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Two dimensional compact simple

Riemannian manifolds are
boundary distance rigid

By Leonid Pestov∗ and Gunther Uhlmann∗*

Abstract

We prove that knowing the lengths of geodesics joining points of the
boundary of a two-dimensional, compact, simple Riemannian manifold with
boundary, we can determine uniquely the Riemannian metric up to the natu-
ral obstruction.

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold with boundary ∂M . Let
dg(x, y) denote the geodesic distance between x and y. The inverse problem
we address in this paper is whether we can determine the Riemannian metric
g knowing dg(x, y) for any x ∈ ∂M , y ∈ ∂M . This problem arose in rigid-
ity questions in Riemannian geometry [M], [C], [Gr]. For the case in which
M is a bounded domain of Euclidean space and the metric is conformal to
the Euclidean one, this problem is known as the inverse kinematic problem
which arose in geophysics and has a long history (see for instance [R] and the
references cited there).

The metric g cannot be determined from this information alone. We have
dψ∗g = dg for any diffeomorphism ψ : M → M that leaves the boundary
pointwise fixed, i.e., ψ|∂M = Id, where Id denotes the identity map and ψ∗g is
the pull-back of the metric g. The natural question is whether this is the only
obstruction to unique identifiability of the metric. It is easy to see that this is
not the case. Namely one can construct a metric g and find a point x0 in M

so that dg(x0, ∂M) > supx,y∈∂Mdg(x, y). For such a metric, dg is independent
of a change of g in a neighborhood of x0. The hemisphere of the round sphere
is another example.
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Therefore it is necessary to impose some a priori restrictions on the metric.
One such restriction is to assume that the Riemannian manifold is simple. A
compact Riemannian manifold (M, g) with boundary is simple if it is simply
connected, any geodesic has no conjugate points and ∂M is strictly convex;
that is, the second fundamental form of the boundary is positive definite in
every boundary point. Any two points of a simple manifold can be joined by
a unique geodesic.

R. Michel conjectured in [M] that simple manifolds are boundary distance
rigid; that is, dg determines g uniquely up to an isometry which is the identity
on the boundary. This is known for simple subspaces of Euclidean space (see
[Gr]), simple subspaces of an open hemisphere in two dimensions (see [M]),
simple subspaces of symmetric spaces of constant negative curvature [BCG],
simple two dimensional spaces of negative curvature (see [C1] or [O]).

In this paper we prove that simple two dimensional compact Riemannian
manifolds are boundary distance rigid. More precisely we show

Theorem 1.1. Let (M, gi), i = 1, 2, be two dimensional simple compact
Riemannian manifolds with boundary. Assume

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ ∂M × ∂M.

Then there exists a diffeomorphism ψ : M → M , ψ|∂M = Id, so that

g2 = ψ∗g1.

As has been shown in [Sh], Theorem 1.1 follows from

Theorem 1.2. Let (M, gi), i = 1, 2, be two dimensional simple compact
Riemannian manifolds with boundary. Assume

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ ∂M × ∂M

and g1(x) = g2(x) for all x ∈ ∂M. Then there exists a diffeomorphism ψ :
M → M , ψ|∂M = Id, so that

g2 = ψ∗g1.

We will prove Theorem 1.2. The function dg measures the travel times of
geodesics joining points of the boundary. In the case that both g1 and g2 are
conformal to the Euclidean metric e (i.e., (gk)ij = αkδij , k = 1, 2, with δij the
Krönecker symbol), as mentioned earlier, the problem we are considering here
is known in seismology as the inverse kinematic problem. In this case, it has
been proved by Mukhometov in two dimensions [Mu] that if (M, gi), i = 1, 2,

are simple and dg1 = dg2 , then g1 = g2. More generally the same method of
proof shows that if (M, gi), i = 1, 2, are simple compact Riemannian manifolds
with boundary and they are in the same conformal class, i.e. g1 = αg2 for
a positive function α and dg1 = dg2 then g1 = g2 [Mu1]. In this case the
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diffeomorphism ψ must be the identity. For related results and generalizations
see [B], [BG], [C], [GN], [MR].

We mention a closely related inverse problem. Suppose we have a
Riemannian metric in Euclidean space which is the Euclidean metric outside
a compact set. The inverse scattering problem for metrics is to determine the
Riemannian metric by measuring the scattering operator (see [G]). A similar
obstruction occurs in this case with ψ equal to the identity outside a compact
set. It was proved in [G] that from the wave front set of the scattering operator
one can determine, under some nontrapping assumptions on the metric, the
scattering relation on the boundary of a large ball. We proceed to define in
more detail the scattering relation and its relation with the boundary distance
function.

Let ν denote the unit-inner normal to ∂M. We denote by Ω (M) → M the
unit-sphere bundle over M :

Ω(M) =
⋃

x∈M

Ωx, Ωx = {ξ ∈ Tx(M) : |ξ|g = 1}.

Ω(M) is a (2 dim M −1)-dimensional compact manifold with boundary, which
can be written as the union ∂Ω (M) = ∂+Ω (M) ∪ ∂−Ω (M),

∂±Ω (M) = {(x, ξ) ∈ ∂Ω (M) , ± (ν (x) , ξ) ≥ 0 }.

The manifold of inner vectors ∂+Ω (M) and outer vectors ∂−Ω (M) intersect
at the set of tangent vectors

∂0Ω (M) = {(x, ξ) ∈ ∂Ω (M) , (ν (x) , ξ) = 0 }.

Let (M, g) be an n-dimensional compact manifold with boundary. We
say that (M, g) is nontrapping if each maximal geodesic is finite. Let (M, g)
be nontrapping and the boundary ∂M strictly convex. Denote by τ(x, ξ) the
length of the geodesic γ(x, ξ, t), t ≥ 0, starting at the point x in the direction
ξ ∈ Ωx. This function is smooth on Ω(M)\∂0Ω(M). The function τ0 = τ |∂Ω(M)

is equal to zero on ∂−Ω(M) and is smooth on ∂+Ω(M). Its odd part with
respect to ξ,

τ0
−(x, ξ) =

1
2

(
τ0(x, ξ) − τ0 (x,−ξ)

)
is a smooth function.

Definition 1.1. Let (M, g) be nontrapping with strictly convex boundary.
The scattering relation α : ∂Ω (M) → ∂Ω (M) is defined by

α(x, ξ) = (γ(x, ξ, 2τ0
−(x, ξ)), γ̇(x, ξ, 2τ0

−(x, ξ))).

The scattering relation is a diffeomorphism ∂Ω (M) → ∂Ω (M) . Notice
that α|∂+Ω(M) : ∂+Ω (M) → ∂−Ω (M) , α|∂−Ω(M) : ∂−Ω (M) → ∂+Ω (M) are
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diffeomorphisms as well. Obviously, α is an involution, α2 = id and ∂0Ω (M)
is the hypersurface of its fixed points, α(x, ξ) = (x, ξ), (x, ξ) ∈ ∂0Ω (M) .

A natural inverse problem is whether the scattering relation determines
the metric g up to an isometry which is the identity on the boundary. In the
case that (M, g) is a simple manifold, and we know the metric at the boundary,
knowing the scattering relation is equivalent to knowing the boundary distance
function ([M]). We show in this paper that if we know the scattering relation we
can determine the Dirichlet-to-Neumann (DN) map associated to the Laplace-
Beltrami operator of the metric. We proceed to define the DN map.

Let (M, g) be a compact Riemannian manifold with boundary. The
Laplace-Beltrami operator associated to the metric g is given in local coor-
dinates by

∆gu =
1√

det g

n∑
i,j=1

∂

∂xi

(√
det ggij ∂u

∂xj

)
where (gij) is the inverse of the metric g. Let us consider the Dirichlet problem

∆gu = 0 on M, u
∣∣∣
∂M

= f.

We define the DN map in this case by

Λg(f) = (ν,∇u|∂M ).

The inverse problem is to recover g from Λg.

In the two dimensional case the Laplace-Beltrami operator is conformally
invariant. More precisely

∆βg =
1
β

∆g

for any function β, β 	= 0. Therefore we have that for n = 2

Λβ(ψ∗g) = Λg

for any nonzero β satisfying β|∂M = 1.

Therefore the best that one can do in two dimensions is to show that we
can determine the conformal class of the metric g up to an isometry which
is the identity on the boundary. That this is the case is a result proved in
[LeU] for simple metrics and for general connected two dimensional Riemannian
manifolds with boundary in [LaU].

In this paper we prove:

Theorem 1.3. Let (M, gi), i = 1, 2, be compact, simple two dimensional
Riemannian manifolds with boundary. Assume that αg1 = αg2 . Then
Λg1 = Λg2.
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The proof of Theorem 1.2 is reduced then to the proof of Theorem 1.3. In
fact from Theorem 1.3 and the result of [LaU] we can determine the conformal
class of the metric up to an isometry which is the identity on the boundary.
Now by Mukhometov’s result, the conformal factor must be one proving that
the metrics are isometric via a diffeomorphism which is the identity at the
boundary. In other words dg1 = dg2 implies that αg1 = αg2 . By Theorem 1.3,
Λg1 = Λg2 . By the result of [LeU], [LaU], there exist a diffeomorphism ψ :
M −→ M , ψ|∂M = Identity, and a function β 	= 0, β|∂M = identity such that
g1 = βψ∗g2. By Mukhometov’s theorem β = 1 showing that g1 = ψ∗g2, proving
Theorem 1.2. and Theorem 1.1.

The proof of Theorem 1.3 consists in showing that from the scattering
relation we can determine the traces at the boundary of conjugate harmonic
functions, which is equivalent information to knowing the DN map associated
to the Laplace-Beltrami operator. The steps to accomplish this are outlined
below. It relies on a connection between the Hilbert transform and geodesic
flow.

We embed (M, g) into a compact Riemannian manifold (S, g) with no
boundary. Let ϕt be the geodesic flow on Ω(S) and H = d

dtϕt|t=0 be the
geodesic vector field. Introduce the map ψ : Ω(M) → ∂−Ω(M) defined by

ψ(x, ξ) = ϕτ(x,ξ)(x, ξ), (x, ξ) ∈ Ω(M).

The solution of the boundary value problem for the transport equation

Hu = 0, u|∂+Ω(M) = w

can be written in the form

u = wψ = w ◦ α ◦ ψ.

Let uf be the solution of the boundary value problem

Hu = −f, u|∂−Ω(M) = 0,

which we can write as

uf (x, ξ) =

τ(x,ξ)∫
0

f(ϕt(x, ξ))dt, (x, ξ) ∈ Ω(M).

In particular

Hτ = −1.

The trace

If = uf |∂+Ω(M)

is called the geodesic X-ray transform of the function f . By the fundamental
theorem of calculus we have

IHf = (f ◦ α − f)|∂+Ω(M).(1.1)
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In what follows we will consider the operator I acting only on functions that
do not depend on ξ, unless otherwise indicated. Let L2

µ(∂+Ω(M)) be the real
Hilbert space, with scalar product given by

(u, v)L2
µ(∂+Ω(M)) =

∫
∂+Ω(M)

µuvdΣ, µ = (ξ, ν).

Here the measure dΣ = d(∂M)∧dΩx where d(∂M) is the induced volume form
on the boundary by the standard measure on M and

dΩx =
√

det g
n∑

k=1

(−1)k+1ξkdξ1 ∧ · · · ∧ ˆdξk ∧ . . . dξn.

As usual the scalar product in L2(M) is defined by

(u, v) =
∫

M
uv

√
det gdx.

The operator I is a bounded operator from L2(M) into L2
µ(∂+Ω(M)). The

adjoint I∗ : L2
µ(∂+Ω(M)) → L2(M) is given by

I∗w(x) =
∫

Ωx

wψ(x, ξ)dΩx.

We will study the solvability of equation I∗w = h with smooth right-hand
side. Let w ∈ C∞(∂+Ω(M)). Then the function wψ will not be smooth on
Ω(M) in general. We have that wψ ∈ C∞(Ω(M) \ ∂0Ω(M)). We give below
necessary and sufficient conditions for the smoothness of wψ on Ω(M).

We introduce the operators of even and odd continuation with respect
to α:

A±w(x, ξ) = w(x, ξ), (x, ξ) ∈ ∂+Ω (M) ,

A±w(x, ξ) = ± (α∗w) (x, ξ), (x, ξ) ∈ ∂−Ω (M) .

The scattering relation preserves the measure |(ξ, ν)|dΣ and therefore the
operators A± : L2

µ(∂+Ω(M)) → L2
|µ| (∂Ω (M)) are bounded, where L2

|µ| (∂Ω (M))
is real Hilbert space with scalar product

(u, v)L2
|µ|(∂Ω(M)) =

∫
∂Ω(M)

|µ|uvdΣ, µ = (ξ, ν).

The adjoint of A± is a bounded operator A∗
± : L2

|µ| (∂Ω (M)) → L2
µ(∂+Ω(M))

given by

A∗
±u = (u ± u ◦ α)|∂+Ω(M).

By A∗
−, formula (1.1) can be written in the form

IHf = −A∗
−f0, f0 = f |∂Ω(M).(1.2)
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The space C∞
α (∂+Ω (M)) is defined by

C∞
α (∂+Ω (M)) = {w ∈ C∞ (∂+Ω (M)) : wψ ∈ C∞ (Ω (M))}.

We have the following characterization of the space of smooth solutions of the
transport equation.

Lemma 1.1.

C∞
α (∂+Ω(M)) = {w ∈ C∞(∂+Ω(M)) : A+w ∈ C∞(∂Ω(M))}.

Now we can state the main theorem for solvability for I∗.

Theorem 1.4. Let (M, g) be a simple, compact two dimensional Rieman-
nian manifold with boundary. Then the operator I∗ : C∞

α (∂+Ω(M)) → C∞(M)
is onto.

Next, we define the Hilbert transform:

Hu(x, ξ) =
1
2π

∫
Ωx

1 + (ξ, η)
(ξ⊥, η)

u(x, η)dΩx(η), ξ ∈ Ωx,(1.3)

where the integral is understood as a principal-value integral. Here ⊥ means
a 90◦ rotation. In coordinates (ξ⊥)i = εijξ

j , where

ε =
√

det g

(
0 1

−1 0

)
.

The Hilbert transform H transforms even (respectively odd) functions
with respect to ξ to even (respectively odd) ones. If H+ (respectively H−) is
the even (respectively odd) part of the operator H:

H+u(x, ξ) =
1
2π

∫
Ωx

(ξ, η)
(ξ⊥, η)

u(x, η)dΩx(η),

Hu−(x, ξ) =
1
2π

∫
Ωx

1
(ξ⊥, η)

u(x, η)dΩx(η)

and u+, u− are the even and odd parts of the function u, then H+u = Hu+,

H−u = Hu−.

We introduce the notation H⊥ = (ξ⊥,∇) = −(ξ,∇⊥), where ∇⊥ = ε∇
and ∇ is the covariant derivative with respect to the metric g. The following
commutator formula for the geodesic vector field and the Hilbert transform is
very important in our approach.

Theorem 1.5. Let (M, g) be a two dimensional Riemannian manifold.
For any smooth function u on Ω(M) there exists the identity

[H,H]u = H⊥u0 + (H⊥u)0(1.4)
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where

u0(x) =
1
2π

∫
Ωx

u(x, ξ)dΩx

is the average value.

Now we can prove Theorem 1.3. Separating the odd and even parts with
respect to ξ in (1.4) we obtain the identities:

H+Hu −HH−u = (H⊥u)0, H−Hu −HH+u = H⊥u0.

Let (M, g) be a nontrapping strictly convex manifold. Take u = wψ, w ∈
C∞

α (∂+(Ω)). Then
2πHH+wψ = −H⊥I∗w

and using formula (1.2) we conclude

2πA∗
−H+A+w = IH⊥I∗w,(1.5)

since wψ|∂Ω(M) = A+w.
Let (h, h∗) be a pair of conjugate harmonic functions on M ,

∇h = ∇⊥h∗, ∇h∗ = −∇⊥h.

Notice, that δ∇ = 
 is the Laplace-Beltrami operator and δ∇⊥ = 0. Let
I∗w = h. Since IH⊥h = IHh∗ = −A∗

−h0
∗, where h0

∗ = h∗|∂M , we obtain from
(1.5)

2πA∗
−H+A+w = −A∗

−h0
∗.(1.6)

The following theorem gives the key to obaining the DN map from the
scattering relation.

Theorem 1.6. Let M be a 2-dimensional simple manifold. Let w ∈
C∞

α (∂+Ω(M)) and h∗ is harmonic continuation of function h0
∗. Then equa-

tion (1.6) holds if and only if the functions h = I∗w and h∗ are conjugate
harmonic functions.

Proof. The necessity has already been established. By (1.2) and (1.5) the
equality (1.6) can be written in the form

IH⊥h = IHq,

where q is an arbitrary smooth continuation onto M of the function h0
∗ and

h = I∗w. Thus, the ray transform of the vector field ∇q + ∇⊥h equals 0.
Consequently, this field is potential ([An]); that is, ∇q + ∇⊥h = ∇p and
p|∂M = 0. Then the functions h and h∗ = q − p are conjugate harmonic
functions and h∗|∂M = h0

∗. We have finished the proof of the main theorem.
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In summary we have the following procedure to obtain the DN map from
the scattering relation. For an arbitrary given smooth function h0

∗ on ∂M we
find a solution w ∈ C∞

α (∂+Ω(M)) of the equation (1.6). Then the functions
h0 = 2π(A+w)0 (notice, that 2π(A+w)0 = I∗w|∂M ) and h0

∗ are the traces of
conjugate harmonic functions. This gives the map

h0
∗ → (ν⊥,∇h0) = (ν,∇h∗|∂M ),

which is the DN map proving Theorem 1.3.
A brief outline of the paper is as follows. In Section 2 we collect some facts

and definition needed later. In Section 3 we study the solvability of I∗w = h

on Sobolev spaces and prove Theorem 1.4. In Section 4 we make a detailed
study of the scattering relation and prove Lemma 1.1. In Section 5 we prove
Theorem 1.5.

We would like to thank the referee for the very valuable comments on a
previous version of the paper.

2. Preliminaries and notation

Here we will give some definitions and formulas needed in what follows.
For further references see [E], [J], [K], [Sh]. Let π : T (M) → M be the
tangent bundle over an n-dimensional Riemannian manifold (M, g). We will
denote points of the manifold T (M) by pairs (x, ξ). The connection map
K : T (T (M)) → T (M) is defined by its local representation

K(x, ξ, y, η) = (x, η+Γ(x)(y, ξ)), (Γ(x)(y, ξ))i = Γi
jk(x)yjξk, i = 1, . . . , n,

where Γi
jk are the Christoffel symbols of the metric g,

Γi
jk =

1
2
gil

(
∂gjl

∂xk
+

∂gkl

∂xj
− ∂gjk

∂xl

)
.

The linear map K(x, ξ) = K|(x,ξ) : T(x,ξ)(T (M)) → TxM defines the horizontal
subspace H(x,ξ) = Ker K(x, ξ). It can be identified with the tangent space
Tx(M) by the isomorphism

Jh
(x,ξ) = (π′(x, ξ)|H(x,ξ))

−1 : Tx(M) → H(x,ξ).

The vertical space V(x,ξ) = Ker π′(x, ξ) can also be identified with Tx(M) by
use of the isomorphism

Jv
(x,ξ) = (K(x, ξ)|V(x,ξ))

−1 : Tx(M) → V(x,ξ).

The tangent space T(x,ξ)(T (M)) is the direct sum of the horizontal and ver-
tical subspaces, T(x,ξ)(T (M)) = H(x,ξ) ⊕ V(x,ξ). An arbitrary vector X ∈
T(x,ξ)(T (M)) can be uniquely decomposed in the form

X = Jh
(x,ξ)Xh + Jv

(x,ξ)Xv,
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where
Xh = π′(x, ξ)X, Xv = K(x, ξ)X.

We will call Xh, Xv the horizontal and vertical components of the vector X

and use the notation X = (Xh, Xv). If in local coordinates X = (X1, . . . , X2n)
then Xh, Xv is given by

Xi
h = Xi, Xi

v = Xi+n + Γi
jk(x)Xjξk, i = 1, . . . , n.

Let N be a smooth manifold and f : T (M) → N a smooth map. Then the
derivative f ′(x, ξ) : T(x,ξ)(T (M)) → Tf(x,ξ)(N) defines the horizontal ∇hf(x, ξ)
and vertical ∇vf(x, ξ) derivatives:

∇hf(x, ξ) = f ′(x, ξ) ◦ Jh
(x,ξ) : Tx(M) → Tf(x,ξ)(N),

∇vf(x, ξ) = f ′(x, ξ) ◦ Jv
(x,ξ) : Tx(M) → Tf(x,ξ)(N).

We have that

f ′(x, ξ)X = (∇hf(x, ξ), Xh) + (∇vf(x, ξ), Xv).(2.1)

In local coordinates

∇hjf
(α)(x, ξ) =

(
∂

∂xj
− Γi

jk(x)ξk ∂

∂ξi

)
f (α)(x, ξ),

∇vjf
(α)(x, ξ) =

∂

∂ξj
f (α)(x, ξ), α = 1, . . . ,dim N.

We now state the definition of vertical and horizontal derivatives for
semibasic tensor fields. We recommend Chapter 3 of [Sh] for more details.

Let T r
s (M) denote the bundle of tensor fields of degree (r, s) on M. A

section of this bundle is called a tensor field of degree (r, s). Let πr
s : T r

s (M) →
M be the projection. A fiber map u : T (M) → T r

s (TM); i.e., πr
s ◦ u = π is

called a semibasic tensor field of degree (r, s) on the manifold T (M). Denote
by ξ the semibasic vector field given by the identity map T (M) → T (M).
An arbitrary tensor field u of degree (r, s) on the manifold M ; i.e., section
u : M → T r

s (M) defines, by the formula u ◦ π, a semibasic tensor field (since
πr

s ◦ (u ◦ π) = (πr
s ◦ u) ◦ π = id ◦ π = π). The map u → u ◦ π identifies tensor

fields on M and ξ-constant semibasic tensor fields on T (M). Using the metric
g we can identify the bundle T r

s (M) with T r+s
0 (M) and the bundle T 0

r+s(M)
with T ∗

r+s(M).
We can define invariantly horizontal ∇u and vertical ∇ξu derivatives of

semibasic tensor field u ([Sh]). They are also semibasic tensor fields. In local
coordinates the horizontal and vertical derivatives are given by

(∇u)i1...im+1
= ∇̃im+1ui1...im

− Γj
i(m+1)k

ξk ∂ui1...im

∂ξj
, (∇ξu)i1...im+1 =

∂ui1...im

∂ξim+1
,
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where ∇̃ denotes the usual covariant derivative on the manifold (M, g). Notice
that for ξ-constant tensor fields, ∇u = ∇̃u and since we identify ξ-constant
semibasic tensor fields with tensor fields on M , we will use one notation ∇ for
covariant and horizontal derivatives.

We define tangent derivatives of semibasic tensor fields on the submanifold
of the unit sphere Ω(M) by

∇Ωu = ∇(u ◦ p)|Ω(M), ∂u = ∇ξ(u ◦ p)|Ω(M),

where p : T (M) → Ω(M) is the projection p(x, ξ) = (x, ξ/|ξ|). Obviously
(ξ, ∂) = 0. Since ∇Ω|ξ| = 0 we will use the notation ∇ instead of ∇Ω. In
addition we recall the following formulas (see [Sh])

∇g = 0, ∇ξ = 0, ∂jξ
i = δi

j − ξiξj ,

[∇, ∂] = 0, [∂i, ∂j ] = ξi∂j − ξj∂i,

[∇i,∇j ]u = −Rp
qij∂pu,

where R is the curvature tensor. In the last formula u is a scalar.

3. The geodesic X-ray transform

In this section we study the solvability of the equation I∗w = h and prove
Theorem 1.4.

Lemma 3.1. Let V be an open set of a Riemannian manifold (M, g). We
can define the ray transform as before. Then the normal operator I∗I is an
elliptic pseudodifferential operator of order −1 on V with principal symbol
cn |ξ|−1 where cn is a constant.

Proof. It is easy to see, that

(I∗If) (x) =
∫
Ωx

dΩx

τ(x,ξ)∫
−τ(x,−ξ)

f (γ (x, ξ, t)) dt = 2
∫
Ωx

dΩx

τ(x,ξ)∫
0

f (γ (x, ξ, t)) dt.

(3.1)

Before we continue we make a remark concerning notation. We have used
up to now the notation γ(x, ξ, t) for a geodesic. But it is known [J] , that a
geodesic depends smoothly on the point x and vector ξt ∈ Tx(M). Therefore
in what follows we will use sometimes the notation γ(x, ξt) for a geodesic.
Since the manifold M is simple, any small enough neighborhood U (in (S, g))
is also simple (an open domain is simple if its closure is simple). For any point
x ∈ U there is an open domain DU

x ⊂ Tx (U) such that the exponential map
expx : DU

x → U, expxη = γ(x, η) is a diffeomorphism onto U. Let Dx, x ∈ M ,
be the inverse image of M ; then expx(Dx) = M and expx|Dx

: Dx → M is a
diffeomorphism.
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Now we change variables in (3.1), y = γ(x, ξt). Then t = dg (x, y) and

(I∗If) (x) =
∫
M

K (x, y) f (y) dy,

where

K (x, y) = 2
det

(
exp−1

x

)′ (x, y)
√

det g (x)
dn−1

g (x, y)
.

Notice, that since

γ(x, η) = x + η + O(|η|2),(3.2)

it follows, that the Jacobian matrix of the exponential map is 1 at 0, and then
det(exp−1′

x )(x, x) = 1/ det (expx)′ (x, 0) = 1. From (3.2) we also conclude that

d2 (x, y) =Gij (x, y) (x − y)i (x − y)j ,

Gij (x, x) = gij (x) , Gij ∈ C∞ (M × M) .

Therefore the kernel of I∗I can be written in the form

K (x, y) =
2 det

(
exp−1

x

)′ (x, y)
√

det g (x)(
Gij (x, y) (x − y)i (x − y)j

)(n−1)/2
.

Thus the kernel K has at the diagonal x = y a singularity of type
|x − y|−n+1 . The kernel

K0 (x, y) =
2
√

det g (x)(
gij (x) (x − y)i (x − y)j

)(n−1)/2

has the same singularity. Clearly, the difference K − K0 has a singularity of
type |x − y|−n+2 . Therefore the principal symbols of both operators coincide.
The principal symbol of the integral operator, corresponding to the kernel K0

coincides with its full symbol and is easily calculated. As a result

σ (I∗I) (x, ξ) = 2
√

det g (x)
∫

e−i(y,ξ)

(gij (x) yiyj)(n−1)/2
dy = cn |ξ|−1 .

Let rM denote the restriction from S onto M.

Theorem 3.1. Let U be a simple neighborhood of the simple manifold M .
Then for any function h ∈ Hs (M) , s ≥ 0, there exists function f ∈ Hs−1 (U) ,

rMI∗If = h.
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Proof. Let (M, g) be simple and embedded into a compact Riemannian
manifold (S, g) without boundary, of the same dimension. Choose a finite atlas
of S, which consist of simple open sets Uk with coordinate maps κk : Uk →
Rn. Let {ϕk} be the subordinated partition of unity: ϕk ≥ 0, suppϕk ⊂
Uk,

∑
ϕk = 1. We assume without loss of generality that M ⊂ U1 and

ϕ1|M = 1. We consider the operators Ik, I∗k for the domain Uk, and the
pseudodifferential operator on (S, g)

Pf =
∑

k

ϕk (I∗kIk) (f |Uk
) , f ∈ D′ (X) .

Every operator I∗kIk : C∞
0 (Uk) → C∞ (Uk) is an elliptic pseudodifferential

operator of order −1 with principal symbol cn |ξ|−1 , ξ ∈ T (Uk) . Then P is an
elliptic pseudodifferential operator with principal symbol cn |ξ|−1 , ξ ∈ T (S),
and, therefore, is a Fredholm operator from Hs(S) into Hs+1(S). We have
that Ker P has finite dimension, Ran P is closed and has finite codimension.
Notice, that P ∗ = P (more precisely if P s = P : Hs (S) → Hs+1 (S) , then
(Ps)

∗ = P−s−1).
For arbitrary s ≥ 0 the operator rM : Hs (S) → Hs (M) is bounded and

rM (Hs (S)) = Hs (M) . Then the range of rMP : Hs (S) → Hs+1 (M), s ≥ −1,
is closed.

Since M is only covered by U1 and ϕ1|M = 1 we have that rMPf =
rMI∗1I1 (f |U1). Thus, the range of the operator rMI∗1I1 : Hs (U1) → Hs+1 (M),
s ≥ −1 is closed. Now, to prove the solvability of the equation,

rMI∗1I1f = h ∈ Hs+1 (M) , s ≥ −1,

in Hs (U1) it is sufficient to show that the kernel of the adjoint (rMI∗1I1)
∗ :(

H(s+1) (M)
)∗ → (Hs (U1))

∗ is zero.
Let 〈, 〉M and 〈, 〉 be dualities between Hs(M) and (Hs)∗ (M) or Hs(S)

and H−s(S) respectively. The dual space (Hs (M))∗ , s ≥ 0, can be identified
with the subspace of H−s (S) :

(Hs (M))∗ = H−s (M) =
{
u ∈ H−s (S) : suppu ⊂ M

}
.

For any f ∈ Hs (U1) , u ∈ H−(1+s) (M) we have

〈rMI∗1I1f, u〉M = 〈Psf̃ , u〉 = 〈f̃ , P−s−1u〉,
where f̃ is an arbitrary continuation of f on the manifold S. On the other hand

〈rMI∗1I1f, u〉M = 〈f, (rMI∗1I1)
∗ u〉M .

Since f̃ is arbitrary, then equality 〈f̃ , P−s−1u〉 = 〈f, (rMI∗1I1)
∗ u〉M implies

(rMI∗1I1)
∗ = rU1P−s−1 = rU1I

∗
1I1.

Because of ellipticity the equality rU1Pu = 0 implies smoothness u|U1 , and
then u ∈ H−s−1 (M) implies u ∈ C∞

0 (U1). Since rU1Pu = I∗1I1u, then

I∗1I1u = 0 =⇒ ‖I1u‖2
L2

µ(∂+Ω(U1))
= 0 =⇒ I1u = 0 =⇒ u = 0.
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Now we are ready to prove Theorem 1.4.

Proof. Let I, I1 be the geodesic X-ray transforms on M and U1 re-
spectively. From Theorem 3.1 it follows that for any h ∈ C∞(M) there
exists f ∈ C∞(U1), such that rMI∗1I1f = h. Then uf ∈ C∞(Ω(U1)). Let
w = 2uf

+|∂+Ω(M), where uf
+ is the even part with respect to ξ. Then it easy to

see that wψ = 2uf
+|Ω(M) and I∗w = h. The function w ∈ C∞

α (∂+Ω(M)) since
wψ ∈ C∞(Ω(M)).

4. Scattering relation and folds

In this section we prove Lemma 1.1. As indicated before, we embed (M, g)
into a compact manifold (S, g) with no boundary. Let (N, g) be an arbi-
trary neighborhood in (S, g) of the manifold (M, g), such that any geodesic
γ(x, ξ, t), (x, ξ) ∈ Ω(N) intersects the boundary ∂N transversally. Then the
length of the geodesic ray τ is a smooth function on Ω(Ṅ) and the map
φ : ∂Ω(M) → ∂−Ω(N), defined by

φ(x, ξ) = ϕτ(x,ξ)(x, ξ), (x, ξ) ∈ ∂Ω(M),(4.1)

is smooth as well. Moreover it turns out φ is a fold map with fold ∂0Ω(M).
This fact will be proved in the next theorem. Once this is proven Lemma 1.1
follows from [H, Th. C.4.4]. From the assumption A+w ∈ C∞(∂Ω(M)) we
deduce the existence of a smooth function v on a neighborhood of the range
φ(∂Ω(M)) such that w = v ◦φ. Consider the function wψ = w ◦α ◦ψ. Change
notation ψ to ψM , keeping wψ. Denote by ψN the map, analogous to ψM ,

ψN (x, ξ) = ϕτ(x,ξ) (x, ξ) , (x, ξ) ∈ Ω (N) .

Then wψ = v ◦φ ◦α ◦ψM . It easy to see, that φ ◦α ◦ψM = ψN |Ω(M). Since the
map ψN is smooth on Ω (M) , then wψ ∈ C∞ (Ω (M)), i.e. w ∈ C∞

α (∂+Ω(M)).
Thus Lemma 1.1 is proven once we show that φ is a fold.

Theorem 4.1. Let (M, g) be a strictly convex, nontrapping manifold and
N an arbitrary neighborhood of M , such that any geodesic γ(x, ξ, t), (x, ξ) ∈
Ω(Ṅ) intersects the boundary ∂N transversally. Then the map φ, defined by
(4.1) is a fold with fold ∂0Ω(M).

First we recall the definition of a Whitney fold.

Definition 4.1. Let M, N be C∞ manifolds of the same dimension and let
f : M −→ N be a C∞ map with f(m) = n. The function f is a
Whitney fold (with fold L) at m if f drops rank by one simply at m, so
that {x; df(x) is singular } is a smooth hypersurface near m and Ker (df(m))
is transversal to TmL.
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Now we prove Theorem 4.1.

Proof. Firstly, notice that ∂0Ω(M) is a smooth nonsingular hypersurface in
∂Ω(M). It is given by the equation f(x, ξ) = (ξ, ν(x)) = 0, (x, ξ) ∈ ∂Ω(M). It
is easy to see that the map f ′(x, ξ) at any point (x, ξ) ∈ ∂0Ω(M) is nonsingular.

If a submanifold Σ of the manifold M is locally given near a point m by
equations hk(x) = 0, then the vector X ∈ Tm(M) belongs to Tm(Σ) if and
only if h′

k(m)(X) = 0.
Let us find T(x,ξ)(∂0Ω(M)), as a subspace in T(x,ξ)(T (M)). Denote by

ρ(x) = dist (x, ∂M) the distance to ∂M in M and smoothly continue it into
N \ M . The submanifold ∂0Ω(M)) ∈ T (M) is given by the three equations:
ρ = 0, |ξ| = 1 and (ξ,∇ρ) = 0. Then, using (2.1) and ∇ρ|∂M = ν we have

T(x,ξ)(∂0Ω(M)) = {X ∈ T(x,ξ)(T (M)) : (ν(x), Xh) = 0, (ξ, Xv) = 0,

(∇(ξ, ν(x)), Xh) + (ν, Xv) = 0}.

Consider Ker φ′(x, ξ) also as a subspace of T(x,ξ)(T (M)). It easy to show
that Ker φ′(x, ξ) is 1-dimensional and generated by the vector (ξ, 0) (i.e.
Xh = ξ, Xv = 0). Then this vector is transversal to T(x,ξ)(∂0Ω(M)), since
(∇(ξ, ν(x)), ξ) 	= 0 if (ξ, ν(x)) = 0 given that ∂M is strictly convex.

5. The Hilbert transform and geodesic flow

In this section we prove Theorem 1.5 from the introduction. Let H be the
Hilbert transform as defined in (1.3). We have that H is a unitary operator in
the space L2

0(Ωx) = {u ∈ L2(Ωx) : u0 = 0},

(u, v) = (Hu, Hv), ∀u, v ∈ L2
0(Ωx),

H2(u) = −u, ∀u ∈ L2
0(Ωx).

Clearly, all these properties remain the same if we change Ωx to Ω(M).
In order to prove Theorem 1.4 we need the following commutator formula

which is valid for Riemannian manifolds of any dimension

Lemma 5.1. Let u be a smooth function on the manifold Ω2(M) =⋃
x∈M Ω2

x, Ω2
x = {(x, ξ, η) : ξ, η ∈ Ωx}. Then

∇
∫
Ωx

u(x, ξ, η)dΩx (η) =
∫
Ωx

∇(2)u(x, ξ, η)dΩx (η) ,(5.1)

where ∇(2) under the integral sign in (5.1) denotes the horizontal derivative on
Ω2(M),

∇(2)
j u(x, ξ, η) = (

∂

∂xj
− Γi

jkξ
k∂i(ξ) − Γi

jkη
k∂i(η))u(x, ξ, η).
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Notice that the horizontal derivative can be defined on T (M) × T (M) in
a similar fashion to the case of T (M) in Section 2.

Proof. Let ϕ ∈ C∞
0

(
R+

)
be an arbitrary function. We define the function

v on T 2 (M) by

v(x, ξ, η) = ϕ (|η|)u(x, ξ/ |ξ| , η/ |η|).
Let us consider the integral

S(x, ξ) =
∫

Tx(M)

v(x, ξ, η)dTx (η) .

Identifying Tx(M) with Rn we have

S(x, ξ) =
∫
Rn

v(x, ξ, η)
√

det g (x)dη.

Then

∇jS =
∂S

∂xj
− Γi

jkξ
k ∂S

∂ξi

=
∫
Rn

(
∂v

∂xj
− Γi

jkξ
k ∂v

∂ξi
)
√

det gdη +
∫
Rn

v
∂ ln

√
det g (x)

∂xj

√
det gdη.

Since ∂ ln
√

det g/dxj = Γk
jk we rewrite the last integral in the form∫
Rn

v
∂

∂ηk

(
Γk

jlη
l
) √

det gdη.

Then
∇jS =

∫
Rn

(
∂v

∂xj
− Γi

jkξ
k ∂v

∂ξi
− Γk

jlη
l ∂v

∂ηk
)
√

det gdη.

Since
(

∂

∂xj
− Γi

jkξ
k ∂

∂ξi
− Γk

jlη
l ∂

∂ηk
) |η| = 0,

then after changing to spherical coordinates we obtain

∇S(x, ξ) =

∞∫
0

ϕ (t) tn−1dt

∫
Ωx

∇u(x, ξ, η)dΩx (η) .(5.2)

Now S in spherical coordinates is given by

S(x, ξ) =

∞∫
0

ϕ (t) tn−1dt

∫
Ωx

u(x, ξ, η)dΩx (η) .(5.3)

We conclude (5.1) using (5.2),(5.3).
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Now we prove Theorem 1.5.

Proof. A straightforward calculation gives

∇1 + (ξ, η)
(ξ⊥, η)

= 0

and therefore we have

∇Hu(x, ξ) =
1
2π

∫
Ωx

1 + (ξ, η)
(ξ⊥, η)

∇u(x, η)dΩx (η) .

For any pair of vectors ξ, η ∈ Ωx we have

η = (ξ, η)ξ + (ξ⊥, η)ξ⊥,

η⊥ =−(ξ⊥, η)ξ + (ξ, η)ξ⊥, (ξ, η)2 + (ξ⊥, η)2 = 1.

Then

η
1 + (ξ, η)
(ξ⊥, η)

= ξ
(ξ, η) + (ξ, η)2

(ξ⊥, η)
+ ξ⊥(1 + (ξ, η))

= ξ
(ξ, η) + 1
(ξ⊥, η)

− ξ (ξ⊥, η) + ξ⊥(ξ, η) + ξ⊥

= ξ
1 + (ξ, η)
(ξ⊥, η)

+ ξ⊥ + η⊥.

Thus

HHu = HHu + H⊥u0 + (H⊥u)0

and Theorem 1.5 is proved.
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