, 0) to the even lift of ṽ and (ṽ, 1) to the odd lift of ṽ, under the natural
projection V(G�) → V(G̃�).

Let
α : R̂×\B̂×/B× → R̂

×\B̂×/B×

be the natural projection induced by the inclusion R ⊂ R. Denote by ŵ the
element of B̂× whose local components away from � are equal to 1, and whose
local component at � maps by κ� to the diagonal matrix diag(1, �). Since the
Eichler order S = ŵR̂

×
ŵ−1 ∩ B of level M+ contains R, there is a natural

projection from R̂×\B̂×/B× to Ŝ×\B̂×/B×. Call β the composition of this
projection with the identification of Ŝ×\B̂×/B× with R̂

×\B̂×/B× induced by
the assignment b̂ �→ ŵ−1b̂.

Let

X ′
� = Z[R̂×\B̂×/B×]0, respectively, X ′′

� = Z[R̂
×\B̂×/B×]0

be the module of degree zero formal divisors with Z-coefficients supported on
R̂×\B̂×/B×, respectively, on R̂

×\B̂×/B×.
Define a degeneracy map

d∗ : X ′
� → (X ′′

� )2

by extending by linearity the rule d∗(x) = (β(x), 0)−(0, α(x)) for x in R̂×\B̂×/B×.

Proposition 5.7. The modules Z[E(G�)]0 and Im(δ∗) of Proposition 5.5
are identified with X ′

� and (X ′′
� )2, respectively. Moreover, the map δ∗ corre-

sponds under these identifications to d∗ (up to sign).

Proof. Lemma 5.6 implies directly that Z[E(G�)]0 and Im(δ∗) are identified
with X ′

� and with a submodule of Z[R̂
×\B̂×/B×]2. A more careful study shows

that d∗ is surjective, and corresponds to δ∗ under the above identifications.
Proposition 5.7 follows.
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Let T be the Hecke algebra acting faithfully on X�, induced by the Hecke al-
gebra acting on the jacobian J (by Picard functoriality). The module Z[E(G�)]0

is also endowed with a faithful action of an algebra T′ of Hecke correspondences,
coming from its double coset description given in Lemma 5.6: see [BD1, 1.5]
and also Section 1.1. Similarly, the identification of Im(δ∗) with (X ′′

� )2 equips
Im(δ∗) with the diagonal action of Hecke operators T ′′

q for q not dividing M/�,
and U ′′

q for q dividing M/�. Moreover, the quotient Im(δ∗) of Z[E(G�)]0 is stable
for the induced action of T′: denote by T′′ the algebra quotient of T′ acting
faithfully on it. Write T̃ for the polynomial ring with Z-coefficients generated
by the indeterminates T̃q, for primes q not dividing M , and Ũq, for primes q

dividing M . Note that the Hecke algebras T, T′ and T′′ are natural quotients
of T̃.

Proposition 5.8. (1) The exact sequence of Proposition 5.5 is equiv-
ariant for the natural actions of T̃ on X�, Z[E(G�)]0, and Im(δ∗) defined
above.

(2) For q �= �, the qth Hecke operator T ′
q ∈ T′ (q � |M) or U ′

q ∈ T′ (q|M)
acts on Im(δ∗) � (X ′′

� )2 via the diagonal action induced by the natural
qth Hecke operator T ′′

q (q � |M) or U ′′
q ∈ T′ (q|M), respectively, acting on

the double coset space X ′′
� . Moreover, the induced action of U ′

� ∈ T′ on
Im(δ∗) is given by the formula (x, y) �→ (T ′′

� x − y, �x), where T ′′
� is the

�th Hecke operator acting on X ′′
� .

(3) The Hecke algebra T′ is isomorphic to the Hecke algebra acting on modu-
lar forms of level M which are new at M−/�. Its quotient T, respectively,
T′′ is isomorphic to the Hecke algebra acting on modular forms of level
M which are new at M−, respectively, which are new at M−/� and old
at �.

Sketch of proof. Step 1. Recalling that M− is divisible by an even number
of primes, fix a prime m such that m �= � and m | M−. Denote by X ′, respec-
tively, X ′′ the Shimura curve XM+�m,M−/�m, respectively, XM+m,M−/�m. Write
Xm(X ′), respectively, Xm(X ′′) for the character group of X ′, respectively, X ′′

at m. These character groups are described in Proposition 5.3: one has

Xm(X ′) = Z[Sm(X ′)]0, Xm(X ′′) = Z[Sm(X ′′)]0.

Let a be the natural projection from X ′ to X ′′, and let b be the composition of
the Atkin-Lehner involution at � acting on X ′ with a. They induce a surjective
degeneracy map

b∗ − a∗ : Xm(X ′) → Xm(X ′′)2.

The module Xm(X ′), respectively, Xm(X ′′) is equipped with the action of a
Hecke algebra induced by the Hecke algebra acting (by Picard functoriality) on
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J ′ = Pic0(X ′), respectively, J ′′ = Pic0(X ′′). Moreover, Xm(X ′′)2 is endowed
with a quotient Hecke action, induced by the map b∗ − a∗.

Step 2. The assignment sending a supersingular modulus to its ring of
endomorphisms equipped with an orientation sets up a bijection of Sm(X ′),
respectively, Sm(X ′′) onto the set of B×-conjugacy classes of oriented Eichler
orders in B of level M+�, respectively, M+ (see [BD2, §2]). These conjugacy
classes are classified by the elements of the double coset space R̂×\B̂×/B×,
respectively, R̂

×\B̂×/B× (see [BD3, §1]). One obtains the isomorphisms

Xm(X ′) � X ′
� , Xm(X ′′) � X ′′

� .

It can be checked that the above identifications are Hecke equivariant, and
that the degeneracy maps d∗ and b∗ − a∗ coincide (up to sign) under these
identifications.

Step 3. The previous steps give a geometric interpretation of the sequence
of Proposition 5.5 in terms of the Shimura curves X, X ′ and X ′′. Then, the
proof of Proposition 5.8 in the special case where M− = �m is a product of
two primes is contained in Ribet’s paper [Ri2]: see Theorems 3.19, 3.20 and
3.21. The details on the general case are provided in [Ri1].

Let us state for future use the exact sequence of character groups consid-
ered in the proof of Proposition 5.8.

Proposition 5.9. Let m be a prime �= � which divides M−. There is a
Hecke equivariant exact sequence

0 → X�(XM+,M−) → Xm(XM+�m,M−/�m) → Xm(XM+m,M−/�m)2 → 0.

Remark. The identification of the group Z[E(G�)]0 with Xm(XM+�m,M−/�m)
and of Im(δ∗) with Xm(XM+m,M−/�m)2 can be made entirely canonical. The
reader should consult [Ri1] for a thorough discussion of this issue.

Corollary 5.10 (The Jacquet-Langlands correspondence). The subring
of the endomorphism ring of J generated by the natural Hecke correspondences
on X is identified with the Hecke algebra acting on cusp forms of level M which
are new at M−.

Proof. By Theorem 5.1, combined with the theory of �-adic uniformization
of Mumford and Tate (see [GvdP, Chs. VI and VIII]), J = Pic0(X) has purely
toric reduction at �. Hence, the Hecke algebra T acting on X�(X) is canonically
identified with the Hecke algebra acting on J . The result follows from the
interpretation of T given in Proposition 5.8.
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5.5. Connected components. Let � be a prime dividing M−, and let Φ� be
the group of connected components of J at �, defined in Section 5.3.

Let us begin by reviewing Grothendieck’s description of Φ�. Let

〈 , 〉 : X� ×X� → Z

be the natural monodromy pairing on X�. It is defined to be the restriction to
X�, by the embedding of Proposition 5.2, of the diagonal pairing on Z[E(G�)]
given by the rule

〈e, e′〉 = νeδe,e′ ,

where νe is the weight of the edge e defined in Section 5.3. Let

j : X� → X∨
�

be the map induced by the monodromy pairing, where X∨
� denotes the Z-dual

of X�. Using the notation introduced before Proposition 5.8, note that the map
j is T-equivariant, provided that the action of T on the source of j is induced
by Albanese functoriality and the action of T on the target of j is induced by
Picard functoriality. The reader is referred to the remark at the beginning of
Section 5.4, where these two actions are compared, and to [Ri2, pp. 448–449]
for an extended discussion.

Proposition 5.11. The group Φ� is canonically identified with the cok-
ernel of j, and hence fits into the Hecke-equivariant exact sequence

0 → X�
j−→ X∨

�
τ�−→ Φ� → 0.

Proof. See Theorems 11.5 and 12.5 of [Groth], and Sections 1 and 2 of [Ed].

Corollary 5.12. There is a natural map

Z[V(G�)]0
ω�−→ Φ�.

Proof. Recall the exact sequence

0 → X�
i−→ Z[E(G�)]

∂∗−→ Z[V(G�)] → Z → 0

of Proposition 5.2, where the map from Z[V(G�)] to Z is the degree map. The
free Z-modules Z[E(G�)] and Z[V(G�)] can be identified canonically with their
Z-duals, by using their distinguished bases. Taking the Z-dual of the above
sequence yields

0 → Z → Z[V(G�)]
∂∗
−→ Z[E(G�)]

i∨−→ X∨
� → 0,

where the map from Z to Z[V(G�)] is the diagonal embedding, and ∂∗ sends a
vertex v to −

∑
s(e)=v e if v is even, and to

∑
t(e)=v e if v is odd. Let j0 denote

the map from Z[E(G�)] to itself induced by the pairing 〈 , 〉 defined above. Note
that the map j of Proposition 5.11 is equal to i∨ ◦ j0 ◦ i. Since Φ� is identified
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with the cokernel of j, the assignment sending an element x of Z[V(G�)]0 to
the element (τ� ◦ i∨ ◦ j0)(y) of Φ�, where y is chosen so that ∂∗(y) = x, defines
the sought-for map ω�.

By the notation of Proposition 5.8, a T̃-module C is Eisenstein if the
relations

T̃qc = (q + 1)c for q � M

hold for all c in C.

Proposition 5.13. The restriction of the map ω� of Proposition 5.12
to Im(δ∗), viewed as a submodule of Z[V(G�)]0 via Proposition 5.5, induces a
T̃-equivariant map

ω̄� : Im(δ∗)/
(
(U ′

�)
2 − 1

)
→ Φ�.

Furthermore, the kernel and cokernel of ω̄� are Eisenstein.

Remark. The proof of Proposition 5.13 follows the argument in the proof
of Theorem 4.3 of [Ri2], where the result is proved in the special case where
M− is the product of two primes. See also the previous work of Jordan and
Livné [JoLi2]. For the details on the Hecke compatibility in the statement of
Proposition 5.13, see Chapters 3 and 4 of [Ri2], particularly Remark 3.24, and
the remark at the beginning of Section 5.4.

Sketch of proof. Let j′ be the map from Z[E(G�)]0 to its Z-dual (Z[E(G�)]0)∨

induced by the pairing 〈 , 〉 defined before. Similarly, let

〈〈 , 〉〉 : Z[V(G�)] × Z[V(G�)] → Z

be the pairing defined by the rule 〈〈v, v′〉〉 = νvδv,v′ , where the weight νv of
the vertex v is defined to be the order of the stabilizer in Γ�,1 of any lift of v

to V(T�). (Note that the quantity νe, defined in a more geometric fashion in
Section 5.3, could equivalently be defined to be the order of the stabilizer in
Γ�,1 of any lift of e to E(T�).) Let

j′′ : Im(δ∗) → Im(δ∗)∨

be the map induced by 〈〈 , 〉〉. Fix a prime divisor m �= � of M−, and let
Φ′

m, respectively Φ′′
m, denote the group of connected components of the Néron

model over Zm2 of the jacobian of XM+�m,M−/�m, respectively, of XM+m,M−/�m.
The groups Φ′

m and Φ′′
m are Eisenstein. This follows from a generalization to

Shimura curves of Theorem 3.12 of [Ri2], which can be obtained from the
results of [Bu] and [JoLi3]. The analogue of Proposition 5.11 applied to the
character groups at m of XM+�m,M−/�m and XM+m,M−/�m, respectively (see
Theorem 11.5 and 12.5 of [Groth], and Sections 1 and 2 of [Ed]), combined with
Proposition 5.9 and the proof of Proposition 5.8, yields the identifications

Φ′
m = (Z[E(G�)]0)∨/j′(Z[E(G�)]0), Φ′′

m × Φ′′
m = Im(δ∗)∨/j′′(Im(δ∗)).
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Let

j′0 : Im(δ∗) →
(Z[E(G�)]0)∨

j′(i(X�))

be the composition of the isomorphism of Im(δ∗) with Z[E(G�)]0/i(X�), induced
by δ∗, with the map induced by j′. Set

σ : Im(δ∗) → Im(δ∗), (x, y) �→ ((� + 1)x + T ′′
� y, T ′′

� x + (� + 1)y).

One obtains a commutative diagram

0 −→ Im(δ∗)
j′′

−→ Im(δ∗)∨ −→ Φ′′
m × Φ′′

m −→ 0
↓σ ↓δ∨

∗ ↓
0 −→ Im(δ∗)

j′
0−→ (Z[E(G�)]0)∨

j′(i(X�))
−→ Φ′

m −→ 0,

where δ∨∗ is induced by the Z-dual of δ∗. Note that δ∨∗ is injective, and its
cokernel is identified with Φ�, in view of Proposition 5.11. Moreover, the
cokernel of σ is identified with Im(δ∗)/((U ′

�)
2 − 1). For, a calculation shows

that the composition of the isomorphism

(x, y) �→ (−x, T ′′
� x − y)

of Im(δ∗) with σ gives the action of (U ′
�)

2 − 1. Proposition 5.13 follows from
the snake lemma applied to the above diagram.

Let XZ�2
be (the base change of) the model of X introduced in Section 5.1,

and let XF�2
be the special fiber of XZ�2

. Write

D =
∑
P

nP P ∈ Div0(X)

for a degree zero divisor on X with integer coefficients, and Supp(D) for the
support of D. Assume that D satisfies the following assumptions:

(1) Each P ∈ Supp(D) is defined over Q�2 .

(2) Each P ∈ Supp(D) reduces modulo � to a point r�(P ) which belongs to
a unique irreducible component of XF�2

(that is, r�(P ) is not a double
point in XF�2

).

Thus, D determines an element

r�(D) =
∑
P

nP r�(P )

in Z[V(G�)]0. Consider the specialization map

∂� : J(Q�2) → Φ�.

Proposition 5.14. Let D ∈ Div0(X) be a divisor satisfying the above
assumptions, and let [D] ∈ J(Q�2) be the class of D. Then

∂�([D]) = ω�(r�(D)).
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Proof. This follows from Edixhoven’s results in [Ed, §2]. (These results
are built on Raynaud’s description of ∂� in terms of the minimal model of X

over Z�2 , given in [Ray].)

5.6. Raising the level and groups of connected components. Let f :
→
E (T )/Γ → Zp be a form on T /Γ, defined as in Section 1. Thus, f is at-
tached to an integer factorization N = N+N−, where N− is squarefree and
divisible by an odd number of primes and N+ is divisible by p. (Note that this
differs slightly from the notation of Section 1, where N was written as pN+N−

and N+ was assumed to be prime to p.)
Let m be a distinguished prime divisor of N−. In what follows, � denotes a

prime number which does not divide N . Write T = TN+,N− , respectively T� =
TN+,N−�, for the Hecke algebra acting on cusp forms on Γ0(N), respectively
on Γ0(N�), which are new at N−, respectively at N−�. Denote by tq and uq,
respectively, Tq and Uq the Hecke operators in T, respectively in T�.

The form f yields a surjective homomorphism

f : T → Z/pnZ

(still denoted f by an abuse of notation). Write If for the kernel of f , and mf

for the unique proper maximal ideal of T containing If .
In view of Corollary 5.10, T can be identified with the m-new quotient

of the Hecke algebra TN+m,N−/m acting faithfully on XN+m,N−/m. Since the
character group Xm(XN+m,N−/m) arises from the m-new part of JN+m,N−/m,
it follows that T acts naturally on it (by Picard functoriality).

Theorem 5.15. Assume:

(1) mf is residually irreducible,

(2) the completion Xm(XN+m,N−/m)mf
of Xm(XN+m,N−/m) at mf is free, of

rank 1 over the completed Hecke algebra Tmf
,

(3) � is a n-admissible prime relative to f .

Then:

(1) There exists a surjective homomorphism

f� : T� → Z/pnZ

such that f�(Tq) = f(tq) for all q � N�, f�(Uq) = f(uq) for all q | N , and
f�(U�) = ε, where ε = ±1 is such that pn divides � + 1 − εf(t�).

(2) Let If�
⊂ T� denote the kernel of the homomorphism f�, and let Φ� denote

the group of connected components of the Néron model of JN+,N−� over
Z�2 , defined in Section 5.3. There is a group isomorphism

Φ�/If�
� Z/pnZ.
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Remark. Compare the proof of Theorem 5.15 with Section 7 of [Ri2], in
which the special case, where M− is a product of two primes and If = mf is
a maximal ideal, is treated.

Proof. The second assumption implies the existence of an isomorphism

Xm(XN+m,N−/m)2/If � (Z/pnZ)2.

Write T ′
q and U ′

q for the Hecke operators in TN+�,N− . By Proposition 5.9 and
Proposition 5.8, there is an action of TN+�,N− on Xm(XN+m,N−/m)2, induced
by the diagonal action of tq for q � N� and uq for q | N , and such that the
Hecke operator U ′

� acts via the formula

(x, y) �→ (t�x − y, �x).

Since � is n-admissible, t� is equal modulo If to ε(� + 1). By combining this
relation with the above formula for the action of U ′

� and with the fact that
p ≥ 5, one obtains that U ′

� + ε is invertible on Xm(XN+m,N−/m)2/If , and that
the isomorphisms

Xm(XN+m,N−/m)2/〈If , U ′
� − ε〉 � Xm(XN+m,N−/m)2/〈If , (U ′

�)
2 − 1〉 � Z/pnZ

hold. Hence, the action of TN+�,N− on the above quotient is via a surjective
homomorphism

f�
′ : TN+�,N− → Z/pnZ.

Write If�
′ for the kernel of f�

′. By Proposition 5.13 and the residual
irreducibility of mf , combined with Proposition 5.9 and the remark after it,
one finds an isomorphism

Φ�/If�
′ � Xm(XN+m,N−/m)2/〈If , (U ′

�)
2 − 1〉.

It follows that f�
′ factors through T�, giving the sought for character f�, and

that Φ�/If�
is isomorphic to Z/pnZ.

Write X(�) for the Shimura curve XN+,N−�, J (�) for the jacobian of X(�),
and Pic(X(�)) for the Picard variety of X(�). Denote by X� the character group
of J (�) at �, and by Tap(J (�)) the p-adic Tate module of J (�). Note that the
Hecke algebra T� acts faithfully on J (�).

Lemma 5.16. Under the assumptions of Theorem 5.15, the exponent of
the Z-module Tap(J (�))/If�

is equal to pn.

Proof. Since Tap(J (�))/If�
is naturally a T�/If�

-module, and T�/If�
is

isomorphic to Z/pnZ, it follows that the exponent of Tap(J (�))/If�
is at most

pn. On the other hand, the Mumford-Tate theory of �-adic uniformization,
combined with the Cerednik-Drinfeld theorem (see Section 5.2 and [GvdP,
Chs. VI and VIII]) shows the existence of a symmetric pairing

[ , ] : X� ×X� → Q×
�(48)
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such that there exists an exact sequence of T�[Gal(Q̄�2/Q�2)]-modules

0 → X�
j̃−→ X∨

� ⊗ Q̄×
�2 → J (�)(Q̄�2) → 0,(49)

where X∨
� denotes the Z-dual Hom(X�, Z) of X�, and where the map j̃ is induced

by [ , ]. The sequence (49) is Hecke-equivariant, provided that the action of
T� on the first term is induced by Albanese functoriality, and the action on the
second and third term is induced by Picard functoriality. Note also that the
need to extend scalars to Q�2 in (49) arises from the fact that the isomorphism
of rigid spaces stated in Theorem 5.1 is only defined over Q�2 and not over Q�.
The pairing [ , ] is related to monodromy pairing of Section 5.5 by the rule

ord� ◦ [ , ] = 〈 , 〉(50)

(see [M, Th. 7.6]). In view of Theorem 5.15, choose an element c of Φ�/If�
of

order pn, and lift c to an element c̃ of Φ� of p-power order pn′
, with n′ ≥ n. In

view of Proposition 5.11, fix an element b ∈ X∨
� such that τ�(b) = c̃, and let a

be the element of X� such that pn′
b = j(a). Formula (50) shows that ord� of

the period j̃(a) ∈ X∨
� ⊗Q×

� is divisible by pn′
. Thanks to the sequence (49), the

choice of a pn′
-root of j̃(a) determines an element t̃ of J (�)[pn′

] defined over an
unramified extension of Q�, whose natural image in Φ� is equal to c̃. Writing
t for the image of t̃ in J (�)[pn′

]/If�
, then the natural image of t in Φ�/If�

is
equal to c. Since

Tap(J (�))/If�
= J (�)[pn′

]/If�
,

it follows that t is an element of order ≥ pn in Tap(J (�))/If�
. Since the exponent

of Tap(J (�))/If�
is at most pn, this proves Lemma 5.16.

Theorem 5.17. Under the assumptions of Theorem 5.15, the Galois rep-
resentations Tap(J (�))/If�

and Tf,n are isomorphic.

Proof. Let mf�
be the maximal ideal in T� containing If�

. (Thus, T�/mf�

is isomorphic to Z/pZ.) The proof is naturally divided into two steps. In
the first step, one works modulo mf�

, and a known result of [BoLeRi] on the
structure of Tap(J (�))/mf�

is invoked.

Step 1. This first step shows that Tap(J (�))/mf�
is isomorphic to Tf,1. Tak-

ing p-torsion in the sequence (49) yields the exact sequence of T�[Gal(Q̄�2/Q�2)]-
modules

0 → X∨
� ⊗ µp → J (�)[p] → X�/p → 0.(51)

After tensoring (51) with T�/mf�
, one finds

0 → ((X∨
� /mf�

)/Y) ⊗ µp → J (�)[p]/mf�
→ X�/mf�

→ 0,(52)
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where Y is a certain submodule of X∨
� /mf�

. Taking Galois cohomology over
Q�2 of (52) yields an exact sequence

X�/mf�
→H1(Q�2 , ((X∨

� /mf�
)/Y) ⊗ µp)(53)

→H1(Q�2 , J
(�)[p]/mf�

) → H1(Q�2 ,X�/mf�
).

Note the identifications

(54)

H1(Q�2 , ((X∨
� /mf�

)/Y) ⊗ µp) = ((X∨
� /mf�

)/Y) ⊗ H1(Q�2 , µp)

= ((X∨
� /mf�

)/Y) ⊗ Q×
�2/(Q×

�2)
p = (X∨

� /mf�
)/Y,

where the last equality follows from the fact that � is an admissible prime and
hence p � | �2 − 1. Moreover, J (�)[p]/mf�

= Tap(J (�))/mf�
, and

H1(Q�2 ,X�/mf�
) = Homunr(Gal(Q̄�2/Q�2),X�/mf�

) = Hom(Z/pZ,X�/mf�
)

by local class field theory, since p � | �2 − 1. Thus, (53) can be re-written as

X�/mf�
→ (X∨

� /mf�
)/Y → H1(Q�2 ,Tap(J (�))/mf�

) → H1
unr(Q�2 ,X�/mf�

).
(55)

The first map in (55) is induced by the monodromy pairing on X�: this follows
from the definition of the sequence (49) which induces (55); see also the Propo-
sition on page IV–32 of [Se2], which covers a special case. By Proposition 5.11,
one obtains the exact sequence

0 → Φ̄�/mf�
→ H1(Q�2 ,Tap(J (�))/mf�

) → H1
unr(Q�2 ,X�/mf�

),(56)

where Φ̄�/mf�
is a quotient of Φ�/mf�

. By the main result of [BoLeRi], the
module Tap(J (�))/mf�

is semisimple over Fp[Gal(Q̄/Q)], and hence is iso-
morphic to k ≥ 1 copies of Tf,1 by the Eichler-Shimura relations. Hence,
H1(Q�2 ,Tap(J (�))/mf�

) is isomorphic to H1(Q�2 , Tf,1)k. In view of the results
of Section 2.2, the Fp-vector space H1(Q�2 , Tf,1)k is 2k-dimensional; further-
more, it can be decomposed as the direct sum of two k-dimensional subspaces,
one of which is generated by unramified cohomology classes, and the other by
ramified cohomology classes. Since Φ�/mf�

is 1-dimensional by Theorem 5.15,
it follows from (56) and the proof of Lemma 2.6 that Φ̄�/mf�

is equal to Φ�/mf�
,

and that k is equal to 1. Hence Tap(J (�))/mf�
is isomorphic to Tf,1.

Step 2. It remains to show that Tap(J (�))/If�
is isomorphic to Tf,n.

There is a natural GQ-equivariant projection

Tap(J (�))/If�

π−→ Tap(J (�))/mf�
.(57)

In view of Lemma 5.16, let t be an element of order pn in Tap(J (�))/If�
, and

let t̄ = π(t). Since Tf,1 is irreducible, there is an element g ∈ GQ such
that t̄ and t̄g are a basis for Tap(J (�))/mf�

. Nakayama’s lemma shows that
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Tap(J (�))/If�
is generated by t and tg. Moreover, since g acts as an auto-

morphism of Tap(J (�))/If�
, the order of tg is equal to the order of t. Finally,

using the assumption made in the introduction that the Galois representation
Tf,1 has image isomorphic to GL2(Fp), one checks directly that the submod-
ules generated by t and tg have trivial intersection, so that Tap(J (�))/If�

is
isomorphic to (Z/pnZ)2. This implies that Tap(J (�))/If�

is isomorphic to Tf,n.

Remarks. 1. Repeating the argument in the proof of the first step of
Theorem 5.17, with pn replacing p and the ideal If�

replacing mf�
, yields the

exact sequence (analogue of (56))

0 → Φ̄�/If�
→ H1(K�,Tap(J (�))/If�

) → H1
unr(K�,X�/If�

),(58)

where Φ̄�/If�
is a quotient of Φ�/If�

. This exact sequence will be of use in the
proof of Corollary 5.18.

2. In view of Remark 1, equations (49) and (54), with If�
replacing mf�

,
show that the natural Kummer map from J (�)(K�) to H1(K�,Tap(J (�))/If�

)
factors through the map of specialization to connected components from
J (�)(K�) to Φ̄�/If�

.

Recall the quadratic imaginary field K introduced in the previous sections.
Note that the n-admissible prime � is inert in K by definition, so that the
completion K� is isomorphic to Q�2 . Given m ≥ 0, let Om = Z + pm+1OK

be the order of K of conductor pm+1. Let K̃m be the ring class field of K

of conductor pm+1, and let K̃∞ be the union of the K̃m. (The field K̃∞ was
introduced in Section 2.1.) The field K̃m can be constructed by adjoining to
K the value j(Om) of the modular function j (viewed as a function of lattices)
on Om. By the theory of complex multiplication, K̃m is an abelian extension
of K, which contains the Hilbert class field K̃ of K. The Galois group of
K̃m over K̃ is cyclic, of order pm(p − ε(p))/u, where ε(p) is equal to 1 or −1
depending on whether p is split or inert in K, respectively, and where u denotes
half the order of the group of units of K. Write G̃m for the Galois group of
K̃m over K, and G̃∞ for the Galois group of K̃∞ over K. By class field theory,
the Galois group G̃∞ is identified with the group G̃∞ defined in Section 1.2 in
terms of the ideles of K.

Write Φ�,m, respectively, Φ′
�,m for ⊕λ|�Φλ, where the sum is taken over the

primes λ of Km and of K̃m dividing �, respectively, and Φλ denotes the group
of connected components of J (�) at λ. Define Φ̂�, respectively Φ̃�, to be the
inverse limit of the groups Φ�,m, respectively Φ′

�,m, with respect to the norm
maps. Since the prime � is inert in K, it splits completely in K̃∞/K. Hence,
the choice of a prime of K̃∞ above � identifies Φ̂� with Φ� ⊗ Z[[G∞]], and Φ̃�

with Φ� ⊗ Z[[G̃∞]]. It follows that the identification of Φ�/If�
with Z/pnZ of
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Theorem 5.15 yields isomorphisms

Φ̂�/If�
� Λ/pnΛ, Φ̃�/If�

� Z/pn[[G̃∞]].

Write Ĵ (�)(K∞)/If�
, respectively Ĵ (�)(K̃∞)/If�

, for the inverse limit of the
modules J (�)(Km,�)/If�

, respectively J (�)(K̃m,�)/If�
, with respect to the norm

maps. The inverse limit of the maps of specialization to connected components
yields the maps

∂̂� : Ĵ (�)(K∞)/If�
→ Φ̂�/If�

� Λ/pn,(59)

∂̃� : Ĵ (�)(K̃∞)/If�
→ Φ̃�/If�

� Z/pn[[G̃∞]].(60)

Corollary 5.18. (1) There is an isomorphism

Φ�/If�
→ H1

sing(K�, Tf,n),

which is canonical up to the choice of an identification of Tap(J (�))/If�

with Tf,n.

(2) There is an isomorphism

Φ̂�/If�
→ Ĥ1

sing(K∞,�, Tf,n),

which is canonical up to the choice of an identification of Tap(J (�))/If�

with Tf,n.

(3) There is a commutative diagram

Ĵ (�)(K∞)/If�
−→ Ĥ1(K∞, Tf,n)

↓∂̂� ↓∂�

Φ̂�/If�
−→ Ĥ1

sing(K∞,�, Tf,n),

where the top horizontal arrow arises from the natural Kummer map,
the lower horizontal arrow is the isomorphism defined above, and ∂� is
the residue map defined in Section 2.2. Furthermore, there is a similar
commutative diagram having the group Ĵ (�)(K̃∞)/If�

as its source.

Proof. By Theorem 5.17, Tap(J (�))/If�
is isomorphic to Tf,n. Hence, by

the results of Section 2.2, H1(K�,Tap(J (�))/If�
) is free of rank two over Z/pnZ;

moreover, its submodule of unramified classes has rank one. By Theorem 5.15,
Φ�/If�

is isomorphic to Z/pnZ. The exact sequence (58) shows that all the
elements of Φ̄�/If�

map to ramified classes. It follows that Φ̄�/If�
is equal to

Φ�/If�
. Furthermore, the residue map induces a surjection of Φ�/If�

onto the
rank one group H1

sing(K�, Tf,n). This defines the isomorphism stated in part
one of Corollary 5.18. The second part is a formal consequence of the first.
The third part follows from the definition of the isomorphism in part two,
combined with Remark 2 after the proof of Theorem 5.17.
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6. The theory of complex multiplication

(Reference: [BD1, §2]). Fix a positive integer M , a rational prime p,
and an imaginary quadratic field K of discriminant −D, such that p | M but
p2 � M , and (M, D) = 1. Define an integer decomposition

M = M+M−

such that (M+, M−) = 1, and M+ is divisible by p and by the prime divisors
of M/p which are split in K. Assume that:

(1) M− is squarefree,

(2) M− is the product of an even number of primes.

Let X = XM+,M− be the Shimura curve attached in Section 5.1 to an
Eichler order R of level M+ in the indefinite quaternion algebra B of discrim-
inant M−. For all m ≥ 0, there is a point Pm on X, which has complex
multiplication by the order Om of K of conductor pm+1 (introduced after the
proof of Theorem 5.17). More precisely, let (Am, ιm, Cm) be a triple corre-
sponding to Pm via the moduli interpretation of X given in Section 5.1. Write
End(Pm) for the ring of endomorphisms of Am which commute with the action
ιm and respect the level structure Cm. Then,

End(Pm) � Om.

The point Pm is called a Heegner point of level m. By the theory of complex
multiplication, Pm is defined over the field K̃m (defined after the proof of
Theorem 5.17). Choose the Pm so that they are compatible, in the sense that
for all m ≥ 0, there is an isogeny of degree p2 from Am to Am+1, which is
equivariant for the actions ιm and ιm+1, and preserves the level structures Cm

and Cm+1.
One has the following interpretation of the sequence {Pm} in terms of

the Bruhat-Tits tree at p. Given a point P on the Shimura curve XM+/p,M− ,
corresponding to a triple (A, ι, C), let T (P ) denote the tree of p-isogenies of P .
The vertices of T (P ) correspond to points of XM+/p,M− representing moduli
related to (A, ι, C) by an isogeny of p-power degree. Two vertices of T (P ) are
adjacent if the corresponding moduli are related by an isogeny of degree p2.
Thus, the oriented edges of T (P ) are naturally identified with points on X.
The tree T (P ) is isomorphic to the Bruhat-Tits tree T , and has a distinguished
vertex vP corresponding to P . There is a unique point P on XM+/p,M− such
that:

(1) End(P ) � OK ,

(2) P0 corresponds to an edge of the tree T (P ), with origin in P .

Then, the points Pm determine a half line of T (P ) originating from P , with no
back-trackings.
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7. Construction of the Euler system

Notation and assumptions being as in Section 5.6, the construction of
Section 6 yields a compatible family of Heegner points

Pm ∈ X(�)(K̃m)

for all m ≥ 0 (the notation X(�) was defined right before Lemma 5.16). View
Pm as an element of the Picard group Pic(X(�))(K̃m). Since the ideal If�

is
not Eisenstein, the natural inclusion

J (�)(K̃m)/If�
→ Pic(X(�))(K̃m)/If�

is an isomorphism. Let αp be the unit root of Frobenius at p. Write P ∗
m for

the image of α−m
p Pm in J (�)(K̃m)/If�

. The points P ∗
m are norm-compatible.

Hence their images by the coboundary maps

J (�)(K̃m)/If�
→ H1(K̃m,Tap(J (�))/If�

)

yield a sequence of cohomology classes which are compatible under the core-
striction maps. The choice of an isomorphism of Tap(J (�))/If�

with Tf,n,
which exists by Theorem 5.17, gives a class κ̃(�) in Ĥ1(K̃∞, Tf,n), where
Ĥ1(K̃∞, Tf,n) denotes the inverse limit under the corestriction maps of the
groups H1(K̃m, Tf,n). Define κ(�) in Ĥ1(K∞, Tf,n) to be the corestriction from
K̃∞ to K∞ of κ̃(�). In other words, when Qm is the norm from K̃∞ to K∞ of
P ∗

m, the class κ(�) is the natural image in Ĥ1(K∞, Tf,n) of the sequence Qm

via the coboundary maps.

8. The first explicit reciprocity law

This section is devoted to the proof of Theorem 4.1, with notation as in
the previous sections. Recall that the class κ(�) is constructed from a family
of points on the Shimura curve X(�); hence, it can be viewed as an element of
the usual (compactified) Selmer group of J (�) over K∞ relative to the Galois
module Tap(J (�))/If�

. This shows that κ(�) belongs to Ĥ1
� (K∞, Tf,n).

Recall the groups Φ̂� and Φ̃�, and the maps ∂̂� and ∂̃�, which were defined
in Section 5.6 (see equations (59) and (60)).

Lemma 8.1. Theorem 4.1 is implied by the equality

∂̃�({P ∗
m}) = L̃f (mod pn).

Remark. Note that the terms in the equality of Lemma 8.1 are well defined
only up to multiplication by elements of Z×

p and of G̃∞.

Proof. The element ∂̂�({Qm}) is mapped to ∂�(κ(�)) by the isomorphism
of Corollary 5.18. Since ∂̂�({Qm}) is the norm of ∂̃�({P ∗

m}), and Lf is the
natural image of L̃f in Λ, the claim follows.
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In view of Lemma 8.1, one is reduced to studying the specialization of the
Heegner points Pm to connected components. To begin with, it is necessary to
recall the �-adic description of the point Pm given in Section 5 of [BD3], and
based on Drinfeld’s moduli interpretation of the �-adic upper half-plane. Let
P̄m denote the reduction of Pm modulo a fixed prime above �, and let

End(Pm) → End(P̄m)

be the map obtained by reduction of endomorphisms. Recall that End(Pm)
is isomorphic to the quadratic order Om. Moreover, the ring End(P̄m)[1� ] is
isomorphic to R[1� ], where R denotes an Eichler order of level N+ in the def-
inite quaternion algebra B of discriminant N−, which can be chosen to be
independent of m. Extending scalars by Z[1� ], one obtains an injection

Ψ0
m : Om[

1
�
] → R[

1
�
].

It can be shown that Ψ0
m is well defined up to conjugation by elements in

R[1� ]
×
1 . Therefore, Ψ0

m can be identified with an element of the space

(Hom(K, B) × V(T�))/Γ�,1,

by mapping Ψ0
m to the pair (Ψm, vm), where Ψm is the extension of scalars of

Ψ0
m, and vm is the vertex of T� corresponding to the unique maximal order of

B� containing Ψm(Om). The embedding Ψm induces an action of K×
� on H�,

having two fixed points which belong to K� − Q�, and which are conjugate by
the generator of Gal(K�/Q�). Then, Pm is identified with the image in H�/Γ�,1

of one of these two points, via the isomorphism of Theorem 5.1. (A suitable
condition of normalization specifies which point corresponds to Pm, but this
will not be of use here.) Let

r� : H�(C�)/Γ�,1 −→ V(G�) ∪ E(G�) = (V(T�) ∪ E(T�))/Γ�,1

be the reduction map (see for example Chapter I of [BC], and also Sections 1
and 6 of [BD3]). Here G� is the dual graph T�/Γ�,1 of X(�) at �. Given P in
X(�)(C�), viewed as a point in H�(C�)/Γ�,1, r�(P ) is equal to a vertex v if the
reduction of P modulo � lands in the single irreducible component of the fiber
X

(�)
F�2

corresponding to v, and r�(P ) is equal to an edge e if P reduces to the
singular point corresponding to e. The above description of Pm in terms of an
�-adic argument in H� shows that the image of Pm by r� is equal to the vertex
vm (mod Γ�,1). This follows from the GL2(Q�)-equivariance of the reduction
map, combined with the fact that Pm corresponds to a fixed point for the
action of Ψm(K×

� ) on H�(C�) and vm is the unique fixed point for the action
of Ψm(K×

� ) on V(T�) ∪ E(T�). Hence, the reduction of Pm modulo � lands in
the single irreducible component of the fiber X

(�)
F�2

defined by vm (mod Γ�,1).
Furthermore, by Proposition 5.14, vm (mod Γ�,1) computes the image of Pm

in the group of connected components Φ�,m/If�
.
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On the other hand, recalling that p divides the level of the order R, we
see that strong approximation (see [Vi, p. 61]) gives an identification

(Hom(K, B) × V(T�))/Γ�,1 = (Hom(K, B) ×
→
E (Tp))/Γp

where, in the notations of Section 1.1, Tp = T and Γp = Γ. The compatibility
condition on the Heegner points Pm translates to the condition that they may
be represented by pairs (Ψ, em) in Hom(K, B) ×

→
E (Tp), where Ψ arises from

an embedding
Ψ0 : OK [1/p] → R[1/p]

which does not depend on m, and where the em determine a half line with
no back-trackings in Tp. The results of [BD3, §5] show that the action of G̃∞
on the Pm is compatible with the action of G̃∞ on the edges em, which was
defined in Section 1.2 using the embedding Ψ. Fix a prime λ∞ of K̃∞ above
�, and set λm = λ∞ ∩ K̃m. For σ ∈ G̃∞, write ∂λm

(P σ
m) for the natural image

of P σ
m in the group of connected components Φλm

/If�
� Z/pnZ. The use of

Proposition 5.14 described above, together with the identification coming from
strong approximation, shows that the map ∂λm

on the points P σ
m can be viewed

as a function →
E (Tp)/Γp −→ Z/pnZ.

By multiplicity one, this function is equal modulo pn to the eigenform f in-
troduced in Section 5.6 (up to multiplication by an element of (Z/pnZ)×). By
comparing with definition (17), one finds that the equality

∂λm
(P σ

m) = [σ, em]f (mod pn)(61)

holds for a suitable choice of λ∞. (Note that the possible choices of λ∞ are
permuted by G̃∞. Similarly, the choices of embedding Ψ and of a sequence of
edges in the definition of the p-adic L-function given in Section 1.2 show that
L̃f is well defined only up to multiplication by elements of G̃∞.) It follows
from (61) that

∂λm
(σP ∗

m) = α−m
p [σ, em]f (mod pn).

In view of equation (20) and of the definition of L̃f , this concludes the proof.

9. The second explicit reciprocity law

This section is devoted to the proof of Theorem 4.2. Recall that �1 and
�2 are distinct n-admissible primes relative to f , such that pn divides �1 + 1−
ε1a�1(f) and �2 + 1 − ε2a�2(f), with ε1 and ε2 equal to ±1. Let T�1 be the
Hecke algebra acting on X(�1). As in the previous sections, equip J (�1) with
the action of T�1 induced by Picard functoriality. Since f is p-isolated, the
assumptions of Theorem 5.15 are satisfied in the current setting. Thus, by
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Theorem 5.17, Tap(J (�1))/If�1
is isomorphic to Tf,n as a Galois module. Fix

such an isomorphism. Then, the map

J (�1)(K�2)/If�1
→ H1(K�2 ,Tap(J (�1))/If�1

)

arising from Kummer theory yields a map

J (�1)(K�2)/If�1
→ H1(K�2 , Tf,n).(62)

The image of (62) is equal to H1
fin(K�2 , Tf,n), since Tf,n is unramified at �2 and

�2 is a prime of good reduction for J (�1). Since p �= �2, the map induced by
reduction modulo �2

J (�1)(K�2)/If�1
→ J (�1)(F�22

)/If�1
(63)

is an isomorphism. Hence, by composing the inverse of (63) with (62), and
fixing an identification of H1

fin(K�2 , Tf,n) with Z/pnZ (use Lemma 2.6), one
obtains a surjective map

J (�1)(F�22
)/If�1

→ Z/pnZ.(64)

Let S�2 ⊂ X(�1)(F�22
) denote the set of supersingular points of X(�1) in charac-

teristic �2, and let Div(S�2), respectively Div0(S�2), be the module of formal
divisors, respectively, degree zero formal divisors with Z-coefficients supported
on S�2 .

One may define two different actions of T�1 on Div(S�2) and Div0(S�2), by
using either Picard or Albanese functoriality (see the remark at the beginning
of Section 5.4, which explains that these two actions differ by an Atkin-Lehner
involution wN+,1). The latter action is the usual action defined on super-
singular points, and is more natural if one views the supersingular points as
being points in X(�1)(F�22

). The former action is more natural when viewing
divisors on supersingular points as giving rise to points in Pic(X(�1))(F�22

) and
J (�1)(F�22

), on which the action of T�1 was defined via Picard functoriality. Since
f�1 is an eigenform for wN+,1, which acts via multiplication by ±1, the choice
of a specific Hecke action makes no difference for the purpose of establishing
the T�1-equivariance of the maps defined below; let us establish the convention
that the Hecke action on supersingular points be the Albanese one.

Since the inclusion of Div0(S�2) in Div(S�2) induces an identification of
Div0(S�2)/If�1

with Div(S�2)/If�1
(use the fact that If�1

is not Eisenstein),
one obtains a natural map

Div(S�2) → J (�1)(F�22
)/If�1

.(65)

The composition of (65) with the surjection (64) yields a map

γ : Div(S�2) → Z/pnZ.

Write Tq (q � N�1) and Uq (q | N�1) for the qth Hecke operator in T�1 , and T̄q

and Ūq for the natural image of Tq and Uq, respectively, in T�1/If�1
= Z/pnZ.
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Thus, the following equalities modulo pn hold: T̄q ≡ aq(f) for q � N�1, Ūq ≡
aq(f) for q | N , and Ū�1 ≡ ε1.

Lemma 9.1. The relations

γ(Tqx) = T̄qγ(x) (q � N�1�2), γ(Uqx) = Ūqγ(x) (q | N�1),

γ(T�2x) = T̄�2γ(x), γ(Frob�2x) = ε2γ(x)

hold for x ∈ Div(S�2).

Proof. As observed in the proof of Lemma 2.6, H1
fin(K�2 , Tf,n) is identified

with the module Tf,n/(Frob2
�2 − 1)Tf,n of GK�2

-coinvariants of Tf,n. Therefore,
the map γ is defined by sending a point x to the image of ((Frob2

�2 −1)/pn)x in
Tf,n/(Frob2

�2 − 1)Tf,n. The first two identities are a direct consequence of this
description of γ. As for the last two identities, note that the Eichler-Shimura
relations identify T�2 with the correspondence Frob�2 + Frob∨

�2 , where Frob∨
�2

denotes the transpose of Frob�2 . Furthermore, on points defined over F�22
, one

has Frob∨
�2x = �2Frob�2x, and hence T�2x = (�2 + 1)Frob�2x. The claim follows

from the fact that Frob�2 acts on Tf,n with eigenvalues ε2 and ε2�2, which
implies that Frob�2 acts as ε2 on the quotient Tf,n/(Frob2

�2 − 1)Tf,n.

Proposition 9.2. The map γ is surjective.

Proof. Recall that p exactly divides N+, and that the Shimura curve
X = X(�1) was defined in Section 5.1 in terms of an Eichler order R of level
N+ in the indefinite quaternion algebra B of discriminant N−�1. Let J = J (�1)

be the jacobian of X. Write J(F�22
)ss for the subgroup of J(F�22

) generated by
divisors supported on supersingular points. Since the map (64) is surjective, it
is enough to show that the natural image of J(F�22

)ss in the group J(F�22
)/If�1

is equal to the whole group. Let Γ(�2) denote the group of norm one elements in
R[1/�2]×/{±1}. Let X̃ be the Shimura curve defined in the same way as X but
imposing an extra Γ1(p)-level structure. Let Γ̃(�2) be the finite index subgroup
of Γ(�2) consisting of elements which are congruent to the standard unipotent
matrices modulo p. Write J̃(F�22

) for the F�22
-points of the jacobian of X̃, and

J̃(F�22
)ss for the subgroup generated by divisors supported on supersingular

points. Since Γ̃(�2) is torsion-free, the results of [I2] (see in particular Remark
G, page 19) establish a canonical isomorphism

J̃(F�22
)/J̃(F�22

)ss � (Γ̃(�2))ab,(66)

where (Γ̃(�2))ab denotes the abelianization of Γ̃(�2). By fixing an embedding of
B in M2(Q�2), one obtains an action of Γ̃(�2) on the Bruhat-Tits tree T�2 . Let v0

be the vertex of T�2 such that the stabilizer Γ̃(�2)
v0 of v0 in Γ̃(�2) is the subgroup

of integral elements (relative to the fixed embedding of Γ̃(�2) in M2(Q�2)). Let
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e0 be the edge originating from v0 such that the stabilizer Γ̃(�2)
e0 of e0 is the

subgroup of Γ̃(�2)
v0 whose elements are upper triangular modulo �2 relative to

this embedding. Write v1 for the target of e0. Note that Γ̃(�2)
v0 , respectively

Γ̃(�2)
e0 , can be identified with the discrete subgroup of SL2(R) which defines

the Shimura curve X̃, respectively, the Shimura curve X̃0(�2) defined in the
same way as X̃, but with an extra Γ0(�2)-level structure imposed. The group
Γ̃(�2) acts on the tree T�2 with the closed edge attached to e0 as a fundamental
region. Hence the exact cohomology sequence in Proposition 13 of Section
II.2.8 of [Se1], in the case i = 1, M = Fp and G = Γ̃(�2) becomes

0 −→ Hom(Γ̃(�2), Fp)−→Hom(Γ̃(�2)
v0

, Fp) ⊕ Hom(Γ̃(�2)
v1

, Fp)(67)
d−→Hom(Γ̃(�2)

e0
, Fp).

The modules appearing as the source and target of d are identified by duality
with two copies or one copy of the p-torsion in the jacobian of X̃ and X̃0(�2),
respectively. Moreover, the map d corresponds under these identifications to
the map denoted αp in the statement of Theorem 2, p. 451 of [DT]. This
theorem (the analogue of Ihara’s lemma in the setting of Shimura curves)
states that the action of GQ on each Jordan-Hölder constituent of the kernel
of d factors through an abelian quotient of GQ. View f�1 as a mod pn modular
form (with trivial character) on X̃, and write Ĩf�1

for the associated ideal in
the Hecke algebra T̃�1 . Let m̃f�1

be the maximal ideal of T̃�1 containing Ĩf�1
.

Since m̃f�1
corresponds to an irreducible mod p Galois representation, it follows

from the sequence (67), combined with the semisimplicity result of [BoLeRi]
and the above mentioned theorem of [DT], that Hom(Γ̃(�2), Fp)[mf�1

] is trivial,
and therefore that (Γ̃(�2))ab/m̃f�1

is trivial. By Nakayama’s lemma, this shows
that

(Γ̃(�2))ab/Ĩf�1
= 0.(68)

Equation (66) then implies that the natural image of J̃(F�22
)ss in J̃(F�22

)/Ĩf�1

fills the whole group. Finally, the cokernel of the natural map

J̃ (�1)(F�22
) → J (�1)(F�22

)(69)

can be identified with an abelian quotient of the (finite) image of Γ0(p) in
SL2(Z/pZ), and hence has order dividing p − 1; see for example the results of
Chapter 7 of [Co], particularly in pages 107 and 110. It follows in particular
that the composition of the map (69) with the projection from J (�1)(F�22

) to
J (�1)(F�22

)/pn is surjective. When combined with the fact that J̃(F�22
)ss maps

surjectively to J̃(F�22
)/Ĩf�1

(as noted after equation (68)), this implies that
J(F�22

)ss maps surjectively to J(F�22
)/If�1

, as was to be shown.

Remark. The proof of Proposition 9.2 relies crucially on the analogue of
Ihara’s lemma proved in [DT]. In turn, Proposition 9.2 provides the key step
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in the proof of Theorem 9.3, a raising-the-level result which is a theorem of
[DT] (extended to mod pn modular forms).

Following the notation of Proposition 3.12, let B′ be the definite quater-
nion algebra of discriminant N−�1�2, R′ an Eichler Z[1/p]-order of level N+ in
B, and Γ′ the group (R′)×/Z[1/p]×. The next result contains the part of the
statement of Proposition 3.12 that remains to be proved.

Theorem 9.3. There exists an eigenform g ∈ S2(T /Γ′, Z/pnZ) such that

Tqg = aq(f)g (q � |N�1�2), Uqg = aq(f)g (q|N),

U�1g = ε1g, U�2g = ε2g.

Proof. Write T�1 = TN+,N−�1 for the Hecke algebra acting on cusp forms on
Γ0(N�1) which are new at N−�1, and T�2,�1 = TN+�2,N−�1 for the Hecke algebra
acting on cusp forms on Γ0(N�1�2) which are new at N−�1. By Theorem 5.15,
there is a mod pn modular form

f�1 : T�1 → Z/pnZ

such that f�1(Tq) = f(tq) for all q � N�1, f�1(Uq) = f(uq) for all q | N ,
and f�1(U�1) = ε1f�1 . Recall from the proof of Theorem 5.15 that the ho-
momorphism f�1 arises from the group of connected components at �1 at-
tached to the Shimura curve X(�1) = XN+,N−�1 . Consider now the Shimura
curve X(�2,�1) := XN+�2,N−�1 , on which the elements of T�2,�1 act as correspon-
dences. By Proposition 5.3, the character group X�2 of X(�2,�1) at �2 is identified
with the module Div0(S�2) defined at the beginning of this section; here S�2

is viewed as the set of supersingular points in X(�2,�1)(F�22
) by the results of

Section 5.1. Furthermore, the action of T�2,�1 on X�2 induced from the action
on Pic0(X(�2,�1)) defined by Picard functoriality is compatible with the stan-
dard (Albanese) action of T�2,�1 via correspondences on the set of supersingular
points (see [Ri2, p. 445]). The results of [Wa] on the endomorphisms of super-
singular abelian surfaces, combined with strong approximation, yield a T�2,�1-

compatible identification of S�2 with
→
E (T )/Γ′. (Note that X�2 = Div0(S�2)

pertains to the �2-new part of the jacobian J (�2,�1) of X(�2,�1), being X�2 the
character group of the maximal torus of J (�2,�1) over F�22

.) Therefore, the map

γ defined above can also be viewed as a Z/pnZ-valued map on
→
E (T )/Γ′, whose

values are not contained in any proper subgroup of Z/pnZ, by Proposition 9.2.
This map defines the sought-for modular form g on Γ′, as can be seen by ap-
pealing to Lemma 9.1. More precisely, let T ∗

q (for q not dividing N�1�2) and
U∗

q (for q dividing N�1�2) denote the Hecke operators in T�2,�1 . (Note the dis-
crepancy between the notation for the Hecke operators used in this proof and
that used in the statement of Proposition 3.12, which is also reproduced in
the statement of Theorem 9.3; in this proof, and throughout the section, the
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symbols Tq and Uq are used to indicate the Hecke operators in T�1 .) Since the
Hecke operators at q �= �2 in T�1 and T�2,�1 act in the same way on γ and g,
respectively, Lemma 9.1 implies directly the relations of Theorem 9.3 for all
q �= �2:

T ∗
q g = Tqγ = aq(f)g (q � |N�1�2), Uqg = Uqγ = aq(f)g (q|N�1)

(in particular, T ∗
�1

g = ε1g). As for the operator U∗
�2

, it is known that U∗
�2

x =
Frob�2x for x ∈ S�2 (see [Ri2, Prop. 3.8]). Hence, Lemma 9.1 yields

(U∗
q g)(x) = γ(Frob�2x) = ε2g(x).

This concludes the proof.
The proof of Theorem 9.3 implies the following result.

Corollary 9.4. Under the indentification of S�2 with
→
E (T )/Γ′, the map

γ corresponds to an eigenform g ∈ S2(T /Γ′, Z/pnZ) satisfying the conclusions
of Theorem 9.3.

Consider the sequence {Pm} of Heegner points Pm ∈ X(�1)(K̃m), con-
structed in Section 6. Fix a prime λ∞ of K̃∞ above �2, and let λm = λ∞∩K̃m.
Since �2 is inert in K, the point Pm reduces modulo λm to a supersingular
point P̄m ∈ X(�1)(Fλm

). When Fλm
is identified with F�22

, P̄m can be viewed

as an element of S�2 . Identifying S�2 with
→
E (T )/Γ′, we can describe the se-

quence {P̄m} by a sequence of consecutive edges {em} in
→
E (T ), modulo Γ′, in

such a way that the map End(Pm) → End(P̄m) of reduction of endomorphisms
modulo λm induces by extension of scalars an embedding

Ψ : K → B′,

which is independent of m. Then, the natural Galois action of G̃∞ on Pm is
compatible with the action of G̃∞ on em via Ψ, which was defined in Section 1.2.
When

L̃g,m := α−m
p

∑
σ∈G̃m

g(σPm) · σ−1 ∈ Z/pnZ[G̃m],

it follows that the sequence {L̃g,m} defines an element of Z/pnZ[[G̃∞]], equal
to L̃g. Define the local cohomology groups

H1
fin(K̃m,�2 , Tf,n) := ⊕λ|�2H

1
fin((K̃m)λ, Tf,n),

where the sum is taken over all the primes of K̃m dividing �2, and

Ĥ1
fin(K̃∞,�2 , Tf,n) := lim

←−
m

H1
fin(K̃m,�2 , Tf,n),

where the inverse limit is taken with respect to the natural corestriction maps.
The fixed identification of H1

fin(K�2 , Tf,n) with Z/pnZ, together with the choice
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of the prime λ∞, yields the identifications

H1
fin(K̃m,�2 , Tf,n) = Z/pn[G̃m], Ĥ1

fin(K̃∞,�2 , Tf,n) = Z/pn[[G̃∞]].

In view of Corollary 9.4 and the definition of the map γ, the image of P ∗
m in

H1
fin(K̃m,�2 , Tf,n) corresponds to L̃g,m (mod pn), and the image of the compati-

ble sequence {P ∗
m} in Ĥ1

fin(K̃∞,�2 , Tf,n) corresponds to L̃g (mod pn), under the
above identifications. Recall the class κ̃(�1), defined in Section 7 as the image
of the sequence {P ∗

m} in Ĥ1(K̃∞, Tf,n) by the coboundary map. The value
v�2(κ̃(�1)) at �2 of κ̃(�1) is naturally an element of Ĥ1

fin(K̃∞,�2 , Tf,n), and is
equal to the image of {P ∗

m}, and hence to L̃g (mod pn). Since Lg is the image
in Λ of L̃g, and κ(�1) is the corestriction from K̃∞ to K∞ of κ̃(�1), Theorem
4.2 follows.

Remark. The result proved in this section can be viewed as a general-
ization of the main result of [BD5]. The proof given here follows closely the
approach in [Va2], avoiding the study of certain groups of connected compo-
nents which was involved in the methods of [BD5].

University of Milano, Milano, Italy
E-mail address: Massimo.Bertolini@mat.unimi.it

McGill University, Montreal, QC, Canada
E-mail address: darmon@math.mcgill.ca

References

[BC] J-F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les
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[BD0] M. Bertolini and H. Darmon, Derived heights and generalized Mazur-Tate regula-
tors, Duke Math. J . 76 (1994), 75–111.

[BD 1
2
] ———, Derived p-adic heights, Amer. J. Math. 117 (1995), 1517–1554.

[BD1] ———, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), 413–
456.

[BD2] ———, A rigid-analytic Gross-Zagier formula and arithmetic applications, Ann.
of Math. 146 (1997), 111–147.

[BD3] ———, Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformiza-
tion, Invent. Math. 131 (1998), 453–491.

[BD4] ———, p-adic periods, p-adic L-functions and the p-adic uniformization of Shimura
curves, Duke Math. J . 98 (1999), 305–334.

[BD5] ———, Euler systems and Jochnowitz congruences, Amer. J. Math. 121 (1999),
259–281.

[BLR] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergebnisse der Math-
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[Ray] M. Raynaud, Spécialization du foncteur de Picard, Publ. Math. Inst. Hautes Etudes
Sc. 38 (1970), 27–76.

[Ri1] K. Ribet, Bimodules and abelian surfaces, Adv. Stud. Pure Math. 17 (1989), 359–
407.

[Ri2] ———, On modular representation of Gal(Q̄/Q) arising from modular forms,
Invent. Math. 100 (1990), 431–476.

[Ro] D. Roberts, Shimura curves analogous to X0(N), Ph.D. Thesis, Harvard Univer-
sity, 1989.

[Ru] K. Rubin, Euler Systems, Ann. of Math. Studies 147, Princeton Univ. Press,
Princeton, NJ, 2000.

[Se1] J-P. Serre, Trees (translated from the French by John Stilwell), Springer-Verlag,
New York, 1980.

[Se2] ———, Abelian �-Adic Representations and Elliptic Curves, Addison-Wesley
Publ., Redwood City, CA, 1989.

[Sh] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions
(reprint of the 1971 original), Publication of the Mathematical Society of Japan
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Math. 800, Springer-Verlag, New York, 1980.

[Wa] W. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup.
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