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The causal structure of
microlocalized rough Einstein metrics

By SERGIU KLAINERMAN and IGOR RODNIANSKI

Abstract

This is the second in a series of three papers in which we initiate the study
of very rough solutions to the initial value problem for the Einstein vacuum
equations expressed relative to wave coordinates. By very rough we mean
solutions which cannot be constructed by the classical techniques of energy
estimates and Sobolev inequalities. In this paper we develop the geometric
analysis of the Eikonal equation for microlocalized rough Einstein metrics.
This is a crucial step in the derivation of the decay estimates needed in the
first paper.

1. Introduction

This is the second in a series of three papers in which we initiate the study
of wery rough solutions of the Einstein vacuum equations. By very rough we
mean solutions which cannot be dealt with by the classical techniques of energy
estimates and Sobolev inequalities. In fact in this work we develop and take
advantage of Strichartz-type estimates. The result, stated in our first paper
[KI-Rol1], is in fact optimal with respect to the full potential of such estimates.!
We recall below our main result:

THEOREM 1.1 (Main Theorem). Let g be a classical solution® of the
FEinstein equations

(1) Rop(g) =0

expressed® relative to wave coordinates x®,

1
—0u(g""|g|0y)z” = 0.

(2) Ogz® =
& gl

'To go beyond our result will require the development of bilinear techniques for the Ein-
stein equations; see the discussion in the introduction to [KI-Rol].

2We denote by Ras the Ricci curvature of g.

3In wave coordinates the Einstein equations take the reduced form g“?8,03g., =
N (g, 0g) with N quadratic in the first derivatives dg of the metric.
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Assume that on the initial spacelike hyperplane ¥ given by t = 29 = 0,
Vgas(0) € HSH(Z), 0igaps(0) € H LX)

with V denoting the gradient with respect to the space coordinates x*, i =1,2,3
and H? the standard Sobolev spaces. Also assume that gq3(0) is a continuous
Lorentz metric and sup|,|—, |8a5(0) —mag| — 0 as r — oo, where |z| =
(E?:l 12%[2)2 and m,gs is the Minkowski metric.

Then®* the time T of existence depends in fact only on the size of the norm
|]8gW(O)HH(s£)1 = ”VgW(O)HHf;)l + ||atguu(0)HHg)1v for any fized s > 2.

In [KI-Rol] we have given a detailed proof of the theorem by relying heav-
ily on a result, which we have called the Asymptotics Theorem, concerning
the geometric properties of the causal structure of appropriately microlocal-
ized rough Einstein metrics. This result, which is the focus of this paper, is
of independent interest as it requires the development of new geometric and
analytic methods to deal with characteristic surfaces of the Einstein metrics.

More precisely we study the solutions, called optical functions, of the
Eikonal equation
(3) H&ﬁ)ﬁauﬁgu =0,
associated to the family of regularized Lorentz metrics H(y), A € 2N defined,
starting with an H?*¢ Einstein metric g, by the formula

(4) H(yy = Pog(A ', A )

where® P,y is an operator which cuts off all the frequencies aboveS \.

The importance of the eikonal equation (3) in the study of solutions to
wave equations on a background Lorentz metric H is well known. It is mainly
used, in the geometric optics approximation, to construct parametrices asso-
ciated to the corresponding linear operator (g. In particular it has played a
fundamental role in the recent works of Smith[Sm]|, Bahouri-Chemin [Ba-Ch1],
[Ba-Ch2] and Tataru [Tal], [Ta2] concerning rough solutions to linear and
nonlinear wave equations. Their work relies indeed on parametrices defined
with the help of specific families of optical functions corresponding to null

4We assume however that T stays sufficiently small, e.g. T < 1. This a purely technical
assumption which one should be able to remove.

5More precisely, for a given function of the spatial variables = 2, 2%, 2, the Littlewood
Paley projection P<yf = Z‘K%A P.f, P.f=F" (X(M—lg)f(g)) with x supported in the
unit dyadic region 3 < [¢] < 2.

5The definition of the projector P<y in [KI-Rol] was slightly different from the one we are
using in this paper. There P« removed all the frequencies above 2720 ) for some sufficiently
large constant My. It is clear that a simple rescaling can remedy this discrepancy.



ROUGH EINSTEIN METRICS 1197

hyperplanes. In [Kl], [KI-Ro], and also [KI-Rol] which do not rely on specific
parametrices, a special optical function, corresponding to null cones with ver-
tices on a timelike geodesic, was used to construct an almost conformal Killing
vectorfield.

The main message of our paper is that optical functions associated to
Einstein metrics, or microlocalized versions of them, have better properties.
This fact was already recognized in [Ch-Kl] where the construction of an opti-
cal function normalized at infinity played a crucial role in the proof of the global
nonlinear stability of the Minkowski space. A similar construction, based on
two optical functions, can be found in [KI-Ni]. Here, we take the use of the spe-
cial structure of the Einstein equations one step further by deriving unexpected
regularity properties of optical functions which are essential in the proof of the
Main Theorem. It was well known (see [Ch-KIl], [Kl], [K]-Ro]) that the use of
Codazzi equations combined with the Raychaudhuri equation for the try, the
trace of null second fundamental form Yy, leads to the improved estimate for
the first angular derivatives of the traceless part of x. A similar observation
holds for another null component of the Hessian of the optical function, . The
role of the Raychaudhuri equation is taken by the transport equation for the
“mass aspect function” u.

In this paper we show, using the structure of the curvature terms in the
main equations, how to derive improved regularity estimates for the undiffer-
entiated quantities x and 7. In particular, in the case of the estimates for n we
are led to introduce a new nonlocal quantity j tied to p via a Hodge system.

The properties of the optical function are given in detail in the statement of
the Asymptotics Theorem. We shall give a precise statement of it in Section 2
after we introduce a few essential definitions. The paper is organized as follows:

In Section 2 we construct an optical function u, constant on null cones
with vertices on a fixed timelike geodesic, and describe our basic geometric
entities associated to it. We define the surfaces S;,, the canonical null pair
L,L and the associated Ricci coefficients. This allows us to give a precise
statement of our main result, the Asymptotic Theorem 2.5.

In Section 3 we derive the structure equations for the Ricci coefficients.
These equations are a coupled system of the transport and Codazzi equations
and are fundamental for the proof of Theorem 2.5.

In Section 4 we obtain some crucial properties of the components of the
Riemann curvature tensor Rqgys.

The remaining sections are occupied with the proof of the Asymptotics
Theorem. We give a detailed description of their content and the strategy of
the proof in Section 5.

The paper is essentially self-contained. From the first paper in this series
[KI-Rol] we only need the result of Proposition 2.4 (Background Estimates)
which in any case can be easily derived from the the metric hypothesis (5), the
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Ricci condition (1), and the definition (4). We do however rely on the following
results:

e Isoperimetric and trace inequalities, see Proposition 6.16.
e (Calderon-Zygmund type estimates, see Proposition 6.20.

e Theorem &.1.

The proof of the important Theorem 8.1 is delayed to our third paper in
the series [KI-Ro2]. The first two ingredients are standard modifications of the
classical isoperimetric and Calderon-Zygmund estimates; see [KI-Ro].

We recall our metric hypothesis (referred in [KI-Rol, §2] as the bootstrap
hypothesis) on the components of g relative to our wave coordinates x®.

Metric Hypothesis.

() 108l s, 0 + 1108llz2 L < Bo,

for some fixed v > 0.

2. (Geometric preliminaries

We start by recalling the basic geometric constructions associated with a
Lorentz metric H = H(y). Recall, see [K1-Rol, §2], that the parameters of the
3}, foliation are given by n, v, the induced metric h and the second fundamental
form k;;, according to the decomposition,

(6) H = —n?dt? + hyj(da’ + v'dt) @ (da? 4+ v7dt),

with h;; the induced Riemannian metric on 3, n the lapse and v = v'0; the
shift of H. Denoting by T the unit, future oriented, normal to ¥; and k the
second fundamental form k;; = —(D;T, 0;) we find,

(7) O =nT + v, (O,v) =0,
1 1
k‘l‘j = _§£THij = —infl(athij — L‘vhij)

with £x denoting the Lie derivative with respect to the vectorfield X. We also
have the following; see [KI-Rol, §§2, §]:

(8) cl€)? < hi€'gd < g, c<n®— v}

for some ¢ > 0. Also n, |v| < 1.
The time axis is defined as the integral curve of the forward unit normal
T to the hypersurfaces ;. The point I'y is the intersection between I' and .
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Definition 2.1. The optical function u is an outgoing solution of the Eikonal
equation

9) H*9pudgu = 0
with initial conditions u(I';) = ¢ on the time axis.

The level surfaces of u, denoted C,,, are outgoing null cones with vertices
on the time axis. Clearly,

(10) T(u) = |Vl

where h is the induced metric on %, |[Vul} = S5 Jei(u)]? relative to an
orthonormal frame e; on ;.

We denote by S;, the surfaces of intersection between ¥; and C,. They
play a fundamental role in our discussion.

Definition 2.2 (Canonical null pair).
(11) L=bl'=T+N, L=2T-L=T-N.

Here L' = —H O‘ﬁagu@a is the geodesic null generator of Cy, b is the lapse of
the null foliation (or shortly null lapse)

(12) b_l = _<L/7T> = T(u)v
and N is the exterior unit normal, along ¥, to the surfaces Sy .

Definition 2.3. A null frame eq, ea, e3,e4 at a point p € S, consists, in
addition to the null pair e3 = L,eq = L, of arbitrary orthonormal vectors
e1, ez tangent to S;,. All the estimates in this paper are in fact local and
independent of the choice of a particular frame. We do not need to worry that
these frames cannot be globally defined.

Definition 2.4 (Ricci coefficients). Let ej,es, e3,e4 be a null frame on
St as above. The following tensors on S,

(13) xaB = (Daes,ep), X, = (Daes,ep),
1

na = 5{Dseq ea), 1, = 5(Daes,eq),

N =

1
£, = §<D3€37 ea)

are called the Ricci coefficients associated to our canonical null pair.
We decompose x and x into their trace and traceless components.

(14) try = H*Px ap, trX:HABKAB,
. 1 . 1
(15) Xap = xap = gtoxHap,  X,up = Xup — 50X Han.
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We define s to be the affine parameter of L, i.e. L(s) =1 and s =0 on
the time axis I';. In [KI-Ro], where n = 1 we had s = ¢t — u. Such a simple
relation does not hold in this case; we have instead, along any fixed C,,
dt 1
Lo
We shall also introduce the area A(t,u) of the 2-surface S(t,u) and the radius
r(t,u) defined by

(17) A = 4772,

Along a given C,, we have’
0A / ‘
— = [ ntry.
ot Jg X

dr r
1 - _
(18) o 2ntr)(

where, given a function f, we denote by f(t,u) its average on Stu- Thus

_ 1
f(tvu):m/s f

The following Ricci equations can also be easily derived (see [KI-Ro]). They
express the covariant derivatives D of the null frame (e4)a=1,2, €3, e4 relative
to itself.

(16)

Therefore, along C,,,

(19) Duaes = xapep — kaneu, Dyes = x ,z€B + kanes,
Dyes = —knnea, Dye3 = 21 ¢4 + knnes,
Dseq = 2naea + knnea, Djey = 2€ ;ea — knnes,
Dyes = Piea +n  eu, Dges = Psea + naes + € ,ea,
1 1
Dpea = YVpgea + SXAB €3+ 5X €4

where, Ps3, P4 denote the projection on St, of D3 and Dy, ¥ denotes the
induced covariant derivative on S, and, for every vector X tangent to ¥,

(20) knx = knx —n 'Vxn.
Thus kxy = kny —n 'N(n) and kay = kay — n~'Van. Also,
(21) Xap = —XaB — 2kap,

n,0=—kan,

§A =kan +n71VAn—nA

"This follows by writing the metric on S, in the form vap(s(t,0),6)d6*do", rela-
tive to angular coordinates #',02, and its area A(t,u) = f\/f_ydé?l A d6%. Thus, %A =
f %'YAB%WAB\/'Vdel A df?. On the other hand %’YAB = 2xaB and % =n.
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and,

(22) na=b"1V b+ kan.

The formulas (19), (21) and (22) can be checked in precisely the same manner
as (2.45-2.53) in [KI-Ro]. The only difference occurs because D7T' no longer
vanishes. We have in fact, relative to any orthonormal frame e; on ¥,

(23) D7T =n"'e;(n)e;.

To check (23) observe that we can introduce new local coordinates #* = z'(t, z)
on Y; which preserve the lapse n while making the shift V' to vanish identically.
Thus 0; = nT and therefore, for an arbitrary vectorfield X tangent to 3,
we easily calculate, (D7T,X) = n 2X4Dy,0;,0;) = —n"2X"0;,Dy,0;) =
—n 72Xy, Dy, 0y) = —n2X'20;(01, 0,) = n2X'19;(n?) = n~1X(n).

Equations (21) indicate that the only independent geometric quantities,
besides n, v and k are try, x,n. We now state the main result of our paper
giving the precise description of the Ricci coefficients. Note that a subset of
these estimates was stated in Theorem 4.5 of [KI-Rol].

THEOREM 2.5. Let g be an Finstein metric obeying the Metric Hypothesis
(5) and H = H(y) be the family of the reqularized Lorentz metrics defined
according to (4). Fix a sufficiently large value of the dyadic parameter A and
consider, corresponding to H = Hy), the optical function u defined above. Let
IS‘ be the future domain of the origin on Xo. Then for any ey > 0, such that
beg < v with v from (5), the optical function u can be extended throughout
the region Iy N ([0, \1780] x R3) and there the Ricci coefficients try, X, and n
satisfy the following estimates:
—%—360’

(24) +IXlzeree + InllL2re S A

LiLF

2
try — —
r

2 . _
(25) trX = —llzogs, || Xlzas,) + 0llLacs,.) S A 50,

with 2 < g < 4. In the estimate (118) the function % can be replaced with
n(tQ_u). In addition, in the exterior region r > t/2,

SN Rl (s SN+ [0H®) 1

2
try — —

(26) -

Lw(st,u)
Il s,y S AT AT X OH (8)]| 1

where the last estimate holds for an arbitrary positive €, € < €9. Also, there
exist the following estimates for the derivatives of try:
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2
en IsuplL (=2 ) sl

t
r22

2
Ltry— — 2 L < A3
#lsup L (1 - o) s olls < 475

7“25

(28)

2 -3 o
Isup Itrxl sl + 1s0p 17 (e = 2 sl <475

TZQ T—Q

In addition, there are weak estimates of the form,

7.0 (- -2 )

for some large value of C.
The inequalities < indicate that the bounds hold with some universal con-
stants including the constant By from (5).

< \¢

~

L>(S¢ )

(29) sup

t
u<y

3. Null structure equations

In the proof of Theorem 2.5 we rely on the system of equations satisfied
by the Ricci coefficients x, 1. Below we write down our main structural equa-
tions. Their derivation proceeds in exactly the same way as in [KI-Ro] (see
Propositions 2.2 and 2.3) from the formulas (19) above.

ProproSITION 3.1. The components trx, X, n and the lapse b verify the

following equations:3
(30) L(b)=—bknn,
1 -
(31) L(trx) + §(tTX)2 =—|%|* = knntrx — Rua,

1 -
(32) Paxan + StXXAB = —kNNXAB — GAB,
1 . 1 1
(33) Pana+ 5(trx)na=—(kpn +np)xap — gtrxkan — 504

Here dup = Rysap — %R445AB and A = Raaza. Also, when

1
(34) w= L(try) — §(trx)2 — (knn +n"'Vyn)try,

8which can be interpreted as transport equations along the null geodesics generated by
L. Indeed observe that if an S tangent tensorfield Il satisfies the homogeneous equation
P41l = 0 then II is parallel transported along null geodesics.
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there is the equality
(35) L(p) + trxp
=21, = 1) Va(trx) = 2Xan (2¥ 45 + 20475
+kNNXAB + trxXas + XacXes + 2kacxcs + RB43A>
~L(Ru) + (2kxn — 40~ Vo) (3 (002 — 7 ~ Fvvtex — Ra)
4% ptry + (trx + 4knn) (%)% + Raa)

—try (Z(kAN —naA)n " 'Van — 2in"IN(n) |2 + Rysus + 21<;Nm/<ﬁ>.

Remark 3.2. Equation (31) is known as the Raychaudhuri equation in the
relativity literature; see e.g. [Ha-El].

Remark 3.3. Observe that our definition of yu differs from that in [KI-Ro].
Indeed there we had, instead of u,

1 _
@ = L(try) — E(trx)2 — 3knnNtry
and the corresponding transport equation:
(86) L(E) + trxji=2(n, — n4)Va(trx) — 2Xan (2V 15 + 2075
+kNNXAB + trXXaB + XacXoB + 2kacxes + RB43A)
—L<R44) — L(I_fNN)U‘X — 3L(l_€NN)tI‘X + 4/_612VNtI‘X
+(trx + 4k n) ([X[° + Raa).

We obtain (35) from (36) as follows: The second fundamental form & verifies
the equation (see formula (1.0.3a) in [Ch-KI]),

Lorkij = =ViVin 4+ n(Rirjr — kink]").
In particular,
Lorkyn = —Vin +nRyrnr — knmki).
Exploiting the definition of the Lie derivative £,7, we obtain
T(knn) +2k(VNT,N) = —n"'Vin + Ryrnr — knmkR}).
It then follows that

%L(kNN) + %L(kNN) —2(knn)? = 2(kan)?

= —n*1V?Vn + (RNTNT — kNmkﬁ)
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Therefore, since L+ L =21, L — L = 2N,

1 1
§L(kNN) — ié(n_lN(n))
1 1
+RNTNT + kNmkR) + 07 (VN N)n —n7?|N(n) [,
Recall that ]%NN = kNN — n_lN(n) and <VNN, €A> =kany —na. Thus
L(knn)=—L(kny +n"'N(n)) +2(kan —na)n~'Van
—2|’rle(n)|2 + Rusas + 2knm k-

Therefore taking p = L(trx) — 3(trx)? — (knyny +n LN (n))trx we derive the
desired transport equation (35).

PROPOSITION 3.4. The expressions (divx)a = Yoxap, divy = Vo3
and (cyrln)ap = Y nB — Y gna verify the following equations:

. N 1
(37)  (divx)a + Xapksn = 5(Vatrx + kantrx) — Rpaas,
1 _ . 1
38) divn =1+ 20 N - 2~ 8 = 2amian ) - R

1 . 1
(39) cyrln = ieABkAcXCB — §sABRB43A.

We also have the Gauss equation,

- 1
(40) 2K = XaBX 5 — itrXtrX‘i‘RABAB-

We add two useful commutation formulas.

LEMMA 3.5. Let II4 be an m-covariant tensor tangent to the surfaces
Stu- Then,
(41)
V5 Palls — Pi¥plla = xpcVolla — n~ VpnPalls
+ Z(XA,;BECN — xBckan +ReoauB)y o4 -

(2

Also, for a scalar function f,
(42)
Vo Vaf = VaVad = —3kawDaf — (na+ kan)Dsf — (xan — x4, Vs
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Proof. For simplicity we only provide the proof of the identity (42). The
derivation of (41) is only slightly more involved (see [Ch-KIl], [KI-Ro]). We
have

VVaf=VaVnf=I[N,ealf —(Vyea)f = (Dnea — Vyea)f — (DaN)f.

Now using the identity N = %(es — e3) and the Ricci equations (19) we can
easily infer (42). O

4. Special structure of the curvature tensor R

In this section we describe some remarkable decompositions® of the cur-
vature tensor of the metric H. Given a system of coordinates!® 2 relative to
which H is a nondegenerate Lorentz metric with bounded components H,g,
we define the coordinate dependent norm

(43) |OH| = max |0, H,gl|.
By

A frame eg, €p, €., g is bounded, with respect to our given coordinate system,
if all components of e, = €50, are bounded.

Consider an arbitrary bounded frame eg, e, €., ¢4 and Rgpeq the compo-
nents of the curvature tensor relative to it. Relative to any system of coordi-
nates,

(44) Rapea = eSeyeled (92, Hys + 035 Hon — 03, Hos — 025Hyg,).
Using our given coordinates 2% we introduce the flat Minkowski metric mqg =

diag(—1,1,1,1). We denote by D the corresponding flat connection. Using D
we define the following tensor:

m(X,Y,Z) =D zH(X,Y).
Thus in our local coordinates =%, mo3, = 0y Hag.

PROPOSITION 4.1. Relative to an arbitrary bounded frame ey, ey, €., €q there
1s the following decomposition:

(45) Ravcd = Dampdc + DyTacd — DaThed — DoTdac + Eabed

where the components of the tensor E are bounded pointwise by the square
of the first derivatives of H. More precisely, since |E| = maxqpc.d | Eaped| =
maxy,g.y.5 | Eapysl,

(46) || < |0H .

9The results of this section apply to an arbitrary Lorentz metric H.
0This applies to the original wave coordinates z°.
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Remark 4.2. 1t will be clear from the proof below that we can interchange
the indices a, ¢ and b, d in the formula above and obtain similar decompositions.

We show that each term appearing in (44) can be expressed in terms of a
corresponding derivative of 7 plus terms of type E.
Consider the term R; = eg‘ef eZegaiéH 3v- We show that it can be ex-
pressed in the form Dgmp.q plus terms of type E. Indeed,
Da7bed = €a(Tbed) — TD,bed — TbD,cd — TheD,d
= ¢ a(ehe; €l s Hpy) — TD,bed — ToD,cd — TheD,d
= Ry + €20, (e5e) €1)ds Hpy — TD ,bed — ToD,cd — TheD,d
= Rl + Ggegaa(ebﬂ)ezagffg,y — TDgbed — -+ - -
Now,
o
TD, bed = DdH(Daeb, 60) = €Z(Da€b)6ezagﬂ/37.
Thus,
Dumed = Ri + €)el05Hp, (eCDa(e)) — (Dyep)”
aThed = R1 + €3el 05 Hpy (e50a(ey) — (Daep)”).
On the other hand

(Daep)’ = (Daep, 9,) H™
= 20u(€)) — (ep, Dady ) H — (ep, 0,) €500 (H1).

Henceforth, we infer that,
1
Riy = Dapea + Bl

with
EW = €3eldsHg, ((ep, Dady) HO + (ey, 9,)eS 00 (HPH)).
Since D,9,, can be expressed in terms of the first derivatives!! of H we conclude

that |EMW| < |0H|? as desired. The other terms in the formula (44) can be
handled in precisely the same way.

Remark 4.3. We will apply Proposition 4.1 to our metric H, wave coor-
dinates =% and our canonical null frames. We remark that our wave coordi-
nates are nondegenerate relative to H, see (8), and any canonical null frame
es=(T'"+ N),es = (T — N), ey is bounded relative to z°.

COROLLARY 4.4. Relative to an arbitrary frame eq on St .,

(47)  Rapcep =Y mBpe + Ygmacp — ¥ mBep — ¥pmpac + Eapep

"Recall that Dgd, = '}, 04 with I" the standard Christoffel symbols of H.
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where E is an error term of the type,
|B| < (10H* + |x||0H])

and
w| < |0H].

COROLLARY 4.5. There exist a scalar w, an S-tangent 2-tensor map and
1-form E 4 such that, the component Rpsap admits the decomposition

Rpiap = V47 + YP7ap + Ea.
Moreover,
| S0H],
|E| S (10H + [x||0H]).

COROLLARY 4.6. There exist an S-tangent vector w4 and scalar E such
that
SABRA334 = Clﬁ‘lﬂ + F

and
7| S |OH|
|E| < (10H” + [x||0H]).

COROLLARY 4.7. There exist S-tangent vectors 771(41) ) Wff) and scalars EY | E()

such that
PR 43 = dive + R+ Rygy + EW,

eA PRy = c1,{rl7r(2) + E(2)7
where R is the scalar curvature. Moreover,
w2 < [oH],
|EXD| S (|0H|? + [x||0H]).

Proof. Observe that Rap = H*Ra,B, = —%RA334—%RA433—(5CDRACBD.
Hence, since R 434 = Rpaas, we have 048R 45 = —04PR 4453— 03B PR 408D,
and therefore,

04PRaszp = 5P Rap + 676" Racsp
=R+ Rgy + 5AB(5CDRACBD.
We now appeal to Corollary 4.4 and express PR 4435 in the form

§4BR 4435 = dﬁvw(l) + R+ Ry + E(l),
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where
7] < |0H]|
|EW| S (10H + |x|[0H]).

On the other hand since Rasps + Rapas + Rassp = 0, we infer that
Rasps — Rasps = —Rapas. Thus,

AB AB
2e""Raazp = —¢"Rapus.

In view of Corollary 4.6 we can therefore express eABR 4435 in the form cdrlw(Q)
+ E®@, O

5. Strategy of the proof of the Asymptotics Theorem

In this section we describe the main ideas in the proof of the Asymptotics
Theorem.

(1) Section 6. We start by making some primitive assumptions, which we
refer to as

e Bootstrap assumptions.

They concern the geometric properties of the C, and S;, foliations.
Based on these assumptions we derive further important properties, such
as

e Sharp comparisons between the functions u,r and s.

e Isoperimetric and Sobolev inequalities on Sy 4.

e Trace inequality; restriction of functions in H?(3;) to Si..

e Transport lemma

e Elliptic estimates on Hodge systems.

(2) Section 7. We recall the background estimates on H = H(y) proved in
[KI-Rol]. We establish further estimates of H related to the surfaces Sy,
and null hypersurfaces C,,.

e L9(S;,) estimates for 0H and Ric(H).
e Energy estimates on C,.
e Statement of the estimate for the derivatives of Ricys(H).

(3) Section 8. Using the bootstrap assumptions and the results of Sections 6
and 7 we provide a detailed proof of the Asymptotics Theorem.
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6. Bootstrap assumptions and Basic Consequences

Throughout this section we shall use only the following background prop-
erty, see Proposition 2.4 in [KI-Rol], of the metric H in [0,%,] x R3:

(48) I0H |20 S ATz,

By the Holder inequality we also have,

(49) |0 |y S A5,

The maximal time t, verifies the estimate t, < \—8¢0,

6.1. Bootstrap assumptions. We start by constructing the outgoing null
geodesics originating from the axis T'y, ¢t € [0,t.]. The geodesics emanating
from the same points € 'y form the null cones C,,. We define Q* C [0, ] x R3
to be the largest set properly foliated by the null cones C, with the following
properties:

A1) Any point in Q* lies on a unique outgoing null geodesic segment initiated
from I'; and contained in €*.

A2) Along any fixed Cy, T — 1 as s — 0. Here s denotes the affine parameter
along Cy, i.e. L(s) =1 and s|r, = 0. Recall also that r = r(t,u) denotes
the radius of S, = Cy, N Xy,

Moreover, the following bootstrap assumptions are satisfied for some
q > 2, sufficiently close to 2 :

_1_ ~ _1_ _1_
Bl) [[trx — 2|z SAT22 ([Rllzre SATET0, Inllpepe S AT,

=

B2) [[trx — 2|l pacs, ) SATE [Rlnaesen) SATE Inllpogs, ) S AT

Remark 6.2. 1t is straightforward to check that B1) and B2) are verified in
a small neighborhood of the time axis I';. Indeed for each fixed A our metrics
H) are smooth and therefore we can find a sufficiently small neighborhood,
whose size possibly depends on A, where the assumptions B1) and B2) hold.

Remark 6.3. We shall often have to estimate functions f in €2, which
verify equations of the form fil—]; = F with f = fp on the axis [';. According to

A1) we can express the value of f at every point P € €, by the formula,

F(P) = fo(Po) + / F

Y

with v the unique null geodesic in (), connecting the point P with the time
axis I'y and Py = vNT. For convenience we shall rewrite this formula, relative
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to the affine parameter s in the form

It will be clear from the context that the integral with respect to s’ denotes
the integral along a corresponding null geodesic 7.

6.4. Comparison results. We start with a simple comparison'? between
the affine parameter s and n(t — u).

LEMMA 6.5. In the region €,

s~ (t—u), ie, sS(t—u) and (t—u) < s.

Proof. Observe that % = L(t) = T(t) = n~! and, since u|r, =t,

(50) t—u:[ynlz/osnl

Thus, since n is bounded uniformly from below and above, we infer that
s and t —u are comparable, i.e. s ~t—u. In particular s < A\!~%¢0 everywhere
in Q.. O

Remark 6.6. The formula % = n along ~ together with the uniform

boundedness of n, used in Lemma 6.5 above, allows us to estimate integrals
along the null geodesics v as follows:

|/Fr—|/ ds\—\/F (s))ds|
—| / (nF)(¥ 2(s'(E))dt | S |Fllpsps-

We shall make a frequent use of this remark and refine the comparison
between s and ¢t — u.

LEMMA 6.7. In the region €,

n(t—u) =s (1 - O(A‘4€0)>.

2In [K1-Ro] we had in fact n = 1 and s = ¢ — u. In our context this is no longer true due
to the nontriviality of the lapse function n.
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Proof. Consider U = (n(t — u) — s) and proceed as in the lemma above
by noticing that Z—g = 0. Therefore,

%U _ %(m —u) - s> —n L(n)n(t — u)

=n" L(n)s +n " L(n) <n(t —w) - s>.

Integrating from the axis I'; we find,
(51) U(s) = /S’nlL(n)dS’ + / U(s'\n ' L(n)ds'
v v

where  is the null geodesic starting on the axis I'; and passing through a point
Py corresponding to the value s. By Gronwall we find,

U(s) ,S/ '|n"1L(n)|ds’ exp/ In"LL(n)|ds’.

According to Remark 6.6, [;n™'|L(n)| < |0H| 1. We can now make
use of the inequality (49) and infer that

n(t—u) =s (1 + O(A—8€0)> : O

LEMMA 6.8. The null lapse function b, see Definition 2.2, satisfies the
estimate

(52) [b(s) —n(s)| S A7
throughout the region §2.

Proof. Integrating the transport equation (30), L(b) = —bkyy, along the
null geodesic 7(s), we infer that,

b(s) = b(0) exp (- /0 ) kNN).

Since |knn| S |OH]|, the condition (49) gives [; [knn| S A7%0. According to
our definition b=! = T'(u) and u|p, = t. Thus b=1(0) = T(t) = n~1(0) and
therefore, |b(s) — n(0)| < A=80. To finish the proof it only remains to observe
that |n(s) —n(0)] < [ [L(n)| £ A 8%, O

Recall that the Hardy-Littlewood maximal function'® M(f)(t) of f(t) is
defined by
1 t

M(f)(t) = Supm )

f(r)dr,

Brestricted to the interval [0, t.]
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and that,
[IMze SN fllze

for any 1 < p < o0.
LEMMA 6.9. Let a be a solution of the transport equation
L(a) = F.

Then for any point P € Q, N X Ny, where v is the null geodesic beginning on
the axis I'y at the point Py € Xy, and terminating at the point P,

(53) |a(P) — a(Fo)| < sM([|F||e)(t)
where s is the value of the affine parameter of v corresponding to P.

_ da _

Proof. Integrating the equation L(a) = 9% = F along v we obtain

t
a(P) — a(P)| ZI/FIS t [F|l ez, dT < (t = to) M| F]| L) (2)-
ol 0

It remains to observe that ¢ — tg = t — u and that according to Lemma 6.5,
[t —u|] < s. O

Using Lemma 6.9 we can now refine the conclusions of Lemmas 6.8, 6.7.

COROLLARY 6.10.

(54) b=n+sO(M(OH)(t)),
(55) n(t—u) = s+ s*0O(M(0H))()),
(56) s | SMEm).

(57) Hﬁ - EHLEL;O <Az

where M(OH)(t) is the mazimal function of |[OH (t)|| .

Proof. The proof of (54) is straightforward since L(b—n) = —bkyn —L(n)
Now observe that the right-hand side |bkxy 4+ L(n)|| < |0H| and (b—n)|p, =0

Since, according to Lemma 6.7, n(t—u) < 2s, the equation L(n(t—u)—s) =
n~!L(n)n(t — u) can be written in the form

d
= (nlt = w) = 5)| 5 sloH].
Thus with the help of Lemma 6.9 we obtain
In(t —u) — 5| < s2M(OH).

The inequality (56) is an immediate consequence of (55) and Lemma 6.7. The
estimate (57) follows from (56), (48), and the L? estimate for the Hardy-
Littlewood maximal function. O
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We shall now compare the values of the parameters s and r = %A% (Stu)

at a point P € S 4.

LEMMA 6.11. The identity

r= s<1 + O()\_ﬁao))

holds throughout the region Q.. In particular this implies that
21s% < A(t,u) < 87s?

with A(t,u) the area of Si,.

Proof. Similarly to (18), we have

— 1
L(r) = =try = — try.
(r) 2 X 8mr Siw X

Using the identity A(S;,) = 4772, we obtain

dr 1 2
58 — =14 — try — — .
(58) ds + 8mr S ( X r)
Integrating along the null geodesic v passing through the point P = P(s) '
we have
(59) Ir(P) —s| < f7 % fo,,u (trx — %) <Am fertrX — %HLC;O

S [ = ity — s + [, o lorx — 2o
Thus by Gronwall, and the bootstrap estimate B1),
2

1
try — — < \zdeo
TlLipee

—6e
SATT
L2Le

2
try — —
r

we infer that, |r — s| < sA~6%.

O

Having established that r &~ s we shall now derive more refined comparison

estimates involving try — % and its iterated maximal functions. These will be
needed later on in Section 9.6 where try — % rather than try — % appears

naturally.
COROLLARY 6.12.

2
(60) |T‘ — S| S 82M3 <||tI'X — g”Lgo> s

3 2
(61) I —s| < s2ltrx — ;HL,?L;c-

4 Observe that according to A2), (r —s) — 0 as s — 0 along C,.
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Here, MF is the k™ mazimal function. Moreover,

2 2 2
(62) trx——’§ trx——’—i—/\/lg(trx—— ),
r s S|
2 2
(63) try — — < ltry — = )
"Lz Sliczre
2 2_1 2
(64) try — — < <1—{—7‘q 2) try — — ,
"lLa(Se.w) Sllrzree
2 2 2 1
(65) - < |ftrxy — — + A2,
roon(t—u) e S{lL2ree

Proof. We write the transport equation for r in the following form:

1 2 1 2
66 Lir) = — try — = - z
( ) (T) 8rr Siw ( X s) + 8rr /Sm s

Differentiating [q 2 we obtain

VA N B G B S R R

tou

2 1 2
([ 5)=2f ()
St‘us St,us S

Since s —r — 0 as r — 0, we have fo, ’ s% — 87. Using Lemmas 6.11 and 6.9

we infer that
2 2
— =81+ sM | [trx — == | -
St,u S S ’

Integrating (67) and using Lemma 6.9 once more we obtain

2 2
/ Z = 8ms + 2 M? + s> M
Siu S Sl Lee

try — -
Again, according to Lemma 6.11, r = s. Thus by (66)

Furthermore,

try — —
s

2
L;O.

1 2 2
L(r):§+— (trx——>+sj\/l2<trx—— >
ro 8nr Jg, ., s 8|l poo
or, equivalently,
1 2 2
L(r?) = 2s + — (trx — —) + rsM? ( try — — ) .
47T St,u, $ s L-(;o
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2
Ly

Integrating with the help of Lemma 6.9 we infer that,

2 >+33M<
S L:?:C

7"2:32+33M3< try — —
2
sl e ’

try — —
s
It then follows that

(68) r:s—|—32/\/l3< try — —

Observe that if during each integration along v we used Hdlder inequality
instead of the bounds involving maximal functions, we would have the estimate

2
try — —

69 —
(69) r=s+s S

L2L

This estimate can be used effectively to compare r and s on a single surface
St while (68) works well with the norms involving integration in time. Thus,
we infer from from (68) that

2 2
(70) - — - S/\/lS(trx—— ),
ros Sl
(71) 2_2 S ltry — 2
"o Sl Sllrzre
In addition, (69) implies that
2 2 2_1
(72) [2-2 et
T SlLa(s,.) SHLzLe

Inequalities (62)—(64) follow from the identity try — 2 = trx — 2 + 2 — 2 and
(70)—(72). Finally, (65) follows from (70) and (57). O

Remark 6.13. Observe that equation (58) and Lemma 6.9 also give the
estimate

Thus with the help of the bootstrap assumption B1) and the L? estimate for
the maximal function we infer that,

2 2 2 2
(73) try — — SHltrxy — = - —-
Slizare Mlizoe NI Sliczre
<2 ||ty — — < A3,
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Moreover, since r ~ s, equation (58), Holder inequality and the bootstrap
assumption B2) also imply that

sl s [
A

Using the bootstrap assumption B2) once again we infer that

2
<A ZogplTa
La(S;,.)

2
try — —
r

2

2
T e 2l S - 2

2 2

T S

La(Stw) La(St,w)
< )\7250 /\7250 -2 < )\7250
~ + ||T K HL(’(St,u) ~ .

Estimates (74), (73) indicate that the bootstrap assumptions Bl), B2) also
hold for (try — 2).

6.14. Isoperimetric, Sobolev inequalities and the transport lemma. We
consider now the foliation induced by Sy, on ¥;N€,. Relative to this foliation
the induced metric h on ¥; takes the form

h = b2du® + yapdo?de?

where ¢4 are local coordinates on S2. We state below a proposition concerning
the trace and isoperimetric inequalities on ¥; N €,. The proposition requires
a very weak assumption on the metric h; in fact we only need

(75) (sgpr%E) ”v%%huy@t) < AG?

*

for some large constant Ag > 0 and an arbitrarily small € > 0. In this and the
following subsection we shall assume a slightly stronger property that

(76) (sgprés) Hv%%aHHLQ(Zt) <AL

Remark 6.15. The assumption (76) is easily satisfied by our families of
metrics H = H(y); see Remark 7.2.

PROPOSITION 6.16. Let Si, be a fized surface in ¥y N with N the
exterior unit normal on Xy. Under the assumption (76) the following estimates
hold true with constants independent of Sy y:

i) For any smooth function f : S;, — R, the following isoperimetric
inequality holds:

() ( / M|f|2>; <[ (wreqn).
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ii) The following Sobolev inequality holds on S ,: for any § € (0,1) and p
from the interval p € (2, 0],

_ Sp
c(p—2) B 27 2pté(p—2)
(78) sup | f| < rar+ee® (/S (VS +r 2!f\2)>

t,u

25
:| 2p+68(p—2)

i Ry

iii) Consider an arbitrary function f : ¥y — R such that f € H%JFE(R?’).
The following trace inequality holds true:

(79) 1l L2s, ) S 102 flliegs,) + 10275 fllr2es.)-
More generally, for any q € [2,00)
(80) 1flna(s,) SN02 7 e fllpas,) + 10277 fllr2(s,)-

Also, consider the region Q*(%r, r) = Uirépérstvu(p): where r = r(t,u), then,
1
B 7,0 S IVNFlle@.ran 2. 2rm) + ;Hf”%z(g*(inr))‘

Proof. See [KI-Ro]. O
Finally we state below,

LEMMA 6.17 (The transport lemma). Let I14 be an S-tangent tensor-
field verifying the following transport equation with o > 0:

DyIlg + otrxIly = Fa.

Assume that the point (t,x) = (t,s,w) belongs to the domain Q. If I satisfies
the initial condition s*°114(s) — 0 as s — 0, then

(82) Tt )| < 4| Fllzipe

In addition, if o > % and 11 satisfies the initial condition 1"2(”_%)||H||Lq(sm)
— 0 as v — 0, then on each surface Si, C €,

1 ¢ n2(ec—1) /
m/u r)" N Lags, ) dt

(83) 1T Lacs, ) S

Finally, if I is a solution of the transport equation
1

l)4HA + O'trXHA = ;Féa

verifying the initial condition s>°T4(s) — 0 with some o > %, then

(84) T, 2) < AM(|[Fll ) (2)-



1218 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Proof. The proof of (82) and (83) is straightforward. For a similar version
see Lemma 5.2 in [KI-Ro]. Estimate (84) can be proved in the same manner
as (53) of Lemma 6.9. O

6.18. Elliptic estimates. Next we establish a proposition concerning the
L? estimates of Hodge systems on the surfaces S;,. They are similar to the
estimates of Lemma 5.5 in [KI-Ro]. We need however to make an important
modification based on Corollary 4.4.

PROPOSITION 6.19. Let & be an m~+1 covariant, totally symmetric tensor,
a solution of the Hodge system on the surface Si, C €; then

divé = F,
cyrlé = G,
tré = 0.
Then £ obeys the estimate
m—+1
(85) [P+ TR <2 [ (FP+IGR).
St,‘u r St,u

Proof. Using the standard Hodge theory, see Theorem 5.4 in [KI-Ro] or
Chapter 2 in [Ch-KI], we have

(36) | 1wk« e nKier = [ (PR +IGP.
The Gauss curvature K of the 2-surface S;, can be expressed as

1 1 1 1
K = = (try)? + —trytrk + =v- v + - R )
4(TX) +2rXr +2X X+2 ABAB

Thus it follows from Corollary 4.4 that
K—r?=Y,I4+E

where the tensor II and the error term F, relative to the standard coordinates
x®, obey the pointwise estimates |II| < |[0H| and |E| < (|0H|?+|X|*>+|x||0H]).
Then,

1
1) [ IR+ TR < [ AIPRHIGE + (m + (P AT+ BN

Integrating the term |, s, . Vallal€ |2 by parts we obtain for all sufficiently large

11,1
P3=5t9

/S VIl = —2 /S LAY A€ € < V€] e, Il Logs, o 1T ocs, o).

sU
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The isoperimetric inequality implies that for 2 < p < oo

llris. 7 (7€l + 7l )
We also deduce from the trace inequality that
1000 egs,.0) S 190H s,y S 107 H | oy + 10571757 H s
Thus the smallness condition
P a0 T T O o s, < AT
ensures that we can absorb the term (m + 1) [ ¥ 411al¢ |2 on the left-hand
side of (87). For large p the above condition coincides with (75).

It remains to estimate fs E|€]?. The most dangerous term is fs 1|2 [€]2.
Applying the Holder 1nequahty we infer that,

LIPS 1€ s, sy
tu

Using the isoperimetric inequality once more, we conclude that we need a
2

smallness condition on r' 4 |¢|| La(s,.,) for some ¢ > 2. This is guaranteed by

our bootstrap assumption B2). O

We shall next formulate versions of the Calderon-Zygmund theorem for the
above types of Hodge systems; see also [B-W]. The proof is a straightforward
modification of the standard approach.

PROPOSITION 6.20. Let £ be a 2 covariant, traceless, symmetric tensor,
verifying the Hodge system on the surface Si, C €,

dive =Y+

for some scalar v and 1-form e. Then,

(88) 1€llzas,0) S IVILacs,..) + lellr(s,..)
11,1
where 5= 3 + 7
Also,1®
(89) €l Lo (50.0) S ¥ llpoecs, ) log™® (| Vvl Lo (s, ) + 7;HGHLP(SM)

for any p > 2, where log™ z = log(2 + |2|).
Similar estimates hold in the case when & is a 1-form verifying the Hodge
system

d/in = d/iVVl + eq,
crlé = cyrlvg + ey

for some 1-forms v = (v1,v2) and scalars e = (e, e2).

5The term lrYv| Lo (s, ) can in fact be replaced by ||rVv| r(s, ) for r > 2.
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7. Properties of the metric H and its curvature tensor R

7.1. Background estimates. We start by recalling the background esti-
mates on the family of the Lorentz metrics H = H(y) proved in [KI-Rol]; see
Proposition 2.4.

The metric H admits the canonical decomposition

H = —n2dt? + hyj(da’ + v'dt) @ (da? + v dt)
and satisfies the following estimates on the time interval [0, t.] with ¢, < A\1=8%:

(90) ¢ < hy&'d <cTYePE P —i>e>0, |n|fv] <!

(91) HaHmHHLgO L S A8, m >0
(92) HaHmHHLfm e S ATz e m >0
(93) H&HmHHLOt e S A"z, m>0
1 1
(94) Hvﬁm(aH)HL?t L2 : SATT for — 3 <m< 3 + 4eg
1 1 1
(95) V24P H) |, 12 SAT271, for — 5+ <m
(96)  [|V™(H* 0, OsH) Iz, 12 S AT m >0
(97) IV™(V2Rag(H)) L2 S A1 m >0
(98) IV Rap(H)llLy, pe S AT, m > 0.

Remark 7.2. The inequality (92) with m = 0 is consistent with the prop-
erty (48), which we have used throughout Section 6. Moreover, since in the
region 2, the radius r of the surfaces Sy, does not exceed A=8%0  we have,
according to (94),

T%EHV%—F&‘(@H)HLFS{ ]Li 5 A(%—4€0)€)\—5 S )\—%E‘
This verifies condition (76).

7.3. Li(Si,) estimates. The trace inequality (80) of Proposition 6.16
allows us to derive the L4(S;,) estimates on the metric H from (94).

PROPOSITION 7.4. For any q in the interval 2 < q < 4
(99) 10H | za(s, .y < An ™ 7m0,
In addition,
(100) IRic(H) | 1o(s, ) S A7 2560

forpe[l,2].
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Proof. Since q < 4, by the Holder inequality,
2_1 2_1y(1-8¢
10 (| Las...) S 7o 2 10H [l 1as,.y S A~V N0H s, ).
Using the trace estimate (80) we infer that
10H |[ucs, ) S AP0 0 gy S Ao 5020

where we have used ||0H || LR S A~z from (94). The inequality (100) follows
similarly from the trace theorem and (97). O

7.5. Energy estimates on C,. In this subsection we shall derive energy
estimates, along the null hypersurfaces C,, for tangential derivatives of the
first derivatives of the rescaled metric

(101) Gt,z) =g G ;) .

Recall that the original space time Einstein metric g verifies Ry, (g) = 0. In
addition, since our coordinates x® satisfy the wave coordinate condition (2),
the metric g satisfies the quasilinear wave equation

(102) 8% 06038 = Ny (g, 08).

We have also defined the truncated metric gy = > P, g and, by rescaling,

p<iA
our background metric

t x
H(t = — = .
(7$) g<)\()\7)\>

Similarly, for a dyadic p > % we can define

(1) _ tz
G (th) Pp)\g <)\a)\)

Observe that H has frequencies < 1 and G is localized to the frequencies of
size p which cannot fall below %
We now formulate a basic energy estimate on the null cones C, for H

and G,

Definition 7.6. Given a scalar function F' in €, we denote by D,F the
C\, tangential derivatives of F. More precisely, D, F = (VF, LF). We shall use
this notation for the components of the metrics H and G relative to our fixed

system of coordinates. We also use this notation applied to all components of

the derivatives 0H and 0G. Thus [D.0H| =", 5 |Ds0yHag|.

PROPOSITION 7.7. The following estimates hold in the region €,:

(103) |D«OH |20y S A2, ID«H |20y S A2
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In addition, for the functions GW defined above,
(104)  [[DOGW| 2,y Spa oA,

DG | ooy Smax{ 140\ "3 460 ~3—de0 y~1-4=0)
(Cu) ~

Proof of Proposition 7.7. Metric g is a H*'7 solution of the Einstein
equation. Thus after rescaling and taking into account v > 5eg, we infer that
in addition to the estimates (91)—(96) for H, we also have

(105) [0 MG || e gz S AT R0 for g =0, 1.

We shall make use of the rescaled version of Lemma 8.9 in [KI-Rol] to
derive the equations for H and G,

(106) H*P0,05H = F,  H"P9,05G" = F,,

with the right-hand sides F', F}, obeying the estimates

(107) [Fllrize < A2, |OF || ie S A7z,

(108)  [Fullgrs Su N7, 0Fu s S pt AT

We shall use the generalized energy identity with the vectorfield T" in the
region My, ;. bounded by the cone C, and the time slices 3, ; intersecting
Cy. The vectorfield L is orthogonal, in the sense of the Lorentzian metric H,
to the cone C,,. Thus

/C QuT.L)+ | Q)= [ Q@)

Sy

_/M

tg,t,u

(@t moa + P20 )
with the energy-momentum tensor

QUflas = 0af05f — 5 Hap(0,70" )

and the deformation tensor (T)wag = LrH of the vectorfield T. A similar
identity also holds for G*. According to (7) and (23) the components of the
deformation tensor I can be described as follows:

(T)mj = —2k;;, (T)mo =n"ton, (T)woo =0.

Thus the deformation tensor | D] < |0H]|, and by (91) obeys the estimate
(109) |7l gy e S A4

Observe that

QIH)(T, L) = S (LH)? + J[VH] = J|D.HP,

QUH|(T,T) = S(TH) + JVHP = J|oH]".



ROUGH EINSTEIN METRICS 1223

In addition, |Qas(f)| < 2|8f|?. Thus, using (94), (107), and (109), we obtain

/ ]D*H\Qg/ 8H\2+4/ <|(T)7r] OH| + |F| |aHy)
C. P Mto,t,u

0

SNOH|Z ez + 1| D7l |0H T 2 + I1F 222 [0H | o2 S A

Similarly,

/ D*G“zg/ |8G“|2+4/
C. iy

SNOGH Loz + T 7l 2 1OG Lo 1z + 1 Bl iy 2 10GH || o2

(|T7rr 9GH2 + || |6G#|>

to,t,u

—2—850)\—1—850 —1—860)\—2—860}
, .

I

To get the estimates for D,0H and D,0G* we differentiate the equations (106).
Commuting the derivative with the metric H we obtain,

H9,050H = OF + (0H*?)0,050H = F*,
H*P9,050G" = OF,, + (0H*?)0,030G" = F),.

< max{u

Using (107), (108) and the inequality |0H || i < A% of (91), we infer that
[ Fllie S A2, [Fallpie S ptmteoa—z—t,

Thus using the generalized energy identity for H and 0G* we will have

[ 1D OHP S HIry + | Dl |0 H o

u

HIF 22 [|0°H] poers S A7
Also,

[ 1D0GHE 1 s+ Ty 102G o

The following result can be deduced from Propositions 7.7 and 4.1.

COROLLARY 7.8. Any component of the curvature Rapeq=R(eq, b, €c, €4),
of the metric H, with vectorfields eg, ey, €. varying between L,ep, A = 1,2,
obeys the energy estimates on Cy:
_1
[Rabedllz2(c) S A2

In particular,

IR.lz2cy ==Y IRascolrzc,) + IRaseallrz(c,) + IRbasalra )
A,B,C,D

< ATE
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8. A remarkable property of Ry,

While the spacetime metric g verifies the Einstein equations R, (g) = 0
this is certainly not true for the effective metric H = H(y). This could create
serious problems in the proof of the asymptotics theorem as the Ricci curvature
appears as a source term in the null structure equations. We have already
established an improved estimate for Ric(H) in L}L°, see (98). This was
done by comparing R, (H) with R, (G) = 0 where G = g(A\~t, A\"1z) is the
rescaled Einstein metric. We need however a stronger estimate involving the
derivatives of Ry4(H) along the null cones C,. To establish such an estimate
we encounter an additional difficulty: the null cones C, have been constructed
relative to the approximate metric H. This leads to significant differences
between the C), energy estimates for the second derivatives of H, see (103) and
the corresponding ones!'® for G; see (104) in Proposition 7.7. Using however
the specific structure of the component Ry4 relative to the wave coordinates
we can overcome this difficulty and prove the following:

THEOREM 8.1. On any null hypersurface C,,

t
(110) / ||VR44(H)||L2(ST)“’)dT§ AL

Proof. The proof of the theorem requires a rather long and tedious argu-
ment which we present in our paper [KI-Ro2]. O

9. Asymptotics Theorem

We start by recalling already established estimates for the metric related
quantities which play a crucial role in what follows.

111

112
113

114
115

|OH |5 S A2,
NOH | ogs, ) S AT 8E7D% for 2<g <4,
|Ric(H)|pire S AT
IRic(H)l| (s, ) S A 2560 for 1<p<2,
1D OH]|2c,) S A2,

/0 VR s,y S A2,

(117) IR |20y S A3

(111)
(112)
(113)
(114)
(115)
(116)

116

16The estimates for the second derivatives of the higher frequencies of G do in fact diverge
badly.
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where

IRullzz2c,) == > [Rasenllzze,) + IRascalrzc,) + IRpasall e, )-
A,B,C,D

Note that some of the above estimates hold only throughout the region €.

THEOREM 9.1. Throughout the region . the quantities try — %, X, and
n satisfy the following estimates:

(118)

~ _1_
F IRl 2 re + Inllpepe S AT270%,

2
try — —
"llrzre

(119) IRl zogs,) + Inllzags, ) S AT

2
try — —
r Lq(st‘u)

In the estimate (118) function % can be replaced with ﬁ Also, the corre-

sponding L} estimate follows by Holder inequality:

(120) |[try — ——— < A"33e0, try — ———— < AT,
n(t —u) L2 n(t —u) LiLe
In addition, in the exterior region r > t/2,
(121)
2 < 41 —4eq ~ < —1y—¢o
trx — - SEAT IRl s, SETOAT + [0H ()] Le
SN Lo (S;,.)

Il s,y S AT AT X OCH) (1)

where the last estimate holds for an arbitrary positive €, € < 9. There are now
the following estimates for the derivatives of try:

2
122) sup L (1rx = 2) sl

t
r>3

2
+waLQw—————)muhrusA3%
>t n(t — u) (St,u) 113

(123)  [[sup [|Wtrx|[Lo(s,..) s

t
r>;

2
try — — 2 L < A3,
s ¥ (1=~ ) el <

t
7"22

In addition, there are have weak estimates of the form,

7.0 (-2

for some large value of C.

< )\¢

~

L“(St,u)

(124) sup

t
us;
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COROLLARY 9.2. The estimates of Theorem 9.1 can be extended to the
whole region Iy N ([0,t.] x R3), where Z; is the future domain of the origin
on Y.

Remark 9.3. The proof of Corollary 9.2 requires an extension argument.
The estimates of the Asymptotics Theorem, which are uniform with respect
to the bootstrap region €1, provide very good control of the foliations C,, and
Stu- By the standard continuity argument this allows us to show that the
estimates, in fact, hold in the maximal domain allowed by the background
estimates (111)—(117) on the metric H, Z; N ([0,t,] x R3).

Remark 9.4. Observe also that we can extend the results of (118)—(121)
to a slightly larger domain Z*, N ([0, ] x R?). This is in fact needed to derive
the first derivative estimates (122)—(123), in Z; N ([0, ¢.] x R?), whose proof
depends on Theorem 8.1. That theorem, to be proved in [KI-Ro2], requires
indeed the estimates for ©, see definition below, in a slightly larger domain.
The estimates for © however, i.e. (118)—(121), are independent of Theorem 8.1.

Proof. To simplify our calculations we start with the following definition.
Definition 9.5.

2
(125) 0= trxg‘+|>2|+!n|+!8H|.

|
try — —| +
r

In our calculations below we shall often us the notation © but mean in
fact O(O).

In view of our bootstrap assumptions B1), B2) (see Section 6.1), Remark
6.13, as well as the estimates (111), (112) for OH we can freely make use of
the following:

(126) 1Ol 220 S AT, 101 La(s,..) S AT
inside the bootstrap region €.

9.6. Estimates for trx, x. We start with estimates (118)—(121) for try.
Observe that in view of Corollary 6.12 it suffices to prove the desired estimates
for try — %

Writing y = (trx — %) we have,

2_
(127) L(y) +trxy = —Ryq — ;kNN + 0%

Applying the transport Lemma 6.17 we infer that at any point P € .,

Sur) s [

1
82 <|R44‘ + —|8H| + @2>
~ S
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where v is the outgoing null geodesic starting on the time axis I'y, passing
through P, and s is the corresponding value of the affine parameter s. There-
fore,

1
(P S Ruslzio + 5 [ 10H] + 0]
2l
and, in view of (126) and (113),

1
(128) L e Ll
ol

In the exterior region s > %, using the condition (111), we infer that,

try — 2 <tTiaTeo,

S

(129)

L(Se.)

which proves (121). On the other hand, see also the proof of Lemma 6.9, (128)
leads to a global estimate,

SATIE 4+ M(OH)()
Lge
where M(OH) is the maximal function of |0H (t)||r~. The estimates (130)
and (111) together with the corresponding maximal function estimates readily
imply that

2
try — -

(130) ;

2
try — —

S| SN M@ @) S AT H|OH e S AT

LyLg

On the other hand, using the comparison results between r and s, see Section
6.3., s < A178%0 < X\ and the Hoélder inequalities

2

2
trx — Srallyllpecs,.)

La(S,..)
SN0 50T |OH | ape S AATIT0 < e

provided that ¢ > 2 is chosen sufficiently close to 2. Using the comparison
results between % and % of Corollary 6.12 we infer that,

(131) try — = <A,
Tllpzree
2
132 try — - < 4o,
X S
TllLacs,.)

as desired in (118) and (119). Finally, (120) follows from (57) of Corollary 6.10.
We shall now estimate x from the Codazzi equations (37),

N . 1
(133) (dAVX)A—l-XABkBN = E(WAUX"’_'ICANHX) — Rpaap.
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Taking advantage of Corollary 4.5, with a different error term FE, we rewrite
(133) in the form,

. 1 2
(134) (divR)a = 5Va (tox = = ) + Var + Vimap + B
2 T
with 7 and E obeying pointwise estimates
1
7| S10H[,  [E|<[©-0H|+ ~|0H].
r

We shall now take advantage of the elliptic estimate of Proposition 6.20 and
write

. 2
XN Lo (5, 0) S AT [[trx — =
Tl Lee(sS,..,
(135) X oo s,y + 7 Bl ags,

with ¢ > 2.

Remark 9.7. In the application of the elliptic estimate (89) in the deriva-
tion of (135) we need some rough estimates for ¥try of the type

C
7 Vtrxl Lo (s,.) S A
for some large constant C' > 0. These weak estimates, consistent with (124),
are a lot easier to derive and can be obtained directly from the transport
equations (31), (32) for try and x. We refer the reader to our paper [KI-Ro]
for more details.

Therefore, choosing ¢ = 2 4+ ¢ for sufficiently small € > 0, and using the
bootstrap assumptions B2) as well as assumptions (112) we infer that

2
try — —
r

(136)  [[Xllpee(s,.) SA°

+ Al OH]| e
L(50.)

e (ueuu(st,ﬁuaﬂuw n r‘”qHaHuL;o)

2
3 (= s + 1081122 )

Now we observe that the desired pointwise estimate (121) in the exterior
region r > ¢/2 follows from (129) and the estimate |2—2| < A=f0s~1 < A\ 7c0¢~1,
Thus

(137) Xl 2= s,y S ETAT + |0H]| 2
We can also add a global estimate following from Corollary 6.12!7 and (130)
(138) XNz (s,.) S AT+ OH (1) + MY (OH)(1).

""Namely, the inequality |[try — 2|z S M?(|[trx — 2120 ).
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Now squaring and integrating (136) in time we infer from (111) and the just
proved estimate (131) for try — 2 that

X 2 _1_
(139) IXllezLe S Aa(HtTX = llezre + ||3H||L§L;°> <A

which is the estimate claimed in (118) of Theorem 9.1.
On the other hand, application of the elliptic estimate (88) of Proposition
6.20 to the equation (134) yields the following:

. 2
X La(s,.) S lltrx — ;HLq(St,u) +10H | acs, ) + 1Bl Lr(s, )

for some ¢ > 2, % = % + %. Choosing ¢ = 2 + ¢ as in bootstrap assumption
B2) we infer, with the help of the estimate (132) for try — 2 and (112), that

A ) 1

1Rllz0(s..) S A7 + 10 0H | 1a(s, ) + = 10H locs,..
SN+ 10H 125, ) 1Ol (s, ) + 10H || 2acs, )
< \"deo,

9.8. Estimates for n. We start with the Hodge system (38), (39):
1 - . 1
div =3 (u + 2kyntry —2[n)* — [XI? - 2kABXAB> - §5ABRA43Ba

1 N 1
cyrl n = §5ABkACXCB — §5ABRA43B

with p defined as in (34), p = L(trx)— 5 (trx)?— (knny+n~'Vn)try, satisfying
the transport equation (35),

(140) L(p) + trxp = 2(n, — na) Y 4(trx)
—2X4AB (277,4773 + 2nanB + kNN XAB

+trxxaB + Xacxes + 2kacxce + RB43A)

_ 1 . =
—L(R44) + (2]€NN —4n 1VNTL) <§(tI‘X)2 — |X‘2 — knntry — R44>
4k vty + (trx + 4k ) (X7 + Raa)
1
—try <2(kAN —nA)n " Van = 2n N (n)|? + 5 Razas + QkNmkﬁ)

Observe that in view of Corollary 4.7 we can rewrite our div-curl system for 7
as follows:

(141)
w1 7 2 1o 1 (1)
divnp=divr +§ w+ 2knntrx — 2|0 — |X|* — 2kaxaB —§w+E ,

1
cyrl n:cdrlﬂm) + ieABkAcXCB + E®
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where w = (R + Rg4) and

72| < oH|
B2 S (0H[? + [\ [0H]).

Remark 9.9. We would like to treat the system formed by the transport
equation (140) coupled with the elliptic system (141) in the same manner as
we have dealt with the system for try and y. Indeed the Hodge system (141)
is similar to the Hodge system (133). The transport equation for p differs
however significantly from the transport equation (127) for try. Indeed the
only curvature term on the right-hand side of (127) is Ry4 while the right-
hand side of (140) exhibits the far more dangerous term L(R44). In what
follows we shall get around this difficulty by introducing a new covector
through a Hodge system on the surfaces S;,. Using once more the special
structure of the Einstein equations we shall derive a new transport equation
for g whose right-hand side exhibits only terms depending on Ric(H) and
favorable components of the curvature tensor.

We define an auxiliary S-tangent co-vector jia as a solution of the Hodge
system

(142) divih=pu— w,
(143) cyrlyg =0

with w = Rys + R. We now prove the following

PROPOSITION 9.10. (1) The covector ji verifies the following:

1 2
dﬁv(@u/—l—itrx/ﬁ—X~¢):8H~]D4¢+WA<2RA4+;WA—i—G)-@)
—%(3R34+2R) + ORic + OR, + 0 - D,dH
—i-@‘@-@%—l@‘@—i-%ﬁﬂ,
r r
1
eyl (Pagh + Stexh — X f) =OH - Py + V(6 - ©) + R..- ©
+%®~@+@~@-@.

(2) The covector y verifies the following estimates

(144) Il Lo s, 0) SATH+ M(OH),
(145) il Lacs,..) SAT>.
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Proof of part 2 of Proposition 9.10.

Remark 9.11. For convenience we extend our bootstrap assumptions B1)
and B2) to include g. Thus, throughout the proof below, we redefine ©, see
(125), as follows:

(146) 9=o<

|
try — —| +
r

2 .
trx = 2|+ 141+ ol + 0]+ )
This is justified since our stated estimates are stronger than B1) and B2) for 4.

Assuming the first part of Proposition 9.10 we now derive the estimates
of part 2 and start by applying the elliptic estimates of Proposition 6.20 to the
Hodge system of Proposition 9.10. Thus for some ¢ > 2, with

M = (Pui+ gl = i),
we have,

Ml pe(s,.) SIOH Lacs, )M | Les, )

. 1
e <|!R1c<H>||Loo<s,,,u> 10l (s,.) + ?”aH”Lm(S”)>
#17 (JOR s,y + 1OF O s

. 1 3
+ [ORiC(H)| Lo(s, ) + ~[IRie(H) | Lus, .)

1 1
#1015+ 21050+ 510 s, )

Remark 9.12. As in the case of the estimates for x, the use of the ellip-
tic estimates (89) of Proposition 6.20 for the Hodge system satisfied by the
quantity M requires rough estimates of the type

I"VR aallz(s, ) + IV7 | (s, ) + 170 - VO pags, ) S AC

for some ¢ > 2. The estimate for the derivatives of the Ricci curvature and the
metric H are contained in our background estimates (91)—(98). In addition
to try and y, for which we have already outlined the procedure of obtaining
such weak estimates, the quantity © contains 7 and 4. Once again, we can use
the transport equation (33) for n and the Hodge system (142), (143) combined
with the transport equation (140) for u to handle these terms.

Taking ¢ sufficiently close to ¢ = 2, using the bootstrap assumption,

101l Las,.) S A% < 1, and the estimate [|[0H|[ras,,) S A7 < 1/2 we
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can then conclude that

. 1
[ M| poe(s,..) SA (HRIC(H)HLw(St,u) + H@HQLm(st,u) + ;HaHHLw(St,u)

+ 110 Lo (s,..)

D0 15,0 + 10l 5, Re s )
Applying the transport Lemma 6.17 to the transport equation

1 .
(147) Puph+ Stoxph = M+ X 4,
we infer that at any point P € €Q,,

Pl < | 511+ )

where ~ is the outgoing null geodesic starting on the time axis I'; passing
through P, and s is the corresponding value of the affine parameter s. Hence,

i | (H@r%wwﬁ,u) 100l 5, ) | DeBH s,
i

1
#1005 ol Relsy ) + 5 [ 10H s,
ol
Observe that by B1) and (115), we have

[ 10l 120 s S V0lsa [ 1008 s, )
Y v

1—-2 2
SATT 0 H] |y | DLOH

5 )\*%*2&0)\—(1+4EO)(%_%)A_%

(Cu)

S )\717260.

A similar estimate, by (117), also holds for the term involving R.. Conse-
quently,
il (s...) S A7+ M(OR)

as desired.
Observe also that in the exterior region r > &,
(148) Il Lo 5,0y S AT+ AT

Going back to Proposition 9.10 and applying now the estimate (88) of
Proposition 6.20 we deduce, for 1—1; = % + %,

1M1l acs, ) SIOH 25, 1M [ 1ags, o) + IRiC(H)l|1acs, )
1
-+ ;HaHHLq(St,u) + H(—)H%2q(5t,u)
+ 19|l La(s,..) (HD*(?HHLQ(&,“) T HR*HLQ(S‘=“))

2_9q 2_9
+re ”@H%oo(st,u)"'“ H3H||Loo(sf,,u)-
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According to the estimates (112), |0H||2(s, ) S A™*° < 1. Thus we can
absorb the term with M into the left-hand side.
On the other hand, using the transport Lemma 6.17 applied to the trans-

port equation (147) we infer,

1 ! n(1—2) 2 /

(-3 r(@) M| Las, ) + 1Ol720s, ) |dt
r o/ Ju

Applying the bootstrap assumptions B1), B2), and (111)-(117) we infer
that,

il Lags, ) S

REa TSI

Ilzecs, .y <° (mumamu Lo IRICUD

1 t _2 2_
# iy [ R s, g
r q U
+72(10] Lags, ) | DeOH | 2y + 7' 7 [1O170(s, ) 1€l
2_ 1 t 1-2 2_9
+re 1”®H%$Lgc+m/ () e () T OH | 1 s, A
r a u

< —360 2*% < —360
SAT e 2 ||0H | e S A

as desired. On the right-hand side of the last series of inequalities, for the
sake of brevity, we have abused the notation using |[|f||z«(s,,) to denote

supy , |fll Lacs, .)-
Using the estimates (144) and (145) for 4 we are now ready to return to

the proof of the estimates for 7. Now with the help of the established estimates
for 4 we shall derive the desired estimates for |[n||pzp and [|9([1q(s, ). First
observe that using the definition (142), (143) of 4 the div-curl system (141)
for n takes the form

div (n - %,4) = diva + %8H+ 0.0,
cyrl (n— 5% =cyrl7' + ;8H +06-0.

We are now ready to apply Proposition 6.20 to our Hodge system for n — % ih-
Thus, for some ¢ > 2, sufficiently close to 2,

1 2 .
||77_ §l/i||L°c(St,u)SA&HOHHLOC(SLU) +r ‘1||8H||Lq(5ty“) —|—7“1 q||®2”Lq(St,u)
SANOH|| e s, ) + A (O]l Lo (s, )

where we have used the bootstrap estimate [0, ) S A7?%°. Furthermore,
we infer with the help of (144) that

(149)  nllz=(s,.) S A+ M@OH) + A [0H]|(s,..) + A8l 1=s,..)-
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The desired L?L° estimate follows immediately from the bootstrap assump-
tion B1) and the estimates (111)-(117).

Consider also the exterior region r > % Observe that, using the estimates
(129), (137) and (148) for trxy — 2, ¥, 4 already established in the exterior
region we infer that,

(150) Il e (s, S ATHH AT+ N OH |-

On the other hand, for % = % + 1

q’
1:

Since > % + % and g > 2, we have 2p < q and the Hélder inequality gives

1 2
n— 5// S AOH || pas, ) + ;HaHHLP(St,u) + 1102 Lo (s, .-

La(St )

94 —
101 %25,y ST 1O as, ) S AT

from the bootstrap assumption B2), provided that ¢ is sufficiently close to 2.
Thus with the help of (112) and the estimate (145) we obtain,

(151) 19l zocs, ) S Ml L,y + A3 S AT
as desired.

Proof of part 1 of Proposition 9.10. We start by expressing the transport
equation (140) for p = L(trx) — 3(trx)? — (kyy + n~'Vyn)try in a more
tractable form. The troublesome terms are LRy4 and tryRuysss. We shall first

eliminate L R4 in exchange for more favorable terms. We do this with the help
of the twice contracted Bianchi identity:

y 1
D (RW — §gWR> =0

with R the scalar curvature = g*”R,,,. Thus, relative to our canonical null
frame,

1
D*Ruz + D'Rag + D' Ryp = §L(R),

or,

D3Ry = —DyRy3 + 2D Ryy — L(R).
On the other hand,
D3Ry = LRys — 4naRas — 2kynRua,
DyRy3 = LRy3 — 21, Rya,
D'Rya =Y Rua — xacRea + kanyRaa — %ter43 - %UXRM-
Therefore,

L(Ryy) = —L(Rys + R) + 2V Ry
—(2R34 + R — Ryy) - trx + Ric - (X, k, ).
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Using this formula we can rewrite the transport equation for p in the form:
L(p) + trxp=L(w) + 2WARA4 + trx(2R34 + R) — tryRusas
+2(n, —na)¥Vtrx —4x - Yn+ © - R,
1 1
+0-0-0+6-Ric+-60-0+ —0H,
r r
where w = Ry3 + R. Thus
(152) L(,u — W) + tI“X(M — W) = 2Y7ARA4 + tryRgs — tryRysz4s + © - Ric
+2(n, —na)Vatrx —4x - ¥n+ 0O - R,
1 1
+6-0-0+-6-0+ 50H.
r r
Observe that Rgy = HaﬁRa354 = %R4343*5ABRA34B. Also, Rap = *%R3A4B
— %R4A33 + 0“PReapp. Therefore,
Rsuz1 = 2(Ras + 0*PRap) + 0P PReapp
or, since SAPR 45 = Ry + R, by Corollary 4.4 for Ragcp,
Ris34 = 2(2R3s + R) — divm + E,

where
m| S[0H|  and  |E| S |0HP + [x||0H].

Using this we can rewrite (152) in the form,

(153)
L(p—w) +trx(p —w) =2V Ras + trydivr — try(3Rss + 2R)
+2(1, —na)Vatrx — 4% - Y+ © - Ric+ © - R,

1 1
+0-0-0+-0-0+ 5IH.
r T

Recall that we defined an S-tangent co-vector yis as a solution of the
Hodge system

(154) divi=p—w.
(155) cyrl = 0.

We shall now use the commutation formula of Lemma 3.5.
v (Push) — Llciv ) = gtoxciv i+ X Vb —n ™o P
+%tTXEAN,¢A — XaBkpnjt + Rapapjha,
eyl (Payh) — L(cyrl ) = %trX@iﬂ/ﬁ + e BoV ot — P47 W pnPujha

—eBYpakeniha + ePORacupiia.
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Using the transport equation (152) and commuting L with div and cyrl
(see Lemma 3.5) we can derive the following Hodge system for Dy(y):

v (Push) =~ trxdivj + - Y+ OH - P + v

+2(n, —na)Vatrx — 4% - Vi + Rapapyfa +2Y 4Ras
2
—;(3R34 +2R) + ORic+ OR,. + O - D.OH

1 1
+0-0-0+-60-0+ 5 0H,
T T
1 R
cyrl (Paph) = Stexevrlyh + OH - Pajh + P4V cpaxso
1
+€CBRAB4c/ﬁA + ;@ -©+0-.-6-0.

Remark 9.13. We got rid of the dangerous term L(Ry4). We still need to
eliminate the terms of the form © - YO.

Observe that, according to the Codazzi equation,

. 1 1 .
divxa — §Y7Atrx = §kANtrX — XBNkBpN — RBaaB.

Therefore,
SOV XaBY piha = — i (o) + T2 (Lamiha)
g Viry — (7 tan)iha
=-y! <%trX/ﬁA - XABMB)
— (ékANtrX — XBNkBN — RB4AB> :

Thus
(156)

CMV<794//5 + %tl"X//iA - XABMB) =0H - Py + %d,&wr
+2(n, —na) Y atrx —4x - Vn
+2YV 4Ra4 — %(3R34 + 2R) + ORic + OR.
+@-D*8H+@-@-@+%@-@+T%0H.
Also, since cyrly = 0,
Srxelf + PAV i = PAY e e

=8y, (Xsothc) + PV X Beiic
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— <%trx//iB>ZBc//ic>
+e PV 4 (tr)uhs + <P (W axse)ie

On the other hand (see [KI-Ro, §2|), Y xBc = Voxas — Rpaca + k- x.
Therefore,

(157)
cil (Pus+ 5rvia — tapii ) =OH - P~ 20l 4) + 07 ook
—i—%@-@—i—@-@-@.
Observe also, in (156), by Codazzi,

. A, A
—20AY gtrx — 4B - Vgna = —20aY strx — 4V (XaBnB) + 4V XaBnB
— AV (XaBnB) + 4nRoaspa + 1 X - k.

Therefore,
1 . ) 2
div <ZD4% +5tia - XAB%B) =O0H - Dy + Y 4 <2RA4 —4XaBNB + ;7TA)
2
+2n , Vatrx — ;(3R34 + 2R) + ORic + OR.,

1 1
+@-D*8H+@-@-@+;@-@+T—28H.

In addition, since Ny, = —kan,

natex = =V (Fax (0= 2) )+ (1= 2) i)
=-Y,4 <1§:AN <trx - %)) +© - D,0H.
Thus,
v (Pus+ grvia = anin
_OH D+ Y, <2R44 — A%amms + o7~ s <trx - %))

2
—;(3R34 +2R) + ORic + OR, + © - D.OH

10.0-0+-6.6+0H.
r T
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Since Yr = 0 and cyrly = 0, the corresponding curl equation takes the follow-
ing final form:

cyrl <}D4¢ + %trxﬂA + XABMB)
—om - Pui - 20l (i) + 4%, (e - 2) i
+%@-@+@-@-@.

9.14. Estimate for Ytry. To estimate Ytry we commute (taking advan-
tage of Lemma 3.5) the equation for try with angular derivatives Y. Therefore,

3 - - o
DsYVtrx + §tTXY7tTX =—YRus — trxVknny — knnYVirxy — 2Vx - X
1 1 -
—§n*1Y7n (itrx2 + knntry + R44> .

Using the transport Lemma 6.17 we deduce

1 t
I¥erxlsags. ) S a5 | 70

'<||WR44HL2<SM> ) YOH s,
+r(t") 2OH | L2s, )+ IR - VRIIL2(s, )

) OHY e, + HaHRiC(H)HL2<st,,u)>dt’.

Consider the most dangerous term rz‘l(t) fi r(t')2|| VR 44| L2(s, ,)dt'. We esti-
mate it with the help of estimate (116) and find,

1 t t L
2 / T’(t/)z”WRM’L2(St/,u)dt/f<v/ [VRuallL2(s, Hdt" S A 1=2¢0
r2(t) Ju u
Also, with the help of (115),

1 ¢ _1 _1, 1
7 [ TOINOH s, e <2 IVOH ey S 78,
u

All other terms are easier to treat. Therefore,

t
(158) 72| Wtrxllpacs,.) S 72AT T+ AT +/ r)2 1% VXlras, )t

u
It remains to estimate Yx. We do this with the help of Proposition 6.19
applied to the Codazzi equation (37) written in the form (134). Thus

1 1
| IWRE IR < [ v+ von? + o + el

U
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Therefore,

(159)  VRlzes < IVexlzegs, ) + IVOH | 1xs, ..
o_4a a
HIOH®)] =5,y + €17 €135,

for some ¢ > 2. Observe that we can take ¢ sufficiently close to 2 and use
the already proved estimates (119) to obtain H@sz(s, ) < A3, In addition,
observe that by Holder inequality and (118)

(160) / 11157 S ™[040, S A0

for all values of ¢ sufficiently close to 2.
Using (159) we estimate,

/ut OHPE YVxllzas, dt’
5/:7“(75/)%||>A<||Loo(st,),,,)||Y7>A<||L2(s,,,yu)dt’
5/:7“(75/)%||>A<||L°°(s,,,,u>IIWtrxlle(st,,u)dt’

+3 ()X 2 1 <HY78H||L2(C FOH | o +ATE 0)

t
§/ r(t ) Xl o5, HIVtEX N L2(S,0 ) dt’+r5(t))r1*4fo.
u

Here we have used (111), (115), (118), (160), and the fact that r(¢") < er(t) for
all ¢ < ¢, which follows from the comparison r(¢') ~ t'—u and the monotonicity
of t — u along the cone C,. Therefore, returning to (158), we obtain,

t
r2 | Wrxllzags, ) S rEATITE H AT +/ r(t)2 1% = (s, I Ve L5, 2
u

Thus, by Gronwall inequality, and the fact that fi Xl L~ (s, ) @t S IXllLize S
A3 we infer that

(161) P3| Wirxlregs, ) S rATITR 4 AT
Consequently, since the time interval [0,t,] obeys t, < A178% we have
(162) | sup [[Vtrx|lras, )l < A7

r(t)>

This establishes the first part of the estimate (123).

9.15. Estimates for L(try). Recall the relation between L(try) and p:

b= Litry) — 5 (00 (ke + 7 N )ty
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Observe also that L(r) = g [q, . trx. Thus

2 1 2 1 2 2 1
Ll-)=-— try=—+——= try — — 4+ 2trk | = —= + —-06.
= <’I“> 4dr3 /St,u X 72 + A3 /St,u ( X5 +etr ) 72 + r

In addition, |%(trx)2 — r%| < %@. Therefore,

(163)
2 1
L { trx — - z2(s,.) S ellzacs, ) + 1OH - Ol r2(s, ) + ;H@HLQ(&,u)

SOl L~(s,.) + el s, .)-

Here we have used the Holder inequality combined with the estimate (112):
10H | 25, ) S AT

It remains to estimate ||x|r2(g, ,)- We obtain this estimate from the trans-

u

port equation (35) for x4 which combined with Corollary 4.7 can be written in
the form:

(164)
1
L(pp+ Rag) + trx (i + Raa) = OF(trx) + OF) + 2N (Ras) + 0% + 67

1 1 1
+ﬁ8H + ;Ric(H) + ORic(H) + OR, + ;R*.

Remark 9.16. In the derivation of (164) we have expressed L(Ru44) in the
form L(R44) — 2N(R44).

Using the transport lemma and the estimate (116), fj VRl 25, ) dt' S
A~172%0 we infer that,

(165)
]‘ t / !
el z2cs, ) §||R44HL2(st,u)+r—t)/ r)Ol=(s, HNVnllrzs, .)dt
L (S) t/ a )\717250
+ r(t)“” L2 lm(E) YV (trx) 22(C) +
+ 101721 1€l 22,y + 1©11721 + (1) 2| 0H]| L2
+ [|Ric(H) ||tz + 18] r2(s, ) [IRic(H)| L =
+ 1O/l pzp IRl 20y + () 2 [|Rul 22 ()
1

t
S / VO (5, IVl s, oy A+ X1 4 r(t) 543

Here we have repeatedly used the Holder inequality, the assumptions on the
metric (111)—(117), the already proved estimates (118), (119) for ©, and the
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estimate!8

IV 00 oo = / () Fhex|2as, )

AN

( 2a )\—1 2e0 _’_7,( ) ;A—;)th,>2

r(t)zTONTIT20 ()O3 ()0

N

following from the estimate for [|¥Vtrx| zz2(s, ), proved in (161).
On the other hand, 7 is the solution of the Hodge system (38), (39):

) 1
div n= (M + 2knntrx — 20> = [R]* — 2kABXAB> - §5ABRA433,

1 . 1
cyrl n = §€AB/€ACXCB - §€ABRA43B-

The elliptic estimate of Proposition 6.19 applied to this div-curl system gives
us the bound

1
(166) [|[¥nllr2(s, .y + ;||77||L2(st,u) Slellzes, ) + 11Ol e (s, IOl L2(s, )
+Oll (s, ) + IRAas3Bl 225, .)-

Recall that according to (117), |Rasssllz2c,) < A~ 2. Thus substituting esti-
mate (166) into (165) we obtain

1 t _ _1._1
lellpegs,.) S @/ r(t)1O1 (s, llullLacs, ) dt + A7 +r(t) "2 A7z,

We rewrite the above inequality in a more convenient form:

t
()2 ull 2 (s, ) 5/ 1O (s, ()2 llpllL2gs, ) dt’ +r(E)z A~ + A7z,
Since

t t
[ 10lnis, @t < [ 0]z dt 5 £ [Olzrz S X7
u 0
application of Gronwall’s inequality yields the estimate

r(6)2 |l rags, ) SrE)2ATH + A7z,

Returning to (163) we obtain

2
||L<trx——> logs) SA 4 O]l +r 52,

!8Constant a can be chosen arbitrarily from the interval (0,2). Its only purpose is to
remove the logarithmic divergence at p = 0.
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Similarly to (162) we then derive the following estimates in the exterior region:

2 —
(167) [ sup [ L(trx = llzas, ol < A7

t
r>g

This proves the first part of the estimate (122).
To finish the proof of (122) and (123), we first recall that L(2) = 2 +1@.
Observe also that
L(n(t—u))=n"'L(n)n(t —u) + n(n~" —2b71)
=—142n0b" =07 + 07 L(n)n(t — u).
According to Corollary 6.10 |b — n| < sM(JH). Since by Lemmas 6.7, 6.11
the quantities r, s, and n(t — u) are comparable, we infer that

L(%) —L(ﬁ) -2 - ﬁ + Lmm + Lo
ﬂ@*ﬁ) G‘ﬁ)
+%(M(8H)+G)).

Thus using Corollary 6.12, (111), and (118) together with the estimate for the
maximal function we obtain

2 2
gt (7) =2 (7 ) ol

1

—— 2L OH)| 72 + 10| 7270 < A"z 40,
n(t—u)”Lth +[MOH)| 2 + 1Ol 20>

1
<l -

The above inequality followed by Holder and (167) allow us to conclude that

)\*360

2
(168) [Fsup [| L(try — i Mzzs, ol <

r>y t_u)

Similarly,
V(n(t—u) = n~ Y (n)n(t — u)
and consequently,

P 1
[sup |V (——)lr2s,.)lz2 S | sup = [|0H][ 12(s, ) ||z
o G lecsin e Sllsup - (sl 22

—2
SIOH |z S A2,
Thus we can complement (162) with the estimate

2 _3eo
(169) [ 512112 IV (trx — m)”m(st,u)uu < AT,



ROUGH EINSTEIN METRICS 1243

It only remains to discuss the weak estimates (124). These are a lot easier
to prove and can be derived directly from the transport equations for try and
X (see Proposition 3.1), in the case of the tangential derivatives Ytry, and
from the transport equation for n (see Proposition 3.1), in the case of the L
derivative!?. O
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9We can express Ltry in terms of ¥n, see definition of 1, and estimate the latter with the
help of the transport equation for 7.



