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A local regularity theorem
for mean curvature flow

By Brian White*

Abstract

This paper proves curvature bounds for mean curvature flows and other
related flows in regions of spacetime where the Gaussian densities are close
to 1.

Introduction

Let Mt with 0 < t < T be a smooth one-parameter family of embed-
ded manifolds, not necessarily compact, moving by mean curvature in RN .
This paper proves uniform curvature bounds in regions of spacetime where the
Gaussian density ratios are close to 1. For instance (see §3.4):

Theorem. There are numbers ε = ε(N) > 0 and C = C(N) < ∞ with
the following property. If M is a smooth, proper mean curvature flow in an
open subset U of the spacetime RN ×R and if the Gaussian density ratios of
M are bounded above by 1 + ε, then at each spacetime point X = (x, t) of M,
the norm of the second fundamental form of M at X is bounded by

C

δ(X, U)

where δ(X, U) is the infimum of ‖X − Y ‖ among all points Y = (y, s) ∈ U c

with s ≤ t.

(The terminology will be explained in §2.)
Another paper [W5] extends the bounds to arbitrary mean curvature flows

of integral varifolds. However, that extension seems to require Brakke’s Local
Regularity Theorem [B, 6.11], the proof of which is very difficult. The results of
this paper are much easier to prove, but nevertheless suffice in many interesting
situations. In particular:
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0104049, DMS-0406209 and by a Guggenheim Foundation Fellowship.
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(1) The theory developed here applies up to and including the time at which
singularities first occur in any classical mean curvature flow. (See Theo-
rem 3.5.)

(2) The bounds carry over easily to any varifold flow that is a weak limit
of smooth mean curvature flows. (See §7.) In particular, any smooth
compact embedded hypersurface of RN is the initial surface of such a
flow for 0 ≤ t < ∞ (§7.4).

(3) The bounds also extend easily to any varifold flow constructed by Ilma-
nen’s elliptic regularization procedure [I1].

Thus, for example, the results of this paper allow one to prove (without using
Brakke’s Local Regularity Theorem) that for a nonfattening mean curvature
flow in RN , the surface is almost everywhere regular at all but countably many
times. (A slightly weaker partial regularity result was proved using Brakke’s
Theorem by Evans and Spruck [ES4] and by Ilmanen [I1].) Similarly, the local
regularity theorem here suffices (in place of Brakke’s) for the analysis in [W3],
[W4] of mean curvature flow of mean convex hypersurfaces (see §7.2, §7.3,
and §7.4).

The proofs here are quite elementary. They are based on nothing more
than the Schauder estimates for the standard heat equation in Rm (see §8.2 and
§8.3), and the fact that a nonmoving plane is the only entire mean curvature
flow with Gaussian density ratios everwhere equal to 1. The proof of the basic
theorem is also fairly short; most of this paper is devoted to generalizations
and extensions.

Although the key idea in the proof of the main theorem is simple, there
are a number of technicalities in the execution. It may therefore be helpful to
the reader to first see a simpler proof of an analogous result in which the key
idea appears but without the technicalities. Such a proof (of a special case of
Allard’s Regularity Theorem) is given in Section 1.

Section 2 contains preliminary definitions and lemmas. The main result
of the paper is proved in Section 3. In Section 4, the result is extended to
surfaces moving with normal velocity equal to mean curvature plus any Hölder
continuous function of position, time, and tangent plane direction. This in-
cludes, for example, mean curvature flow in Riemannian manifolds (regarded
as isometrically embedded in Euclidean space). In Section 5, the analogous
estimates at the boundary (or “edge”) are proved for motion of manifolds-
with-boundary. In Section 6, somewhat weaker estimates (namely C1,α and
W 2,p) are proved for surfaces moving by mean curvature plus a bounded mea-
surable function. This includes, for example, motion by mean curvature in the
presence of smooth obstacles.

Finally, in Section 7, the regularity theory is extended to certain mean
curvature flows of varifolds. This section may be read directly after Section 3,
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but it has been placed at the end of the paper since it is the only section
involving varifolds.

Mean curvature flow has been investigated extensively in the last few
decades. Three distinct approaches have been very fruitful in those investi-
gations: geometric measure theory, classical PDE, and the theory of level-
set or viscosity solutions. These were pioneered in [B]; [H1] and [GH]; and
[ES1]–[ES4] and [CGG] (see also [OS]), respectively. Surveys emphasizing the
classical PDE approach may be found in [E2] and [H3]. A rather thorough
introduction to the classical approach, including some new results, may be
found in [E4]. An introduction to the geometric measure theory and viscosity
approaches is included in [I1]. See [G] for a more extensive introduction to the
level set approach.

Some of the results in this paper were announced in [W1]. Some similar
results were proved by A. Stone [St1], [St2] for the special case of hyper-
surfaces with positive mean curvature under an additional hypothesis about
the rate at which curvature blows up when singularities first appear. In [E1],
K. Ecker proved, for the special case of two-dimensional surfaces in 3-manifolds,
pointwise curvature bounds assuming certain integral curvature bounds. The
monotonicity formula, which plays a major role in this paper, was discovered
by G. Huisken [H2]. Ecker has recently discovered two new remarkable mono-
tonicity formulas [E3], [E4, §3.18] that have most of the desirable features of
Huisken’s (and that yield the same infinitesimal densities) but that, unlike
Huisken’s, are local in space.

1. The main idea of the proof

As mentioned above, the key idea in the proof of the main theorem is
simple, but there are a number of necessary technicalities that obscure the
idea. In this section, the same idea (minus the technicalities) is used to prove
a special case of Allard’s Regularity Theorem [A]. The proof is followed by a
brief discussion of some of the technicalities that make the rest of the paper
more complicated.

This section is included purely for expository reasons and may be skipped.

1.1. Theorem. Suppose that N is a compact Riemannian manifold and
that ρ > 0. There exist positive numbers ε = ε(N, ρ) and C = C(N, ρ) with
the following property. If M is a smooth embedded minimal submanifold of N
such that

θ(M, x, r) ≤ 1 + ε

for all x ∈ N and r ≤ ρ, then the norm of the second fundamental form of M
is everywhere bounded by C.
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Here θ(M, x, r) denotes the density ratio of M in B(x, r):

θ(M, x, r) =
area(M ∩B(x, r))

ωmrm
,

where m = dim(M) and ωm is the volume of the unit ball in Rm.

Proof. Suppose the result were false for some N and ρ. Then there would
be a sequence εi → 0 of positive numbers, a sequence Mi of smooth minimal
submanifolds of N , and a sequence xi of points in Mi for which

(∗) θ(Mi, x, r) ≤ 1 + εi (x ∈ N, r ≤ ρ)

and for which
B(Mi, xi) →∞,

where B(M, x) denotes the norm of the second fundamental form of M at x.
Note that we may choose the xi to maximize B(Mi, ·):

max
x

B(Mi, x) = B(Mi, xi) = Λi →∞.

We may also assume that N is isometrically embedded in a Euclidean space E.
Translate Mi by −xi and dilate by Λi to get a new manifold M ′

i with

max B(M ′
i , ·) = B(M ′

i , 0) = 1.

By an Arzela-Ascoli argument, a subsequence (which we may assume is the
original sequence) of the M ′

i converges in C1,α to a limit submanifold M ′ of E.
By standard elliptic PDE, the convergence is in fact smooth, so that M ′ is a
minimal submanifold of E and

(†) max B(M ′, ·) = B(M ′, 0) = 1.

On the other hand, (∗) implies that

θ(M ′, x, r) ≤ 1 for all x ∈ M ′ and for all r.

Monotonicity implies that the only minimal surface with this property is a
plane. So M ′ is a plane. But that contradicts (†).

Complications

There are several reasons why the proof of the main theorem (3.1) of this
paper is more complicated than the proof above. For example:

1. It is much more useful to have a local result than a global one. Thus in
Theorem 1.1, it would be better to assume not that M is compact, but rather
that it is a proper submanifold of an open subset U of N . Of course then we
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can no longer conclude that B(M, ·) is bounded. Instead, the assertion should
become

B(M, x) dist(x, U c) ≤ 1.

This localization introduces a few annoyances into the proof. For example, we
would like (following the proof above) to choose a point xi ∈ Mi for which

B(Mi, xi) dist(xi, U
c
i )

is a maximum. But it is not clear that this quantity is even bounded, and even
if it is bounded, the supremum may not be attained.

2. For various reasons, it is desirable to have a slightly more complicated
quantity play the role that B(M, x) does above. For instance, max B(M, ·)
is like the C2 norm of a function, and as is well known, Schauder norms are
much better suited to elliptic and parabolic PDE’s. Thus instead of B(M, x)
we use a quantity K2,α(M, x) which is essentially the smallest number λ > 0
such that the result of dilating M ∩B(x, 1/λ) by λ is, after a suitable rotation,
contained in the graph of a function

u : Rm → Rd−m

with ‖u‖2,α ≤ 1. Here d is the dimension of the ambient Euclidean space.
There is another reason for not using the norm of the second fundamantal

form. Suppose we wish to weaken the hypothesis of Theorem 1.1 by requiring
not that M be minimal but rather that its mean curvature be bounded. We
can then no longer conclude anything about curvatures. However, we can still
conclude, with essentially the same proof, that K1,α(M, x) is bounded.

3. Spacetime (for parabolic problems) is somewhat more complicated
than space (for elliptic problems). Thus for example parabolic dilations and
Gaussian densities replace the more geometrically intuitive Euclidean dilations
and densities.

2. Preliminaries

2.1. Spacetime. We will work in spacetime RN,1 = RN × R. Points of
spacetime will be denoted by capital letters: X, Y , etc. If X = (x, t) is a point
in spacetime, ‖X‖ denotes its parabolic norm:

‖X‖ = ‖(x, t)‖ = max{|x|, |t|1/2}.

The norm makes spacetime into a metric space, the distance between X and Y
being ‖X−Y ‖. Note that the distance is invariant under spacetime translations
and under orthogonal motions of RN .
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For λ > 0, we let Dλ : RN,1 → RN,1 denote the parabolic dilation:

Dλ(x, t) = (λx,λ2t).

Note that ‖DλX‖ = λ‖X‖.
We let τ : RN,1 → R denote projection onto the time axis:

τ(x, t) = t.

2.2. Regular flows. Let M be a subset of RN,1 such that M is a
C1 embedded submanifold (in the ordinary Euclidean sense) of RN+1 with
dimension m + 1 (again, in the usual Euclidean sense). If the time function
τ : (x, t) *→ t has no critical points in M, then we say that M is a fully regular
flow of spatial dimension m. If a fully regular flow M is C∞ as a submanifold
of RN+1, then we say that it is a fully smooth flow.

It is sometimes convenient to allow flows that softly and suddenly vanish
away. Thus if M is a fully regular (or fully smooth) flow and T ∈ (−∞,∞],
then the truncated set

{X ∈M : τ(X) ≤ T}

will be called a regular (or smooth) flow. Of course if T = ∞, then the
truncation has no effect. Thus every fully regular (or fully smooth) flow is
also a regular (or smooth) flow.

Note that if M is a regular (or smooth) flow, then for each t ∈ R, the
spatial slice

M(t) := {x ∈ RN : (x, t) ∈M}

is a C1 (or smooth) m-dimensional submanifold of RN . Of course for some
times t the slice may be empty.

For example, suppose M is a smooth m-dimensional manifold, I is an
interval of the form (a, b) or (a, b], and

F : M × I → RN

is a smooth map such that for each t ∈ I, the map F ( · , t) : M → RN is an
embedding. Let M be the set in spacetime traced out by F :

M = {(F (x, t), t) : x ∈ M , t ∈ I}.

Then M is a smooth flow.
Conversely, if M is any regular (or smooth) flow and X ∈M, then there

is a spacetime neighborhood U of X and an F as above such that

M ∩ U = {(F (x, t), t) : x ∈ M , t ∈ I}

is the flow traced out by F . Such an F is called a local parametrization of M.
If M is smooth, then by the Fundamental Existence and Uniqueness Theorem



A LOCAL REGULARITY THEOREM 1493

for ODEs, we can choose F so that for all (x, t) in the domain of F , the time
derivative ∂

∂tF (x, t) is perpendicular to F (M, t) at F (x, t).

2.3. Proper flows. Suppose that M is a regular flow and that U is an
open subset of spacetime. If

M = M ∩ U,

then we will say that M is a proper flow in U .
For any regular flow M, if U is the spacetime complement of M \ M,

then M is a proper flow in U . Also, if M is a proper flow in U and if U ′ is an
open subset of U , then M ∩ U ′ is a proper flow in U ′.

2.4. Normal velocity and mean curvature. Let M be a regular flow in
RN,1. Then for each X = (x, t) ∈M, there is a unique vector v = v(M, X) in
RN such that v is normal to M(t) at x and (v, 1) is tangent (in the ordinary
Euclidean sense) to M at X. This vector is called the normal velocity of M
at X. If F is a local parametrization of M, then

v(M, (F (x, t), t)) =
(

∂

∂t
F (x, t)

)⊥
.

If M is a regular flow and X = (x, t), we let H(M, X) denote the mean
curvature vector (if it exists) of M(t) at x. Of course if M is smooth, then
M(t) is also smooth, so H(M, X) does exist. A regular flow M such that
v(M, X) = H(M, X) for all X ∈M is called a mean curvature flow.

Note that if we parabolically dilate M by λ, then v and H get multiplied
by 1/λ:

v(DλM,DλX) =λ−1 v(M, X),
H(DλM,DλX) =λ−1 H(M, X).

Thus if M is a mean curvature flow, then so is DλM.

2.5. The C2,α norm of M at X. We wish to define a kind of local
C2,α norm of a smooth flow at a point X ∈ M. This norm will be denoted
K2,α(M, X). Actually the definition below makes sense for any subset M of
spacetime. Let BN = BN (0, 1) and BN,1 = BN × (−1, 1) denote the open unit
balls centered at the origin in RN and in spacetime RN,1, respectively. The
graph of a function u : Bm,1 → RN−m is the set

graph(u) = {(x, u(x, t), t) : (x, t) ∈ Bm,1} ⊂ RN,1.

Now consider first the case X = 0 ∈M. Suppose we can rotate M to get
a new set M′ for which the intersection

M′ ∩BN,1
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is contained in the graph of a function

u : Bm,1 → RN−m

whose parabolic C2,α norm is ≤ 1. (See the appendix (§7) for the definition of
the parabolic Hölder norms of functions.) Then we will say that

K2,α(M, X) = K2,α(M, 0) ≤ 1.

Otherwise, K2,α(M, 0) > 1.
More generally, we let

K2,α(M, 0) = inf{λ > 0 : K2,α(DλM, 0) ≤ 1}.

Finally, if X is any point in M, we let

K2,α(M, X) = K2,α(M−X, 0),

where M−X is the flow obtained from M by translating in spacetime by −X.
If K2,α(M, ·) is bounded on compact subsets of a regular flow M, then

M is called a C2,α flow.

Remark on the definition. Suppose M is a proper, regular flow in U
and X ∈M. If we translate M by −X, dilate by λ = K2,α(M, X), and next
rotate appropriately to get a flow M′, then by definition,

M′ ∩BN,1

will be contained in the graph of a function

u : Bm,1 → RN−m

as with parabolic C2,α norm ≤ 1. Note that if M is fully regular and if the
distance from X to U c is ≥ r = 1/λ, then in fact

M′ ∩BN,1 = graph(u) ∩BN,1.

Likewise, if M is regular but not necessarily fully regular, then for some T ≥ 0,

M′ ∩BN,1 = graph(u)∩BN,1 ∩ {Y : τ(Y ) ≤ T}.

2.6. Arzela-Ascoli Theorem. For i = 1, 2, 3, . . . , let Mi be a proper
C2,α flow in Ui. Suppose that Mi → M and that U c

i → U c as sets. Suppose
also that the functions K2,α(Mi, ·) are uniformly bounded as i → ∞ on com-
pact subsets of U . Then M′ = M ∩ U is a proper C2,α flow in U , and the
convergence Mi →M′ is locally C2 (parabolically). In particular, if Xi ∈Mi

converges to X ∈M′, then

v(Mi, Xi)→ v(M′, X),
H(Mi, Xi)→H(M′, X),

and
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K2,α(M′, X) ≤ lim inf
i

K2,α(Mi, Xi).

Furthermore, if each Mi is fully regular in Ui, then M′ is fully regular in U .

Remark on the hypotheses. Convergence of Si → S as sets means: every
point in S is the limit of a sequence Xi ∈ Si, and for every bounded sequence
Xi ∈ Si, all subsequential limits lie in S. The uniform boundedness hypothesis
is equivalent to: for every sequence Xi ∈Mi converging to X ∈ U , the lim sup
of K2,α(Mi, Xi) is finite.

Proof. Straightforward. See Section 8.1 for details. The last assertion
follows from the remark above about the definition of K2,α.

Note that K2,α(M, ·) scales like the reciprocal of distance. That is,

K2,α(DλM,DλX) = λ−1K2,α(M, X).

We will also need a scale invariant version of K2,α. Let

d(X, U) = inf{‖X − Y ‖ : Y ∈ U c}.

Then of course d(X, U) K2,α(M, X) is scale invariant.

Definition. Suppose M is a proper smooth flow in U . Then

K2,α; U (M) = sup
X∈M

d(X, U) · K2,α(M, X).

Of course K2,α; U (M) is scale-invariant.

2.7. Corollary to the Arzela-Ascoli Theorem.

K2,α; U (M′) ≤ lim inf K2,α; Ui
(Mi).

2.8. Proposition. Suppose M is a proper C2,α flow in U . Let U1 ⊂
U2 ⊂ . . . be open sets such that

(1) the closure of each Ui is a compact subset of U , and

(2) ∪iUi = U .

Then
K2,α; Ui

(M ∩ Ui) < ∞

for each i and
K2,α;U (M) = lim K2,α; Ui

(M ∩ Ui).

The proof is very easy. Note that for any U , there always exist such Ui.
For instance, we can let Ui = {X ∈ U : d(X, U) > 1/i and ‖X‖ < i}.
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2.9. Gaussian density. If M is a regular flow in RN,1 with spatial
dimension m, if X ∈ RN,1, and if r > 0, then the Gaussian density ratio of M
at X with radius r is

Θ(M, X, r) =
∫

y∈M(t−r2)

1
(4πr2)m/2

exp
(
−|y − x|2

4r2

)
dHmy.

If M is a proper mean curvature flow in RN × (a, b) and if τ(X) > a, then
the density ration Θ(M, X, r) is a nondecreasing function of r for 0 < r <√

τ(X)− a. Thus the limit

Θ(M, X) := lim
r→0

Θ(M, X, r)

exists for all X, and is called the Gaussian density of M at X. Similarly, if
M is proper in all of RN,1, then the limit

Θ(M,∞) := lim
r→∞

Θ(M, X, r)

exists for all X. It is easy to show that, as the notation indicates, the limit is
independent of X.

Analogous, slightly weaker statements are true for related flows (as in
§§4, 5, and 6 of this paper), as well as for proper mean curvature flows in
more general open subsets U of spacetime: see Sections 10 and 11 of [W2].
(The notation here and in [W2] differs slightly. The quantity denoted here by
Θ(M, X, r) is written there as Θ(M, X, τ) where τ = r2. The notation here
makes more apparent the analogy between mean curvature flows and minimal
surfaces.)

The proof of the Monotonicity Theorem (see [H2] or [I2]) shows that if M
is a proper mean curvature flow in RN,1 and if

Θ(M, X) = Θ(M,∞),

then the flow
M′ = (M−X) ∩ {Y : τ(Y ) ≤ 0}

is invariant under parabolic dilations:

M′ ≡ DλM′.

Taking the limit of this equation as λ→∞ shows that if M′ is smooth at X,
then M′ has the form (after a suitable rotation) Rm × [0]N−k × (−∞, 0].

2.10. Proposition. Suppose M is a smooth nonempty proper mean-
curvature flow in RN,1. Then Θ(M,∞) ≥ 1, with equality if and only if M
has the form

(∗) H × (−∞, T ]

for some affine plane H ⊂ RN and some T ∈ (−∞,∞].
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Proof. Let X ∈ M. We claim that Θ(M, X) ≥ 1. (In fact equality
holds, but we do not need that here.) The claim may be proved as follows.
Note that the dilates Dλ(M −X) converge, as λ → ∞, to a limit flow M′ of
the form (∗). (Here M−X denotes the result of translating M in spacetime
by −X.) Hence

Θ(M′, 0, 1)≤ lim
λ→∞

Θ( Dλ(M−X), 0, r)

≤ lim
λ→∞

Θ(M−X, 0, r/λ)

= lim
λ→∞

Θ(M, X, r/λ)

=Θ(M, X).

But Θ(M′, 0, 1) = 1 by direct calculation. Hence Θ(M, X) ≥ 1 for each
X ∈M. Thus by monotonicity, Θ(M,∞) ≥ 1. Furthermore, if Θ(M,∞) ≤ 1,
then

Θ(M,∞) = Θ(M, X) = 1

for every X ∈ M. But by monotonicity (see the discussion immediately pre-
ceding 2.10), this implies that the set

{Y ∈M : τ(Y ) ≤ τ(X)}

has the form (∗). Since this is true for every X ∈ M, in fact all of M must
have the form (∗).

3. The fundamental theorem

3.1. Theorem. For 0 < α < 1, there exist positive numbers ε =
ε(N, m,α) and C = C(N, m,α) with the following property. Suppose M is
a smooth proper mean curvature flow with spatial dimension m in U ⊂ RN,1

such that

Θ(M, X, r) ≤ 1 + ε for all X ∈M and 0 < r < d(X, U).

Then
K2,α; U (M) ≤ C.

Remark. Of course the bound on K2,α; U (M) immediately implies, by
standard classical PDE, bounds on all higher derivatives.

Proof. Let ε be the infimum of numbers ε > 0 for which the theorem
fails, i.e., for which there is no appropriate C < ∞. We must show that ε > 0.

Let εi > ε be a sequence of numbers converging to ε. Then there are
sequences Mi and Ui such that Mi is a smooth proper mean curvature flow
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in Ui and such that

Θ(Mi, X, r) ≤ 1 + εi for all X ∈Mi and 0 < r < d(X, Ui),(1)
K2,α;Ui

(Mi)→∞.(2)

By Proposition 2.8, we can assume that

K2,α;Ui
(Mi) = si < ∞

for each i. (Otherwise replace Mi and Ui by M′
i and U ′

i , where U ′
i is compactly

contained in Ui and M′
i = Mi ∩ U ′

i . Hypothesis (1) will still hold, and by
Proposition 2.8, we can choose the U ′

i large enough so that (2) will still hold.)
Choose Xi ∈Mi so that

d(Xi, Ui) K2,α(Mi, Xi) >
1
2
si.(3)

By translating, we may assume that Xi ≡ 0. By dilating, we may assume that

K2,α(Mi, 0) = 1.(4)

Of course by (2) and (3) this means

d(0, Ui) →∞.(5)

Now let X ∈Mi. Then

d(X, Ui)K2,α(Mi, X)≤ si

≤ 2d(0, Ui)K2,α(Mi, 0)
= 2d(0, Ui).

Thus

K2,α(Mi, X)≤ 2
d(0, Ui)
d(X, Ui)

≤ 2
d(0, Ui)

d(0, Ui)− ‖X‖

= 2
(

1− ‖X‖
d(0, Ui)

)−1

provided the right-hand side is positive. By (5), this means that K2,α(Mi, ·)
is uniformly bounded as i →∞ on a compact subset of spacetime.

Thus by the Arzela-Ascoli Theorem 2.6, a subsequence (which we may
assume is the original sequence) of the Mi converges locally to a limit mean
curvature flow M that is proper in all of RN,1 (because by (5), U c

i → ∅).
Note that

Θ(M, X, r) ≤ 1 + ε(6)

for all X and r > 0.
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Now suppose that ε = 0; we will show that this leads to a contradiction.
By monotonicity (see §2.10), the inequality (6) (with ε = 0) implies that

M has the form (after a suitable rotation):

M = Rm × [0]N−m × (−∞, T ]

for some T ∈ [0,∞]. Here T = limi Ti where Ti = sup{τ(X) : X ∈ Mi}. If
T = ∞, then (−∞, T ] should be interpreted as R.

By the C2 convergence, there exist ri →∞ such that

Mi ∩ (Bm(ri)×BN−m(ri)× (−ri, ri))

is the graph of a function

ui : Bm(ri)× Ii → RN−m

with
‖ui‖C2 → 0.

Here Ii is the interval (−ri, ri) ∩ (−∞, Ti].
Of course the ui satisfy the nonparametric mean curvature flow equation:

∂

∂t
ui −∆ui = fi,(7)

where

fi = −
∑

1≤j,k≤m

Djui Dkui

1 + |Dui|2
Djkui.(8)

(This is the equation for hypersurfaces. When N > m + 1, the equation is
more complicated (see the appendix), but the proof below is still valid.)

Now the fi converge to 0 in Cα on compact sets. This is seen as follows.
Recall that the ui are uniformly bounded in C2,α on compact sets and converge
to 0 in C2 on compact sets. Thus

Djui Dkui

1 + |Du|2(9)

converges to 0 in C1 (on compact sets) and

Djkui(10)

is bounded in Cα (on compact sets). It follows that the product of (9) and
(10) converges to 0 in Cα on compact sets.

Thus the Schauder estimates (§8.2) for the heat equation (7) imply that

‖ui|K‖2,α → 0

for every compact K ⊂ Rm,1. But that contradicts the fact that K2,α(Mi, 0)
was normalized to be 1.
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In the statement of Theorem 3.1, ε was allowed to depend on α. But in
fact it can be chosen independently of α:

3.2. Proposition. Let ε be the infimum of ε > 0 for which Theorem 3.1
fails. Then

(1) There are no proper smooth mean curvature flows M in RN,1 with

1 < Θ(M,∞) < 1 + ε.

(2) There is such a flow with

Θ(M,∞) = 1 + ε.

(3) Theorem 3.1 fails for ε = ε.

Of course, from (1) and (2), it is clear that ε does not depend on α.

Proof. To prove (1), suppose M is a smooth proper mean curvature flow
in RN,1 with

Θ(M,∞) < 1 + ε.

Then
Θ(M,∞) < 1 + ε

for some ε < ε. By monotonicity,

Θ(M, X, r) < 1 + ε

for all X and r. Thus by Theorem 3.1,

K2,α(M, X) ≤ C

d(M,RN,1)
.

But d(M,RN,1) = ∞, so K2,α(M, ·) ≡ 0, which implies that Θ(M, X, r) ≡ 1
for all X ∈M. This proves (1).

The proof of Theorem 3.1 established that there is a smooth proper mean
curvature flow M with

1 < Θ(M,∞) ≤ 1 + ε

(The contradiction in that proof only came from assuming that Θ(M,∞) = 1.)
This together with (1) gives (2).

Finally, (3) follows from (2) because the M of (2) is a counterexample to
Theorem 3.1 for ε = ε.

3.3. Remark. Let M be a proper mean curvature flow in U . Note that
the bounds given by Theorem 3.1 at a point X depend on the distance from X
to U c. Of course U c may include points Y with τ(Y ) > τ(X). Thus, at first
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glance, it may seem that to use Theorem 3.1 to deduce curvature bounds at a
certain time t = τ(X) requires knowledge about the flow at subsequent times.
But this is not really the case, since we can apply the theorem to the flow

M′ = {X ∈M : τ(X) ≤ t}

which is proper in the set

U ′ = U ∪ {Z : τ(Z) > t}.

This gives bounds up to and including time t that do not depend on anything
after time t. Because we can do this at each time t, we get the following
corollary to theorem 3.1.

3.4. Corollary. Let M be as in Theorem 3.1. Then at every point X
of M, the norm of the second fundamental form of the spatial slice of M at
X is bounded by

C

δ(X, U)

where δ(X, U) is the infimum of ‖X − Y ‖ among all points Y ∈ U c with
τ(Y ) ≤ τ(X).

3.5. Theorem. Let M be a compact m-dimensional manifold and let

F : M × [0, T ) → RN

be a classical mean-curvature flow. Let M be the subset of spacetime traced
out by F during the time interval (0, T ). Suppose X = (x, T ) is a point such
that Θ(M, X) < 1 + ε. Then X is a regular point of M. That is, there is a
spacetime neighborhood U of X such that

M ∩ U

is a smooth flow.

Proof. By definition, there is an r with 0 < r <
√

T such that

Θ(M, X, r) < 1 + ε.

It follows by continuity that

Θ(M, ·, r) < 1 + ε

on some spacetime neighborhood U of X. Then by monotonicity,

Θ(M, Y, ρ) < 1 + ε

for all Y ∈ U and ρ ≤ r.
We may choose U small enough that its diameter is less than r.
Let Ti < T be a sequence of times converging to T . Then the flows

Mi := {Y ∈M ∩ U : τ(Y ) ≤ Ti}
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and the open set U satisfy the hypotheses of Theorem 3.1, so that

K2,α; U (Mi) ≤ C.

Passing to the limit gives
K2,α; U (M′) ≤ C,

where M′ = M ∩ U .

3.6. Remark. Theorem 3.5 is almost, but not quite, a special case of
Brakke’s Local Regularity Theorem. To apply Brakke’s theorem, we would
need, for some R > 0, a certain positive lower bound on

lim inf
t→T

area(M(t) ∩B(x, R))
Rm

.

Such a lower bound does not immediately follow from the hypotheses of 3.5.

4. Additional forces

There are many interesting geometric evolutions closely related to mean
curvature flow in Euclidean space. Consider for example:

(1) A compact embedded hypersurface in RN moving by the gradient flow
for the functional: area minus enclosed volume. Thus the velocity at
each point will equal the mean curvature plus the outward pointing unit
normal.

(2) Mean curvature flow in the unit sphere SN−1.

(3) Mean curvature flow in a compact Riemannian manifold S (which we
may take to be isometrically embedded in RN ).

To handle such situations, it is convenient to introduce an operator β(M)
as follows. First, if M is a regular flow of m-dimensional surfaces in RN

and if X = (x, t) ∈ M, we let Tan(M, X) be the tangent plane (oriented or
nonoriented as needed) to M(t) at x. Then we define the Brakke operator:

β(M) : a subset of (RN,1 ×G(m, N)) → RN

by

β(X, V ) = v(M, X)−H(M, X) if X ∈M and V = Tan(M, X).

Here of course G(m, N) is the Grassmannian of m-planes in RN . It may seem
odd to regard β(X, V ) as a function of X and V when the defining expression
involves only X. However, it is natural and convenient to do so, as will be
explained presently.
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Note that the equation for problem (1) is

(∗) β(M)(X, V ) = ν(V ),

where ν(V ) is the unit normal to the oriented plane V . In other words, a
flow M is a solution to problem 1 if and only if (∗) holds for all (X, V ) in the
domain of β(M).

Similarly, the equation for problem (2) is

β(M)(X, V ) = mX,

and the equation for problem (3) is

β(M)(X, V ) = − trace II(x)|V,

where X = (x, t) and II(x) is the second fundamental form of S at x. Of course
in problem (2), M should be contained in SN−1 × R, and in problem (3) it
should be contained in S ×R.

In each of these three examples, note that β(M)(X, V ) is a Lipschitz
(indeed smooth) function of X and V , with a Lipschitz constant that does not
depend on M. If, however, the quantity

v(M, X)−H(M, X)

were regarded as a function of X alone (and not V ), then, except in the second
example, the Lipschitz constant would depend on the particular flow M. For
that reason, we choose to regard the Brakke operator as a function of position
and tangent plane direction.

Since β(M) is a function from a metric space to RN , we can define Hölder
norms in the usual way. In particular, we let:

‖β(M)‖0 = sup |β(M)(·, ·)|
= supX∈M |β(M)(X, Tan(M, X))|

and

(4) [β(M)]α = sup
|β(M)(X, Tan(M, X))− β(M)(Y, Tan(M, Y ))|
‖X − Y ‖α + ‖Tan(M, X)− Tan(M, Y )‖α

,

where the sup is over all X 1= Y in M. Finally, we let

‖β(M)‖0,α = ‖β(M)‖0 + [β(M)]α.

It is also useful to have scale invariant versions. If M is a proper flow
in U , we let

d(M; U) = sup
X∈M

d(X, U) = sup
X∈M

inf
Y /∈U

‖X − Y ‖.
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We will assume that d(M; U) < ∞. Dilate M and U by 1/d(M; U) to get M′

and U ′ with d(M′; U ′) = 1. We define

‖β(M)‖0;U = ‖β(M′)‖0,
[β(M)]α;U = [β(M′)]α,

‖β(M)‖0,α;U = ‖β(M′)‖0,α.

Of course one can also define these scale invariant quantities directly by
modifying the definitions of the noninvariant versions. For instance

‖β(M)‖0;U = d(M; U) sup ‖β(M)(·, ·)‖.

Similarly, to define [β(M)]α;U , one modifies (4) by multiplying the numerator
by d = d(M; U) and dividing the term ‖X − Y ‖α by dα. It is then straight-
forward to check that

(5) ‖β(M)‖0,α ≤
‖β(M)‖0,α;U

d(M; U)
if d(M; U) ≥ 1.

4.1. Theorem. Let ε ∈ (0, ε), where ε is as in Theorem 3.2, and let
α ∈ (0, 1). There is a C = C(N, m,α, ε) < ∞ with the following property.
Suppose M is a proper C2,α flow in U ⊂ RN,1 such that

Θ(M, X, r) ≤ 1 + ε

for all X ∈M and 0 < r < d(U, X). Then

K2,α; U (M) < C(1 + ‖β(M)‖0,α;U ).

Proof. The proof is almost the same as the proof of Theorem 3.1. We
assume the theorem is false, and we get a sequence of flows Mi in Ui and
points Xi ∈Mi such that

Θ(Mi, X, r) ≤ 1 + ε

for all X ∈Mi and 0 < r < d(X, Ui), and such that

(6)
K2,α; Ui

(Mi)
1 + ‖β(Mi)‖0,α;Ui

→∞.

As in Section 3.1, we assume that

si = K2,α; Ui
(Mi) < ∞

for each i. By translating and dilating suitably, we may also assume that

(7) d(0, Ui) K2,α(Mi, 0) ≥ 1
2
si

and that

(8) K2,α(Mi, 0) = 1.
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As before, this implies that

(9) d(Mi, Ui) ≥ d(0, Ui) →∞

and also (after passing to a subsequence) that the Mi converge in C2 to a flow
M that is proper in all of RN,1.

Now by (6), (7), and (8),

‖β(Mi)‖0,α;Ui

d(Mi; Ui)
→ 0,

which implies by (5) and (9) that

(10) ‖β(Mi)‖0,α → 0.

In particular, sup | v(Mi, ·)− H(Mi, ·)|→ 0 Thus the limit flow M is a mean
curvature flow.

The rest of the proof is exactly as in Section 3.1, except that the ui are
no longer solutions of the mean curvature flow equation, but rather satisfy

(11)
∂

∂t
ui −∆ui = fi + π′βi − Dui(x, t) ◦ πβi,

where the right-hand side is as follows. First, fi is exactly as in the proof
of 3.1. Second,

π : RN ∼=Rm ×RN−m → Rm

π′ : RN ∼=Rm ×RN−m → RN−m

are the orthogonal projections. Third,

(12) βi(x, t) = β(Mi)((x, u(x, t), t), Tan(Mi, (x, u(x, t), t))).

(See §8.4 in the appendix for derivation of these formulas.)
Note that the Tan part of (12) depends only on Dui(x, t), and that the

dependence is smooth. Thus βi is essentially (modulo slight abuse of notation)
the composition of

(1) the map β(Mi), and

(2) the function (x, t) *→ (x, ui(x), t, Dui(x, t)).

The first converges to 0 in Cα (by (10)), and the second converges to 0 in C1

on compact sets. Thus the composition βi converges to 0 in Cα on compact
sets.

Hence π′βi, πβi, and therefore Dui ◦ πβi also converge to 0 in C0,α on
compact sets.

The fi converge to 0 in Cα on compact sets as in Section 3.1.
Thus the Schauder estimates (§8.2) for the heat equation (11) imply that

the ui converge to 0 in C2,α on compact sets, which contradicts the normal-
ization K2,α; Ui

(Mi) ≡ 1.
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4.2. Corollary. Suppose that M is a compact manifold and that

F : M × [0, T ) → RN,1

is a classical solution to one of the problems (1)–(3) mentioned at the beginning
of this section. Let M be the spacetime flow swept out by F . Suppose X =
(x, T ) is a point in M such that

Θ(M, X) < 1 + ε.

Then there is a spacetime neighborhood U of X such that

M ∩ U

is a C2,α flow.

Proof. Choose ε < ε with

Θ(M, X) < 1 + ε.

By continuity and monotonicity (§2.9), there is an r > 0 and a spacetime
neighborhood U of X such that

Θ(M, Y, ρ) < 1 + ε

for all Y ∈ U and 0 < ρ ≤ r. We may choose U to have diameter < r. Let
Ti < T converge to T , and let

Mi = M ∩ U ∩ {Y : τ(Y ) ≤ Ti}.

Then by Theorem 4.1,

K2,α;U (Mi) ≤ C(1 + ‖β(Mi)‖0,α; U ).

Letting i →∞ gives the same bound for K2,α;U (M ∩ U).

5. Edge behavior

Suppose that M is a compact manifold with boundary and that

F : M × (a, b) → RN

is a smooth map such that each F (·, t) is an embedding. Let M be the set in
spacetime traced out by F :

M = {(F (x, t), t) : t ∈ (a, b)}.

Then M is not a smooth flow because it is not a manifold in RN+1, but rather
a manifold with boundary, the boundary being

N = {(F (x, t) : x ∈ ∂M, t ∈ (a, b)}.
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Thus it is useful to enlarge the concept of flow to “flow with edge”. (Calling
N the edge rather than the boundary distinguishes it from other kinds of
boundary.)

In general, suppose M is a C1 submanifold-with-boundary in RN+1, and
suppose that the time function τ has no critical points on M or on the bound-
ary of M. (In other words, the restrictions of τ to M and to its boundary have
no critical points.) Then we will call M a fully regular flow-with-edge. The
boundary of M will then be called the edge of M and will be denoted EM.

To allow for sudden vanishing, if M is a fully regular flow-with-edge and
T ∈ (−∞,∞], then the truncated set

M′ = {X ∈M : τ(X) ≤ T}

will be called a regular flow-with-edge, the edge being

EM′ = {X ∈ EM : τ(X) ≤ T}.

Note that the edge EM′ is itself a regular flow (without edge) of one lower
dimension.

To illustrate these concepts, suppose M is the half-open interval from a
to b in RN , with a ∈ M and b /∈ M . Let M = M×(0, 1]. Then M is a smooth
flow with edge. The edge EM is [a]× (0, 1]. The set M\M, which is a kind
of boundary of M, is something quite different, namely the union of M × [0]
and [b]× (0, 1].

For flows with edge, it is useful to introduce modified Gaussian density
ratios. If M is a regular flow-with-edge and X is a point in spacetime, let

CXM = {X + Dλ(Y −X) Y ∈ EM, λ > 0},

and let

Θ∗(M, X, r) =

{
Θ(M, X, r) +Θ(CXM, X, r) if X /∈ EM,

Θ(M, X, r) +Θ(CXM, X, r) + 1
2 if X ∈ EM.

We also let

(∗) Θ∗(M, X) = lim
r→0

Θ∗(M, X, r).

Θ∗(M,∞) = lim
r→∞

Θ∗(M, X, r).

provided the limits exist (and, in the case of Θ∗(M,∞), provided the limit is
independent of X).

Then Θ∗(M, X, r) has most of the same properties for flow-with-edge that
the ordinary Gaussian density ratio Θ(M, X, r) has for flows. For example,
Θ∗(M, X, r) is continuous in X and r, and if M is a smooth mean curvature
flow-with-edge that is proper in RN × (a, b), then

Θ∗(M, X, r)

is an increasing function of r for 0 < r <
√

τ(X)− a.
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Slightly weaker statements are true for flows-with-edge that are proper in
other open sets U and for which | v(M, ·) − H(M, ·)| is bounded. For such
flows, the limit (∗) does exist for all X, and

Θ∗(M, X) =

{
θ(M, X) if X /∈ EM
θ(M, X) + 1

2 if X ∈ EM.

5.1. Lemma. Suppose M is a smooth proper mean curvature flow -with-
edge in RN,1. Suppose the edge has the form

EM = V × (−∞, T ]

for some T ≤ ∞, where V is a linear subspace of RN . Suppose also that

Θ∗(M,∞) < 1 + (ε/2),

where ε is as in Theorem 3.2. Then after a suitable rotation, M has the form

H × [0]N−m × (−∞, T ],

where H = {x ∈ Rm : xm ≥ 0}.

Proof. Let
M′ = M ∪ {(−x, t) : (x, t) ∈M}.

Then M′ is a smooth proper mean curvature flow (with no edge), and

Θ(M′,∞) = 2Θ(M,∞)

= 2(Θ∗(M,∞)− 1
2
)

< 1 + ε.

The result follows immediately from Theorem 3.2.

5.2. Theorem. Let ε ∈ (0, ε/2), where ε is as in Theorem 3.2. For every
0 < α < 1, m, and N , there exists a number C = C(N, m,α, ε) < ∞ with the
following property. Suppose M is a C2,α flow -with-edge in RN,1 such that

Θ∗(M, X, r) ≤ 1 + ε

for all X ∈M and 0 < r < d(U, X). Then

K2,α; U (M) ≤ C (1 + ‖β(M)‖0,α; U + K2,α; U (EM)) .

Proof. As in Sections 3.1 and 4.1, we assume that the theorem is false,
and we get a sequence of proper flows Mi in open sets Ui such that

sup
X∈Mi, 0<r<d(X,Ui)

Θ∗(Mi, X, r) ≤ 1 + ε
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and such that

K2,α; Ui
(Mi)

1 + ‖β(Mi)‖0,α;Ui
+ K2,α; Ui

(EMi)
→∞.

As before, by suitably translating and rotating, we may assume that 0 ∈Mi,
and that

KMi,0 = 1

d(0, Ui) = d(0, Ui) K2,α(Mi, 0) >
1
2
K2,α; Ui

(Mi).

Thus

(1)
1 + ‖β(Mi)‖0,α;Ui

+ K2,α; Ui
(EMi)

d(0, Ui)
→ 0.

From (1),
K2,α; Ui

(EMi)
d(0, Ui)

→ 0.

This implies that

(2) K2,α(EMi, ·) → 0

uniformly on compact sets in spacetime (because d(0, Ui) → ∞). And as
before, the functions K2,α(Mi, ·) are uniformly bounded on compact subsets
of RN,1. Thus by passing to a subsequence, we may assume that the Mi

converge in C2 on compact sets to a proper flow-with-edge M in RN,1. As in
Section 4.1, β(M) ≡ 0.

By (2) and the Arzela-Ascoli Theorem 2.7, K2,α(EM, ·) ≡ 0, and so the
edge EM must be one of the following:

(1) the emptyset, or

(2) V × (−∞, T ] where V is an (m − 1) dimensional subspace of RN and
T ∈ [0,∞].

In case (1), the rest of the proof is just as in Section 4.1. In case (2), the
hypotheses of Lemma 5.1 are satisfied, so M has the form

H × [0]N−m × (−∞, T ]

asserted by the lemma.
The rest of the proof is exactly as in Section 4.1, except that now we now

apply Schauder estimates at the boundary (§8.3) on a sequence of domains in
Rm,1 converging to H × (−∞, T ].
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5.3. Corollary. Let M be a compact m-manifold with boundary and let

φ : ∂M × (0, T ] → RN

be a smooth 1-parameter family of embeddings. Suppose

F : M × (0, T ) → RN

is a smooth 1-parameter family of embeddings such that

F (x, t) = φ(x, t) for all x ∈ ∂M and t ∈ (0, T )

and such that (
∂F (x, t)

∂t

)⊥

is equal to the mean curvature of F (M, t) at F (x, t) for all x ∈ M and 0 < t
< T . Let M be the set swept out by F :

M = {(F (x, t), t) : x ∈M, 0 < t < T}.

If X = (x, T ) is a point in F (∂M, T ) such that

Θ∗(M, X) < 1 + ε/2,

then there is a spacetime neighborhood U of X such that

M ∩ U

is a smooth proper flow in U .

The proof is exactly like the proof of Theorem 3.5. Of course the result
is also true, with the same proof, for mean curvature flows in Riemannian
manifolds, or, more generally, for flows whose Brakke operators are Hölder
continuous functions of position, time, and tangent plane direction.

6. Bounded additional forces

Consider a surface moving by mean curvature plus a bounded measurable
function. For example, this is the case for motion by mean curvature with
smooth (or even C1,1) obstacles. In this section, we will consider the Brakke
operator to be a function of position only:

β(M) : M→RN

β(M)(X) = v(M, X)−H(M, X).

Let p > m. We define κ2,p(M, X) just as we defined K2,α(M, X) in
Section 2.5, except that in the definition, we replace the parabolic C2,α norm
of u by the parabolic W 2,p norm:

‖u‖W 2,p =
(∫

(|u|p + |∂tu|p + |D2u|p)
)1/p

.
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From κ2,p(M, ·) we also define κ2,p; U (M) just as K2,α ;U (M) was defined from
K2,α(M, ·) in Section 2.5.

We define W 2,p flows just as we defined regular flows in Section 2.2, except
that instead of requiring M to be C1 as a submanifold of RN+1, we require
that κ2,p(M, ·) be everywhere finite.

6.1. Theorem. Let ε ∈ (0, ε/2), where ε is as in Section 3.2. For every
p > m, there is a number C = C(N, m, ε, p) < ∞ with the following property.
Suppose M is a proper W 2,p flow -with-edge in U ⊂ RN,1 such that

sup
X∈M, 0<r<d(X,U)

Θ∗(M, X, r) ≤ 1 + ε.

Then

κ2,p ; U (M) + K1,α ;U (M) ≤ C (1 + ‖β(M)‖0;U + K1,1 ;U (EM)) ,

where α = 1− m
p .

Remark. Since β(M)(·) is only defined almost everywhere, the term
‖β(M)‖0;U means d(M, U) times the essential supremum of |β(M)(·)|.

Proof. We describe the proof for flows without edge, since the edge is
handled just as it was in Section 5.

A theorem of Morrey [L, §6.8] bounds the C1,α norm of a function on one
domain in terms of the W 2,p norm on any larger domain. Thus since M is a
W 2,p flow, it is also a C1,α flow.

Define a new quantity J2,p(M, X) exactly like K2,α(M, X) except that,
instead of the C2,α norm of u in Section 2.5, we use the norm:

‖u‖W 2,p + ‖u‖C1,α .

We now copy the proof of Theorem 4.1, using J2,p instead of K2,α. As in that
proof, we get a sequence Mi in Ui such that

(1) d(0,Ui)
1+‖β‖0;Ui

→ 0,

(2) Mi converges (after a rotation) locally in C1 to Rm× [0]N−m× (−∞, T ],

(3) J2,p(Mi, 0) ≡ 1, and

(4) J2,p(Mi, ·) is uniformly bounded as i →∞ on compact subsets of space-
time.

As in Section 4.1, we then get functions ui such that

(5) ui converges to 0 in C1 by (2) and (4), and

(6) the ui are uniformly bounded as i → ∞ in W 2,p on compact subsets of
spacetime (by (4)).
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As before (see (11) in §4.1), the ui satisfy the equation

(∗) ∂

∂t
ui −∆ui = fi + π′βi −Dui ◦ π βi,

where
fi = −

∑

j,k

Djui Dkui

1 + |Dui|2
Djkui.

Now by (5) and (6), the fi tend to 0 in W 2,p on compact subsets of
spacetime. Also,

‖βi(·)‖0 ≤
‖β(Mi)‖0;Ui

d(0, Ui)
,

which tends to 0 by (2). That is, βi tends to 0 uniformly. Hence the entire
right side of (∗) tends to 0 in Lp. By the Lp estimates [L, VII §4-5] for the
heat equation, the ui tend to 0 in W 2,p on compact subsets of spacetime. By
Morrey’s Theorem [L, §7.8], they also tend to 0 in C1,α on compact subsets of
spacetime. But this contradicts (3), proving the theorem.

7. Mean curvature flow of varifolds

In this section, we briefly indicate how the regularity theory developed
in this paper can also apply outside the context of classical mean curvature
flows, in particular to certain mean curvature flows of varifolds. Such varifold
flows were introduced by Brakke [B] and are now often called “Brakke flows”.
Sections 6 and 7 of Ilmanen’s booklet [I1] give a nice introduction to Brakke
flows.

If µ is a Radon measure on RN , let

Γm(µ, x, r) =
1

(4πr2)m/2

∫

RN

exp
(
−|y − x|2

4r2

)
dµ(y).

Note that this is the Gaussian density that occurs in the monotonicity formula:
if M is an m-dimensional mean curvature flow in RN , then

Θ(M, X, r) = Γm(M(τ(X)− r2), X, r)

where τ(X) is the time coordinate of the spacetime point X and M(t) is the
Radon measure in RN determined by the flow at time t.

Fix a number λ < ∞. Let V(λ, m, N) be the class of all Radon measures
in RN such that all m-dimensional Gaussian density ratios are ≤ λ:

sup
x,r
Γm(µ, x, r) ≤ λ (x ∈ RN ,λ > 0).

Of course by the monotonicity formula, this class is preserved by mean curva-
ture flow.
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7.1. Lemma. If µi ∈ V(λ, m, N) converges weakly to µ, then Γm(µi, ·, ·)
converges uniformly on compact subsets of RN × (0,∞) to Γm(µ, ·, ·). Thus
µ ∈ V(λ, m, N).

Proof. This may be proved directly. Or one may observe that the function

u(x, t) =
(
4π
√

t
)(m−N)/2

Γm

(
x,
√

t
)

is the solution to the heat equation with initial values given (distributionally)
by the measure µ. The conclusions then follow from standard facts about the
heat equation.

Now let S(λ, m, N) denote the class of Brakke flows M of m-dimensional
surfaces in RN with the following properties:

(1) M is defined on the time interval [0,∞).

(2) M(t) ∈ V(λ, m, N) for all t.

(3) If Θ(M, X) < 1 + ε (where ε is as in Theorem 3.2) and if τ(X) > 0,
then X is a fully smooth point of M. That is, there is a spacetime
neighborhood U of X such that U ∩ spt(M) is a fully smooth flow (in
the sense of §2.2).

The support spt(M) of M is the set of the smallest closed set in spacetime
that contains (x, t) for every x in the support of M(t). For X = (x, t) with
t > 0, X ∈ sptM if and only if Θ(M, X) > 0 or, equivalently, Θ(M, X) ≥ 1.

7.2. Theorem. The class S(λ, m, N) is compact.

Proof. The class of flows satisfying the first two conditions is compact
[I1, 7.1], so that we need only verify closure of the subclass satisfying the third
condition. Closure is proved in the following theorem.

7.3. Theorem. Suppose Mi ∈ S(λ, m, N) converge as Brakke flows
to M. Suppose X is a spacetime point with τ(X) > 0 such that Θ(M, X) <
1 + ε. Then there are a spacetime neighborhood U of X and an integer I <∞
such that

(1) U ∩ spt(Mi) and U ∩ sptM are fully smooth for i ≥ I, and

(2) U ∩ spt(Mi) converges smoothly to U ∩ spt(M) on compact subsets of U .

Proof. By definition, Θ(M, X, R) < 1 + ε for some R with 0 < R <√
τ(X) and for some ε < ε. By the lemma,

(∗) sup
Y ∈U

Θ
(
Mi, Y,

√
R2 + τ(Y )− τ(X)

)
< 1 + ε

will hold for some spacetime neighborhood U of X for all sufficiently large i.
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The conclusions then follow immediately from Theorems 2.6 and 3.1. (See
also the remark after Theorem 3.1.)

Remark. These theorems remain true (with essentially the same proofs)
if in the definition of S(λ, m, N), “fully smooth” is replaced by “smooth”.

7.4. Theorem. Let M be a compact smooth embedded hypersurface in
Rm+1. Then there is a λ < ∞ and a Brakke flow M ∈ S(λ, m, N) such that
M(0) is the Radon measure associated with M .

Sketch of Proof. Let u : Rm+1 → R be a smooth function such that:

(1) u−1(0) = M ,

(2) ∇u does not vanish anywhere on M ,

(3) u(x) = |x| for all sufficiently large |x|.

(Condition (3) is somewhat arbitrary: it could be replaced by any other
condition asserting that u is reasonably well behaved at infinity.)

The graph Gk of ku(·) is a hypersurface in Rm+2, and there is a classical
mean curvature flow, with initial surface Gk, that is smooth for all time t ≥ 0.
Let Mk be the associated Brakke flow. Note there is a λ < ∞ such Mk ∈
V(λ, m + 1, m + 2) for all k. Thus a subsequence of the Mk will converge to a
limit M′ in V(λ, m + 1, m + 2).

We would like to say that M′ is invariant under translations in the vertical
(i.e., en+1) direction. This is not always true. However, we can always get a
translationally invariant flow as follows. Translate M′ by −j in the em+2

direction to get a new flow M′
j . Now let M∗ be a subsequential limit of the

M′
j ’s as j →∞. Then one can show that M∗ is translationally invariant.

The translational invariance means that M∗ is the Cartesian product
with R of a flow M of m-dimensional surfaces in Rm+1. Since M∗ is in
S(λ, m + 1, m + 2), it follows easily that M is in S(λ, m, m + 1).

Remark. We could have used a subsequential limit of the M′
j as j → −∞.

The resulting flow M∗ is also translationally invariant, though it may in general
differ from M∗. (Indeed, M∗ and M∗ differ if and only if the initial surface
M “fattens” under mean curvature flow.)

8. Appendix

In this section, we prove the Arzela-Ascoli Theorem §2.7, we state the
Schauder estimates for the heat equation, and we derive the nonparamet-
ric equations for mean curvature flow. First we recall the definitions of the



A LOCAL REGULARITY THEOREM 1515

parabolic Hölder norms. Suppose W is an open subset of the spacetime Rn,1.
If u is a map from W to a Euclidean space, then

[u]α = sup
X,Y ∈W, X *=Y

|u(X)− u(Y )|
‖X − Y ‖α

,

‖u‖0,α = sup
X∈W

|u(X)| + [u]α.

Of course ‖X − Y ‖ denotes the parabolic distance from X to Y .
If p is a nonnegative integer and 0 < α < 1, we let

‖u‖p,α =
∑

j+2k≤p

∥∥∥ Dj(∂t)ku
∥∥∥

0,α
.

Here D denotes the derivative with respect to the spatial variables:

D =
(

∂

∂x1
, . . . ,

∂

∂xm

)
,

where (x, t) = (x1, . . . , xm, t) are the coordinates in spacetime.

8.1. Theorem. Suppose Mi are sets in RN,1 that converge to M as sets.
Suppose that Xi ∈Mi converge to X ∈M. Then

K2,α(M, X) ≤ lim inf K2,α(Mi, Xi).

Proof. By passing to a subsequence, we may assume that the lim inf is
a limit. We may also assume that the limit is a finite number L, as otherwise
the result is vacuously true. By scaling, we may assume that L = 1.

We may also assume that X = 0. Translate Mi by −Xi and then dilate
by K2,α(Mi, Xi) to get a new set M′

i. Note that the M′
i also converge as sets

to M, and that
K2,α(M′

i, 0) = 1.

Thus there are rotations φi of RN such that

φ̃i(M′
i) ⊂ graph(ui),

where
ui : Bm,1 → RN−m, ‖ui‖2,α ≤ 1,

and φ̃(x, t) := (φx, t) is the isometry of spacetime induced by φ. (Here
Bm,1 = Bm × (−1, 1) is the unit ball in the spacetime Rm,1.) By passing
to a subsequence, we may assume that the φi converge to a rotation φ and
that the ui converge uniformly to a function

u : Bm,1 → RN−m

with ‖u‖2,α ≤ 1.
It follows (since B is the open ball) that

φ̃M ∩B ⊂ graph(u)

and therefore that K2,α(M, 0) ≤ 1 = L.
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The Arzela-Ascoli Theorem §2.7 is an easy consequence of Theorem 8.1.

Remark. The same proof shows that Theorem 8.1 is true for any other
norm ‖ · ‖∗, provided the set of maps u : Bm,1 → RN−m with ‖u‖∗ ≤ 1 is a
compact subset of C0(Bm,1,RN−m).

Schauder estimates

In this section, L will denote the ordinary heat operator in Rm,1:

Lu = ut −∆u.

8.2. Theorem. Let 0 < r < r′ < ∞ and 0 ≤ T ≤ ∞. Let

Ω= {X ∈ Rm,1 : ‖X‖ < r, τ(X) ≤ T},
Ω′ = {X ∈ Rm,1 : ‖X‖ < r′, τ(X) ≤ T}.

If u is a C2,α function on Ω′, then

‖u|Ω‖2,α ≤ c(‖u‖0 + ‖Lu‖0,α),

where C may depend on r, R, m, and α.

In Section 5, we also used the corresponding estimate at the boundary.
For that estimate, suppose φ and ψ are C2,α real-valued functions defined on
Rm−1,1. Let

K = Kφ = {(x, t) ∈ Rm,1 : xm ≥ φ(x1, . . . , xm−1), t ≤ T},

and let

Ω= {X ∈ K : ‖X‖ < r},
Ω′ = {X ∈ K : ‖X‖ < r′}.

8.3. Theorem. Suppose u : Ω′ → R is a C2,α function such that

u(x,φ(x), t) = ψ(x, t)

for all x ∈ Rm−1 with (x,φ(x), t) ∈ Ω. Then

‖u|Ω‖2,α ≤ c(‖u‖0 + ‖Lu‖2,α, +‖ψ‖2,α)

where c may depend on r, R, m, α, and ‖φ‖2,α.

Proofs of the Schauder estimates may be found in Chapter IV of [L] and
in Chapters 3 and 4 of [F]. A short, elementary proof of a much more general
form of the Schauder estimates is given in [S].
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The nonparametric mean curvature flow system

8.4. Theorem. Let

M = {(x, u(x, t), t) : (x, t) ∈ Ω}
be the graph of a smooth function u : Ω→ RN−m defined on an open subset Ω
of Rm,1. Let X = (x, (x, t), t) be a point in M and let b be any vector in RN .
Then

(1) v(M, X)−H(M, X) = b

if and only if

(2) ut − gij Diju = π′b− Du(x, t) ◦ πb,

where

π : RN ∼=Rm ×RN−m → Rm,

π′ : RN ∼=Rm ×RN−m → RN−m

are the orthogonal projections, and where gij is the ij entry of the matrix whose
inverse has ij entry equal to

gij = δij + Diu · Dju.

Proof. Consider the linear map Π = π′− Du(x, t) ◦π. Note that Π is the
projection from Rm ×RN−m to RN−m whose kernel is Tan(M, X). Now

v = v(M, X) =
(

∂

∂t
(x, u(x, t))

)⊥

= (0, ut)⊥

= (0, ut)− (0, ut)tan,

so that

(3) Π(v) = ut.

Similarly,

H = H(M, X) =
1
σ

Di
(
gijσ Dj(x, u(x, t))

)
(4)

= gij Dij(x, u(x, t)) +
(

1
σ

Di(gijσ)
)

Dj(x, u(x, t))

= gij(0, Diju) + αj Dj(x, u(x, t)),

where σ = (det gk&)1/2. The second term in (4) is a linear combination of
vectors in Tan(M, X). Thus

(5) Π(H) = gij Diju.t

If we apply the projection Π to both sides of (1), then (by (3) and (5)) we
get (2).



1518 BRIAN WHITE

If N = m + 1, then gij simplifies to

δij − Diu Dju

1 + |Du|2 .

For general codimensions, gij still depends smoothly on Du and is equal to δij

when Du = 0. Thus we can rewrite (2) as

ut −∆u = f(Du) + π′b−Du ◦ π b,

where f(Du) is a smooth function of Du that vanishes when Du does.

Stanford University, Stanford, CA
E-mail address: white@math.stanford.edu
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