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Serre’s conjecture over F9

By Jordan S. Ellenberg*

Abstract

In this paper we show that an odd Galois representation ρ̄ : Gal(Q̄/Q) →
GL2(F9) having nonsolvable image and satisfying certain local conditions at
3 and 5 is modular. Our main tools are ideas of Taylor [21] and Khare [10],
which reduce the problem to that of exhibiting points on a Hilbert modular
surface which are defined over a solvable extension of Q, and which satisfy
certain reduction properties. As a corollary, we show that Hilbert-Blumenthal
abelian surfaces with ordinary reduction at 3 and 5 are modular.

Introduction

In 1986, J-P. Serre proposed the following conjecture [16]:

Conjecture. Let F be a finite field of characteristic p, and

ρ̄ : Gal(Q̄/Q) → GL2(F)

an absolutely irreducible representation such that det ρ̄ applied to complex con-
jugation yields −1. Then ρ̄ is the mod p representation attached to a modular
form on GL2(Q).

Serre’s conjecture, if true, would provide the first serious glimpse into the
nonabelian structure of Gal(Q̄/Q). The work of Langlands and Tunnell shows
that Serre’s conjecture is true when GL2(F) is solvable; that is, when F is F2

or F3. Work of Shepherd-Barron and Taylor [17] and Taylor [21] have shown
that the conjecture is also true, under some local and global conditions on
ρ̄, when F is F4 or F5; the work of Breuil, Conrad, Diamond, and Taylor [2]
proves the conjecture when F is F5 and det ρ̄ is cyclotomic. More recently,
Manoharmayum [12] has proved Serre’s conjecture when F = F7, again subject
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to local conditions. His argument, like ours, uses the ideas of [21] and [10],
together with a construction of solvable points on a certain modular variety.

In the present work, we show that Serre’s conjecture is true, again subject
to certain local and global conditions, when F = F9. To be precise, we prove
the following theorem.

Theorem. Let

ρ̄ : Gal(Q̄/Q) → GL2(F9)

be an odd Galois representation such that

• ρ̄ has nonsolvable image;

• The restriction of ρ̄ to D3 can be written as

ρ̄|D3
∼=

[
ψ1 ∗
0 ψ2

]
,

where ψ1|I3 is the mod 3 cyclotomic character, and ψ2 is unramified;

• The image of the inertia group I5 lies in SL2(F9), and has odd order.

Then ρ̄ is modular.

As a corollary, we get the following result towards a generalized Shimura-
Taniyama-Weil conjecture for Hilbert-Blumenthal abelian surfaces:

Corollary. Let A/Q be a Hilbert-Blumenthal abelian surface which has
good ordinary or multiplicative reduction at 3 and 5. Then A is a quotient of
J0(N) for some integer N .

The corresponding theorem when A is an elliptic curve has now been
proved without any hypotheses, thanks to the results of [24], [20], and [2]. The
case where A is a Hilbert-Blumenthal abelian variety with real multiplication
by a field with an ideal of norm 5 is treated in [17]. Our method follows theirs;
one starts with a case of Serre’s conjecture that one knows, and uses lifting
theorems to prove modularity of a Hilbert-Blumenthal abelian variety.

We prove the theorem above by exhibiting ρ̄ as the Galois representation
on the 3-torsion subscheme of a certain Hilbert-Blumenthal abelian surface
defined over a totally real extension F/Q with solvable Galois group. We then
use an idea of Taylor, together with a theorem of Skinner and Wiles [19], to
prove the modularity of the abelian surface, and consequently of ρ̄.

The key algebro-geometric point is that a certain twisted Hilbert modular
variety has many points defined over solvable extensions of Q. This suggests
that we consider the class of varieties X such that, if K is a number field, and
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Σ is the set of all solvable Galois extensions L/K, then⋃
L∈Σ

X(L)

is Zariski-dense in X. We say X has “property S” in this case. Certainly if X

has a Zariski-dense set of points over a single number field—for example, if X

is unirational—it has property S. The Hilbert modular surfaces we consider,
on the other hand, are varieties of general type with property S.

To indicate our lack of knowledge about solvable points on varieties, note
that at present there does not exist a variety which we can prove does not
have property S! Nonetheless, it seems reasonable to guess that “sufficiently
complicated” varieties do not have property S.

One might consider the present result evidence for the truth of Serre’s
conjecture. On the other hand, it should be pointed out that the theorems
here and in [17], [21] rely crucially on the facts that

• the GL2 of small finite fields is solvable, and

• certain Hilbert modular varieties for number fields of small discriminant
have property S.

These happy circumstances may not persist very far. In particular, it
is reasonable to guess that only finitely many Hilbert modular varieties have
property S. If so, one might say that we have much philosophical but little
numerical evidence for the truth of Serre’s conjecture in general. Our ability to
compute has progressed mightily since Serre’s conjecture was first announced.
It would be interesting, given the present status of the conjecture, to carry out
numerical experiments for F a “reasonably large” finite field—whatever that
might mean.

The author gratefully acknowledges several helpful conversations with
Brian Conrad, Eyal Goren, and Richard Taylor, and the careful reading and
suggestions of the referee.

Added in Proof. Since the original submission of this paper, substantial
progress has been made towards a resolution of Serre’s conjecture. The recently
announced work of Khare and Khare-Wintenberger proves Serre’s conjecture
in level 1 for an arbitrary coefficient field; this result, unlike ours, avoids the
use of special geometric properties of low-degree Hilbert modular varieties,
and thus presents a very promising direction for further progress. Recent
work of Kisin generalizes the results we cite on lifting of modularity to handle
many potentially supersingular cases; it seems likely that his methods could
substantially simplify the argument of the present paper, by eliminating the
necessity of showing that the abelian varieties we construct in Section 2 have
ordinary reduction in characteristics 3 and 5.
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Notation. If v is a prime of a number field F , we write GF for the absolute
Galois group of F and Dv ⊂ GF for the decomposition group associated to v,
and Iv for the corresponding inertia group. The p-adic cyclotomic character of
Galois is denoted by χp, and its mod p reduction by χ̄p.

If V ⊂ PN is a projective variety, write F1(V ) for the Fano variety of lines
contained in V .

If O is a ring, an O-module scheme is an O-module in the category of
schemes.

All Hilbert modular forms are understood to have all weights equal.
We denote by ω a primitive cube root of unity.

1. Realizations of Galois representations on HBAV’s

Recall that a Hilbert-Blumenthal abelian variety (HBAV) over a number
field is an abelian d-fold endowed with an injection O ↪→ End(A), where O is
the ring of integers of a totally real number field of degree d over Q. Many
Hilbert-Blumenthal abelian varieties can be shown to be modular; for example,
see [17]. It is therefore sometimes possible to show that a certain mod p Galois
representation ρ̄ is modular by realizing it on the p-torsion subscheme of some
HBAV.

We will show that, given a Galois representation ρ̄ : Gal(K̄/K) → GL2(F9)
satisfying some local conditions at 3, 5 and ∞, we can find ρ̄ in the 3-torsion
of an abelian surface over a solvable extension of K, satisfying some local con-
ditions at 3 and 5. One of these conditions—that certain representations be
“Dp-distinguished”—requires further comment.

Definition 1.1. Let ρ̄ : Gal(K̄/K) → GL2(F̄p) be a Galois representa-
tion, and let p|p be a prime of K. We say that ρ̄ is Dp-distinguished if the
semisimplification of the restriction ρ̄|Dp is isomorphic to θ1 ⊕ θ2, with θ1 and
θ2 distinct characters from Dp to F̄∗

p.

This condition is useful in deformation theory, and is required, in partic-
ular, in the main theorem of [19]. A natural source of Dp-distinguished Galois
representations is provided by abelian varieties with ordinary reduction at p.

Proposition 1.2. Let p be an odd prime. Let Kv be a finite extension
of Qp with odd ramification degree, and let A/Kv be a principally polarized
HBAV with good ordinary or multiplicative reduction and real multiplication
by O, and let p be a prime of O dividing p.

Then the semisimplification of the Gal(K̄v/Kv)-module A[p] is isomorphic
to θ1 ⊕ θ2, with θ1 and θ2 distinct characters of Gal(K̄v/Kv).
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Proof. If A has multiplicative reduction, the theory of the Tate abelian
variety yields an exact sequence

0 → (μp)g → A[p] → (Z/pZ)g → 0

over some unramified extension of Kv. If, on the other hand, A has good
ordinary reduction, then A extends to an abelian scheme A over the ring of
integers Rv of Kv. The finite flat group scheme A[p]/Rv then fits into the
connected-étale exact sequence

0 → A[p]0 → A[p] → A[p]et → 0

and we denote by A[p]0/Kv and A[p]et/Kv the generic fibers of the corre-
sponding group schemes over Rv. Note that A[p]et is unramified as a Galois
representation, and has dimension g.

So in either case A[p] has an unramified g-dimensional quotient A′′. The
Weil pairing yields an isomorphism of group schemes A[p] ∼= Hom(A[p], μp);
the unramified quotient A′′ thus gives rise to a g-dimensional submodule of
A[p] on which Iv acts cyclotomically.

Since the ramification degree of Kv/Qp is odd, the cyclotomic character
of Iv is nontrivial. It follows that A[p] fits into an exact sequence of Galois
representations

0 → A′ → A[p] → A′′ → 0

in which A′′ is the Iv-coinvariant quotient of A[p], and dimA′ = dimA′′ = g.
Since the endomorphisms in O are defined over Kv, they respect this quotient;
we conclude that the above exact sequence can be interpreted as a sequence
of O-modules. We know by [15, 2.2.1] that A[p] is a two-dimensional vector
space over O/p. Since the action of O is compatible with Weil pairing, we have
∧2A[p] ∼= μp ⊗Fp

O/p as O-modules. In particular, inertia acts cyclotomically
on ∧2A[p], which means that A[p] ∩ A′ must have dimension 1 over O/p. We
conclude that A[p] fits into an exact sequence of O-modules

0 → A[p] ∩ A′ → A[p] → B → 0

which shows that the semisimplification of A[p] is indeed isomorphic to the
sum of two characters θ1 and θ2. Since θ1|Iv is cyclotomic and θ2|Iv is trivial,
the two characters are distinct.

We are now ready to state the main theorem of this section.

Proposition 1.3. Let K be a totally real number field, and let

ρ̄ : Gal(K̄/K) → GL2(F9)

be a Galois representation such that det ρ̄ = χ̄3. Suppose that
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• The absolute ramification degree of K is odd at every prime of K above
3 and 5.

• For any prime w of K over 3, the restriction of ρ̄ to the decomposition
group Dw is

ρ̄|Dw
∼=

[
χ̄3 ∗
0 1

]
.

• The image of the inertia group Iv in GL2(F9) has odd order for every
prime v of K over 5.

Then there exists a totally real number field F with F/K a solvable Galois
extension, and a Hilbert-Blumenthal abelian variety A/F with real multiplica-
tion by O = O

Q[
√

5], such that

• The absolute ramification degree of F is odd at every prime of F over 3
and 5;

• A has multiplicative reduction at all primes of F above 3, and good ordi-
nary or multiplicative reduction at all primes of F above 5;

• The mod
√

5 representation

ρ̄A,
√

5 : Gal(F̄ /F ) → GL2(F5)
is surjective;

• There exists a symplectic isomorphism of Gal(F̄ /F )-modules

ι : A[3] ∼= ρ̄|Gal(F̄ /F ).

2. Proof of Proposition 1.3

In order to produce Hilbert-Blumenthal abelian varieties, we will produce
rational points on certain moduli spaces. Our main tool is an explicit de-
scription of the complex moduli space of HBAV’s with real multiplication by
O = O

Q[
√

5] and full 3-level structure, worked out by Hirzebruch and van der
Geer. For the rest of this paper, an HBAV over a base S will be understood
to mean a triple (A, m, λ), where

• A/S is an abelian surface;

• m : O ↪→ End(A) is an injection such that Lie(A/S) is, locally on S, a
free O ⊗Z OS module (the Rapoport condition);

• λ is a principal polarization.

See [14] for basic properties of this definition.
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2.1. Twisted Hilbert modular varieties. We first describe some twisted
versions of the moduli space of HBAV’s with full level 3 structure.

Suppose ρ̄ : Gal(Q̄/Q) → GL2(F9) is a Galois representation with cyclo-
tomic determinant. Let N be the product of the ramified primes of ρ̄. We
also denote by ρ̄ the O-module scheme over Z[1/N ] associated to the Galois
representation.

Choose for all time an isomorphism η : ∧2ρ̄ ∼= μ3 ⊗Z O. Now suppose A

is an HBAV with real multiplication by O over a scheme T , and suppose A

is endowed with an isomorphism φ : A[3] ∼= ρ̄. Then Weil pairing gives an
isomorphism ∧2A[3] ∼= μ3 ⊗Z O. Now composing ∧2φ with Weil pairing and
with η yields an automorphism of μ3⊗ZO. If this automorphism is the identity,
we say φ has determinant 1. If this automorphism is obtained by tensoring an
automorphism of μ3 with O, we say φ has integral determinant.

We define functors F̃ ρ̄ and F ρ̄ from Sch/Z[1/N ] to Sets as follows:

F̃ ρ̄(T ) = isomorphism classes of pairs (A, φ), where A/T is a prin-
cipally polarized Hilbert-Blumenthal abelian variety with RM by O
and φ : A[3] ∼→ ρ̄ is an isomorphism of O-module schemes over T ,
with integral determinant.

and

F ρ̄(T ) = isomorphism classes of pairs (A, φ), where A/T is a prin-
cipally polarized Hilbert-Blumenthal abelian variety with RM by O
and φ : A[3] ∼→ ρ̄ is an isomorphism of O-module schemes over T ,
with determinant 1.

Proposition 2.1. The functor F̃ ρ̄ is represented by a smooth scheme X̃ ρ̄

over Spec Z[1/N ]. The functor F ρ̄ is represented by a smooth geometrically
connected scheme X ρ̄ over Spec Z[1/N ].

Proof. We begin by observing that F̃ ρ̄ is an étale sheaf on Sch/Z[1/N ].
This follows exactly as in [4, Th. 2]; the key points are, first, that level 3
structure on HBAV’s is rigid, and, second, that HBAV’s are projective varieties
and thus have effective descent.

For the first statement of the proposition, it now suffices to show that
F̃ ρ̄ ×Spec Z[1/N ] OL[1/N ] is represented by a scheme, where L is a finite exten-
sion of Q unramified away from N . In particular, we may take L to be the
fixed field of ker ρ̄. Then F̃ ρ̄ ×Spec Z[1/N ] OL[1/N ] is isomorphic to the functor
F̃ parametrizing principally polarized HBAV’s A together with isomorphisms
A[3] ∼= (O/3O)2 with integral determinant. This functor is representable by a
smooth quasi-projective scheme X̃ over Spec Z[1/3] (cf. [14, Th. 1.22], [3, Th.
4.3.ix]).
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Now the functor F̃ ρ̄ admits a map to Aut(μ3) ∼= (Z/3Z)∗, by the rule
(A, φ) �→ (η ◦ ∧2φ). It is clear that F ρ̄ is the preimage under this map of
1 ∈ (Z/3Z)∗. By changing base to L and invoking Theorem 1.28 ii) and
the discussion below Theorem 1.22 in [14], we see that X ρ̄ is geometrically
connected.

We will sometimes refer to X ρ̄
L simply as X. The group PSL2(F9) acts

on X by means of its action on (O/3O)2. (Note that (A, φ) and (A,−φ) are
identified in X.) One can define exactly as in [14, §6.3] a line bundle ω on X ρ̄

which is invariant under the action of PSL2(F9).
When R is a ring containing OL[1/N ], the sections of ω⊗k on XR are called

Hilbert modular forms of weight k and level 3 over R; the space of Hilbert
modular forms over C is in natural isomorphism with the analytically defined
space of Hilbert modular forms of the same weight and level [14, Lemma 6.12].

Within the space H0(XQ̄, ω⊗2) of weight 2 modular forms of level 3 over
Q̄ there is a 5-dimensional space of cuspforms, which we call C. The automor-
phism group PSL2(F9) acts on C through one of its irreducible 5-dimensional
representations. It is shown by Hirzebruch and van der Geer that this space of
modular forms provides a birational embedding of X into P5. To be precise:
fix for all time an isomorphism PSL2(F9) ∼= A6 such that

• A6 acts on C through the 5-dimensional quotient of its permutation rep-
resentation;

•
[
−1 0
0 1

]
is sent to the double flip (01)(23).

• The subgroup of upper triangular unipotent matrices is sent to the group
generated by (014) and (235).

Let s0 be a generator of the 1-dimensional subspace of C fixed by the
stabilizer of a letter in A6, and let s0, . . . , s5 be the A6-orbit of s0. Note that
s0 + · · · + s5 = 0.

Proposition 2.2. Let SZ be the surface in P5/Z defined by the equations

σ1(s0, . . . , s5) = σ2(s0, . . . , s5) = σ4(s0, . . . , s5) = 0,

where σi is the ith symmetric polynomial. Note that A6
∼= PSL2(F9) acts on

SC by permutation of coordinates.
Then the map XC → P5

C given by [s0 : s1 : s2 : s3 : s4 : s5] factors through
a birational isomorphism XC → SC.

Proof. [22, VIII.(2.6)]
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Note that the map XC → SC is equivariant for the action of PSL2(F9)
on the left and A6 on the right. The form σk(s0, . . . , s5) is invariant under
PSL2(F9), and is therefore a cusp form of level 1 and weight 2k. Let τ be the in-
volution of X induced from the Galois involution of O over Z. We say a Hilbert
modular form is symmetric if it is fixed by τ . By a result of Nagaoka [13, Th.
5.2], the ring M2∗(SL2(O), Z[1/2]) of even-weight level 1 symmetric modular
forms over Z[1/2] is generated by forms φ2, χ6, and χ10 of weights 2, 6, and 10.
The form φ2 is the weight 2 Eisenstein series, while χ6 and χ10 are cuspforms.
It follows that the ideal of cuspforms in M2∗(SL2(O), Z[1/2]) is generated by
χ6 and χ10. One has from [22, VIII.2.4] that there is no nonsymmetric modular
form of even weight less than 20. It follows that σk(s0, . . . , s5) can be expressed
in terms of φ2, χ6, and χ10. For simplicity, write σk for σk(s0, . . . , s5). Then
by a series of computations on q-expansions, one has

φ2 =−3σ−1
5 (σ2

3 − 4σ6),(2.1.1)

χ6 =σ3,

χ10 = (−1/3)σ5.

The details can be found in the appendix.
(Note that the constants here depend on our original choice of the weight

2 forms si. Modifying that choice by a constant c would modify each formula
above by ck/2, where k is the weight of the modular form in the expression.)

We now show that the theorem of Hirzebruch and van der Geer above
allows us to compute equations for birational models of X ρ̄ over Q. Recall that
PSL2(F9) acts on XQ̄; the action of σ ∈ Gal(Q̄/Q) on PSL2(F9) ⊂ Aut(XQ̄)
is conjugation by ρ̄(σ). Note that the image of ρ̄(σ) in PGL2(F9) is actually
contained in PSL2(F9), since ρ̄ has cyclotomic determinant.

In particular, the action of Galois on PSL2(F9) ∼= A6 permutes the six
letter-stabilizing subgroups; thus it permutes the six lines Q̄s0, . . . , Q̄s5 in
H0(XQ̄, ω⊗2), since each of these lines is the fixed space of a letter-stabilizing
subgroup. The fact that s0 + · · · + s5 = 0 implies that the action of Galois on
the set s0, . . . , s5 is the composition of a permutation with a scalar multipli-
cation in Q̄∗. By Hilbert 90, we can multiply s0, . . . , s5 by a scalar to ensure
that σ permutes the six variables by means of the permutation in A6 attached
to the projectivization of ρ̄(σ).

Write Cρ̄ to denote the cuspidal subspace of H0(X ρ̄, ω⊗2). Then our
determination of the action of Gal(Q̄/Q) on the forms s0, . . . , s5 suffices to
determine the 5-dimensional Q-vector space Cρ̄ as a subspace of Q̄s0+· · ·+Q̄s5.
Any basis s′0, . . . , s

′
4 of Cρ̄ induces a birational embedding of X ρ̄ in P4, by

Proposition 2.2; the image of this embedding is the intersection of a quadratic
hypersurface Qρ̄

2 and a quartic hypersurface Qρ̄
4; here Qρ̄

i is the variety in the
P4 with coordinates s′0, . . . , s

′
4 defined by the vanishing of the degree-i form

σi(s0, . . . , s5).
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We will often make use of the following important example. Let ρ̄0 be the
representation

ρ̄0 =
[

χ̄3 0
0 1

]
.

Then the modular forms

x0 =ωs0 + ω2s1 + s4,

x1 =ω2s0 + ωs1 + s4,

x4 = s0 + s1 + s4,

x2 =ωs2 + ω2s3 + s5,

x3 =ω2s2 + ωs3 + s5,

x5 = s2 + s3 + s5

lie in H0(X ρ̄0 , ω⊗2). This coordinate system yields a map X ρ̄0 → P5, which
is a birational isomorphism between X ρ̄0 and the intersection of the three
hypersurfaces

Qρ̄0
1 = V (x4 + x5),

Qρ̄0
2 = V (x2

4 + x2
5 − x0x1 − x2x3 + 3x4x5),

Qρ̄0
4 = V (−3x0x1x4x5 − 3x2x3x4x5 + 3x0x1x2x3 + x4x5(x2

4 + 3x4x5 + x2
5)

−3x0x1x
2
5 − 3x2x3x

2
4 + x3

0x5 + x3
1x5 + x3

2x4 + x3
3x4).

In this case, symmetry considerations lead us to think of Sρ̄ as contained
in a Q-rational hyperplane in P5, as opposed to placing Sρ̄ directly into P4.

Our overall strategy is as follows. To prove Proposition 1.3, we will need
to find a point on a twisted Hilbert modular variety X ρ̄ defined over a solvable
extension of K. The geometric observation allowing us to produce such points
is the following.

Let L/K be a line contained in the variety Qρ̄
2. Then L ∩ Qρ̄

4 is a
0-dimensional subscheme Σ of degree 4 in Sρ̄. Generically, Σ will split into
four distinct points over a degree 4 (whence solvable!) extension of K. Now
Qρ̄

2 is a quadric hypersurface in P4, so its Fano variety is rational. This means
we have plenty of lines in Qρ̄

2, whence plenty of points in Sρ̄ defined over solvable
extensions of K. What remains is to make sure we can find such points which
satisfy the local conditions at 3, 5, and ∞ required in the proposition. Our
strategy will be to define suitable lines over completions of K at the relevant
primes, and finally to use strong approximation on the Fano variety F1(Q

ρ̄
2) to

find a global line which is adelically close to the specified local ones.



SERRE’S CONJECTURE OVER F9 1121

2.2. Archimedean primes. Let c be a complex conjugation in Gal(K̄/K),
and let u be the corresponding real place of K.

The fact that ρ̄ is odd implies that ρ̄(c) is conjugate to[
−1 0
0 1

]
.

In particular, we have

ρ̄0|Gal(C/Ku) ∼= ρ̄|Gal(C/Ku),

whence

Sρ̄ ×K Ku
∼= Sρ̄0 ×Q Ku = Sρ̄0 ×Q R.

If s0, . . . , s5 are our standard coordinates on S, we may take x0, . . . , x5 as
coordinates on Sρ̄0

Q as in the previous section. Now choose a real line LR in
F1(Q

ρ̄0
1 ∩Qρ̄0

2 )(R) with the property that LR ∩Sρ̄0 consists of four distinct real
points. For instance, we may choose LR to be the line

(x0, x1, x2, x3, x4, x5)

=
(

8
15

u − 4
3
t,−82

15
u − 4

3
t,−4

3
u − 8

3
t,−4

3
u +

10
3

t,−16
15

u +
8
3
t,

16
15

u − 8
3
t

)
.

Let Lu be the corresponding line in F1(Q
ρ̄
1 ∩ Qρ̄

2)(Ku).

2.3. Primes above 5. Let Kv be the completion of K at a prime v divid-
ing 5, and let E0

v be the splitting field of ρ̄|GKv
. Note that, by hypothesis, E0

v

has odd absolute ramification degree.
As above, our aim is to find a suitable line in Qρ̄

2 over some unramified
extension of E0

v . Since ρ̄ is trivial on Gal(Q̄5/E0
v), the morphism X ρ̄ → S

is defined over E0
v . Write Qi for the hypersurface σi(s0, . . . , s5) = 0, where

i = 1, 2, 4. So S = Q1 ∩ Q2 ∩ Q4, and we are looking for lines on Q1 ∩ Q2.
Denote by U an open dense subvariety of S which is isomorphic to an open
dense subvariety of X ρ̄. Write Z for the complement of U in S.

Lemma 2.3. There exists a finite unramified extension Ev of E0
v and a

line Lv/Ev contained in Q1 ∩ Q2/Ev such that

• Lv is disjoint from Z;

• (Lv ∩ Q4)(Ev) consists of 4 distinct Ev-points;

• For each x ∈ (Lv ∩ Q4)(Ev), the functions

σ−6
5 (σ2

3 − 4σ6)5

and

σ−3
5 σ−1

3 (σ2
3 − 4σ6)3

have nonpositive valuation when evaluated at x.
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Proof. One checks that Q1 ∩ Q2 is isomorphic over Zunr
5 to the Plücker

quadric threefold

T := V (y0y1 + y2y3 + y2
4) ⊂ P4.

We also know (see [8, §6, Ex. 22.6]) an explicit 3-parameter family of lines on
T , which is to say a map

λ : P3/ Spec Z5 → F1(T );

moreover, λ is an isomorphism over any algebraically closed field. Composing
λ with an isomorphism between T and Q1 ∩ Q2 yields a map

L : P3/ Spec Zunr
5 → F1(Q1 ∩ Q2)

which is an isomorphism over any algebraically closed field.
The set of p̄ ∈ P3(F̄5) such that L(p̄) ∩ Q4/F̄5 consists of four distinct

F̄5-points is Zariski-open. To check that it is not empty, we need only exhibit
a single such line L in (Q1 ∩ Q2)/F̄5. One such line is

(s0, s1, s2, s3, s4, s5)

= ((1−
√
−3)t, (1 +

√
−3)t,−t + (1 +

√
−3)u,−t + (1−

√
−3)u, t,−t− 2u).

One checks that the restriction of Q4 to L is −3t(8u3 − t3), which indeed has
four distinct roots over F̄5.

Let V be the closed subscheme of S/F̄5 where the form σ2
3 − 4σ6 vanishes.

Then V is a curve. Moreover, if x is a point in S/F̄5, the subscheme of P3/F̄5

parametrizing lines passing through x is one-dimensional. So the subscheme
of P3/F̄5 parametrizing lines intersecting V is at most two-dimensional. We
may thus choose a point p̄ ∈ P3(F̄5) such that L(p̄) ∩ Q4/F̄5 consists of four
distinct F̄5-points, none contained in V .

Now let p be a lift of p̄ to P3(Qnr
5 ). Then L(p) is a line contained in

Q1 ∩ Q2 whose intersection with Q4 consists of four distinct points defined
over some unramified extension of Q5. Let Ev be the compositum of this
extension with E0

v . Since Z is at most one-dimensional, we may choose p such
that L(p) ∩ Q4 is disjoint from Z, by the same argument as above.

Let x be a point in L(p)∩Q4(Ev), and choose integral coordinates for x so
that at least one coordinate has nonpositive valuation. Then (σ2

3 −4σ6)(x) has
nonpositive valuation, so that the third desired condition on L(p) is satisfied.
This completes the proof.

Now take Lv and Ev as in the lemma. Let x1, x2, x3, x4 be the four
Ev-points making up (Lv ∩ S)(Ev). Then each xi corresponds to an abelian
variety Ai/Ev with real multiplication by O admitting an isomorphism A[3] ∼=
ρ̄ ∼= F⊕2

9 of O-module schemes over E. It follows that Ai has semistable re-
duction over OE , since no nontrivial finite-order element of GL2(Z3(

√
5)) is

congruent to 1 mod 3.
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We now want to show that each Ai has good ordinary or multiplicative
reduction. We have computed above that the weight 2 modular form φ2 can be
written as −3σ−1

5 (σ2
3 − 4σ6). Therefore, our choice of Lv guarantees that the

modular functions φ3
2/χ6 and φ5

2/χ10 have nonpositive valuation when evalu-
ated on Ai. The desired ordinarity now follows from the next lemma.

Lemma 2.4. Let A be a semi -HBAV over a finite extension OE/Z5. Sup-
pose that the modular functions φ3

2/χ6 and φ5
2/χ10 evaluated at A have non-

positive valuation. Then A has good ordinary or multiplicative reduction.

Proof. Let Ω be the determinant of the pullback via the identity section
of the relative cotangent sheaf of A/OE . Then Ω is a free rank 1 OE-module.
Let η be a section generating Ω. Then every modular form f with coefficients
in OE has a well-defined value f(A, η). Suppose φ2(A, η) ∈ mE . Then by the
hypothesis of the theorem, we have also that χ6(A, η) and χ10(A, η) ∈ mE .

The involution τ preserves integrality, by the q-expansion principle. It fol-
lows that every modular form f over OE is integral over the ring of symmetric
even-weight modular forms studied by Nagaoka. In particular, since φ2, χ6,

and χ10 generate this ring, we have that f(A, η) ∈ mE for all symmetric mod-
ular forms f of positive even weight. But this is impossible, since for any
sufficiently large k the sheaf ω⊗k on X is generated by its global sections [3,
4.3(iii)].

We conclude that φ2(A, η) /∈ mE . So the mod 5 reduction φ2(Ā, η̄) is not
equal to 0.

The q-expansion of φ2
2 reduces to 1 (mod 5) [13, (5.12)]. By [1, 7.12,7.14],

the Hasse invariant h is a weight 4 modular form which also has q-expansion
equal to 1; it follows that h is the reduction mod 5 of φ2

2. So h(A, η) �= 0. But
this implies that A has good ordinary or multiplicative reduction by [1, 7.14.2].

2.4. Primes above 3. This section will be the most technically complicated
part of the paper, owing to the fact that we do not have at our disposal a good
model for X ρ̄ in characteristic 3.

Let w be a prime of K dividing 3, and let Kw be the completion of K

at w. We have by hypothesis that

ρ̄|Dw
∼=

[
χ̄3 ∗
0 1

]
.(2.4.2)

Now the ∗ in (2.4.2) is a cocycle corresponding to an element λ ∈ K∗
w⊗ZF9.

Write ρ̄λ for the representation of Dw on the right-hand side of (2.4.2), which is
isomorphic to ρ̄|Dw. As in the 5-adic case, let Z be a proper closed subscheme
of Sρ̄λ/Kw such that the complement of Z is isomorphic to an open dense
subset of X ρ̄λ/Kw.
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Lemma 2.5. There exists a line Lw in P5
Kw

satisfying the following con-
ditions:

• Lw is disjoint from Z.

• Lw is contained in Qρ̄λ

1 ∩ Qρ̄λ

2 .

• The intersection Lw ∩Qρ̄λ

4 splits into four distinct points over an unram-
ified extension Ew of Kw.

• The four HBAV’s A1, A2, A3, A4 corresponding to the four points of Lw∩
Qρ̄λ

4 (Ew) have multiplicative reduction.

Proof. We first remark that the truth of the lemma depends only on the
isomorphism class of ρ̄λ; in particular, the conclusion of the lemma also holds
for ρ̄|Dw, whose image might lie in a Borel subgroup of GL2(F9) other than
the upper triangular one discussed here.

By means of our chosen isomorphism between PSL2(F9) and A6, we inter-
pret ∗ as a cocycle from Dw to the group G generated by the 3-cycles (014) and
(235). Each 3-cycle generates a cyclic factor of G, and the projection of ∗ onto
the cyclic factor yields a cocycle in H1(Dw, μ3). Kummer theory attaches to
each of the resulting cocycles an element of K∗

w/(K∗
w)3; we call these elements

λ1 and λ2. It is easy to check that the forms

y0 = (λ1)−1/3(ωs0 + ω2s1 + s4),

y1 = (λ1)1/3(ω2s0 + ωs1 + s4),

y4 = s0 + s1 + s4,

y2 = (λ2)−1/3(ωs2 + ω2s3 + s5),

y3 = (λ2)1/3(ω2s2 + ωs3 + s5)

y5 = s2 + s3 + s5

lie in H0(X ρ̄λ , ω⊗2).
With these coordinates, one checks that Qρ̄λ

1 is defined by y4 +y5 and Qρ̄λ

2

by

y2
4 + y2

5 − y0y1 − y2y3 + 3y4y5.

So a family of lines in Qρ̄λ

1 ∩ Qρ̄λ

2 is given by

La,b,c : y0 = ay2 + by4, y3 = −ay1 + cy4, y4 = −(by1 + cy2), y5 = −y4.

One checks that the equation for Qρ̄λ

4 is given by

−3y0y1y4y5 − 3y2y3y4y5 + 3y0y1y2y3 + y4y5(y2
4 + 3y4y5 + y2

5)

− 3y0y1y
2
5 − 3y2y3y

2
4 + λ1y

3
0y5 + λ−1

1 y3
1y5 + λ2y

3
2y4 + λ−1

2 y3
3y4.
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Since λ1 and λ2 are defined only up to cubes, we may assume that both
have even valuation.

The equation for Qρ̄λ

4 restricted to La,b,c is of the form

P =
4∑

i=0

Pi(a, b, c)yi
1y

4−i
2 .

Suppose that ordw(b) and ordw(c) are approximately equal and that both are
much greater than ordw(a), which is in turn much greater than 0. Then one
checks that

P4(a, b, c) =λ−1
1 b + higher order terms,

P3(a, b, c) =λ−1
1 c + higher order terms,

P2(a, b, c) =−3a2 + higher order terms,

P1(a, b, c) =−λ2b + higher order terms,

P0(a, b, c) =−λ2c + higher order terms.

It follows that the vanishing locus of P in the projective line with coordi-
nates y1 and y2 consists of two points reducing to [0 : 1] and two reducing to
[1 : 0]. So P factors over Kunr

w into a constant and two quadratics:

P = −3a2(e1y
2
1 + e2y1y2 + e3y

2
2)(f1y

2
1 + f2y1y2 + f3y

2
2)

where e3 and f1 are units. One checks that ordw(e1) = ordw(b) + 1 (mod 2)
and ordw(f3) = ordw(c) + 1 (mod 2), and that

ordw(e2)≥min(ordw(b), ordw(c)) + ordw(λ−1
1 /3a2),

ordw(f2)≥min(ordw(b), ordw(c)) + ordw(λ2/3a2).

So when b and c have odd valuation, the two quadratic factors of P split over
Knr

w . In other words, the four points of La,b,c ∩ Qρ̄λ

4 are distinct and defined
over an unramified extension Ew of Kw. Since Z is at most 1-dimensional, we
may choose a, b, c such that La,b,c is disjoint from Z, as in the previous section.

We now show that the HBAV’s parametrized by La,b,c ∩ Qρ̄λ

4 have poten-
tially multiplicative reduction.

The points of La,b,c ∩ Qρ̄λ

4 are w-adically close to [0 : 1 : 0 : 0 : 0 : 0]
and [0 : 0 : 1 : 0 : 0 : 0]. In coordinates [s0 : · · · : s5], these points are
[ω : ω2 : 0 : 0 : 1 : 0] and [0 : 0 : ω2 : ω : 0 : 1]. At each point, the symmetric
functions σk in s0, . . . , s5 are w-adically close to 0 for k = 5, 6, while σ3 is close
to 1.

A technical complication arises here: we would like to say that if a point
is w-adically close to a cusp of X, the corresponding HBAV has potentially
multiplicative reduction. The right way to proceed would be to make use of
a modular interpretation of a formal neighborhood of a cusp in some good
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model of X over OKw
. Since such an interpretation is not yet in the published

literature, we resort to a less pleasant argument on level 1 modular forms.
Let A/Ew be an HBAV associated to a point of La,b,c ∩ Qρ̄λ

4 . Then from
(2.1.1) we see that the weight 0 modular functions χ6/φ3

2 and χ10/φ5
2 take

values at A which are w-adically close to 0.
Let q be some large prime inert in O, let kw be the residue field of Kw, and

let X(q)/k̄w be the proper Hilbert modular variety parametrizing generalized
HBAV’s with full level q structure. (The auxiliary prime q is introduced only
so that we can speak of schemes instead of stacks.) Passing to a ramified
extension if necessary, take A0/k̄w to be the reduction of a semistable model
of A. We want to show that A0 is not smooth. Let φ : A0[q] ∼= (O/qO)2 be an
arbitrary choice of level structure.

Define Ω, η as in the proof of Lemma 2.4. As in that proof, we know that
φ2(A0, η), χ6(A0, η), and χ10(A0, η) do not all vanish. It follows from (2.1.1)
that χ6(A0, η) = χ10(A0, η) = 0, while φ2(A0, η) �= 0.

By [3, 4.3(x)], the ideal of cusp forms of level k (defined holomorphically,
in terms of q-expansions) is the same as the algebraically defined ideal of forms
vanishing at the cusps. So if the point of X(q) parametrized by (A0, φ) were
not a cusp, there would be a cusp form f of level q such that f(A0, φ, η) �= 0.
By squaring if necessary, we may assume f has even weight. Let f1, . . . , fr

be the set of images of f under the action of the involution τ and the group
PGL2(O/qO). Every symmetric function in the fi(A0, φ, η) is a symmetric
level 1 cusp form of even weight. Since the ideal of cusp forms in the ring of
symmetric modular forms of even weight is generated by χ6 and χ10, we have
shown that f(A0, φ, η) = 0.

We conclude that the point parametrizing (A0, φ) is a cusp, which is to
say that A has potentially multiplicative reduction, as desired.

It remains to prove that A has semistable reduction.

Lemma 2.6. Let p1 and p2 be the points of Sρ̄λ(Ew) whose coordinates
[s0 : . . . s5] are [ω : ω2 : 0 : 0 : 1 : 0] and [0 : 0 : ω2 : ω : 0 : 1] respectively. Then
there exist w-adic neighborhoods U1 and U2 of p1 and p2 with the following
property.

Let (A, φ) be an HBAV over Ew endowed with a 3-level structure
φ : A[3] ∼→ ρ̄λ, such that (A, φ) is parametrized by a point of U1 or U2. Then
A has multiplicative reduction.

Proof. We have already shown A has potentially multiplicative reduc-
tion. It follows that either A or its twist by a quadratic ramified character is
semistable. So A[3] has a well-defined “canonical subgroup” G which, over Q̄3,
is the subgroup obtained by pulling back μ3 ⊗Z d−1 from the Tate uniformiza-
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tion

A ∼= (Gm ⊗ d−1/qO).

The reduction of A is multiplicative if and only if G is the subgroup of ρ̄λ on
which Galois acts cyclotomically. (Note that this condition is automatic unless
λ is trivial.)

Denote by Tate a semi-abelian variety attached to a compactification of
the level-1 Hilbert modular surface [3, 3.5]. We call a 3-level structure

Tate[3] ∼= (O/3O)2

canonical if it attaches the canonical subgroup of Tate to the first coordinate
of (O/3O)2. We say a cusp of X is canonical if the associated level structure
on Tate is canonical. Note that the canonical cusp is the unique one which is
fixed by the action of the upper triangular matrices in PSL2(F9). Moreover,
A has multiplicative reduction precisely when (A, φ) is a pullback of Tate,
supplied with a canonical 3-level structure.

The condition above is geometric, so from now on we consider X to be
defined over Q̄3.

Choose a distinct value αC in Q̄3 for each cusp C of X. Since ω⊗2k is
very ample on the Hilbert modular surface X for k large enough, there exists a
modular form E ∈ H0(X, ω⊗2k) which takes the value αC at each C [3, 4.5.1b].
In other words, the q-expansion of E at C has constant term αC .

Let E = E0, . . . , Er be the images of E under PSL2(F9) and the involu-
tion τ . Let t be an indeterminate and define

F =
∏
j

(t − Ej).

Then the coefficient of ti in F is a symmetric modular form fi of level 1 and
weight 2ki, and is therefore a polynomial of weight 2ki in φ2, χ6, and χ10. From
(2.1.1) we now see that fi/φki

2 lies in the ring R = Q̄3[σ3, σ5, σ6, (σ2
3 − 4σ6)−1].

So E/φk
2 is integral over R.

The surface S has only the 30 points in the S6-orbit of [1 : ω : ω2 : 1 :
ω : ω2] as singularities, so that S is normal, whence projectively normal as a
subscheme of P5. We can therefore write

Ẽ = E/φk
2 = (σ2

3 − 4σ6)−nP (s0, . . . , s5)

for some homogeneous polynomial P .
Now Ẽ has weight 0, so for each γ in PSL2(F9) the value Ẽ(A, γ◦φ) is well-

defined. Let U be a small w-adic neighborhood of p1 or p2. We may assume U

is preserved by the action of the upper triangular matrices in PSL2(F9), since
p1 and p2 are fixed points for this action.

The function Ẽ is continuous on U , since σ2
3 − 4σ6 has no zeroes on U .

In particular, the values Ẽ(A, β ◦ φ) all lie in a small w-adic neighborhood,
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where β ranges over upper triangular matrices. On the other hand, if (A, φ′) is
pulled back from some cusp C of X, the value of Ẽ(A, φ′) can be computed by
substituting a value of q into the q-expansions at C of E and φ2. Moreover, we
can ensure that ordw(q) is large by making U sufficiently small; for instance,
by choosing U very small we can ensure that the values of

χ6/φ3
2 =−3−3σ3

5σ3(σ2
3 − 4σ6)−3

and
χ10/φ5

2 = 3−6σ6
5(σ

2
3 − 4σ6)−5

lie in a small w-adic neighborhood whenever u is in U , simply by virtue of the
fact that we can force σ5 to be as small as we like by shrinking U . Then the
value of ordw(q) can be computed by means of [7, Prop. 2.22]; in particular,
when χ6/φ3

2 and χ10/φ5
2 are both w-adically close to 0, so is q. It follows that

Ẽ(A, φ′) lies in a small w-adic neighborhood of αC , and this determines C.
So the points (A, β ◦ φ) are all pulled back from the same cusp C of X.

Thus, C is fixed by upper triangular matrices, and must be the canonical cusp.

2.5. The global construction. We now combine the local arguments above
into the global statement we desire, thereby completing the proof of Proposi-
tion 1.3.

Choose a finite Galois extension K ′/K such that;

• K ′ is totally real;

• K ′/K is solvable;

• The completion of K ′ at any prime v above 5 is isomorphic to an unram-
ified extension of Ev;

• The completion of K ′ at any prime w above 3 is isomorphic to an un-
ramified extension of Kw;

• Y = F1(Q
ρ̄
1∩Qρ̄

2) is rational over K ′. (Since F1(Q
ρ̄
1∩Qρ̄

2) is geometrically
rational, this amounts to trivializing an element of the Brauer group; the
existence of Lu tells us that this element is already trivial at every real
place, so it can be killed by a totally real solvable extension.)

(See [21, Lemma 2.2] for the existence of K ′.)
From now on, write Y for F1(Q

ρ̄
1 ∩ Qρ̄

2).
Since Y is a rational variety, we can choose L ∈ Y (K ′) such that the image

of L under the map

Y (K ′) →
⊕
vi|5

Y (K ′
vi

) ⊕
⊕
wi|3

Y (K ′
wi

) ⊕
⊕
u|∞

Y (K ′
u)

is arbitrarily adelically close to (Lv1 , . . . , Lw1 , . . . , Lu1 , . . . ).



SERRE’S CONJECTURE OVER F9 1129

The intersection L∩ Sρ̄ is a zero-dimensional scheme of degree 4 over K ′.
Modifying our choice of L if necessary, we can arrange for L ∩ Sρ̄ to be in the
image of the rational map from X ρ̄. Let F be a splitting field for L∩Sρ̄. Note
that F is solvable over K ′, whence also over K. Then we can think of L ∩ Sρ̄

as specifying four HBAV’s Ai/F , with Ai[3] ∼= ρ̄|F .
Let T be the subvariety of Sρ̄ × Y consisting of pairs (x, L) such that x

is contained in L. Then the projection map π2 : T → Y is generically a 4-fold
cover. Let π1 be the projection T → Sρ̄. Let A p→ V be the universal object
over a suitable dense open subscheme V of Sρ̄, and let F� be the l-adic sheaf
R1p∗Z� on V . Finally, define G� = π2;∗π∗

1F�. Then G� is an l-adic sheaf which
is lisse on a dense open subset of Y . To be concrete, the stalk of G� at a point
L of Y is dual to the direct sum ⊕iT�Ai, where the Ai are the four abelian
varieties parametrized by L ∩ Sρ̄.

By our choices of Lu, the field F is totally real. Similarly, our choices
of Lv and Lw guarantee that Ai and F satisfy the local conditions at 3 and
5 stated in the theorem. The latter fact follows from a theorem of Kisin [11,
Thm. 5.1] on �-adic local constancy of Galois representations, applied to the
sheaf G�. For instance, when w|3 and � �= 3, the fact that L is very w-adically
close to Lw implies that the stalk of G� at L is isomorphic, as representation
of Dw, to the stalk of G� at Lw. Since the reduction type of an abelian variety
at w is determined by its �-adic Galois representation, the abelian varieties
parametrized by L∩Sρ̄, like those parametrized by Lw∩Sρ̄, have multiplicative
reduction at w. The local conditions at 5 are established similarly.

It remains only to check that L can be chosen so that Ai[
√

5] is an abso-
lutely irreducible Gal(F̄ /F )-module, for some i. Let N be an integer whose
divisors include 15 and all ramification primes of ρ̄. By the arguments of
section 2.1, the functor parametrizing HBAV’s over Z[1/N ] together with
determinant-1 isomorphisms A[3] ∼= ρ̄ and A[

√
5] ∼= μ5 ⊕ (Z/5Z) is repre-

sentable by an irreducible scheme (X ρ̄)′/ Spec Z[1/N ], which is an étale Galois
cover of X ρ̄ with Galois group SL2(F5). A dense open U of X ρ̄ is isomorphic
to a dense open of Sρ̄; we now define U ′ to be U ×X ρ̄ (X ρ̄)′.

Finally, define T ′ to be the pullback

T ′ −−−→ T ×Sρ̄ U⏐⏐�
⏐⏐�

U ′ −−−→ U.

We may think of T ′ as the variety parametrizing HBAV’s A endowed with level
3 structure, level

√
5-structure, and a choice of a line in Y passing through the

point of Sρ̄ parametrizing A.
We claim that T ′

Q̄
is irreducible. The map T ′

Q̄
→ U ′

Q̄
is proper and has

irreducible closed fibers, since it is a base change from the map TQ̄ → Sρ̄
Q̄
,
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which has the same properties. (A fiber of TQ̄ → Sρ̄
Q̄

is just the family of lines
contained in a smooth quadric 3-fold and passing through a fixed point–in fact,
such a family is isomorphic to P1 [8, 22.5].) Now suppose T ′

Q̄
were the union of

two closed subvarieties T ′
1 and T ′

2; then by properness the images of T ′
1 and T ′

2

in U ′
Q̄

are closed, and by irreducibility of U ′
Q̄
, this means that T ′

1 and T ′
2 both

map surjectively onto U ′
Q̄
. But this contradicts the irreducibility of the closed

fibers in the map T ′
Q̄
→ U ′

Q̄
.

We now apply Ekedahl’s version of the Hilbert Irreducibility Theorem
[6, Th. 1.3] to the composition

π : T ′ → T ×Sρ̄ U → Y

replacing Y with a dense open, if necessary, to make sure π is an étale cover. Y ,
being a rational variety, has weak approximation over K ′. It follows that we can
choose an L in Y (K ′) which is adelically close to (Lv1 , . . . , Lw1 , . . . , Lu1 , . . . ),
and such that the fiber of T ′ over L is connected. This implies that the
Ai/F are all Galois-conjugate over K ′, and that for each i the image of the
representation Gal(Q̄/Fi) → AutO(Ai[

√
5]) surjects onto the determinant-1

subgroup, where Fi ⊃ F is the (non-Galois) field over which Ai is defined.
It follows that Gal(Q̄/F ) also surjects onto the determinant-1 subgroup of
AutO(Ai[

√
5]), since SL2(F5) has no proper normal subgroup with solvable

quotient. The fact that F has odd absolute ramification degree over 5 now
implies that Gal(Q̄/F ) surjects onto the whole of AutO(A[

√
5]). This completes

the proof of Proposition 1.3. Moreover, if K ′′ is a finite extension of K ′, we
can choose L in such a way that F/K ′ and K ′′/K ′ are linearly disjoint; this
follows easily from the argument of [6], applied to the cover T ′ ×K′ K ′′ → Y .

3. Modularity

Now that we have exhibited ρ̄ as a representation appearing on the torsion
points of an abelian variety, we can prove that ρ̄ is modular. Our argument
proceeds along the lines of [10] and [21], utilizing several different Galois rep-
resentations; the reader may find it helpful to refer to the “chutes and ladders”
diagrams at the end of this section, which give a schematic picture of the proof.

We begin by recording a theorem of Skinner and Wiles.

Theorem 3.1. Let K be a totally real number field, let p > 2 be a rational
prime, let L be a finite extension of Qp, and let

ρ : Gal(K̄/K) → GL2(L)

be a continuous odd absolutely irreducible representation ramified at only finitely
many primes. Suppose
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• det ρ = ψχk−1
p for some finite-order character ψ and some integer k > 1,

called the weight of ρ;

• For each prime v of K dividing p,

ρ|Iv
∼=

[
ψχk−1

p ∗
0 1

]
;

(A p-adic representation satisfying the first two conditions will be called
ordinary.)

• The semisimplification of ρ̄ is absolutely irreducible and Dv-distinguished
for all primes v of K dividing p;

• There exist an ordinary modular Galois representation ρ′ and an isomor-
phism between the mod p representations ρ̄ and ρ̄′.

Then ρ is modular.

Proof. This is a special case of [19, Th. 5.1]. Note that the ordinariness
of ρ′ implies that ρ′ is a χ2-good lift of ρ̄ in the sense of [19, §5].

We are now ready to prove the first part of our main result.

Theorem 3.2. Let K be a totally real number field whose absolute rami-
fication indices over 3 and 5 are both odd. Let

ρ̄ : GK → GL2(F9)

be an odd, absolutely irreducible Galois representation such that

• For each prime w of K dividing 3, the restriction of ρ̄ to Dw is

ρ̄|Dw
∼=

[
ψ1 ∗
0 ψ2

]
,

where ψ1|Iw = χ̄3 and ψ2 is unramified ;

• For each prime v of K dividing 5, the image of Iv under ρ̄ lies in SL2(F9),
and has odd order.

Then there exist

• a totally real, solvable Galois extension F/K such that ρ̄|GF is
Dw-distinguished for all primes w of F dividing 3; and

• an ordinary modular representation ρ : GF → GL2(Q̄3) reducing to ρ̄|GF .
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Proof. For each prime w of K dividing 3, let

ψw
1 , ψw

2 : Dw → F∗
9

be the characters given by the hypotheses of the theorem. Let F0 be a totally
real abelian extension of K, unramified at 3 and 5, such that ψw

1 χ̄−1
3 and ψw

2

vanish when restricted to any decomposition group of F0 over w. (Such an
extension exists by class field theory, as in [21, Lemma 2.2].)

Now θ = (det ρ̄)−1χ̄3 is a character of Gal(Q̄/F0) which annihilates all
complex conjugations, since ρ̄ is odd. We thus have a totally real abelian
extension F1/F0 defined by Gal(Q̄/F1) = ker θ. Since det(ρ̄)(I5) is trivial, I5

lies in the kernel of θ, and F1/F0 is unramified at 5. Likewise, θ(I3) is trivial,
so F1/F0 is unramified at 3. Now the local conditions on ρ̄ at primes dividing
3 and 5 imply the corresponding local conditions in Proposition 1.3, and the
determinant of ρ is cyclotomic when restricted to F1. We may now choose an
extension F2/K and an abelian variety A/F2 satisfying the four hypotheses
given in Proposition 1.3.

From here, we proceed along the lines of [21]. We will first prove that the
irreducible representation

ρ̄A,
√

5 : Gal(Q̄/F2) → GL2(F5)

induced by the torsion subscheme A[
√

5] is modular. The main tool is the
following lemma.

Lemma 3.3. There exists a solvable totally real extension F/F2, unrami-
fied at 3 and 5, and an elliptic curve E/F , such that

• E has multiplicative reduction at all primes over 3 and 5;

• E[5] ∼= A[
√

5] as Galois modules;

• For each prime w|3 of F , we have E[3] ∼= μ3 ⊕ (Z/3Z) as Iw-modules.

• ρ̄E,3 is absolutely irreducible.

Proof. For every characteristic 0 field L and every α ∈ L∗, let ρ̄α be the
extension of Z/5Z by μ5 in Kummer correspondence with the class of α in
L∗/(L∗)5.

We have arranged for A to have multiplicative reduction at all primes of
F2 over 3. So the subgroup

ρ̄A,
√

5(Iw) ⊂ SL2(F5)

is unipotent, for every prime w|3. In particular, after passing to an unramified
extension Fw of F2;w, we have ρ̄A,

√
5
∼= ρ̄α for some α in F ∗

w. We can choose
α to be contained in the maximal ideal of the ring of integers of Fw. Then
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we set Ew/Fw to be the elliptic curve Gm/αZ. So Ew[5] ∼= A[
√

5] as Galois
modules. Since α is defined only up to 5th powers, we may assume further that
α ∈ (F ∗

w)3. This implies that Ew[3] ∼= μ3 ⊕ (Z/3Z) as Iw-modules.
Now suppose v is a prime of F2 dividing 5. Since A is good ordinary or

multiplicative at v, we have

ρ̄A,
√

5|Iv
∼=

[
χ̄5 ∗
0 1

]
.

Once again, over some unramified extension Fv of F2;v, we have ρ̄A,
√

5
∼= ρ̄β

for some β in the maximal ideal of the ring of integers of F ∗
v . Let Ev/Fv be

the elliptic curve Gm/βZ.
By [21, Lemma 2.2], there is a solvable totally real extension F/F2 (nec-

essarily unramified at 3 and 5) such that all completions of F over 3 and 5 are
isomorphic to some F2;w or F2;v. Let C/F be the modular curve parametrizing
elliptic curves E over F with E[5] ∼= A[

√
5]. Then C is a rational curve over

F [17, Lemma 1.1], and in particular C has weak approximation. So there is a
point P in C(F ) which is arbitrarily close to the points parametrizing Ev and
Ew for all v|5 and all w|3. Let E/F be the elliptic curve parametrized by P .
Using the result of Kisin [11] as in Section 2.5, we conclude that E has mul-
tiplicative reduction at all v, w. Ekedahl’s version of Hilbert irreducibility [6]
guarantees that E can be chosen such that ρ̄E,3 is surjective, just as in the
proof of [21, Lemma 2.3].

Let ρ0 be the composition of the mod 3 representation GF → End(E[3])
with an injection GL2(F3) ↪→ GL2(C).

The Langlands-Tunnell theorem implies that there exists an automorphic
form π1 of weight 1 on GL2(F ) such that L(π1, s) = L(ρ0, s). In order to
use the Skinner-Wiles theorem, we need to lift ρ0 to an ordinary automorphic
representation of weight at least 2. For this, we use Wiles’s theorem on Hida
families of ordinary Hilbert modular forms. Let w be a prime of F dividing 3.
The hypothesis that E[3] is semisimple as Iw-module implies that the local
factor of L(ρ0, s) at w is

Lw(ρ0, s) = (1 − aw(ρ0)(Nw)−s)−1

where aw(ρ0) = ±1.
Let f1 be a Hilbert modular newform of weight 1 associated to π1. Let

c(w, f1) be the eigenvalue of the Hecke operator T (w) acting on f1, as in [23].
Then

Lw(f1, s) = (1 − c(w, f1)(Nw)−s)−1

and it follows that c(w, f1) = ±1. In particular, c(w, f1) is a unit mod 3, and
so Theorem 1.4.1 of [23] shows the existence of a Λ-adic modular form (i.e. a
Hida family) F which specializes to f1 in weight 1. Let f be the specialization



1134 JORDAN S. ELLENBERG

of F to weight 2. Then Theorem 2.1.4 of [23] associates to f an ordinary Galois
representation

ρ′ : GF → GL2(Q̄3)

of weight 2, which reduces to ρ̄E,3.
Evidently, ρ̄E,3 is distinguished at all w|3. We now know, by Theorem 3.1,

that T3E is modular. It follows that T5E is modular, so E[5], whence also
A[

√
5]/F , is modular.
By hypothesis, A has good ordinary or multiplicative reduction at 5, so

that T√
5A is an ordinary representation. Because F/Q has odd ramification

degree over 5, A[
√

5] is Dv-distinguished for all primes v dividing 5. Now
T√

5A/F is modular by another application of Theorem 3.1, with ρ′ = T5E.
This implies that T3A/F is also modular.

Theorem 3.2 is now proved, with T3A as ρ. We note that F has odd
absolute ramification degree at every prime over 3, which guarantees that ρ̄|GF

is Dw-distinguished for all w|3. Note also that this is the point where we use
Lemma 2.6; without that fact, we would not necessarily be able to find an
F with odd ramification degree over 3 such that ρ̄|GF admits an ordinary
modular lift.

The following two propositions, essentially due to Khare, Ramakrishna,
and Taylor, allow us to use Theorem 3.2 to prove Serre’s conjecture over F9

under some local hypotheses.

Proposition 3.4. Let K be a totally real number field whose absolute
ramification indices over 3 and 5 are both odd. Let

ρ̄ : GK → GL2(F9)

be an odd, absolutely irreducible Galois representation, and let F be a totally
real solvable Galois extension of K. Suppose that

• ρ̄|GF is absolutely irreducible and Dw-distinguished for all primes w of
F dividing 3;

• ρ̄|GF is the reduction of an ordinary modular representation ρ′ : GF →
GL(L′), for some finite extension L′/Q3.

• ρ̄ is the reduction of an ordinary representation ρ : GK → GL2(L), for
some finite extension L/Q3.

Then ρ̄ is modular.

Proof. We apply Khare’s idea of using cyclic descent ([10], [21]). Let
F 1 be a subfield of F such that F/F 1 is a cyclic Galois extension. It follows
from Theorem 3.1 that ρ|GF is modular. The automorphic form π on GL2(F )
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corresponding to ρ is preserved by Gal(F/F 1). Therefore, π descends to an
automorphic form π1 on GL2(F 1). The Galois representation ρ1 of GF 1 asso-
ciated to π1 restricts to ρ|GF ; thus after applying a twist we have ρ1 = ρ|GF 1 .
Continuing inductively, one finds that ρ itself is associated to a modular form
on GL2(K); therefore, its mod 3 reduction ρ̄ is modular.

The following proposition tells us that the conditions of Proposition 3.4
hold in many cases of interest when K = Q.

Proposition 3.5. Let

ρ̄ : GQ → GL2(F9)

be a representation with nonsolvable image, such that

ρ̄|I3
∼=

[
χ̄3 ∗
0 1

]
.

Then there exists an ordinary representation

ρ : GQ → GL2(W (F9))

reducing to ρ̄.

Proof. This is a special case of a theorem of Taylor [21, Thm. 1.3], which
refines results of Ramakrishna. For completeness’s sake, one might add to
the proof of [21, Thm. 1.3] the fact, checkable by direct computation, that
H1(A5, ad0τ) = 0, where τ is the embedding of A5 into PGL2(F9). This is
needed to ensure that the statement of the theorem is correct in case the
projective image of ρ̄ is A5 and the characteristic of the coefficient field is 3.

The combination of Theorem 3.2 and Propositions 3.4 and 3.5 gives:

Theorem 3.6. Let

ρ̄ : Gal(Q̄/Q) → GL2(F9)

be an odd Galois representation such that

• ρ̄ has nonsolvable image;

• The restriction of ρ̄ to D3 can be written as

ρ̄|D3
∼=

[
ψ1 ∗
0 ψ2

]
,

where ψ1|I3 is the mod 3 cyclotomic character , and ψ2 is unramified ;

• The image of the inertia group I5 lies in SL2(F9), and has odd order.

Then ρ̄ is modular.
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Moreover, we can prove the modularity of Hilbert-Blumenthal abelian
surfaces over Q, under some conditions on reduction at 3 and 5.

Corollary 3.7. Let A/Q be a Hilbert-Blumenthal abelian surface which
has good ordinary or multiplicative reduction at 3 and 5. Then A is a quotient
of J0(N) for some integer N .

Proof. Let λ be a prime of the field of real multiplication dividing 3. If
A[λ] is absolutely reducible, then the corollary follows from Theorem A of [18].
So we may assume that A[λ] is absolutely irreducible.

Suppose λ has norm 3. Then by the ordinariness of A, there exists an
elliptic curve E3/Q3 with multiplicative reduction such that E3[3] ∼= A[λ]
as D3-modules. The variety parametrizing elliptic curves E/Q such that
E[3] ∼= A[λ] as Gal(Q̄/Q)-modules is isomorphic to P1; it follows from weak
approximation on P1(Q) that there is an elliptic curve E/Q with multiplicative
reduction at 3 and E[3] ∼= A[λ]. Now E is modular by [2] (or, if we choose
E semistable at 5, by the earlier result of [5];) so T3E is an ordinary modular
lifting of A[λ], and the modularity of TλA follows from Theorem 3.1.

Suppose on the other hand that λ has norm 9. Then Theorem 3.2 produces
a totally real solvable extension F/Q and an ordinary modular representation
ρ of GF reducing to A[λ]|GF . Then modularity of TλA follows from Propo-
sition 3.4 as soon as we verify that A[λ]|GF is absolutely irreducible. This is
immediate from the solvability of F/Q unless the image of Galois on A[λ] is
solvable. In that case, we must be a bit more careful. It suffices to show that the
field F constructed by Theorem 3.2 can be chosen to be linearly disjoint from
the finite extension L/Q whose Galois group is ker ρ̄, so that ρ̄(GF ) = ρ̄(GQ).

It is easy to see that the solvable extensions satisfying specified local con-
ditions, as constructed by [21, Lemma 2.2], can be chosen to be linearly disjoint
from L. Thus the extension F1/K in the first paragraph of the proof of The-
orem 3.2 can be chosen to be linearly disjoint from L, since the character θ

is trivial and the other conditions on F1 are local. Now the extension F2/F1

arises from the global construction in section 2.5. In that construction, the
conditions on K ′ are local, so K ′ can be chosen linearly disjoint from L; the
remark at the end of section 2.5 explains why the degree-4 extension F2/K ′

can be chosen to be linearly disjoint from L. Finally, the solvable extension
F/F2 is required only to satisfy local conditions, so F can be chosen linearly
disjoint from L as claimed.

Chutes and ladders

Arguments along the lines of the present paper, [12], and [21] can be
diagrammed in a way that may clarify the relationships between the various
Galois representations involved.
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In each of the diagrams below, the Galois representations in the top row
are �-adic, and those in the bottom row are mod �. The theorem of Langlands
and Tunnell introduces modularity into the picture at a GL2(F3) represen-
tation. Modularity then proceeds up ladders by means of the Skinner-Wiles
theorem, across horizontal segments by compatibility of �-adic Galois repre-
sentations, and down chutes by definition. In each case, F is a totally real
number field solvable over Q and ρ is a representation produced by a lifting
theorem à la Ramakrishna; the modularity of ρ|GF implies that of ρ by base
change as above.

As the terminology suggests, sliding down is easier than climbing up.

Icosahedral representations [21]:

T3E �� T5E

������������ ρ|GF

E[3]

����������
E[5] = ρ̄|GF

������������

GL2(F7) representations [12]:

T3E �� T7E

������������ ρ|GF

E[3]

����������
E[7] = ρ̄|GF

������������

GL2(F9) representations:

T3E �� T5E

����������� T√
5A �� T3A

����������� ρ|GF

E[3]

����������
E[5] = A[

√
5]

�����������
A[3] = ρ̄|GF

		����������

4. Appendix: computation of Fourier coefficents
of Hilbert modular forms

In this appendix we compute the first few terms of the q-expansions of
the Hilbert modular forms s0, . . . , s6 defined in section 2.1, and as a result
derive the expressions given there for the symmetric functions σk(s0, . . . , s6) in
terms of level 1 modular forms. We include these computations for two reasons:
because they are necessary to the proof of the present theorem, and because the
ideas apply in general to the computation of q-expansions of Hilbert modular
forms of small level, given the q-expansions of the forms in level 1.
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We recall that the q-expansion of a cusp form f of level n for GL2(O) is
a power series ∑

α∈(1/n)d−1

aα(f)qα

where d−1 is the inverse different of O, and aα = 0 unless α is totally positive.
We write Z[[q(1/n)d−1

]] for the ring of such power series.
In the present case, we have n = 3 and O = Z[1+

√
5

2 ]. We can thus write
the q-expansion of a modular form f as

∑
aα/3(f)qα/3, where α ranges over

1
2
−

√
5

10
,

1
2

+
√

5
10

, 1 − 2
√

5
5

, 1 −
√

5
5

, 1, 1 +
√

5
5

, 1 +
2
√

5
5

, . . . .

The values of α not listed above are precisely those with trace at least 3.
Since the coefficients of these modular forms vary in two directions, it

is convenient to write the q-expansion in a grid: for instance, a q-expansion
beginning

q(1/3)(1/2−
√

5/10) − q(1/3)(1−
√

5/5) + q(1/3)(1+2
√

5/5)

can be written

0 −1 0 0 1
1 0

Here, a row in the grid contains the coefficients of all exponents α with a
specified Tr(α), and a column contains the coefficients of all exponents with a
specified Tr(

√
5α).

By the “trace n term” of a modular form we mean the sum of all terms
aαqα of the Fourier expansion with Trα = n.

We now compute the q-expansions of s0, . . . , s5. Write ω for a cube root of
unity, to be fixed through the whole discussion. The symbol Tr always denotes
trace from d−1 to Z.

It follows from [22, VIII.2.5] that an even-weight nonsymmetric form of
level 1 must have weight at least 20. The even-weight level 1 forms σ3, σ5, and
σ6 are thus automatically symmetric. Therefore, they lie in the ring gener-
ated by φ2, χ6, and χ10. The q-expansions of φ2, χ6, and χ10 can be found in
[13, (5.12)].

The following useful lemma forces many Fourier coefficients to be 0.

Lemma 4.1. Choose i in {0, . . . , 5}, and elements α, β ∈ d−1 which gen-
erate the abelian group d−1/3d−1. Then either aα/3(si) = 0 or aβ/3(si) = 0.

Proof. For each γ ∈ O, let tγ be the automorphism of Z[[q(1/3)d−1
]] ob-

tained by replacing qα/3 by qα/3ωTr(αγ) for all α in d−1. Note that tγ fixes the
subring of Z[[q(1/3)d−1

]] with exponents in d−1; this means that tγ fixes all level
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1 modular forms. In particular tγ fixes all symmetric functions σk(si), which
means that tγ permutes the si. Let tO/3O be the group generated by the tγ .
Then tO/3O is isomorphic to (Z/3Z)2 and embeds in S6 via its action on the si.

Suppose aα/3(si) and aβ/3(si) are both nonzero. Then, by the hypothesis
on α and β, the automorphism tγ fixes si only if γ ∈ 3O. But the group
generated by commuting 3-cycles in S6 must contain a nontrivial permutation
fixing si, which is a contradiction.

We now proceed with the computation of Fourier expansions of s0, . . . , s5.
The form σ3(s0, . . . , s5) is a weight 6 cusp form and is thus a multiple of χ6,
whose Fourier expansion begins

q(1/2−
√

5/10) + q(1/2+
√

5/10) + . . . .

This is enough information to compute the Fourier coefficients of the si with
trace 1/3. By the lemma above, each si has either a(1/3)(1/2−

√
5/10) = 0 or

a(1/3)(1/2+
√

5/10) = 0. It is easy to see that, for σ3 to have the right trace-1
term, the trace-1/3 terms of s0, . . . , s5 must be

s4 = q(1/3)(1/2−
√

5/10) + . . .

s0 = ωq(1/3)(1/2−
√

5/10) + . . .

s1 = ω2q(1/3)(1/2−
√

5/10) + . . .

s5 = q(1/3)(1/2+
√

5/10) + . . .

s2 = ωq(1/3)(1/2+
√

5/10) + . . .

s3 = ω2q(1/3)(1/2+
√

5/10) + . . . .

Note that these expansions are determined only up to renumbering of the
si and multiplication by a common constant. In fact, changing the numbering
of the forms by an even permutation amounts to applying an automorphism
in PSL2(F9) to the level structure, which in turn amounts to computing the
q-expansions at a different cusp of X. We will speak at the end of the appendix
about the description of the particular cusp at which the q-expansions here are
taken.

Using the lemma again, the q-expansion of s4 up to the trace-2/3 part is

0 a 0 0 b

1 0

and that of s5 is

c 0 0 d 0
0 1.

Note that s0 = t1s4, s1 = t21s4, s2 = t1s5, s3 = t21s5, so it suffices for our
purposes to compute the q-expansions of s4 and s5.
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We now compute that σ2(s0, . . . , s5) has trace 1 term

−3(a + c)q1/2−
√

5/10 − 3(b + d)q1/2+
√

5/10

which implies that c = −a and d = −b. We make this substitution, and
compute that σ5(s0, . . . , s6) has trace 2 term

3aq1−
√

5/5 + (3b − 3a)q − 3bq1−
√

5/5

and zero trace 1 term. A weight 10 level 1 cusp form with zero trace 1 term
must be a multiple of χ10, whose trace 2 term is

q1−
√

5/5 − 2q + q1−
√

5/5

from which we conclude that b = −a and σ5 = 3aχ10.
It remains to compute a. The coefficient of q1−2

√
5/5 in σ3 is c3 = −a3,

because the only triple of totally positive elements of (1/3)d−1 summing to
1−2

√
5/5 is three copies of (1/3)(1−2

√
5/5). Since the coefficient of q1−2

√
5/5

in χ6 is 1, we have a3 = −1. Making different choices of cube root amounts
to multiplying all si by a cube root of unity and permuting; since we are only
working up to constants, we may take a = −1.

We conclude that, up to terms of trace higher than 2/3, the q-expansions
of s4 and s5 are

s4 =
0 −1 0 0 1

1 0

s5 =
1 0 0 −1 0

0 1

It follows, as computed above, that σ3(s0, . . . , s5) = χ6 and σ5(s0, . . . , s5) =
−3χ10. The trace 2 term of σ6 consists of the single monomial q. Now σ6 is
a weight 12 cuspform, and is thus a linear combination of φ2χ10 and χ2

6. The
trace 2 term of φ2χ10 is

q1−
√

5/5 − 2q + q1−
√

5/5

and the trace 2 term of χ2
6 is

q1−
√

5/5 + 2q + q1−
√

5/5.

It follows that σ6(s0, . . . , s5) = (1/4)(χ2
6 − φ2χ10). We now have the desired

relations

φ2 =−3σ−1
5 (σ2

3 − 4σ6)

χ6 =σ3

χ10 = (−1/3)σ5.

We now return to the question of describing the cusp at which the q-
expansions given here are computed. We need to recall some basic facts about
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Tate HBAV’s ([3],[7]). Let S be a set of d linearly independent elements of O,
and say an element α of d−1 is S-semipositive if Tr(xα) ≥ 0 for all x ∈ S. Let
Z[[d−1, S]] be the ring of power series of the form∑

α∈(1/n)d−1

aα(f)qα

where aα = 0 unless α is S-semipositive. Then Mumford’s construction yields
a semi-HBAV G over Spec Z[[d−1, S]] which can be thought of as the “quotient”
(Gm ⊗Z d−1)/qO. The 3-torsion subscheme G[3] fits into an exact sequence

0 → μ3 ⊗Z d−1 ι→ G[3] → O/3O → 0.

Let φ : G[3]/T ∼= (O/3O)2/T be a 3-level structure for G over some Z[[d−1, S]]-
scheme T . We say φ is canonical if the image of φ ◦ ι is the first factor of
(O/3O)2. We also refer to the image of ι as the canonical subgroup of G[3].

Let ηcan be the canonical generator for Lie(G). Then we may define the
q-expansion of a form f at a cusp φ over T = Spec R to be f(G, φ, ηcan) ∈ R.

The six q-expansions computed above were apparently numbered arbitrar-
ily, which is to say that we have not specified the cusp at which the q-expansions
are being computed. We now wish to argue that, with the conventions used
here, the q-expansions above are actually being computed at a canonical cusp.

Denote by tO/3O the group of automorphisms of the ring of q-expansions
described in the proof of Lemma 4.1. When φ is canonical, it is easy to check
that the action of the subgroup

U =
[

1 ∗
0 1

]
⊂ PSL2(F9)

on the space of modular forms acts on q-expansions via tO/3O. Recall that
we have chosen our isomorphism between PSL2(F9) and A6 to send U to the
group generated by the 3-cycles (014) and (235). It is then easy to see from
the computations above that, indeed, U acts on q-expansions via tO/3O.

Now suppose φ is not canonical; then φ = gφcan, where φcan is canonical
and g is an element of PGL2(F9). In this case, it is the group g−1Ug which
acts on the q-expansions of s0, . . . , s5 via tO/3O. In our case, the only elements
of PSL2(F9) whose action on modular forms is via tO/3O are the elements of U ,
which implies g is in the normalizer of U ; but this means that g fixes the first
factor of (O/3O)2, whence φ is in fact canonical.

Princeton University, Princeton, NJ
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