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Roth’s theorem in the primes

By Ben Green*

Abstract

We show that any set containing a positive proportion of the primes con-
tains a 3-term arithmetic progression. An important ingredient is a proof that
the primes enjoy the so-called Hardy-Littlewood majorant property. We de-
rive this by giving a new proof of a rather more general result of Bourgain
which, because of a close analogy with a classical argument of Tomas and
Stein from Euclidean harmonic analysis, might be called a restriction theorem
for the primes.

1. Introduction

Arguably the second most famous result of Klaus Roth is his 1953 upper
bound [21] on r3(N), defined 17 years previously by Erdős and Turán to be the
cardinality of the largest set A ⊆ [N ] containing no nontrivial 3-term arithmetic
progression (3AP). Roth was the first person to show that r3(N) = o(N). In
fact, he proved the following quantitative version of this statement.

Proposition 1.1 (Roth). r3(N) " N/ log log N .

There was no improvement on this bound for nearly 40 years, until Heath-
Brown [15] and Szemerédi [22] proved that r3 " N(log N)−c for some small
positive constant c. Recently Bourgain [6] provided the best bound currently
known.

Proposition 1.2 (Bourgain). r3(N) " N (log log N/ log N)1/2.
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dapest. He was supported by the Mathematics in Information Society project carried out by
Rényi Institute, in the framework of the European Community’s Confirming the International
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The methods of Heath-Brown, Szemerédi and Bourgain may be regarded
as (highly nontrivial) refinements of Roth’s technique. There is a feeling that
Proposition 1.2 is close to the natural limit of this method. This is irritating,
because the sequence of primes is not covered by these results. However it is
known that the primes contain infinitely many 3APs.1

Proposition 1.3 (Van der Corput). The primes contain infinitely many
3APs.

Van der Corput’s method is very similar to that used by Vinogradov to
show that every large odd number is the sum of three primes. Let us also
mention a paper of Balog [1] in which it is shown that for any n there are n
primes p1, . . . , pn such that all of the averages 1

2(pi + pj) are prime. In this
paper we propose to prove a common generalization of the results of Roth and
Van der Corput. Write P for the set of primes.

Theorem 1.4. Every subset of P of positive upper density contains a
3AP.

In fact, we get an explicit upper bound on the density of a 3AP-free subset of
the primes, but it is ridiculously weak. Observe that as an immediate conse-
quence of Theorem 1.4 we obtain what might be termed a van der Waerden
theorem in the primes, at least for progressions of length 3. That is, if one
colours the primes using finitely many colours then one may find a monochro-
matic 3AP.

We have not found a written reference for the question answered by The-
orem 1.4, but M. N. Huxley has discussed it with several people [16].

To prove Theorem 1.4 we will use a variant of the following result. This
says that the primes enjoy what is known as the Hardy-Littlewood majorant
property.

Theorem 1.5. Suppose that p ! 2 is a real number, and let PN = P ∩
[1, N ]. Let {an}n∈PN

be any sequence of complex numbers with |an| " 1 for
all n. Then ∥∥∥∥∥

∑

n∈PN

ane(nθ)

∥∥∥∥∥
Lp(T)

" C(p)

∥∥∥∥∥
∑

n∈PN

e(nθ)

∥∥∥∥∥
Lp(T)

,(1.1)

where the constant C(p) depends only on p.

It is perhaps surprising to learn that such a property does not hold with
any set Λ ⊆ [N ] in place of PN . Indeed, when p is an even integer it is

1In April 2004 the author and T. Tao published a preprint showing that the primes contain
arbitrarily long arithmetic progressions.
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rather straightforward to check that any set does satisfy (1.1) (with C(p) = 1).
However, there are sets for which (1.1) fails badly when p is not an even integer.
For a discussion of this see [10] and for related matters including connections
with the Kakeya problem, see [18], [20].

We will apply a variant of Theorem 1.5 for p = 5/2, when it certainly does
not seem to be trivial. To prove it, we will establish a somewhat stronger result
which we call a restriction theorem for primes. The reason for this is that our
argument is very closely analogous to an argument of Tomas and Stein [24]
concerning Fourier transforms of measures supported on spheres.

A proof of the restriction theorem for primes was described, in a differ-
ent context, by Bourgain [4]. Our argument, being visibly analogous to the
approach of Tomas, is different and has more in common with Section 3 of
[5]. This more recent paper of Bourgain deals with restriction phenomena of
certain sets of lattice points.

To deduce Theorem 1.4 from (a variant of) Theorem 1.5 we use a variant of
the technique of granularization as developed by I. Z. Ruzsa and the author in
a series of papers beginning with [9], as well as a “statistical” version of Roth’s
theorem due to Varnavides. We will also require an argument of Marcinkiewicz
and Zygmund which allows us to pass from the continuous setting in results
such as (1.1) – that is to say, T – to the discrete, namely Z/NZ.

Finally, we would like to remark that it is possible, indeed probable, that
Roth’s theorem in the primes is true on grounds of density alone. The best
known lower bound on r3(N) comes from a result of Behrend [3] from 1946.

Proposition 1.6 (Behrend). r3(N) ! Ne−C
√

log N for some absolute
constant C.

This may well give the correct order of magnitude for r3(N), and if anything
like this could be proved Theorem 1.4 would of course follow trivially.

2. Preliminaries and an outline of the argument

Although the main results of this paper concern the primes in [N ], it turns
out to be necessary to consider slightly more general sets. Let m " log N be
a positive integer and let b, 0 " b " m − 1, be coprime to m. We may then
define a set

Λb,m,N = {n " N |nm + b is prime} .

We expect Λb,m,N to have size about mN/φ(m) log N , and so it is natural to
define a function λb,m,N supported on Λb,m,N by setting

λb,m,N (n) =

{
φ(m) log(nm + b)/mN if n ∈ Λb,m,N

0 otherwise.
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For simplicity we write X = Λb,m,N for the next few pages. We will abuse no-
tation and consider λb,m,N as a measure on X. Thus for example λb,m,N (X),
which is defined to be

∑
n λb,m,N (n), is roughly 1 by the prime number theo-

rem in arithmetic progressions. We use Lp(dλb,m,N ) norms and also the inner
product 〈f, g〉X =

∑
f(n)g(n)λb,m,N (n) without further comment.

It is convenient to use the wedge symbol for the Fourier transforms on
both T and Z, which we define by f∧(n) =

∫
f(θ)e(−nθ) dθ and g∧(θ) =∑

n g(n)e(nθ) respectively. Here, of course, e(α) = e2πiα.
For any measure space Y let B(Y ) denote the space of continuous functions

on Y and define a map T : B(X) → B(T) via

T : f )−→ (fλb,m,N )∧.(2.1)

The object of this section is to give a new proof of the following result, which
may be called a restriction theorem for primes.

Theorem 2.1 (Bourgain). Suppose that p > 2 is a real number. Then
there is a constant C(p) such that for all functions f : X → C,

‖Tf‖p " C(p)N−1/p‖f‖2.(2.2)

Remember that the L2 norm is taken with respect to the measure λb,m,N .
Theorem 2.1 probably has most appeal when b = m = 1, in which case we may
derive consequences for the primes themselves. Later on, however, we will take
m to be a product of small primes, and so it is necessary to have the more
general form of the theorem.

We turn now to an outline of the proof of Theorem 2.1. The analogy
between our proof and an argument by Tomas [24], giving results of a similar
nature for spheres in high-dimensional Euclidean spaces, is rather striking. In
fact, the reader may care to look at the presentation of Tomas’s proof in [23],
whereupon she will see that there is an almost exact correspondence between
the two arguments.

To begin with, the proof proceeds by the method of T and T ∗, a basic
technique in functional analysis. One can check that the operator T ∗ : B(T) →
B(X) is given by

T ∗ : g )−→ g∧|X ,(2.3)

by verifying the relation

〈Tf, g〉T =
∫

(fλb,m,N )∧(θ)g(θ) dθ =
∑

n

f(n)g∧(n)λb,m,N (n) = 〈f, T ∗g〉X .

The equation (2.3) explains the term restriction. Using (2.3) we see that the
operator TT ∗ is the map from B(T) to itself given by

TT ∗ : f )−→ f ∗ λ∧
b,m,N .(2.4)
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Now Theorem 2.1 may be written, in obvious notation, as

‖T‖2→p " C(p)N−1/p.(2.5)

The principle of T and T ∗, as we will use it, states that

‖T‖2
2→p = ‖TT ∗‖p′→p = ‖T ∗‖2

p′→2.(2.6)

We would like to emphasise that there is nothing mysterious going on here –
this result is just an elegant and convenient way of bundling together some
applications of Hölder’s inequality. The proof of the part that we will need,
that is to say the inequality ‖T‖2

2→p " ‖TT ∗‖p′→p, is simply

‖Tf‖p = sup
‖g‖p′=1

〈Tf, g〉

= sup
‖g‖p′=1

〈f, T ∗g〉

" ‖f‖2 sup
‖g‖p′=1

‖T ∗g‖2

= ‖f‖2 sup
‖g‖p′=1

〈g, TT ∗g〉1/2

" ‖f‖2‖TT ∗‖1/2
p′→p.

Thus we will, for much of the paper, be concerned with showing that the
operator TT ∗ as given by (2.4) satisfies the bound

‖TT ∗‖p′→p " C ′(p)N−2/p.(2.7)

The preceding remarks show that a proof of this will imply Theorem 2.1. To
get such a bound one splits λ into certain dyadic pieces, that is, a sum

λb,m,N =
K∑

j=1

ψj + ψK+1.(2.8)

The slightly curious way of writing this indicates that the definition of ψK+1

will be a little different from that of the other ψj . We will define these pieces
so that they satisfy the L1-L∞ estimates

‖f ∗ ψ∧
j ‖∞ "ε 2−(1−ε)j‖f‖1(2.9)

for some ε < (p − 2)/2, and also the L2-L2 estimates

‖f ∗ ψ∧
j ‖2 "ε

2εj

N
‖f‖2.(2.10)

Applying the Riesz-Thorin interpolation theorem (see [11, Ch. 7]) will then
give

‖f ∗ ψ∧
j ‖p " 2−δjN−2/p‖f‖p′
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for some positive δ (depending on ε). Summing these estimates from j = 1 to
K + 1 will establish (2.7) and hence Theorem 2.1.

To define the decomposition (2.8) we need yet more notation. From the
outset we will suppose that we are trying to prove Theorem 2.1 for a particular
value of p; the argument is highly and essentially nonuniform in p. Write
A = 4/(p − 2). Let 1 < Q " (log N)A. If b, m, N are as before (recall that
m " log N) then we define a measure λ(Q)

b,m,N on Z by setting

λ(Q)
b,m,N (n) =






N−1 ∏
p!Q
p!m

(
1 − 1

p

)−1
if n " N and p | (nm + b) ⇒ p > Q

0 otherwise.

Define λ(1)
b,m,N (n) = 0 for all n.

As Q becomes large the measures λ(Q)
b,m,N look more and more like λb,m,N .

Much of Section 4 will be devoted to making this principle precise. We will
sometimes refer to the support of λ(Q)

b,m,N as the set of Q-rough numbers.
Now let K be the smallest integer with

2K > 1
10(log N)A(2.11)

and define

ψj = λ(2j)
b,m,N − λ(2j−1)

b,m,N(2.12)

for j = 1, . . . , K and define

ψK+1 = λb,m,N − λ(2K)
b,m,N ,(2.13)

so that (2.8) holds. In the next two sections we prove the two required esti-
mates, (2.9) and (2.10).

Let us note here that the main novelty in our proof of Theorem 2.1 lies
in the definition of the dyadic decomposition (2.8). By contrast, the analo-
gous dyadic decompositions in [5] take place on the Fourier side, requiring the
introduction of various smooth cutoff functions not specifically related to the
underlying arithmetic structure.

3. An L2-L2 estimate

It turns out that the proof of (2.10), the L2-L2 estimate, is by far the
easier of the two estimates required. We have

‖f ∗ ψ∧
j ‖2 = ‖f̂ψj‖2

" ‖ψj‖∞‖f̂‖2

= ‖ψj‖∞‖f‖2.
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Suppose first of all that 1 " j " K. Then

‖ψj‖∞ " ‖λ(2j)
b,m,N‖∞ + ‖λ(2j−1)

b,m,N‖∞

= N−1
∏

p!2j+1

p!m

(
1 − 1

p

)−1

+ N−1
∏

p!2j

p!m

(
1 − 1

p

)−1

.

The two products here may be estimated using Merten’s formula [14, Ch. 22]:
∏

p!Q

(1 − p−1) ∼ e−γ

log Q
.

This gives

‖ψj‖∞ " j/N,(3.1)

and hence

‖f ∗ ψ∧
j ‖2 " j

N
‖f‖2,(3.2)

which is certainly of the requisite form (2.10). For j = K + 1 we have

‖ψK+1‖∞ " ‖λ(2K)
b,m,N‖∞ + ‖λb,m,N‖∞

" log N/N,

so that

‖f ∗ ψ∧
K+1‖2 " log N

N
‖f‖2.(3.3)

This also constitutes an estimate of the type (2.10) for some ε < (p − 2)/2.
Indeed, recalling our choice of A and K (viz. (2.11)) one can check that
2K ! (log N)1/ε for some such ε.

4. An L1-L∞ estimate

This section is devoted to the rather lengthy task of proving estimates of
the form (2.9).

Introduction. The first step towards obtaining an estimate of the form
(2.9) is to observe that

‖f ∗ ψ∧
j ‖∞ " ‖ψ∧

j ‖∞‖f‖1.(4.1)

We will prove that ‖ψ∧
j ‖∞ is not too large by proving

Proposition 4.1. Suppose that Q " (log N)A. Then we have the esti-
mate

‖λ∧
b,m,N − λ(Q)∧

b,m,N‖∞ " log log Q/Q.
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The detailed proof of this fact will occupy us for several pages. Let us
begin, however, by using (4.1) to see how it implies an estimate of the form
(2.9). If 1 " j " K then,

‖ψ∧
j ‖∞ = ‖λ(2j)∧

b,m,N − λ(2j−1)∧
b,m,N ‖∞(4.2)

" ‖λ∧
b,m,N − λ(2j)∧

b,m,N‖∞ + ‖λ∧
b,m,N − λ(2j−1)∧

b,m,N ‖∞
" log j/2j .

This is certainly of the form (2.9). The estimate for j = K + 1 is even easier,
being immediate from Proposition 4.1.

To prove Proposition 4.1 we will use the Hardy-Littlewood circle method.
Thus we divide T into two sets, traditionally referred to as the major and minor
arcs. It is perhaps best if we define these explicitly at the outset. Thus let p
be the exponent for which we are trying to prove Theorem 2.1. Recall that
A = 4/(p − 2), and set B = 2A + 20. These numbers will be fixed throughout
the proof. By Dirichlet’s theorem on approximation, every θ ∈ T satisfies

∣∣∣∣θ −
a

q

∣∣∣∣ " (log N)B

qN
(4.3)

for some q " N(log N)−B and some a, (a, q) = 1. The major arcs consist of
those θ for which q can be taken to be at most (log N)B. We will write this
collection using the notation

M =
⋃

q!(log N)B

(a,q)=1

Ma,q.

For these θ, the Fourier transforms λ(Q)∧
b,m,N and λ∧

b,m,N depend on the distri-
bution of the almost-primes and primes along arithmetic progressions with
common difference at most (log N)B. The minor arcs m consist of all other θ.
Here different techniques apply, and one can conclude that both λ(Q)∧

b,m,N and
λ∧

b,m,N are small. The triangle inequality then applies.
The ingredients are as follows. The almost-primes are eminently suited

to applications of sieve techniques. To keep the paper as self-contained as
possible, we will follow Gowers [8] and use the arguably simplest sieve, that
due to Brun, on both the major and minor arcs.

The genuine primes, on the other hand, are harder to deal with. Here
we will quote two well-known results from the literature. The information
concerning distribution along arithmetic progressions to small moduli comes
from the prime number theorem of Siegel and Walfisz.
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Proposition 4.2 (Siegel-Walfisz). Suppose that q " (log N)B, that
(a, q) = 1 and that 1 " N1 " N2 " N . Then

∑

N1<p!N2
p≡a(mod q)

log p =
N2 − N1

φ(q)
+ O

(
N exp(−CB

√
log N)

)
.(4.4)

The rather strange formulation of the theorem reflects the fact that the
constant CB is ineffective for any B ! 1 due to the possible existence of a
Siegel zero. For more information, including a complete proof of Proposition
4.2, see Davenport’s book [7].

The techniques for dealing with the minor arcs are associated with the
names of Weyl, Vinogradov and Vaughan.

The major arcs. We will have various functions f : [N ] → R with

‖f‖∞ = O(log N/N)(4.5)

which are regularly distributed along arithmetic progressions in the following
sense. If L ! N(log N)−2B−A−1 and if X ⊆ [N ] is an arithmetic progression
{r, r + q, . . . , r + (L − 1)q} with q " (log N)B then

∑

n∈X

f(n) =
L

N

(
γr,q(f) + O((log N)−A)

)
,(4.6)

where γr,q depends only on r and q, |γr,q| " q and the implied constant in the
O term is absolute. This information is enough to get asymptotics for f∧(θ)
when |θ − a/q| is small, as we prove in the next few lemmas.

For a residue r modulo q, write Nr for the set {n " N : n ≡ r(mod q)}.
Write τ for the function on T defined by τ(θ) = N−1 ∑

n!N e(θn). The first
lemma deals with f∧(θ) for |θ| " (log N)B/qN .

Lemma 4.3. Let r be a residue modulo q, suppose that |θ| " (log N)B/qN ,
and suppose that the function f satisfies (4.5) and (4.6). Then

∑

n∈Nr

f(n)e(θn) = q−1γr,q(f)τ(θ) + O(q−1(log N)−A).

Proof. Set L = N(log N)−2B−A−1 and partition Nr into arithmetic pro-
gressions (Xi)T

i=1 of common difference q and length between L and 2L, where
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T " 2N/Lq. For each i fix an element xi ∈ Xi.

(4.7)
∑

n∈Nr

f(n)e(θn) =
T∑

i=1

∑

n∈Xi

f(n)e(θn)

=
T∑

i=1

e(θxi)
∑

n∈Xi

f(n) +
T∑

i=1

∑

n∈Xi

f(n) (e(θn) − e(θxi))

=
T∑

i=1

e(θxi)
|Xi|
N

(
γr,q(f) + O((log N)−A)

)

+O(LN−1q−1(log N)B+1)

= γr,q(f)
T∑

i=1

e(θxi)
|Xi|
N

+ O
(
q−1(log N)−A

)
.

However
T∑

i=1

e(θxi)|Xi|=
T∑

i=1

∑

n∈Xi

e(θn) +
T∑

i=1

∑

n∈Xi

(e(θxi) − e(θn))(4.8)

=
∑

n∈Nr

e(nθ) + O(Lq−1(log N)B).

Finally, observe that if 0 " r, s " q − 1 then
∑

n∈Nr

e(θn) −
∑

n∈Ns

e(θn) = O((log N)B),

and so
∣∣∣∣∣N

−1
∑

n∈Nr

e(θn) − q−1τ(θ)

∣∣∣∣∣ = O(N−1(log N)B).

Combining this with (4.7) and (4.9) completes the proof of the lemma.

We may now get an asymptotic for f∧(θ) when θ is in the neighbourhood
of a/q.

Lemma 4.4. Suppose that f satisfies the conditions (4.5) and (4.6) and
that θ ∈ Ma,q for some a, q with (a, q) = 1 and q " (log N)B. Write

σa,q(f) =
∑

r

e(ar/q)γr,q(f).(4.9)

Then,

f∧(θ) = q−1σa,q(f)τ(θ − a/q) + O((log N)−A).(4.10)
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Proof. Write β = θ − a/q. Then

f∧(θ) =
∑

n!N

f(n)e(θn)

=
∑

r(mod q)

e(ar/q)
∑

n∈Nr

f(n)e(βn)

= q−1τ(β)
∑

r(mod q)

e(ar/q)γr,q(f) + O((log N)−A)

= q−1σa,q(f)τ(β) + O((log N)−A).

This concludes the proof of the lemma.

To apply these lemmas, we need to show that f = λ(Q)
b,m,N and f = λb,m,N

satisfy (4.5) and (4.6) for suitable choices of γr,q(f). We will then evaluate
the sums σa,q(f). This slightly tedious business is the subject of our next four
lemmas.

Lemma 4.5. f = λb,m,N satisfies (4.5) and (4.6) with

γr,q(f) =

{
φ(m)q/φ(mq) if (mr + b, mq) = 1

0 otherwise.

Proof. This is a fairly immediate consequence of the Siegel-Walfisz the-
orem (Proposition 4.2). Let X = {r, r + q, . . . , r + (L − 1)q} be any pro-
gression contained in [N ] with common difference q " (log N)B and length
L ! N(log N)−2B−A−1. An element r + jq ∈ X lies in Λb,m,N precisely if
(mr+b)+ jmq is prime, so the lemma is trivially true unless (mr+b, mq) = 1.
Supposing this to be the case, we may use Proposition 4.2. Recalling that
m " log N , one has

λb,m,N (X) =
φ(m)qL
φ(mq)N

+ O
(
mq exp(−CB+1

√
log mqN)

)

=
L

N

(
φ(m)q
φ(mq)

+ O((log N)−A)
)

,

as required.

Lemma 4.6. f = λ(Q)
b,m,N satisfies (4.5) and (4.6) with

γr,q(f) =






∏
p!Q
p!m

(
1 − 1

p

)−1 ∏
p!Q
p!mq

(
1 − 1

p

)
if (mr + b, mq) is Q-rough

0 otherwise.
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Proof. Consider an arithmetic progression X = {r, r+q, . . . , r+(L−1)q}.
Let p1, . . . , pk be the primes with p " Q and p ! m. If (mr + b, mq) is not
Q-rough then pi|(mr + b, mq) for some i, and the second alternative of the
lemma clearly holds. Suppose then that (mr + b, mq) is Q-rough. We will
apply the Brun sieve to estimate λ(Q)

b,m,N (X).
Let x ∈ X be chosen uniformly at random, and for each i let Xi be the

event pi|(mx+b). Since pi ! (mr+b, mq), the probability of Xi is εi/pi+O(L−1),
where εi = 0 if pi|q and εi = 1 otherwise. Now we have

N

L

∏

p!Q
p!m

(
1 − 1

p

)
λ(Q)

b,m,N (X) = P
(⋂

Xc
i

)
= U,(4.11)

say. By the inclusion-exclusion formula it follows that for every positive inte-
ger t

U =
t∑

s=0

(−1)s
∑

1!i1<···<is!k

s∏

j=1

εij/pij + O(L−1)
t∑

s=1

(
k

s

)
.(4.12)

It is helpful to have the error term here in a more usable form. To this end,
observe that it is certainly at most O(kt/L). We wish to replace the main term
in (4.12) by

∏k
i=1 (1 − εi/pi), which is equal to the completed sum

k∑

s=0

(−1)s
∑

1!i1<···<is!k

s∏

j=1

εij/pij .

Doing this introduces an error

E =
k∑

s=t+1

(−1)s
∑

1!i1<···<is!k

s∏

j=1

εij/pij ,

which is bounded above by
k∑

s=t+1

1
s!

(
k∑

i=1

1
pi

)s

.(4.13)

By another result of Mertens one has
∑k

i=1 p−1
i " log log Q + O(1). Hence if

t ! 3 log log Q then each term in (4.13) is at most one half the previous one,
leading to the bound

|E| " 2(log log Q)t

t!
"
(

4e log log Q

t

)t

.

Combining all of this gives

U =
k∏

i=1

(1 − εi/pi) + O(kt/L) + O
(
(4e log log Q/t)t

)
.
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Using the trivial bound k " Q, and choosing t = log N/2A log log N , one gets

U =
k∏

i=1

(1 − εi/pi) + O(N−1/4A)

=
∏

p!Q
p!mq

(
1 − 1

p

)
+ O(N−1/4A).

The lemma is immediate from this and (4.11); we have

λ(Q)
b,m,N (X) =

∏

p!Q
p!m

(
1 − 1

p

)−1

· L

N
·




∏

p!Q
p!mq

(
1 − 1

p

)
+ O(N−1/4A)





=
L

N

(
γr,q + O((log N)−A)

)
,

where γr,q has the form claimed.

Building on the last lemma, the next lemma gives an evaluation of
σa,q(λ

(Q)
b,m,N ) and an asymptotic for λ(Q)∧

b,m,N (θ) when θ ∈ Ma,q. If Q ! 2 we say
that a positive integer is Q-smooth if all of its prime divisors are at most Q.
We declare there to be no 1-smooth numbers.

Lemma 4.7. Suppose that (a, q) = 1. Then

σa,q(λ
(Q)
b,m,N ) =






qµ(q)
φ(q)

e

(
−abm

q

)
if (m, q) = 1 and q is Q-smooth;

0 otherwise,

where m is the inverse of m modulo q. If θ ∈ Ma,q then

λ(Q)∧
b,m,N (θ) =






µ(q)
φ(q)

e

(
−abm

q

)
τ

(
θ − a

q

)
+ O((log N)−A) if (m, q) = 1 and

q is Q-smooth;

O
(
(log N)−A

)
otherwise.

Proof. Recall the definition (4.9) of σa,q, and also Lemma 4.6. We shall
prove that

∑

r(mod q)
(mr+b,mq) is Q-rough

e(ar/q) =

{
e(−abm/q)µ(q) if (m, q) = 1 and q is Q-smooth

0 otherwise.

(4.14)
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Now if p|m then p can never divide mr + b, because we are assuming that
(m, b) = 1. Let q0 be the largest factor of q which is a product of primes p
with p " Q and p ! m. Then the sum (4.14) is just

∑

r(mod q)
(q0,mr+b)=1

e(ar/q).(4.15)

Set q1 = q/q0 and write, for each r mod q, r = kq0 + s where 0 " k " q1 − 1
and s is a residue mod q0. Then the sum (4.15) is

∑

s(mod q0)
(q0,ms+b)=1

q1−1∑

k=0

e

(
a(kq0 + s)

q

)
=

∑

s(mod q0)
(q0,mr+b)=1

e(as/q)
q1−1∑

k=0

e(ak/q1).

Now a is coprime to q and hence to q1, and therefore the rightmost sum here
vanishes unless q1 = 1. This is the case precisely if q0 = q, which means that
(q, m) = 1 and q is Q-smooth. In this case, the sum is

∑

s(mod q)
(q,ms+b)=1

e(as/q).

Set t = ms + b. Then this sum is just
∑

t(mod q)
(q,t)=1

e

(
am(t − b)

q

)
= e(−abm/q)

∑

(q,t)=1

e(amt/q)

= e(−abm/q)µ(q).

This last evaluation, of what is known as a Ramanujan Sum, is well-known
and is contained, for example, in [14]. This proves (4.14).

Now to obtain σa,q we must simply multiply (4.14) by the factor

F =
∏

p<Q
p!m

(
1 − 1

p

)−1 ∏

p!Q
p!mq

(
1 − 1

p

)

appearing in Lemma 4.6. One gets zero unless (m, q) = 1 and q is Q-smooth,
in which case it is not hard to see that F = q/φ(q). This completes the
evaluation of σa,q(λ

(Q)
b,m,N ), and the claimed form for λ(Q)∧

b,m,N (θ) is an immediate
consequence of Lemma 4.4.

We need a version of the above lemma in which λ(Q)
b,m,N is replaced by

λb,m,N . Fortunately, we can save ourselves some work by noticing that for
fixed q and m we have

γr,q(λb,m,N ) = γr,q(λ
(Q)
b,m,N )(4.16)
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for sufficiently2 large Q. Thus σa,q(λb,m,N ) can be evaluated by simply letting
Q → ∞ in the first formula of Lemma 4.7. We get

σa,q(λb,m,N ) =

{
qµ(q)e(−abm/q) if (q, m) = 1

0 otherwise.
(4.17)

This immediately leads, via Lemma 4.4, to the following evaluation of λ∧
b,m,N (θ).

Lemma 4.8. Suppose that (a, q) = 1 and that θ ∈ Ma,q. Then

λ∧
b,m,N (θ) =






µ(q)
φ(q)

e

(
−abm

q

)
τ

(
θ − a

q

)
+ O

(
(log N)−A

)
if (m, q) = 1

O
(
(log N)−A

)
otherwise.

(4.18)

The minor arcs. In this subsection we look at λ∧
b,m,N (θ) and λ(Q)∧

b,m,N (θ)
when θ is not close to a rational with small denominator.

Lemma 4.9. Suppose that a, q are positive integers with (a, q) = 1, and
let θ be a real number such that |θ − a/q| " 1/q2. Then

λ∧
b,m,N (θ) " (log N)10

(
q−1/2 + N−1/5 + N−1/2q1/2

)
.(4.19)

Thus if θ ∈ m then λ∧
b,m,N (θ) = O((log N)−A).

Remarks. This is a well-known estimate, at least when b = m = 1. The
first (unconditional) results of this type were obtained by I.M. Vinogradov,
and nowadays it is possible to give a rather clean argument thanks to the iden-
tity of Vaughan [26]. Chapter 24 of Davenport’s book [7] describes the use
of Vaughan’s identity in the more general context of the estimation of sums∑

n!N Λ(n)f(n). To obtain Lemma 4.9 we used this approach, but could af-
ford to obtain results which are rather nonuniform in m due to the restriction
m " log N under which we are operating. Details may be found in the supple-
mentary document [12]. We remark that existing results in the literature con-
cerning minor arcs estimates for primes restricted to arithmetic progressions,
such as [2], [17], strive for a much better dependence on the parameter m.

2Here we regard γr,q(λb,m,N ) and γr,q(λ
(Q)
b,m,N ) as purely formal expressions, so there is no

issue of whether or not, for example, Lemma 4.7 is valid for “sufficiently large” Q.
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Lemma 4.10. Suppose that a, q are positive integers with (a, q) = 1, and
let θ be a real number such that |θ − a/q| " 1/q2. Then

λ(Q)∧
b,m,N (θ) " (log N)3

(
q−1 + qN−1 + N−1/8A

)
.(4.20)

Thus if θ ∈ m then λ(Q)∧
b,m,N (θ) = O((log N)−A).

Proof. Let p1, . . . , pk be the primes less than or equal to Q which do not
divide m. Another application of the inclusion-exclusion principle gives

λ(Q)∧
b,m,N (θ) = N−1e(−bθ/m)

k∏

i=1

(
1 − 1

pi

)−1

h(θ),

where

h(θ) =
k∑

s=0

(−1)s
∑

1!i1<···<is!k

∑

1!y!Nm/pi1 ...pis

y≡b(mod m)

e

(
θpi1 . . . pisy

m

)
.(4.21)

Summing the geometric progression, one sees that the inner sum is no more
than

min
{
‖θpi1 . . . pis‖−1, 2mN/pi1 . . . pis

}
.

We will split the sum over s in (4.21) into two pieces, over the ranges s ∈ [0, t]
and s ∈ (t, k] where t = log N/2A log log N . Each of the primes pi is at most
Q " (log N)A, so the product of any s " t of them is no more than

√
N . Of

course, all such products are distinct and so

t∑

s=0

(−1)s
∑

1!i1<···<is!k

∑

y!Nm/pi1 ...pis

y≡b(mod m)

e

(
θpi1 . . . pisy

m

)

"
∑

n!√
N

min(‖θn‖−1, 2mN/n).

This is a quantity whose estimation is standard in this area because of its
pertinence to the estimation of exponential sums on minor arcs. It is bounded
above by C(log N)3(N1/2 +q+Nq−1); details may once again be found in [12].
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On the other hand
k∑

s=t+1

(−1)s
∑

1!i1<···<is!k

∑

y!Nm/pi1 ...pis

y≡b(mod m)

e

(
θpi1 . . . pisy

m

)

" 2mN
k∑

s=t+1

∑

1!i1<···<is!k

s∏

j=1

p−1
ij

" 2mN
k∑

s=t+1

(s!)−1
(
p−1
1 + · · · + p−1

k

)s

" 4mN(2e log log log N/t)t " mN1−1/4A " N1−1/8A.

Since
∏k

i=1(1 − 1/pi)−1 " log N , the claimed bound follows.

Proof of Proposition 4.1. Suppose first of all that θ ∈ Ma,q for some a, q,
and recall Lemmas 4.7 and 4.8. If q is Q-smooth then

∣∣∣λ∧
b,m,N (θ) − λ(Q)∧

b,m,N (θ)
∣∣∣ = O(N(log N)−A).

If q is not Q-smooth then q > Q and so we get
∣∣∣λ∧

b,m,N (θ) − λ(Q)∧
b,m,N (θ)

∣∣∣" |λ∧
b,m,N (θ)| + |λ(Q)∧

b,m,N (θ)|

" 2/φ(q) + O((log N)−A)
" 4 log log Q/Q + O((log N)−A),

the last estimate being contained in [14, Ch. 7]. Since we are assuming that
Q " (log N)A this expression is O(log log Q/Q). If, on the other hand, θ ∈ m
then we have ∣∣∣λ∧

b,m,N (θ) − λ(Q)∧
b,m,N (θ)

∣∣∣" |λ∧
b,m,N (θ)| + |λ(Q)∧

b,m,N (θ)|

= O((log N)−A)
= O(Q−1).

This at last completes the proof of Proposition 4.1.

5. Restriction and majorant estimates for primes

In this section we prove Theorems 1.5 and 2.1.
We have already seen, in (4.1) and (4.2), how Proposition 4.1 implies an

L1-L∞ estimate for the operator f )→ f ∗ψj of the form (2.9). In fact, we have

‖f ∗ ψj‖∞ " log j

2j
‖f‖1(5.1)

for all j = 1, . . . , K + 1. For each fixed j = 1, . . . , K, one can use the Riesz-
Thorin interpolation theorem to interpolate between (3.2) and (5.1). This
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theorem, which is discussed in [11, Ch. 7], is better known to analytic number
theorists as the type of convexity principle that underpins many basic estimates
on ζ and L-functions. It gives

‖f ∗ ψj‖p " j2/p(log j)1−2/p2−(1−2/p)jN−2/p‖f‖p′ .(5.2)

For j = K + 1 another interpolation, now between (3.3) and (5.1), instead
gives

‖f ∗ ψK+1‖p " (log N)2/p(log K)1−2/p2−(1−2/p)K .

Recalling at this point the definition (2.11) of K we see that this implies

‖f ∗ ψK+1‖p " (log N)−1/pN−2/p.

Summing this together with (5.2) for j = 1, . . . , K gives, because of the de-
composition (2.8),

‖f ∗ λb,m,N‖p " C(p)N−2/p‖f‖p′ .

As we have already remarked, Theorem 2.1 follows by the principle of T and T ∗.

Now we prove Theorem 1.5. Although we will need a slightly different
result later on, this theorem seems to be the most elegant way to state the
majorant property for the primes.

Proof of Theorem 1.5. Let (an)n∈PN
be any sequence of complex numbers

with |an| " 1 for all n. We apply Theorem 2.1 to the function f defined by
f(n) = an/ log n. Writing out the conclusion of Theorem 2.1 gives, for any
p > 2,

∫ ∣∣∣∣∣
∑

n

f(n) log ne(nθ)

∣∣∣∣∣

p

dθ "p Np/2−1

(
∑

n

f(n)2 log n

)p/2

.

Therefore
∫ ∣∣∣∣∣

∑

n∈PN

ane(nθ)

∣∣∣∣∣

p

dθ"p Np/2−1

(
∑

n∈PN

|an|2

log n

)p/2

"p Np−1(log N)−p.

However it is an easy matter to check that
∫ ∣∣∣∣∣

∑

n∈PN

e(nθ)

∣∣∣∣∣

p

dθ !
∫

|θ|!1/2N

∣∣∣∣∣
∑

n∈PN

e(nθ)

∣∣∣∣∣

p

dθ 1 Np−1(log N)−p.

This proves Theorem 1.5 for p > 2. For p = 2 it is trivial by Parseval’s
identity.
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6. Roth’s theorem in the primes

Let A0 be a subset of the primes with positive relative upper density. By
this we mean that there is a positive constant α0 such that, for infinitely many
integers n, we have

|A ∩ Pn| ! α0n/ log n.(6.1)

This is not a particularly convenient statement to work with, and our first
lemma derives something more useful from it.

Lemma 6.1. Suppose that there is a set A0 ⊆ P with positive relative
density, but which contains no 3APs. Then there are a positive real number α
and infinitely many primes N for which the following is true. There are a set
A ⊆ {1, . . . , 2N/23}, and an integer W ∈ [18 log log N, 1

4 log log N ] such that

• A contains no 3APs,

• λb,m,N (A) ! α for some b with (b, m) = 1, where m =
∏

p!W p.

Proof. Take any n ! α−3
0 for which (6.1) holds. Let W = 21

4 log log n3,
and set m =

∏
p!W p. Choose N to be any prime in the range (2n/m, 4n/m].

Now there are certainly no more than m elements of A0 which share a factor
with m, and no more than n3/4 elements x ∈ A0 with x " n3/4. Thus

∑

b:(b,m)=1

∑

x!n
x≡b(mod m)

A0(x) log x ! α0n/2,

and for some choice of b we have
∑

x!n
x≡b(mod m)

A0(x) log x ! α0n/2φ(m).(6.2)

Write A = m−1 ((A0 ∩ [n]) − b). This set, being a part of A0 subjected to
a linear transformation, contains no 3-term AP. It is also clear that A ⊆
{1, . . . , 2N/23}. Furthermore (6.2) is equivalent to

∑

x!N
mx+b is prime

A(x) log(mx + b) ! α0n/2φ(m),

which implies that λb,m,N (A) ! α0n/2mN ! α0/8. The lemma follows, with
α = α0/8.

The reason we stipulate that A be contained in {1, . . . , 2N/23} is that A
does not contain any 3APs when considered as a subset of ZN = Z/NZ. This
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allows us to make use of Fourier analysis on ZN . If f : ZN → C is a function
we will write, for any r ∈ ZN ,

f̃(r) =
∑

x∈ZN

f(x)e(−rx/N).

Observe that f may also be considered as a function on Z via the embedding
ZN ↪→ [N ], and then f̃(r) = f∧(r/N).

For notational simplicity write µ = λb,m,N . We will consider A and µ as
functions on ZN . Write a = Aµ. We will continue to abuse notation by using
µ and a as measures. Thus, for example, a(ZN ) ! α.

Now if A contains no (nontrivial) 3APs then
∑

x,d

a(x)a(x + d)a(x + 2d) =
∑

x

a(x)3(6.3)

"
∑

x

µ(x)3

" (log N)3/N2.

We are going to show that this forces α to be small. We will do this by
constructing a new measure a1 on ZN which is set-like, which means that a1

behaves a bit like N−1 times the characteristic function of a set of size ∼ αN .
The new measure a1 will be fairly closely related to a, and in fact we will be
able to show that

∑

x,d

a1(x)a1(x + d)a1(x + 2d) is small.(6.4)

This, it turns out, is impossible; an argument of Varnavides based on Roth’s
theorem tells us that a dense subset of ZN contains lots of 3APs. We will
adapt his argument in a trivial way to show that the same is true of set-like
measures.

The arguments of this section, then, fall into two parts. First of all we
must define a1, define the notion of “set-like” and then show that a1 is indeed
set-like. The key ingredient here is Lemma 6.2, which says that µ̃ is small away
from zero. Secondly, we must formulate and prove a result of the form (6.4).
For this we need Theorem 2.1, the restriction theorem for primes.

The idea of constructing a1, and the technique for constructing it, has
its origins in the notions of granularization as used in a paper of I.Z. Ruzsa
and the author [9]. In the present context things look rather different however
and, in the absence of anything which might be called a “grain”, we think the
terminology of [9] no longer appropriate.

Let us proceed to the definition of a1. Let δ ∈ (0, 1) be a real number to
be chosen later, and set

R = {r ∈ ZN : |ã(r)| ! δ} .
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Let k = |R|, and write R = {r1, . . . , rk}. Let ε ∈ (0, 1) be another real number
to be chosen later, and write B(R, ε) for the Bohr neighbourhood

{
x ∈ ZN :

∥∥∥
xri

N

∥∥∥ " ε ∀i ∈ [k]
}

.

Write B = B(R, ε) and set β(x) = B(x)/|B|. Define

a1 = a ∗ β ∗ β.(6.5)

It is easy to see that

a1(ZN ) ! α.(6.6)

In Lemma 6.3 below we will show that ‖a1‖∞ " 2/N , provided that a certain
inequality between ε, k and W is satisfied. This is what we mean by the
statement that a1 is set-like.

Lemma 6.2. Suppose that N , and hence W , is sufficiently large. Then,

sup
r +=0

|µ̃(r)| " 2 log log W/W.

Proof. Recall that µ̃(r) = µ∧(r/N). There are three different cases to
consider.

Case 1. r/N ∈ M0,1; that is to say |r/N | " (log N)B/N . Then by
Lemma 4.8 we have the asymptotic

µ̃(r) = τ(r/N) + O(log N)−A.

Observe, however, that τ(r/N) = 0 provided that r 5= 0.

Case 2. r/N ∈ Ma,q. Then Lemma 4.8 gives

µ̃(r) =
χqµ(q)
φ(q)

e

(
−abm

q

)
τ

(
r

N
− a

q

)
+ O(log N)−A,

where

χq =

{
1 (q, m) = 1

0 otherwise.

Since m =
∏

p!W p, we certainly have χq = 0 for q " W . Thus indeed

|µ̃(r)| " sup
n"W

φ(n)−1 + O(log N)−A " 2 log log W/W.

Case 3. r/N ∈ m. Then Lemma 4.9 gives

µ̃(r) = µ∧(r/N) = O((log N)−A).
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Lemma 6.3. Suppose that εk ! 2 log log W/W . Then the measure a1 is
set-like, in the sense that ‖a1‖∞ " 2/N .

Proof. Indeed

a1(x) = a ∗ β ∗ β(x)
" µ ∗ β ∗ β(x)

= N−1
∑

r

µ̃(r)β̃(r)2e(rx/N)

" N−1µ̃(0)β̃(0)2 + N−1
∑

r +=0

|µ̃(r)||β̃(r)|2

" N−1 + N−1 sup
r +=0

|µ̃(r)|
∑

r

|β̃(r)|2

= N−1 + |B|−1 sup
r +=0

|µ̃(r)|

" N−1 +
2 log log W

W |B| .

Now by a well-known application of the pigeonhole principle we have |B| !
εkN , from which the lemma follows immediately.

We move on now to the second part of our programme, which includes a
statement and proof of a result of the form (6.4).

Proposition 6.4. There is an inequality
∑

x,d

a1(x)a1(x + d)a1(x + 2d) " C ′N−3/2 +
1
N

(
212ε2δ−5/2 + Cδ1/2

)
.

We will require several lemmas. The most important is a “discrete majo-
rant property”. Before we state and prove this, we give an elegant argument
of Marcinkiewicz and Zygmund [27]. We outline the argument here since we
like it and, possibly, it is not particularly well-known.

Lemma 6.5 (Marcinkiewicz-Zygmund). Let N be a positive integer, and
let f : [N ] → C be any function. Consider f also as a function on ZN . Let
p > 1 be a real number. Then

∑

r∈ZN

|f̃(r)|p =
N−1∑

r=0

|f∧(r/N)|p " C(p)N
∫

|f̃(θ)|p dθ.

Proof. Consider the function

g(n) = 2
(

1 − |n|
2N

)
χ|n|!2N −

(
1 − |n|

N

)
χ|n|!N .
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This function is equal to 1 for all n with |n| " N . Its Fourier transform, g∧(θ),
is equal to 2K2N (θ) − KN (θ), a difference of two Fejér kernels. Thus we have

f∧ = f∧ ∗ (2K2N − KN ) ,

and so

|f̃(r)|p = |f∧(r/N)|p

=
∣∣∣∣
∫

f∧(θ) (2K2N (r/N − θ) − KN (r/N − θ)) dθ

∣∣∣∣
p

" 3p−1

(
2p

∣∣∣∣
∫

f∧(θ)K2N (r/N − θ) dθ

∣∣∣∣
p

+
∣∣∣∣
∫

f∧(θ)KN (r/N − θ) dθ

∣∣∣∣
p)

" 3p−1

(
2p
∫

|f∧(θ)|pK2N (r/N − θ) dθ +
∫

|f∧(θ)|pKN (r/N − θ) dθ

)

by two applications of Jensen’s inequality. It is necessary, of course, to use the
fact that the Fejér kernels are nonnegative. To conclude the proof, one only
has to show that

N−1∑

r=0

KN (r/N − θ) " CN,

together with a similar inequality for K2N . But this is a straightforward matter
using the bound

N−1∑

r=0

KN (r/N − θ) "
N−1∑

j=0

sup
φ∈[ j

N
, j+1

N
]

KN (φ)

together with the estimate

KN (φ) " min(N, N−1|φ|−2),

valid for |φ| " 1/2.

Lemma 6.6 (Discrete majorant property). Suppose that p > 2. Then
there is an absolute constant C(p) (not depending on a) such that

∑

r

|ã(r)|p " C(p).

Proof. A direct application of Theorem 2.1 gives
∫

|a∧(θ)|p dθ " C ′(p)N−1.

The lemma is immediate from this and Lemma 6.5.
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Lemma 6.7. Suppose that r ∈ R. Then
∣∣∣1 − β̃(r)4β̃(−2r)2

∣∣∣ " 212ε2.

Proof. We have

∣∣∣1 − β̃(r)
∣∣∣=

1
|B|

∣∣∣∣∣
∑

x∈B

(1 − e(rx/N))

∣∣∣∣∣

=
1
|B|

∣∣∣∣∣
∑

x∈B

(1 − cos(2πrx/N))

∣∣∣∣∣

" 4π2 sup
x∈B

‖rx/N‖2

" 16ε2.

A very similar calculation shows that
∣∣∣1 − β̃(−2r)

∣∣∣ " 64ε2,

and the lemma follows quickly.

Proof of Proposition 6.4. By (6.3) we have, observing that ã1 = ãβ̃2,

(6.7)
∑

a1(x)a1(x + d)a1(x + 2d) "
∑

a1(x)a1(x + d)a1(x + 2d)

−
∑

a(x)a(x + d)a(x + 2d) + (log N)3N−2

= O(N−3/2)

−N−1
∑

r

ã(r)2ã(−2r)
(
1 − β̃(r)4β̃(−2r)2

)
.

Split the sum in (6.7) into two parts, one over r ∈ R and the other over r /∈ R.
When r ∈ R we use Lemma 6.7 to get

∑

r∈R

ã(r)2ã(−2r)
(
1 − β̃(r)4β̃(−2r)2

)
" 212ε2|R|

" Cε2δ−5/2,

this last inequality following from Lemma 6.6 with p = 5/2. To estimate the
sum over r /∈ R, we again use Lemma 6.6 with p = 5/2. Indeed using Hölder’s
inequality we have

∣∣∣∣∣
∑

r/∈R

ã(r)2ã(−2r)
(
1 − β̃(r)4β̃(−2r)2

)∣∣∣∣∣" 2 sup
r/∈R

|ã(r)|1/2
∑

r

|ã(r)|5/2

" Cδ1/2.

This concludes the proof of Proposition 6.4.
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By (6.6) and Lemma 6.3, a1 behaves a bit like a measure associated to
a set of size αN . As promised, we use this information together with
an argument originally due to Varnavides [25] to get a lower bound on∑

a1(x)a1(x + d)a1(x + 2d).

Lemma 6.8. For some absolute constant C2,
∑

x,d∈ZN

a1(x)a1(x + d)a1(x + 2d) ! exp
(
−C2α

−2 log(1/α)
)
N−1.

Proof. Let A′ = {x ∈ ZN : a1(x) ! α/2N}. By Lemma 6.3 we have

α "
∑

a1(x) " 2|A′|
N

+
α

2N
|A′c|,

which implies that |A′| ! αN/4. We will give a lower bound for Z, the number
of 3APs in A′. It is clear that

∑
a1(x)a1(x+d)a1(x+2d) is at least α3Z/8N3.

Now by Bourgain’s theorem3 [6] there is a constant C1 such that if

M ! exp
(
C1α

−2 log(1/α)
)

then any subset of {1, . . . , M} of density at least α/8 contains a 3AP with
nonzero common difference. Now there are exactly N(N − 1) nontrivial arith-
metic progressions of length M in ZN , and A′ will have density at least α/8 on
many of them. To estimate exactly how many, fix a common difference d 5= 0,
and let I = {0, d, 2d, . . . , (M − 1)d}. We have

∑
x A′ ∗ I(x) ! αNM/4, but

A′ ∗ I(x) " M for every x. Thus another simple averaging argument shows
that A′ ∗ I(x) ! αM/8 for at least αN/8 values of x.

In total, then, there are at least αN2/8 progressions of length M on which
A′ has density at least α/8. Each of them contains a 3AP consisting of elements
of A′. No 3AP thus counted can arise from more than M2 progressions of
length M . Thus we have two different ways of bounding Z, and putting them
together gives

Z ! αN2/8M2.

The lemma follows.

Combining this with Proposition 6.4, we get

C ′N−1/2 + 212ε2δ−5/2 + Cδ1/2 ! exp
(
−C2α

−2 log(1/α)
)
.(6.8)

There are constants C3, C4 so that if we choose

δ = exp
(
−C3α

−2 log(1/α)
)

3We could equally well use Roth’s original theorem here, at the expense of making any
bounds for the relative density in Theorem 1.4 even worse.
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and

ε = exp
(
−C4α

−2 log(1/α)
)

then (6.8) cannot hold, and we will have derived a contradiction to the assump-
tion that A contains no 3APs. We are permitted to choose any values of ε and
δ so that the condition of Lemma 6.8 is satisfied. Recalling that k " Cδ−5/2

(a consequence of Lemma 6.6) and that W ! log log N/8, we see that (6.8) can
indeed be contradicted provided that

α ! C

√
log5 N

log4 N
.(6.9)

The subscripts indicate the number of iterated logarithms, not the base to
which those logarithms are taken!

Let us remind the reader of what it is that we have contradicted. We
assumed that there was a subset A0 ⊆ P of positive relative upper density,
containing no 3AP. The number α was related to the relative upper density of
A0, via the slightly technical reductions made in Lemma 6.1. A bound of the
form (6.9) also holds for α0. That is, any subset of Pn with cardinality at least
Cn(log5 n)1/2/ log n(log4 n)1/2 contains a 3AP.

By far the most important reason for our getting such a poor bound was
the need to prove Lemma 6.2, which says that by passing to a subprogression
of common difference m =

∏
p!W p one can make the primes look somewhat

uniform. This is a rather crude trick but we have not been able to get around
it. Even if we could, the resultant bounds would surely be many miles from the
probable truth, which is that any subset of [N ] of cardinality N(log N)−1000

contains 3APs.
Let us conclude by remarking that the methods of this section use rather

little about the primes. In fact by the same argument one could establish
a Roth-type theorem relative to any measure µ : ZN → R+ for which one
had good control on supr +=0 |µ̃(r)| together with bounds for ‖f̃‖p, for some
p ∈ (2, 3) and any f satisfying 0 " f(x) " µ(x) pointwise. In practise bounds
of this latter type will come by restriction theory arguments of the type given
in Section 5. A more general setting for our arguments, along the lines just
described, is given in [13].
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