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Two dimensional compact simple

Riemannian manifolds are
boundary distance rigid

By LEONID PESTOV* and GUNTHER UHLMANN**

Abstract

We prove that knowing the lengths of geodesics joining points of the
boundary of a two-dimensional, compact, simple Riemannian manifold with
boundary, we can determine uniquely the Riemannian metric up to the natu-
ral obstruction.

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold with boundary OM. Let
dg(x,y) denote the geodesic distance between z and y. The inverse problem
we address in this paper is whether we can determine the Riemannian metric
g knowing dy(z,y) for any x € OM, y € OM. This problem arose in rigid-
ity questions in Riemannian geometry [M], [C], [Gr]. For the case in which
M is a bounded domain of Euclidean space and the metric is conformal to
the Euclidean one, this problem is known as the inverse kinematic problem
which arose in geophysics and has a long history (see for instance [R] and the
references cited there).

The metric g cannot be determined from this information alone. We have
dy+g = dg for any diffecomorphism 1 : M — M that leaves the boundary
pointwise fixed, i.e., ¥|gps = Id, where Id denotes the identity map and ¥*g is
the pull-back of the metric g. The natural question is whether this is the only
obstruction to unique identifiability of the metric. It is easy to see that this is
not the case. Namely one can construct a metric g and find a point zg in M
so that dg(zo, M) > sup, ,condy(z,y). For such a metric, d, is independent
of a change of g in a neighborhood of zg. The hemisphere of the round sphere
is another example.

*Part of this work was done while the author was visiting MSRI and the University of
Washington.
**Partly supported by NSF and a John Simon Guggenheim Fellowship.
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Therefore it is necessary to impose some a priori restrictions on the metric.
One such restriction is to assume that the Riemannian manifold is simple. A
compact Riemannian manifold (M, g) with boundary is simple if it is simply
connected, any geodesic has no conjugate points and dM is strictly convex;
that is, the second fundamental form of the boundary is positive definite in
every boundary point. Any two points of a simple manifold can be joined by
a unique geodesic.

R. Michel conjectured in [M] that simple manifolds are boundary distance
rigid; that is, d, determines g uniquely up to an isometry which is the identity
on the boundary. This is known for simple subspaces of Euclidean space (see
[Gr]), simple subspaces of an open hemisphere in two dimensions (see [M]),
simple subspaces of symmetric spaces of constant negative curvature [BCG],
simple two dimensional spaces of negative curvature (see [C1] or [O]).

In this paper we prove that simple two dimensional compact Riemannian
manifolds are boundary distance rigid. More precisely we show

THEOREM 1.1. Let (M, g;),i = 1,2, be two dimensional simple compact
Riemannian manifolds with boundary. Assume

dg,(z,y) = dg,(z,y) VY(x,y) € OM x OM.
Then there exists a diffeomorphism v : M — M, 1|op = 1d, so that
92 =V g1.
As has been shown in [Sh|, Theorem 1.1 follows from

THEOREM 1.2. Let (M, g;),i = 1,2, be two dimensional simple compact
Riemannian manifolds with boundary. Assume

dgl (.’B, y) = d92 (1’, y) V(HJ, y) € aM X aM

and gi1(x) = ga(z) for all x € OM. Then there exists a diffeomorphism 1 :
M — M, loy = 1d, so that

g2 = g1.

We will prove Theorem 1.2. The function d, measures the travel times of
geodesics joining points of the boundary. In the case that both g; and go are
conformal to the Euclidean metric e (i.e., (gx)ij = awdij, k = 1,2, with d;; the
Kronecker symbol), as mentioned earlier, the problem we are considering here
is known in seismology as the inverse kinematic problem. In this case, it has
been proved by Mukhometov in two dimensions [Mu] that if (M, g;),7 = 1,2,
are simple and dg, = dg,, then g; = g2. More generally the same method of
proof shows that if (M, g;),i = 1,2, are simple compact Riemannian manifolds
with boundary and they are in the same conformal class, i.e. g1 = ago for
a positive function a and dg, = dg4, then g = go [Mul]. In this case the
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diffeomorphism 1 must be the identity. For related results and generalizations
see [B], [BG], [C], [GN], [MR].

We mention a closely related inverse problem. Suppose we have a
Riemannian metric in Euclidean space which is the Euclidean metric outside
a compact set. The inverse scattering problem for metrics is to determine the
Riemannian metric by measuring the scattering operator (see [G]). A similar
obstruction occurs in this case with 1 equal to the identity outside a compact
set. It was proved in [G] that from the wave front set of the scattering operator
one can determine, under some nontrapping assumptions on the metric, the
scattering relation on the boundary of a large ball. We proceed to define in
more detail the scattering relation and its relation with the boundary distance
function.

Let v denote the unit-inner normal to OM. We denote by 2 (M) — M the
unit-sphere bundle over M:

QM) = | Q, Q. ={E€To(M): ], =1}
xeM
Q(M) is a (2 dim M —1)-dimensional compact manifold with boundary, which
can be written as the union 9Q (M) = 0,Q (M) U 0_Q (M),
0:Q (M) = {(z,£) € 92 (M), +(v(x),£) >0 }.

The manifold of inner vectors 0. (M) and outer vectors 0_€ (M) intersect
at the set of tangent vectors

(M) = {(x,8) € 02 (M), (v(2),§) =0}

Let (M,g) be an n-dimensional compact manifold with boundary. We
say that (M, g) is nontrapping if each maximal geodesic is finite. Let (M, g)
be nontrapping and the boundary OM strictly convex. Denote by 7(z,§) the
length of the geodesic vy(x,&,t),t > 0, starting at the point = in the direction
¢ € Q,. This function is smooth on Q(M)\GoQ(M). The function 7° = 7]s0ar
is equal to zero on 0_Q(M) and is smooth on 0;Q(M). Its odd part with
respect to &,

1
(2,8 = 5 (F(2,6) = 7" (2, ~¢))
is a smooth function.

Definition 1.1. Let (M, g) be nontrapping with strictly convex boundary.
The scattering relation o : 9Q (M) — 9Q (M) is defined by

a(z,€) = (v(2,€,2r%(2,€)), §(z, & 272 (2,€))).

The scattering relation is a diffeomorphism 9Q (M) — 0Q
that als, oo : 0+Q (M) — 0-Q (M), alp_qmy : 0-Q (M) —

(M) . Notice
0+ (M) are
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diffeomorphisms as well. Obviously, « is an involution, a? = id and 9y (M)
is the hypersurface of its fixed points, a(x,§) = (z,£), (z,€) € 02 (M).

A natural inverse problem is whether the scattering relation determines
the metric g up to an isometry which is the identity on the boundary. In the
case that (M, g) is a simple manifold, and we know the metric at the boundary,
knowing the scattering relation is equivalent to knowing the boundary distance
function ([M]). We show in this paper that if we know the scattering relation we
can determine the Dirichlet-to-Neumann (DN) map associated to the Laplace-
Beltrami operator of the metric. We proceed to define the DN map.

Let (M,g) be a compact Riemannian manifold with boundary. The
Laplace-Beltrami operator associated to the metric g is given in local coor-
dinates by

A=t Zn: 9 Jaetaai 2w
9 \/detgij:1 ox; 99 Ox;j
where (g%) is the inverse of the metric g. Let us consider the Dirichlet problem
Aju=0on M, ‘ — /.
glU on U ot f
We define the DN map in this case by

Ag(f) = (v, Vular).

The inverse problem is to recover g from A,.
In the two dimensional case the Laplace-Beltrami operator is conformally
invariant. More precisely

1
6
for any function 5, 3 # 0. Therefore we have that for n = 2

Aﬁg = Ag

Aﬁ(w*g) = Ay

for any nonzero (8 satisfying B|oy = 1.

Therefore the best that one can do in two dimensions is to show that we
can determine the conformal class of the metric g up to an isometry which
is the identity on the boundary. That this is the case is a result proved in
[LeU] for simple metrics and for general connected two dimensional Riemannian
manifolds with boundary in [LaU].

In this paper we prove:

THEOREM 1.3. Let (M,g;),i = 1,2, be compact, simple two dimensional

Riemannian manifolds with boundary.  Assume that oy = oy,. Then
Ag, = Ay, .
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The proof of Theorem 1.2 is reduced then to the proof of Theorem 1.3. In
fact from Theorem 1.3 and the result of [LaU] we can determine the conformal
class of the metric up to an isometry which is the identity on the boundary.
Now by Mukhometov’s result, the conformal factor must be one proving that
the metrics are isometric via a diffeomorphism which is the identity at the
boundary. In other words dy, = d4, implies that oy, = a,. By Theorem 1.3,
Ag, = Agy,. By the result of [LeU], [LaU], there exist a diffeomorphism 1 :
M — M, 1|apr = Identity, and a function 8 # 0, 5|sas = identity such that
g1 = BY*gs. By Mukhometov’s theorem 3 = 1 showing that g; = 1¥*gs, proving
Theorem 1.2. and Theorem 1.1.

The proof of Theorem 1.3 consists in showing that from the scattering
relation we can determine the traces at the boundary of conjugate harmonic
functions, which is equivalent information to knowing the DN map associated
to the Laplace-Beltrami operator. The steps to accomplish this are outlined
below. It relies on a connection between the Hilbert transform and geodesic
flow.

We embed (M, g) into a compact Riemannian manifold (S,g) with no
boundary. Let ¢; be the geodesic flow on Q(S) and H = %gothzo be the
geodesic vector field. Introduce the map 1 : Q(M) — 0_Q(M) defined by

1/}(3375) :wT(x,ﬁ)(xag)v (‘/L‘aé) € Q(M)
The solution of the boundary value problem for the transport equation
HUZO, u]&Q(M) =w
can be written in the form
U= Wy = WO Q0.
Let u/ be the solution of the boundary value problem
Hu = —f, u|8,Q(M) =0,

which we can write as

7(x,8)
W () = / fora.)dt,  (2.€) € Q).
0
In particular
HT = —1.

The trace

If =u'ly oo
is called the geodesic X-ray transform of the function f. By the fundamental
theorem of calculus we have

(1.1) IHf = (foa— fla,awm)-
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In what follows we will consider the operator I acting only on functions that
do not depend on &, unless otherwise indicated. Let LZ(&FQ(M )) be the real
Hilbert space, with scalar product given by

(u, v) 12 (8, (M) =/ puvds, = (§,v).
8, Q(M)

Here the measure d¥ = d(OM) AdS), where d(OM) is the induced volume form
on the boundary by the standard measure on M and

dQ, = \/detg Y (~1)F1ekdgt Ao ndgb AL den.
k=1

As usual the scalar product in L?(M) is defined by

(u,v):/ uvy/det gdz.
M

The operator I is a bounded operator from L?(M) into Lz((LQ(M)). The
adjoint I* : L (0, Q(M)) — L*(M) is given by

I*w(az):/ wy(x, &)dSYy.

We will study the solvability of equation I*w = h with smooth right-hand
side. Let w € C*(048(M)). Then the function wy will not be smooth on
Q(M) in general. We have that wy, € C°(Q(M) \ doQ(M)). We give below
necessary and sufficient conditions for the smoothness of wy, on Q(M).

We introduce the operators of even and odd continuation with respect
to a:

Aiw(l',g) :w(l‘7€)7 (l"f) € a+Q (M)a
Arw(z,§) =+ (a'w) (2,8), (,8) € 0-Q(M).
The scattering relation preserves the measure |(§, )|dY¥ and therefore the

operators A : L2 (0, Q(M)) — L|2M| (02 (M)) are bounded, where L%u\ (02 (M))

is real Hilbert space with scalar product
(U»U)qu‘(aQ(M)) = / lpluody, = (& ).
(M)

The adjoint of A4 is a bounded operator A% : L|2u| (0Q2(M)) — Li((LQ(M))
given by

Afu= (uEuoa)ly,om-
By A*, formula (1.1) can be written in the form

(1.2) THf ==A"f° f° = flaoan-
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The space C3° (049 (M)) is defined by
22 (9,2 (M) = {w € C= (9,2 (M) : wys € C= (2 (M)},
We have the following characterization of the space of smooth solutions of the

transport equation.
LEMmMA 1.1.
C2(0:9(M)) = {w € C¥(O1Q(M)) : Ayw € CX(DAM))}.
Now we can state the main theorem for solvability for I*.

THEOREM 1.4. Let (M, g) be a simple, compact two dimensional Rieman-
nian manifold with boundary. Then the operator I* : C°(0+Q(M)) — C°(M)
s onto.

Next, we define the Hilbert transform:

13 Huw9 =5 [ e panm. ceo.

where the integral is understood as a principal-value integral. Here | means
a 90° rotation. In coordinates (£, ); = eijfj , where

€= \/detg(o 1) .
-1 0
The Hilbert transform H transforms even (respectively odd) functions
with respect to & to even (respectively odd) ones. If H; (respectively H_) is
the even (respectively odd) part of the operator H:

L[ &
Houla,€) = /Q e 9,

1 1
Hu_(z,§) = %/QL (gbn)u(x,n)dﬂz(n)

and u4,u— are the even and odd parts of the function u, then Hiu = Huy,
H uv=Hu_.

We introduce the notation H; = (£,,V) = —(§, V1), where V| = eV
and V is the covariant derivative with respect to the metric g. The following
commutator formula for the geodesic vector field and the Hilbert transform is
very important in our approach.

THEOREM 1.5. Let (M,g) be a two dimensional Riemannian manifold.
For any smooth function u on Q(M) there exists the identity

(1.4) [H, H]u =Hiuo+ (Hiu)o
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where

1s the average value.

Now we can prove Theorem 1.3. Separating the odd and even parts with
respect to £ in (1.4) we obtain the identities:

HiHu—-HH_-u=(Hiu)y, H-Hu—HHiu="H,ump.
Let (M, g) be a nontrapping strictly convex manifold. Take u = wy, w €

C*(0+(2)). Then
2rHH wy = —H I"w

and using formula (1.2) we conclude
(1.5) 2nA* HiAyw = TH) IMw,

since wy|aon) = A w.
Let (h, hy) be a pair of conjugate harmonic functions on M,

Notice, that 6V = A is the Laplace-Beltrami operator and 6V | = 0. Let
I*w = h. Since I'H, h = IHh, = —A* h?, where h? = hy|sns, we obtain from
(1.5)

(1.6) omA* Hi Ajw = —A* hY.

The following theorem gives the key to obaining the DN map from the
scattering relation.

THEOREM 1.6. Let M be a 2-dimensional simple manifold. Let w €
C2(0,Q(M)) and hy is harmonic continuation of function hY. Then equa-
tion (1.6) holds if and only if the functions h = I*w and h. are conjugate
harmonic functions.

Proof. The necessity has already been established. By (1.2) and (1.5) the
equality (1.6) can be written in the form

IH, h = I'Hg,

where ¢ is an arbitrary smooth continuation onto M of the function A2 and
h = I*w. Thus, the ray transform of the vector field Vq + V h equals 0.
Consequently, this field is potential ([An]); that is, Vg + V_ h = Vp and
ploar = 0. Then the functions h and h., = ¢ — p are conjugate harmonic
functions and h.|sys = kY. We have finished the proof of the main theorem. [J
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In summary we have the following procedure to obtain the DN map from
the scattering relation. For an arbitrary given smooth function kY on M we
find a solution w € CP(0+Q(M)) of the equation (1.6). Then the functions
h? = 27(A w)o (notice, that 27(A w)o = *w|gar) and hQ are the traces of
conjugate harmonic functions. This gives the map

hQ — (I/J_,Vho) = (v, Vhilom),

which is the DN map proving Theorem 1.3.

A brief outline of the paper is as follows. In Section 2 we collect some facts
and definition needed later. In Section 3 we study the solvability of I*w = h
on Sobolev spaces and prove Theorem 1.4. In Section 4 we make a detailed
study of the scattering relation and prove Lemma 1.1. In Section 5 we prove
Theorem 1.5.

We would like to thank the referee for the very valuable comments on a
previous version of the paper.

2. Preliminaries and notation

Here we will give some definitions and formulas needed in what follows.
For further references see [E], [J], [K], [Sh]. Let 7= : T(M) — M be the
tangent bundle over an n-dimensional Riemannian manifold (M, g). We will
denote points of the manifold 7'(M) by pairs (z,£). The connection map
K :T(T(M)) — T(M) is defined by its local representation

K(x,&y,m) = (z,n+0(2)(y,€), T(@)(y,€) =Ti(x)y’e",  i=1,...,n,

where F;k are the Christoffel symbols of the metric g,

i _ 1 a (995 n gt Ogji
k=99 \uk T 9xi 92l )
The linear map K(z,§) = K|(y¢) : T(z,e)(T(M)) — T, M defines the horizontal

subspace H; ¢ = Ker K(z,£). It can be identified with the tangent space
T.(M) by the isomorphism

'](];c,f) = (W’(ZL’,E”H(%Q)_I : Tm(M) — H(;E,E)
The vertical space Vi, ¢y = Ker 7'(z,) can also be identified with T,(M) by
use of the isomorphism

‘]E}z,f) = (K(xaf)h/(z,g))il : T:c(M) - V(:v,ﬁ)

The tangent space T, ¢)(T(M)) is the direct sum of the horizontal and ver-
tical subspaces, T(;.¢)(T(M)) = He) @ Vig¢)- An arbitrary vector X €
T(46)(T(M)) can be uniquely decomposed in the form

__71h o)
X = JagXn Iz,
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where
Xh :W,($,£)X, X’U :K(x7£)X

We will call X}, X,, the horizontal and vertical components of the vector X
and use the notation X = (X}, X,). If in local coordinates X = (X!,..., X?")
then X, X, is given by

Xp=X', X}=X""4Th (2)X7¢k, i=1,..n.

Let N be a smooth manifold and f : T(M) — N a smooth map. Then the
derivative f'(x,&) : T(ye)(T(M)) — Tz ¢)(N) defines the horizontal Vy f(z, )
and vertical V, f(x, &) derivatives:

Vi (@,6) = f/(,8) 0 I, ¢y : Te(M) = Tp(ze)(N),

We have that

(21) f/(xvé‘)X = (vhf(x7§)7 Xh) + (vvf($)£)7Xv)

In local coordinates
0
vh]f(a)($7£) = (

9 9
oxJ

) £ (x,8),

Vi f(x,€) = % @ (z,8), a=1,...,dim N.

We now state the definition of vertical and horizontal derivatives for
semibasic tensor fields. We recommend Chapter 3 of [Sh| for more details.

Let T7(M) denote the bundle of tensor fields of degree (r,s) on M. A
section of this bundle is called a tensor field of degree (r,s). Let nt : 7 (M) —
M Dbe the projection. A fiber map u : T(M) — TI(TM); ie., i ou = 7 is
called a semibasic tensor field of degree (r,s) on the manifold T'(M). Denote
by £ the semibasic vector field given by the identity map T (M) — T(M).
An arbitrary tensor field u of degree (r,s) on the manifold M; i.e., section
u: M — T7(M) defines, by the formula u o 7, a semibasic tensor field (since
mio(uom) = (nlou)omw =idom = 7). The map u — u o 7 identifies tensor
fields on M and &-constant semibasic tensor fields on T'(M). Using the metric
g we can identify the bundle 77 (M) with T3 *(M) and the bundle T, ,(M)
with T, (M).

We can define invariantly horizontal Vu and vertical Veu derivatives of
semibasic tensor field u ([Sh]). They are also semibasic tensor fields. In local
coordinates the horizontal and vertical derivatives are given by

_ . . . 1Y k 21 .o lim . . _ 1o lm
(vu)il...im_*_l - vlm+1ul1-~~1m ]‘_‘7:(7n+1)k‘§ 8£j ’ (vfu)7«1--~lm+1 - (%imﬂ )
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where V denotes the usual covariant derivative on the manifold (M, g). Notice
that for &-constant tensor fields, Vu = Vu and since we identify ¢-constant
semibasic tensor fields with tensor fields on M, we will use one notation V for
covariant and horizontal derivatives.

We define tangent derivatives of semibasic tensor fields on the submanifold
of the unit sphere Q(M) by

Vaou = V(uop)lony, u=Ve(uop)lanm,
where p : T(M) — Q(M) is the projection p(x,&) = (x,£/]¢]). Obviously
(&,0) = 0. Since Vql¢| = 0 we will use the notation V instead of Vg. In
addition we recall the following formulas (see [Sh])

vy = 0? VE = Oa ajgl = 5; - gifja
[V,0] =0, [0;,0;] =&0; — &0,
Vi, V,Ju = — R, dyu

qij
where R is the curvature tensor. In the last formula w is a scalar.

3. The geodesic X-ray transform

In this section we study the solvability of the equation I*w = h and prove
Theorem 1.4.

LEMMA 3.1. Let V be an open set of a Riemannian manifold (M,g). We
can define the ray transform as before. Then the normal operator I*I is an
elliptic pseudodifferential operator of order —1 on V with principal symbol
Cn |§]_1 where ¢, 15 a constant.

Proof. 1t is easy to see, that
(3.1)

>

(I*If) ( /dQ /gf (z,€,1) dt—2/dQ /f (z,,1))
7(x,~)

Before we continue we make a remark concerning notation. We have used
up to now the notation v(z,&,t) for a geodesic. But it is known [J] , that a
geodesic depends smoothly on the point x and vector &t € T, (M). Therefore
in what follows we will use sometimes the notation 7(z,&t) for a geodesic.
Since the manifold M is simple, any small enough neighborhood U (in (S, g))
is also simple (an open domain is simple if its closure is simple). For any point
x € U there is an open domain DY C T, (U) such that the exponential map
exp,, : Dg — U, exp,n = v(x,n) is a diffeomorphism onto U. Let D, = € M,
be the inverse image of M; then exp,(D;) = M and exp,|p, : Dy — M is a
diffeomorphism.
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Now we change variables in (3.1), y = y(z,&t). Then t = d, (x,y) and

(I"If)( /K z,y) f (y)dy,
where
det (exp; 1) (z,y) \/det g (z)
K (a:,y) = ( 7)L_1 .
dg (l‘,y)
Notice, that since
(32) (@) =z +n+O0(n),

it follows, that the Jacobian matrix of the exponential map is 1 at 0, and then
det(exp; ¥ )(z,x) = 1/ det (exp,) (x,0) = 1. From (3.2) we also conclude that

d2 (1‘7 y) :GZ] (xvy) (.’IJ - y)Z (1‘ - y)] ’
Gij (.iL‘,{E) = Gij (l’) R Gz'j e C*® (M X M) .
Therefore the kernel of I*I can be written in the form

2 det (exp;l)/ (x,y) \/det g (x)
. N (n—=1)/2°
(G ) @~ @ =)

Thus the kernel K has at the diagonal x = y a singularity of type
|z — y| ™" . The kernel

K(%,y) =

det g (x)
. N (n—1)/2
(95 @) @~ @ =) "

has the same singularity. Clearly, the difference K — Ky has a singularity of

KO (xvy) =

type |x — y|_"+2 . Therefore the principal symbols of both operators coincide.
The principal symbol of the integral operator, corresponding to the kernel K
coincides with its full symbol and is easily calculated. As a result

o(I'I) (xz,&) = 24/det g (x /

y:€)
= ca |7
gz] z)y' ])(n 1)/2 !

Let rps denote the restriction from S onto M.

THEOREM 3.1. Let U be a simple neighborhood of the simple manifold M .
Then for any function h € H® (M), s > 0, there exists function f € H~1 (U),
ryl*If = h.
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Proof. Let (M, g) be simple and embedded into a compact Riemannian
manifold (5, g) without boundary, of the same dimension. Choose a finite atlas
of S, which consist of simple open sets U, with coordinate maps kj : Uy —
R"™. Let {¢k} be the subordinated partition of unity: ¢ > 0, supppr C
Uk, Y pr = 1. We assume without loss of generality that M C U; and
@il = 1. We consider the operators Iy, I} for the domain Uy, and the
pseudodifferential operator on (.S, g)

Pf =Y or (i) (flo.), feD (X).
B

Every operator I}l : C§° (Uy) — C*(Uy) is an elliptic pseudodifferential
operator of order —1 with principal symbol ¢, ||, &€ € T (Uy) . Then P is an
elliptic pseudodifferential operator with principal symbol ¢, |£ |_1, EeT(S),
and, therefore, is a Fredholm operator from H*(S) into H**1(S). We have
that Ker P has finite dimension, Ran P is closed and has finite codimension.
Notice, that P* = P (more precisely if P* = P : H*(S) — H*T1(S), then
(Ps)* = P_s_1).

For arbitrary s > 0 the operator ry, : H* (S) — H?® (M) is bounded and
ra(H® (S)) = H* (M) . Then the range of ry P : H* (S) — HTH (M), s > —1,
is closed.

Since M is only covered by U; and ¢i|py = 1 we have that ryPf =
rymIfL (f|u,). Thus, the range of the operator ry I71y : H® (Uy) — HTH (M),
s > —1 is closed. Now, to prove the solvability of the equation,

ruliLf =he HYY (M), s > —1,
in H* (Uy) it is sufficient to show that the kernel of the adjoint (rpsI71h)" :
(HGHD (M) — (H* (Uh))" is zero.

Let (,),,; and (,) be dualities between H*(M) and (H*)" (M) or H*(S)
and H~%(S) respectively. The dual space (H® (M))*, s > 0, can be identified
with the subspace of H™*(5) :

(H*(M))*=H *(M)={ue H*(S):suppuC M}.
For any f € H* (Uy), w € H- (%9 (M) we have
(ru LT fu)y = (Pof ou) = (f, Pog_qu),

where f is an arbitrary continuation of f on the manifold S. On the other hand
(rv LTI fu) = (F, (P LT 1) )y

Since f is arbitrary, then equality <f, P_squ) = {(f, (rapI51h)" u)ps implies

(T’Mfikfl)* = TUl—P—S—l = TUlfikfl.

Because of ellipticity the equality r7;, Pu = 0 implies smoothness u|y,, and
then u € H—*~! (M) implies u € C§°(Uy). Since ry, Pu = IfIu, then

2

12(0,0(07)) =0=—=hLu=0=—=u=0. O

I'hu=0= |Liu|
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Now we are ready to prove Theorem 1.4.

Proof. Let I,I; be the geodesic X-ray transforms on M and Uj re-
spectively. From Theorem 3.1 it follows that for any h € C*(M) there
exists f € C®(Uy), such that ryIfI1f = h. Then u/ € C®(QUy)). Let
w = 2ui|3+Q(M), where ui is the even part with respect to £&. Then it easy to
see that wy, = 2ui|Q(M) and I*w = h. The function w € C°(04+Q(M)) since
wy, € C(Q(M)). O

4. Scattering relation and folds

In this section we prove Lemma 1.1. As indicated before, we embed (M, g)
into a compact manifold (5,¢) with no boundary. Let (N,g) be an arbi-
trary neighborhood in (S, g) of the manifold (M, g), such that any geodesic
v(z, &, t), (x,€) € Q) intersects the boundary ON transversally. Then the

length of the geodesic ray 7 is a smooth function on (N) and the map
¢ OUM) — 0_Q(N), defined by

(41) (25(.%', f) = Pr(z,8) (1’, 5)7 (1’, €> S 8Q(M)7

is smooth as well. Moreover it turns out ¢ is a fold map with fold dyQ2(M).
This fact will be proved in the next theorem. Once this is proven Lemma 1.1
follows from [H, Th. C.4.4]. From the assumption Ajw € C®(9Q(M)) we
deduce the existence of a smooth function v on a neighborhood of the range
#(0Q(M)) such that w = v o ¢. Consider the function wy = woa o). Change
notation 1 to 1, keeping wy,. Denote by ¢ the map, analogous to ¢y,

YN (.%',{) = Pr(x,6) (.’E,{) > ($7f) € (N) .

Then wy, = vogoaor)y. It easy to see, that poaor)y = '[/}N’Q(M). Since the
map ¥ is smooth on (M), then wy € C® (Q(M)), i.e. w e C(04:Q(M)).
Thus Lemma 1.1 is proven once we show that ¢ is a fold.

THEOREM 4.1. Let (M, g) be a strictly convex, nontrapping manifold and
N an arbitrary neighborhood of M, such that any geodesic vy(z,§,t),(x,§) €
Q(N) intersects the boundary ON transversally. Then the map ¢, defined by
(4.1) is a fold with fold Oy2(M).

First we recall the definition of a Whitney fold.

Definition 4.1. Let M, N be C'°° manifolds of the same dimension and let
f+ M — N be a C® map with f(m) = n. The function f is a
Whitney fold (with fold L) at m if f drops rank by one simply at m, so
that {x;df(x) is singular } is a smooth hypersurface near m and Ker (df (m))
is transversal to T;, L.
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Now we prove Theorem 4.1.

Proof. Firstly, notice that dp2(M) is a smooth nonsingular hypersurface in
OQ(M). Tt is given by the equation f(z,&) = (&, v(x)) =0, (z,&) € OQ(M). Tt
is easy to see that the map f'(x, &) at any point (z, ) € 9yQ(M) is nonsingular.

If a submanifold ¥ of the manifold M is locally given near a point m by
equations hi(z) = 0, then the vector X € T,,(M) belongs to T,,(2) if and
only if hj (m)(X) = 0.

Let us find T, ¢)(002(M)), as a subspace in T, ¢)(T'(M)). Denote by
p(x) = dist (x,0M) the distance to M in M and smoothly continue it into
N\ M. The submanifold 9yQ2(M)) € T(M) is given by the three equations:
p=0,]¢ =1and (¢ Vp) =0. Then, using (2.1) and Vp|sy = v we have

T2,6)(00SUM)) ={X € Ty 0(T(M)) : (v(z), Xp) =0, (§, Xy) =0,
(V(€7 I/(LL’)), Xh) + (Va Xv) = O}

Consider Ker ¢/(z,§) also as a subspace of T(,¢)(T(M)). It easy to show
that Ker ¢/ (a: €) is 1-dimensional and generated by the vector (&,0) (i.e.
X, =6 X ). Then this vector is transversal to T(; ¢)(90€2(M)), since
(V(, y(x)), ) # 01if (¢,v(x)) = 0 given that OM is strictly convex. O

5. The Hilbert transform and geodesic flow

In this section we prove Theorem 1.5 from the introduction. Let H be the
Hilbert transform as defined in (1.3). We have that H is a unitary operator in
the space L3(Q,) = {u € L*(Qy) : up = 0},

(u,v) = (Hu, Hv),  Vu,v € L(Q),
H?(u) = —u, Vu € L3(y).
Clearly, all these properties remain the same if we change Q, to Q(M).

In order to prove Theorem 1.4 we need the following commutator formula
which is valid for Riemannian manifolds of any dimension

LEMMA 5.1. Let u be a smooth function on the manifold Q*(M) =
Usenr 93, 92 = {(2,&,n) : &1 € Qa}. Then

(5.1) V/ (z,&,m)d2s ( /V u(z, &,n)dQ (n),

where V) under the integral sign in (5.1) denotes the horizontal derivative on

(M),

0 L
Pue.&,m) = (55— Tix€" 0 — Tign* iy Jul, &),
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Notice that the horizontal derivative can be defined on T'(M) x T'(M) in
a similar fashion to the case of T'(M) in Section 2.

Proof. Let ¢ € C§° (R+) be an arbitrary function. We define the function
von T% (M) by

v(z,&,m) = ¢ (Inl) ulz, &/ €],/ nl).

Let us consider the integral

S(a,6) = / oz, €m)dT (n)

T, (M)
Identifying T, (M) with R™ we have

S(.€) = / o(z,€,m)\/det g (@)dn,

Rn
Then
s LS
ViS=gw ~ T g
L/ké)] Jkﬁkagzx/det dn-+b/1 Ol VdEtg ) /aotgdn.
Rn

Since d1n+/det g/dx’ = F?k we rewrite the last integral in the form

[ v (Chat) Vaetgdn

Rn

Then 50 5

_ K OV

VjS—/(a ]kf 8—8— 8 )/ det gdn.

Rn

Since 5 5 5
k k1l _
(6 5 ]kf agi —Im 8—77k) In| =0,

then after changing to spherical coordinates we obtain

o0

(5.2) VS(z, &) = /gp(t) t"_ldt/Vu(ac,f,n)de ().
0 Q
Now S in spherical coordinates is given by
(53) S, = [e® e at [ e i @),
0 Q.

We conclude (5.1) using (5.2),(5.3). O
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Now we prove Theorem 1.5.

Proof. A straightforward calculation gives

gltEn _,

(§L,m)

and therefore we have

VHu(z,§) = %/ﬁw(%n)dﬂx (n) -

x

For any pair of vectors &, n € €1, we have

n=(&nE+ (§L,mEL,
nL=—(EL,mE+ (EmEL,  (En)*+ (€L, =1

Then
R
—¢EIE e+ e+ &
= 6% +&L+nL.
Thus

HHu="HHu+ H uy+ (Hlu)o

and Theorem 1.5 is proved.
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