
Annals of Mathematics, 161 (2005), 1319–1422

Harmonic analysis on the

infinite-dimensional unitary group

and determinantal point processes

By Alexei Borodin and Grigori Olshanski

Abstract

The infinite-dimensional unitary group U(∞) is the inductive limit of

growing compact unitary groups U(N). In this paper we solve a problem of

harmonic analysis on U(∞) stated in [Ol3]. The problem consists in comput-

ing spectral decomposition for a remarkable 4-parameter family of characters

of U(∞). These characters generate representations which should be viewed

as analogs of nonexisting regular representation of U(∞).

The spectral decomposition of a character of U(∞) is described by the

spectral measure which lives on an infinite-dimensional space Ω of indecom-

posable characters. The key idea which allows us to solve the problem is to

embed Ω into the space of point configurations on the real line without two

points. This turns the spectral measure into a stochastic point process on

the real line. The main result of the paper is a complete description of the

processes corresponding to our concrete family of characters. We prove that

each of the processes is a determinantal point process. That is, its correlation

functions have determinantal form with a certain kernel. Our kernels have a

special ‘integrable’ form and are expressed through the Gauss hypergeometric

function.

From the analytic point of view, the problem of computing the correla-

tion kernels can be reduced to a problem of evaluating uniform asymptotics

of certain discrete orthogonal polynomials studied earlier by Richard Askey

and Peter Lesky. One difficulty lies in the fact that we need to compute the

asymptotics in the oscillatory regime with the period of oscillations tending

to 0. We do this by expressing the polynomials in terms of a solution of a

discrete Riemann-Hilbert problem and computing the (nonoscillatory) asymp-

totics of this solution.

From the point of view of statistical physics, we study thermodynamic

limit of a discrete log-gas system. An interesting feature of this log-gas is that

its density function is asymptotically equal to the characteristic function of

an interval. Our point processes describe how different the random particle

configuration is from the typical ‘densely packed’ configuration.
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In simpler situations of harmonic analysis on infinite symmetric groups

and harmonic analysis of unitarily invariant measures on infinite hermitian

matrices, similar results were obtained in our papers [BO1], [BO2], [BO4].
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Introduction

(a) Preface. We tried to make this work accessible and interesting for a

wide category of readers. So we start with a brief explanation of the concepts

that enter in the title.

The purpose of harmonic analysis is to decompose natural representations

of a given group on irreducible representations. By natural representations we

mean those representations that are produced, in a natural way, from the group

itself. For instance, this can be the regular representation, which is realized

in the L2 space on the group, or a quasiregular representation, which is built

from the action of the group on a homogeneous space.

In practice, a natural representation often comes together with a distin-

guished cyclic vector. Then the decomposition into irreducibles is governed

by a measure, which may be called the spectral measure. The spectral mea-

sure lives on the dual space to the group, the points of the dual being the

irreducible unitary representations. There is a useful analogy in analysis: ex-

panding a given function on eigenfunctions of a self-adjoint operator. Here the

spectrum of the operator is a counterpart of the dual space.
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If our distinguished vector lies in the Hilbert space of the representation,

then the spectral measure has finite mass and can be made a probability mea-

sure.1

Now let us turn to point processes (or random point fields), which form

a special class of stochastic processes. In general, a stochastic process is a

discrete or continual family of random variables, while a point process (or

random point field) is a random point configuration. By a (nonrandom) point

configuration we mean an unordered collection of points in a locally compact

space X. This collection may be finite or countably infinite, but it cannot have

accumulation points in X. To define a point process on X, we have to specify

a probability measure on Conf(X), the set of all point configurations.

The classical example is the Poisson process, which is employed in a lot of

probabilistic models and constructions. Another important example (or rather

a class of examples) comes from random matrix theory. Given a probability

measure on a space of N ×N matrices, we pass to the matrix eigenvalues and

get in this way a random N -point configuration. In a suitable scaling limit

transition (as N → ∞), it turns into a point process living on infinite point

configurations.

As long as we are dealing with ‘conventional’ groups (finite groups, com-

pact groups, real or p-adic reductive groups, etc.), representation theory seems

to have nothing in common with point processes. However, the situation dras-

tically changes when we turn to ‘big’ groups whose irreducible representa-

tions depend on infinitely many parameters. Two basic examples are the infi-

nite symmetric group S(∞) and the infinite-dimensional unitary group U(∞),

which are defined as the unions of the ascending chains of finite or compact

groups

S(1) ⊂ S(2) ⊂ S(3) ⊂ . . . , U(1) ⊂ U(2) ⊂ U(3) ⊂ . . . ,

respectively. It turns out that for such groups, the clue to the problem of

harmonic analysis can be found in the theory of point processes.

The idea is to convert any infinite collection of parameters, which corre-

sponds to an irreducible representation, to a point configuration. Then the

spectral measure defines a point process, and one may try to describe this

process (hence the initial measure) using appropriate probabilistic tools.

In [B1], [B2], [BO1], [P.I]–[P.V] we applied this approach to the group

S(∞). In the present paper we study the more complicated group U(∞).

1It may well happen that the distinguished vector belongs to an extension of the Hilbert
space (just as in analysis, one may well be interested in expanding a function which is not
square integrable). For instance, in the case of the regular representation of a Lie group one
usually takes the delta function at the unity of the group, which is not an element of L2. In
such a situation the spectral measure is infinite. However, we shall deal with finite spectral
measures only.
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Notice that the point processes arising from the spectral measures do not

resemble the Poisson process but are close to the processes of the random

matrix theory.

Now we proceed to a detailed description of the content of the paper.

(b) From harmonic analysis on U(∞) to a random matrix type asymptotic

problem. Here we summarize the necessary preliminary results established in

[Ol3]. For a more detailed review see Section 1–3 below.

The conventional definition of the regular representation is not applicable

to the group U(∞): one cannot define the L2 space on this group, because

U(∞) is not locally compact and hence does not possess an invariant measure.

To surpass this difficulty we embed U(∞) into a larger space U, which can be

defined as a projective limit of the spaces U(N) as N → ∞. The space U is

no longer a group but is still a U(∞) × U(∞)-space. That is, the two-sided

action of U(∞) on itself can be extended to an action on the space U. In

contrast to U(∞), the space U possesses a biinvariant finite measure, which

should be viewed as a substitute for the nonexisting Haar measure. Moreover,

this biinvariant measure is included into a whole family {µ(s)}s∈C of measures

with good transformation properties.2 Using the measures µ(s) we explicitly

construct a family {Tzw}z,w∈C of representations, which seem to be a good

substitute for the nonexisting regular representation.3 In our understanding,

the Tzw’s are ‘natural representations’, and we state the problem of harmonic

analysis on U(∞) as follows:

Problem 1. Decompose the representations Tzw on irreducible represen-

tations.

This initial formulation then undergoes a few changes.

The first step follows a very general principle of representation theory:

reduce the spectral decomposition of representations to the decomposition on

extreme points in a convex set X consisting of certain positive definite functions

on the group.

In our concrete situation, the elements of the set X are positive definite

functions on U(∞), constant on conjugacy classes and taking the value 1 at the

2The idea to enlarge an infinite-dimensional space in order to build measures with good
transformation properties is well known. This is a standard device in measure theory on
linear spaces, but there are not so many works where it is applied to ‘curved’ spaces (see,
however, [Pi1], [Ner]). For the history of the measures µ(s) we refer to [Ol3] and [BO4]. A
parallel construction for the symmetric group case is given in [KOV].

3More precisely, the Tzw’s are representations of the group U(∞)×U(∞). Thus, they are
a substitute for the biregular representation. The reason why we are dealing with the group
U(∞)×U(∞) and not U(∞) is explained in [Ol1], [Ol2]. We also give in [Ol3] an alternative
construction of the representations Tzw.
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unity. These functions are called characters of U(∞). The extreme points of X ,

or extreme characters, are known. They are in a one-to-one correspondence,

χ(ω) ↔ ω, with the points ω of an infinite-dimensional region Ω (the set Ω and

the extreme characters χ(ω) are described in Section 1 below). An arbitrary

character χ ∈ X can be written in the form

χ =

∫

Ω
χ(ω)P (dω),

where P is a probability measure on Ω. The measure P is defined uniquely, it

is called the spectral measure of the character χ.

Now let us return to the representations Tzw. We focus on the case when

the parameters z, w satisfy the condition ℜ(z + w) > −1
2 . Under this re-

striction, our construction provides a distinguished vector in Tzw. The matrix

coefficient corresponding to this vector can be viewed as a character χzw of the

group U(∞). The spectral measure of χzw is also the spectral measure of the

representation Tzw provided that z and w are not integral.4

Furthermore, we remark that the explicit expression of χzw, viewed as a

function in four parameters z, z′ = z̄, w, w′ = w̄, correctly defines a character

χz,z′,w,w′ for a wider set Dadm ⊂ C4 of ‘admissible’ quadruples (z, z′, w, w′).

The set Dadm is defined by the inequality ℜ(z+z′+w+w′) > −1 and some extra

restrictions; see Definition 3.4 below. Actually, the ‘admissible’ quadruples

depend on four real parameters.

This leads us to the following reformulation of Problem 1:

Problem 2. For any (z, z′, w, w′) ∈ Dadm, compute the spectral measure

of the character χz,z′,w,w′ .

To proceed further we need to explain in what form we express the char-

acters. Rather than write them directly as functions on the group U(∞) we

prefer to work with their ‘Fourier coefficients’. Let us explain what this means.

Recall that the irreducible representations of the compact group U(N)

are labeled by the dominant highest weights, which are nothing but N -tuples

of nonincreasing integers λ = (λ1 ≥ · · · ≥ λN ). For the reasons which are

explained in the text we denote the set of all these λ’s by GTN (here ‘GT’ is

the abbreviation of ‘Gelfand-Tsetlin’). For each λ ∈ GTN we denote by χ̃λ the

normalized character of the irreducible representation with highest weight λ.

Here the term ‘character’ has the conventional meaning, and normalization

means division by the degree, so that χ̃λ(1) = 1. Given a character χ ∈ X ,

we restrict it to the subgroup U(N) ⊂ U(∞). Then we get a positive definite

function on U(N), constant on conjugacy classes and normalized at 1 ∈ U(N).

4If z or w is integral then the distinguished vector is not cyclic, and the spectral measure
of χzw governs the decomposition of a proper subrepresentation of Tzw.



1324 ALEXEI BORODIN AND GRIGORI OLSHANSKI

Hence it can be expanded on the functions χ̃λ, where the coefficients (these

are the ‘Fourier coefficients’ in question) are nonnegative numbers whose sum

equals 1:

χ |U(N)=
∑

λ∈GTN

PN (λ)χ̃λ; PN (λ) ≥ 0,
∑

λ∈GTN

PN (λ) = 1; N = 1, 2, . . . .

Thus, χ produces, for any N = 1, 2, . . . , a probability measure PN on the

discrete set GTN . This fact plays an important role in what follows.

For any character χ = χz,z′,w,w′ we dispose of an exact expression for the

‘Fourier coefficients’ PN (λ) = PN (λ | z, z′, w, w′):

(0.1)

PN (λ | z, z′, w, w′) = (normalization constant) ·
∏

1≤i<j≤N

(λi − λj − i + j)2

×
N∏

i=1

1

Γ(z−λi+i)Γ(z′−λi+i)Γ(w+N+1+λi−i)Γ(w′+N+1+λi−i)
.

Hence we explicitly know the corresponding measures PN = PN ( · | z, z′, w, w′)

on the sets GTN . Formula (0.1) is the starting point of the present paper.

In [Ol3] we prove that for any character χ ∈ X , its spectral measure P

can be obtained as a limit of the measures PN as N → ∞. More precisely, we

define embeddings GTN →֒ Ω and we show that the pushforwards of the PN ’s

weakly converge to P . 5

By virtue of this general result, Problem 2 is now reduced to the following:

Problem 3. For any ‘admissible’ quadruple of parameters (z, z′, w, w′),

compute the limit of the measures PN ( · | z, z′, w, w′), given by formula (0.1),

as N → ∞.

This is exactly the problem we are dealing with in the present paper.

There is a remarkable analogy between Problem 3 and asymptotic problems

of random matrix theory. We think this fact is important, so that we dis-

cuss it below in detail. From now on the reader may forget about the initial

representation-theoretic motivation: we switch to another language.

(c) Random matrix ensembles, log-gas systems, and determinantal pro-

cesses. Assume there are a sequence of measures µ1, µ2, . . . on R and a

parameter β > 0. For any N = 1, 2, . . . , we introduce a probability distribu-

tion PN on the space of ordered N -tuples of real numbers {x1 > · · · > xN}

5The definition of the embeddings GTN →֒ Ω is given in §2(c) below.
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by

(0.2) PN

(
N∏

i=1

[xi, xi + dxi]

)

= (normalization constant) ·
∏

1≤i<j≤N

|xi − xj |
β ·

N∏

i=1

µN (dxi).

Important examples of such distributions come from random matrix en-

sembles (EN , µN ), where EN is a vector space of matrices (say, of order N)

and µN is a probability measure on EN . Then x1, . . . , xN are interpreted as

the eigenvalues of an N ×N matrix, and the distribution PN is induced by the

measure µN . As for the parameter β, it takes values 1, 2, 4, depending on the

base field.

For instance, in the Gaussian ensemble, EN is the space of real symmetric,

complex Hermitian or quaternion Hermitian matrices of order N , and µN is

a Gaussian measure invariant under the action of the compact group O(N),

U(N) or Sp(N), respectively. Then β = 1, 2, 4, respectively.

If µN is absolutely continuous with respect to the Lebesgue measure then

the distribution (0.2) is also absolutely continuous, and its density can be

written in the form

(0.3) FN (x1, . . . , xN )

= (constant) · exp



−β




∑

1≤i<j≤N

log |xi − xj |
−1 +

N∑

i=1

VN (xi)






 .

This can interpreted as the Gibbs measure of a system of N repelling particles

interacting through a logarithmic Coulomb potential and confined by an ex-

ternal potential VN . In mathematical physics literature such a system is called

a log-gas system; see, e.g., [Dy].

Given a distribution of form (0.2) or (0.3), one is interested in the sta-

tistical properties of the random configuration x = (xi) as N goes to infinity.

A typical question concerns the asymptotic behavior of the correlation func-

tions. The n-particle correlation function, ρ
(N)
n (y1, . . . , yn), can be defined as

the density of the probability of finding a ‘particle’ of the random configuration

in each of n infinitesimal intervals [yi, yi + dyi].
6

One can believe that under a suitable limit transition the N -particle sys-

tem ‘converges’ to a point process — a probability distribution on infinite

configurations of particles. The limit distribution cannot be given by a for-

mula of type (0.2) or (0.3). However, it can be characterized by its correlation

6This is an intuitive definition only. In a rigorous approach one defines the correlation
measures; see, e.g. [Len], [DVJ] and also the beginning of Section 4 below.
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functions, which presumably are limits of the functions ρ
(N)
n as N → ∞. The

limit transition is usually accompanied by a scaling (a change of variables de-

pending on N), and the final result may depend on the scaling. See, e.g.,

[TW].

The special case β = 2 offers many more possibilities for analysis than the

general one. This is due to the fact that for β = 2, the correlation functions

before the limit transition are readily expressed through the orthogonal poly-

nomials p0, p1, . . . with weight µN . Namely, let S(N)(y′, y′′) denote the N th

Christoffel-Darboux kernel,

S(N)(y′, y′′) =

N−1∑

i=0

pi(y
′)pi(y

′′)

‖pi‖2

= (a constant) ·
pN (y′)pN−1(y

′′) − pN−1(y
′)pN (y′′)

y′ − y′′
, y′, y′′ ∈ R,

and assume (for the sake of simplicity only) that µN has a density fN (x). Then

the correlation functions are given by a simple determinantal formula

ρ(N)
n (y1, . . . , yn) = det

[
S(N)(yi, yj)

√
fN (yi)fN (yj)

]

1≤i,j≤n

, n = 1, 2, . . . .

If the kernel S(N)(y′, y′′)
√

fN (y′)fN (y′′) has a limit K(x′, x′′) under a

scaling limit transition then the limit correlation functions also have a deter-

minantal form,

ρn(x1, . . . , xn) = det [K(xi, xj)]1≤i,j≤n , n = 1, 2 . . . .(0.4)

The limit kernel can be evaluated if one disposes of appropriate information

about the asymptotic properties of the orthogonal polynomials.

A point process whose correlation functions have the form (0.4) is called

determinantal, and the corresponding kernel K is called the correlation kernel.

Finite log-gas systems and their scaling limits are examples of determinantal

point processes. In these examples, the correlation kernel is symmetric, but

this property is not necessary. Our study leads to processes with nonsymmetric

correlation kernels (see (k) below). A comprehensive survey on determinantal

point processes is given in [So].

(d) Lattice log-gas system defined by (0.1). Note that the expression (0.1)

can be transformed to the form (0.2). Indeed, given λ ∈ GTN , set l = λ + ρ,

where

ρ = (N−1
2 , N−3

2 , . . . ,−N−3
2 ,−N−1

2 )

is the half-sum of positive roots for GL(N). That is,

li = λi + N+1
2 − i, i = 1, . . . , N.
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Then L = {l1, . . . , lN} is an N -tuple of distinct numbers belonging to the

lattice

X(N) =

{
Z, N odd,

Z + 1
2 , N even.

The measure (0.1) on λ’s induces a probability measure on L’s such that

(Probability of L) = (a constant) ·
∏

1≤i<j≤N

(li − lj)
2 ·

N∏

i=1

fN (li),(0.5)

where, for any x ∈ X(N),

fN (x) =
1

Γ
(
z − x + N+1

2

)
Γ
(
z′ − x + N+1

2

)
Γ
(
w + x + N+1

2

)
Γ
(
w′ + x + N+1

2

) .

(0.6)

Now we see that (0.5) may be viewed as a discrete log-gas system living

on the lattice X(N).

(e) Askey-Lesky orthogonal polynomials. The orthogonal polynomials

defined by the weight function (0.6) on X(N) are rather interesting. To our

knowledge, they appeared for the first time in Askey’s paper [As]. Then they

were examined in Lesky’s papers [Les1], [Les2]. We propose to call them the

Askey-Lesky polynomials. More precisely, we reserve this term for the orthog-

onal polynomials defined by a weight function on Z of the form

1

Γ(A − x)Γ(B − x)Γ(C + x)Γ(D + x)
,(0.7)

where A, B, C, D are any complex parameters such that (0.7) is nonnegative

on Z.

The Askey-Lesky polynomials are orthogonal polynomials of hypergeomet-

ric type in the sense of [NSU]. That is, they are eigenfunctions of a difference

analog of the hypergeometric differential operator.

In contrast to classical orthogonal polynomials, the Askey-Lesky polyno-

mials form a finite system. This is caused by the fact that (for nonintegral

parameters A, B, C, D) the weight function has slow decay as x goes to ±∞,

so that only finitely many moments exist.

The Askey-Lesky polynomials admit an explicit expression in terms of the

generalized hypergeometric series 3F2(a, b, c; e, f ; 1) with unit argument: the

parameters A, B, C, D are inserted, in a certain way, in the indices a, b, c, e, f of

the series. This allows us to explicitly express the Christoffel-Darboux kernel

in terms of the 3F2(1) series.

(f) The two-component gas system. We have just explained how to reduce

(0.1) to a lattice log-gas system (0.5), for which we are able to evaluate the

correlation functions. To solve Problem 3, we must then pass to the large N
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limit. However, the limit transition that we need here is qualitatively different

from typical scaling limits of Random Matrix Theory. It can be shown that,

as N gets large, almost all N particles occupy positions inside (−N
2 , N

2 ). Note

that there are exactly N lattice points in this interval, hence, almost all of

them are occupied by particles. More precisely, for any ε > 0, as N → ∞,

the number of particles outside
(
−(1

2 + ε)N, (1
2 + ε)N

)
remains finite almost

surely. In other words, this means that the density function of our discrete

log-gas is asymptotically equal to the characteristic function of the N -point

set of lattice points inside (−N
2 , N

2 ).

At first glance, this picture looks discouraging. Indeed, we know that in

the limit all the particles are densely packed inside (−N
2 , N

2 ), and there seems

to exist no nontrivial limit point process. However, the representation theoretic

origin of the problem leads to the following modification of the model which

possesses a meaningful scaling limit.

Let us divide the lattice X(N) into two parts, which will be denoted by

X
(N)
in and X

(N)
out :

X
(N)
in =

{
−N−1

2 ,−N−3
2 , . . . , N−3

2 , N−1
2

}
,

X
(N)
out =

{
. . . ,−N+3

2 ,−N+1
2

}
∪

{
N+1

2 , N+3
2 , . . .

}
.

Here X
(N)
in , the ‘inner’ part, consists of N points of the lattice that lie on

the interval (−N
2 , N

2 ), while X
(N)
out , the ‘outer’ part, is its complement in X(N),

consisting of the points outside this interval. .

Given a configuration L of N particles sitting at points l1, . . . , lN of the

lattice X(N), we assign to it another configuration, X, formed by the particles

in X
(N)
out and the holes (i.e., the unoccupied positions) in X

(N)
in . Note that X

is a finite configuration, too. Since the ‘interior’ part consists of exactly N

points, we see that in X, there are equally many particles and holes. However,

their number is no longer fixed; it varies between 0 and 2N , depending on the

mutual location of L and X
(N)
in . For instance, if these two sets coincide then X

is the empty configuration, and if they do not intersect then |X| = 2N .

Under the correspondence L 7→ X our random N -particle system turns

into a random system of particles and holes. Note that L 7→ X is reversible,

so that both systems are equivalent.

Rewriting (0.5) in terms of the configurations X one sees that the new

system can be viewed as a discrete two-component log-gas system consisting of

oppositely signed charges. Systems of such a type were earlier investigated in

the mathematical physics literature (see [AF], [CJ1], [CJ2], [G], [F1]–[F3] and

references therein). However, the known concrete models are quite different

from our system.

From what was said above it follows that all but finitely many particles of

the new system concentrate, for large N , near the points ±N
2 . This suggests
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that if we shrink our phase space X(N) by the factor of N (so that the points

±N
2 turn into ±1

2) then our two-component log-gas should have a well-defined

scaling limit. We prove that such a limit exists and it constitutes a point

process on R \ {±1
2} which we will denote by P.

As a matter of fact, the process P can be defined directly from the spec-

tral measure P of the character χz,z′,w,w′ as we explain in Section 9. Moreover,

knowing P is almost equivalent to knowing P ; see the discussion before Propo-

sition 9.7. Thus, we may restate Problem 3 as

Problem 4. Describe the point process P.

It turns out that the most convenient way to describe this point process

is to compute its correlation functions. Since the correlation functions of P
define P uniquely, we will be solving

Problem 4 ′. Find the correlation functions of P.

(g) Two correlation kernels of the two-component log-gas. There are two

ways of computing the correlation functions of the two-component log-gas sys-

tem introduced above. The first one is based on the complementation principle,

see [BOO, Appendix] and §5(c) below, which says that if we have a determi-

nantal point process defined on a discrete set Y = Y1 ⊔Y2 then a new process

whose point configurations consist of particles in Y1 and holes in Y2, is also

determinantal. Furthermore, the correlation kernel of this new process is easily

expressed through the correlation kernel of the original process. Thus, one way

to obtain the correlation functions for the two-component log-gas is to apply

the complementation principle to the (one-component) log-gas (0.1), whose cor-

relation kernel is, essentially, the Christoffel-Darboux kernel for Askey-Lesky

orthogonal polynomials. Let us denote by K
(N)
compl the correlation kernel for the

two-component log-gas obtained in this way.

Another way to compute the correlation functions of our two-component

log-gas is to notice that this system belongs to the class of point processes with

the following property:

The probability of a given point configuration X = {x1, . . . , xn} is given by

Prob{X} = const ·det[L(N)(xi, xj)]
n
i,j=1

where L(N) is a X(N) ×X(N) matrix (see §6). A simple general theorem shows

that any point process with this property is determinantal, and its correlation

kernels K(N) is given by the relation K(N) = L(N)(1 + L(N))−1.

Thus, we end up with two correlation kernes K
(N)
compl and K(N) of the same

point process. These two kernels must not coincide. For example, they may

be related by conjugation:

K
(N)
compl(x, y) =

φ(x)

φ(y)
K(N)(x, y)
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where φ( · ) is an arbitrary nonvanishing function on X(N). (The determinants

of the form det[K(xi, xj)] for two conjugate kernels are always equal.) We show

that this is indeed the case, and that the function φ takes values ±1. Moreover,

we prove this statement in a more general setting of a two-component log-gas

system obtained in a similar way by particles-holes exchange from an arbitrary

β = 2 discrete log-gas system on the real line.

(h) Asymptotics. In our concrete situation the function φ is identically

equal to 1 on the set X
(N)
out and is equal to (−1)x−N−1

2 on the set X
(N)
in . This

means that if we want to compute the scaling limit of the correlation functions

of our two-component log-gas system as N → ∞, then only one of the kernels

K
(N)
compl and K(N) may be used for this purpose, because the function φ does

not have a scaling limit. It is not hard to guess which kernel is ‘the right one’

from the asymptotic point of view.

Indeed, it is easy to verify that the kernel L(N) mentioned above has a

well-defined scaling limit which we will denote by L. It is a (smooth) ker-

nel on R \ {±1
2}. It is then quite natural to assume that the kernel K(N) =

L(N)(1+L(N))−1 also has a scaling limit K such that K = L(1+L)−1. Although

this argument is only partially correct (the kernel L does not always define a

bounded operator in L2(R)), it provides good intuition. We prove that for all

admissible values of the parameters z, z′, w, w′, the kernel K(N) has a scaling

limit K, and this limit kernel is the correlation kernel for the point process P.

Explicit computation of the kernel K is our main result, and we state it

in Section 10.

(i) Overcoming technical difficulties: The Riemann-Hilbert approach. The

task of computing the scaling limit of K(N) as N → ∞ is by no means easy.

As was explained above, this kernel coincides, up to a sign, with K
(N)
compl which,

in turn, is easily expressible through the Christoffel-Darboux kernel for the

Askey-Lesky orthogonal polynomials. Thus, Problem 4 (or 4′) may be restated

as

Problem 5. Compute the asymptotics of the Askey-Lesky orthogonal poly-

nomials.

Since it is known how to express these polynomials through the 3F2 hy-

pergeometric series, one might expect that the remaining part is rather smooth

and is similar to the situation arising in most β = 2 random matrix models.

That is, in the chosen scaling the polynomials converge with all the derivatives

to nice analytic functions (like sine or Airy) which then enter in the formula

for the limit kernel. As a matter of fact, this is indeed how things look on

X
(N)
out . The limit kernel K is not hard to compute and it is expressed through

the Gauss hypergeometric function 2F1.

The problem becomes much more complicated when we look at X
(N)
in . The

basic reason is that this is the oscillatory zone for our orthogonal polynomials,
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and in the scaling limit that we need the period of oscillations tends to zero.

Of course, one cannot expect to see any uniform convergence in this situation.

Let us recall, however, that all we need is the asymptotics on the lattice.

This remark is crucial. The way we compute the asymptotics on the lattice

is, roughly speaking, as follows. We find meromorphic functions with poles

in X
(N)
out which coincide, up to a sign, with our orthogonal polynomials on

X
(N)
in . These functions are also expressed through the 3F2 series and look more

complicated than the polynomials themselves. However, they possess a well-

defined limit (convergence with all the derivatives) which is again expressed

through the Gauss hypergeometric function. This completes the computation

of the asymptotics.

The question is: how did we find these convenient meromorphic functions?

The answer lies in the definition of the kernel K(N) as L(N)(1 + L(N))−1.

It is not hard to see that the kernel L(N) belongs to the class of (discrete)

integrable operators (see [B3]). This implies that the kernel K(N) can be

expressed through a solution of a (discrete) Riemann-Hilbert problem (RHP,

for short); see [B3, Prop. 4.3]. It is the solution of this Riemann-Hilbert

problem that yields the needed meromorphic functions.

The problem of finding this solution explicitly requires additional efforts.

The key fact here is that the jump matrix of this RHP can be reduced to a

constant jump matrix by conjugation. It is a very general idea of the inverse

scattering method that in such a situation the solution of the RHP must satisfy

a difference (differential, in the case of continuous RHP) equation. Finding this

equation and solving it in meromorphic functions yields the desired solution.

It is worth noting that even though the correct formula for the limit corre-

lation kernel K can be guessed from just knowing the Askey-Lesky orthogonal

polynomials, the needed convergence of the kernels K(N) was only possible to

achieve through solving the RHP mentioned above.

Let us also note that computing the limit of the solution of our RHP is

not completely trivial as well. The difficulty here lies in finding, by making use

of numerous known transformation formulas for the 3F2 series, a presentation

of the solution that would be convenient for the limit transition.

(j) The main result. In (f) above we explained how to reduce our problem

of harmonic analysis on U(∞) to the problem of computing the correlation

functions of the process P. In this paper we prove that the nth correlation

function ρn(x1, . . . , xn) of P has the determinantal form

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1, n = 1, 2, . . . .

Here K(x, y) is a kernel on R \ {±1
2} which can be written in the form

K(x, y) =
F1(x)G1(y) + F2(x)G2(y)

x − y
, x, y ∈ R \ {±1

2},
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where the functions F1, G1, F2, G2 can be expressed through the Gauss hyper-

geometric function 2F1. In particular, if x > 1
2 and y > 1

2 we have

F1(x) =−G2(x) =
sin(πz) sin(πz′)

π2

×

(
x −

1

2

)−( z+z′

2
+w′) (

x +
1

2

)w′−w

2

2F1

[
z + w′, z′ + w′

z + z′ + w + w′

∣∣∣∣∣
1

1
2 − x

]
,

G1(x) =F2(x) =
Γ(z + w + 1)Γ(z + w′ + 1)Γ(z′ + w + 1)Γ(z′ + w′ + 1)

Γ(z + z′ + w + w′ + 1)Γ(z + z′ + w + w′ + 2)

×

(
x −

1

2

)−( z+z′

2
+w′+1) (

x +
1

2

)w′−w

2

×2F1

[
z + w′ + 1, z′ + w′ + 1

z + z′ + w + w′ + 2

∣∣∣∣∣
1

1
2 − x

]
.

A complete statement of the result can be found in Theorem 10.1 below.

(k) Symmetry of the kernel. The correlation kernel K(x, y) introduced

above satisfies the following symmetry relations:

K(x, y) =

{
K(y, x) if

(
|x| > 1

2 , |y| > 1
2

)
or

(
|x| < 1

2 , |y| < 1
2

)
,

−K(y, x) if
(
|x| > 1

2 , |y| < 1
2

)
or

(
|x| < 1

2 , |y| > 1
2

)
.

Moreover, the kernel is real-valued. This implies that the restrictions of K

to (−1
2 , 1

2) × (−1
2 , 1

2) and
(
R \ [−1

2 , 1
2 ]

)
×

(
R \ [−1

2 , 1
2 ]

)
are Hermitian kernels,

while the kernel K on the whole line is a J-Hermitian7 kernel.

We have encountered certain J-Hermitian kernels in our work on harmonic

analysis on the infinite symmetric group, see [BO1], [P.I]–[P.V]. At that time

we were not aware of the fact that examples of J-Hermitian correlation kernels

had appeared before in works of mathematical physicists on solvable models

of systems with positive and negative charged particles, see [AF], [CJ1], [CJ2],

[G], [F1]–[F3] and references therein.

As was explained in (f), our system also contains ‘particles of opposite

charges.’ The property of J-symmetry is closely related to this fact; see Section

5(f),(g) for more details.

(l) Further development : Painlevé VI. It is well known that for a deter-

minantal point process with a correlation kernel K, the probability of having

7I.e., Hermitian with respect to the indefinite inner product defined by the matrix J =[
1 0
0 −1

]
.
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no particles in a region I is equal to the Fredholm determinant det(1 − KI),

where KI is the restriction of K to I × I. It often happens that such a gap

probability can be expressed through a solution of a (second order nonlinear

ordinary differential) Painlevé equation. One of the main results of [BD] is the

following statement.

Let Ks be the restriction of the kernel K(x, y) of (j) above to (s,+∞) ×
(s,+∞). Set

ν1 =
z + z′ + w + w′

2
, ν3 =

z − z′ + w − w′

2
, ν4 =

z − z′ − w + w′

2
,

σ(s) =
(
s2 − 1

4

) d ln det(1 − Ks)

ds
− ν2

1 s +
ν3ν4

2
.

Then σ(s) satisfies the differential equation

−σ′
((

s2 − 1
4

)
σ′′

)2
=

(
2

(
sσ′ − σ

)
σ′ − ν2

1ν3ν4

)2
− (σ′ + ν2

1)2(σ′ + ν2
3)(σ′ + ν2

4).

This differential equation is the so-called σ-form of the Painlevé VI equation.

We refer to [BD, Introduction] for a brief historical introduction and references

on this subject. [BD] also contains proofs of several important properties of

the kernel K(x, y) which we list at the end of Section 10 below.

(m) Connection with previous work. In [BO1], [BO2], [B1], [B2], [BO4]

we worked out two other problems of harmonic analysis in the situations when

spectral measures live on infinite-dimensional spaces. We will describe them

in more detail and compare them to the problem of the present paper.

The problem of harmonic analysis on the group S(∞) was initially for-

mulated in [KOV]. It consists in decomposing certain ‘natural’ (generalized

regular) unitary representations Tz of the group S(∞) × S(∞), depending

on a complex parameter z. In [KOV], the problem was solved in the case

when the parameter z takes integral values (then the spectral measure has

finite-dimensional support). The general case presents more difficulties and

we studied it in a cycle of papers [P.I]–[P.V], [BO1]–[BO3], [B1], [B2]. Our

main result is that the spectral measure governing the decomposition of Tz

can be described in terms of a determinantal point process on the real line

with one punctured point. The correlation kernel was explicitly computed; it

is expressed through a confluent hypergeometric function (specifically, through

the W-Whittaker function).

The second problem deals with decomposition of a family of unitarily

invariant probability measures on the space of all infinite Hermitian matrices

on ergodic components. The measures depend on one complex parameter and

essentially coincide with the measures {µ(s)} mentioned in the beginning of

(b) above. The problem of decomposition on ergodic components can be also

viewed as a problem of harmonic analysis on an infinite-dimensional Cartan
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motion group. The main result of [BO4] states that the spectral measures

in this case can be interpreted as determinantal point processes on the real

line with a correlation kernel expressed through a confluent hypergeometric

function (this time, this is the M-Whittaker function).

These two problems and the problem that we deal with in this paper have

a number of similarities. Already the descriptions of the spaces of irreducible

objects (see Thoma [Th] for S(∞), Pickrell [Pi1] and Olshanski-Vershik [OV]

for measures on Hermitian matrices, and Voiculescu [Vo] for U(∞)) are quite

similar. Furthermore, all three models have some sort of an approximation

procedure using finite-dimensional objects, see [VK1], [OV], [VK2], [OkOl].

The form of the correlation kernels is also essentially the same, with different

special functions involved in different problems.

It is worth noting that the similarity of theories for the two groups S(∞)

and U(∞) seems to be a striking phenomenon. In addition, as mentioned

above, this can be traced in the geometric construction of the ‘natural’ repre-

sentations and in probabilistic properties of the corresponding point processes.

At present we cannot completely explain the nature of this parallelism (it looks

quite different from the well-known classical connection between the represen-

tations of the groups S(n) and U(N)).

However, the differences among all these problems should not be under-

estimated. Indeed, the problem of harmonic analysis on S(∞) is a problem of

asymptotic combinatorics consisting in controlling the asymptotics of certain

explicit probability distributions on partitions of n as n → ∞. One conse-

quence of such asymptotic analysis is a simple proof and generalization of

the Baik-Deift-Johansson theorem [BDJ] on longest increasing subsequences

of large random permutations, see [BOO] and [BO3]. The problem of decom-

posing measures on Hermitian matrices on ergodic components is of a different

nature. It belongs to Random Matrix Theory which deals with asymptotics

of probability distributions on large matrices. In fact, for a specific value of

the parameter, the result of [BO4] reproduces one of the basic computations of

Random Matrix Theory – that of the scaling limit of Dyson’s circular ensemble.

The problem solved in the present paper is more general compared to both

problems described above. Our model here depends on a larger number of pa-

rameters, it deals with a more complicated group and representation structure,

and the analysis requires a substantial amount of new ideas. Moreover, in ap-

propriate limits this model degenerates to both models studied earlier. The

limits, of course, are very different. On the level of correlation kernels this leads

to two different degenerations of the Gauss hypergeometric function to conflu-

ent hypergeometric functions. We view the U(∞)-model as a unifying object

for the combinatorial and random matrix models, and we think that it sheds

some light on the nature of the recently discovered remarkable connections

between different models of these two kinds.
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The model of the present paper can be also viewed as the top of a hierar-

chy of (discrete and continuous) probabilistic models leading to determinantal

point processes with ‘integrable’ correlation kernels. In the language of kernels

this looks very much like the hierarchy of the classical special functions. A

description of the ‘S(∞)-part’ of the hierarchy can be found in [BO3]. The

subject of degenerating the U(∞)-model to simpler models (in particular, to

the two models discussed above) will be addressed in a later publication.

(n) Organization of the paper. In Section 1 we give a brief introduction

to representation theory and harmonic analysis of the infinite-dimensional uni-

tary group U(∞). Section 2 explains how spectral decompositions of represen-

tations of U(∞) can be approximated by those for finite-dimensional groups

U(N). In Section 3 we introduce a remarkable family of characters of U(∞)

which we study in this paper. In Section 4 we reformulate the problem of har-

monic analysis of these characters in the language of random point processes.

Section 5 is the heart of the paper: there we develop general theory of dis-

crete determinantal point processes which will later enable us to compute the

correlation functions of our concrete processes. In Section 6 we show that the

point processes introduced in Section 4 are determinantal. In Section 7 we de-

rive discrete orthogonal polynomials on Z with the weight function (0.7). This

allows us to write out a correlation kernel for approximating point processes

associated with U(N)’s. Section 8 is essentially dedicated to representing this

correlation kernel in a form suitable for the limit transition N → ∞. The

main tool here is the discrete Riemann-Hilbert problem. Section 9 establishes

certain general facts about scaling limits of point processes associated with

restrictions of characters of U(∞) to U(N). The main result here is that an

appropriate scaling limit yields the spectral measure for the initial character of

U(∞). In Section 10 we perform such a scaling limit for our concrete family of

characters. Section 11 describes a nice combinatorial degeneration of our char-

acters. In this degeneration the spectral measure loses its infinite-dimensional

support and turns into a Jacobi polynomial ensemble. Finally, the appendix

contains proofs of transformation formulas for the hypergeometric series 3F2

which were used in the computations.
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1. Characters of the group U(∞)

(a) Extreme characters. Let U(N) be the group of unitary matrices of

order N . For any N ≥ 2 we identify U(N − 1) with the subgroup in U(N)

fixing the N th basis vector, and we set

U(∞) = lim−→U(N).

One can view U(∞) as a group of matrices U = [Uij ]
∞
i,j=1 such that there

are finitely many matrix elements Uij not equal to δij , and U∗ = U−1.

A character of U(∞) is a function χ : U(∞) → C which is constant on

conjugacy classes, positive definite, and normalized at the unity (χ(e) = 1).

We also assume that χ is continuous on each subgroup U(N) ⊂ U(∞). The

characters form a convex set. The extreme points of this convex set are called

the extreme characters.

A fundamental result of the representation theory of the group U(∞) is a

complete description of extreme characters. To state it we need some notation.

Let R∞ denote the product of countably many copies of R, and set

R4∞+2 = R∞ × R∞ × R∞ × R∞ × R × R.

Let Ω ⊂ R4∞+2 be the subset of sextuples

ω = (α+, β+;α−, β−; δ+, δ−)

such that

α± = (α±
1 ≥ α±

2 ≥ · · · ≥ 0) ∈ R∞, β± = (β±
1 ≥ β±

2 ≥ · · · ≥ 0) ∈ R∞,

∞∑

i=1

(α±
i + β±

i ) ≤ δ±, β+
1 + β−

1 ≤ 1.

Set

γ± = δ± −
∞∑

i=1

(α±
i + β±

i )

and note that γ+, γ− are nonnegative.

To any ω ∈ Ω we assign a function χ(ω) on U(∞):

χ(ω)(U)

=
∏

u∈Spectrum(U)

{
eγ+(u−1)+γ−(u−1−1)

∞∏

i=1

1 + β+
i (u − 1)

1 − α+
i (u − 1)

1 + β−
i (u−1 − 1)

1 − α−
i (u−1 − 1)

}
.

Here U is a matrix from U(∞) and u ranges over the set of its eigenvalues. All

but finitely many u’s equal 1, so that the product over u is actually finite. The

product over i is convergent, because the sum of the parameters is finite. Note

also that different ω’s correspond to different functions; here the condition

β+
1 + β−

1 ≤ 1 plays the decisive role; see [Ol3, Remark 1.6].
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Theorem 1.1. The functions χ(ω), where ω ranges over Ω, are exactly

the extreme characters of the group U(∞).

Proof. The fact that any χ(ω) is an extreme character is due to Voiculescu

[Vo]. The fact that the extreme characters are exhausted by the χ(ω)’s can be

proved in two ways: by reduction to an old theorem due to Edrei [Ed] (see

[Boy] and [VK2]) and by Vershik-Kerov’s asymptotic method (see [VK2] and

[OkOl]).

The coordinates α±
i , β±

i , and γ± (or δ±) are called the Voiculescu param-

eters of the extreme character χ(ω). Theorem 1.1 is similar to Thoma’s the-

orem which describes the extreme characters of the infinite symmetric group,

see [Th], [VK1], [Wa], [KOO]. Another analogous result is the classification

of invariant ergodic measures on the space of infinite Hermitian matrices (see

[OV] and [Pi2]).

(b) Spectral measures. Equip R4∞+2 with the product topology. It

induces a topology on Ω. In this topology, Ω is a locally compact separable

space. On the other hand, we equip the set of characters with the topology of

uniform convergence on the subgroups U(N) ⊂ U(∞), N = 1, 2, . . . . One can

prove that the bijection ω ←→ χ(ω) is a homeomorphism with respect to these

two topologies (see [Ol3, §8]). In particular, χ(ω)(U) is a continuous function

of ω for any fixed U ∈ U(∞).

Theorem 1.2. For any character χ of the group U(∞) there exists a

probability measure P on the space Ω such that

χ(U) =

∫

Ω
χ(ω)(U) P (dω), U ∈ U(∞).

Such a measure P is unique. The correspondence χ 7→ P is a bijection between

the set of all characters and the set of all probability measures on Ω.

Here and in what follows, by a measure on Ω we mean a Borel measure.

We call P the spectral measure of χ.

Proof. See [Ol3, Th. 9.1].

Similar results hold for the infinite symmetric group (see [KOO]) and for

invariant measures on infinite Hermitian matrices (see [BO4]).

(c) Signatures. Define a signature λ of length N as an ordered sequence

of integers with N members:

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN |λi ∈ Z).

Signatures of length N are naturally identified with highest weights of irre-

ducible representations of the group U(N); see, e.g., [Zh]. Thus, there is
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a natural bijection λ ←→ χλ between signatures of length N and irreducible

characters of U(N) (here we use the term “character” in its conventional sense).

The character χλ can be viewed as a rational Schur function (Weyl’s character

formula)

χλ(u1, . . . , uN ) =
det[u

λj+N−j
i ]i,j=1,...,N

det[uN−j
i ]i,j=1,...,N

.

Here the collection (u1, . . . , uN ) stands for the spectrum of a matrix in U(N).

We will represent a signature λ as a pair of Young diagrams (λ+, λ−): one

consists of positive λi’s, the other consists of minus negative λi’s; zeros can go

in either of the two:

λ = (λ+
1 , λ+

2 , . . . ,−λ−
2 ,−λ−

1 ).

Let d+ = d(λ) and d− = d(λ−), where the symbol d( · ) denotes the number

of diagonal boxes of a Young diagram. Write the diagrams λ+ and λ− in

Frobenius notation:

λ± = (p±1 , . . . , p±d± | q±1 , . . . , q±d±).

We recall that the Frobenius coordinates pi, qi of a Young diagram ν are defined

by

pi = νi − i, qi = (ν ′)i − i, i = 1, . . . , d(ν),

where ν ′ stands for the transposed diagram. Following Vershik-Kerov [VK1],

we introduce the modified Frobenius coordinates of ν by

p̃i = pi + 1
2 , q̃i = qi + 1

2 .

Note that
∑

(p̃i + q̃i) = |ν|, where |ν| denotes the number of boxes in ν.

We agree that

p̃i = q̃i = 0, i > d(ν).

(d) Approximation of extreme characters. Recall that the dimension

of the irreducible representation of U(N) indexed by λ is given by Weyl’s

dimension formula

DimN λ = χλ( 1, . . . , 1︸ ︷︷ ︸
N

) =
∏

i≤i<j≤N

λi − i − λj + j

j − i
.

Define the normalized irreducible character indexed by λ as follows

χ̃λ =
1

DimN λ
χλ.

Clearly, χ̃λ(e) = 1.

Given a sequence {fN}N=1,2,... of functions on the groups U(N), we say

that fN ’s approximate a function f defined on the group U(∞) if, for any

fixed N0 = 1, 2, . . . , the restrictions of the functions fN (where N ≥ N0) to the

subgroup U(N0) uniformly tend, as N → ∞, to the restriction of f to U(N0).
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Theorem 1.3. Any extreme character χ of U(∞) can be approximated

by a sequence χ̃ (N) of normalized irreducible characters of the groups U(N).

In more detail, write χ̃ (N) = χ̃λ(N), where {λ(N)}N=1,2,... is a sequence

of signatures, and let p̃±
i (N) and q̃±

i (N) stand for the modified Frobenius co-

ordinates of (λ(N))±. Then the functions χ̃ (N) approximate χ if and only if

the following conditions hold :

lim
N→∞

p̃±
i (N)

N
= α±

i , lim
N→∞

q̃±
i (N)

N
= β±

i , lim
N→∞

|(λ(N))±|

N
= δ±,

where i = 1, 2, . . . , and α±
i , β±

i , δ± are the Voiculescu parameters of the char-

acter χ.

This claim reveals the asymptotic meaning of the Voiculescu parameters.

Note that for any ω = (α+, β+;α−, β−; δ+, δ−) ∈ Ω, there exists a sequence of

signatures satisfying the above conditions, hence any extreme character indeed

admits an approximation.

Proof. This result is due to Vershik and Kerov; see their announcement

[VK2]. A detailed proof is contained in [OkOl].

For analogous results, see [VK1], [OV].

2. Approximation of spectral measures

(a) The graph GT. For two signatures ν and λ, of length N − 1 and N ,

respectively, write ν ≺ λ if

λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ νN−1 ≥ λN .

The relation ν ≺ λ appears in the Gelfand-Tsetlin branching rule for the

irreducible characters of the unitary groups, see, e.g., [Zh]:

χλ(u1, . . . , uN−1, 1) =
∑

ν: ν≺λ

χν .

The Gelfand-Tsetlin graph GT is a Z+-graded graph whose N th level GTN

consists of signatures of length N . Two vertices ν ∈ GTN−1 and λ ∈ GTN are

joined by an edge if ν ≺ λ. This graph is a counterpart of the Young graph

associated with the symmetric group characters [VK1], [KOO].

(b) Coherent systems of distributions. For ν ∈ GTN−1 and λ ∈ GTN , set

q(ν, λ) =





DimN−1 ν

DimN λ
, ν ≺ λ,

0, ν ⊀ λ.
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This is the cotransition probability function of the Gelfand-Tsetlin graph. It

satisfies the relation
∑

ν∈GTN−1

q(ν, λ) = 1, ∀λ ∈ GTN .

Assume that for each N = 1, 2, . . . we are given a probability measure PN

on the discrete set GTN . Then the family {PN}N=1,2,... is called a coherent

system if

PN−1(ν) =
∑

λ∈GTN

q(ν, λ)PN (λ), ∀N = 2, 3, . . . , ∀ ν ∈ GTN−1 .

Note that if PN is an arbitrary probability measure on GTN then this formula

defines a probability measure on GTN−1 (indeed, this follows at once from the

above relation for q(ν, λ)). Thus, in a coherent system {PN}N=1,2,..., the N th

term is a refinement of the (N − 1)st one.

Proposition 2.1. There is a natural bijective correspondence χ ←→ {PN}
between characters of the group U(∞) and coherent systems, defined by the re-

lations

χ |U(N)=
∑

λ∈GTN

PN (λ)χ̃λ, N = 1, 2, . . . .

Proof. See [Ol3, Prop. 7.4].

A similar claim holds for the infinite symmetric group S(∞), see [VK1],

[KOO], and for the infinite-dimensional Cartan motion group, see [OV]. Note

that {PN} can be viewed as a kind of Fourier transform of the corresponding

character.

The concept of a coherent system {PN} is important for two reasons.

First, we are unable to calculate directly the “natural” nonextreme characters

but we dispose of nice closed expressions for their “Fourier coefficients” PN (λ);

see the next section. Note that in the symmetric group case the situation is

just the same, see [KOV], [BO1]–[BO3]. Second, the measures PN approximate

the spectral measure P ; see below.

(c) Approximation PN → P . Let χ be a character of U(∞) and let P

and {PN} be the corresponding spectral measure and coherent system.

For any N = 1, 2, . . . , we embed the set GTN into Ω ⊂ R4∞+2 as follows:

GTN ∋ λ 7−→ (a+, b+; a−, b−; c+, c−) ∈ R4∞+2,

a±i =
p̃±i
N

, b±i =
q̃±i
N

, c± =
|λ±|

N
,

where i = 1, 2, . . . , and p̃±i , q̃±i are the modified Frobenius coordinates of λ±.

Let PN be the pushforward of PN under this embedding. Then PN is a

probability measure on Ω.
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Theorem 2.2. As N → ∞, the measures PN weakly tend to the mea-

sure P . That is, for any bounded continuous function F on Ω,

lim
N→∞

〈F, PN 〉 = 〈F, P 〉.

Proof. See [Ol3, Th. 10.2].

This result should be compared with [KOO, Proof of Theorem B in §8]

and [BO4, Th. 5.3]. Its proof is quite similar to that of [BO4, Th. 5.3].

Theorem 2.2 shows that the spectral measure can be, in principle, com-

puted if one knows the coherent system {PN}.

3. ZW-Measures

The goal of this section is to introduce a family of characters χ of the group

U(∞), for which we solve the problem of harmonic analysis. We describe these

characters in terms of the corresponding coherent systems {PN}. For detailed

proofs we refer to [Ol3].

Let z, z′, w, w′ be complex parameters. For any N = 1, 2, . . . and any

λ ∈ GTN set

P ′
N (λ | z, z′, w, w′) = Dim2

N (λ)

×
N∏

i=1

1

Γ(z−λi+i)Γ(z′−λi+i)Γ(w+N+1+λi−i)Γ(w′+N+1+λi−i)
,

where DimN λ is as defined in Section 1. Clearly, for any fixed N and λ,

P ′
N (λ | z, z′, w, w′) is an entire function on C4. Set

D = {(z, z′, w, w′) ∈ C4 | ℜ(z + z′ + w + w′) > −1}.

This is a domain in C4.

Proposition 3.1. Fix an arbitrary N = 1, 2, . . . . The series of entire

functions ∑

λ∈GTN

P ′
N (λ | z, z′, w, w′)

converges in the domain D, uniformly on compact sets. Its sum is equal to

SN (z, z′, w, w′)=

N∏

i=1

Γ(z + z′ + w + w′ + i)

Γ(z + w + i)Γ(z + w′ + i)Γ(z′ + w + i)Γ(z′ + w′ + i)Γ(i)
.

Proof. See [Ol3, Prop. 7.5].
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Note that in the special case N = 1, the set GT1 is simply Z and the

identity ∑

λ∈GT1

P ′
1(λ | z, z′, w, w′) = S1(z, z′, w, w′)

is equivalent to Dougall’s well-known formula (see [Er, vol. 1, §1.4]).

Consider the subdomain

D0 = {(z, z′, w, w′) ∈ D | z + w, z + w′, z′ + w, z′ + w′ 6= −1,−2, . . . }

= {(z, z′, w, w′) ∈ D | SN (z, z′, w, w′) 6= 0}.

For any (z, z′, w, w′) ∈ D0 we set

PN (λ | z, z′, w, w′) =
P ′

N (λ | z, z′, w, w′)

SN (z, z′, w, w′)
, N = 1, 2, . . . , λ ∈ GTN .

Then, by Proposition 3.1,
∑

λ∈GTN

PN (λ | z, z′, w, w′) = 1, (z, z′, w, w′) ∈ D0 ,

uniformly on compact sets in D0.

Proposition 3.2. Let (z, z′, w, w′) ∈ D0. For any N = 2, 3, . . . , the

coherency relation of §2(b) is satisfied,

PN−1(ν | z, z′, w, w′) =
∑

λ∈GTN

q(ν, λ)P (λ | z, z′, w, w′).

Proof. See [Ol3, Prop. 7.7].

Combining this with Proposition 2.1 we conclude that {PN ( · | z, z′, w, w′)},
where N = 1, 2, . . . , is a coherent system provided that (z, z′, w, w′) ∈ D0

satisfies the positivity condition: for any N = 1, 2, . . . , the expression

P ′
N (λ | z, z′, w, w′) is nonnegative for all λ ∈ GTN . (Note that there always

exists λ for which P ′
N (λ | z, z′, w, w′) 6= 0, because the sum over λ’s is not 0.)

We proceed to describe a set of quadruples (z, z′, w, w′) ∈ D0 satisfying the

positivity condition.

Define the subset Z ⊂ C2 as follows:

Z =Zprinc ⊔ Zcompl ⊔ Zdegen,

Zprinc = {(z, z′) ∈ C2 \ R2 | z′ = z̄},

Zcompl = {(z, z′) ∈ R2 | ∃m ∈ Z, m < z, z < m + 1},

Zdegen = ⊔
m∈Z

Zdegen,m,

Zdegen,m = {(z, z′) ∈ R2 | z = m, z′ > m − 1, or z′ = m, z > m − 1},

where “princ”, “compl”, and “degen” are abbreviations for “principal”, “com-

plementary”, and “degenerate”, respectively. For an explanation of this ter-

minology, see [Ol3].
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Proposition 3.3. Let (z, z′) ∈ C2.

(i) The expression (Γ(z − k)Γ(z′ − k))−1 is nonnegative for all k ∈ Z if and

only if (z, z′) ∈ Z.

(ii) If (z, z′) ∈ Zprinc ⊔ Zcompl then this expression is strictly positive for all

k ∈ Z.

(iii) If (z, z′) ∈ Zdegen,m then this expression vanishes for k = m, m + 1, . . .

and is strictly positive for k = m − 1, m − 2, . . . .

Proof. See [Ol3, Lemma 7.9].

Definition 3.4. The set of admissible values of the parameters z, z′, w, w′

is the subset Dadm ⊂ D of quadruples (z, z′, w, w′) such that both (z, z′) and

(w, w′) belong to Z. When both (z, z′) and (w, w′) are in Zdegen, an extra

condition is added: let k, l be such that (z, z′) ∈ Zdegen,k and (w, w′) ∈ Zdegen,l;

then we require k + l ≥ 0. A quadruple (z, z′, w, w′) will be called admissible

if it belongs to the set Dadm.

Note that in this definition we do not assume a priori that (z, z′, w, w′)

belongs to the subdomain D0 ⊂ D. However the conditions imposed on

(z, z′, w, w′) imply that Dadm ⊂ D0; see below.

Proposition 3.5. Let (z, z′, w, w′) ∈ Dadm and let N = 1, 2, . . . . Then

P ′
N (λ | z, z′, w, w′) ≥ 0 for any λ ∈ GTN , and there exists λ ∈ GTN for which

the above inequality is strict.

Proof. The first claim follows from Proposition 3.3 (i). Now we shall

describe the set of those λ ∈ GTN for which P ′
N (λ | z, z′, w, w′) > 0.

When both (z, z′) and (w, w′) are in Zprinc ⊔ Zcompl then, by Proposition

3.3 (ii), this is the whole GTN .

When (w, w′) ∈ Zprinc⊔Zcompl and (z, z′) ∈ Zdegen, say, (z, z′) ∈ Zdegen,m,

then this set is formed by λ’s satisfying the condition λ1 ≤ m. Indeed, this

readily follows from claims (ii) and (iii) of Proposition 3.3.

Likewise, when (z, z′) ∈ Zprinc ⊔ Zcompl and (w, w′) ∈ Zdegen,m, then the

condition takes the form λN ≥ −m.

Finally, when both (z, z′) and (w, w′) are in Zdegen, say (z, z′) ∈ Zdegen,k

and (w, w′) ∈ Zdegen,l, then the set in question is described by the conditions

λ1 ≤ k, λN ≥ −l. The set is nonempty provided that k ≥ −l, which is exactly

the extra condition from Definition 3.4.

Note that if k = −l then this set consists of a single element λ = (k, . . . , k).
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Proposition 3.5 implies that Dadm ⊂ D0. Of course, this can be checked

directly, but the claim is not entirely obvious, for instance, when both (z, z′)

and (w, w′) are in Zcompl.

Now we can summarize the above definitions and results in the following

theorem.

Theorem 3.6. For any admissible quadruple (z, z′, w, w′), the family

{PN ( · | z, z′, w, w′)}, where N = 1, 2, . . . , is a coherent system, so that it

determines a character χz,z′,w,w′ of the group U(∞).

Proof. Indeed, let (z, z′, w, w′) be admissible. Since (z, z′, w, w′) is in D0,

the definition of PN (λ | z, z′, w, w′)’s makes sense. By Proposition 3.5, for

any N , PN ( · | z, z′, w, w′) is a probability distribution on GTN . By Propo-

sition 3.2, the family {PN ( · | z, z′, w, w′)}N=1,2,... is a coherent system. By

Proposition 2.1, it defines a character of U(∞).

Remark 3.7. The set of characters of the form χz,z′,w,w′ is stable under

tensoring with one-dimensional characters (det( · ))k, where k ∈ Z. Indeed, the

sets D, D0, and Dadm are invariant under the shift

(z, z′, w, w′) 7→ (z + k, z′ + k, w − k, w′ − k),

and we have

PN (λ + (k, . . . , k) | z, z′, w, w′) = PN (λ | z + k, z′ + k, w − k, w′ − k).

On the other hand, in terms of coherent systems, tensoring with (det( · ))k is

equivalent to shifting λ by (k, . . . , k).

Remark 3.8. In the special case when both (z, z′) and (w, w′) are in Zdegen,

a detailed study of the distributions PN ( · | z, z′, w, w′) from a combinatorial

point of view was given by Kerov [Ke].

Remark 3.9. As we see, the structure of the set of all admissible parame-

ters is fairly complicated. However, all the major formulas that will be obtained

below hold for all admissible parameters. The explanation of this phenomenon

is rather simple: the quantities in question (like correlation functions) can

usually be defined for the parameters varying in the domain which is much

larger than Dadm; see e.g. Propositions 3.1 and 3.2 above. Thus, the formulas

for these quantities usually hold on an open subset of C4 containing Dadm. It

is only when we require certain quantities to be positive in order to fit our

computations in the framework of probability theory, that we need to restrict

ourselves to the smaller set of admissible parameters.
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4. Two discrete point processes

In this section we will explain two different ways to associate to the mea-

sure PN introduced in the previous section, a discrete point process. We also

show how the two resulting processes can be obtained one from the other.

First, we recall the general definition of a random point process.

Let X be a locally compact separable topological space. A multiset X

in X is a collection of points with possible multiplicities and with no ordering

imposed. A locally finite point configuration (configuration, for short) is a

multiset X such that for any compact set A ⊂ X the intersection X ∩ A is

finite (with multiplicities counted). This implies that X itself is either finite

or countably infinite.

The set of all configurations in X is denoted by Conf(X). Given a relatively

compact Borel set A ⊂ X, we introduce a function NA on Conf(X) by setting

NA(X) = |X ∩ A|. We equip Conf(X) with the Borel structure generated by

all functions of this form.

A random point process on X (point process, for short; another term is

random point field) is a probability Borel measure P on the space Conf(X).

We do not need the full generality of the definitions in this section. Here

the situation is rather simple: all our processes are discrete (that is, the space

X is discrete), and the point configurations are finite. However, in Section 9

we will consider a continuous point process with infinitely many particles, and

then we will need the above definitions.

Consider the lattice

X = X(N) =

{
Z, N is odd,

Z + 1
2 , N is even,

and divide it into two parts

X =Xin ⊔ Xout,

Xin =

{
−

N − 1

2
,−

N − 3

2
, . . . ,

N − 3

2
,
N − 1

2

}
, |Xin| = N,

Xout =

{
. . . ,−

N + 3

2
,−

N + 1

2

}
⊔

{
N + 1

2
,
N + 3

2
, . . .

}
, |Xout| = ∞.

Let ρi = N+1
2 − i, i = 1, . . . , N . For any λ ∈ GTN we set

L(λ) = {λ1 + ρ1, . . . , λN + ρN}.

Clearly, λ 7→ L(λ) defines a bijection between GTN and the set of N -point

multiplicity-free configurations on X.

Now we define another correspondence between signatures and point con-

figurations. Let us represent a signature λ as a pair of Young diagrams

(λ+, λ−); see §1(c).
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Finally, we define a point configuration as

X(λ) =

{
p+

i +
N + 1

2

}
⊔

{
N − 1

2
− q+

i

}
(4.1)

⊔

{
−p−j −

N + 1

2

}
⊔

{
−

N − 1

2
+ q−j

}
,

where i = 1, . . . , d+ and j = 1, . . . , d−, see §1(c) for the notation. Note that if

λ = 0 then the configuration is empty.

From the inequalities

p+
1 > · · · > p+

d+ ≥ 0, q+
1 > · · · > q+

d+ ≥ 0,

p−1 > · · · > p−d− ≥ 0, q−1 > · · · > q−d− ≥ 0,

d+ + d− ≤ N

it follows that X(λ) consists of an even number of distinct points (equal to

2(d+ +d−)), of which half lie in Xout while another half lie in Xin. Finite point

configurations with this property will be called balanced.

Conversely, each balanced, multiplicity-free configuration on X is of the

form X(λ) for one and only one signature λ ∈ GTN . Thus, the map λ 7→ X(λ)

defines a bijection between GTN and the set of finite balanced configurations

on X with no multiplicities.

Define an involution on the set Conf(X) of multiplicity-free point config-

urations on X by

X 7→ X△ = X △Xin = (X ∩ Xout) ∪ (Xin \ X).

Since |Xin| = N , this involution defines a bijection between N -point configu-

rations and finite balanced configurations.

Proposition 4.1. In the above notation, X(λ) = L(λ)△ for any signa-

ture λ ∈ GTN .

For instance, let N = 7 and λ = (4, 2, 2, 0,−1,−2,−2). Then

L(λ) = {7, 4, 3, 0,−2,−4,−5}

and, since Xin = {3, 2, 1, 0,−1,−2,−3}, we have

X(λ) = L(λ)△ = {7, 4, 2, 1,−1,−3,−4,−5}.

On the other hand, λ+ = (4, 2, 2) = (3, 0 | 2, 1), λ− = (2, 2, 1) = (1, 0 | 2, 0),

and (4.1) gives the same X(λ).
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Figure 1 (Proposition 4.1)

Another example: for the zero signature 0 we have L(0) = Xin and

X(0) = ∅.

Proof of Proposition 4.1. See Figure 1 where geometric constructions

described below are illustrated. Consider a plane with Cartesian coordinates

(x, y) and put the lattice X = X(N) on the vertical axis x = 0, so that each

a ∈ X is identified with the point (0, a) of the plane. Draw a square grid in

the plane, formed by the horizontal lines y = a + 1
2 , where a ranges over X,

and by the vertical lines x = b, where b ranges over Z. We represent λ by an

infinite polygonal line L on the grid, as follows.

Denote by A0, . . . , AN the horizontal lines defined by y = N
2 , y = N

2 − 1,

. . . , y = −N
2 , respectively. We remark that these lines belong to the grid:

indeed, X coincides with Z shifted by N−1
2 , so that the points N

2 , N
2 −1, . . . ,−N

2

belong to the shift of X by 1
2 .

The polygonal line L first goes along A0, from right to left, starting at

x = +∞, up to the point with the coordinate x = λ1. Then it changes the

direction and goes downwards until it meets the next horizontal line A1. Then

it goes along A1, again from right to left, up to the point with the coordinate
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x = λ2, etc. Finally, after reaching the lowest line AN at the point with the

coordinate x = λN , it goes only to the left, along this line.

Further, we define a bijective correspondence a ↔ s between the points

a ∈ X and the sides s of L, as follows. Given a, we draw the line x + y = a,

it intersects L at the midpoint of a side, which is, by definition, s. Let us call

a a “v-point” or an “h-point” according to whether the corresponding side s

is vertical or horizontal. Thus, the whole set X is partitioned into “v-points”

and “h-points”.

The “v-points” of X are exactly those of the configuration L(λ). Conse-

quently, the collection
(
L(λ)∩Xout

)
⊔

(
Xin \L(λ)

)
is formed by the “v-points”

from Xout and the “h-points” from Xin.

On the other hand, the correspondence a ↔ s makes it possible to inter-

pret the same collection of points in terms of the Frobenius coordinates of the

diagrams λ+ and λ−. Indeed, the diagram λ+ can be identified with the figure

bounded by the horizontal line A0, the vertical line x = 0, and by L. Then

the line x + y = N
2 coincides with the diagonal of λ+. Above this line, there

are d+ vertical sides of L, say, s1, . . . , sd+ , which lie in the rows of λ+ with

numbers 1, . . . , d+. The corresponding Frobenius coordinates are p+
i = λi − i,

where i = 1, . . . , d+. It easily follows that the midpoint of the side si lies on

the line x + y = N+1
2 + p+

i ; i.e., si corresponds to N+1
2 + p+

i . In this way we

get the first component
{
p+

i + N+1
2

}
⊂ X(λ), see (4.1). The remaining three

components are interpreted similarly.

Fix any admissible quadruple (z, z′, w, w′) of parameters and consider the

corresponding probability measure PN on GTN ; see Section 3. Taking the

pushforwards of the measure PN under the maps λ 7→ L(λ) and λ 7→ X(λ)

we get two point processes on the lattice X, which we denote by P̃(N) and

P(N), respectively. We are mainly interested in the process P(N), which is

defined by λ 7→ X(λ); the process P̃(N) defined by λ 7→ L(λ) will play an

auxiliary role. Proposition 4.1 implies that P̃(N)(X) = P(N)(X△) for any

finite configuration X.

5. Determinantal point processes. General theory

(a) Correlation measures. Let P be a point process on X (see the definition

in the beginning of §4), and let A denote an arbitrary relatively compact Borel

subset of X. Then NA is a random variable with values in {0, 1, 2, . . . }. We

assume that for any A as above, NA has finite moments of all orders.

Let n range over {1, 2, . . . }. The nth correlation measure of P, denoted as

ρn, is a Borel measure on Xn, uniquely defined by

ρn(An) = E[NA(NA − 1) . . . (NA − n + 1)],
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where the symbol E means expectation with respect to the probability space

(Conf(X),P).

Equivalently, for any bounded compactly supported Borel function F

on Xn,

〈F, ρn〉 =

∫

X∈Conf(X)




∑

x1,...,xn∈X

pairwise distinct

F (x1, . . . , xn)


P(dX),

where the summation is taken over all ordered n-tuples of pairwise distinct

points taken from the (random) configuration X (here a multiple point is

viewed as a collection of different elements).

The measure ρn takes finite values on the compact subsets of Xn. The

measure ρn is symmetric with respect to the permutations of the arguments.

Under mild assumptions about the growth of ρn(An) as n → ∞ (here A is

an arbitrary compact set), the collection of the correlation measures ρ1, ρ2, . . .

defines the initial process P uniquely. See [Len] and [So, (1.6)].

When there is a “natural” reference measure µ on X such that, for any n,

ρn is absolutely continuous with respect to the product measure µ⊗n, the

density of ρn is called the nth correlation function. For instance, this always

holds if the space X is discrete: then as µ one takes the counting measure on X.

The correlation functions are denoted as ρn(x1, . . . , xn).

If the space X is discrete and the process is multiplicity-free then

ρn(x1, . . . , xn) is the probability that the random point configuration contains

the points x1, . . . , xn (here xi’s are pairwise distinct, otherwise ρn(x1, . . . , xn)

= 0).

For a general discrete process, ρn(x1, . . . , xn) is equal to the sum of weights

of the point configurations with certain combinatorial prefactors computed as

follows: if x has multiplicity k in the multiset (x1, . . . , xn) and has multiplicity

m in the point configuration in question, then this produces the prefactor

m(m − 1) · · · (m − k + 1) (such a prefactor is computed for every element of

the set {x1, . . . , xn}). Note that this prefactor vanishes unless m ≥ k for every

x ∈ {x1, . . . , xn}.

(b) Determinantal processes. A point process is called determinantal if

there exists a function K(x, y) on X×X such that, for an appropriate reference

measure µ, the correlation functions are given by the determinantal formula

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1 , n = 1, 2, . . . .

The function K is called the correlation kernel of the process. It is

not unique: replacing K(x, y) by f(x)K(x, y)f(y)−1, where f is an arbitrary

nonzero function on X, leaves the above expression for the correlation functions

intact.
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If the reference measure is multiplied by a positive function f then the

correlation kernel should be appropriately transformed. For instance, one can

multiply it by (f(x)f(y))−1/2.

It is often useful to view K(x, y) as the kernel of an integral operator

acting in the Hilbert space L2(X, µ). We will denote this operator by the same

symbol K.

Assume that a function K(x, y) is Hermitian symmetric (i.e., K(x, y) =

K(y, x)) and locally of trace class (i.e., its restriction to any compact set A ⊂ X

defines a trace class operator in L2(A, µ), where µ is a fixed reference measure).

Then K(x, y) is the correlation kernel of a determinantal point process if and

only if the operator K in L2(X, µ) satisfies the condition 0 ≤ K ≤ 1; see [So].

However, there are important examples of correlation kernels which are not

Hermitian symmetric, see below.

If X is a discrete countably infinite space then any multiset with finite mul-

tiplicities is a configuration. As µ we will always take the counting measure.

A correlation kernel is simply an infinite matrix with the rows and columns

labeled by the points of X. For any determinantal process on X the random

configuration is multiplicity free with probability 1. Indeed, if any two argu-

ments of the nth correlation function coincide then the defining determinant

above vanishes.

(c) The complementation principle. Assume that X is discrete and fix a

subset Z ⊆ X. For a subset X in X let X△Z denote its symmetric difference

with Z, i.e., X△Z = (X∩Z̄)∪(Z\X), where Z̄ = X\Z. The map X 7→ X△Z,

which we will denote by the symbol △, is an involution on multiplicity-free

configurations. If the process P lives on the multiplicity-free configurations,

we can define its image P△ under △.

Assume further that P is determinantal and let K be its correlation kernel.

Then the process P△ is also determinantal. Its correlation kernel K△ can be

obtained from K as follows:

K△(x, y) =

{
K(x, y), x ∈ Z̄,

δxy − K(x, y), x ∈ Z,
(5.1)

where δxy is the Kronecker symbol. See [BOO, §A.3].

Note that one could equally well use the formula

K△(x, y) =

{
K(x, y), y ∈ Z̄,

δxy − K(x, y), y ∈ Z,

obtained from (5.1) by multiplying the kernel by the function ε(x)ε(y), where

ε( · ) is equal to 1 on Z̄ and to −1 on Z. This operation does not affect the

correlation functions; see Section 5(b).

We call the passage from the process P to the process P△, together with

formula (5.1) the complementation principle. The idea was borrowed from
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unpublished work notes by Sergei Kerov connected with an early version of

[BOO].

Note that Proposition 4.1 can now be restated as follows:

P̃(N) = (P(N))△,

where the role of the set Z is played by Xin.

(d) Discrete polynomial ensembles. Here we assume that X is a finite or

countably infinite subset of R without limit points.

Assume that we are given a nonnegative function f(x) on X. Fix a natural

number N . We consider f as a weight function: denoting by µ the counting

measure on X we assign to f the measure fµ on X.

We impose on f two basic assumptions:

(∗) f has finite moments at least up to order 2N − 2, i.e.,

∑

x∈X

x2N−2f(x) < ∞.

(∗∗) f does not vanish at least at N distinct points.

Under these assumptions the functions 1, x, . . . , xN−1 on X are linearly in-

dependent and lie in the Hilbert space L2(X, fµ). Let p0 = 1, p1, . . . , pN−1 be

the monic polynomials obtained by orthogonalizing the system (1, x, . . . , xN−1)

in L2(X, fµ).

We set

hn = (pn, pn)L2(X,fµ) =
∑

x∈X

p2
n(x)f(x), n = 0, . . . , N − 1,

and consider the Christoffel-Darboux kernel

N−1∑

n=0

pn(x)pn(y)

hn
, x, y ∈ X.

This kernel defines an orthogonal projection operator in L2(X, fµ); its range

is the N -dimensional subspace spanned by 1, x, . . . , xN−1.

Consider an isometric embedding L2(X, fµ) → ℓ2(X) which is defined as

multiplication by
√

f( · ). Under this isomorphism the Christoffel-Darboux

kernel turns into another kernel which we will call the normalized Christoffel-

Darboux kernel and denote as KCD:

KCD(x, y) =
√

f(x)f(y) ·
N−1∑

n=0

pn(x)pn(y)

hn
, x, y ∈ X.(5.2)

This kernel defines a projection operator in ℓ2(X) of rank N .
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Let ConfN (X) denote the set of N -point multiplicity-free configurations

(subsets) in X. For X ∈ ConfN (X) we set

V 2(X) =
∏

1≤i<j≤N

(xi − xj)
2,

where x1, . . . , xN are the points of X written in any order.

Under the assumptions (∗) and (∗∗) we have

0 <
∑

X∈ConfN (X)

(
∏

x∈X

f(x) · V 2(X)

)
< ∞.

Therefore, we can form a point process on X which lives on ConfN (X) and for

which the probability of a configuration X is given by

Prob(X) = const ·
∏

x∈X

f(x) · V 2(X), X ∈ ConfN (X),(5.3)

where const is the normalizing constant. This process is called the N -point

polynomial ensemble with the weight function f .

Proposition 5.1. Let X and f be as above, where f satisfies the assump-

tions (∗), (∗∗). Then the N -point polynomial ensemble with the weight function

f is a determinantal point process whose correlation kernel is the normalized

Christoffel-Darboux kernel (5.2).

Proof. A standard argument from the Random Matrix Theory, see, e.g.,

[Me, §5.2].

Remark 5.2. Under a stronger than (∗) condition

∑

x∈X

|x|2N−1f(x) < ∞,

there exists a monic polynomial pN of degree N , orthogonal to 1, x, . . . , xN−1

in L2(X, fµ). Then the Christoffel-Darboux kernel can be written as

1

hN−1

pN (x)pN−1(y) − pN−1pN (y)

x − y
.

The value at the diagonal x = y is determined via L’Hospital’s rule.

According to this, the normalized Christoffel-Darboux kernel can be writ-

ten in the form

KCD(x, y) =

√
f(x)f(y)

hN−1

pN (x)pN−1(y) − pN−1pN (y)

x − y
.(5.4)
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(e) L-ensembles. Let X be an arbitrary discrete space (finite or countably

infinite). We are dealing with the Hilbert space ℓ2(X) = L2(X, µ), where, as

usual, µ denotes the counting measure on X. Let Conffin(X) denote the set of

all finite, multiplicity-free configurations in X (i.e., simply finite subsets).

Let L be an operator in ℓ2(X) and L(x, y) be its matrix (x, y ∈ X). For

X ∈ Conffin(X) we denote by LX(x, y) the submatrix of L(x, y) of order |X|
whose rows and columns are indexed by the points x ∈ X. The determinants

detLX are exactly the diagonal minors of the matrix L(x, y).

We impose on L the following two conditions:

(∗) L is of trace class.

(∗∗) All finite diagonal minors detLX are nonnegative.

Under these assumptions we have
∑

X∈Conffin(X)

detLX = det(1 + L) < ∞.

We agree that det L∅ = 1. Hence, the sum above is always strictly positive.

Now we form a point process on X living on the finite multiplicity-free

configurations X ∈ Conffin(X) with the probabilities given by

Prob(X) = (det(1 + L))−1 det LX , X ∈ Conffin(X).(5.5)

It is convenient to have a name for the processes obtained in this way; let

us call them the L-ensembles.

Proposition 5.3. Let L satisfy the conditions (∗) and (∗∗) above. Then

the associated L-ensemble is a determinantal process with the correlation kernel

K = L(1 + L)−1.

Proof. See [DVJ, Exercise 4.7], [BO2, Prop. 2.1], [BOO, Appendix].

The condition (∗) can be slightly relaxed, see [BOO, Appendix]. The

condition (∗∗) holds, for instance, when L is Hermitian nonnegative. However,

this is by no means necessary, see §5(f) below.

The relation between L and K can also be written in the form

1 − K = (1 + L)−1.

Remark 5.4. Assume that K is a finite-dimensional orthogonal projection

operator in ℓ2(X) (for instance, K(x, y) = KCD(x, y) as in §5(d)). One can

prove that there exists a determinantal point process P for which K serves as

the correlation kernel. P is not an L-ensemble, because 1−K is not invertible

(except K = 0). However, P can be approximated by certain L-ensembles.

To see this, replace K by Kε = εK, where 0 < ε < 1. The matrices Lε =

(1 − Kε)
−1 − 1 satisfy both (∗) and (∗∗). The process P arises in the limit of
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the L-ensembles associated with the matrices Lε as ε ր 1. One can check that

the probabilities

lim
εր1

det(1 + Lε)
−1 det(Lε)X , X ∈ Conffin(X),

are correctly defined.

For a special class of matrices L there exists a complex analytic problem

the solution of which yields the resolvent matrix K.

We will follow the exposition of [B3].

Let X be a discrete locally finite subset of C. We call an operator L acting

in ℓ2(X) integrable if its matrix has the form

L(x, x′) =





∑M
j=1 fj(x)gj(x

′)

x − x′
, x 6= x′,

0, x = x′,

(5.6)

for some functions fj , gj on X, j = 1, . . . , M , satisfying the relation

M∑

j=1

fj(x)gj(x) = 0, x ∈ X.(5.7)

We will assume that fj , gj ∈ ℓ2(X) for all j.

Set

f = (f1, . . . , fM )t, g = (g1, . . . , gM )t.

Then (5.7) can be rewritten as gt(x)f(x) = 0. We will also assume that the

operator

(Th)(x) =
∑

x′∈X, x′ 6=x

h(x′)

x − x′
(5.8)

is a bounded operator in ℓ2(X). For example, this holds for X = Z + c for

any c ∈ C.8 Under these assumptions, it is easy to see that L is a bounded

operator in ℓ2(X).

Now we introduce the complex analytic object.

Let w be a map from X to Mat(k, C), with k a fixed integer.

We say that a matrix function m : C\X → Mat(k, C) with simple poles at

the points x ∈ X is a solution of the discrete Riemann-Hilbert problem9 (X, w)

if the following conditions are satisfied

• m(ζ) is analytic in C \ X,

8Indeed, then T is a Toeplitz operator with the symbol
∑

n6=0

un

n
∈ L∞(S1).

9DRHP, for short
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• Res
ζ=x

m(ζ) = lim
ζ→x

(m(ζ)w(x)) , x ∈ X,

• m(ζ) → I as ζ → ∞.

Here I is the k×k identity matrix. The matrix w(x) is called the jump matrix.

If the set X is infinite, the last condition must be made more precise.

Indeed, a function with poles accumulating at infinity cannot have asymptotics

at infinity. One way to make this condition precise is to require the uniform

asymptotics on a sequence of expanding contours, for example, on a sequence

of circles |ζ| = ak, ak → +∞.

In order to guarantee the uniqueness of solutions of the DRHPs considered

below, we always assume that there exists a sequence of expanding contours

such that the distance from these contours to the set X is bounded from zero,

and we will require a solution m(ζ) to uniformly converge to I on these con-

tours.

The setting of the DRHP above is very similar to the pure soliton case in

the inverse scattering method, see [BC], [BDT], [NMPZ, Ch. III].

Proposition 5.5 ([B3, Prop. 4.3]). Let L be an integrable operator as

described above such that the operator (1 + L) is invertible, and let m(ζ) be a

solution of the DRHP (X, w) with

w(x) = −f(x)g(x)t ∈ Mat(M, C).

Then the matrix K = L(1 + L)−1 has the form

K(x, x′) =





Gt(x′)F (x)

x − x′
, x 6= x′,

Gt(x) lim
ζ→x

(m′(ζ) f(x)) , x = x′,

where m′(ζ) =
dm(ζ)

dζ
, and

F (x) = lim
ζ→x

(m(ζ) f(x)) , G(x) = lim
ζ→x

(
(mt(ζ))−1 g(x)

)
.

Comments. 1) The continuous analog of this result was originally proved

in [IIKS], see also [De] and [KBI].

2) It can be proved that the solution of the DRHP stated in Proposition

5.5 exists and is unique, see [B3, (4.9)] for the existence and [B3, Lemma 4.7]

for the uniqueness.

3) The requirement of matrix L’s vanishing on the diagonal can be sub-

stantially weakened, see [B3, Remark 4.2]. A statement similar to Proposition

5.5 can be proved if the diagonal elements of L are bounded from −1.

4) Proposition 5.5 holds without the assumptions (∗), (∗∗) stated in the

beginning of this subsection.
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5) If the operator L is bounded, has the form (5.6), but the functions fj

and gj are not in ℓ2(X), then it may happen that the operator K = L/(1 + L)

is well-defined while the corresponding DRHP fails to have a solution.

(f) Special matrices L. Let X be a discrete space with a fixed splitting

into the union of two disjoint subsets,

X = XI ⊔ XII .

The splitting induces an orthogonal decomposition of ℓ2(X),

ℓ2(X) = ℓ2(XI) ⊕ ℓ2(XII).

According to this decomposition we will write operators in ℓ2(X) (or matrices

of the format X × X) in the block form. For instance,

L =

[
LI,I LI,II

LII,I LII,II

]
,

where LI,I acts from ℓ2(XI) to ℓ2(XI), LI,II acts from ℓ2(XII) to ℓ2(XI), etc.

We are interested in the matrices L of the following special form:

L =

[
0 A

−A∗ 0

]
,(5.9)

where A is an operator from ℓ2(XII) to ℓ2(XI) and A∗ is the adjoint operator.

For such L, the condition (∗∗) of §5(e) is satisfied, while the condition

(∗) is equivalent to saying that A is of trace class. It can be shown that the

construction of §5(e) holds even if A is a Hilbert-Schmidt operator; see [BOO,

Appendix].

Note that the matrices of the form (5.9) are not Hermitian symmetric but

J-symmetric. That is, the corresponding operator is Hermitian with respect

to the indefinite inner product on the space ℓ2(X) defined by the matrix J =[
1 0

0 −1

]
. It follows that the matrices K = L(1+L)−1 are J-symmetric, too.

This provides a class of determinantal processes whose correlation kernels are

not Hermitian symmetric.

Now let us look at an even more special situation. Assume that X is a

locally finite subset of C such that the operator T defined by (5.8) is bounded.

Let hI( · ), hII( · ) be two functions defined on XI and XII , respectively.

We assume that hI ∈ ℓ2(XI), hII ∈ ℓ2(XII). (The functions hI , hII should

not be confused with the constants hn attached to orthogonal polynomials, see

§5(d).)

Set

L =

[
0 A

−A∗ 0

]
, where A(x, y) =

hI(x)hII(y)

x − y
.(5.10)
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The matrix A is well defined, because x and y range over disjoint subsets

XI and XII of X.

As is explained in [B3, §6], such an L is an integrable operator in the

sense of §5(e) with M = 2. Let us assume that the functions hI and hII are

real-valued. Then we have L∗ = −L, and −1 cannot belong to the spectrum

of L, that is, (1 + L) is invertible. Thus, the DRHP of Proposition 5.5 has a

unique solution.

Let us introduce a special notation for this solution m(ζ). We define four

meromorphic functions RI , SI , RII , SII by the relation

m =

[
m11 m12

m21 m22

]
=

[
RI −SII

−SI RII

]
.

Then the DRHP of Proposition 5.5 for our special L given by (5.10) can

be restated as follows; see [B3, §6]:

• matrix elements m11 = RI and m21 = −SI are holomorphic in C \ XII ;

• matrix elements m12 = −SII and m22 = RII are holomorphic in C \ XI ;

• RI and SI have simple poles at the points of XII , and for x ∈ XII

Res
ζ=x

RI(ζ) =h2
II(x)SII(x),

Res
ζ=x

SI(ζ) =h2
II(x)RII(x);

• RII and SII have simple poles at the points of XI , and for x ∈ XI ,

Res
ζ=x

RII(ζ) =h2
I(x)SI(x),

Res
ζ=x

SII(ζ) =h2
I(x)RI(x);

• RI , RII → 1, SI , SII → 0 as ζ → ∞.

As before, the last condition is understood as uniform convergence on a

sequence of expanding contours such that the distance from these contours to

the set X is bounded from zero.

It can be proved that these conditions imply the relations

RI(ζ) = 1 −
∑

y∈XII

h2
II(y)SII(y)

y − ζ
, SI(ζ) = −

∑

y∈XII

h2
II(y)RII(y)

y − ζ
,(5.11)

RII(ζ) = 1 −
∑

y∈XI

h2
I(y)SI(y)

y − ζ
SII(ζ) = −

∑

y∈XI

h2
I(y)RI(y)

y − ζ
.(5.12)

The inverse implication also holds if we know that the functions RI , SI , RII , SII

have the needed asymptotics as ζ → ∞.

The next statement is a direct corollary of Proposition 5.5.
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Proposition 5.6 ([B3, Prop. 6.1]). Let

m =

[
RI −SII

−SI RII

]

be a solution of the DRHP stated above, where hI ∈ ℓ2(XI) and hII ∈ ℓ2(XII)

are real -valued. Then (1 + L) is invertible, and the matrix of the operator

K = L/(1 + L), with respect to the splitting X = XI ⊔ XII , has the form

KI,I(x, y) = hI(x)hI(y)
RI(x)SI(y) − SI(x)RI(y)

x − y
,

KI,II(x, y) = hI(x)hII(y)
RI(x)RII(y) − SI(x)SII(y)

x − y
,

KII,I(x, y) = hII(x)hI(y)
RII(x)RI(y) − SII(x)SI(y)

x − y
,

KII,II(x, y) = hII(x)hII(y)
RII(x)SII(y) − SII(x)RII(y)

x − y
,

where the indeterminacy on the diagonal x = y is resolved by L’Hospital ’s rule:

KI,I(x, x) = h2
I(x)

(
(RI)

′(x)SI(x) − (SI)
′(x)RI(x)

)
,

KII,II(x, x) = h2
II(x)

(
(RII)

′(x)SII(x) − (SII)
′(x)RII(x)

)
.

(g) Connection between discrete polynomial ensembles and L-ensembles.

Here we adopt the following assumptions:

• X = XI ⊔ XII is a finite or countably infinite subset of R without limit

points.

• The set XII is finite, |XII | = N .

• hI is a nonnegative function on XI such that

∑

x∈XI

h2
I(x)

1 + x2
< ∞.(5.13)

• hII is a strictly positive function on XII .

To these data we associate a function f on X as follows:

f(x) =





h2
I(x)∏

y∈XII

(x − y)2
, x ∈ XI ,

1

h2
II(x)

∏
y∈XII

y 6=x

(x − y)2
, x ∈ XII .

(5.14)

We note that f is nonnegative on X, strictly positive on XII , and its

(2N − 2)nd moment is finite,
∑

x∈X

x2N−2f(x) < ∞.
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Conversely, given f with such properties, we can define the functions hI and

hII by inverting (5.14), and then the condition (5.13) will be satisfied.

Since the function f satisfies the two basic assumptions for a weight func-

tion stated in §5(d) (the moment of order 2N − 2 is finite, and f is strictly

positive on an N -point subset), we can attach to it a discrete polynomial en-

semble.

On the other hand, let us define a matrix L using (5.10). By virtue of

(5.13), all the columns of A are vectors from ℓ2(XI). Since the total number of

columns in A is finite, the trace class condition for A holds for trivial reasons.

According to §5(f), such a matrix L defines a determinantal point process.

Proposition 5.7. Under the above assumptions, the orthogonal polyno-

mial ensemble with the weight function f and the L-ensemble associated with

the matrix (5.10) are connected by the involution △ corresponding to Z = XII .

Proof. We will prove that for any balanced configuration X, the probabil-

ity of X in the L-ensemble is equal to the probability of X△ in the orthogonal

polynomial ensemble. We have to compare two expressions, (5.3) and (5.5),

which both involve a normalizing constant. Since we know that we are dealing

with probability measures, we may ignore constant factors.

Let X be a finite balanced configuration with no multiplicities. Write it

as A ⊔ B, where A = X ∩ XI = {a1, . . . , ad}, B = X ∩ XII = {b1, . . . , bd}. In

this notation, the probability of X in the L-ensemble is equal, up to a constant

factor, to

det LA⊔B =

d∏

i=1

h2
I(ai)h

2
II(bi) · det2

[
1

ai − bj

]

1≤i,j≤d

.(5.15)

For arbitrary finite configurations C = {c1, . . . , cm} and D = {d1, . . . , dn}
we will abbreviate

V 2(C) =
∏

1≤i<j≤m

(ci − cj)
2, V 2(C;D) =

m∏

i=1

n∏

j=1

(ci − dj)
2.

By the well-known formula for Cauchy’s determinant,

det2
[

1

ai − bj

]
=

V 2(A)V 2(B)

V 2(A;B)
,

the expression (5.15) is equal to

∏

a∈A

h2
I(a) ·

∏

b∈B

h2
II(b) ·

V 2(A)V 2(B)

V 2(A;B)
.(5.16)
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On the other hand, X△ = A ⊔ B̄, where B̄ = XII \ B. The probability of

X△ in the orthogonal polynomial ensemble is equal, up to a constant factor,

to
∏

x∈X△

f(x) · V 2(X△) =
∏

a∈A

f(a) ·
∏

b̄∈B̄

f(b̄) · V 2(A ⊔ B̄).(5.17)

Let us transform this expression. We have
∏

b̄∈B̄

f(b̄) = const ·
∏

b∈B

1

f(b)
, const =

∏

x∈XII

f(x).

Next,

V 2(A ⊔ B̄) =V 2(A)V 2(B̄)V 2(A; B̄)

=
V 2(A)V 2(B)

V 2(A;B)
·
V 2(A; B̄)V 2(A;B)

V 4(B)V 2(B; B̄)
· V 2(B)V 2(B̄)V 2(B; B̄)

= const ·
V 2(A)V 2(B)

V 2(A;B)
·

∏
a∈A

∏
y∈XII

(a − y)2

∏
b∈B

∏
y∈XII\{b}

(b − y)2
,

where

const = V 2(B)V 2(B̄)V 2(B; B̄) = V 2(XII).

It follows that (5.17) is equal, up to a constant factor, to

∏

a∈A


f(a)

∏

y∈XII

(a − y)2


 ·

∏

b∈B


f(b)

∏

y∈XII\{b}

(b − y)2




−1

·
V 2(A)V 2(B)

V 2(A;B)
.

By virtue of the connection between f and {hI , hII}, see (5.14), this is equal

to (5.16).

(h) Connection between two correlation kernels. We keep the assumptions

of §5(g). In particular, f is related to hI and hII by (5.14).

Recall that if hI ∈ ℓ2(XI) and the operator T (see (5.8)) is bounded

then the DRHP of §5(f) has a unique solution which defines the meromorphic

functions RI , SI , RII , SII . Also, hI ∈ ℓ2(XI) implies that the function f defined

through (5.14) has a finite (2N)th moment, and, hence, we can define monic,

orthogonal with respect to the weight f polynomials {p0, p1, . . . } at least up to

the N th one; see §5(d). Note that the condition hI ∈ ℓ2(XI) is stronger than

(5.13).

Proposition 5.8. Under the assumptions of Section 5(g), if hI ∈ ℓ2(XI)

and the operator T is bounded, then we have

RI(ζ) =
pN (ζ)∏

y∈XII

(ζ − y)
, SI(ζ) =

pN−1(ζ)

hN−1
∏

y∈XII

(ζ − y)
.(5.18)
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Proof. Denote the right-hand sides of (5.18) by R̃I and S̃I , respectively,

and define

R̃II(ζ) = 1 −
∑

y∈XI

h2
I(y)S̃I(y)

y − ζ
, S̃II(ζ) = −

∑

y∈XI

h2
I(y)R̃I(y)

y − ζ
;

cf. (5.12). We will show that the matrix

m̃ =

[
R̃I −S̃II

−S̃I R̃II

]

solves the DRHP of §5(f). By uniqueness of the solution we will conclude that

m = m̃.

The condition hI ∈ ℓ2(XI) guarantees that the formulas above define

meromorphic functions R̃II , S̃II with needed asymptotics and location of poles.

Thus, we only need to check the relations involving residues at the poles. The

equalities

Res
ζ=x

R̃II(ζ) = h2
I(x)S̃I(x),(5.19)

Res
ζ=x

S̃II(ζ) = h2
I(x)R̃I(x),(5.20)

are obviously satisfied.

The relation Res
ζ=x

S̃I(ζ) = h2
II(x)R̃II(x) is equivalent to the equality

−
pN−1(x)

hN−1
∏

y∈XII , y 6=x

(x − y)
= −h2

II(x)


1 −

∑

y∈XI

h2
I(y)S̃I(y)

y − x


(5.21)

which can be rewritten as (x ∈ XII)

−pN−1(x)f(x)
∏

t∈XII , t6=x

(x − t) = −hN−1 +
∑

y∈XI

pN−1(y)f(y)
∏

t∈XII , t6=x

(y − t).

But this is the relation〈
pN−1(y),

∏

t∈XII , t6=x

(y − t)

〉
= hN−1

which directly follows from the definition of the orthogonal polynomials.

The relation Res
ζ=x

R̃I(ζ) = h2
II(x)S̃II(x) is equivalent to the equality

pN (x)∏
y∈XII , y 6=x

(x − y)
= −h2

II(x)
∑

y∈XI

h2
I(y)R̃I(y)

y − x
.(5.22)

which is just the orthogonality relation

〈
pN (y),

∏

t∈XII , t6=x

(y − t)

〉
= 0.
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Corollary 5.9. Under the assumptions of §5(g), if hI ∈ ℓ2(X) and the

operator T is bounded, then for any x ∈ XII ,

RII(x) =
pN−1(x)

hN−1 h2
II(x)

∏
y∈XII , y 6=x

(x − y)
, SII(x) =

pN (x)

h2
II(x)

∏
y∈XII , y 6=x

(x − y)
.

(5.23)

Proof. This follows from the relations

Res
ζ=x

RI(ζ) = h2
II(x)SII(x), Res

ζ=x
SI(ζ) = h2

II(x)RII(x),

and (5.18).

For the next statement we drop the assumption hI ∈ ℓ2(XI) and use the

weaker assumption (5.13) instead.

Theorem 5.10. Under the assumptions of §5(g), let L be given by (5.10),

K = L(1 + L)−1, and KCD be the N th normalized Christoffel -Darboux kernel

for the weight function f , as defined in §5(d). Introduce the following function

on X taking values in {±1}:

ε(x) =





sgn

(
∏

y∈XII

(x − y)

)
, x ∈ XI

sgn

(
∏

y∈XII\{x}

(x − y)

)
, x ∈ XII .

Then

K(x, y) = ε(x)(KCD)△(x, y)ε(y),(5.24)

where the operation ( · )△ is defined by (5.1) with Z = XII , Z̄ = XI .

Before proceeding to the proof let us make a couple of comments.

Comments. 1) By Proposition 5.3 the kernel K describes the correlation

functions of the L-ensemble in question. On the other hand, the same correla-

tion functions are also expressed in terms of the kernel (KCD)△, see Proposition

5.7 and §5(c). This does not mean that both kernels must coincide, because

the correlation kernel of a determinantal point process is not defined uniquely;

see Section 5(b). And indeed, we see that the kernels turn out to be conjugated

by a nontrivial diagonal matrix. Note that conjugating by a diagonal matrix is

the only possible “generic” transformation, because this is the only operation

on the “generic” matrix which preserves all diagonal minors. In our situation,

both kernels are real and possess a symmetry property (J-symmetry), so that

it is not surprising that the diagonal entries of this diagonal matrix are equal

to ±1. However, the exact values of these ±1’s, as given in the theorem, are

not evident.
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2) The theorem makes it possible to calculate the kernel K = L(1 + L)−1

provided that we know the orthogonal polynomials with the weight function f .

Both kernels, K and (KCD)△, are suitable to describing the correlation func-

tions of the L-ensembles. However, from the computations that follow in subse-

quent sections we will see that, for the particular L-ensemble we are interested

in, the former kernel survives in a scaling limit procedure (see §10) while the

latter kernel does not.

Proof of Theorem 5.10. Let us assume that the stronger condition hI ∈
ℓ2(XI) is satisfied. Then the normalized Christoffel-Darboux kernel can be

written in the form (5.4), which makes it possible to express (KCD)△ as follows:

(KCD)△I,I(x, y) =

√
f(x)f(y)

hN−1

pN (x)pN−1(y) − pN−1(x)pN (y)

x − y
,

(KCD)△I,II(x, y) =

√
f(x)f(y)

hN−1

pN (x)pN−1(y) − pN−1(x)pN (y)

x − y
,

(KCD)△II,I(x, y) =

√
f(x)f(y)

hN−1

pN−1(x)pN (y) − pN (x)pN−1(y)

x − y
,

(KCD)△II,II(x, y) = δ(x − y)

+

√
f(x)f(y)

hN−1

pN−1(x)pN (y) − pN (x)pN−1(y)

x − y
.

Here f is the function defined in (5.14).

Assuming that the operator T of (5.8) is bounded, we see that (5.18),

(5.23), and Proposition 5.6 directly imply the claim of the theorem everywhere

except for the diagonal set (x, x) ∈ X × X. But on this diagonal set it is

immediately seen that both sides of the equality

K(x, x) = (KCD)△(x, x)

represent the probability that the corresponding L-ensemble has a particle at

the point x; see Comment 1 above.

Thus, we have verified (5.24) assuming hI ∈ ℓ2(XI) and the boundedness

of T . Now we will show how to get rid of these extra conditions.

Let HI denote the set of all nonnegative functions hI(x) satisfying (5.13).

We equip HI with the weakest topology for which all the evaluations hI 7→
hI(x) (x ∈ XI) and the sum in (5.13) are continuous. Fix hII and let hI vary

over HI . We claim that for any fixed x, y ∈ X, both values KCD(x, y) and

K(x, y) depend continuously on hI ∈ HI .

By the definition of the topology in HI , the moments

cj =
∑

x∈X

xjf(x), j = 0, . . . , 2N − 2,
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depend continuously on hI . Let G = [ci+j ]
N−1
i,j=0 be the Gram matrix of the

vectors 1, x, . . . , xN−1 ∈ L2(X, fµ). The Christoffel-Darboux kernel can be

expressed through the moments as follows:

N−1∑

i,j=0

(G−1)ijx
iyj .

(This can be derived from the classical determinantal expression for the or-

thogonal polynomials, see [Er, Vol. 2, 10.3(4)], or by making use of a simple

direct argument, see, e.g., [B4].) Hence

KCD(x, y) =
√

f(x)f(y)
N−1∑

i,j=0

(G−1)ijx
iyj .

Clearly, this expression is a continuous function of hI .

On the other hand, again by the definition of the topology, the columns of

the matrix A(x, y) (see (5.10)), viewed as vectors in ℓ2(XI), are continuous in

hI . It follows that the operators L and K = L(1 + L)−1 are continuous in hI

with respect to uniform operator topology. Hence K(x, y) is continuous, too.

Thus, we have proved that both sides of the required equality (5.24) are

continuous in hI ∈ HI .

Finally, let H0
I ⊂ HI be the subset of those functions which have finite

support. Note that (5.24) holds for any hI ∈ H0
I . Indeed, (5.24) does not

change if we replace XI by supphI , and for a finite XI the extra conditions are

obviously satisfied. Since H0
I is dense in HI , we conclude that (5.24) holds for

any hI ∈ HI .

6. P(N) and P̃(N) as determinantal point processes

Recall that in Section 4 we defined two discrete point processes P̃(N) and

P(N). These processes live on the lattice X(N) and depend on four parameters

(z, z′, w, w′) ∈ Dadm. As was mentioned in §5(c), P̃(N) and P(N) are related

by the complementation principle: P̃(N) = (P(N))△, where the special set Z is

equal to Xin. In this section we will show that P̃(N) is a discrete polynomial

ensemble (as defined in §5(d)) and P(N) is an L-ensemble (as defined in §5(e)).

Consider the following weight function on the lattice X(N):

f(x) =
1

Γ
(
z − x + N+1

2

)
Γ

(
z′ − x + N+1

2

)
Γ

(
w + x + N+1

2

)
Γ

(
w′ + x + N+1

2

) .

(6.1)

Here we assume that (z, z′, w, w′) ∈ Dadm. The expression (6.1) comes from

the expression for P ′
N (λ | z, z′, w, w′); see Section 3. Namely, in the notation
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of Section 4, we have

P ′
N (λ | z, z′, w, w′) = Dim2

N (λ) ·
∏

x∈L(λ)

f(x).

Proposition 6.1. Let (z, z′, w, w′) ∈ Dadm. The function f(x) is non-

negative on X(N) and satisfies the assumptions (∗) and (∗∗) of §5(d).

Proof. The nonnegativity of f(x) follows from Proposition 3.5 and the

definition of Dadm; see Definition 3.4.

The condition (∗) of §5(d) says that
∑

x∈X(N)

x2N−2f(x) < ∞.

This follows from the estimate

f(x) ≤ const ·(1 + |x|)−(z+z′+w+w′+2N)

and the fact that z + z′ + w + w′ > −1 for (z, z′, w, w′) ∈ Dadm. As for the

estimate above, it readily follows from the asymptotics of the gamma function;

see [Ol3, (7.6)].

Finally, the condition (∗∗) of §5(d) says that f(x) does not vanish at least

on N distinct points. This follows from the fact that P ′
N (λ | z, z′, w, w′) does

not vanish identically; see Proposition 3.5.

Note that if (z, z′) ∈ Zdegen then f(x) vanishes for positive large x. Simi-

larly, if (w, w′) ∈ Zdegen then f(x) vanishes for negative x such that |x| is large

enough.

Corollary 6.2. Let (z, z′, w, w′) ∈ Dadm. Then P̃(N) is a discrete poly-

nomial ensemble with the weight function f(x) given by (6.1). That is, for any

N -point configuration X = {x1, . . . , xN}

P̃(N)(X) = const ·
N∏

i=1

f(xi) ·
∏

1≤i<j≤N

(xi − xj)
2.

Proof. Indeed, by Proposition 6.1, the assumptions of Section 5(d) are

satisfied. The formula above is a direct corollary of the definition of PN (λ),

see Section 3, and the formula for DimN λ, see §1(d).

Now let us turn to the process P(N). We will apply the formalism of

§5(g) for X = X(N), XI = Xout, XII = Xin. Recall that §5(g) relies on four

assumptions. The first three of them hold for any quadruple (z, z′, w, w′) ∈
Dadm. As for the fourth assumption, it is equivalent to the strict positiv-

ity of the weight function f(x) on Xin; see Section 5(g). It may happen

that for some admissible quadruples (z, z′, w, w′) this requirement is violated:
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f(x) vanishes at certain points of Xin. Specifically, this happens whenever

(z, z′) or (w, w′) belongs to Zdegen,m with m < 0. For this reason we have to

impose an additional restriction on the parameters.

Definition 6.3. Let D′
adm denote the subset of Dadm formed by the quadru-

ples (z, z′, w, w′) ∈ Dadm such that neither (z, z′) nor (w, w′) belongs to Zdegen,m

with m < 0.

In the rest of the section we assume that (z, z′, w, w′) ∈ D′
adm, so that

f(x) > 0 for any x ∈ Xin. Note that, in terms of signatures λ, this condition

means that PN (λ | z, z′, w, w′) does not vanish at λ = (0, . . . , 0).

Remark 6.4. Recall that in Remark 3.7 we introduced a natural shift on

the set Dadm,

(z, z′, w, w′) 7→ (z + k, z′ + k, w − k, w′ − k), k ∈ Z.

This shift of the parameters is equivalent to the shift of all configurations of

P̃(N) by k. The definition of Dadm implies that any quadruple from Dadm \
D′

adm can be moved into D′
adm by an appropriate shift. Thus, for the study

of the process P̃(N), the restriction of the admissible quadruples to D′
adm is

not essential. This argument does not work for the process P(N), because the

shift above does not preserve the splitting X = Xout ⊔Xin. However, as will be

shown later (see the proof of Theorem 10.1), the effect of the shift is negligible

in the limit transition as N → ∞.

Let us define functions ψ
(N)
in and ψ

(N)
out on Xin and Xout, respectively, by

the formulas

ψ
(N)
in (x) = Γ

[
−x + z + N+1

2 ,−x + z′ + N+1
2 , x + w + N+1

2 , x + w′ + N+1
2

−x + N+1
2 ,−x + N+1

2 , x + N+1
2 , x + N+1

2

]
,

(6.2)

ψ
(N)
out (x) =

((
x − N−1

2

)
N

)2

Γ(−x + z + N+1
2 )Γ(−x + z′ + N+1

2 )Γ(x + w + N+1
2 )Γ(x + w′ + N+1

2 )
,

(6.3)

where we use the notation

(a)k =
Γ(a + k)

Γ(a)
= a(a + 1) · · · (a + k − 1), Γ

[
a, b, . . .

c, d, . . .

]
=

Γ(a)Γ(b) . . .

Γ(c)Γ(d) . . .
.
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Note that

ψ
(N)
in (x) =

1
(
Γ

(
−x + N+1

2

)
Γ

(
x + N+1

2

))2
f(x)

,

ψ
(N)
out (x) =





(
Γ

(
x + N+1

2

)

Γ
(
x − N−1

2

)
)2

f(x), x ≥ N+1
2

(
Γ

(
−x + N+1

2

)

Γ
(
−x − N−1

2

)
)2

f(x), x ≤ −N+1
2 .

The function ψ
(N)
out is nonnegative and the function ψ

(N)
in is strictly positive.

Note also that both functions are invariant with respect to the substitution

(z, z′) ←→ (w, w′), x ←→ −x.

Introduce a matrix L(N) of format X × X which in the block form corre-

sponding to the splitting X = Xout ⊔ Xin is given by

L
(N)
Xout⊔Xin

=

[
0 A(N)

−(A(N))∗ 0

]
,

cf. §5(f), where A(N) is a matrix of format Xout × Xin,

A(N)(a, b) =

√
ψ

(N)
out (a)ψ

(N)
in (b)

a − b
, a ∈ Xout, b ∈ Xin.

Proposition 6.5. Let (z, z′, w, w′) ∈ D′
adm. The process P(N) introduced

in Section 4 is an L-ensemble with the matrix L(N) introduced above. That is,

for any finite configuration X

P(N)(X) =
det L

(N)
X

det(1 + L(N))
,

where L
(N)
X denotes the submatrix of L(N) of finite format X × X.

Proof. This is a direct corollary of Proposition 5.7 and Corollary 6.2,

where for Proposition 5.7 we take

XI = Xout, XII = Xin, h2
I = ψ

(N)
out , h2

II = ψ
(N)
in .

The relations between the functions ψ
(N)
out , ψ

(N)
in , and f above exactly coincide

with (5.14).
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7. The correlation kernel of the process P̃(N)

The goal of this section is to compute the normalized Christoffel-Darboux

kernel, see Section 5(d), associated with the weight function f on the lattice

X(N) given by (6.1). According to Proposition 5.1, this kernel can be taken as

a correlation kernel for the process P̃(N). We will denote this kernel by K̃(N).

We will show below that the orthogonal polynomials with the weight f

can be expressed through the hypergeometric function of type (3, 2). This is

an analytic function in one complex variable u defined inside the unit circle by

its Taylor series

3F2

[
a, b, c

e, f

∣∣∣ u

]
=

∞∑

k=0

(a)k(b)k(c)k

k!(e)k(f)k
uk.

Here a, b, c, e, f are complex parameters, e, f /∈ {0,−1,−2, . . . }. We will only

need the value of this function at the point u = 1. Then the series above

converges if ℜ(e + f − a − b − c) > 0. Moreover, the function

1

Γ(e)Γ(f)Γ(e + f − a − b − c)
3F2

[
a, b, c

e, f

∣∣∣ 1

]

can be analytically continued to an entire function in five complex variables

a, b, c, e, f .10 Note also that if one of the parameters a, b, c is a nonpositive

integer, say, a ∈ {0,−1,−2, . . . }, then the series above has only finitely many

nonzero terms. It is easy to see that in such a case

1

Γ(e)Γ(f)
3F2

[
a, b, c

e, f

∣∣∣ 1

]

is an entire function in b, c, e, f .

Let us return to the process P̃(N). Set Σ = z + z′ + w + w′.

Theorem 7.1. For any (z, z′, w, w′) ∈ Dadm, the normalized Christoffel -

Darboux kernel K̃(N) is given by

K̃(N)(x, y) =
1

hN−1

pN (x)pN−1(y) − pN−1(x)pN (y)

x − y

√
f(x)f(y) ,(7.1)

10We could not find a proof of this fact in the literature. We give our own proof at the end
of the appendix.
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where x, y ∈ X(N),

(7.2)

pN (x) =
Γ(x + w′ + N+1

2 )

Γ(x + w′ − N−1
2 )

3F2

[
−N, z + w′, z′ + w′

Σ, x + w′ − N−1
2

∣∣∣∣∣ 1

]
,

pN−1(x) =
Γ(x + w′ + N+1

2 )

Γ(x + w′ − N−1
2 + 1)

3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1

Σ + 2, x + w′ − N−1
2 + 1

∣∣∣∣∣ 1

]
,

hN−1 = Γ

[
N, Σ + 1, Σ + 2

Σ + N + 1, z + w + 1, z + w′ + 1, z′ + w + 1, z′ + w′ + 1

]
,

and f(x) is given by (6.1).

Equivalently,

K̃(N)(x, y) =
1

hN−1

p̃N (x)pN−1(y) − pN−1(x)p̃N (y)

x − y

√
f(x)f(y) ,(7.3)

where

p̃N (x) =
Γ(x + w′ + N+1

2 )

Γ(x + w′ − N−1
2 )

3F2

[
−N, z + w′, z′ + w′

Σ + 1, x + w′ − N−1
2

∣∣∣∣∣ 1

]
.(7.4)

Comment. 1) If Σ = 0 then the formula for pN above does not make

sense because it involves a hypergeometric function with a zero lower index.

The formula (7.3) gives an explicit continuation of the right-hand side of (7.1)

to the set Σ = 0.

2) For any x ∈ C, the values pN−1(x), p̃N (x), as well as the constant hN−1,

are analytic functions in (z, z′, w, w′) ∈ D. The value pN (x) is an analytic

function in (z, z′, w, w′) ∈ D \ {Σ = 0}. If (z, z′, w, w′) ∈ D0 then hN−1 6= 0.

Proof of Theorem 7.1. It is convenient to set

t = x + N−1
2 , u = z + N − 1, u′ = z′ + N − 1, v = w, v′ = w′.

Then t ranges over the lattice Z and the function f(x) turns into the function

g(t) =
1

Γ(u + 1 − t)Γ(u′ + 1 − t)Γ(v + 1 + t)Γ(v′ + 1 + t)
, t ∈ Z .

We consider g(t) as a weight function on the lattice Z. Note that

g(t) ≤ const ·(1 + |t|)−u−u′−v−v′−2, |t| → ∞.

Indeed, this follows from the estimate of the function f given in the beginning

of the proof of Proposition 6.1.
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We aim to study monic orthogonal polynomials p0 = 1, p1, p2, . . . cor-

responding to the weight function g(t). In general, there are only finitely

many such polynomials, because, for any (nonintegral) values of the parame-

ters u, u′, v, v′, the weight function g has only finitely many moments. This is a

major difference between our polynomial ensemble and polynomial ensembles

which are usually considered in the literature; cf. [NW], [J].

The number of existing polynomials with the weight function g(t) depends

on the number of finite moments of g(t), i.e., on u + u′ + v + v′. Specifi-

cally, the mth polynomial exists if g(t) has finite moments up to the order

(2m − 1) (this follows, e.g., from the determinantal formula expressing or-

thogonal polynomials through the moments; see [Er, Vol. 2, 10.3(4)]). This

condition is satisfied if u + u′ + v + v′ > 2m − 2. Let

(pm, pm) =
∑

t∈Z

p2
m(t)g(t)

denote the square of the norm of the mth polynomial. This quantity is well

defined if g(t) has finite (2m)th moment, which holds if a slightly stronger

condition is satisfied: u+u′ + v + v′ > 2m− 1. (Note that it may happen that

pm exists but (pm, pm) = ∞.)

Proposition 7.2. Set S = u + u′ + v + v′ and let m = 0, 1, . . . .

If S > 2m − 2 then

pm(t) =
Γ(v′ + 1 + t)

Γ(v′ + 1 + t − m)
3F2

[
−m, u + v′ + 1 − m, u′ + v′ + 1 − m

S + 2 − 2m, v′ + 1 + t − m

∣∣∣∣ 1

]
.

If S > 2m − 1 then

(pm, pm) ≡
∑

t∈Z

p2
m(t)g(t) =

Γ

[
m + 1,S + 1 − 2m,S + 2 − 2m

S − m + 2, u + v + 1 − m, u + v′ + 1 − m, u′ + v + 1 − m, u′ + v′ + 1 − m

]
.

We will give the proof of Proposition 7.2 at the end of this section. Now

we proceed with the proof of Theorem 7.1.

Note that the condition Σ = z+z′+w+w′ > −1 entering the definition of

Dadm is equivalent to the condition S = u+u′ + v + v′ > 2N − 3. This implies

the existence of the N th Christoffel-Darboux kernel associated with the weight

function g(t),

N−1∑

m=0

pm(t1) pm(t2)

(pm, pm)
, t1, t2 ∈ Z.
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Hence, the N th Christoffel-Darboux kernel associated with the weight function

f has the form

S(N)(x, y) :=

N−1∑

m=0

pm(x + N−1
2 ) pm(y + N−1

2 )

(pm, pm)
, x, y ∈ X(N).

By the general definition of the normalized Christoffel-Darboux kernel (see

(5.2)),

K̃(N)(x, y) = S(N)(x, y)
√

f(x)f(y).

On the other hand, let T
(N)
1 (x, y) denote the right-hand side of (7.1) with the

term
√

f(x)f(y) removed. Similarly, let T
(N)
2 (x, y) denote the right-hand side

of (7.3) with the term
√

f(x)f(y) removed. It suffices to prove that

S(N)(x, y) = T
(N)
1 (x, y) = T

(N)
2 (x, y).

Lemma 7.3. For any x, y ∈ X(N), the kernel S(N)(x, y) viewed as a func-

tion in (z, z′, w, w′), can be extended to a holomorphic function on the do-

main D0.

Recall that the domain D0 was introduced in §3.

Proof. Indeed, the claim of the lemma holds for pm(x+ N−1
2 ), pm(y+ N−1

2 ),

and (pm, pm)−1, where m = 0, . . . , N − 1. This can be verified using explicit

formulas of Proposition 7.2.

Let us prove first that S(N)(x, y) = T
(N)
1 (x, y) under the additional re-

striction Σ > 0. Then S > 2N − 2, so that the N th polynomial pN exists.

Hence, the kernel S(N) can be written in the form (see Remark 5.2)

S(N)(x, y) =
1

(pN−1, pN−1)

×
pN (x + N−1

2 )pN−1(y + N−1
2 ) − pN−1(x + N−1

2 )pN (y + N−1
2 )

x − y
.

By explicit formulas of Proposition 7.2,

pN (x + N−1
2 ) = pN (x), pN−1(x + N−1

2 ) = pN−1(x), (pN−1, pN−1) = hN−1.

This implies the desired equality when Σ > 0.

Next, observe that the expression T
(N)
1 (x, y) is well defined when

(z, z′, w, w′) ranges over the domain D0 \ {Σ = 0} and is a holomorphic

function on this domain. Together with Lemma 7.3 this proves the equal-

ity S(N)(x, y) = T
(N)
1 (x, y) provided that (z, z′, w, w′) ∈ D0 \ {Σ = 0}. As a

consequence, we get (7.1) under the restriction Σ 6= 0.
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Finally, the series representation for 3F2 easily implies the identity

3F2

[
a, b, c

e, f

∣∣∣ 1

]
= 3F2

[
a, b, c

e + 1, f

∣∣∣ 1

]
+

abc

e(e + 1)f
3F2

[
a + 1, b + 1, c + 1

e + 2, f + 1

∣∣∣ 1

]
.

Applying this identity to pN we see that pN (x) = p̃N (x) + const pN−1(x). It

follows that T
(N)
1 (x, y) = T

(N)
2 (x, y) provided that pN (x) makes sense. Thus,

we see that the singularity in T
(N)
1 (x, y) on the hyperplane Σ = 0 is removable.

Specifically, this singularity is explicitly removed by means of the equality

T
(N)
1 (x, y) = T

(N)
2 (x, y) (equivalently, by means of (7.3)). This completes the

proof of Theorem 7.1.

Proof of Proposition 7.2. We apply the general formalism explained in

[NSU, Ch. 2]. Consider the following difference equation on the lattice Z:

(7.5′) σ(t)∆∇y(t) + τ(t)∆ y(t) + γ y(t) = 0,

where

(7.5′′) σ(t) = −(t + v)(t + v′),

τ(t) = S t + vv′ − uu′,

∇y(t) = y(t) − y(t − 1), ∆y(t) = y(t + 1) − y(t).

According to [NSU] this equation is of hypergeometric type, that is, σ(t) is a

polynomial of degree 2, τ(t) is a polynomial of degree 1, and γ is a constant.

The crucial fact is that this equation can be rewritten in the self-adjoint form

with the weight function g(t):

(∆ ◦ σg ◦ ∇) y + γ gy = 0,

which easily follows from the relation

g(t)

g(t + 1)
=

σ(t + 1)

σ(t) + τ(t)
.

(Note that in [NSU] the weight function is denoted by ρ and the spectral

parameter γ is denoted by λ.)

We will seek pm as a monic polynomial of degree m, which satisfies the

difference equation above with an appropriate value of γ. According to [NSU],

this value must be equal to

γ = γm = −mτ ′ −
m(m − 1)

2
σ′′,

where the derivatives τ ′ and σ′′ are constants, because τ has degree 1 and σ

has degree 2. Further, the polynomial in question exists and is unique provided

that

µk := γm + kτ ′ +
k(k − 1)

2
σ′′ 6= 0, k = 0, . . . , m − 1.
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In our case τ ′ = S, σ′′ = −2, so that

γm = m(m − 1 − S)

and the nonvanishing condition µk 6= 0 turns into

S 6= m + k − 1, k = 0, . . . , m − 1,

which is certainly satisfied if S > 2m − 2.

Our additional condition Σ > 0 is equivalent to S > 2N − 2. It follows

that the desired polynomial solutions pm certainly exist for m ≤ N .

Following the notation of [NSU] set

Amm =m!

m−1∏

k=0

(τ ′ + m+k−1
2 σ′′),

gm(t) = g(t)

m∏

l=1

σ(t + l),

Sm =
∑

t∈Z

gm(t).

Then, according to [NSU],

pm(x) =
(−1)m m!

Amm

m∑

k=0

(−m)kgm(x − m + k)

k! g(x)
,

(pm, pm) =
(−1)m(m!)2Sm

Amm
.

Applying this recipe in our concrete case, we get

Amm = m!
Γ(S − m + 2)

Γ(S − 2m + 2)
,

gm(t) =
(−1)m

Γ(u + 1 − m − t)Γ(u′ + 1 − m − t)Γ(v + 1 + t)Γ(v′ + 1 + t)

and, by Dougall’s formula [Er, Vol.1, 1.4(1)],

Sm =
∑

t∈Z

gm(t)

= (−1)m Γ

[
S + 1 − 2m

u + v + 1 − m, u′ + v′ + 1 − m, u′ + v + 1 − m , u + v′ + 1 − m

]
.

This implies the expression for (pm, pm) given in Proposition 7.2.
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Further, after simple transformations we get

pm(t) = Γ

[
S − 2m + 2, v + 1 + t, v′ + 1 + t

S − m + 2, v + 1 − m + t, v′ + 1 − m + t

]

×
m∑

k=0

(−m)k(t − u)k(t − u′)k

(t + v + 1 − m)k(t + v′ + 1 − m)kk!

= Γ

[
S − 2m + 2, v + 1 + t, v′ + 1 + t

S − m + 2, v + 1 − m + t, v′ + 1 − m + t

]

×3F2

[
−m, t − u, t − u′

t + v + 1 − m, t + v′ + 1 − m

∣∣∣∣ 1

]
.

Applying the transformation

3F2

[
a, b, c

e, f

∣∣∣∣ 1

]
= Γ

[
e, e + f − a − b − c

e + f − b − c, e − a

]
3F2

[
a, f − b, f − c

e + f − b − c, f

∣∣∣∣ 1

]
(7.6)

(see Appendix) to the last expression we arrive at the desired formula for pm(t).

The orthogonal polynomials {pm} were discovered by R. Askey [As]. Later

they were independently found by Peter A. Lesky (see [Les1], [Les2]). We are

grateful to Tom Koornwinder for informing us about Lesky’s work, and to

Peter A. Lesky for sending us his preprint [Les2].

8. The correlation kernel of the process P(N)

In this section we study the process P(N) on the lattice X(N) introduced

in Section 4. In Section 6 we showed that P(N) is an L-ensemble, hence, it

is a determinantal point process. Denote by K(N) the X(N) × X(N) matrix

defined by K(N) = L(N)(1+L(N))−1, where L(N) is as defined in Section 6. By

Proposition 5.3, K(N) is a correlation kernel for P(N). Our goal in this section

is to provide analytic expressions for K(N) suitable for a future limit transition

as N → ∞.

Our analysis is based on the general results of §5(f)–(h), where we take

X = X(N), XI = Xout, XII = Xin. To compute the kernel K(N) we use the

method of §5(f). Proposition 5.6 expresses the kernel in terms of four functions

RI , RII , SI , SII , which solve a discrete Riemann-Hilbert problem. In our

concrete situation we will redenote these functions by R
(N)
out , R

(N)
in , S

(N)
out , S

(N)
in .

In order to apply this method we need to impose an additional restriction

on the parameters. Specifically, we require that (z, z′, w, w′) ∈ D′
adm∩{Σ > 0},

where D′
adm was defined in Definition 6.3 and Σ = z + z′ + w + w′. Later we

show that the final expression for K(N) remains valid without the restriction

Σ > 0.
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Thanks to Proposition 5.8, the functions R
(N)
out and S

(N)
out are immediately

expressed through the orthogonal polynomials pN , pN−1 evaluated in Section 7.

The remaining two functions R
(N)
in and S

(N)
in are uniquely determined by their

relations to R
(N)
out and S

(N)
out ; see (5.12) and (8.3) below. We provide certain

explicit expressions for R
(N)
in , S

(N)
in and check that they satisfy the needed

relations. About the derivation of these expressions, see Remark 8.9 below.

To remove the restriction Σ > 0 we use Theorem 5.10 and Lemma 7.3.

These results show that the kernel K(N) divided by a simple factor, admits a

holomorphic continuation (as a function of the parameters) to a certain domain

D′
0 ⊃ D′

adm.

Now we proceed to the realization of the plan described above.

We assume that (z, z′, w, w′) ∈ D′
adm. As was mentioned in Section 6, this

guarantees that the weight function f(x) does not vanish on Xin. Next, we

temporarily assume that Σ > 0. This ensures that the function hI belongs to

ℓ2(Xin) as required in §5(h).

Following Proposition 5.8 and using Theorem 7.1, we define two mero-

morphic functions R
(N)
out and S

(N)
out on the complex plane with poles in Xin as

follows:

R
(N)
out (x) =

pN (x)

(x − N−1
2 ) · · · (x + N−1

2 )
(8.1)

= Γ

[
x − N−1

2 , x + w′ + N+1
2

x + N+1
2 , x + w′ − N−1

2

]
3F2

[
−N, z + w′, z′ + w′

Σ, x + w′ − N−1
2

∣∣∣∣ 1

]
,

and

(8.2) S
(N)
out (x) =

pN−1(x)

hN−1(x − N−1
2 ) · · · (x + N−1

2 )

=
1

hN−1
Γ

[
x−N−1

2 , x+w′+ N+1
2

x+ N+1
2 , x+w′−N−3

2

]
3F2

[
−N+1, z+w′+1, z′+w′+1

Σ+2, x + w′−N−3
2

∣∣∣∣ 1

]
,

where hN−1 is as defined in (7.2). Observe that

R
(N)
out (x) = 1 + O(x−1), S

(N)
out = O(x−1), x → ∞.

Note that the right-hand side of (8.1) makes sense for any x ∈ C\Xin and

(z, z′, w, w′) ∈ D \ {Σ = 0}, and the right-hand side of (8.2) makes sense for

any x ∈ C \ Xin and (z, z′, w, w′) ∈ D0.

Using (5.12) as a prompt, we set

S
(N)
in (x) = −

∑

y∈Xout

ψ
(N)
out (y)R

(N)
out (y)

y − x
, R

(N)
in (x) = 1 −

∑

y∈Xout

ψ
(N)
out (y)S

(N)
out (y)

y − x
,

(8.3)

where the functions ψ
(N)
out and ψ

(N)
in are as introduced in Section 6.
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Note that ψ
(N)
out (x) ≤ const (1 + |x|)−Σ (this follows from the estimate of

the weight function f , see §6). Since, by assumption, Σ > 0, it follows that

the series (8.3) converge and define meromorphic functions with poles in Xout.

Proposition 8.1. We have

R
(N)
in (x) =−

sinπz

π
Γ

[
z′ − z, z + w + 1, z + w′ + 1

Σ + 1

]
(8.4)

×Γ

[
x + N+1

2 , −x + N+1
2 , N + 1 + Σ

−x + z′ + N+1
2 , x + w + N+1

2 , N + 1 + z + w′

]

×3F2

[
z + w′ + 1, −z′ − w, −x + z + N+1

2

z − z′ + 1, N + 1 + z + w′

∣∣∣∣∣ 1

]

−{ similar expression with z and z′ interchanged },

and

S
(N)
in (x) =−

sinπz

π
Γ

[
z′ − z, Σ

z′ + w, z′ + w′

]
(8.5)

×Γ

[
x + N+1

2 , −x + N+1
2 , N + 1

−x + z′ + N+1
2 , x + w + N+1

2 , N + 1 + z + w′

]

×3F2

[
−z′ − w + 1, z + w′, −x + z + N+1

2

z − z′ + 1, N + 1 + z + w′

∣∣∣∣∣ 1

]

−{ similar expression with z and z′ interchanged }.

Singularities. Using the structure of singularities of a general 3F2 function

(see the beginning of §7) it is easy to verify that the formulas above make sense

for x ∈ C\Xout and (z, z′, w, w′) ∈ D0\({Σ = 0} ∪ {z − z′ ∈ Z}) . Also, {Σ = 0}

is indeed a singular set for S
(N)
in . The singularities {z − z′ ∈ Z}, however, are

removable, as long as we are in D0 \ {Σ = 0}. For Σ > 0 this follows from the

definitions (8.3).

Proof. Since both parts of (8.4) and (8.5) are analytic in the parameters,

it is enough to give a proof for nonintegral values of z, z′, w, w′, such that

z − z′ /∈ Z, Σ /∈ Z.
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We start by rewriting the expressions above in a somewhat more suitable

form and introduce a meromorphic function

F (x) =
1

sin(π(z′ − z)) sin(π(z + z′ + w + w′))

×

(
sin(π(z + w)) sin(π(z + w′)) sin(πz′)

sin(π(−x + z′ + N+1
2 ))

−
sin(π(z′ + w)) sin(π(z′ + w′)) sin(πz)

sin(π(−x + z + N+1
2 ))

)
.

It is not difficult to see that if x ∈ X, that is, if x − N−1
2 ∈ Z, then F (x) =

(−1)x−N−1

2 .

Let us also introduce a more detailed notation h(N −1, z, z′, w, w′) for the

constant hN−1 defined in (7.2).

Lemma 8.2. The right-hand side of (8.4) can be written in the form

(8.6)

Γ

[
x + N+1

2 , x − z − N−1
2

x − N−1
2 , x − z + N+1

2

]
3F2

[
N, −z − w′, −z − w

−Σ, x − z + N+1
2

∣∣∣∣ 1

]

+Γ

[
x + N+1

2 , −x + N+1
2

−x + z + N+1
2 , −x + z′ + N+1

2 , x + w + N+1
2 , x + w′ − N−3

2

]

×
F (x)

h(N − 1, z, z′, w, w′)
3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1

Σ + 2, x + w′ − N−3
2

∣∣∣∣ 1

]
,

and the right-hand side of (8.5) can be written in the form

(8.7)

h

(
N, z −

1

2
, z′ −

1

2
, w −

1

2
, w′ −

1

2

)
Γ

[
x + N+1

2 , x − z − N−1
2

x − N−1
2 , x − z + N+3

2

]

×3F2

[
N + 1, −z − w′ + 1, −z − w + 1

−Σ + 2, x − z + N+3
2

∣∣∣∣ 1

]

+Γ

[
x + N+1

2 , −x + N+1
2

−x + z + N+1
2 , −x + z′ + N+1

2 , x + w + N+1
2 , x + w′ − N−1

2

]

×F (x) 3F2

[
−N, z + w′, z′ + w′

Σ, x + w′ − N−1
2

∣∣∣∣ 1

]
.
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Singularities. It looks as if (8.6) may have more singular points than the

right-hand side of (8.4). For example, the first summand in (8.6) has poles at

the points, where

x − u − N−1
2 ∈ {0,−1, . . . }, u = z or z′,

and the same is true about the second summand. The fact that these poles

cancel out is not obvious. Similar cancellations happen in (8.7).

The proof of the lemma can be found in the appendix. It is rather tedious

and is based on the known transformation formulas for 3F2 with the unit

argument.

Our next step is to prove the following statement.

Lemma 8.3. The only singularities of the right-hand of (8.4), regarded as

a function in x ∈ C, are simple poles at the points of Xout. The residue of the

right-hand side of (8.4) at any point x ∈ Xout equals ψ
(N)
out (x)S

(N)
out (x). Similarly,

the only singularities of the right-hand of (8.5), regarded as a function in x ∈ C,

are simple poles at the points of Xout. The residue of the right-hand side of

(8.5) at any point x ∈ Xout equals ψ
(N)
out (x)R

(N)
out (x).

Proof. The location of poles follows from the general structure of singu-

larities of 3F2 (see the beginning of §7).

To evaluate the residue of the right-hand side of (8.4) we will use the

formula (8.6). We easily see that first summand of (8.6) takes finite values on

Xout. As for the second summand of (8.6), the 3F2 is a terminating series and

it has no singularities in Xout. Furthermore, F (x) = (−1)x−N−1

2 for x ∈ X, in

particular, for x ∈ Xout. It remains to examine the residue of

Γ

(
x +

N + 1

2

)
Γ

(
−x +

N + 1

2

)
.

Assume that x ∈ Xout and x > N−1
2 . Then

Res
u=x

Γ
(
−u + N+1

2

)
=

(−1)x−N−1

2

Γ(x − N−1
2 )

.

Thus, the residue of (8.6) at x is equal to

Γ

[
x + N+1

2

x − N−1
2 , −x + z + N+1

2 , −x + z′ + N+1
2 , x + w + N+1

2 , x + w′ − N−3
2

]

×
1

h(N − 1, z, z′, w, w′)
3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1

Σ + 2, x + w′ − N−3
2

∣∣∣∣ 1

]
.

By a direct comparison we see that this is equal to ψ
(N)
out (x)S

(N)
out (x).
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Similarly, if x ∈ Xout and x < −N−1
2 ,

Res
u=x

Γ
(
u + N+1

2

)
=

(−1)−x−N+1

2

Γ(−x − N−1
2 )

,

and the residue of (8.6) at x equals

Γ

[
−x + N+1

2

−x−N−1
2 , −x+z+ N+1

2 , −x+z′+ N+1
2 , x+w+ N+1

2 , x+w′−N−3
2

]

×
(−1)N

h(N − 1, z, z′, w, w′)
3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1

Σ + 2, x + w′ − N−3
2

∣∣∣∣ 1

]
,

which is again equal to ψ
(N)
out (x)S

(N)
out (x).

Thus, we have proved the first statement of the lemma. The proof of the

second one is very similar.

Lemma 8.3 shows that the right-hand sides of (8.3) and of (8.4), (8.5)

have the same singularity structure. Clearly, the sums in the right-hand sides

of (8.3) decay as x → ∞ and x keeps finite distance from the points of Xout.

We aim to prove that the right-hand sides of (8.4) and (8.5) have a similar

property. Using Lemma 8.2, we may consider the expressions (8.6) and (8.7).

Consider the formula (8.6). We first assume that ℜx ≥ 0. Let us examine

the first summand. The gamma factors form a rational function which tends

to 1 uniformly in arg(x) as |x| → ∞.

In order to handle the asymptotics of the 3F2 factor, let us apply the

formula (7.6) to it with

a = −z − w, b = −z − w′, c = N, e = x − z +
N + 1

2
, f = −Σ.

We get

3F2

[
N, −z − w′, −z − w

−Σ, x − z + N+1
2

∣∣∣∣ 1

]
= Γ

[
x − z + N+1

2 , x − z′ − N−1
2

x − z − z′ − w − N−1
2 , x + w + N+1

2

]

×3F2

[
−z − w, −z′ − w, −Σ − N

−Σ, x − z − z′ − w − N−1
2

∣∣∣∣ 1

]
.

Using the asymptotic relation

Γ(x + α)

Γ(x + β)
= xα−β(1 + O(|x|−1)),(8.8)

which is uniform in arg(x) ∈ (−π + ε, π − ε) for any ε > 0, we see that the

gamma factors tend to 1 as |x| → ∞.

As for the 3F2, we see that the sum of the lower parameters minus the

sum of the upper parameters is equal to x + w + N+1
2 . Then if ℜx ≥ 0 and

ℜw + N+1
2 > 0, the defining series for this 3F2 converges uniformly in x,
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provided that the distance from x to the lattice Z + z + z′ + w + N−1
2 is

bounded from zero. One proof of this fact can be obtained by applying the

general estimate (see [Er, Vol. 1, 1.9(8)])

c1α
β−γ <

Γ(α + β)

Γ(α + γ)
< c2α

β−γ , α > 0, ℜβ, ℜγ > const > 0,

c1, c2 > 0 are some fixed constants, to the terms of the series.

Thus, we can pass to the limit |x| → ∞ term-wise, and since all terms of

the series starting from the second one converge to zero uniformly in arg(x), we

conclude that the first summand of (8.6), as |x| → ∞, converges to 1 uniformly

in x such that ℜx ≥ 0 and the distance from x to the lattice Z+z+z′+w+ N−1
2

is bounded from zero.

Let us proceed to the second summand of (8.6). Now the 3F2 part is

a rational function which tends to 1 as |x| → ∞ uniformly in arg(x). The

remaining part — the product of gamma factors and F (x) — can be written

in the form

const1 Γ

[
x + N+1

2 , −x + N+1
2 , x − z − N−1

2

−x + z′ + N+1
2 , x + w + N+1

2 , x + w′ − N−3
2

]
(8.9)

+ const2 Γ

[
x + N+1

2 , −x + N+1
2 , x − z′ − N−1

2

−x + z + N+1
2 , x + w + N+1

2 , x + w′ − N−3
2

]
,

where for F (x) we used the formulas (u = z or z′)

1

sin(π(−x + u + N+1
2 ))

=
Γ(−x + u + N+1

2 )Γ(x − u − N−1
2 )

π
.

Further, using the relations (u = z or z′)

Γ
(
−x + N+1

2

)

Γ
(
−x + u + N+1

2

) =
sin(π(−x + u + N+1

2 )) Γ(x − u − N−1
2 )

sin(π(−x + N+1
2 )) Γ(x − N−1

2 )
,

observing that the ratio of sines is bounded as long as x is bounded from the

lattice X = Z + N−1
2 , and employing (8.8), we see that the absolute value

of (8.9) is bounded by a constant times |x|−Σ−1, and the bound is uniform

in x such that arg(x) is bounded from ±π and x is bounded from X. Since

Σ + 1 > 0, the second term of (8.6) tends to zero.

We conclude that, under the condition ℜw+ N+1
2 > 0, the expression (8.6)

converges to 1 as |x| → ∞ uniformly in x such that ℜx ≥ 0 and the distance

from x to the lattices Z+ N−1
2 and Z+ z + z′ +w + N−1

2 is bounded from zero.

To extend this estimate to the domain ℜx ≤ 0 we use the following:

Lemma 8.4. The expression (8.6) is invariant with respect to the following

change of variable and parameters:

x 7→ −x, (z, z′) ←→ (w′, w).
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We give a proof of this lemma in the appendix. Similarly to the proof

of Lemma 8.2, it is rather technical and is based on certain transformation

formulas for 3F2.

Lemma 8.4 immediately implies that, under the conditions ℜw+ N+1
2 > 0,

ℜz′ + N+1
2 > 0, the expression (8.6) converges to 1 as |x| → ∞ uniformly in x

such that the distance from x to the lattices Z + N−1
2 , Z + z + z′ + w + N−1

2

and Z + z′ + w + w′ + N−1
2 is bounded from zero.

This statement together with Lemma 8.3 shows that the right-hand side

of the second formula of (8.3) and the right-hand side of (8.4) have the same

singularities and asymptotics at infinity. Thus, they must be equal. This

proves (8.4) under the additional conditions ℜw + N+1
2 > 0, ℜz′ + N+1

2 > 0.

Since both sides of (8.4) depend on the parameters z, z′, w, w′ analytically, the

additional conditions may be removed. The proof of (8.4) is complete.

The proof of (8.5) is very similar. It is based on the following technical

statement, which will also be addressed in the appendix.

Lemma 8.5. The expression (8.7) is skew -invariant with respect to

x 7→ −x, (z, z′) ←→ (w′, w).

The proof of Proposition 8.1 is now complete.

Remark 8.6. Having proved the formulas (8.6), (8.7), it is easy to verify

(5.23) directly. Indeed, if x ∈ Xin then the first summands of (8.6) and (8.7)

vanish thanks to Γ(x + N+1
2 )/Γ(x − N−1

2 ), while in the second ones we have

F (x) = (−1)x−N−1

2 . A direct comparison of the resulting expressions with (8.1)

and (8.2) yields (5.23).

Theorem 8.7. Let (z, z′, w, w′) ∈ D′
adm (see Definition (6.3)), P(N)

be the corresponding point process defined in Section 4, and K(N) =

L(N)(1 + L(N))−1, where L(N) is as in Section 6.

Then the kernel K(N)(x, y), represented in the block form corresponding

to the splitting X = Xout ⊔ Xin, is equal to

K
(N)
out,out(x, y) =

√
ψ

(N)
out (x)ψ

(N)
out (y)

R
(N)
out (x)S

(N)
out (y) − S

(N)
out (x)R

(N)
out (y)

x − y
,

K
(N)
out,in(x, y) =

√
ψ

(N)
out (x)ψ

(N)
in (y)

R
(N)
out (x)R

(N)
in (y) − S

(N)
out (x)S

(N)
in (y)

x − y
,

K
(N)
in,out(x, y) =

√
ψ

(N)
in (x)ψ

(N)
out (y)

R
(N)
in (x)R

(N)
out (y) − S

(N)
in (x)S

(N)
out (y)

x − y
,

K
(N)
in,in(x, y) =

√
ψ

(N)
in (x)ψ

(N)
in (y)

R
(N)
in (x)S

(N)
in (y) − S

(N)
in (x)R

(N)
in (y)

x − y
,
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with the functions R
(N)
out , S

(N)
out , R

(N)
in , S

(N)
in given by (8.1), (8.2), (8.4), (8.5),

the functions ψ
(N)
out , ψ

(N)
in given by (6.2), (6.3), and the indeterminacy on the

diagonal x = y resolved by L’Hospital ’s rule:

K
(N)
out,out(x, x) = ψ

(N)
out (x)

(
(R

(N)
out )′(x)S

(N)
out (x) − (S

(N)
out )′(x)R

(N)
out (x)

)
,

K
(N)
in,in(x, x) = ψ

(N)
in (x)

(
(R

(N)
in )′(x)S

(N)
in (x) − (S

(N)
in )′(x)R

(N)
in (x)

)
.

Singularities. We know that the functions R
(N)
out and S

(N)
in are singular

when Σ = 0; see the beginning of the section. However, as will be clear from

the proof, the value K(N)(x, y) is a well-defined continuous function on the

whole Dadm including the set {Σ = 0}, for any x, y ∈ X(N).

Proof. Under the additional restriction Σ > 0 the statement of the the-

orem follows from the above results. Indeed, the functions R
(N)
out , S

(N)
out , R

(N)
in ,

S
(N)
in defined by (8.1), (8.2), (8.3) solve the discrete Riemann-Hilbert problem

associated with L(N); see (5.18) and (5.12). Proposition 5.6 explains how the

kernel K(N) is written in terms of these functions. Proposition 8.1 provides

explicit expressions (8.4), (8.5) for R
(N)
in , S

(N)
in , and this completes the proof

when Σ > 0.

Now we want to get rid of this restriction and introduce a function Ψ(N) :

X(N) → C by

Ψ(N)(x) =





ψ
(N)
out (x), x ∈ Xout,

1

ψ
(N)
in (x)

, x ∈ Xin.

We have

Ψ(N)(x) = f(x) ·

{ (
(x − N−1

2 )N

)2
, x ∈ Xout,(

Γ(−x + N+1
2 )Γ(x + N+1

2 )
)2

, x ∈ Xin,
(8.10)

where f(x) is as defined in (6.1). Note that Ψ(N)(x) is entire in (z, z′, w, w′)

for any x ∈ X.

Set

D′
0 = {(z, z′, w, w′) ∈ D0 | z, z′, w, w′ 6= −1,−2, . . . }.

Recall that D0 contains Dadm and note that D′
0 ∩Dadm = D′

adm. In particular,

D′
0 is a domain in C4 containing D′

adm.

Lemma 8.8. Let (z, z′, w, w′) ∈ D′
adm. The kernel K(N)(x, y) can be writ-

ten in the form

K(N)(x, y) =
√

Ψ(N)(x)Ψ(N)(y)
◦
K

(N)

(x, y),(8.11)

where
◦
K

(N)

(x, y) can be extended (as a function in (z, z′, w, w′)) to a holomor-

phic function on the domain D′
0.
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Proof of the lemma. Recall (see §7) that

K̃(N)(x, y) = S(N)(x, y)
√

f(x)f(y),

where S(N) is the (ordinary, not normalized) Christoffel-Darboux kernel, which

admits a holomorphic continuation to the domain D0 (see Lemma 7.3). The-

orem 5.10 provides a connection between the kernels K(N) and K̃(N). Specifi-

cally, (5.24) reads

K(N)(x, y) = ε(x)(K̃(N))△(x, y)ε(y),

where the symbol ( · )△ is as explained in §5(c). Since ε( · ) does not de-

pend on (z, z′, w, w′), it suffices to prove that the kernel (K̃(N))△(x, y) can be

represented as the product of
√

Ψ(N)(x)Ψ(N)(y) and a holomorphic function

on D′
0.

By (8.10), Ψ(N)(x) differs from f(x) by a positive factor not depending on

(z, z′, w, w′). Hence, it is enough to prove that (K̃(N))△(x, y) can be written

as the product of
√

f(x)f(y) and a holomorphic function on D′
0.

By (5.1) we have

(K̃(N))△(x, y) =

{
f(x)

(
1

f(x) − S(N)(x, x)
)

, x = y ∈ Xin ,

±
√

f(x)f(y)S(N)(x, y), otherwise,

where the sign ‘±’ does not depend on (z, z′, w, w′). From the definition of

f(x) it follows that for x ∈ Xin,
1

f(x) admits a holomorphic extension (as a

function in the parameters) to D′
0. Since S(N)(x, y) is holomorphic on D0, the

lemma follows.

Now we complete the proof of Theorem 8.7. Since we have already proved

its claim when Σ > 0, we see that under this restriction

◦
K

(N)

out,out(x, y) =
R

(N)
out (x)S

(N)
out (y) − S

(N)
out (x)R

(N)
out (y)

x − y
,

◦
K

(N)

out,in(x, y) = Ψ(N)(y)
R

(N)
out (x)R

(N)
in (y) − S

(N)
out (x)S

(N)
in (y)

x − y
,

◦
K

(N)

in,out(x, y) = Ψ(N)(x)
R

(N)
in (x)R

(N)
out (y) − S

(N)
in (x)S

(N)
out (y)

x − y
,

◦
K

(N)

in,in(x, y) = Ψ(N)(x)Ψ(N)(y)
R

(N)
in (x)S

(N)
in (y) − S

(N)
in (x)R

(N)
in (y)

x − y
.

Since the functions R
(N)
out , S

(N)
out , R

(N)
in , S

(N)
in , and Ψ(N) are all holomorphic on

D′
0 \ {Σ = 0}, these formulas hold on D′

0, and the singularity at Σ = 0 is

removable. As D′
0 ⊃ D′

adm, the proof of Theorem 8.7 is complete.
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Remark 8.9. The reader might have noticed that the proof of Proposi-

tion 8.1 given above is a verification that our formulas give the right answer

rather than a derivation of these formulas. Unfortunately, at this point we can-

not suggest any derivation procedure for which we would be able to prove that

it produces the formulas we want. However, we can explain how we obtained

the answer.

Recall that in our treatment of the orthogonal polynomials in Section 7

the crucial role was played by the difference equation (7.5). Corollary 5.9 shows

that if we know a difference equation for the orthogonal polynomials then we

can write difference equations for the values of R
(N)
in and S

(N)
in on the lattice

Xin. At this point we make the assumption that the meromorphic functions

R
(N)
in (ζ) and S

(N)
in (ζ) satisfy the same difference equations. A priori , it is not

clear at all why this should be the case. However, the general philosophy of

the Riemann-Hilbert problem suggests that R
(N)
in (ζ) and S

(N)
in (ζ) should satisfy

some difference equations. So we proceed and find meromorphic solutions of

the difference equation which we got from the lattice. This can be done using

general methods of solving difference equations with polynomial coefficients,

see [MT, Chap. XV]. We also want our solutions to be holomorphic in C \
Xout and to have fixed asymptotics at infinity, and this leads (through heavy

computations!) to the formulas of Lemma 8.2. Unfortunately, these formulas

are not suitable for the limit transition N → ∞. So we had to play around

with the transformation formulas for 3F2 to get the convenient formulas of

Proposition 8.1.

9. The spectral measures and continuous point processes

Define a continuous phase space

X = R \ {±1
2}

and divide it into two parts

X = Xin ⊔ Xout,

Xin = (−1
2 , 1

2), Xout = (−∞,−1
2) ⊔ (1

2 ,+∞).

As in Section 4, by Conf(X) we denote the space of configurations in X.

We define a map ι : Ω → Conf(X) by

ω = (α+, β+;α−, β−; δ+, δ−)(9.1)
ι

7−→C(ω) = {α+
i + 1

2} ⊔ {1
2 − β+

i } ⊔ {−α−
j − 1

2} ⊔ {−1
2 + β−

j },

where we omit possible 0’s in α+, β+, α−, β−, and also omit possible 1’s in β+

or β−.

Proposition 9.1. The map (9.1) is a well -defined Borel map.
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Proof. We have to prove that, for any compact set A ⊂ X, the function

NA(ι(ω)) takes finite values and is a Borel function; see the definitions at the

beginning of Section 4. Without loss of generality, we may assume that A is a

closed interval, entirely contained in (−1
2 , 1

2), (1
2 ,+∞) or (−∞,−1

2).

Assume that A = [x, y] ⊂ (−1
2 , 1

2). Then

N (ι(ω)) = Card{i | 1
2 − y ≤ β+

i ≤ 1
2 − x} + Card{j | 1

2 + x ≤ β−
j ≤ 1

2 + y}

=
∞∑

i=1

1[1/2−y,1/2−x](β
+
i ) +

∞∑

j=1

1[1/2+x,1/2+y](β
−
j ),

where 1[... ] stands for the indicator of an interval. Since
∑

β+
i ≤ δ+,∑

β−
j ≤ δ−, and 1

2 + x > 0, 1
2 − y > 0, the sums of the indicator functions

above are actually finite. Clearly, these are Borel functions in ω.

When A is contained in (1
2 ,+∞) or (−∞, 1

2), the argument is the same.

Let χ be a character of the group U(∞) and let P be its spectral measure.

By Proposition 9.1, the pushforward ι(P ) of P is a well-defined probability

measure on the space Conf(X). We view it as a point process and denote

it by P. Our purpose is to describe the spectral measure P (for concrete

characters χ) in terms of the process P. The map ι glues some points ω

together, and it is natural to ask whether we lose any information about P by

passing to P. We discuss this issue at the end of the section.

Let {PN} be the coherent system corresponding to χ. Recall that in §2(c)

we have associated with each PN a probability measure PN on Ω, which is

the pushforward of PN under an embedding of GTN into Ω. According to

Theorem 2.2, the measures PN weakly converge to P as N → ∞. Let us form

the probability measures

P(N) = ι(PN ),

which are point processes on X. Theorem 2.2 suggests the idea that the pro-

cess P should be a limit of the processes P(N) as N → ∞. For instance, the

correlation measures of P should be limits of the respective correlation mea-

sures of P(N)’s. Then this would give us a possibility of finding the correlation

measures of P through the limit transition in the correlation measures of the

processes P(N) as N → ∞. The goal of this section is to provide a general

justification of such a limit transition.

First of all, let us give a slightly different (but equivalent) definition of

the processes P(N). Recall that in Section 4, we have associated to each PN a

point process P(N) on the lattice X(N). Consider the map

X(N) −→ X(N) = 1
N X(N) ⊂ X, x 7→

x

N
.(9.2)
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Then the process P(N) can be identified with the pushforward of the process

P(N) under this map of the phase spaces. Hence, denoting by ρ
(N)
k and ρ

(N)
k

the kth correlation measure of P(N) and P(N), respectively, we see that ρ
(N)
k is

the pushforward of ρ
(N)
k under the map (9.2).

Let us assume that P(N) is a determinantal process with a kernel K(N)(x, y)

on X(N) ×X(N) (which actually holds in our concrete situation). Then P(N) is

a determinantal process, too. It is convenient to take as the reference measure

on the lattice X(N) not the counting measure but the measure µ(N) such that

µ(N)({x}) = 1
N for any x ∈ X(N). The reason is that, as N → ∞, the measures

µ(N) approach the Lebesgue measure on X. Taking account of the factor 1
N we

see that the kernel

K(N)(x, y) = N · K(N)(Nx, Ny), x, y ∈ X(N),(9.3)

is a correlation kernel for P(N).

We need one more bit of notation: given x ∈ X, let xN be the node of the

lattice X(N) which is closest to Nx (any of two if Nx fits exactly at the middle

between two nodes).

The main result of this section is as follows.

Theorem 9.2. Let χ be a character of U(∞) and let P , {PN}, X, P,

P(N) be as above. Assume that each P(N) is a determinantal process on X(N)

with a correlation kernel K(N)(x, y) whose restriction both to X
(N)
in ×X

(N)
in and

X
(N)
out × X

(N)
out is Hermitian symmetric. Further, assume that

lim
N→∞

N · K(N)(xN , yN ) = K(x, y), x, y ∈ X,

uniformly on compact subsets of X×X, where K(x, y) is a continuous function

on X × X.

Then P is a determinantal point process and K(x, y) is its correlation

kernel.

The proof will be given after preparatory work. First, we review a few

necessary definitions and facts from [Ol3].

A path in the Gelfand-Tsetlin graph GT is an infinite sequence t =

(t1, t2, . . . ) such that tN ∈ GTN and tN ≺ tN+1 for any N = 1, 2, . . . . The set

of the paths will be denoted by T .

Consider the natural embedding T ⊂
∏
N

GTN . We equip
∏
N

GTN with the

product topology (the sets GTN are viewed as discrete spaces). The set T is

closed in this product space. We equip T with the induced topology. Then

T turns into a totally disconnected topological space. Let τ = (τ1, . . . , τN ) be

an arbitrary finite path in the graph GT, i.e., τ1 ∈ GT1, . . . , τN ∈ GTN and
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τ1 ≺ · · · ≺ τN . The cylinder sets of the form

Cτ = {t ∈ T | t1 = τ1, . . . , tN = τN}

form a base of topology in T .

Consider an arbitrary signature λ ∈ GTN . The set of finite paths τ =

(τ1 ≺ · · · ≺ τN ) ending at λ has cardinality equal to DimN λ = χλ(e). The

cylinder sets Cτ corresponding to these finite paths τ are pairwise disjoint, and

their union coincides with the set of infinite paths t passing through λ.

A central measure is any probability Borel measure on T such that the

mass of any cylinder set Cτ depends only on its endpoint λ. These definitions

are inspired by [VK1].

There exists a natural bijective correspondence M ←→ {PN} between

central measures M and coherent systems {PN}, defined by the relations

DimN λ · M(Cτ ) = PN (λ),

where N = 1, 2, . . . , λ ∈ GTN , and τ is an arbitrary finite path ending at λ.

In other words, for any N , the pushforward of M under the natural projection

∞∏

N=1

GTN ⊃ T → GTN(9.4)

coincides with PN .

By Proposition 2.1 we get a bijective correspondence between central

measures and characters of U(∞). This correspondence is an isomorphism

of convex sets. So, extreme central measures exactly correspond to extreme

characters.

On the other hand, by virtue of Theorem 1.2, we get a bijection M ←→ P

between central measures on T and probability measures on Ω. In more detail,

the correspondence M → P has the form

M → {PN} → χ → P.

Given a path t, let p̃±
i (N, t) and q̃±

i (N, t) denote the modified Frobenius

coordinates of the Young diagram (tN )±. We say that t is a regular path if

there exist limits

lim
N→∞

p̃±
i (N, t)

N
= α±

i , lim
N→∞

q̃±
i (N, t)

N
= β±

i , lim
N→∞

|(tN ))±|

N
= δ±,

where i = 1, 2, . . . . Then the limit values are the coordinates of a point ω ∈ Ω,

and we say that ω is the end of the regular path t or that t ends at ω.

Let Treg ⊂ T be the subset of regular paths. This is a Borel set. Let

Treg → Ω be the projection assigning to a regular path its end. This is a Borel

map.
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Theorem 9.3. Let M be a central measure on T . Then M is supported

by the Borel set Treg and hence can be viewed as a probability measure on

Treg. The pushforward of M under the projection Treg → Ω coincides with the

spectral measure P that appears in the correspondence M → P defined above.

Proof. See [Ol3, Th. 10.7].

Corollary 9.4. Both the measure P and all the measures PN can be

represented as pushforwards of the measure M , with respect to the maps Treg →
Ω and Treg → GTN , respectively, where the latter map is given by restricting

(9.4) to Treg ⊂ T .

Proof. The claim concerning P is exactly Theorem 9.3. The claim con-

cerning PN follows from the discussion above.

For any compact set A ⊂ X, let NA,N denote the random variable NA

associated with the process P(N). Here it is convenient to consider as the

phase space of P(N) not the lattice X(N) but the ambient continuous space X.

Recall that by ρ
(N)
k we have denoted the kth correlation measure of P(N). The

first step towards Theorem 9.2 is the following

Proposition 9.5. Assume that for any compact set A ⊂ X there exist

uniform in N bounds for the moments of NA,N ,

E[(NA,N )l] ≤ Cl, l = 1, 2, . . . ,

where the symbol E means expectation.

Then for any k = 1, 2, . . . , the kth correlation measure ρk of the process

P exists. Moreover, for any continuous compactly supported function F on

Xk = X × · · · × X,

lim
N→∞

〈F, ρ(N)
k

〉 = 〈F, ρk〉.

Proof. We argue as in the proof of [BO4, Lemma 6.2]. First, using Corol-

lary 9.4, we put all the processes on one and the same probability space,

(Treg, M).

Given a regular path t = (tN )N=1,2,..., we assign to it point configurations

C(t) ∈ Conf(X), CN (t) ∈ Conf(X), N = 1, 2, . . . ,

as follows.

Let

ω(t) = (α+(t), β+(t);α−(t), β−(t); δ+(t), δ−(t)) ∈ Ω

be the end of t. Then we set

C(t) = {α+
i (t) + 1

2} ⊔ {1
2 − β+

i (t)} ⊔ {−α−
j (t) − 1

2} ⊔ {−1
2 + β−

j (t)}
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(cf. (9.1)). Here, as in (9.1), we omit possible 0’s in α+(t), β+(t), α−(t), β−(t),

and also possible 1’s in β+(t) or β−(t). Equivalently,

C(t) = C(ω(t)) = ι(ω(t)).

Likewise, for any N = 1, 2, . . . , let p̃±
i (N, t) and q̃±

i (N, t) denote the

modified Frobenius coordinates of (tN )±, and let

a±i (N, t) =
p̃±

i (N, t)

N
, b±i (N, t) =

q̃±
i (N, t)

N
, i = 1, 2, . . . .

We set

CN (t) = {a+
i (N, t) + 1

2} ⊔ {1
2 − b+

i (N, t)} ⊔ {−a−j (N, t)− 1
2} ⊔ {−1

2 + b−j (N, t)}.

Equivalently, CN (t) is the image of tN under the composite map GTN → Ω →
Conf(X).

We view C(t) and CN (t) (for any N = 1, 2, . . . ) as random configurations

defined on the common probability space (Treg, M). By Corollary 9.4, these

are exactly the same as the random configurations corresponding to the point

processes P and P(N), respectively.

From now on all the random variables will be referred to the probability

space (Treg, M). Fix a continuous compactly supported function F on Xk. It

will be convenient to assume that F is nonnegative (this does not mean any

loss of generality). Introduce random variables f and fN as follows:

f(t) =
∑

x1,...,xk∈C(t)

F (x1, . . . , xk), fN (t) =
∑

x1,...,xk∈CN (t)

F (x1, . . . , xk),

(9.5)

summed over ordered k-tuples of points with pairwise distinct labels. Any

such sum is actually finite because F is compactly supported and the point

configurations are locally finite.

By the definition of the correlation measures,

〈F, ρk〉 = E[f ], 〈F, ρ(N)
k

〉 = E[fN ],

and the very existence of ρk is guaranteed if E[f ] < ∞ for any F as above. So,

we have to prove that E[fN ] → E[f ] < ∞ as N → ∞. By a general theorem

(see [Sh, Ch. II, §6, Th. 4]), it suffices to check the following two conditions:

Condition 1. fN (t) → f(t) for any t ∈ Treg.

Condition 2. The random variables fN are uniformly integrable, that is,

sup
N

∫

{t|fN (t)≥c}
fN (t)M(dt) → 0, as c → +∞.
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Let us check Condition 1. This condition does not depend on M , it is

a simple consequence of the regularity property. Indeed, for ε > 0 let Xε be

obtained from X by removing the ε-neighborhoods of the points ±1
2 ,

Xε = X \ ((−1
2 − ε,−1

2 + ε) ∪ (1
2 − ε, 1

2 + ε)).

Choose ε so small that the function F is supported by Xk
ε . Fix l so large that

α±
j < ε, β±

j < ε for all indices j ≥ l. By the definition of Xε, if a point

x =





1
2 + α+

i (t)
1
2 − β+

i (t)

−1
2 − α−

i (t)

−1
2 + β−

i (t)

(9.6)

lies in Xε then i < l.

By the definition of regular paths, for any index i,

a±i (N, t) → α±
i (t), b±i (N, t) → β±

i (t), N → ∞.(9.7)

Therefore, we have a±l (N, t) < ε and b±l (N, t) < ε for all N large enough. By

monotonicity, the same inequality holds for the indices l + 1, l + 2, . . . as well.

This means that if N is large enough and a point

x =





1
2 + a+

i (N, t)
1
2 − b+

i (N, t)

−1
2 − a−i (N, t)

−1
2 + b−i (N, t)

(9.8)

lies in Xε then i < l.

It follows that in the sums (9.5), only the points (9.6) or (9.8) with indices

i = 1, . . . , l−1 may really contribute. By (9.7) and continuity of F we conclude

that fN (t) → f(t).

Let us check Condition 2. Choose a compact set A such that F is sup-

ported by Ak. Denoting by C the supremum norm of F , we have the bound

fN (t) ≤ C · NA,N (t)(NA,N (t) − 1) . . . (NA,N (t) − k + 1) ≤ C · (NA,N (t))k.

Therefore the random variables fN are uniformly integrable provided that this

is true for the random variables (NA,N )k for any fixed k. But the latter fact

follows from the assumption of the proposition and Chebyshev’s inequality.

To apply Proposition 9.5 we must check the required uniform bound for

the moments. By the assumption of Theorem 9.2, each point process PN is a

determinantal process on X(N) such that its kernel, restricted to X
(N)
in × X

(N)
in

and to X
(N)
out × X

(N)
out , is Hermitian symmetric. Here we set X

(N)
in = X(N) ∩ Xin,

X
(N)
out = X(N)∩Xout. For a compact set A ⊂ X we denote by K

(N)
A the restriction
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of the kernel to A ∩ X(N). If A is entirely contained in Xin or Xout then K
(N)
A

is a finite-dimensional nonnegative operator.

Proposition 9.6. Assume that for any compact set A, which is entirely

contained in Xin or Xout, there is a bound of the form trK
(N)
A ≤ const, where

the constant does not depend on N . Then the assumption of Proposition 9.5

is satisfied.

Proof. Let A ⊂ X be an arbitrary compact set. Then A = Ain ∪ Aout,

where Ain ⊂ Xin and Aout ⊂ Xout are compact sets. We have NA,N = NAout,N +

NAin,N . If we have uniform bounds for the moments of NAout,N and NAin,N

then, by the Cauchy-Schwarz-Bunyakovskii inequality, we get such bounds for

NA,N , too. Consequently, we can assume that A is entirely contained in Xout

or Xin, so that K
(N)
A is nonnegative.

Instead of ordinary moments we can deal with factorial moments. Given

l = 1, 2, . . . , the l-th factorial moment of NA,N is equal to

ρ(N)
l

(Al) =

∫

Al

det[K
(N)
A (xi, xj)]1≤i,j≤l dx1 . . . dxl = l! tr(∧lK

(N)
A ).

Since K
(N)
A is nonnegative, we have

tr(∧lK
(N)
A ) ≤ tr(⊗lK

(N)
A ) = (tr(K

(N)
A ))l.

This concludes the proof, because we have a uniform bound for the traces by

assumption.

Proof of Theorem 9.2. We shall approximate the process P by the

processes P(N). Recall that the process P(N) is a scaled version of the process

P(N), and their correlation kernels, K(N) and K(N), are related as follows

K(N)(x, y) = N · K(N)(Nx, Ny), x, y ∈ X(N) = 1
N X(N).

Let us check that the assumption of Proposition 9.6 is satisfied. Without

loss of generality we may assume that A is a closed interval [a, b], contained

either in Xin or Xout. We have

trK
(N)
A =

1

N

∑

x∈A∩X
n

K(N)(x, x),

where the factor 1
N comes from the reference measure µ(N) on the lattice X(N)

(recall that µ(N) assigns weight 1
N to each node). By the relation between the

two kernels, this can be rewritten as follows

trK
(N)
A =

1

N

∑

x∈A∩X
n

N · K(N)(Nx, Nx).
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By the assumption of Theorem 9.2, the right-hand side tends, as N → ∞, to

the integral
∫ b
a K(x, x)dx; hence the traces above are uniformly bounded, as

required.

Proposition 9.6 makes it possible to apply Proposition 9.5. It shows that

the process P possesses correlation measures ρk, which are weak limits of the

measures ρ
(N)
k .

On the other hand, we know that for any k, the correlation measure ρ
(N)
k

is expressed, by a determinantal formula, through the correlation kernel K(N).

Further, by the assumption of Theorem 9.2, this kernel tends to the kernel K

as N → ∞. This implies that the limit measure ρk is expressed, by the same

determinantal formula, through the limit kernel K.

Now we return to the discussion of the correspondence P 7→ P. Re-

call that it is based on the map ι : Ω → Conf(X), sending a point ω =

(α+, β+;α−, β−; δ+, δ−) to a configuration C(ω). This is a continuous analog

of the map GTN → Conf(X(N)) sending a signature λ to a point configuration

X(λ); see (4.1). The correspondence λ 7→ X(λ) is reversible while the map

ω 7→ C(ω) is not. This is caused by three factors listed below.

(i) The coordinates β+
i and β−

j become indistinguishable: given a point

x ∈ C(ω) ∩ Xin, there is no way to decide whether it comes from a coordinate
1
2 − x of β+ or from a coordinate x + 1

2 of β−. Note that in the discrete case

such a problem does not arise. Indeed, if d+ and d− stand for the numbers of

points x ∈ X(λ) that are on the right and on the left of Xin, respectively, then

X(λ) has exactly d+ + d− points in Xin of which the leftmost d− points come

from λ− while the remaining d+ points come from λ+. But in the continuous

case, such an argument fails, because the total number of points is, generally

speaking, infinite.

(ii) The map ι ignores the coordinates δ±.

(iii) The map ι ignores possible 1’s in β±.

Let us discuss the significance of these factors in succession.

Factor (i). Note that exactly the same effect of mixture of the plus and

minus β-coordinates arises when an extreme character χ(ω) is restricted from

the group U(∞) to the subgroup SU(∞); see [Ol3, Remark 1.7]. Hence, if one

agrees to view characters that coincide on SU(∞) as equivalent ones, then the

factor in question becomes not too important.

Factor (ii). We conjecture that in our concrete situation (i.e., for the

characters χz,z′,w,w′) the spectral measure P is concentrated on the subset of

ω’s with γ± = 0 (see the definition of γ± in §1). If this is true then δ± is

almost surely equal to
∑

(α±
i + β±

i ). The conjecture is supported by the fact



THE INFINITE-DIMENSIONAL UNITARY GROUP 1393

that the vanishing of the gamma parameters was proved in similar situations;

see [P.I, Th. 6.1] and [BO4, Th. 7.3]. The method of [BO4] makes it possible

to reduce the conjecture to the following claim concerning the first correlation

measures of the processes P(N):

lim
ε→0

∫ 1

2
+ε

1

2
−ε

|x − 1
2 | ρ

(N)
1

(dx) = 0, lim
ε→0

∫ − 1

2
+ε

− 1

2
−ε

|x + 1
2 | ρ

(N)
1

(dx) = 0

uniformly on N .

Factor (iii). Again, we remark that possible 1’s in β± play no role when

characters are restricted to the subgroup SU(∞). On the other hand, one can

argue that that in concrete situations the 1’s do not appear almost surely.

The above arguments (though not rigorous) present a justification of the

passage P 7→ P.

We conclude the section with one more general result which will be used

in Section 10.

Observe that the set of characters of U(∞) is stable under the operation

of pointwise multiplication by det( · )k, where k ∈ Z.

Proposition 9.7. Let χ be a character of U(∞), P be its spectral measure

on Ω, and P be the corresponding point process on X = R \ {±1
2}. Then P

does not change under χ 7→ χdet( · )k, k ∈ Z.

Proof. It suffices to prove this for k = 1. Assume first that χ is extreme, so

that χ = χ(ω), where ω = (α+, β+;α−, β−; δ+, δ−) ∈ Ω, and P shrinks to the

Dirac mass at {ω}. From the explicit expression for χ(ω), see (1.2), it follows

that χ(ω) det( ·) is an extreme character, too. Moreover, the corresponding

element ω̄ ∈ Ω looks as follows: the parameters α± and δ± do not change,

while

β+ 7→ (1 − β−
1 , β+

1 , β+
2 , . . . ), β− 7→ (β−

2 , β−
3 , . . . ).

On the other hand, from the definition of the projection ω 7→ C(ω), see

(9.1), it follows that the change ω 7→ ω̄ does not affect the configuration C(ω).

This proves the needed claim for extreme χ.

Now let χ be arbitrary. By the very definition of spectral measures (see

Theorem 1.2), the spectral measure of the character χdet( · ) coincides with the

pushforward of the spectral measure P under the map ω 7→ ω̄ of Ω. We have

just seen that this map does not affect the projection ω 7→ C(ω). Since P is

the image of P under this projection, we conclude that P remains unchanged.
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10. The correlation kernel of the process P

Our goal in this section is to compute the correlation functions of the pro-

cess P associated to the spectral measure for zw-measures; see the beginning

of Section 9 for the definitions. Theorem 10.1 below is the main result of the

paper.

In the formulas below we use the Gauss hypergeometric function. Recall

that this is a function in one complex variable (say, u) defined inside the unit

circle by the series

2F1

[
a, b

c

∣∣∣ u

]
=

∞∑

k≥0

(a)k(b)k

k!(c)k
uk.

Here a, b, c are complex parameters, c /∈ {0,−1, . . . }.
This function can be analytically continued to the domain u ∈ C\[1,+∞);

see, e.g., [Er, Vol. 1, Ch. 2]. We will need the fact that for any fixed u in

C \ [1,+∞), the expression

1

Γ(c)
2F1

[
a, b

c

∣∣∣ u

]

defines an entire function in (a, b, c) ∈ C3. This follows, e.g., from [Er,

2.1.3(15)].

Theorem 10.1. Let (z, z′, w, w′) ∈ Dadm and P be the corresponding

point process on X = R \ {±1
2} defined in §9.

For any n = 1, 2, . . . and x1, . . . , xn ∈ X, the nth correlation function

ρn(x1, . . . , xn) of the process P has the determinantal form

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1.

The kernel K(x, y) with respect to the splitting X = Xout⊔Xin has the following

form

Kout,out(x, y) =
√

ψout(x)ψout(y)
Rout(x)Sout(y) − Sout(x)Rout(y)

x − y
,

Kout,in(x, y) =
√

ψout(x)ψin(y)
Rout(x)Rin(y) − Sout(x)Sin(y)

x − y
,

Kin,out(x, y) =
√

ψin(x)ψout(y)
Rin(x)Rout(y) − Sin(x)Sout(y)

x − y
,

Kin,in(x, y) =
√

ψin(x)ψin(y)
Rin(x)Sin(y) − Sin(x)Rin(y)

x − y
,
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where

ψout(x) =

{
C(z, z′) ·

(
x − 1

2

)−z−z′ (
x + 1

2

)−w−w′

, x > 1
2 ,

C(w, w′) ·
(
−x − 1

2

)−w−w′ (
−x + 1

2

)−z−z′

, x < −1
2 ,

ψin(x) =
(

1
2 − x

)z+z′ (
1
2 + x

)w+w′

, −1
2 < x < 1

2 ,

C(z, z′) =
sinπz sinπz′

π2
, C(w, w′) =

sinπw sinπw′

π2
,

and

Rout(x) =

(
x + 1

2

x − 1
2

)w′

2F1

[
z + w′, z′ + w′

z + z′ + w + w′

∣∣∣∣∣
1

1
2 − x

]
,

Sout(x) = Γ

[
z + w + 1, z + w′ + 1, z′ + w + 1, z′ + w′ + 1

z + z′ + w + w′ + 1, z + z′ + w + w′ + 2

]

×
1

x − 1
2

(
x + 1

2

x − 1
2

)w′

2F1

[
z + w′ + 1, z′ + w′ + 1

z + z′ + w + w′ + 2

∣∣∣∣∣
1

1
2 − x

]
,

Rin(x) =−
sinπz

π
Γ

[
z′ − z, z + w + 1, z + w′ + 1

z + w + z′ + w′ + 1

]

×

(
1

2
+ x

)−w (
1

2
− x

)−z′

2F1

[
z + w′ + 1, −z′ − w

z − z′ + 1

∣∣∣∣∣
1

2
− x

]

−
sinπz′

π
Γ

[
z − z′, z′ + w + 1, z′ + w′ + 1

z + w + z′ + w′ + 1

]

×

(
1

2
+ x

)−w (
1

2
− x

)−z

2F1

[
z′ + w′ + 1, −z − w

z′ − z + 1

∣∣∣∣∣
1

2
− x

]
,

Sin(x) =−
sinπz

π
Γ

[
z′ − z, z + z′ + w + w′

z′ + w, z′ + w′

]

×

(
1

2
+ x

)−w (
1

2
− x

)−z′

2F1

[
z + w′, −z′ − w + 1

z − z′ + 1

∣∣∣∣∣
1

2
− x

]

−
sinπz′

π
Γ

[
z − z′, z + z′ + w + w′

z + w, z + w′

]

×

(
1

2
+ x

)−w (
1

2
− x

)−z

2F1

[
z′ + w′, −z − w + 1

z′ − z + 1

∣∣∣∣∣
1

2
− x

]
.

The indeterminacy on the diagonal x = y is resolved by L’Hospital ’s rule:

Kout,out(x, x) = ψout(x)
(
R′

out(x)Sout(x) − S′
out(x)Rout(x)

)
,

Kin,in(x, x) = ψin(x)
(
R′

in(x)Sin(x) − S′
in(x)Rin(x)

)
.
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Singularities. The formulas for the function Rout, Sout, Rin, Sin above

have no singularities for

(z, z′, w, w′) ∈ D0 \
(
{Σ = 0} ∪ {z − z′ ∈ Z}

)
.

Moreover, we will prove that the value of the kernel K(x, y) can be extended to

a continuous function on Dadm for any fixed x, y ∈ X. (Recall that the process

P is defined for (z, z′, w, w′) ∈ Dadm.)

Vanishing of the kernel. Note that if (z, z′) ∈ Zdegen (see §3 for the

definition of Zdegen) then the function ψout vanishes on (1
2 ,+∞), because

C(z, z′) = 0. This implies that K(x, y) = 0 whenever x or y is greater

than 1
2 . It follows that the configurations of the process P do not have points

in (1
2 ,+∞).

Likewise, if (w, w′) ∈ Zdegen then the configurations of the process do not

intersect (−∞,−1
2).

Proof. First of all, observe that it suffices to prove the theorem when

(z, z′, w, w′) ∈ D′
adm. Indeed, if (z, z′, w, w′) ∈ Dadm \ D′

adm then (z, z′, w, w′)

can be moved to D′
adm by an appropriate shift of the parameters, which is

equivalent to multiplying the initial character χ by det( · )k with a certain

k ∈ Z; see Remarks 6.4 and 3.7. Next, according to Proposition 9.7, multipli-

cation by det( ·)k does not affect the point process P.

To carry out the desired reduction we have to check that the formulas for

the functions ρn given in Theorem 10.1 are also invariant under any shift of

the parameters of the form

(z, z′, w, w′) 7→ (z + k, z′ + k, w − k, w′ − k), k ∈ Z.

Note that the kernel K(x, y) is not invariant under such a shift. To see what

happens with the kernel we observe that

ψout(x)→

(
x + 1

2

x − 1
2

)2k

ψout(x), ψin(x) →

(
x + 1

2

−x + 1
2

)−2k

ψin(x),

Rout(x)→

(
x + 1

2

x − 1
2

)−k

Rout(x), Sout(x) →

(
x + 1

2

x − 1
2

)−k

Sout(x),

Rin(x)→ (−1)k

(
x + 1

2

−x + 1
2

)k

Rin(x), Sin(x) → (−1)k

(
x + 1

2

−x + 1
2

)k

Sin(x).

It follows that

K(x, y) → φ(x)K(x, y)(φ(y))−1,

where

φ(x) =

{
1, x ∈ Xout,

(−1)k, x ∈ Xin.
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But such a transformation of the kernel does not affect the determinantal

formula for the correlation functions.

From now on we will assume that (z, z′, w, w′) ∈ D′
adm, as in Theorem 8.7.

At this moment we impose additional restrictions Σ 6= 0 and z − z′ /∈ Z. We

will need these restrictions in Propositions 10.3–10.4 below. After that they

will be removed.

For any x ∈ X = R \ {±1
2}, let xN denote the point of the lattice X(N) =

Z + N−1
2 which is closest to Nx (if there are two such points then we choose

either of them). By Theorems 8.7 and 9.2, it suffices to prove that

lim
N→∞

N · K(N)(xN , yN ) = K(x, y),(10.1)

uniformly on compact sets of X × X. Here K(N) is the kernel of Theorem 8.7.

To do this we will establish the uniform convergence of all six functions

ψ
(N)
out , ψ

(N)
in , R

(N)
out , S

(N)
out , R

(N)
in , S

(N)
in of Theorem 8.7 to the respective functions

of Theorem 10.1. In order to overcome the difficulty arising from vanishing of

the denominators at x = y we will establish the convergence of R
(N)
out , S

(N)
out ,

R
(N)
in , S

(N)
in in a complex region containing X.

The needed convergence (10.1) follows from Propositions 10.2–10.4 below.

Proposition 10.2. There exist limits

lim
N→∞

NΣψ
(N)
out (xN ) = ψout(x), lim

N→∞
N−Σψ

(N)
in (xN ) = ψin(x),

as N → ∞, where the functions ψ
(N)
in and ψ

(N)
out are as defined in (6.2), (6.3).

The convergence is uniform on the compact subsets of Xout = R \ [−1
2 , 1

2 ] and

Xin = (−1
2 , 1

2), respectively.

Proposition 10.3. Let I be a compact subset of Xout. Set

Iε = {ζ ∈ C | ℜζ ∈ I, |ℑζ| < ε}.

Then for ε > 0 small enough, for any ζ ∈ Iε,

lim
N→∞

R
(N)
out (Nζ) = Rout(ζ), lim

N→∞
N−ΣS

(N)
out (Nζ) = Sout(ζ),(10.2)

and the convergence is uniform on Iε.

Proposition 10.4. Let J be a compact subset of Xin. Set

Jε = {ζ ∈ C | ℜζ ∈ J, |ℑζ| < ε}.

Then for ε > 0 small enough, for any ζ ∈ Jε,

lim
N→∞

R
(N)
in (Nζ) = Rin(ζ), lim

N→∞
NΣS

(N)
in (Nζ) = Sin(ζ),(10.3)

and the convergence is uniform on Jε.
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Proof of Proposition 10.2. This follows from the following uniform esti-

mates.

For x ∈ Xin we have

Γ(−xN + u + N+1
2 )

Γ(−xN + N+1
2 )

=Nu

(
−x +

1

2

)u

(1 + O(N−1)), u = z or z′,

Γ(xN + v + N+1
2 )

Γ(xN + N+1
2 )

=Nv

(
x +

1

2

)v

(1 + O(N−1)), v = w or w′,

as N → ∞.

For x ∈ Xout and x > 1
2 we use the formulas

1

Γ(−xN + u + N+1
2 )

=
sin

(
π(−xN + u + N+1

2 )
)

π
Γ

(
xN − u −

N − 1

2

)

= (−1)−xN+ N+1

2
sin(πu)

π
Γ

(
xN − u −

N − 1

2

)
, u = z or z′,

and the asymptotic relations

Γ(xN − u − N−1
2 )

Γ(xN − N−1
2 )

=N−u

(
x −

1

2

)−u

(1 + O(N−1)), u = z or z′,

Γ(xN + N+1
2 )

Γ(xN + v + N+1
2 )

=N−v

(
x +

1

2

)−v

(1 + O(N−1)), v = w or w′,

as N → ∞.

For x ∈ Xout and x < −1
2 we use the formulas

1

Γ(xN + v + N+1
2 )

=
sin

(
π(xN + v + N+1

2 )
)

π
Γ

(
−xN − v −

N − 1

2

)

= (−1)xN+ N+1

2
sin(πv)

π
Γ

(
−xN − v −

N − 1

2

)
, v = w or w′,

and the asymptotic relations

Γ(−xN + N+1
2 )

Γ(−xN + u + N+1
2 )

=N−u

(
−x +

1

2

)−u

(1 + O(N−1)), u = z or z′,

Γ(−xN − v − N−1
2 )

Γ(−xN − N−1
2 )

=N−v

(
−x −

1

2

)−v

(1 + O(N−1)), v = w or w′,

as N → ∞.

Proof of Proposition 10.3. We will employ the formulas (8.1) and (8.2).

This gives

R
(N)
out (Nζ) = Γ

[
Nζ − N−1

2 , Nζ + w′ + N+1
2

Nζ + N+1
2 , Nζ + w′ − N−1

2

]
3F2

[
−N, z + w′, z′ + w′

Σ, Nζ + w′ − N−1
2

∣∣∣∣ 1

]
.
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Assume ℜζ < −1
2 . Handling the gamma factors is easy:

Γ

[
Nζ − N−1

2 , Nζ + w′ + N+1
2

Nζ + N+1
2 , Nζ + w′ − N−1

2

]

=
Γ(−Nζ − N−1

2 )

Γ(−Nζ − w′ − N−1
2 )

·
Γ(−Nζ − w′ + N+1

2 )

Γ(−Nζ + N+1
2 )

=

(
−ζ −

1

2

)w′ (
−ζ +

1

2

)−w′

(1 + O(N−1)) =

(
ζ + 1

2

ζ − 1
2

)w′

(1 + O(N−1)),

as N → ∞, and the estimate is uniform on a small complex neighborhood of

any compact subset I ⊂ (−∞,−1
2).

To complete the proof of the first limit relation (10.1) we need to have the

equality

lim
N→∞

3F2

[
−N, z + w′, z′ + w′

z + z′ + w + w′, Nζ + w′ − N−1
2

∣∣∣∣ 1

]
= 2F1

[
z + w′, z′ + w′

z + z′ + w + w′

∣∣∣∣
1

1
2 − ζ

]

with uniform convergence. This limit transition is justified by the following

lemma.

Lemma 10.5. Let A, B, C be complex numbers, C 6= 0,−1,−2, . . . ,

{DN}∞N=1 be a sequence of complex numbers, DN 6= 0,−1, . . . for all N . As-

sume that

lim
N→∞

−N

DN
= q ∈ (0, 1).

Then

lim
N→∞

3F2

[
−N, A, B

C, DN

∣∣∣∣ 1

]
= 2F1

[
A, B

C

∣∣∣∣ q

]
.

The convergence is uniform on any set of sequences {DN}∞N=1 such that

{ N
DN

− lim N
DN

} uniformly converges to 0 as N → ∞ and lim N
DN

is uniformly

bounded from −1 on this set.

Proof. We have

3F2

[
−N, A, B

C, DN

∣∣∣∣ 1

]
=

N∑

k=0

(−N)k(A)k(B)k

k!(C)k(DN )k
.

Let us show that these sums converge uniformly in N > N0 for some N0 > 0.

Thanks to our hypothesis, for large enough N we can pick q0 ∈ (q, 1) and a

positive number dN such that for all our sequences {DN}, −ℜDN > dN >

Nq−1
0 . Then (note that k ≤ N)

|(DN )k| = |(−DN )(−DN −1) . . . (−DN −k +1)| ≥ dN (dN −1) · · · (dN −k +1).
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Hence,
∣∣∣∣
(−N)k

(DN )k

∣∣∣∣ ≤
N(N − 1) · · · (N − k + 1)

dN (dN − 1) · · · (dN − k + 1)
≤

(
N

dN

)k

< qk
0 .

Thus, the sums above for large enough N are majorized by the convergent

series
∞∑

k=0

∣∣∣∣
(A)k(B)k

k!(C)k

∣∣∣∣ qk
0

and, therefore, converge uniformly. This means that to compute the limit as

N → ∞ we can pass to the limit N → ∞ in every term of the sum. Since for

any fixed k

lim
N→∞

(−N)k

(DN )k
= qk,

this yields

lim
N→∞

3F2

[
−N, A, B

C, DN

∣∣∣∣ 1

]
=

∑

k≥0

(A)k(B)k

k!(C)k
qk = 2F1

[
A, B

C

∣∣∣∣ q

]
.

The fact that we majorized the series by the same convergent series for all

our sequences {DN}, and the uniform convergence of the terms of the series

guarantee the needed uniform convergence on the set of sequences.

To prove the first limit relation for I ⊂ (1
2 ,+∞) we just note that by

uniqueness of monic orthogonal polynomials with a fixed weight, R
(N)
out (x) is

invariant with respect to the substitution

x 7→ −x, (z, z′) ←→ (w′, w);

cf. Lemmas 8.4, 8.5, and so is Rout(x), because of the transformation formula

2F1

[
A, B

C

∣∣∣ ζ

]
= (1 − ζ)−A

2F1

[
A, C − B

C

∣∣∣
ζ

ζ − 1

]
.

The proof of the second relation (10.1) is similar. Note that both S
(N)
out (x)

and Sout(x) are skew-symmetric with respect to the substitution above.

The proof of Proposition 10.3 is complete.

Proof of Proposition 10.4. The argument is quite similar to the proof of

Proposition 10.3 above. Let us evaluate the asymptotics of the right-hand side

of (8.4): We look at the first term. Clearly, the argument for the second term

will be just the same. Gamma factors give (here ℜz ∈ J ⊂ (−1
2 , 1

2))

Γ

[
Nζ + N+1

2 , −Nζ + N+1
2 , N + 1 + Σ

−Nζ + z′ + N+1
2 , Nζ + w + N+1

2 , N + 1 + z + w′

]

=

(
ζ +

1

2

)−w (
ζ −

1

2

)−z′

(1 + O(N−1)),
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as N → ∞, uniformly on a neighborhood of J . To complete the proof of the

first relation (10.2) we need to show that

lim
N→∞

3F2

[
z + w′ + 1, −z′ − w, −Nζ + z + N+1

2

z − z′ + 1, N + 1 + z + w′

∣∣∣∣∣ 1

]

= 2F1

[
z + w′ + 1, −z′ − w

z − z′ + 1

∣∣∣∣∣
1

2
− ζ

]

uniformly in ζ. This is achieved by the following lemma.

Lemma 10.6. Let A, B, C, δ be complex numbers, C 6= 0,−1,−2, . . . ,

{DN}∞N=1 be a sequence of complex numbers. Assume that

lim
N→∞

DN

N
= q ∈ (0, 1).

Then

lim
N→∞

3F2

[
A, B, DN

N + δ, C

∣∣∣∣ 1

]
= 2F1

[
A, B

C

∣∣∣∣ q

]
.

The convergence is uniform on any set of sequences {DN}∞N=1 such that

{DN

N − lim DN

N } uniformly converges to 0 as N → ∞ and lim DN

N is uniformly

bounded from 1 on this set.

Proof. We have

3F2

[
A, B, DN

N + δ, C

∣∣∣∣ 1

]
=

∞∑

k=0

(A)k(B)k(DN )k

k!(N + δ)k(C)k
.

Let us show that these sums converge uniformly in N > N0 for some N0 > 0.

Let dN be the smallest integer greater than sup |DN |, where the supremum

is taken over all our sequences {DN}. Let l be the largest integer less than ℜδ.

Then for large enough N our series is majorized by the series

∞∑

k=0

∣∣∣∣
(A)k(B)k(dN )k

k!(N + l)k(C)k

∣∣∣∣ .

Using the hypothesis we may assume that for large enough N , dN < q0(N + l)

for some q0 ∈ (0, 1). In particular, dN < N + l. If k ≤ N + l − dN then

(dN )k

(N + l)k
=

dN (dN + 1) · · · (dN + k − 1)

(N + l)(N + l + 1) · · · (N + l + k − 1)
≤

(
dN + k − 1

N + l + k − 1

)k

≤

(
dN + (N + l − dN )

N + l + (N + l − dN )

)k

=

(
N + l

2N − dN + 2l

)k

≤ (2 − q0)
−k
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for large enough N . If k ≥ N + l − dN then

(dN )k

(N + l)k
=

dN (dN + 1) · · · (dN + k − 1)

(N + l)(N + l + 1) · · · (N + l + k − 1)

=
dN (dN + 1) · · · (N + l − 1)

(dN + k)(dN + k + 1) · · · (N + l + k − 1)
≤

(
N + l

N + l + k

)N+l−1−dN

≤

(
1 +

k

N + l

)−(N+l−1−dN )

≤

(
1 +

k

N + l

)−(1−q0)N

for large enough N . The last expression is a decreasing function in N (with

N + l > 0). Hence, for N > N0,

(dN )k

(N + l)k
≤

(
1 +

k

N0 + l

)−(1−q0)(N0+l)

.

Thus, we have proved that (dN )k/(N + l)k does not exceed the maximum

of the kth member of a geometric progression with ratio (2−q0)
−1 < 1 and the

inverse of the value at the point k of a polynomial of arbitrarily large (equal to

[(1 − q0)(N0 + l)]) degree. Since (A)k(B)k/(k!(C)k) has polynomial behavior

in k for large k, this means that we majorized the series

3F2

[
A, B, DN

N + δ, C

∣∣∣∣ 1

]
=

∞∑

k=0

(A)k(B)k(DN )k

k!(N + δ)k(C)k

by a convergent series with terms not depending on N . Therefore, to compute

the limit of this series as N → ∞, we can take the limit term by term. Since

for any fixed k ≥ 0

lim
N→∞

(DN )k

(N + δ)k
= qk,

we get

lim
N→∞

∞∑

k=0

(A)k(B)k(DN )k

k!(N + δ)k(C)k
=

∞∑

k=0

(A)k(B)k

k!(C)k
qk = 2F1

[
A, B

C

∣∣∣∣ q

]
.

As in the proof of Lemma 10.5, the fact that we majorized the series by the

same convergent series for all our sequences {DN}, and the uniform conver-

gence of the terms of the series guarantee the needed uniform convergence on

the set of sequences.

The proof of Proposition 10.4 is complete.

To conclude the proof of Theorem 10.1 we need to get rid of the extra

restrictions Σ 6= 0 and z − z′ /∈ Z imposed in the beginning of the proof.

Define a function Ψ : X → C, which is similar to the function Ψ(N)

introduced in (8.10), by

Ψ(x) =





ψout(x), x ∈ Xout,
1

ψin(x)
, x ∈ Xin.
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Note that for any x ∈ X, Ψ(x) is an entire function in (z, z′, w, w′).

Lemma 10.7. Let (z, z′, w, w′) ∈ D′
adm. The kernel K(x, y) can be written

in the form

K(x, y) =
√

Ψ(x)Ψ(y)
◦
K(x, y),

where
◦
K(x, y) admits a holomorphic continuation in the parameters to the

domain D′
0 ⊃ D′

adm. Moreover, for any (z, z′, w, w′) ∈ D′
0,

◦
K(x, y) = lim

N→∞
N1−Σ

◦
K

(N)

(xN , yN )

uniformly on compact subsets of X × X.

Recall that the kernel
◦
K

(N)

was defined in Lemma 8.8 and D′ was defined

just before this lemma.

Proof of the lemma. It will be convenient to use more detailed notation

for the kernels in question. So, we will use the notation
◦
K

(N)

(x, y | z, z′, w, w′)

instead of
◦
K

(N)

(x, y). Next, we define the kernel
◦
K(x, y | z, z′, w, w′): in the

block form,

◦
Kout,out(x, y | z, z′, w, w′) =

Rout(x)Sout(y) − Sout(x)Rout(y)

x − y
,

◦
Kout,in(x, y | z, z′, w, w′) = Ψ(y)

Rout(x)Rin(y) − Sout(x)Sin(y)

x − y
,

◦
K in,out(x, y | z, z′, w, w′) = Ψ(x)

Rin(x)Rout(y) − Sin(x)Sout(y)

x − y
,

◦
K in,in(x, y | z, z′, w, w′) = Ψ(x)Ψ(y)

Rin(x)Sin(y) − Sin(x)Rin(y)

x − y
.

These expressions are well defined if (z, z′, w, w′) is in the subdomain

D′′
0 = {(z, z′, w, w′) ∈ D′

0 | Σ 6= 0, z − z′ /∈ Z}.

By virtue of Propositions 10.2, 10.3, and 10.4,

lim
N→∞

N1−Σ
◦
K

(N)

(xN , yN | z, z′, w, w′) =
◦
K(x, y | z, z′, w, w′)(10.4)

for any fixed (z, z′, w, w′) ∈ D′′
0 , uniformly on compact subsets of X×X. More-

over, one can verify that the estimates of Propositions 10.3 and 10.4 are uniform

in (z, z′, w, w′) varying on any compact subset of the domain D′′
0 . Thus, the

limit relation (10.4) holds uniformly on compact subsets of X × X ×D′′
0 .
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On the other hand, we know that the kernel
◦
K

(N)

is holomorphic in

(z, z′, w, w′) on the larger domain D′
0 ⊃ D′′

0 . It follows that the additional

restrictions Σ 6= 0 and z − z′ /∈ Z can be removed. Specifically, the right-

hand side of (10.4) can be extended to the domain D′
0 and the limit relation

(10.4) holds on X × X × D′
0. Indeed, we can avoid the hyperplanes Σ = 0 or

z− z′ = k, where k ∈ Z, by making use of Cauchy’s integral over a small circle

in the z-plane.

This completes the proof of Lemma 10.7.

Now we can complete the proof of the relation (10.1). Proposition 10.2

implies that

lim
N→∞

NΣ Ψ(N)(xN ) = Ψ(x)(10.5)

for any (z, z′, w, w′) ∈ D′
0, uniformly on compact subsets of X. Indeed, as

is seen from the proof of Proposition 10.2, it does not use the additional re-

strictions and holds for any (z, z′, w, w′) ∈ D0. To pass from the functions

ψ
(N)
out , ψ

(N)
in , and ψout, ψin to the functions Ψ(N) and Ψ, we use the assumption

(z, z′, w, w′) ∈ D′
0 which makes it possible to invert the ‘inner’ functions for all

values of parameters. (Note that if (z, z′) ∈ Zdegen then for x > 1
2 and large

enough N both Ψ(N)(xN ) and Ψ(x) vanish. Similarly, if (w, w′) ∈ Zdegen then

the vanishing happens for x < −1
2 .)

Since

K(x, y) =
◦
K(x, y)

√
Ψ(x)Ψ(y),

K(N)(x, y) =
◦
K

(N)

(x, y)
√

Ψ(N)(x)Ψ(N)(y),

(10.1) follows from (10.4) and (10.5). This completes the proof of Theorem

10.1.

We conclude this section by a list of properties (without proofs) of the

correlation kernel K and functions Rout, Sout, Rin, Sin. The proofs can be

found in [BD].

All the results below should be compared with similar results for K(N)

and R
(N)
out , S

(N)
out , R

(N)
in , S

(N)
in , which were proved in the previous sections.

Symmetries. All four functions Rout, Sout, Rin, Sin are invariant with

respect to the transpositions z ↔ z′ and w ↔ w′.

Further, let us denote by S the following familiar change of parameters

and the variable: (z, z′, w, w′, x) ←→ (w, w′, z, z′,−x). Then

S(ψout) =ψout, S(ψin) = ψin,

S(Rout) =Rout, S(Sout) = −Sout, S(Rin) = Rin, S(Sin) = −Sin.
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The functions Rout, Sout, Rin, Sin and the kernel K for admissible values of

parameters take real values on X. Moreover, the kernel K(x, y) is J-symmetric;

see §5(f). That is,

Kout,out(x, y) =Kout,out(y, x), Kin,in(x, y) = Kin,in(y, x),

Kin,out(x, y) =−Kout,in(y, x).

Branching of analytic continuations. The formulas for Rout, Sout, Rin,

Sin above provide analytic continuations of these functions. We can view Rout

and Sout as functions which are analytic and single-valued on C \Xin, and Rin

and Sin as functions analytic and single-valued on C \ Xout. (Recall that the

Gauss hypergeometric function can be viewed as an analytic and single valued

function on C \ [1,+∞).)

For a function F (ζ) defined on C \ R we will denote by F+ and F− its

boundary values:

F+(x) = F (x + i0), F−(x) = F (x − i0).

Then we have

on Xin
1

ψin

S−
out − S+

out

2πi
= Rin ,

1

ψin

R−
out − R+

out

2πi
= Sin ,

on Xout
1

ψout

S−
in − S+

in

2πi
= Rout ,

1

ψout

R−
in − R+

in

2πi
= Sout .

This can also be restated as follows. Let us form a matrix

m =

[
Rout −Sin

−Sout Rin

]
.

Then the matrix m satisfies the jump relation m+ = m−v on X, where the

jump matrix equals

v(x) =





(
1 2πi ψout(x)

0 1

)
, x ∈ Xout,

(
1 0

2πi ψin(x) 1

)
, x ∈ Xin.

Furthermore, if Σ > 0 then m(ζ) ∼ I as ζ → ∞.

Differential equations. We use Riemann’s notation

P




t1 t2 t3
a b c

a′ b′ c′
ζ




to denote the two-dimensional space of solutions to the second order Fuchs’

equation with singular points t1, t2, t3 and exponents a, a′; b, b′; c, c′; see, e.g.,

[Er, Vol. 1, 2.6].
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We have

Rout(x)∈P



−1

2 ∞ 1
2

w 0 z

w′ 1 − Σ z′
x


 , Sout(x) ∈ P



−1

2 ∞ 1
2

w 1 z

w′ −Σ z′
x


 ,

Rin(x)∈P




−1
2 ∞ 1

2

−w′ 0 −z′

−w 1 + Σ −z

x


 , Sin ∈ P




−1
2 ∞ 1

2

−w′ 1 −z′

−w Σ −z

x


 .

The resolvent kernel. There exists a limit

L(x, y) = lim
N→∞

N · L(N)(xN , yN ) , x, y ∈ X.

In the block form corresponding to the splitting X = Xout ⊔ Xin, the kernel

L(x, y) looks as follows:

L =

[
0 A

−A∗ 0

]
,

where A is a kernel on Xout × Xin of the form

A(x, y) =

√
ψout(x)ψin(y)

x − y
.

This kernel defines a bounded operator in L2(X, dx) if and only if

|z + z′| < 1 and |w + w′| < 1. If, in addition, we know that Σ > 0 then

we can prove that L = K/(1 − K) or K = L/(1 + L) as bounded operators in

L2(X, dx).

11. Integral parameters z and w

If one of the parameters z, z′ and one of the parameters w, w′ are integral

then the measure PN defined in Section 3 is concentrated on a finite set of

signatures, and there is a somewhat simpler way to compute the correlation

kernel of P.

Let us assume that z = k and w = l, where k, l ∈ Z, k + l ≥ 1. Then

(z, z′, w, w′) forms an admissible quadruple of parameters (see Definition 3.4) if

z′ and w′ are real and z′−k > −1, w′− l > −1. We excluded the case k+ l = 0

from our consideration because in this case the measure PN is concentrated on

one signature.

It is easily seen from the definition of PN that the measure PN is now

concentrated on the signatures λ ∈ GTN such that

k ≥ λ1 ≥ · · · ≥ λN ≥ −l.

Note that it may happen that this set does not include the zero signature

because k and −l can be of the same sign.
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From now on in this section we will assume that λ satisfies the inequalities

above. Denote

X
(N)
k,l =

{
−

N − 1

2
− l, . . . ,

N − 1

2
+ k

}
.

Then

L(λ) =

{
λ1 − 1 +

N + 1

2
, . . . , λN − N +

N + 1

2

}
⊂ X

(N)
k,l .

Let us associate to λ a point configuration Y (λ) in X(N) as follows

Y (λ) = X
(N)
k,l \ L(λ).

Note that Y (λ) defines λ uniquely. Since |L(λ)| = N , we have |Y (λ)| = k + l.

Let

Y (λ) = {y1, . . . , yk+l}.

The configuration Y (λ) coincides with the configuration X(λ) = L(λ)∆ from

(4.1) on the set X
(N)
in ∩ X

(N)
k,l .

Proposition 11.1. Let z = k, w = l be integers, k+l ≥ 1, and z′ > k−1,

w′ > l − 1 be real numbers. Then

PN (λ) = const
k+l∏

i=1

Γ(−yi + z′ + N+1
2 )Γ(yi + w′ + N+1

2 )

Γ(−yi + k + N+1
2 )Γ(yi + l + N+1

2 )

∏

1≤i<j≤k+l

(yi − yj)
2.

Remark 11.2. Note that for any integer n the shift

k 7→ k + n, l 7→ l − n, z′ 7→ z′ + n, w′ 7→ w′ − n, y 7→ y + n

leaves the measure PN invariant; cf. Remark 3.7. This means that essentially

the measure depends on three, not four, parameters. If we now set l = 0

then λ can be viewed as a Young diagram. Then one can show that Y (λ) =

{N−1
2 − λ′

j + j}k
j=1, where λ′ is the transposed diagram.

Proof of Proposition 11.1. Set xi = λi − i+ N+1
2 . Then by Proposition 6.1

PN (λ) = const

N∏

i=1

f(xi)
∏

1≤i<j≤N

(xi − xj)
2.

Now, since {yi}
k+l
i=1 = X

(N)
k,l \ {xi}

N
i=1, similarly to Proposition 5.7 we get

PN (λ) = const
N∏

i=1

h(yi)
∏

1≤i<j≤k+l

(yi − yj)
2,
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where

h(y) =
1

f(y)
∏

x∈X
(N)
k,l \y

(y − x)2
.

Substituting

∏

x∈X
(N)
k,l \y

(y − x)2 = Γ2

(
−y + k +

N + 1

2

)
Γ2

(
y + l +

N + 1

2

)

and f(x) from (6.1) we see that

h(y) =
Γ(−y + z′ + N+1

2 )Γ(y + w′ + N+1
2 )

Γ(−y + k + N+1
2 )Γ(y + l + N+1

2 )
.

Denote by P
(N)
k,l the point process consisting of the measure PN (λ) on

point configurations Y (λ).

Below we will be using Hahn polynomials. These are classical orthogonal

polynomials on a finite set, and we will follow the notation of [NSU].

Proposition 11.3. For any n = 1, 2, . . . , the nth correlation function of

the process P
(N)
k,l has the form

ρ(N)
n (y1, . . . , yn) = det[K

(N)
k,l (yi, yj)]

n
i,j=1.

K
(N)
k,l is the normalized Christoffel -Darboux kernel for shifted Hahn polynomials

defined as follows:

K
(N)
k,l (x, y) =

Am−1

AmHm−1

Pm(x)Pm−1(y) − Pm−1(x)Pm(y)

x − y

√
h(x)h(y) ,

where m = k + l, h(x) is as above,

Pm(x) = h(z′−k,w′−l)
m

(
x + l +

N − 1

2
, m + N

)
,

Pm−1(x) = h
(z′−k,w′−l)
m−1

(
x + l +

N − 1

2
, m + N

)

are Hahn polynomials,

Hm−1 =
∥∥∥h

(z′−k,w′−l)
m−1 (x, m + N)

∥∥∥
2
,

and the numbers Am−1, Am are the leading coefficients of h
(z′−k,w′−l)
m−1 (x, m + N)

and h
(z′−k,w′−l)
m (x, m + N).
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Proof. Note that if we shift our phase space X
(N)
k,l by l + N−1

2 then the

weight function turns into the function

h

(
y − l −

N − 1

2

)
=

Γ(−y + l + z′ + N)Γ(y − l + w′ + 1)

Γ(−y + k + l + N)Γ(y + 1)

on the space

X
(N)
k,l + l +

N − 1

2
= {0, 1, . . . , k + l + N − 1}.

But this is exactly the weight function for the Hahn polynomials

h(z′−k,w′−l)
n (y, k + l + N), n = 0, 1, 2, . . . ;

see [NSU, 2.4]. Then the claim follows from Proposition 5.1.

Explicit formulas for the Hahn polynomials and their data can be found

in [NSU].

We know that the processes P(N) and P
(N)
k,l restricted to the set X

(N)
in ∩X

(N)
k,l

coincide by construction. The same is true for the correlation kernels, but it is

not obvious (recall that the correlation kernel of a determinantal point process

is not defined uniquely see Section 5(b)).

Proposition 11.4. For any x, y ∈ X
(N)
in ∩ X

(N)
k,l ,

K
(N)
k,l (x, y) = K

(N)
in,in(x, y).

Proof. This follows from the relations (here x ∈ X
(N)
k,l )

Pm(x)
√

h(x) = (−1)x−k−N−1

2 pN−1(x)
√

f(x),

Pm−1(x)
√

h(x) = (−1)x−k−N−1

2 pN (x)
√

f(x),

Am−1 =hN , Am = hN−1, Hm−1 = hN .

(The polynomials pN−1(x), pN (x) were introduced in (7.1).)

These relations can be proved either by a direct verification using explicit

formulas (which is rather tedious), or they can be deduced from the following

general fact.

Lemma 11.5 ([B5]). Let X = {x0, x1, . . . , xM} be a finite set of distinct

points on the real line, u(x) and v(x) be two positive functions on X such that

u(xk)v(xk) =
1∏

i6=k(xk − xi)2
, k = 0, 1, . . . , M,

and P0, P1, . . . , PM and Q0, Q1, . . . , QM be the systems of orthogonal polyno-

mials on X with respect to the weights u(x) and v(x), respectively,

deg Pi = deg Qi = i, ‖Pi‖
2 = pi, ‖Qi‖

2 = qi,

Pi = aix
i + lower terms, Qi = bix

i + lower terms.
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Assume that the polynomials are normalized so that pi = qM−i for all i =

0, 1, . . . , M .

Then

Pi(x)
√

u(x) = ǫ(x)QM−i(x)
√

v(x), x ∈ X ,

aibM−i = pi = qM−i, i = 0, 1, . . . , M,

where

ǫ(xk) = sgn
∏

i6=k

(xk − xi), k = 0, 1, . . . , M.

Taking

M = N + m − 1, X = X
(N)
k,l , u(x) = f(x), v(x) = h(x)

we get the needed formulas. The proof of Proposition 11.4 is complete.

Theorem 11.6. Assume z = k and w = l are integers, k + l ≥ 1, z′

and w′ are real numbers such that z′ − k > −1, w′ − l > −1. Then the

correlation kernel of the process P vanishes if at least one of the arguments is

in Xout, and on Xin × Xin it is equal to the normalized (k + l)th Christoffel-

Darboux kernel for the Jacobi polynomials on
(
−1

2 , 1
2

)
with the weight function

(1
2 − x)z′−k(1

2 + x)w′−l.

Proof. One way to prove this statement is to substitute integrals z and

w into the formulas of Theorem 10.1. A simpler way, however, is to use the

asymptotic relation

1

Mn
hα,β

n

([
M(1 + s)

2

]
, M

)
= P (α,β)

n (s) + O(M−1), M → ∞,

where P
(α,β)
n is the nth Jacobi polynomial with parameters (α, β); see, e.g.,

[NSU, (2.6.3)]. The estimate is uniform in s belonging to any compact set

inside (−1, 1). It is not hard to see that the weight function h(y) as well as

the constants Hm−1, Am−1, Am, see above, converge to the weight function

and the corresponding constants for the Jacobi polynomials. Then Theorem

9.2 and Proposition 11.3 imply the claim.

Appendix

The hypergeometric series 3F2 evaluated at the unity viewed as a function

of parameters has a large number of two and three-term relations. A lot of

them were discovered by J. Thomae back in 1879. In 1923, F. J. W. Whipple

introduced a notation which provided a clue to the numerous formulas ob-

tained by Thomae. An excellent exposition of Whipple’s work was given by

W. N. Bailey in [Ba, Ch. 3]. We will be using the notation of [Ba] below.
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Proof of (7.6). The formula (7.6) coincides with the relation

Fp(0; 4, 5) = Fp(0; 1, 5);

see [Ba, 3.5, 3.6].

Proof of Lemma 8.2. The right-hand side of (8.6) contains two 3F2’s. We

will use appropriate transformation formulas to rewrite both of them.

For the first one we employ the relation

(A.1)
sinπβ14

πΓ(α014)
Fp(0) =

Fn(1)

Γ(α234)Γ(α245)Γ(α345)
−

Fn(4)

Γ(α123)Γ(α125)Γ(α135)
,

which is [Ba, 3.7(1)] with the indices 1 and 2 interchanged, and 3 and 4 inter-

changed.

By [Ba, 3.5, 3.6], we have

Fp(0) =Fp(0; 4, 5)

=
1

Γ(α123)Γ(β40)Γ(β50)
3F2

[
α145, α245, α345;

β40, β50

]

=
1

Γ(s)Γ(e)Γ(f)
3F2

[
a, b, c;

e, f

]
,

Fn(1) =Fn(1; 2, 4) =
1

Γ(α124)Γ(β12)Γ(β14)
3F2

[
α135, α013, α015;

β12, β14

]

=
1

Γ(e−c)Γ(1+a−b)Γ(1−b−c+f)
3F2

[
f−b, 1−b, 1−e+a;

1+a−b, 1−b−c+f

]
,

Fn(4) =Fp(4; 1, 2) =
1

Γ(α124)Γ(β41)Γ(β42)
3F2

[
α034, α045, α345;

β41, β42

]

=
1

Γ(e−c)Γ(1+b+c−f)Γ(1+a+c−f)
3F2

[
1−f+c, 1−s, c;

1+b+c−f, 1+a+c− f

]
,

where s = e + f − a − b − c. Thus, (A.1) takes the form

3F2

[
a, b, c;

e, f

]

= Γ

[
1−f+a, s, e, f, b+c−f

e−a, b, c, e−c, 1+a−b

]
3F2

[
f−b, 1−b, 1−e+a;

1+a−b, 1−b−c+f

]

+Γ

[
1−f+a, e, f, −b−c+f

f−c, f−b, e−c, 1+a+c−f

]
3F2

[
1−f+c, 1−s, c;

1+b+c−f, 1+a+c−f

]
,

where we used the identity

π

sinπ(1 − b − c + f)
=Γ(1−b−c+f)Γ(b+c−f)=−Γ(−b−c+f)Γ(1+b+c−f).
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Now set

a = N, b = −z − w′, c=−z − w, e = u − z +
N + 1

2
, f = −z − z′ − w − w′,

s= e + f − a − b − c = u − z′ −
N − 1

2
.

Also, recall the notation Σ = z + z′ + w + w′. Multiplying the last relation by

Γ

[
u + N+1

2 , u − z − N−1
2

u − N−1
2 , u − z + N+1

2

]

we get

(A.2)

Γ

[
u + N+1

2 , u − z − N−1
2

u − N−1
2 , u − z + N+1

2

]

3F2

[
N, −z − w′, −z − w;

u − z + N+1
2 , −Σ

]

= Γ

[
u + N+1

2 , 1 + N + Σ, u − z′ − N−1
2 , −Σ, −z + z′

u − N−1
2 , −z − w′, −z − w, u + w + N+1

2 , 1 + N + z + w′

]

×3F2

[
−z′ − w, z + w′ + 1, −u + z + N+1

2 ;

1 + N + z + w′, 1 + z − z′

]

+
{
a similar expression with z and z′ interchanged

}
.

This is the transformation for the first term in (8.6).

As for the second term, we use [Ba, 3.2(2)] which reads

3F2

[
a, b, c;

e, f

]
= Γ

[
1 − a, e, f, c − b

e − b, f − b, 1 + b − a, c

]
3F2

[
b, b − e + 1, b − f + 1;

1 + b − c, 1 + b − a

]

+
{
a similar expression with b and c interchanged

}
.

Set

a = −N + 1, b = z + w′ + 1, c = z′ + w′ + 1, e = Σ + 2, f = u + w′ −
N − 3

2
.

We get

3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1;

Σ + 2, u + w′ − N−3
2

]

= Γ

[
N, Σ + 2, u + w′ − N−3

2 , z′ − z

z′ + w + 1, u − z − N−1
2 , N + 1 + z + w′, z′ + w′ + 1

]

×3F2

[
z + w′ + 1, −z′ − w, −u + z + N+1

2 ;

1 + z − z′, 1 + N + z + w′

]

+
{
a similar expression with z and z′ interchanged

}
.

Let us multiply this by the prefactor of the hypergeometric function in the

second term of (8.6). Recalling the formula for hN−1 = h(N − 1, z, z′, w, w′),
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see (7.2), and canceling some gamma factors we find that the second term of

(8.6) equals

(A.3)

Γ

[
u + N+1

2 , −u + N+1
2 , 1 + N + Σ, z + w + 1, z + w′ + 1, z′ − z

−u + z′ + N+1
2 , u + w + N+1

2 , Σ + 1, 1 + N + z + w′

]

×
sinπ(u − z − N−1

2 )

π
F (u) 3F2

[
z + w′ + 1, −z′ − w, −u + z + N+1

2 ;

1 + z − z′, 1 + N + z + w′

]

+
{
a similar expression with z and z′ interchanged

}
,

where we also used the identity

Γ(u − z − N−1
2 )Γ(−u + z + N+1

2 ) =
π

sinπ(u − z − N−1
2 )

.

(Recall that F (u) was defined right before Lemma 8.2.)

Now, in order to get (8.6) we have to add (A.2) and (A.3). Since both

expressions have two parts with the second parts different from the first parts

by switching z and z′, it suffices to transform the sum of the first parts. We

immediately see that the hypergeometric functions entering the first parts of

(A.2) and (A.3) are identical. By factoring out the 3F2’s and some of the

gamma factors, and using the identity Γ(τ)Γ(1 − τ) = π/sinπτ several times,

we see that the sum of the first parts of (A.2) and (A.3) equals

Γ

[
u + N+1

2 , −u + N+1
2 , 1 + N + Σ, z + w + 1, z + w′ + 1, z′ − z

−u + z′ + N+1
2 , u + w + N+1

2 , Σ + 1, 1 + N + z + w′

]

× 3F2

[
z + w′ + 1, −z′ − w, −u + z + N+1

2 ;

1 + z − z′, 1 + N + z + w′

]

multiplied by

(A.4)

1

π

(
−

sinπ(u − N−1
2 ) sinπ(z + w′) sinπ(z + w)

sin π(u − z′ − N−1
2 ) sinπΣ

+ sinπ
(
u − z − N−1

2

)
F (u)

)
.

Observe that F (u) as a function in u is a linear combination of

1/ sinπ(−u+z+ N+1
2 ) and 1/sinπ(−u + z′ + N+1

2 ). Thus, (A.4) is a meromor-

phic function. It is easily verified that all the singularities of (A.4)

are removable and (A.4) is an entire function. Moreover, since the ratios

sin(u+α)/ sin(u+β) are periodic with period 2π and are bounded as ℑu → ±∞
(for arbitrary α, β ∈ C), F (u) is bounded on the entire complex plane. By
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Liouville’s theorem, F (u) does not depend on u. Substituting u = N−1
2 we see

that (A.4) is equal to − sinπz/π.

This immediately implies that the sum of (A.2) and (A.3) is equal to the

right-hand side of (8.4), and the first part of Lemma 8.2 is proved.

Now let us look at the formula (8.7). Note that the hypergeometric func-

tions in (8.7) can be obtained from those in (8.6) by the following shift:

N 7→ N + 1, z 7→ z −
1

2
, z′ 7→ z′ −

1

2
, w 7→ w −

1

2
, w′ 7→ w′ −

1

2
.

We use for them exactly the same transformation formulas used for (8.6). By

computations very similar to the above, we find that the first term of (8.7) is

equal to

(A.5)

−Γ

[
u + N+1

2 , −u + N+1
2 , N + 1, Σ, z′ − z

−u + z′ + N−1
2 , u + w + N+1

2 , N + 1 + z + w′, z′ + w, z′ + w′

]

×
sinπ(u − N−1

2 ) sinπ(z + w′) sinπ(z + w)

π sinπ(u − z′ − N−1
2 ) sinπΣ

×3F2

[
−z′ − w + 1, z + w′, −u + z + N+1

2 ;

N + 1 + z + w′, 1 + z − z′

]

−
{
a similar expression with z and z′ interchanged

}
,

while the second term of (8.7) is equal to

(A.6)

Γ

[
u + N+1

2 , −u + N+1
2 , N + 1, Σ, z′ − z

−u + z′ + N−1
2 , u + w + N+1

2 , N + 1 + z + w′, z′ + w, z′ + w′

]

×
sinπ(u − z − N−1

2 )

π
F (u) 3F2

[
−z′ − w + 1, z + w′, −u + z + N+1

2 ;

N + 1 + z + w′, 1 + z − z′

]

+
{
a similar expression with z and z′ interchanged

}
,

Adding (A.5) and (A.6) and using the fact that (A.4) is equal to − sinπz/π,

we arrive at the right-hand side of (8.5).

Proof of Lemma 8.4. We start by deriving a convenient transformation

formula for 3F2. [Ba, 3.7(6)] with indices 4 and 5 interchanged reads

sinπβ40Fp(0)

πΓ(α045)Γ(α034)Γ(α024)Γ(α014)
(A.7)

= −
Fn(0)

Γ(α345)Γ(α245)Γ(α145)Γ(α134)Γ(α234)Γ(α124)
+ K0Fn(4),
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where

K0 =
sinπα145 sinπα245 sinπα345 + sinπα123 sinπβ40 sinπβ50

π3
.

By [Ba, 3.6] we have

Fp(0) =Fp(0; 4, 5) =
1

Γ(α123)Γ(β40)Γ(β50)
3F2

[
α145, α245, α345;

β40, β50

]

=
1

Γ(s)Γ(e)Γ(f)
3F2

[
a, b, c;

e, f

]
,

Fn(0) =Fn(0; 4, 5) =
1

Γ(α045)Γ(β04)Γ(β05)
3F2

[
α023, α013, α012;

β04, β05

]

=
1

Γ(1 − s)Γ(2 − e)Γ(2 − f)
3F2

[
1 − a, 1 − b, 1 − c;

2 − e, 2 − f

]
,

Fn(4) =Fn(4; 0, 3) =
1

Γ(α034)Γ(β40)Γ(β43)
3F2

[
α124, α145, α245;

β40, β43

]

=
1

Γ(1 − f + c)Γ(e)Γ(1 + a + b − f)
3F2

[
e − c, a, b;

e, 1 + a + b − f

]
,

K0 =
sinπa sinπb sinπc + sinπs sin πe sinπf

π3
,

where s = e + f − a − b − c. Then (A.7) takes the form

(A.8)

3F2

[
a, b, c;

e, f

]

= −
π

sinπe
Γ

[
1 − f + c, 1 − f + b, 1 − f + a, s, e, f

c, b, a, e − b, e − a, e − c, 2 − e, 2 − f

]
3F2

×

[
1 − a, 1 − b, 1 − c;

2 − e, 2 − f

]

+
πK0

sin πe
Γ

[
1 − s, 1 − f + b, 1 − f + a, s, f

1 + a + b − f

]
3F2

[
e − c, a, b;

e, 1 + a + b − f

]
,

with K0 as above.

Let us apply (A.8) to both hypergeometric functions in (8.6). For the first

one we set

a = N, b = −z − w′, c=−z − w, e = −Σ, f = u − z +
N + 1

2
,

s= e + f − a − b − c = u − z′ −
N − 1

2
.
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Then K0 = − sinπΣ sin π(u−z′− N−1
2 ) sinπ(u−z + N+1

2 )/π3,11 and rewriting

the sines in K0 as products of gamma functions, we have

(A.9)

3F2

[
N, −z − w′, −z − w;

u − z + N+1
2

, −Σ

]

= Γ

[
−u − w − N−1

2
, −u − w′ − N−1

2
, −u + z + N+1

2
, u − z′ − N−1

2
, −Σ, u − z + N+1

2

−z − w, −z − w′, N, −z′ − w, −Σ − N, −z′ − w′, 2 + Σ, −u + z − N−3
2

]

×
π

sin πΣ
3F2

[
−N + 1, z + w′ + 1, z + w + 1;

Σ + 2, −u + z − N−3
2

]

+Γ

[
−u − w′ − N−1

2
, −u + z + N+1

2

−u − w′ + N+1
2

, −u + z − N−1
2

]

3F2

[
−z′ − w′, N, −z − w′;

−Σ, −u − w′ + N+1
2

]
.

For the second one we set

a=−N + 1, b = z + w′ + 1, c = z′ + w′ + 1, e = Σ + 2,

f =u + w′ −
N − 3

2
, s = e + f − a − b − c = u + w +

N + 1

2
.

Then K0 = sinπΣ sin π(u + w + N+1
2 ) sinπ(u + w′ − N−3

2 )/π3. Observe that

the first term on the right-hand side of (A.8) will now vanish thanks to the

Γ(a) in the denominator (remember that N ∈ {1, 2, . . . }). Rewriting sines as

products of gamma functions again, we get

3F2

[
−N + 1, z + w′ + 1, z′ + w′ + 1;

Σ + 2, u + w′ − N−3
2

]
(A.10)

= Γ

[
−u + z + N+1

2 , −u − w′ − N−1
2

−u − w′ + N−1
2 , −u + z − N−3

2

]

×3F2

[
z + w + 1, −N + 1, z + w′ + 1;

Σ + 2, −u + z − N−3
2

]
.

Now let us substitute (A.9) and (A.10) into (8.6). Observe that the two

3F2’s from the right-hand sides of (A.9) and (A.10) are obtained from the 3F2’s

from (8.6) by the change

(A.11) u 7→ −u, (z, z′, w, w′) 7→ (w′, w, z′, z).

Our goal is to show that the prefactors of these 3F2’s after substitution

will be symmetric to the prefactors of 3F2’s in (8.6) with respect to (A.11).

One prefactor is easy to handle. The coefficient of

3F2

[
−z′ − w′, N, −z − w′;

−Σ, −u − w′ + N+1
2

]

11Here we used the facts that N ∈ Z and sin πa = sin πN = 0.
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after the substitution of (A.9) and (A.10) into (8.6) equals

Γ

[
u + N+1

2 , u − z − N−1
2

u − N−1
2 , u − z + N+1

2

]
Γ

[
−u − w′ − N−1

2 , −u + z + N+1
2

−u − w′ + N+1
2 , −u + z − N−1

2

]

= Γ

[
−u + N+1

2 , −u + w′ − N−1
2

−u − N−1
2 , −u + w′ + N+1

2

]
,

which is symmetric to Γ

[
u + N+1

2 , u − z − N−1
2

u − N−1
2 , u − z + N+1

2

]
with respect to (A.11).

As for the other prefactor, the verification is more involved. Namely, we
need to prove the following equality:

Γ

[
−u − w − N−1

2
, −u − w′ − N−1

2
, −u + z + N+1

2
, u − z′ − N−1

2
, −Σ, u − z + N+1

2

−z − w, −z − w′, N, −z′ − w, −Σ − N, −z′ − w′, 2 + Σ, −u + z − N−3

2

]

×Γ

[
u + N+1

2
, u − z − N−1

2

u − N−1

2
, u − z + N+1

2

]
π

sinπΣ

+Γ

[
u + N+1

2
, −u + N+1

2

−u + z + N+1

2
, −u + z′ + N+1

2
, u + w + N+1

2
, u + w′ − N−3

2

]

×Γ

[
−u + z + N+1

2
, −u − w′ − N−1

2

−u − w′ + N−1

2
, −u + z − N−3

2

]
1

h(N − 1, z, z′, w, w′)

1

sin πΣ sin π(z′ − z)

×

(
sin π(z + w) sinπ(z + w′) sinπz′

sinπ(−u + z′ + N+1

2
)

−
sinπ(z′ + w) sinπ(z′ + w′) sinπz

sin π(−u + z + N+1

2
)

)

= Γ

[
−u + N+1

2
, u + N+1

2

u + w′ + N+1

2
, u + w + N+1

2
, −u + z′ + N+1

2
, −u + z − N−3

2

]

×
1

h(N − 1, w′, w, z′, z)

1

sinπΣ sin π(w − w′)

×

(
sin π(z′ + w′) sinπ(z + w′) sinπw

sinπ(u + w + N+1

2
)

−
sinπ(z′ + w) sinπ(z + w) sinπw′

sin π(u + w′ + N+1

2
)

)
.

After massive cancellations12 this equality is reduced to the following trigono-

metric identity (here y = u − N−1
2 ):

sin πy sinπ(z + w) sinπ(z′ + w) sinπ(z + w′) sinπ(z′ + w′)

sinπ(y − z) sinπ(y − z′) sinπ(y + w) sinπ(y + w′)

=
sinπ(z′ + w) sinπ(z′ + w′) sinπz

sinπ(z − z′) sinπ(y − z)
+

sin π(z + w) sinπ(z + w′) sinπz′

sinπ(z′ − z) sinπ(y − z′)

+
sinπ(z + w′) sinπ(z′ + w′) sinπw

sinπ(w − w′) sinπ(y + w)
+

sinπ(z + w) sinπ(z′ + w) sinπw′

sin π(w′ − w) sinπ(y + w′)
.

12The cancellations also rely on the fact that N ∈ Z; cf. the previous footnote.
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One way to prove this identity is to view both sides as meromorphic functions

in y. Then it is easily verified that the difference of the left-hand side and the

right-hand side is an entire function. Moreover, both sides are periodic with

period 2π and bounded for |ℑy| large enough. This implies that both sides are

identically equal. The proof of Lemma 8.4 is complete.

On the proof of Lemma 8.5. This proof is very similar to that of Lemma

8.4 above. The needed transformation formulas for the 3F2’s are obtained

from (A.9) and (A.10) by the shift (N, z, z′, w, w′) 7→ (N + 1, z − 1
2 , z′ − 1

2 ,

w− 1
2 , w′− 1

2). After substituting the resulting expressions into (8.7) we collect

the coefficients of 3F2’s and compare them with what we want. As in the proof

of Lemma 8.4, one of the desired equalities follows immediately, while the other

is reduced to the same trigonometric identity.

On analytic continuation of the series 3F2(1). Here we prove that the

function
1

Γ(e)Γ(f)Γ(e + f − a − b − c)
3F2

[
a, b, c

e, f

∣∣∣ 1

]

can be analytically continued to an entire function in five complex variables

a, b, c, e, f . We stated this claim in the beginning of Section 7 and used it in

Section 8.

Apply the transformation formula

3F2

[
a, b, c

e, f

∣∣∣ 1

]
= Γ

[
e, f, s

a, s + b, s + c

]
3F2

[
e − a, f − a, s

s + b, s + c

∣∣∣ 1

]
,

where s = e + f − a − b − c. This allows us to conclude that the function in

question continues to the domain ℜ(a) > 0 (other parameters being arbitrary).

Likewise, we can continue to the domain ℜ(b) > 0 and also to the domain

ℜ(c) > 0. Then one can apply a general theorem about ‘forced’ analytic con-

tinuation of holomorphic functions on tube domains: see, e.g., [H, Th. 2.5.10].
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unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40–61.

[TW] C. A. Tracy and H. Widom, Universality of the distribution functions of random
matrix theory, in Integrable Systems: From Classical to Quantum (Montréal, QC,
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