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Moduli space of principal sheaves
over projective varieties
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Abstract

Let G be a connected reductive group. The late Ramanathan gave a no-
tion of (semi)stable principal G-bundle on a Riemann surface and constructed
a projective moduli space of such objects. We generalize Ramanathan’s no-
tion and construction to higher dimension, allowing also objects which we call
semistable principal G-sheaves, in order to obtain a projective moduli space:
a principal G-sheaf on a projective variety X is a triple (P, E, ψ), where E is
a torsion free sheaf on X, P is a principal G-bundle on the open set U where
E is locally free and ψ is an isomorphism between E|U and the vector bundle
associated to P by the adjoint representation.

We say it is (semi)stable if all filtrations E• of E as sheaf of (Killing)
orthogonal algebras, i.e. filtrations with E⊥

i = E−i−1 and [Ei, Ej ] ⊂ E ∨∨
i+j ,

have ∑
(PEi

rkE − PE rkEi) (�) 0,

where PEi
is the Hilbert polynomial of Ei. After fixing the Chern classes of

E and of the line bundles associated to the principal bundle P and characters
of G, we obtain a projective moduli space of semistable principal G-sheaves.
We prove that, in case dimX = 1, our notion of (semi)stability is equivalent
to Ramanathan’s notion.

Introduction

Let X be a smooth projective variety of dimension n over C, with a very
ample line bundle OX(1), and let G be a connected algebraic reductive group.
A principal GL(R, C)-bundle over X is equivalent to a vector bundle of rank R.
If X is a curve, the moduli space was constructed by Narasimhan and Seshadri
[N-S], [Sesh]. If dimX > 1, to obtain a projective moduli space we have to
consider also torsion free sheaves, and this was done by Gieseker, Maruyama
and Simpson [Gi], [Ma], [Si]. Ramanathan [Ra1], [Ra2], [Ra3] defined a notion
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of stability for principal G-bundles, and constructed the projective moduli
space of semistable principal bundles on a curve.

We equivalently reformulate in terms of filtrations of the associated adjoint
bundle of (Killing) orthogonal algebras the Ramanathan’s notion of (semi)-
stability, which is essentially of slope type (negativity of the degree of some
associated line bundles), so when we generalize principal bundles to higher
dimension by allowing their adjoints to be torsion free sheaves we are able to
just switch degrees by Hilbert polynomials as definition of (semi)stability. We
then construct a projective coarse moduli space of such semistable principal
G-sheaves. Our construction proceeds by reductions to intermediate groups, as
in [Ra3], although starting the chain higher, namely in a moduli of semistable
tensors (as constructed in [G-S1]). In performing these reductions we have
switched the technique, in particular studying the non-abelian étale cohomol-
ogy sets with values in the groups involved, which provides a simpler proof
also in Ramanathan’s case dim X = 1. However, for the proof of properness
we have been able to just generalize the idea of [Ra3].

In order to make more precise these notions and results, let G′ = [G, G]
be the commutator subgroup, and let g = z ⊕ g′ be the Lie algebra of G,
where g′ is the semisimple part and z is the center. As a notion of principal
G-sheaf, it seems natural to consider a rational principal G-bundle P , i.e. a
principal G-bundle on an open set U with codimX \ U ≥ 2, and a torsion
free extension of the form zX ⊕ E, to the whole of X, of the vector bundle
P (g) = P (z ⊕ g′) = zU ⊕ P (g′) associated to P by the adjoint representation
of G in g. This clearly amounts to the following

Definition 0.1. A principal G-sheaf P over X is a triple P = (P, E, ψ)
consisting of a torsion free sheaf E on X, a principal G-bundle P on the
maximal open set UE where E is locally free, and an isomorphism of vector
bundles

ψ : P (g′)
∼=−→ E|UE

.

Recall that the algebra structure of g′ given by the Lie bracket provides
g′ an orthogonal (Killing) structure, i.e. κ : g′ ⊗ g′ → C inducing an isomor-
phism g′ ∼= g′∨. Correspondingly, the adjoint vector bundle P (g′) on U has a
Lie algebra structure P (g′) ⊗ P (g′) → P (g′) and an orthogonal structure, i.e.
κ : P (g′) ⊗ P (g′) → OU inducing an isomorphism P (g′) ∼= P (g′)∨. In
Lemma 0.25 it is shown that the Lie algebra structure uniquely extends to
a homomorphism

[, ] : E ⊗ E −→ E∨∨ ,

where we have to take E∨∨ in the target because an extension E⊗E → E does
not always exist (so the above definition of a principal G-sheaf is equivalent to
the one given in our announcement of results [G-S2]). Analogously, the Killing
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form extends uniquely to
κ : E ⊗ E −→ OX

inducing an inclusion E ↪→ E∨. This form assigns an orthogonal F⊥ =
ker(E ↪→ E∨ � F∨) to each subsheaf F ⊂ E.

Definition 0.2. An orthogonal algebra filtration of E is a filtration

0 � E−l ⊂ E−l+1 ⊂ · · · ⊂ El = E(0.1)

with
(1) E⊥

i = E−i−1 and (2) [Ei, Ei] ⊂ E ∨∨
i+j

for all i, j.

We will see that, if U is an open set with codimX \U ≥ 2 such that E|U
is locally free, a reduction of structure group of the principal bundle P |U to
a parabolic subgroup Q together with a dominant character of Q produces a
filtration of E, and the filtrations arising in this way are precisely the orthog-
onal algebra filtrations of E (Lemma 5.4 and Corollary 5.10). We define the
Hilbert polynomial PE• of a filtration E• ⊂ E as

PE• =
∑

(rPEi
− riPE)

where PE , r, PEi
, ri always denote the Hilbert polynomials with respect to

OX(1) and ranks of E and Ei. If P is a polynomial, we write P ≺ 0 if
P (m) < 0 for m 	 0, and analogously for “�” and “≤”. We also use the
usual convention: whenever “(semi)stable” and “(�)” appear in a sentence,
two statements should be read: one with “semistable” and “�” and another
with “stable” and “≺”.

Definition 0.3 (See equivalent definition in Lemma 0.26). A principal
G-sheaf P = (P, E, ψ) is said to be (semi)stable if all orthogonal algebra fil-
trations E• ⊂ E have

PE•(�)0 .

In Proposition 1.5 we prove that this is equivalent to the condition that
the associated tensor

(E, φ : E ⊗ E ⊗ ∧r−1E −→ OX)

is (semi)stable (in the sense of [G-S1]).
To grasp the meaning of this definition, recall that suppressing condi-

tions (1) and (2) in Definitions 0.2 and 0.3 amounts to the (semi)stability of
E as a torsion free sheaf, while just requiring condition (1) amounts to the
(semi)stability of E as an orthogonal sheaf (cf. [G-S2]). Now, demanding (1)
and (2) is having into account both the orthogonal and the algebra structure
of the sheaf E, i.e. considering its (semi)stability as orthogonal algebra. By
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Corollary 0.26, this definition coincides with the one given in the announcement
of results [G-S2].

Replacing the Hilbert polynomials PE and PEi
by degrees we obtain the

notion of slope-(semi)stability, which in Section 5 will be shown to be equiva-
lent to the Ramanathan’s notion of (semi)stability [Ra2], [Ra3] of the rational
principal G-bundle P (this has been written at the end just to avoid interrup-
tion of the main argument of the article, and in fact we refer sometimes to
Section 5 as a sort of appendix). Clearly

slope-stable =⇒ stable =⇒ semistable =⇒ slope-semistable.

Since G/G′ ∼= C∗q, given a principal G-sheaf, the principal bundle P (G/G′)
obtained by extension of structure group provides q line bundles on U , and since
codim X \U ≥ 2, these line bundles extend uniquely to line bundles on X. Let
d1, . . . , dq ∈ H2(X; C) be their Chern classes. The rank r of E is clearly the
dimension of g′. Let ci be the Chern classes of E.

Definition 0.4 (Numerical invariants). We call the data τ = (d1, . . . ,

dq, ci) the numerical invariants of the principal G-sheaf (P, E, ψ).

Definition 0.5 (Family of semistable principal G-sheaves). A family of
(semi)stable principal G-sheaves parametrized by a complex scheme S is a
triple (PS , ES , ψS), with ES a coherent sheaf on X × S, flat over S and such
that for every point s of S, ES⊗k(s) is torsion free, PS a principal G-bundle on
the open set UES

where ES is locally free, and ψ : PS(g′) → ES |UES
an isomor-

phism of vector bundles, such that for all closed points s ∈ S the corresponding
principal G-sheaf is (semi)stable with numerical invariants τ .

An isomorphism between two such families (PS , ES , ψS) and (P ′
S , E′

S , ψ′
S)

is a pair

(β : PS

∼=−→ P ′
S , γ : ES

∼=−→ E′
S)

such that the following diagram is commutative

PS(g′)
ψ ��

β(g′)

��

ES |UES

γ|UES

��
P ′

S(g′)
ψ′

�� E′
S |UES

where β(g′) is the isomorphism of vector bundles induced by β. Given an
S-family PS = (PS , ES , ψS) and a morphism f : S′ → S, the pullback is
defined as f̃∗PS = (f̃∗PS , f

∗
ES , f̃∗ψS), where f = idX ×f : X × S → X × S′

and f̃ = i∗(f) : Uf
∗
ES

→ UES
, denoting i : UES

→ X × S the inclusion of the
open set where ES is locally free.
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Definition 0.6. The functor F̃ τ
G is the sheafification of the functor

F τ
G : (Sch /C) −→ (Sets)

sending a complex scheme S, locally of finite type, to the set of isomorphism
classes of families of semistable principal G-sheaves with numerical invariants τ ,
and it is defined on morphisms as pullback.

Let P = (P, E, ψ) be a semistable principal G-sheaf on X. An orthogonal
algebra filtration E• of E which is admissible, i.e. having PE• = 0, provides
a reduction PQ of P |U to a parabolic subgroup Q ⊂ G (Lemma 5.4) on the
open set U where it is a bundle filtration. Let Q � L be its Levi quotient,
and L ↪→ Q ⊂ G a splitting. We call the semistable principal G-sheaf(

PQ(Q � L ↪→ G),⊕Ei/Ei−1, ψ
′)

the associated admissible deformation of P, where ψ′ is the natural isomor-
phism between PQ(Q � L ↪→ G)(g′) and ⊕Ei/Ei−1|U . This principal G-sheaf
is semistable. If we iterate this process, it stops after a finite number of steps,
i.e. a semistable G-sheaf gradP (only depending on P) is obtained such that
all its admissible deformations are isomorphic to itself (cf. Proposition 4.3).

Definition 0.7. Two semistable G-sheaves P and P ′ are said S-equivalent
if gradP ∼= gradP ′.

When dimX = 1 this is just Ramanathan’s notion of S-equivalence of
semistable principal G-bundles. Our main result generalizes Ramanathan’s
[Ra3] to arbitrary dimension:

Theorem 0.8. For a polarized complex smooth projective variety X there
is a coarse projective moduli space of S-equivalence classes of semistable
G-sheaves on X with fixed numerical invariants.

Principal GL(R)-sheaves are not objects equivalent to torsion free sheaves
of rank R, but only in the case of bundles. As we remark at the end of Section 5,
even in this case, the (semi)stability of both objects do not coincide. The phi-
losophy is that, just as Gieseker changed in the theory of stable vector bundles
both the objects (torsion free sheaves instead of vector bundles) and the con-
dition of (semi)stability (involving Hilbert polynomials instead of degrees) in
order to make dimX a parameter of the theory, it is now needed to change
again the objects (principal sheaves) and the condition of (semi)stability (as
that of the adjoint sheaf of orthogonal algebras) in order to make the group
G a parameter of the theory (such variations of the conditions of stability
and semistability are in both generalizations very slight, as these are implied
by slope stability and imply slope semistability, and the slope conditions do
not vary). The deep reason is that what we intend to do is not generalizing
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the notion of vector bundle of rank R (which was the task of Gieseker and
Maruyama), but that of principal GL(R)-bundle, and although both notions
happen to be extensionally the same, i.e. happen to define equivalent objects,
they are essentially different. This subtle fact is recognized by the very sensi-
tive condition of existence of a moduli space, i.e. by (semi)stability.

The results of this article where announced in [G-S2]. There is indepen-
dent work by Hyeon [Hy], who constructs, for higher dimensional varieties,
the moduli space of principal bundles whose associated adjoint is a Mumford
stable vector bundle, using the techniques of Ramanathan [Ra3], and also by
Schmitt [Sch] who chooses a faithful representation of G in order to obtain and
compactify a moduli space of principal G-bundles.
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Preliminaries

Notation. We denote by (Sch /C) the category of schemes over Spec C,
locally of finite type. All schemes considered will belong to this category. If
f : Y → Y ′ is a morphism, we denote f = idX ×f : X × Y → X × Y ′. If ES

is a coherent sheaf on X × S, we denote ES(m) := ES ⊗ p∗XOX(m). An open
set U ⊂ Y of a scheme Y will be called big if codimY \ U ≥ 2. Recall that
in the étale topology, an open covering of a scheme U is a finite collection of
morphisms {fi : Ui → U}i∈I such that each fi is étale, and U is the union of
the images of the fi.

Given a principal G-bundle P → Y and a left action σ of G in a scheme F ,
we denote

P (σ, F ) := P ×G F = (P × F )/G,
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the associated fiber bundle. If the action σ is clear from the context, we will
write P (F ). In particular, for a representation ρ of G in a vector space V ,
P (V ) is a vector bundle on Y , this justifying the notation P (g′) in the intro-
duction (understanding the adjoint representation of G in g′) and associating
a line bundle P (σ) on Y to any character σ of G. If ρ : G → H is a group
homomorphism, let σ be the action of G on H defined by left multiplication
h �→ ρ(g)h. Then the associated fiber bundle is a principal H-bundle, and it
is denoted ρ∗P .

Let ρ : H → G be a homomorphism of groups, and let P be a principal
G-bundle on a scheme Y . A reduction of structure group of P to H is a pair
(PH , ζ), where PH is a principal H-bundle on Y and ζ is an isomorphism
between ρ∗PH and P . Two reductions (PH , ζ) and (QH , θ) are isomorphic if
there is an isomorphism α giving a commutative diagram

PH

α∼=
��

QH

ρ∗PH
ζ ��

ρ∗α

��

P

ρ∗QH θ �� P .

(0.2)

Let p : Y → S be a morphism of schemes, and let PS be a principal
G-bundle on the scheme Y . Define the functor of families of reductions

Γ(ρ, PS) : (Sch/S)−→ (Sets)

(t : T −→ S) �−→
{
(PH

T , ζT )
}
/isomorphism

where (PH
T , ζT ) is a reduction of structure group of PT := PS ×S T to H.

If ρ is injective, then Γ(ρ, PS) is a sheaf, and it is in fact representable
by a scheme S′ → S, locally of finite type [Ra3, Lemma 4.8.1]. If ρ is not
injective, this functor is not necessarily a sheaf, and we denote by Γ̃(ρ, PS) its
sheafification with respect to the étale topology on (Sch /S).

Lemma 0.9. Let Y be a scheme, and let f : K → F be a homomorphism of
sheaves on X×Y . Assume that F is flat over Y . Then there is a unique closed
subscheme Z satisfying the following universal property : given a Cartesian
diagram

X × S
h ��

pS

��

X × Y

p

��
S

h �� Y

it is h
∗
f = 0 if and only if h factors through Z.
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Proof. Uniqueness is clear. Recall that, if G is a coherent sheaf on X ×Y ,
we denote G(m) = G ⊗ p∗XOX(m). Since F is Y -flat, taking m′ large enough,
p∗F(m′) is locally free. The question is local on Y , so we can assume, shrinking
Y if necessary, that Y = SpecA and p∗F(m′) is given by a free A-module. Now,
since Y is affine, the homomorphism

p∗f(m′) : p∗K(m′) −→ p∗F(m′)

of sheaves on Y is equivalent to a homomorphism of A-modules

M
(f1,...,fn)−→ A ⊕ · · · ⊕ A .

The zero locus of fi is defined by the ideal Ii ⊂ A image of fi, thus the
zero scheme Z ′

m′ of (f1, . . . , fn) is the closed subscheme defined by the ideal
I =

∑
Ii.

Since OX(1) is very ample, if m′′ > m′ we have an injection p∗F(m′) ↪→
p∗F(m′′) (and analogously for K), hence Zm′′ ⊂ Zm′ , and since Y is noetherian,
there exists N ′ such that, if m′ > N ′, we get a scheme Z independent of m′.

We show now that if h
∗
f = 0 then h factors through Z. Since the question

is local on S, we can take S = Spec(B), Y = Spec(A), and the morphism h

is locally given by a ring homomorphism A → B. Since F is flat over Y , for
m′ large enough the natural homomorphism α : h∗p∗F(m′) → pS∗h

∗F(m′)
(defined as in [Ha, Th. III 9.3.1]) is an isomorphism. This is a consequence
of the equivalence between a) and d) of the base change theorem of [EGA III,
7.7.5 II]. For the reader more familiar with [Ha], we provide the following proof:
For m′ sufficiently large, H i(X,Fy(m′)) = 0 and H i(X, h

∗(F(m′))s) = 0 for
all closed points y ∈ Y , s ∈ S and i > 0, and since F is flat, this implies that
h∗p∗F(m′) and pS∗h

∗F(m′) are locally free. Therefore, in order to prove that
the homomorphism α is an isomorphism, it is enough to prove it at the fiber
of every closed point s ∈ S, but this follows from [Ha, Th. III 12.11] or [Mu2,
II §5, Cor. 3], hence proving the claim.

Hence the commutativity of the diagram

pS∗h
∗K(m′)

pS∗h
∗
f(m′)=0 �� pS∗h

∗F(m′)

h∗p∗K(m′)
h∗p∗f(m′) ��

��

h∗p∗F(m′)

∼=
��

implies that h∗p∗f(m′) = 0. This means that for all i, in the diagram

M
fi ��

��

A ��

��

A/Ii

��

�� 0

M ⊗A B
fi⊗B �� B �� A/Ii ⊗A B �� 0
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it is fi⊗B = 0. Hence the image Ii of fi is in the kernel J of A → B. Therefore
I ⊂ J , hence A → B factors through A → A/I, which means that h : S → Y

factors through Z.
Now we show that if we take S = Z and h : Z ↪→ Y the inclusion, then

h
∗
f = 0. By definition of Z, we have h∗p∗f(m′) = 0 for any m′ with m′ > N ′.

Showing that h
∗
f = 0 is equivalent to showing that

h
∗
f(m′) : h

∗K(m′) −→ h
∗F(m′)

is zero for some m′. Take m′ large enough so that ev : p∗p∗K(m′) → K(m′)
is surjective. By the right exactness of h

∗, the homomorphism h
∗ev is still

surjective. The commutative diagram

h
∗K(m′)

h
∗
f(m′) �� h

∗F(m′)

h
∗
p∗p∗K(m′)

h
∗
p∗p∗f(m′) ��

h
∗
ev

����

h
∗
p∗p∗F(m′)

��

p∗Sh∗p∗K(m′)
p∗

Sh∗p∗f(m′)=0 �� p∗Sh∗p∗F(m′)

implies h
∗
f(m′) = 0, as wanted.

The following easy lemmas and corollary will help to relate the three main
objects that will be introduced in this section.

Lemma 0.10. Let E and F be coherent sheaves on a scheme Y , and L a
locally free sheaf on Y . There is a natural isomorphism

Hom(E ⊗ F, L) ∼= Hom(E,Hom(F, L)) ∼= Hom(E, F∨ ⊗ L) .

Lemma 0.11. Let f : Y → S be a flat morphism of noetherian schemes
such that, for every point s of S, the fiber Ys is normal. Let E be a coherent
sheaf on Y .

(1) If i : U ↪→ Y is the immersion of a relatively big open set of Y (i.e. an
open set whose complement intersects the fibers in codimension at least 2)
and E|U is locally free, then the natural homomorphism E∨ → i∗(E∨|U )
is isomorphic.

(2) If E is S-flat, and E⊗k(s) is torsion free for every point s of S, then the
maximal open set U = UE where E is locally free is relatively big, and
the natural homomorphism E∨∨ → i∗(E|U ) is isomorphic, the natural
homomorphism E → E∨∨ being just the natural E → i∗(E|U ).
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Proof. The fact that U is relatively big is equivalent to having dimOYs,z

≥ 2 for all points z ∈ Z. This, together with the fact that Ys is normal, implies
that depthOYs,z ≥ 2. Since f is flat, we see that depthOY,z ≥ 2 by [EGA IV,
6.3.1]. From the exact sequence of OY,z-modules

0 −→ K −→ O⊕r
Y,z −→ Ez −→ 0

we obtain another sequence

0 −→ E∨
z −→ O⊕r

Y,z −→ Q −→ 0

where G is an OY,z-submodule of K∨. We make now and elementary observa-
tion based on the fact that depth is at least n if an only if local cohomology of
order at most n − 1 vanishes: since depthK∨ ≥ 1, also depthQ ≥ 1, and this,
together with the fact that depthOY,z ≥ 2, imply, by taking local cohomology
in the last exact sequence, that depthE∨

z ≥ 2. Therefore E∨ is Z-close by
[EGA IV, 5.10.5], that is, the map in (1) is bijective.

To prove (2), observe that U is relatively big because its intersection UE ∩
Ys with each fiber Ys is, by S-flatness of E, the big open set where the torsion
free sheaf E ⊗k(s) is locally free (this follows, for instance, from [H-L, Lemma
2.1.7]). Note that natural homomorphism E → E∨∨ is an isomorphism on U .
Therefore (2) follows from (1).

Lemma 0.12. If E is a coherent sheaf of rank r as in the hypothesis of
Lemma 0.11(2), then there is a canonical isomorphism

(
∧

r−1E)∨ ⊗ det E
∼=−→ E∨∨ .

Proof. This is clearly true if we restrict to the maximal open set U = UE

where E is locally free:

(
∧

r−1E)∨|U ⊗ detE|U
∼=−→ E|U .

Therefore, taking i∗ and applying Lemma 0.11(1) to (
∧

r−1E)∨, we obtain

(
∧

r−1E)∨ ⊗ detE ∼= i∗
(
(
∧

r−1E)∨|U ⊗ det E|U
) ∼=−→ i∗(E|U ) ∼= E∨∨ ,

where the last isomorphism is provided by Lemma 0.11(2).

Combining Lemmas 0.10 and 0.12 we obtain the following

Corollary 0.13. Let E be a coherent sheaf of rank r as in the hypothesis
of Lemma 0.11(2), and L a line bundle on Y . Giving a homomorphism

η : E ⊗ E ⊗ E⊗r−1 = E⊗r+1 −→ det E ⊗ L

which is skew -symmetric in the last r − 1 entries, i.e. which factors through
E ⊗ E ⊗

∧
r−1E, is equivalent to giving a homomorphism

ϕ : E ⊗ E −→ E∨∨ ⊗ L .
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Proof. Lemma 0.10 associates to η a homomorphism

ϕ : E ⊗ E −→ (
∧

r−1E)∨ ⊗ detE ⊗ L
∼=−→ E∨∨ ⊗ L

where the isomorphism is given by Lemma 0.12. Conversely, given a homo-
morphism such as ϕ, Lemma 0.12 provides the desired homomorphism.

Now we introduce the three progressively richer concepts of a Lie tensor,
a g′-sheaf, and a principal G-sheaf, all relative to a scheme S. As usual, if
no mention to the base scheme S is made, it will be understood S = Spec C.
For each of these three concepts we give compatible notions of (semi)stability,
leading in each case to a projective coarse moduli space.

Definition 0.14 (Lie tensor). A family of tensors parametrized by a
scheme S is a triple (FS , φS , NS) consisting of an S-flat coherent sheaf FS

on X ×S, such that for every point s of S, FS ⊗k(s) is torsion free with trivial
determinant (i.e., detFS = p∗SL for a line bundle L on S) and fixed Hilbert
polynomial P , a line bundle NS on S, and a homomorphism φS

φS : FS
⊗a −→ p∗SNS .(0.3)

A tensor is called a Lie tensor if a = r + 1 for r the rank of FS , and

(1) φS is skew-symmetric in the last r − 1 entries, i.e. it factorizes through
FS ⊗ FS ⊗

∧
r−1FS ,

(2) the homomorphism φ̃S : FS ⊗ FS → F∨∨
S ⊗ detF∨

S ⊗ p∗SNS associated to
φS by Corollary 0.13 is antisymmetric,

(3) φ̃S satisfies the Jacobi identity.

To give a precise definition of the Jacobi identity, first define a homomor-
phism

[[·, ·], ·] : FS ⊗FS ⊗FS
φ̃S⊗FS−→ F∨∨

S ⊗ (detF∨
S ⊗p∗SNS)⊗FS

F∨∨
S ⊗(det F∨

S ⊗p∗
SNS)⊗φ̃S−→

F∨∨
S ⊗ F∨

S ⊗ F∨∨
S ⊗ (detF∨

S ⊗ p∗SNS)2 −→ F∨∨
S ⊗ (detF∨

S ⊗ p∗SNS)2

where the last homomorphism comes from the natural pairing of the first two
factors. Then define

J : FS ⊗ FS ⊗ FS −→F∨∨
S ⊗ (detF∨

S ⊗ p∗SNS)2(0.4)

(u, v, w) �−→ [[u, v], w] + [[v, w], u] + [[w, u], v]

and require J = 0.
An isomorphism between two families of tensors (FS , φS , NS) and

(F ′
S , φ′

S , N ′
S) parametrized by S is a pair of isomorphisms α : FS → F ′

S and
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β : NS → N ′
S such that the induced diagram

FS
⊗a φS ��

α⊗a

��

p∗SNS

p∗
Sβ

��
F ′

S
⊗a φ′

S �� p∗SN ′
S

commutes. In particular, (F, φ) and (F, λφ) are isomorphic for λ ∈ C∗. Given
an S-family of tensors (FS , φS , NS) and a morphism f : S′ → S, the pullback
is the S′-family defined as (f∗

FS , f
∗
φS , f∗NS).

Since we will work with GIT (Geometric Invariant Theory, [Mu1]), the
notion of filtration F• of a sheaf is going to be essential for us. By this we
always understand a Z-indexed filtration

· · · ⊂ Fi−1 ⊂ Fi ⊂ Fi+1 ⊂ . . .

starting with 0 and ending with F . If the filtration is saturated (i.e. with all
Fi/Fi−1 being torsion free), only a finite number of inclusions can be strict

0 � Fλ1 � Fλ2 � . . . � Fλt
� Fλt+1 = F λ1 < · · · < λt+1

where we have deleted, from 0 onward, all the non-strict inclusions. Recipro-
cally, from a saturated Fλ• we recover the saturated F• by defining Fm = Fλi(m) ,
where i(m) is the maximum index with λi(m) ≤ m.

Definition 0.15 (Balanced filtration). A saturated filtration F• ⊂ F of a
torsion free sheaf F is called a balanced filtration if

∑
i rkF i = 0 for F i =

Fi/Fi−1. In terms of Fλ• , this is
∑t+1

i=1 λi rk(F λi) = 0 for F λi = Fλi
/Fλi−1 .

Remark 0.16. The notion of balanced filtration appeared naturally in the
Gieseker-Maruyama construction of the moduli space of (semi)stable sheaves,
the condition of (semi)stability of a sheaf F being that all balanced filtrations
of F have negative (nonpositive) Hilbert polynomial. In this case the condi-
tion “balanced” could be suppressed, since PF• = PF•+l

for any shift l in the
indexing (and furthermore it is enough to consider filtrations of one element,
i.e. just subsheaves).

Let Ia = {1, . . . , t + 1}×a be the set of all multi-indexes I = (i1, . . . , ia) of
cardinality a. Define

µtens(φ, Fλ•) = min
I∈Ia

{
λi1 + · · · + λia

: φ|Fλi1
⊗···⊗Fλia

�= 0
}

.(0.5)

Definition 0.17 (Stability for tensors). Let δ be a polynomial of degree
at most n−1 and positive leading coefficient. We say that (F, φ) is δ-(semi)stable
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if φ is not identically zero and for all balanced filtrations Fλ• of F , it is( t∑
i=1

(λi+1 − λi)
(
rPFλi

− rλi
P

))
+ µtens(φ, Fλ•) δ (�) 0 .(0.6)

It was proved in [G-S1] that there is a coarse moduli space of δ-semistable
tensors.

Now we go to our second main concept, that of a g′-sheaf. It will appear
as a particular case of Lie algebra sheaf, so this we define first. A family of Lie
algebra sheaves, parametrized by S, is a pair(

ES , ϕS : ES ⊗ ES −→ detE∨∨
S

)
where ES is a coherent sheaf on X × S, flat over S, such that for every point
s of S, ES ⊗ k(s) is torsion free, and the homomorphism ϕS , which is also
denoted [, ], is antisymmetric and satisfies the Jacobi identity. Therefore, it
gives a Lie algebra structure on the fibers of ES where it is locally free.

The precise definition of the Jacobi identity is as in Definition 0.14, but
with OX×S instead of detF∨

S ⊗ p∗SNS . An isomorphism between two families
is an isomorphism α : ES → E′

S with

ES ⊗ ES

ϕS ��

α⊗α
��

E∨∨
S

α∨∨

��
E′

S ⊗ E′
S

ϕ′
S �� E′∨∨

S .

Note that, since the conditions of being antisymmetric and satistying the
Jacobi identity are closed, in order to have them for an S-family, it is not
enough to check that they are satisfied for all closed points of S, because S

could be nonreduced.

Definition 0.18. The Killing form κS associated to a Lie algebra sheaf
(ES , ϕS) is the composition

ES ⊗ ES
ϕS⊗ϕS−→ E∨

S ⊗ E∨∨
S ⊗ E∨

S ⊗ E∨∨
S −→ E∨

S ⊗ E∨∨
S −→ OX×S

where ϕS also denotes its own transpose (Corollary 0.13).

If the Lie algebra is semisimple, in the sense that the induced homomor-
phism E∨∨

S → E∨
S is an isomorphism, the fiber of ES over a closed point

(x, s) ∈ X × S where ES is locally free has the structure of a semisimple Lie
algebra, which, because of the rigidity of semisimple Lie algebras, must be
constant on connected components of S. This justifies the following

Definition 0.19 (g′-sheaf). A family of g′-sheaves is a family of Lie alge-
bra sheaves where the Lie algebra associated to each connected component of
the parameter space S is g′.
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The following is the sheaf version of the well-known notion of Lie algebra
filtration (see [J] for instance, recalled in Section 5).

Definition 0.20 (Algebra filtration). A filtration E• ⊂ E of a Lie algebra
sheaf (E, [, ]) is called an algebra filtration if for all i, j,

[Ei, Ej ] ⊂ E ∨∨
i+j .

In terms of Eλ• , this is
[Eλi

, Eλj
] ⊂ E ∨∨

λk−1

for all λi, λj , λk with λi + λj < λk.

Definition 0.21. A g′-sheaf is (semi)stable if for all balanced algebra fil-
trations E• it is

t∑
i=1

(
rPEi

− riPE

)
(�) 0

or, in terms of Eλ• ,

t∑
i=1

(λi+1 − λi)
(
rPEλi

− rλi
PE

)
(�) 0 .(0.7)

Remark 0.22. We will see in Corollary 5.10 that for an algebra filtration
of a g′-sheaf, the fact of being balanced is equivalent to being orthogonal, i.e.

E−i−1 = E⊥
i = ker(E ↪→ E∨∨ κ∼= E∨ → E∨

i ). Thus, in the previous definition
we can change “balanced algebra filtration” by “orthogonal algebra filtration.”

Remark 0.23. Observe that the condition “balanced” cannot be sup-
pressed in this case, as it was in Remark 0.16, because a shifted filtration
E•+l of an algebra filtration is no longer an algebra filtration.

Construction 0.24 (Correspondence between Lie algebra sheaves and Lie
tensors). Consider a Lie tensor

(FS , φS : FS
⊗r+1 −→ p∗SNS , NS) .

Corollary 0.13 gives(
FS , φ̃S : FS ⊗ FS −→ F∨∨

S ⊗ (detF∨
S ⊗ p∗SNS), NS

)
.

If we define ES = FS ⊗ (detFS ⊗ p∗SN−1
S ), and ϕS = φ̃S ⊗ (detFS ⊗ p∗SN−1

S )2

we obtain a Lie algebra sheaf

(ES , ϕS : ES ⊗ ES −→ E∨∨
S ) .(0.8)
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Conversely, given a Lie algebra sheaf as in (0.8), if we define FS = ES

and NS = LS where LS is the line bundle on S such that detES = p∗SLS , then
Corollary 0.13 gives a Lie tensor

(FS , φS : FS
⊗r+1 −→ p∗SNS , NS).

Note that the notion of a Lie algebra sheaf is similar but not the same
as that of a Lie tensor. The difference is that an isomorphism of Lie tensors
is a pair (α, β), whereas an isomorphism of Lie algebra sheaves is just α (this
is the reason why Lie tensors take values on a line bundle p∗SNS with NS ar-
bitrary, whereas Lie algebra sheaves take values in detES). In particular, the
automorphism group of a Lie tensor is not the same as that of the associated
Lie algebra sheaf. If S = Spec C, Construction 0.24 gives a bijection of isomor-
phism classes, but not for arbitrary S, because ES is not in general isomorphic
to FS . They are only locally isomorphic, in the sense that we can cover S with
open sets Si (where the line bundles LS and NS are trivial), so that the ob-
jects restricted to Si are isomorphic, which provides an isomorphism between
the sheafified functors. We will show that, for a g′-sheaf, its (semi)stability
is equivalent to that of the corresponding tensor. This is the key initial point
of this article, allowing us to use in Section 1 the results in [G-S1] in order
to construct the moduli space of g′-sheaves, then that of principal sheaves in
Sections 2, 3 and 4.

Recall, from the introduction, the notion of a principal G-sheaf P =
(PS , ES , ψS) for a reductive connected group G and its notion of (semi)stability.
Let g′ be the semisimple part of its Lie algebra. We associate now to P a g′-
sheaf (ES , ϕS) by the following

Lemma 0.25. Let U = UES
be the open set where ES is locally free. The

homomorphism ϕU : ES |U ⊗ ES |U → ES |U , given by the Lie algebra structure
of PS(g′) and the isomorphism ψS , extends uniquely to a homomorphism

ϕS : ES ⊗ ES −→ E∨∨
S .

Proof. Let i : U ↪→ X ×S be the natural open immersion. The homomor-
phism ϕS is defined as the composition

ϕS : ES ⊗ ES −→ i∗(ES |U ⊗ ES |U ) −→ i∗(ES |U )
∼=−→ E∨∨

S

the last homomorphism being an isomorphism by Lemma 0.11.

The following corollary of Remark 0.22 provides thus an equivalent defi-
nition of (semi)stability

Corollary 0.26. A principal G-sheaf P = (P, E, ψ) is (semi)stable (Defi-
nition 0.3) if and only if the associated g′-sheaf (E, ϕ) is (semi)stable (Defini-
tion 0.21).
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Remark 0.27. Lemma 0.25 implies that there is a natural bijection be-
tween the isomorphism classes of families of g′-sheaves and those of principal
Aut(g′)-sheaves.

Lemma 0.28. Let G be a connected reductive algebraic group. Let P be
a principal G-bundle on X and let E = P (g′) be the vector bundle associated
to P by the adjoint representation of G on the semisimple part g′ of its Lie
algebra. Then detE ∼= OX .

Proof. We have Aut(g′) ⊂ O(g′), where the orthogonal structure on g′

is given by its nondegenerate Killing form. Note that P (g′) is obtained by
extension of structure group using the composition

ρ : G −→ Aut(g′) ↪→ O(g′) ↪→ GL(g′).

Since G is connected, the image of G in O(g′) lies in the connected component
of identity, i.e. in SO(g′). Hence P (g′) admits a reduction of structure group
to SO(g′), and thus detP (g′) ∼= OX .

We end this section by extending to principal sheaves some well-known
definitions and properties of principal bundles and by recalling some notions
of GIT [Mu1] to be used later. Let m : H × R → R be an action of an
algebraic group H on a scheme R, and let pR : H × R → R be the projection
to the second factor. If h : S → H and t : S → R and S-valued points of
H and R, denote by h[t] the S-valued point produced using the action, i.e.
h[t] : m ◦ (h, t) : S → R.

Definition 0.29 (Universal family). Let PR be a family of principal
G-sheaves parametrized by R. Assume there is a lifting of the action of H

to PR, i.e. there is an isomorphism

Λ : m∗PR

∼=−→ p∗RPR .

Assume that:

(1) Given a family PS parametrized by S and a closed point s ∈ S, there is
an open étale neighborhood i : S0 → S of s and a morphism t : S0 → R

such that i
∗PS

∼= t
∗PR.

(2) Given two morphisms t1, t2 : S → R and an isomorphism β : t2
∗P →

t1
∗P, there is a unique h : S → H such that t2 = h[t1] and (h, t1)

∗
Λ = β.

Then we say that PR is a universal family with group H for the functor F̃ τ
G.

Definition 0.30 (Universal space). Let F : (Sch /C) → (Sets) be a func-
tor. Let R/H be the sheaf on (Sch /C) associated to the presheaf S �→
Mor(S, R)/ Mor(S, H). We say that R is a universal space with group H for
the functor F if F is isomorphic to R/H.
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The difference between these two notions can be understood as follows.
Recall that a groupoid is a category all whose morphisms are isomorphisms.
Given a stack M : (Sch /C) → (Groupoids) we denote by M : (Sch /C) →
(Sets) the functor associated by replacing each groupoid by the set of isomor-
phism classes of its objects. Let [R/H] be the quotient stack and let F be
the stack of semistable principal G-sheaves. Then R is a universal space with
group H if [R/H] ∼= F , whereas it is a universal family if [R/H] ∼= F , i.e. if the
isomorphism holds at the level of stacks, without taking isomorphism classes.

Definition 0.31 (Categorical quotient). A morphism f : R → Y of
schemes is a categorical quotient for an action of an algebraic group H on
R if:

(1) It is H-equivariant when we provide Y with the trivial action.

(2) If f ′ : R −→ Y ′ is another morphism satisfying (1), then there is a unique
morphism g : Y → Y ′ such that f ′ = g ◦ f .

Definition 0.32 (Good quotient). A morphism f : R → Y of schemes is
a good quotient for an action of an algebraic group H on R if:

(1) f is surjective, affine and H-equivariant, when we provide Y with the
trivial action.

(2) f∗(OH
R ) = OY , where OH

R is the sheaf of H-invariant functions on R.

(3) If Z is a closed H-invariant subset of R, then p(Z) is closed in Y . Fur-
thermore, if Z1 and Z2 are two closed H-invariant subsets of R with
Z1 ∩ Z2 = ∅, then f(Z1) ∩ f(Z2) = ∅.

Definition 0.33 (Geometric quotient). A geometric quotient f : R → Y

is a good quotient such that f(x1) = f(x2) if and only if the orbit of x1 is
equal to the orbit of x2.

Clearly, geometric quotients are good quotients, and good quotients are
categorical quotients. Assume that R is projective, H is reductive, and the
action of H on R has a linearization on an ample line bundle OR(1). A closed
point y ∈ R is called GIT-semistable if, for some m > 0, there is an H-invariant
section s of OR(m) such that s(y) �= 0. If, moreover, the orbit of y is closed
in the open set of all GIT-semistable points, and has the same dimension as
H, i.e. y has finite stabilizer, then y is called a GIT-stable point. We will use
the following characterization in [Mu1] of GIT-(semi)stability: let λ : C∗ → H

be a one-parameter subgroup, and y ∈ R. Then limt→0 λ(t) · y = y0 exists,
and y0 is fixed by λ. Let t �→ ta be the character by which λ acts on the fiber
of OR(1). Defining µ(y, λ) = a, Mumford proves that y is GIT-(semi)stable if
and only if, for all one-parameter subgroups, it is µ(y, λ)(≤)0.
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Proposition 0.34. Let Rss (respectively Rs) be the open subset of GIT-
semistable points (respectively GIT-stable). Then there is a good quotient
Rss → R//H, and the restriction Rs → Rs//H is a geometric quotient. Fur-
thermore, R//H is projective and Rs//H is an open subset.

Definition 0.35. A scheme Y corepresents a functor F : (Sch /C) → (Sets)
if

(1) There exists a natural transformation f : F → Y (where Y = Mor(·, Y )
is the functor of points represented by Y ).

(2) For every scheme Y ′ and natural transformation f ′ : F → Y ′, there exists
a unique g : Y → Y ′ such that f ′ factors through f .

Remark 0.36. Let R be a universal space with group H for F , and let
f : R → Y be a categorical quotient. It follows from the definitions that Y

corepresents F .

Proposition 0.37. Let PR = (PR, ER, ψR) be a universal family with
group H for the functor F̃ τ

G1
. Let ρ : G2 → G1 be a homomorphism of groups,

such that the center ZG2 of G2 is mapped to the center ZG1 of G1 and the
induced homomorphism

Lie(G2/ZG2) −→ Lie(G1/ZG1)

is an isomorphism. Assume that the functor Γ̃(ρ, PR) is represented by a
scheme M . Then

(1) There is a natural action of H on M , making it a universal space with
group M for the functor F̃ τ

G2
.

(2) Moreover, if ρ is injective (so that Γ(ρ, PR) itself is representable by M),
then the action of H lifts to the family PM given by Γ(ρ, PR), and then
PM becomes a universal family with group H for the functor F̃ τ

G2
.

Proof. Analogous to [Ra3, Lemma 4.10].

1. Construction of R and R1

In this section we find a group acted projective scheme R1 parametrizing
based semistable g′-sheaves.

Given a principal G-bundle, we obtain a pair (E, ϕ : E ⊗ E → E), where
E = P (g′) is the vector bundle associated to the adjoint representation of G

on the semisimple part g′ of the Lie algebra of G, and ϕ is given by the Lie
algebra structure. To obtain a projective moduli space we have to allow E to
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become a torsion free sheaf. For technical reasons, when E is not locally free,
we make ϕ take values in E∨∨.

The first step to construct the moduli space is the construction of a scheme
parametrizing semistable based g′-sheaves, i.e. triples (q : V ⊗ OX(−m) �
E, E, ϕ : E ⊗ E → E∨∨), where (E, ϕ) is a semistable g′-sheaf, having E the
given numerical invariants, m is a suitable large integer depending only on these
numerical invariants, and V is a fixed vector space of dimension PE(m), thus
depending only on the invariants. We have already seen that a g′-sheaf can be
described as a tensor in the sense of [G-S1], where a notion of (semi)stability
for tensors is given, depending on a polynomial δ of degree at most n − 1 and
positive leading coefficient. In this article we will always assume that δ has
degree n−1. Recall that to a Lie tensor (F, φ) we associate a Lie algebra sheaf
(E, ϕ) with E = F ⊗ det F (cf. Construction 0.24 with S = Spec C). Since
detF ∼= OX , choosing an isomorphism we will identify E and F (a different
choice gives an isomorphic object). Now we will prove, after some lemmas,
that the (semi)stability of the g′-sheaf coincides with the δ-(semi)stability of
the corresponding tensor (in particular for the tensors associated to g′-sheaves,
its δ-(semi)stability does not depend on δ, as long as deg(δ) = n − 1), so that
we can apply the results of [G-S1].

Given a g′-sheaf (E, ϕ) and a balanced filtration Eλ• , define

µ(ϕ, Eλ•) = min
{
λi + λj − λk : 0 �= ϕ : Eλi

⊗ Eλj
−→ E∨∨/E ∨∨

λk−1

}
(1.1)

= min
{
λi + λj − λk : [Eλi

, Eλj
] ⊂/ E ∨∨

λk−1

}
.

Lemma 1.1. If (E, φ) is the associated tensor, then µ(ϕ, Eλ•) in (1.1) is
equal to µtens(φ, Eλ•) in (0.17).

Proof. For a general x ∈ X, let e1, . . . , er be a basis adapted to the flag
Eλ•(x), thus giving a splitting E(x) = ⊕Eλi(x). Writing rλi = dimEλi(x),

µtens(φ, Eλ•)

= min
{
λi + λj + λ1r

λ1 + · · · + λk(rλk − 1) + · · · + λt+1r
λt+1 :

e1∧e2∧ . . . ∧ek′−1∧ϕx(ei′ ⊗ ej′)∧ek′+1∧ . . . ∧er �= 0 for some

ei′ ∈ Eλi(x), ej′ ∈ Eλj (x), 1 ≤ k′ ≤ r
}

= min
{
λi + λj − λk : ϕx(Eλi(x), Eλj (x)) ⊂/ Eλk−1(x)

and ϕx(Eλi(x), Eλj (x)) ⊂ Eλk
(x)

}
= min

{
λi + λj − λk : [Eλi

, Eλj
] ⊂/ E ∨∨

λk−1

and [Eλi
, Eλj

] ⊂ E ∨∨
λk

}
= µ(ϕ, Eλ•).

We will need the following result, due to Ramanathan [Ra3, Lemma 5.5.1],
whose proof we recall for convenience of the reader.
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Lemma 1.2. Let W be a vector space and let p ∈ P(W∨ ⊗ W∨ ⊗ W ) be
the point corresponding to a Lie algebra structure on W . If the Lie algebra is
semisimple, this point is GIT-semistable for the natural action of SL(W ) and
linearization in O(1) on P(W∨ ⊗ W∨ ⊗ W ).

Proof. Define the SL(W )-equivariant homomorphism

g : (W∨ ⊗ W∨ ⊗ W ) = Hom(W, EndW )−→ (W ⊗ W )∨

f �→ g(f)(· ⊗ ·) = tr(f(·) ◦ f(·)) .

Choose an arbitrary linear space isomorphism between W and W∨. This gives
an isomorphism (W ⊗ W )∨ ∼= End(W ). Define the determinant map det :
(W ⊗ W )∨ ∼= End(W ) → C. Then det ◦g is an SL(W )-invariant homogeneous
polynomial on W∨ ⊗ W∨ ⊗ W and it is nonzero when evaluated on the point
f corresponding to a semisimple Lie algebra, because it is the determinant of
the Killing form. Hence this point is GIT-semistable.

Lemma 1.3. Let (E, ϕ) be a Lie algebra sheaf, and Eλ• a balanced filtra-
tion.

(1) If (E, ϕ) is furthermore a g′-sheaf, then µ(ϕ, Eλ•) ≤ 0.

(2) Eλ• is an algebra filtration if and only if µ(ϕ, Eλ•) ≥ 0.

Proof. To prove item (1) assume (E, ϕ) is a g′-sheaf, i.e. the Lie alge-
bra structure is semisimple. Since E∨∨ is torsion free, the formula (1.1) is
equivalent to

µ(ϕ, Eλ•) = min
{
λi + λj − λk : [Eλi

(x), Eλj
(x)] ⊂/ E ∨∨

λk−1
(x)

}
(1.2)

where x is a general point of X, so that Eλ• is a vector bundle filtration near x.
Fixing a Lie algebra isomorphism between the fiber E(x) and g′, the filtration
Eλ• induces a filtration on g′. Consider a vector space splitting g′ = ⊕g′λi

of this filtration and a basis el of g′ such that el ∈ g′i(l), in order to define
a monoparametric subgroup of SL(g′) given by el �→ tλi(l)el for all t ∈ C∗

(cf. notation i(l) introduced for Definition 0.15). The Lie algebra structure on
g′ gives a point 〈ϕg′〉 ∈ P(g′∨ ⊗ g′∨ ⊗ g′). Let an

lm be the homogeneous coor-
dinates of this point, i.e. [el, em] =

∑
n an

lmen. The monoparametric subgroup
acts as tλi(l)+λi(m)−λi(n)an

lm on the coordinates an
lm. Hence (1.2) is equivalent to

µ(ϕ, Eλ•) = min
{
λi(l) + λi(m) − λi(n) : an

lm �= 0
}
.

By Lemma 1.2, the point ϕg′ is GIT-semistable under the SL(g′) action because
it corresponds to a semisimple Lie algebra, hence, by the Mumford criterion
of GIT-semistability, µ(ϕ, Eλ•) ≤ 0.
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To prove item (2), assume that µ(ϕ, Eλ•) ≥ 0. If λi + λj − λk < 0, it
follows from (1.1) that

[Eλi
, Eλj

] ⊂ E ∨∨
λk−1

,

i.e. Eλ• is an algebra filtration of E.
Conversely, assume Eλ• is an algebra filtration of E. For example, if

[Eλi
, Eλj

] ⊂/ E ∨∨
λk−1

,

then λi + λj ≥ 0. Therefore, the definition of µ (formula (1.1)) implies
µ(ϕ, Eλ•) ≥ 0.

Lemma 1.4. Let (E, ϕ : E ⊗ E → E∨∨) be a Lie algebra sheaf, and let
(E, φ : E⊗r+1 → OX) be the associated Lie tensor. Assume that one of the
following conditions is satisfied :

(1) (E, ϕ) is a semistable g′-sheaf (Definition 0.21).

(2) (E, φ) is a δ-semistable tensor (Definition 0.17).

Then E is a Mumford semistable sheaf.

Proof. Assume E is not Mumford semistable. Consider its Harder-
Narasimhan filtration, i.e. the saturated filtration

0 = E0 � E1 � E2 � · · · � Et � Et+1 = E(1.3)

such that Ei = Ei/Ei−1 is Mumford semistable for all i = 1, . . . , t + 1, and

µmax(E) := µ(E1) > µ(E2) > · · · > µ(Et+1) =: µmin(E),(1.4)

where µ(F ) := deg(F )/ rk(F ) denotes the slope of a sheaf F . Define

λi = −r!µ(Ei)(1.5)

(the factor r! is used to make sure that λi is integer). Replacing the indexes i

by λi, the Harder-Narasimhan filtration becomes

0 � Eλ1 � Eλ2 � · · · � Eλt
� Eλt+1 = E .

Since deg(E) = 0 (by Lemma 0.28), it follows that this filtration is balanced
(Definition 0.15). Now we will check that it is an algebra filtration. Given a
triple (λi, λj , λk), with λi + λj < λk, we have to show that

[Eλi
, Eλj

] ⊂ E ∨∨
λk−1

.

Let k′ be the minimum integer for which

[Eλi
, Eλj

] ⊂ E ∨∨
λk′−1

.

We have to show that k′ ≤ k. By definition of k′, the following composition is
nonzero

Eλi
⊗ Eλj

[·,·]−→ E ∨∨
λk′−1

−→ E ∨∨
λk′−1

/E ∨∨
λk′−2

.
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It is well known that, if a homomorphism F1 → F2 between two torsion free
sheaves is nonzero, then µmin(F1) ≤ µmax(F2); hence

µmin(Eλi
⊗ Eλj

) ≤ µmax(E ∨∨
λk′−1

/E ∨∨
λk′−2

) .(1.6)

Using (1.5) and the fact that µmin(Eλ1 ⊗ Eλ2) = µmin(Eλ1) + µmin(Eλ2) [A-B,
Prop. 2.9]), we see that the left-hand side is

µmin(Eλi
⊗ Eλj

) =
−1
r!

(λi + λj) .

Since the quotient E ∨∨
λk′−1

/E ∨∨
λk′−2

is Mumford semistable, the right-hand side
is

µmax(E ∨∨
λk′−1

/E ∨∨
λk′−2

) = µ(E ∨∨
λk′−1

/E ∨∨
λk′−2

) =
−1
r!

λk′−1 .

Hence the inequality (1.6) becomes

λi + λj ≥ λk′−1,

so that λk′−1 < λk, hence k′ ≤ k, and we conclude that Eλ• is a balanced
algebra filtration.

If we plot the points (rλi
, dλi

) = (rkEλi
,deg Eλi

), 1 ≤ i ≤ t+1 in the plane
Z ⊕ Z we get a polygon, called the Harder-Narasimhan polygon. Condition
(1.4) means that this polygon is (strictly) convex. Since d = 0 (and dλ1 > 0),
this implies that dλi

> 0 for 1 ≤ i ≤ t, and then

t∑
i=1

r!
(
µ(Ei) − µ(Ei+1)

)
(rdλi

− rλi
d) > 0.(1.7)

Therefore
t∑

i=1

(λi+1 − λi)
(
rPEλi

− rλi
PE

)
� 0(1.8)

because the leading coefficient of (1.8) is (1.7), and thus (E, ϕ) cannot be a
semistable g′-sheaf, proving item (1).

Now, since Eλ• is an algebra filtration, it is, by Lemma 1.3(2), µ(ϕ, Eλ•)
≥ 0. Now, Lemma 1.1 implies µtens(φ, Eλ•) ≥ 0, hence

t∑
i=1

(λi+1−λi)
(
rPEλi

−rλi
PE

)
+µ(φ, Eλ•)δ ≥

t∑
i=1

(λi+1−λi)
(
rPEλi

−rλi
PE

)
� 0

and therefore, by (1.8), (E, φ) cannot be a δ-semistable tensor, thus proving
item (2).

Proposition 1.5. Let (E, ϕ : E ⊗ E → E∨∨) be a g′-sheaf and let
(E, φ : E⊗r+1 → OX) be the associated tensor. The following conditions are
equivalent :
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(1) (E, φ) is a δ-(semi)stable tensor.

(2) (E, ϕ) is a (semi)stable g′-sheaf.

Proof. Assume that (E, φ) is δ-(semi)stable. Let Eλ• be a balanced alge-
bra filtration. Then µtens(φ, Eλ•) = µ(ϕ, Eλ•) = 0 (Lemmas 1.1, 1.3), hence
inequality (0.6) in Definition 0.17 becomes (0.7) in Definition 0.21.

Conversely, assume that the g′-sheaf (E, ϕ) is (semi)stable, thus E is
Mumford semistable by Lemma 1.4(1). Consider a balanced filtration Eλ•

of E. We must show that (0.6) is satisfied. If this is an algebra filtration,
then µ(ϕ, Eλ•) = 0 by Lemma 1.3, hence (0.6) holds. If it is not an algebra
filtration, then µ(ϕ, Eλ•) < 0 (again by Lemma 1.3). Since E is Mumford
semistable, it is rdλi

− rλi
d ≤ 0 for all i. Denote by τ/(n − 1)! the positive

leading coefficient of δ. Then the leading coefficient of the polynomial of (0.6)
becomes ( t∑

i=1

(λi+1 − λi)
(
rdλi

− rλi
d
))

+ τµ(ϕ, Eλ•) < 0,

and thus (0.6) holds.

Now, let us recall briefly how the moduli space of tensors was constructed
in [G-S1]. Start with a δ-semistable tensor

(F, φ : F⊗a −→ OX)

with rkF = r (i.e. dim g′), fixed Chern classes and detF ∼= OX . Let m be a
large integer (depending only on the polarization and numerical invariants of
F ) and an isomorphism g between H0(F (m)) and a fixed vector space V of
dimension h0(F (m)). This gives a quotient

q : V ⊗OX(−m) −→ F

and hence a point in the Hilbert scheme H of quotients of V ⊗OX(−m) with
Hilbert polynomial P . Let l > m be an integer, and W = H0(OX(l − m)).
The quotient q induces homomorphisms

q : V ⊗OX(l − m) � F (l)
V ⊗ W → H0(F (l))∧

P (l)(V ⊗ W ) →
∧

P (l)H0(F (l)) of dim 1.

If l is large enough, these homomorphisms are surjective, and they yield the
Grothendieck embedding

H ↪→ P
( ∧

P (l)(V ∨ ⊗ W∨)
)
,

and hence a restricted very ample line bundle OH(1) on H (depending on m

and l). The isomorphism g : V
∼=→ H0(F (m)) and φ induces a linear map

Φ : V ⊗a −→ H0(F (m)⊗a) −→ H0(OX(am)) =: B,
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and so the tensor φ and the isomorphism g give a point in

P
( ∧

P (l)(V ∨ ⊗ W∨)
)
× P

(
(V ⊗a)∨ ⊗ B

)
= P × P′ .

Let Z be the closure of the points associated to δ-semistable tensors. We give Z

a polarization OZ(1), by restricting a polarization OP×P′(b, b′) of the ambient
space, where the ratio between b and b′ depends on the polynomial δ and the
integers m and l as

b′

b
=

P (l)δ(m) − δ(l)P (m)
P (m) − aδ(m)

.

There is a tautological family of tensors on X parametrized by Z

φZ : F⊗r+1
Z −→ p∗P′OP′(1) .(1.9)

The scheme Z has an open dense subscheme Zss representing the sheafi-
fication of the functor

F b : (Sch/C) −→ (Sets)(1.10)

associating to a scheme S the set of equivalence classes of families of δ-semistable
“based” tensors(

qS : V ⊗OX×S(−m)→FS , FS , φS : F⊗a
S → p∗SNS , NS

)
,

where qS is a surjection inducing an isomorphism

gS = pS∗(qS(m)) : V ⊗OS → pS∗(FS(m))

and (FS , φS , NS) is a family of δ-semistable tensors (Definition 0.17) with fixed
rank r, Chern classes and trivial determinant. In particular,

det(FS) ∼= p∗SL,(1.11)

where L is a line bundle on S. From now on, we will assume a = r + 1.

Proposition 1.6. There is a closed subscheme R of Zss representing the
sheafification F̃ b

Lie of the subfunctor of (1.10)

F b
Lie : (Sch/C)−→ (Sets)(1.12)

S �−→F b
Lie(S) ⊂ F b(S) ,

where F b
Lie(S) ⊂ F b(S) is the subset of families of based δ-semistable Lie ten-

sors.
A point of the closure R of R in Z is GIT-(semi)stable with respect to the

natural SL(V )-action and linearization on OR(1) = OZ(1)|R (see [G-S1]) if and
only if the corresponding tensor is δ-(semi)stable and q induces an isomorphism
V ∼= H0(E(m)). In particular the open subset of GIT-semistable points of R

is R.
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Proof. Let (qZss , FZss , φZss : FZss
⊗r+1 → p∗ZssNZss , NZss) be the tautolog-

ical family on Zss coming from (1.9). For each pair (i, j) with 1 ≤ i < j ≤ r+1,
let

σij(φZss) : FZss
⊗r+1 −→ p∗ZssNZss

be the homomorphism obtained from φZss by interchanging the factors i and j.
Let Zij ⊂ Zss be the zero subscheme defined by φZss +σij(φZss), using Lemma
0.9. Finally, define

Zskew =
⋂

3≤i<j≤r+1

Zij .

From the universal property of Zij (Lemma 0.9) it follows that, for a family
satisfying condition (1) of Definition 0.14, the classifying morphism into Zss

factors through Zskew. Furthermore, the restriction of the tautological fam-
ily to Zskew satisfies condition (1), hence by Corollary 0.13 we have a family
parametrized by Zskew

(1.13) (qZskew
, FZskew

, ϕZskew
: FZskew

⊗ FZskew

−→ F ∨∨
Zskew

⊗ detF∨
Zskew

⊗ p∗Zskew
Nskew, Nskew) .

The closed subscheme (“antisymmetric locus”) Zasym ⊂ Zskew is defined as
the zero subscheme of ϕZskew + σ12(ϕZskew) given by Lemma 0.9. It follows
that if a family satisfies conditions (1) and (2) of Definition 0.14, then its
classifying morphism factors through Zasym, and furthermore the restriction of
the tautological family to Zasym satisfies conditions (1) and (2).

Let J be the homomorphism defined as in (0.4) of Definition 0.14, using
the tautological family parametrized by Zasym. Note that this homomorphism
is zero if and only if the associated homomorphism (Lemma 0.10)

J̃ : FZasym
⊗ FZasym

⊗ FZasym
⊗ F∨

Zasym
−→ (detF∨

Zasym
⊗ p∗Zasym

Nasym)2

is zero. Finally, let R ⊂ Zasym be the zero closed subscheme of J̃ given in
Lemma 0.9. If a family satisfies conditions (1) to (3) of Definition 0.14, then
its classifying morphism will factor through R, and furthermore the restriction
of the tautological family to R satisfies conditions (1) to (3).

The equivalence of δ-(semi)stability and GIT-(semi)stability is proved in
[G-S1].

Recall that a g′-sheaf is (semi)stable if and only if the associated Lie tensor
is δ-semistable (Proposition 1.5).

Proposition 1.7. There is a subscheme R1 ⊂ R representing the sheafi-
fication F̃ b

g′ of the subfunctor of (1.12)

F b
g′ : (Sch/C)−→ (Sets)(1.14)

S �−→F b
g′(S) ⊂ F b

Lie(S) ,
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where F b
g′(S) ⊂ F b

Lie(S) is the subset of S-families of based δ-semistable Lie
tensors such that the homomorphism associated by Construction 0.24 provides
a family of based semistable g′-sheaves with fixed numerical invariants τ .

Furthermore, R1 is a union of connected components of R, hence the in-
clusion R1 ↪→ R is proper.

Proof. Consider the tautological family parametrized by R

(qR, FR, φR : F⊗r+1
R −→ p∗RNR, NR)

and the associated family obtained as in Construction 0.24

(qR, ER, ϕR : ER ⊗ ER → E∨∨
R ) .(1.15)

Let κ be the Killing form (Definition 0.18)

κ : ER ⊗ ER −→ OX×R.

This induces a homomorphism detκ′ : detER → detE∨
R. Recall from (1.11)

that detFR is the pullback of a line bundle from R, hence the same holds for
detER, and then detκ′ is constant along the fibers of π : X × R → R. Hence
detκ′ is nonzero on an open set of the form X ×W , where W ⊂ R is an open
set.

A point (q, E, ϕ) ∈ R belongs to W if and only if for all x ∈ UE the Lie
algebra (E(x), ϕ(x)) is semisimple, because the Killing form is nondegenerate
if and only if the Lie algebra is semisimple.

Now we show that the open set W is in fact equal to R. Let (q, E, ϕ :
E⊗E → E∨∨) be a based Lie algebra sheaf corresponding to a point in R\W .
Then its Killing form κ : E ⊗ E → OX is degenerate. Let E1 be the kernel of
the homomorphism induced by κ

0 −→ E1 −→ E −→ E∨.

By Lemma 1.4(2), E is Mumford semistable, thus E∨ is Mumford semistable,
and, being both of degree 0, the sheaf E1 is also of degree 0 and Mumford
semistable. Note that E1 is a solvable ideal of E, i.e. the fibers of E1 are solvable
ideals of the fibers of E (at closed points where both sheaves are locally free)
[Se2, proof of Th. 2.1 in Chap. VI]. Since E1⊗E1 (modulo torsion) and E∨∨

1 are
Mumford semistable of degree zero, the image E′

2 = [E1, E1] of the Lie bracket
homomorphism ϕ : E1 ⊗E1 → E∨∨

1 , is a Mumford semistable subsheaf of E∨∨
1

of degree zero. Define E2 = E′
2 ∩E. It is a Mumford semistable subsheaf of E

of degree zero. Similarly E′
3 = [E2, E2], E3, etc... are all Mumford semistable

sheaves of degree zero. Since E1 is solvable, we arrive eventually to a non-zero
sheaf E′ of degree zero, which is an abelian ideal of E.

For λ1 = rkE′−r and λ2 = rkE′, let Eλ1 � Eλ2 be the balanced filtration
having as Eλ1 the saturation of E′ in E, and as Eλ2 the sheaf E itself. We
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claim that this filtration contradicts the δ-semistability of the tensor (E, ϕ)
associated to (E, φ) by Construction 0.24 .

To prove this we need to calculate µtens(φ, Eλ•) (cf. formula (0.5)). By
Lemma 1.1 this is equal to µ(ϕ, Eλ•) (cf. (1.1)). We need to estimate which
triples (i, j, k) are relevant to calculate the minimum, i.e. which triples have
[Eλi

, Eλj
] ⊂/ E ∨∨

λk−1
. Since E′ is abelian, it is [E′, E′] = 0, so (1, 1, k) is

not relevant. Since E′ is an ideal, we have [E′, E] ⊂ E′∨∨. If E′ is in the
center, then this bracket is zero, hence (1, 2, k) is not relevant. If, on the
contrary, E′ is not in the center, then [E′, E] �= 0, hence (1, 2, 1) is relevant,
and corresponds λ1 + λ2 − λ1 = rkE′ > 0. Since E is not abelian, it is
[E, E] �= 0. Then there are two possibilities: if [E, E] ⊂ E′∨∨, then (2, 2, 1) is
relevant and λ2 + λ2 − λ1 = rkE′ + rkE > 0. Otherwise (2, 2, 2) is relevant,
and λ2 + λ2 − λ2 = rkE′ > 0. Summing up, we obtain

µ(ϕ, Eλ•) > 0.

Since deg E′ = deg E = 0, the leading coefficient of

r(rPE′ − rk(E′)PE) + µ(ϕ, Eλ•)δ

is positive, hence (E, φ) is not δ-semistable (and by Proposition 1.5, (E, ϕ) is
not semistable), contradicting the assumption, so we have proved that W = R.

Now assume that we have two based g′-sheaves (q, E, ϕ) and (q′, E′, ϕ′)
belonging to the same connected component of R, and x ∈ UE , x′ ∈ UE′ . Then
we have

(E(x), ϕ(x)) ∼= (E′(x′), ϕ′(x′))

as Lie algebras, because of the well-known rigidity of semisimple Lie algebras
(see [Ri], for instance). Hence R1 is the union of the connected components of
R with (E(x), ϕ(x)) ∼= g′ at the general closed point x ∈ X.

We will denote by ER1 the tautological family of g′-sheaves which R1

parametrizes, i.e. the one obtained by restricting (1.15) and ignoring the bas-
ing qR1

ER1 = (ER1 , ϕR1) .(1.16)

Giving a family of (semi)stable g′-sheaves is equivalent to giving a fam-
ily of (semi)stable principal Aut(g′)-sheaves. Furthermore, by Lemma 0.26,
the (semi)stability conditions for a g′-sheaf and the corresponding principal
Aut(g′)-sheaf coincide, hence (ER1 , ϕR1) can also be seen as a family of semi-
stable principal Aut(g′)-sheaves.

Recall that H is the Hilbert scheme classifying quotients V ⊗ OX(−m)
→ F (of fixed rank and Chern classes), P′ = P

(
(V ⊗r+1)∨⊗H0(OX((r+1)m))

)
and, by the Construction 0.24 , it is ER1 = FR1 ⊗ detFR1 ⊗ p∗OP′(−1), where
FR1 is the restriction of (1.9) to R1, and p is

p : R1 ↪→ P × P′ → P′ .
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Let ξ : V ⊗OGL(V ) → V ⊗OGL(V ) be the universal automorphism and π1, π2

be the projections to the two factors of GL(V ) × R1. The group GL(V ) acts
on R1, and this action lifts to an action ΛF on FR1 ([H-L, §4.3, p. 90]), and to
an action B on p∗OP′(−1), giving an isomorphism (ΛF ,B)

V ⊗OX×R1(−m)

π∗
1ξ

��

σ∗qR1�� �� σ∗FR1

ΛF
∼=

��
V ⊗OX×R1(−m)

π2
∗qR1�� �� π2

∗FR1

σ∗F⊗r+1
R1

ΛF
⊗r+1∼=

��

σ∗φR1 �� σ∗p∗R1
NR1

p∗
R1

B∼=
��

π2
∗F⊗r+1

R1

π2
∗φR1�� π2

∗p∗R1
NR1

(1.17)

between the pullbacks of the family of Lie tensors (FR1 , φR1 , NR1
), by the action

σ : GL(V ) × R1 → R1 and by the projection π2 to the second factor.
Since the action σ on R1 lifts to the actions ΛF on FR1 and B on p∗OP′(−1),

it also lifts to an action Λ on ER1 . An element λ in the center of GL(V )
acts trivially on R1, hence the action σ factors through an action action m :
PGL(V ) × R1 → R1 of PGL(V ) on R1. The element λ acts as multiplication
by λ on FR1 and as multiplication by λ−r−1 on OP′(−1), hence it acts trivially
on ER1 . Therefore the lifted action of GL(V ) on ER1 factors through PGL(V )

m∗ER1

Λ∼=
��

p2
∗ER1

m∗ER1 ⊗ m∗ER1

m∗ϕR1 ��

Λ⊗Λ

��

m∗E∨∨
R1

Λ∨∨

��
p2

∗ER1 ⊗ p∗2ER1

p2
∗ϕR1 �� p2

∗E∨∨
R1

(1.18)

where p2 is the projection of PGL(V ) × R1 to the second factor. This gives
a lift Λ of the PGL(V ) action on R1 to the family ER1.

Proposition 1.8. With this action σ and lift Λ, (ER1 , ϕR1) becomes a
universal family with group PGL(V ) for the functor F̃ τ

Aut(g′) (cf. Remark 0.27).

Proof. Let (ES , ϕS) be a family of semistable g′-sheaves. Shrink S if nec-
essary, so that det ES

∼= OX×S . Using this isomorphism and Construction 0.24
we obtain a family of δ-semistable s

(FS , φS : F⊗r+1
S → p∗SNS , NS)(1.19)

with FS = ES and NS
∼= OS . Let (FR1 , φR1 , NR1) be the tautological family of

tensors parametrized by R1. By Proposition 1.7, after shrinking S if necessary,
there is a morphism f : S → R1 such that the pullback (f∗

FR1 , f
∗
φR1 , f

∗NR1)
of this family is isomorphic to the family (1.19), hence the families of g′-sheaves
associated by Construction 0.24 to both of them are isomorphic.

Now we are going to check the second condition in the definition of univer-
sal family. Let t1, t2 : S → R1 be two morphisms, and let α : E2 → E1 be an
isomorphism between the two pullbacks, (E1, ϕ1) and (E2, ϕ2), of (ER1 , ϕR1),
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by t1 and t2. We must find a morphism h : S → PGL(V ) such that t2 = h[t1]
and (h, t1)

∗
Λ = α. Since the question is local on S, we may shrink S when

needed along the proof.
By pulling back the family (qR1 , FR1 , φR1 , NR1), these morphisms also give

two families of semistable based Lie tensors (q1, F1, φ1, N1) and (q2, F2, φ2, N2).
By definition of ER1 , it is Ei = Fi ⊗ det Fi ⊗ p∗SN−1

i , i = 1, 2. Shrinking S if
necessary, there are isomorphisms ai : detFi ⊗ p∗SN−1

i → OX×S . Define α′ by

E2

α

��

F2 ⊗ detF2 ⊗ p∗SN−1
2

F2⊗a2 �� F2

α′

��
E1 F1 ⊗ detF1 ⊗ p∗SN−1

1

F1⊗a1 �� F1

and hence α = α′ ⊗ (a−1
1 ◦ a2). Given any isomorphism β : N−1

2 → N−1
1 , we

obtain an isomorphism

α′ ⊗ detα′ ⊗ p∗Sβ : E2 = F2 ⊗ detF2 ⊗ p∗SN−1
2 −→ E1 = F1 ⊗ detF1 ⊗ p∗SN−1

1 .

Choose β so that α′⊗(a−1
1 ◦a2) = α′⊗detα′⊗p∗Sβ. Since α = α′⊗detα′⊗p∗Sβ,

the commutativity of

E2 ⊗ E2
ϕ2 ��

α⊗α

��

E∨∨
2

α∨∨

��
E1 ⊗ E1

ϕ1 �� E∨∨
1

implies the commutativity of

F⊗r+1
2

φ2 ��

α′⊗r+1

��

p∗SN2

p∗
Sβ

��
F⊗r+1

1

φ1 �� p∗SN1

and hence the pair (α′, β) gives an isomorphism between (F1, φ1, N1) and
(F2, φ2, N2). Using the based Lie tensors (q1, F1, φ1, N1) and (q2, F2, φ2, N2),
let gi = pS∗(qi(m)), i = 1, 2, and define the isomorphism h′

V ⊗OS

h′

��

∼=
g2 �� pS∗(F2(m))

∼= pS∗(α′(m))

��
V ⊗OS ∼=

g1 �� pS∗(F1(m)) .

This isomorphism can be seen as a morphism h′ : S → GL(V ). By construc-
tion, it is t2 = h′[t1], and (α′, β) is the pullback of the isomorphism (1.17) by
(h′, t1). Denote by h : S → PGL(V ) the composition of h′ with projection to
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PGL(V ). Then we have t2 = h[t1], and α is the pullback of the left arrow in
(1.18) by (h, t1).

Finally, we have to check that these two properties determine h uniquely.
Let h1, h2 : S → PGL(V ) be two such morphisms. Define h3 = h1h

−1
2 .

Then h3[t1] = t1, and the pullback (h3, t1)
∗
Λ is the identity automorphism.

Replacing S by an étale cover if necessary, we can lift h3 to a morphism
h′

3 : S → GL(V ), and this induces an automorphism α′
3 = (h′

3, t
′
1)

∗
Λ of

FS = t1
∗
FR1

V ⊗OX×S

p∗
Sh′

3

��

t1
∗
qR1�� �� FS(m)

α′
3(m)

��
V ⊗OX×S

t1
∗
qR1�� �� FS(m) .

(1.20)

Applying pS∗ to (1.20), we obtain

V ⊗OS

h′
3

��

H0(q1(m))

∼=
�� pS∗FS(m)

pS∗(α′
3(m))

��
V ⊗OS

H0(q1(m))

∼=
�� pS∗FS(m) .

Since (h3, t1)
∗
Λ = id, the automorphism α′

3 is a family of homotethies, i.e.
pS∗α

′
3 can be seen as a morphism S → C∗, and, using the previous diagram,

h′
3 can also be seen as a morphism from S to C∗, the center of GL(V ), hence

h3 is the identity morphism from S to PGL(V ).

2. Construction of R2

In this section we construct a scheme R2 → R1, finite and étale, parametriz-
ing reductions to G/Z.

Recall that all schemes considered in this article are locally of finite type
over Spec C. In this section and the following we are going to make use of the
category of complex analytic spaces. For a scheme Y , we denote by Y an the
associated complex analytic space ([SGA1, XII], [Ha, App. B]), and given a
morphism f in the category of schemes, we denote by fan the corresponding
morphism in the category of analytic spaces. Recall that the underlying set
of Y an is the set of closed points of Y , and it is endowed with the analytic
topology.

Lemma 2.1. Let S be a scheme (not necessarily smooth!). Let Z ⊂ X×S

be a closed subscheme with codimR(Zan
s , Xan × s) ≥ m for all closed points

s ∈ S, and let U ⊂ X × S be its complement. Let M be a compact real
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manifold with boundary and having dimR(M) ≤ m − 1, and let

f = (fX , fS) : M −→ Xan × San

be a continuous map such that the image of the boundary lies in Uan. Then f

can be modified by a homotopy, relative to its boundary to a continuous map f̃

whose image lies in Uan.

Proof. Consider the cartesian product (in the category of topological
spaces and continuous maps)

Zan
M

��

��

Zan

��
M

fS �� San .

The map f factors as

M

f

��(fX ,id) �� Xan × M
id×fS �� Xan × San

Zan
M

��

��

�� Zan .
��

��

By hypothesis codimR(Zan
s , Xan × s) ≥ m for all s ∈ S, so codimR(Zan

M ,

Xan × M) ≥ m, and, since dimR(M) ≤ m − 1 and Xan × M is smooth,
we can modify (fX , id) homotopically, relative to its boundary, to a map f̃1

whose image does not intersect Zan
M . Then the image of f̃ = (id, fS) ◦ f̃1 lies

in U .

Lemma 2.2. For a scheme S, let Z ⊂ X × S be a closed subscheme such
that codimR(Zan

s , Xan × s) ≥ 4 for all closed points s ∈ S. Let U be the
complement of Z, and let x ∈ U ⊂ X ×S be a closed point. Then the inclusion
i : U ↪→ X × S induces an isomorphism of topological fundamental groups

π1(ian, x) : π1(Uan, x)
∼=−→ π1(Xan × San, x).

Proof. To check that π1(ian) is injective, let f : S1 → Uan be a continuous
based loop (i.e. a continuous map from the unit interval [0, 1] sending 0 and
1 to the base point x) mapping to zero in π1(Xan × San, x). So there is a
continuous map g fitting into a commutative diagram

S1
f ��

� �

��

Uan � � �� Xan × San

D
g �� Xan × San
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where D denotes the unit disk (whose boundary is S1). By Lemma 2.1 we can
change g by a homotopy relative to its boundary to a map whose image is
in Uan, hence [f ] ∈ π1(Uan, x) is zero.

To check that π1(ian) is surjective, let

f : S1 −→ Xan × San

be a continuous based loop. Applying Lemma 2.1 we can change f , by a
homotopy relative to the endpoints of the interval, to be a based loop in Uan.

Corollary 2.3. With the same notation and hypothesis as in Lemma
2.2, the inclusion i induces an isomorphism of algebraic fundamental groups

πalg(i, x) : πalg(U , x)
∼=−→ πalg(X × S, x).

Proof. The algebraic fundamental group is canonically isomorphic to the
completion of the topological fundamental group with respect to the topology
of finite index subgroups (cf. [SGA1, XII, Cor. 5.2]), hence the result follows
from Lemma 2.2.

The monomorphism ρ2 : G/Z ↪→ Aut(g′) is the inclusion of the connected
component of the identity of Aut(g′), thus F = Aut(g′)/(G/Z) is a finite group.

Recall that the tautological family (1.16) parametrized by R1 is denoted

ER1 = (ER1 , ϕR1) .

Let UR1 ⊂ X × R1 be the open set where ER1 is locally free. Then ER1 gives
a principal Aut(g′)-bundle PR1 on UR1 . Consider the functor Γ(ρ2, PR1) of
reductions defined as in (0.3).

Proposition 2.4. The functor Γ(ρ2, PR1) is represented by a scheme
R2 → R1, étale and finite over R1, so that there is a tautological family
parametrized by R2

(qR2
, P

G/Z
R2

, ER2
, ψR2

) .(2.1)

Proof. For a scheme S → R1, the set of isomorphism classes of S-families
of ρ2-reductions is bijective to the set

MorUS
(US , PS(F ))(2.2)

of sections of the principal F -bundle PS(F ) → US pulled back from PR1(F )
by US → UR1 . Since F is a finite group, giving the principal F -bundle
p : PR1(F ) → UR1 is equivalent to giving a representation of the algebraic
fundamental group πalg(UR1 , x) in F ([SGA1, V §7]). By Lemma 2.2 this fun-
damental group is isomorphic to πalg(X ×R1, x), so there is a unique principal
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F -bundle PR1(F ) on X ×R1 whose restriction to UR1 is isomorphic to PR1(F ).
We claim that the set (2.2) is bijective to

MorX×S(X × S, PR1(F )S).(2.3)

Indeed, an element of the set (2.2) corresponds to a trivialization of the prin-
cipal bundle PS(F ) → US , and this in turn corresponds biunivocally to a
trivialization of the principal bundle PR1(F )S → X × S, i.e. to an element of
(2.3), thus proving the claim.

Finally, the morphism X × R1 → R1 is projective and faithfully flat,
PR1(F ) → X ×R1 is an étale and surjective, and thus the composition PR1(F )
→ R1 is projective. These three facts allow us to use [Ra3, Lemma 4.14.1]
in order to conclude that the functor Γ(ρ2, PR1) is representable by a scheme
R2 → R1 which is étale and finite over R1.

From this proposition, together with Proposition 0.37, we obtain the fol-
lowing

Corollary 2.5. The family PR2
= (PG/Z

R2
, ER2

, ψR2
) is a universal fam-

ily with group PGL(V ) for the functor F̃ τ
G/Z .

Recall G′ = [G, G] denotes the commutator subgroup. Clearly G/G′ ∼=
C∗q, and giving a principal G/G′-bundle is equivalent to giving q line bundles.
Note that G/Z × G/G′ = G/Z ′, where Z ′ is the center of G′. Denote the
projection to the first factor by

ρ′2 : G/Z ′ → G/Z.

Let d1, . . . , dq be q fixed elements of H2(X, C). Define

R′
2 = Jd1(X) × · · · × Jdq(X) × R2,

where Jdi(X) is the Jacobian variety parametrizing line bundles on X with
first Chern class equal to di ∈ H2(X, C). Choosing a Poincaré line bundle on
Jdi(X) × X, we construct a tautological family parametrized by R′

2

(qR′
2
, P

G/Z′

R′
2

, ER′
2
, ψR′

2
)(2.4)

where the principal G/Z ′-bundle P
G/Z′

R′
2

is the product of the pullback, by

X ×R′
2 → X ×R2, of the principal G/Z-bundle P

G/Z
R2

of the family (2.1), and
the principal C∗-bundles associated to the line bundles on X ×R′

2 pulled back
from the chosen Poincaré line bundles on X × Jdi .

Lemma 2.6. The scheme R′
2 over R2 represents the functor Γ(ρ′2, PR2).

Proof. It follows easily from the construction of R′
2.
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There is a lift of the trivial C∗ action on the Jacobian J(X) to the chosen
Poincaré line bundle, providing it with a structure of a universal family with
group C∗. Using this action, we obtain from Lemma 2.6 and Proposition 0.37
the following

Corollary 2.7. There is a natural action of G/G′ × PGL(V ) on the
family of principal G/Z ′-sheaves PG/Z′

R′
2

= (PG/Z′

R′
2

, ER′
2
, ψR′

2
), providing it with

a structure of universal family with group G/G′ × PGL(V ) for the functor
F̃ τ

G/Z′.

3. Construction of R3

In this section we construct a scheme R3 → Jacd1(X)×· · ·×Jacdq(X)×R2,
finite and étale, parametrizing reductions to G.

We first recall some facts about nonabelian cohomology. For a scheme Y

and an algebraic group H, we denote by HY the sheaf, in the étale topology
of Y , of sections of the trivial H-bundle Y ×H. Given a morphism p : Y → S,
let Rip∗(HY ) be the sheaf, in the étale topology of S, generated by the presheaf

(u : U → S) �−→ Ȟ i
et(YU , HY ),

where Ȟ i
et denotes the Czech cohomology set with respect to the étale topol-

ogy, and YU = Y ×S U . For a finite abelian group F , let H i(Y an;F ) be the
singular cohomology of Y an with coefficients in F . We will need the following
comparison.

Theorem 3.1. Let F be a finite abelian group, and Y scheme, locally of
finite type. Then there is a canonical isomorphism

Ȟ i
et(Y, F ) ∼= H i(Y an;F ) .

Proof. The proof follows from Ȟ i
et(Y, F ) ∼= H i(Y an;F ) (proved in [SGA4,

XVI Th. 4.1]) and from the fact that étale cohomology can be calculated using
Czech cohomology.

Recall that Z ′ denotes the center of the commutator subgroup G′ = [G, G].
It is a finite abelian group.

Lemma 3.2. Let p : UR′
2
→ R′

2 be the projection to R′
2 of the big open set

of the principal G/Z ′-sheaf in Corollary 2.7. Then, for i ≤ 2,

Rip∗Z
′ = H i(Xan;Z ′) .

Proof. Let U → R′
2 be an étale open set of R′

2, and let UU = UR′
2
×R′

2
U .

The isomorphism of the homotopy groups in Lemma 2.2 provides an isomor-
phism of the singular homology groups

H1(UU
an; Z)

∼=−→ H1(Xan × Uan; Z) .
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Now we show that

H2(UU
an; Z) −→ H2(Xan × Uan; Z)

is also an isomorphism. To check that it is injective, consider a class α in
H2(UU

an; Z) mapping to zero. This class is represented by a 2-dimensional sin-
gular cycle, i.e. a sum

∑
nifi, with integer coefficients, where fi : M2

i → UU
an

are continuous maps from a polyhedron M2
i of real dimension 2. Since it maps

to zero, there is a 3-dimensional singular chain β in Xan ×Uan, represented by
a sum

∑
mjgj with integer coefficients and gj : M3

j → Xan ×Uan are continu-
ous maps from a polyhedron M3

j of real dimension 3. We can assume that the
boundary of M3

j is mapped to the union of the images of fi. In particular, the
image of this boundary is in UU

an.
By Lemma 2.1, each map gj can be changed by a homotopy, relative to

its boundary, to a map g̃j whose image also lies in UU
an. Then

∑
mj g̃j is a

cycle in UU
an whose boundary is

∑
nifi, hence α is zero.

To check surjectivity, note that a singular cocycle in Xan × Uan can be
represented by a sum

∑
nifi where, for each i,

fi : M2
i −→ Xan × Uan

is a continuous map from M2
i , now denoting a closed manifold with real di-

mension 2 with a triangulation. By Lemma 2.1 the maps fi can be modified
by a homotopy to maps f̃i whose image lie in UU

an. These modifications do
not change the homology classes, so this proves surjectivity.

The inclusion j : UU
an ↪→ Xan × Uan induces an isomorphism

j∗ : H i(Xan × Uan;Z ′)
∼=−→ H i(UU

an;Z ′)

for i = 1 or 2. Indeed, denoting U = UU
an and M = Xan × Uan, we see that

the inclusion induces a commutative diagram

0 �� Ext1(Hi−1(M; Z), Z ′) ��

∼=
  

H i(M; Z ′) ��

j∗

  

Hom(Hi(M; Z), Z ′) ��

∼=
  

0

0 �� Ext1(Hi−1(U ; Z), Z ′) �� H i(U ; Z ′) �� Hom(Hi(U ; Z), Z ′) �� 0 ,

where the exact rows are given by the universal coefficient theorem for singular
cohomology ([Sp, Ch. 5 §5]), and then j∗ is an isomorphism.

By Theorem 3.1, étale cohomology coincides with singular cohomology,
thus we obtain

Rip∗Z
′ ∼=−→ H i(X;Z ′).
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Given a scheme Y there is an exact sequence of pointed sets [Se1], [F-M]

Ȟ1
et(Y, G) −→ Ȟ1

et(Y, G/Z ′) −→ Ȟ2
et(Y, Z ′)

where the distinguished element for each set corresponds to the trivial cocycle
(and exactness means that the inverse image of the distinguished element of
the last set is equal to the image of the first map).

This exact sequence implies its own relative version for a morphism
p : Y → S of schemes, i.e. the exact sequence of sheaves of sets, in the étale
topology of S,

R1p∗G −→ R1p∗G/Z ′ −→ R2p∗Z
′ .(3.1)

Lemma 3.3. The set of algebraic isomorphism classes of reductions to G

of an algebraic principal G/Z ′-bundle P on a scheme Y is an H1(Y an;Z ′)-
torsor, if nonempty.

Proof. Recall that this means that H1(Y an;Z ′) acts simply transitively
on this set, and hence, for each reduction (PG, ζ), there is a natural bijection
between H1(Y an;Z ′) and the set of isomorphism classes of reductions, sending
the zero element of H1(Y an;Z ′) to (PG, ζ).

Since Z ′ is finite and abelian, H1(Y an;Z ′) = Ȟ1
et(Y, Z ′) (Theorem 3.1).

The action of this group on the set of reductions is defined as follows. Let
(PG, ζ) be an analytic reduction, and α ∈ Ȟ1

et(Y, Z ′). Let {gij} be a G-
cocycle representing the isomorphism class of PG, and let {z′ij} be a Z ′-cocycle
representing α. Then {gijz

′
ij} defines a principal G-bundle P̂G, and, using ζ,

an isomorphism ζ̂ : ρ3∗(P̂G) ∼= P . The action is

(PG, ζ) · α = (P̂G, ζ̂).

It is easy to check that this is well defined on the set of isomorphism classes of
reductions, and that the action is simply transitively.

Remark 3.4. In the previous proof we have used the fact that Z ′ is in
the center of G. In general the set of reductions is bijective to a cohomology
set with twisted coefficients.

The relative version of the last lemma is the

Lemma 3.5. Let p : Y → S be a morphism of schemes and PS a principal
G/Z ′-bundle on Y . If there is a reduction (PG

S , ρ3∗PG
S

∼= PS) of PS by the
projection ρ3 : G → G/Z ′, it determines a bijection, for all étale open sets
U → S,

Γ̃(ρ3, PS)(U) = R1p∗Z
′(U)(3.2)

where Γ̃(ρ3, PS) is the sheaf of such reductions (as defined in the preliminaries).
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Proof. Lemma 3.3 gives a bijection (depending only on the choice of PG
S )

Γ(ρ3, PS)(U) = Ȟ1
et(YU , Z ′) .

Sheafifying sides, we obtain the result.

Proposition 3.6. The functor Γ̃(ρ3, P
G/Z′

R′
2

) is representable by a scheme
étale and finite over R′

2.

Proof. The strategy of the proof is as follows. First we see that the
subscheme R̂′

2 ⊂ R′
2 corresponding to principal bundles that admit a reduction

of structure group to G is a union of connected components of R′
2. Then

we show that the functor Γ̃(ρ3, P
G/Z′

R′
2

) is a principal space over R̂′
2, and the

structure group of this principal space is the finite group H1(Xan;Z ′), hence
affine, and then it follows from descent theory that the functor is representable
by a principal H1(Xan;Z ′)-bundles over R′

2 [EGA].
Recall that a space over S is just a contravariant functor (Sch /S) →

(Sets). An action of an algebraic group H on a functor F : (Sch /S) → (Sets)
is a natural transformation F × Ĥ → F (where Ĥ is the functor represented
by H × S → S) satisfying the axioms of a right action. We say it gives F the
structure of a principal H-space when, locally in the étale topology of (Sch /S),
the functor F is represented by U × H, so that the action by H becomes just
multiplication on the right.

The principal G/Z ′-bundle P
G/Z′

R′
2

→ UR′
2

(cf. 2.4) gives a section σ′ of
R1p∗G/Z ′ over R′

2, and using (3.1) we obtain a section of R2p∗Z ′. The principal
G/Z ′-bundle corresponding to a point in R′

2 can be lifted to G if and only if
this section is zero at this point. By Lemma 3.2 this sheaf is H2(Xan;Z ′), and,
being H2(Xan;Z ′) a finite group, the section is locally constant, thus vanishes
in a subscheme R̂′

2 ⊂ R′
2, which is a union of connected components of R′

2.
By the exactness of the sequence (3.1), we can cover R̂′

2 with open sets Ui

(in the étale topology) so that the restricted sections σ′
i := σ′|Ui

of R1p∗G/Z ′

over Ui lift to sections σi of R1p∗G. Refining the cover Ui if necessary, we can
assume

σi ∈ H1(UUi
, G).

This means that there are principal G-bundles PG
i → UUi

such that ρ3∗PG
i

∼=
P

G/Z′

Ui
. The action of H1(Xan;Z ′) described in the proof of Lemma 3.3 gives

an action Θ on the functor of reductions Γ̃(ρ3, P
G/Z′

R′
2

). By Lemma 3.5, after
restricting to Ui, we have an equality of functors

Γ̃(ρ3, P
G/Z′

Ui
) = R1p∗Z

′|Ui
: (Sch /Ui) −→ (Sets) .

By Lemma 3.2, R1p∗Z ′ is the sheaf of sections of R′
2 ×H1(Xan;Z ′) → R′

2, and
thus Γ̃(ρ3, P

G/Z′

Ui
) is represented by the scheme Ui × H1(Xan;Z ′), the action
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Θ becoming just multiplication on the right, i.e. the functor Γ̃(ρ3, P
G/Z′

R′
2

) is a
principal space with group H1(Xan;Z ′). Since this group is affine, it follows
by descent theory that it is represented by a principal H1(Xan;Z ′)-bundle over
R̂′

2, and the result follows.

Let R3 be the union of components of the scheme obtained in this propo-
sition, corresponding to principal G-sheaves with fixed numerical invariants τ .
The morphism R3 → R′

2 is also finite. Thus, Proposition 3.6 together with
Corollary 2.7 and Proposition 0.37, and the fact that the action of G/G′ on
R2 is trivial, allows us to conclude the following

Corollary 3.7. The scheme R3 is a universal space with group PGL(V )
for the functor F̃G.

4. Construction of a quotient

In this section we construct the projective moduli space of semistable
principal G-sheaves. We will use the following ([Ra3, Lemma 5.1])

Lemma 4.1 (Ramanathan). If f : T → S is an affine H-equivariant
morphism and p : S → Ŝ is a good quotient for the action of a reductive
algebraic group H, then there is a good quotient q : T → T̂ by H, and the
induced morphism f̂ : T̂ → Ŝ is affine.

Furthermore, if f is finite, then f̂ is finite. When f is finite and p : S → Ŝ

is a geometric quotient, then q : T → T̂ is also a geometric quotient.

Theorem 4.2. There is a projective scheme Mτ
G corepresenting the func-

tor F̃G of families of semistable principal G-sheaves with numerical invari-
ants τ . There is an open subscheme M

τ,s
G whose closed points are in bijection

with isomorphism classes of stable principal G-sheaves.

Proof. We use the notation of Proposition 1.6. Using geometric invariant
theory, it is proved in [G-S1] that there is a good quotient for the action of
SL(V ) on the scheme of based δ-semistable tensors, so this is also true for the
subscheme R of those which are Lie tensors

pR : R −→ R// SL(V ) = R// SL(V ),

where R is the closure of R in Z defined in Proposition 1.6, and thus R// SL(V )
is a projective scheme, and that it is a geometric quotient on the open sub-
scheme Rs of based δ-semistable Lie tensors. By Proposition 1.7, the inclusion
of based semistable g′-sheaves R1 ↪→ R is proper, hence the restriction of pR

pR1
: R1 −→ R1/ SL(V ) = M1,
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is also a good quotient onto a projective scheme, and it is a geometric quotient
on the open set Rs

1 corresponding to based stable g′-sheaves. Since the center
of SL(V ) acts trivially on R1, this is also a quotient by PGL(V ).

For the scheme R3 of based semistable principal G-sheaves, i.e. pairs (q,P)
where P = (P, E, ψ) is a semistable principal G-sheaf and q : V ⊗OX(−m) � E

is a surjection inducing an isomorphism V ∼= H0(E(m)), the composition

f : R3 −→ R′
2 = Jd × R2 −→ Jd × R1

is a finite morphism, where Jd = Jd1(X) × · · · × Jdq(X). Let PGL(V ) act
trivially on Jd. Then

p : Jd × R1 −→ Jd × R1/ SL(V )

is a good quotient by PGL(V ), whose restriction to Jd × Rs
1 is a geometric

quotient. Therefore, by Lemma 4.1, there exists a good quotient by PGL(V )

q : R3 −→ Mτ
G

which is a geometric quotient on the subscheme Rs
3 of based stable principal

G-sheaves. Furthermore, the induced morphism f : Mτ
G → Jd × M1 is finite;

hence Mτ
G is projective.

Since the scheme R3 is a universal space with group PGL(V ) for the func-
tor F̃G (cf. Corollary 3.7) the projective scheme Mτ

G corepresents the functor
F̃G (by Remark 0.36).

The last statement follows also from Ramanathan’s lemma, because f is
finite.

Two semistable principal sheaves are called GIT-equivalent if they cor-
respond to the same point in the moduli space. Now we will show that this
amounts to the notion of S-equivalence given in the introduction (Definition
0.7).

Let P = (P, E, ψ) be a semistable principal sheaf. If it is not stable, let
E•, or Eλ• , be an admissible filtration, i.e. a balanced algebra filtration with∑

i∈Z

(
rPEi

− riPE

)
=

t∑
i=1

(λi+1 − λi)
(
rPEλi

− rλi
PE

)
= 0 .(4.1)

Since it is saturated, the open set U ′ ⊂ X where it is a vector bundle filtration
is big. By Lemma 5.4 this amounts to a reduction PQ of P |U ′ to a parabolic
subgroup Q ⊂ G together with an integer dominant character χ of the Lie
algebra of Q. Let Q � L be its Levi quotient, and L ↪→ Q ⊂ G a splitting. In
the introduction we called the principal G-sheaf(

PQ(Q � L ↪→ G),⊕Ei, ψ′)
the admissible deformation of P associated to E•, whose associated g′-sheaf
structure on ⊕Ei (cf. Lemma 0.25 and Corollary 0.26) is the direct sum ⊕[, ]i,j :
Ei ⊗ Ej → Ei+j ∨∨ of the obvious homomorphisms.
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Proposition 4.3. Any admissible deformation of a semistable principal
G-sheaf P is semistable. After a finite number of admissible deformations, a
principal G-sheaf is obtained such that any further admissible deformation is
isomorphic to itself. This principal G-sheaf depends only on P, and we denote
it gradP (and gradP := P if P is stable).

Two principal sheaves P and P ′ are GIT-equivalent if and only if they are
S-equivalent in the sense that gradP ∼= gradP ′.

Proof. Let z ∈ R3 and let SL(V ) · z be the closure of its orbit. It is a
union of orbits, and by definition of good quotient, it has a unique closed orbit
B3(z), which is characterized as the unique orbit in SL(V ) · z with minimal
dimension. Thus, two points z and z′ in R3 are GIT-equivalent (i.e. mapped
to the same point in the moduli space) if and only if B3(z) = B3(z′).

Recall that there is a finite SL(V ) equivariant morphism

R3
f−→ Jd × R1 ⊂ Jd × R1

where R1 is the closure of R1 in the projective variety R defined in Proposi-
tion 1.6.

Claim. If SL(V ) · z is not closed, then there exists a one-parameter
subgroup λ of SL(V ) with µ(f(z), λ) = 0 such that the limit z0 = limt→0 λ(t)·z
is in SL(V ) · z \ SL(V ) · z.

To prove the claim, note first that Jd × R1 is the open subscheme of
semistable points of the projective variety Jd × R1. Since z is not in B3(z),
the point f(z) is not in B(f(z)) (the closed orbit in the closure of SL(V ) ·
f(z) ⊂ Jd × R1), because the morphism f sends orbits into orbits, and
dim(f(SL(V ) · z)) = dim(SL(V ) · f(z)) since f is equivariant and finite. By
[Si, Lemma 1.25], since B(f(z)) is the closed orbit in the closure of the or-
bit of f(z), there is a one parameter subgroup λ of SL(V ) such that f(z) :=
limt→0 λ(t)·f(z) ∈ B(f(z)). Since f(z) is semistable, µ(f(z), λ) ≤ 0. If this in-
equality were strict, then µ(f(z), λ−1) > 0, which is impossible because f(z) is
a semistable point. Therefore µ(f(z), λ) = 0. Since f is proper, limt→0 λ(t) · z
exists, and it belongs to B(z) ⊂ SL(V ) · z \ SL(V ) · z, thus proving our claim.

For any one-parameter subgroup with µ(f(z), λ) = 0, limt→0 λ(t) · f(z)
exists and is semistable [G-S, Prop. 2.14], and since f is proper, limt→0 λ(t) · z
also exists in R3.

Claim. There is a one-to-one correspondence between one-parameter
subgroups of SL(V ) with µ(f(z), λ) = 0, and admissible (PEλ• = 0) filtrations
Eλ• of E together with a splitting of the induced filtration H0(Eλ•(m)) in V .
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Indeed, we established in [G-S1] a one-to-one correspondence between one-
parameter subgroups of SL(V ) with µ(f(z), λ) = 0 and balanced filtrations Eλ•

such that
PEλ• + µtens(Eλ• , φ)δ = 0

for the δ-semistable tensor (E, φ) corresponding to the point f(z), together
with a splitting of the induced filtration H0(Eλ•(m)) in V (the δ-semistability
of this tensor implies that the filtration Eλ• is saturated, since the left-hand
side of the former equality becomes bigger when replaced by the saturation).
The leading coefficient is

t∑
i=1

(λi+1 − λi)(deg Eλi
rkE − rkEλi

deg E) + µtens(Eλ• , φ)τ = 0 .(4.2)

By Lemma 0.28, deg E = 0. Lemma 1.4(2) implies deg Eλi
≤ 0, and recall

τ > 0. Therefore Lemmas 1.1 and 1.3(1) imply µtens(Eλ• , φ) = µ(Eλ• , ϕ) ≤ 0.
Since we have equality in (4.2), it must be µ(Eλ• , ϕ) = 0. Hence, by Lemma
1.3(2), the filtration Eλ• is an algebra filtration, thus proving the claim.

Now, let P = (P, E, ψ) be a semistable principal G-sheaf. Choose a quo-
tient q : V ⊗ OX(−m) → E, and let z ∈ R3 be the point corresponding to
the based principal G-sheaf (q,P). Let Eλ• be an admissible filtration, and
choose a splitting of the filtration H0(Eλ•(m)). Let λ : C∗ → SL(V ) be the
one-parameter subgroup thus associated by the claim. The action of λ on the
point z defines a morphism C∗ → R3 that extends to

h : T = C −→ R3 ,

with h(t) = λ(t) · z for t �= 0 and h(0) = limt→0 λ(t) · z = z0. In the rest
of this section we shall show that the point z0 corresponds to the admissible
deformation associated to Eλ• . Then it will follow that the limit z0 fails to be
in the orbit of z if and only if the associated admissible deformation fails to be
isomorphic to P.

If z0 is not in the orbit of z, since SL(V ) · z0 ⊂ SL(V ) · z \ SL(V ) · z, it is
dim SL(V )·z0 < dim SL(V )·z, so if we iterate this process (with z0 and another
one-parameter subgroup as before) we get a sequence of points z0, z′0, z′′0 ,...
that must stop giving a point in B(z). Hence, the corresponding principal
G-sheaf gradP only depends –up to isomorphism– on P, because there is only
one closed orbit in SL(V ) · z.

To finish the proof of the proposition it only remains to show that the
point z0 corresponds to the associated admissible deformation. This will be
done constructing a based family (qT ,PT ) = (qT , PT , ET , ψT ) such that (qt,Pt)
corresponds to the point h(t) ∈ R3 when t �= 0 and P0 is the associated
admissible deformation. Since R3 is separated, it will follow that (q0,P0) =
(q0, P0, E0, ψ0) corresponds to z0.
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First we define a based family (qT , ET , ϕT ) of g′-sheaves. For any n ∈ Z,
define En = Eλi(n) , where, recall, i(n) is the maximum index with λi(n) ≤ n.
Let −N be a negative integer such that En = 0 for n ≤ −N . Using the
quotient q : V ⊗ OX(m) → E, we can identify V with H0(E(m)), so we can
define a filtration Vn = H0(En(m)) of V . The chosen splitting of the filtration
H0(Eλ•(m)) gives a splitting V = ⊕V n. Borrowing the formalism from [H-L,
§4.4], we define

ET =
⊕
n∈Z

En ⊗ tn ⊂ E ⊗C t−NC[t] ⊂ E ⊗C C[t, t−1] ,

qT : V ⊗OX(−m) ⊗ C[t]
γ−→

⊕
n∈Z Vn ⊗OX(−m) ⊗ tn −→ ET

vn ⊗ 1 �−→ vn ⊗ tn �−→ q(vn) ⊗ tn ,

ϕT : (
⊕
n∈Z

En ⊗ tn) ⊗ (
⊕
n∈Z

En ⊗ tn)−→ (
⊕
n∈Z

En ⊗ tn)∨∨

wn ⊗ tn ⊗ wn′ ⊗ tn
′ �−→ [wn, wn′ ] ⊗ tn+n′

,

where vn ∈ V n, and wn, wn′ are local sections of En and En′ . Then (qt, Et, ϕt)
corresponds, as in [H-L, §4.4], to f(h(t)) (in particular, if t �= 0, then (Et, ϕt) is
canonically isomorphic to (E, ϕ)), and (E0, ϕ0) is the admissible deformation
associated to Eλ• .

Now we will define the family of principal G-bundles PT . The balanced
algebra filtration Eλ• provides, by Lemma 5.4, a reduction PQ of P |U ′ to a
parabolic subgroup Q on the open set U ′ where Eλ• is a bundle filtration,
together with an integer dominant character χ of q = Lie(Q). Let Q = LU

be a Levi decomposition of the parabolic subgroup Q, and denote l = Lie(L),
u = Lie(U). Let h ⊂ l be a Cartan algebra. Let v ∈ zl ⊂ l be the element
associated to χ by Lemma 5.3, We can associate to v, without loss of generality,
a one-parameter subgroup

Ψ : C∗ → ZL

of ZL, the center of the Levi factor L, such that dΨ(1) = v. Indeed, on the
one hand, an integer multiple av provides such a subgroup (Lemma 5.5), and,
on the other hand, if we replace the indexes λi by aλi, the associated one-
parameter subgroup λ(t) is replaced by λ(ta), and h(t) is replaced by h(ta),
and v by av, but this does not change the limit z0.

The adjoint action of Ψ(t) on any x ∈ u has zero limit as t = eτ ∈ C∗ goes
to zero, since, using the zl-root decomposition x =

∑
α∈R+(zl)

xα, this action is

Ψ(t) · x =
∑

Ψ(t) · xα =
∑

eτv · xα =
∑

eτα(v)xα =
∑

tα(v)xα

and the limit is zero because α ∈ R+(zl) means α(v) > 0. Therefore, since the
exponential map is G-equivariant with respect to the adjoint action, for any
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element u = ex ∈ U , it is

lim
t→0

Ψ(t) · ex = lim
t→0

eΨ(t)·x = 1 .

Thus, since Ψ(t) lies in the center ZL of L, the adjoint action Ψ(t) · lu =
Ψ(t)−1luΨ(t) on any lu ∈ LU = Q has limit

lim
t→0

Ψ(t) · lu = l lim
t→0

Ψ(t) · u = l .(4.3)

Let {gαβ : U ′
αβ → Q ⊂ G} be a 1-cocycle on U ′ describing PQ|U ′ . Denote by

PT the principal G-bundle on U ′ × T described by

{Ψ(t)−1gαβΨ(t) : U ′
αβ × T → Q ⊂ G} .

Note that Ψ is defined only on values t ∈ C∗, but the previous observation
(4.3) shows that this cocycle can be extended to t = 0, and for this special
value it describes the principal G-bundle PQ(Q � L ↪→ G), thus admitting
a reduction of structure group to L. Remark also that, for t �= 0, there is
a canonical isomorphism between the principal G-bundle Pt on U ′ and P |U ′ ,
hence PT extends canonically to a principal G-bundle on UET

⊂ X × T which
we still denote PT .

It remains to construct an isomorphism of vector bundles ψT : PT (g′) →
ET |U ′×T . Let W = O⊕r

X , and let Wn ⊂ W be the trivial subbundle defined as
the direct sum of the first rkEn summands, and let Wn ⊂ Wn be the direct
sum of the summands in Wn which are not contained in Wn−1. Take a covering
{U ′

α} of U ′ with trivializations ψα : W|U ′
α
→ E|U ′

α
preserving the filtration on

E, i.e. such that ψα restricts to an isomorphism between Wn|U ′
α

and En|U ′
α
.

Consider the g′-sheaf isomorphism

γ : W|U ′
α
⊗ C[t]−→

⊕
n∈Z

Wn|U ′
α
⊗ tn

vn ⊗ 1 �−→ vn ⊗ tn

where vn is a local section of Wn. The transition functions hαβ : U ′
αβ →

Aut(g′) ⊂ GL(g′) of E|U ′ can be chosen to be block-upper triangular matrices

hαβ =


Mλ1λ1 Mλ1λ2 . . . Mλ1λt+1

0 Mλ2λ2 . . . Mλ2λt+1

...
...

. . .
...

0 0 . . . Mλt+1λt+1


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where Mλiλj
is a matrix of dimension rkEλi × rkEλj . The commutativity of

the diagram

W|U ′
αβ

⊗ C[t] γ

∼=
��

γ−1(t)hαβ γ(t)

  

⊕
n∈Z Wn|U ′

αβ
⊗ tn  � ��

ψ⊗id∼=
  

W|U ′
αβ

⊗ t−N C[t]

hαβ⊗id∼=

  

ψ⊗id

∼=

���������������

⊕
n∈Z E |U ′

αβ
⊗ tn  � �� E|U ′

αβ
⊗ t−N C[t]

W|U ′
αβ

⊗ C[t] γ

∼=
��
⊕

n∈Z Wn|U ′
αβ

⊗ tn  � ��

ψ⊗id∼=

W|U ′
αβ

⊗ t−N C[t]

ψ⊗id

∼=

���������������

n

shows that the transition functions of ET |U ′×T are γ−1(t)hαβγ(t) : U ′
αβ ×T →

Aut(g′) ⊂ GL(g′), i.e.

γ−1(t)hαβγ(t) =


Mλ1λ1 Mλ1λ2t

λ2−λ1 . . . Mλ1λt+1t
λt+1−λ1

0 Mλ2λ2 . . . Mλ2λt+1t
λt+1−λ2

...
. . .

...
0 0 . . . Mλt+1λt+1


This is well defined for t = 0 since all λi+1 − λi > 0:

lim
t→0

γ−1(t)hαβγ(t) = diag(Mλ1λ1 , Mλ2λ2 , . . . , Mλt+1λt+1) .(4.4)

Since the adjoint action of Ψ(t) on hαβ is precisely Ψ(t) ·hαβ = γ−1(t)hαβγ(t),
we obtain an isomorphism ψT : PT (g′)|U ′×T → ET |U ′×T , hence a family PT =
(PT , ET , ψT ). Note that, for t �= 0, using the canonical isomorphisms Et

∼=
E and Pt

∼= P |U ′ , the isomorphism ψt becomes ψ, hence ψT extends to an
isomorphism PT (g′) → ET |UET

, which we still denote ψT . Finally, it is easy to
check that (qt,Pt) corresponds to h(t) and P0

∼= gradP by (4.4).

5. Slope (semi)stability as Ramanathan (semi)stability

This section is kind of an appendix where we prove some results on Lie
algebras which have already been used, and show that our slope notion of
(semi)stability is just Ramanathan’s (semi)stability.

In [Ra2], Ramanathan defines a rational principal bundle on X as a princi-
pal bundle P over a big open set U ⊂ X, and gives a notion of (semi)stability,
which is a direct generalization of his notion of (semi)stability in [Ra3] for
dimX = 1.

Definition 5.1 (Ramanathan). A rational principal G bundle P →U ⊂ X

is (semi)stable if for any reduction PQ to a parabolic subgroup Q over a big
open set U ′ ⊂ U , and for any dominant character χ of Q, it is

deg PQ(χ) (≤) 0.
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Let P = (P, E, ψ) be a principal G-sheaf and let U be the open set where
E is locally free. We will show in this section that P is slope-(semi)stable if
and only if the rational bundle P is (semi)stable in the sense of Ramanathan.
In particular, we will obtain that, if X is a curve, our notion of (semi)stability
for principal bundles coincides with that of Ramanathan.

Recall (from [J], for instance) the well-known notions of filtration and
graduation of a Lie algebra g. An algebra filtration g• is a sequence

· · · ⊂ gi−1 ⊂ gi ⊂ gi+1 . . .

starting by 0 and ending by g, such that

[gi, gj ] ⊂ gi+j for all i, j ∈ Z ,

or, deleting (from 0 onward) all nonstrict inclusions, it is gλ•

0 � gλ1 � gλ2 � . . . � gλt+1 = g, (λ1 < · · · < λt+1) ,

with
[gλi

, gλj
] ⊂ gλk−1 if λi + λj < λk.

A graded algebra structure g• is a decomposition

g =
⊕
i∈Z

gi with [gi, gj ] ⊂ gi+j for all i, j ∈ Z

or, deleting all zero summands,

g =
t+1⊕
i=1

gλi (λ1 < · · · < λt+1) ,

with

[gλi , gλj ] ⊂
{

gλk if there is k with λk = λi + λj

0 otherwise .

To a graded algebra g• it is associated a filtered algebra g• with

gi =
⊕
j≤i

gj

and reciprocally, to a filtered algebra g• it is associated a graded algebra

(gr g)i = gi/gi−1

with Lie algebra structure

[v, w] = [v, w] mod gi+j−1

for v ∈ gi \ gi−1 and w ∈ gj \ gj−1.
A graded algebra g• is called balanced if

∑
idim gi = 0. In terms of gλ• ,

this is
∑

λi dim gλi = 0. A filtered algebra is called balanced if the associated
graded algebra is so. We start this appendix proving the following:
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Lemma 5.2. Let g′• be a balanced algebra filtration of a semisimple Lie
algebra g′. There is a Lie algebra isomorphism between g′ and the associated
Lie algebra gr (g′•).

Proof. Let W be the vector space underlying the Lie algebra g′. Choose
a basis el of W adapted to the filtration g′λ• . Associate the one-parameter
subgroup λ(t) of GL(W ) expressed as diag(tλ•) in this basis. Since the filtration
is balanced, this is in fact a one-parameter subgroup of SL(W ). The Lie
algebra structure of W is a point v =

∑
an

lmel ⊗ em ⊗ en in the linear space
W∨ ⊗ W∨ ⊗ W . The action of the one-parameter subgroup is

an
lm �−→ tλi(l)+λi(m)−λi(n)an

lm,

where i(l) is the minimum integer for which el ∈ g′λi(l)
. The point v ∈ P(W∨⊗

W∨ ⊗ W ) is GIT-semistable with respect to the induced action of SL(W ) on
this projective space and on its polarization line bundle OP(1) (by Lemma 1.2),
hence the Hilbert-Mumford criterion implies

µ := min
{
λi(l) + λi(m) − λi(n) : an

lm �= 0
}
≤ 0 .

Furthermore, µ = 0 because λ• is an algebra filtration. Indeed, if µ < 0 then
for some triple (λi, λj , λk) with λi + λj < λk it would be [g′λi

, g′λj
] ⊂/ g′λk−1

,
contradicting the fact that g′λ• is algebra filtration.

Since µ = 0, the following limit exists and is nonzero

v0 := lim
t→0

λ(t) · v ∈ W∨ ⊗ W∨ ⊗ W .

Since the subset of points of W∨ ⊗ W∨ ⊗ W − {0} giving W a Lie algebra
structure is closed, the point v0 itself provides W with a Lie algebra structure.
By construction, the coordinates bn

lm of (W, v0) are

bn
lm =

{
an

lm , λi(l) + λi(m) − λi(n) = 0
0 , λi(l) + λi(m) − λi(n) �= 0 .

In other words, (W, v0) ∼= gr (g′λ•). Let k(t) : W ⊗W → C be the Killing form
of λ(t) · v. Since λ(t) ∈ SL(W ),

det(k(t)) = det(λ(t)tk(1)λ(t)) = det(k(1)) �= 0 for all t ∈ C∗,

thus also for t = 0. Since this determinant is nonzero, (W, v0) is semisimple.
By the rigidity of semisimple Lie algebras, (W, v0) ∼= (W, v) = g′.

Let a be a toral algebra a ⊂ g, i.e. an algebra consisting of semisimple
elements, thus abelian [Hum, §8.1], not necessarily maximal. Following [B-T,
§3], we can define the set R(a) ⊂ a∨ of a-roots in the following way. For α ∈ a∨,
write

gα = {x ∈ g : [s, x] = α(s)x, for all s ∈ a} .(5.1)
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Then R(a) = {α ∈ a∨ \ 0 : gα �= 0} For a maximal toral algebra h (i.e. Cartan
algebra) containing a, the a-roots can be thought of as classes of h-roots by
considering two h-roots equivalent when their restrictions to a coincide. Let
R(h) = R+(h) ∪ R−(h) be a decomposition into positive and negative h-roots.
If β ∼ β′ � 0, then β is positive if and only if β′ is positive, hence there is
an induced decomposition R(a) = R+(a) ∪ R−(a). In particular, this gives
a partial ordering among a-roots: α < α′ when α′ − α is a sum of positive
a-roots.

Lemma 5.3. Let q be a parabolic subalgebra of a semisimple Lie algebra
g′ and χ : q → C a character of q. Let q = l ⊕ u be a Levi decomposition, and
zl the center of the Levi subalgebra l. Then there is an element v ∈ zl such that

χ(·) = (v, ·) : q −→ C

where (·, ·) is the Killing form of g′.

Proof. Let l′ = [l, l] be the commutator subalgebra. The decomposition
l = l′⊕ zl is orthogonal with respect to the Killing form κ = (·, ·) on g′. Indeed,
since κ is g′-invariant, if l1, l2 ∈ l and z ∈ zl, then

([l1, l2], z) = (l1, [l2, z]) = 0.

Let h be a Cartan subalgebra of g′ containing zl and contained in l. The given
decomposition of l induces a decomposition h = (l′ ∩ h) ⊕ zl which is also κ-
orthogonal. Let v ∈ h be the element in h, κ-dual to χ|h, i.e. χ(·) and (v, ·)
coincide on h. We must show that both coincide also on q. Since both of them
are characters of q, it is enough to show that they agree on the center zq of
q, but this holds because zq ⊂ zl ⊂ h. Finally, the restriction χ|l′∩h is zero
because l′ is semisimple, hence v ∈ (l′ ∩ h)⊥ = zl.

For a parabolic subalgebra q and splitting q = l ⊕ u, let R(zl) = R+(zl) ∪
R−(zl) be the decomposition such that g′α ⊂ q when α ∈ R+(zl). Recall that
a character χ of q is called dominant if 2(χ, α)/(α, α) is a positive integer for
all positive a-roots α. We call it integer if (χ, α) is integer for all a-roots α.
Analogously, if Ξ is a character of a parabolic subgroup Q, then we say that it
is dominant (respectively, integer) if the associated character χ of q = Lie(q)
is dominant (respectively, integer).

Lemma 5.4. Let G′ be a semisimple group. Let P be a principal G′-bundle
over a scheme Y (not necessarily proper). There is a canonical bijection be-
tween the following sets:

(1) Isomorphism classes of reductions to a parabolic subgroup Q on a big open
set U ⊂ Y , together with an integer dominant character χ of q = Lie(Q).
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(2) Isomorphism classes of balanced algebra filtrations

0 � Eλ1 � Eλ2 � . . . � Eλt
� Eλt+1 = E(5.2)

of the bundle of algebras E = P (g′) associated to P by the adjoint repre-
sentation of G′.

Let q = l ⊕ u be a Levi decomposition, and v ∈ zl the element associated by
Lemma 5.3 to the character χ in (1). The set of integers {λi}i=1,...,t+1 in (2)
is then just the set {α(v)}α∈R(a)∪{0}

Proof. We start with a filtration (5.2). Take a point x of Y where the
filtration is a bundle filtration. Fix an isomorphism between the fiber of E

at this point and g′. We obtain a balanced algebra filtration g′λ• of g′. By
Lemma 5.2, the associated graded Lie algebra gr(gλ•) is isomorphic to g′, and
using this isomorphism we obtain a decomposition, giving g′ the structure of
a graded Lie algebra,

g′ =
t+1⊕
i=1

g′λi ,(5.3)

such that

g′λi
=

i⊕
j=1

g′λj .(5.4)

Define a linear endomorphism of g′ (a key idea we thank to J. M. Marco)

f :
t+1⊕
i=1

g′λi −→
t+1⊕
i=1

g′λi

v ∈ g′λi �−→−λiv .

If vi ∈ g′λi and vj ∈ g′λj , then [vi, vj ] ∈ g′λi+λj ; thus

f([vi, vj ]) = [f(vi), vj ] + [vi, f(vj)] ,

i.e. f is a derivation. Thus, since g′ is semisimple, a semisimple element v ∈ g′

exists such that f(·) = [v, ·]. Let zv be the center of the centralizer cv of v. It
is a toral algebra. Consider the zv-root decomposition (see (5.1) or [B-T, §3])

g′ =
⊕

α∈R(zv)∪{0}
g′α .(5.5)

Note that g′α=0 is just the centralizer cv of v. This decomposition is a refine-
ment of (5.3):

g′λi =
⊕

α(v)=−λi

g′α .(5.6)
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Claim. The direct summand g′α=0 in decomposition (5.5) is equal to the
direct summand g′λi=0 in decomposition (5.3).

To prove this claim, let a zv-root α be such that α(v) = 0. For x ∈ g′α it
is [v, x] = α(v)x = 0, i.e. x is in the centralizer cv of v. Thus, by definition of
zv, [w, x] = 0 for all w ∈ zv, proving the claim.

As a consequence, for all zv-roots α, it is α(v) �= 0, and thus α(v) > 0
gives a set of positive zv-roots R+(zv). Using (5.4), (5.6) and the claim, we
obtain for g′0 in (5.4)

g′0 =
⊕

β∈R+(zv)∪{0}
g′β;

hence g′0 ⊂ g′ is a parabolic subalgebra ([B-T, §4]). Let U be the big open set
where Eλ• is a bundle filtration. The inclusion E0|U ⊂ E|U gives a reduction of
structure group PQ of the principal G′-bundle P |U to the parabolic subgroup
Q ⊂ G′ corresponding to g′0 ⊂ g′, because the stabilizer (under the adjoint
action of a connected group) of a parabolic subalgebra is the corresponding
parabolic subgroup.

Finally, the character χ(·) = (v, ·) of the parabolic g′0 is dominant, because
(χ, α) = α(v) is a positive integer for all positive zv-roots.

Reciprocally, assume we are given a reduction PQ of P to a parabolic
subgroup Q on a big open set U ⊂ Y and an integer dominant character χ of
q = Lie(Q). Choose a decomposition q = l ⊕ u into a Levi and a unipotent
subalgebras, and let zl be the center of l. Let v ∈ zl be the element associated
to χ by Lemma 5.3. Consider the zl-root decomposition of g′ (see (5.1) or
[B-T, §3])

g′ =
⊕

α∈R(zl)∪{0}
g′α .

By hypothesis α(v) = (χ, α) is an integer for all zl-roots α. Define a filtration
g′λ• of g′ by

g′λi
=

⊕
−α(v)≤λi

g′α .(5.7)

This is a balanced algebra filtration of g′, because dim g′α = dim g′−α and
[g′α, g′β] ⊂ g′α+β. Clearly q ⊂ g′0, and in fact q = g′0 because the character χ

of q is dominant. It is also clear that l ⊂ cv, the centralizer of v, and, since χ

is dominant, it is l = cv, hence the center zl of l is the center zv of cv.
For adjoint action of Q on g′ it is

Q · g′α ⊂
⊕
β≥α

g′β .

Thus the filtration (5.7) is preserved by this action: Q ·g′λi
⊂ g′λi

. Since P has
a reduction to Q on U ⊂ Y , this produces a vector bundle filtration of E|U ,
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and it extends uniquely to a saturated filtration on Y , each vector bundle on
U extending to the intersection, inside E∨∨, of the torsion free sheaf E with
its extension to a reflexive sheaf on the whole of X (cf. [Ha, II, Ex. 5.15]).

It is easy to check that the two constructions are inverse to each other.
By construction, {λi}i=1,...,t+1 = {α(v)}α∈R(zl)∪{0}.

Lemma 5.5. With the same hypothesis (and notation) as in Lemma 5.4,
there are positive integers a and b such that av corresponds to a one-parameter
subgroup of ZL (i.e. its differential is av) and bχ corresponds to a character of
the group Q.

Proof. Let h be a Cartan algebra of g′ with zl ⊂ h ⊂ l and let H be the
maximal torus of the connected group G corresponding to h. Let R(h) be the
set of roots with respect to h. The element v ∈ zl ⊂ h is in the coweight lattice
Z(W∨), because any h-root gives an integer when evaluated on v. Indeed, the
zl-roots α : zl → C are obtained by restricting the h-roots β : h → C to zl, but
by hypothesis, α(v) ∈ Z for all α ∈ R(zl). Let X∨(H) be the lattice of one-
parameter subgroups of H. Sending an element of X∨(H) to its differential
gives an embedding X∨(H) ↪→ Z(W∨) with finite quotient, hence there is an
integer a such that av corresponds to a one-parameter subgroup of H which
can be written as

Ψ : C∗−→ZL ⊂ H

t = eτ �−→ eτav ,

where ZL is the center of the Lie subgroup L corresponding to l ⊂ g′.
On the other hand, the character χ of the parabolic q is dominant, and

in particular belongs to the weight lattice Z(W ). Let X(H) be the lattice of
characters of H. Sending an element of X(H) to its differential defines a lattice
embedding X(H) ↪→ Z(W ) with finite quotient, hence there is an integer b such
that bχ corresponds to a character Ξ ∈ X(H), i.e. the differential of Ξ is bχ.

Let l′ = [l, l] be the commutator subalgebra, and L′ = [L, L] the commu-
tator subgroup. Recall that a character of q factors as q � l � l/l′ � C;
hence χ vanishes on l′. Thus the character Ξ of H vanishes on H ∩ L′, so Ξ
gives a group homomorphism L/L′ ∼= H/(H ∩ L′) → C∗. Composing with the
quotient Q � L � L/L′ we obtain a character of Q whose differential is χ.

Lemma 5.6. Let P be a principal G′-bundle over a big open set U ⊂ X

with a reduction PQ to a parabolic subgroup Q ⊂ G′ on a big open set U ′ ⊂ U ,
Ξ be an integer dominant character of Q, and let

0 � Eλ1 � Eλ2 � . . . � Eλt
� Eλt+1 = E = P (g′)(5.8)
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be the balanced algebra filtration associated to it by Lemma 5.4. Then
t+1∑
i=1

(λi+1 − λi) deg Eλi
= deg PQ(Ξ)(5.9)

where PQ(Ξ) is the line bundle associated to PQ by the character Ξ.

Proof. Let L ⊂ Q be a Levi factor of Q, and ZL the center of L. For
zl = Lie(ZL) consider the zl-root decomposition of g′ (cf. (5.1))

g′ =
⊕

α∈R(zl)∪{0}
g′α.

Let v ∈ zl be the element associated to χ by Lemma 5.3. Define an order <v

in the set R(zl) ∪ {0} by declaring α <v α′ if (α − α′)(v) < 0. In general, <v

is not a total order, because it may happen that (α′ −α)(v) = 0 even if α and
α′ are different. Choose a refinement of this to get a total order ≺. Number
all the roots (including α = 0) by α1 � α2 � · · · � αl+1 in descending order,
and define a filtration g′•

0 � g′α1
� g′α2

� . . . � g′αl
� g′αl+1

= g′ , with g′αi
=

i⊕
j=1

g′αj .(5.10)

For the adjoint action of Q on g′ it is

Q · g′α ⊂
⊕
β≥α

g′β ⊂
⊕
β�α

g′β .

This has two consequences: on the one hand, there is an induced action of Q

on
(gr g′)αi := g′αi

/g′αi−1
,

and, on the other hand, PQ produces a vector bundle filtration of E|U ′ , and
this extends to a saturated filtration on U

0 � Eα1 � Eα2 � . . . � Eαl
� Eαl+1 = E .(5.11)

Note that, although as vector spaces both g′α and (gr g′)αi are isomorphic,
they are not isomorphic as Q-modules: indeed, while Q · (gr g′)αi ⊂ (gr g′)αi ,
in general we only have Q · g′α ⊂

⊕
β≥α g′β.

The filtration (5.11) is a refinement of (5.8), with

Eλi
= Eα, α = max

≺

{
β ∈ R(zl) ∪ {0} : −(χ, α) = −α(v) ≤ λi

}
.(5.12)

Furthermore, Eαi = Eαi
/Eαi−1 is isomorphic to the vector bundle associated

to PQ using the action of Q on (gr g′)α. Since this filtration is a refinement
of (5.8), it is

deg(Eλi) =
∑

α(v)=−λi

deg(Eα),(5.13)

where Eλi = Eλi
/Eλi−1 .
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For each zl-root α the adjoint action of Q on (gr g′)α gives a character

φα : Q
ad−→ GL

(
(gr g′)α

) det−→ C∗ .

Every character of a parabolic subgroup factors through its Levi quotient L,
and two characters are equal if they coincide when restricted to its center ZL.
We have a commutative diagram

Q
ad ��

����

GL
(
(gr g′)α

) det �� C∗

L
ad �� GL

(
(gr g′)α

) det �� C∗

ZL
ad ����

��

GL
(
(gr g′)α

) det �� C∗

It follows that
φα = (dim g′α)α,

where we denote by (dim g′α)α the character of Q such that, after restricting
to a character ZL → C∗, the induced Lie algebra homomorphism zl → C is
(dim g′α)α. Hence,

detEα ∼= PQ
(
(dim g′α)α

)
.(5.14)

Using equation (5.13), the left-hand side of (5.9) is equal to the degree of
the line bundle

t+1⊗
i=1

(detEλi)−λi =
⊗

α∈R(zl)∪{0}
(detEα)α(v) .

Using (5.14), this line bundle is equal to

PQ
( ∑
α∈R(zl)∪{0}

α(v)(dim g′α)α
)
.(5.15)

Claim. ∑
α∈R(zl)∪{0}

α(v)(dim g′α)α = χ .

Indeed, if w ∈ zl, then

χ(w) = (v, w) = tr([v, .] ◦ [w, .]) =
∑

α∈R(zl)∪{0}
(dim g′α)α(v)α(w) ,

and the claim follows.
Since χ = Ξ, it follows that the line bundle (5.15) is isomorphic to PQ(Ξ),

and the lemma is proved.
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Corollary 5.7. A principal G-sheaf P = (P, E, ψ) is slope-(semi)stable
if and only if the associated rational principal G-bundle P → U ⊂ X is
(semi)stable in the sense of Ramanathan.

Proof. Without loss of generality, we can assume that G is semisimple.
Assume that P is slope-(semi)stable. Consider a reduction to a parabolic
subgroup Q of P |U ′ → U ′ ⊂ U , where U ′ is a big open set, and consider a
dominant character Ξ of Q. This gives a dominant character χ of q = Lie(Q).
Let q = l ⊕ z be a Levi decomposition and zl the center of l. A positive
integer multiple χ̃ = cχ has the property that (χ̃, α) is integer for all zl-roots
α. Consider the balanced algebra filtration ẼU ′

λ•
associated to χ̃ by Lemma 5.4.

This filtration of E|U ′ can be extended uniquely to a saturated filtration
Ẽλ• of E on X. By Lemma 5.6, and using the slope-(semi)stability of P,

deg PQ(Ξ) =
t+1∑
i=1

λi+1 − λi

c
deg Eλi

(≤) 0.

This means that P → U ⊂ X is Ramanathan (semi)stable.
Conversely, assume that P → U ⊂ X is Ramanathan (semi)stable. Con-

sider a balanced algebra filtration of E. Let U ′ ⊂ U ⊂ X be the big open set
where this is a bundle filtration. Lemma 5.4 produces a reduction PQ on U ′

of P to a parabolic subgroup and a dominant character χ of q = Lie(Q). By
Lemma 5.5, there is a positive integer b such that bχ corresponds to a character
Ξ̃ of Q. Then, by Lemma 5.6 and because of the Ramanathan (semi)stability
of P , it is

t+1∑
i=1

(λi+1 − λi) deg Eλi
=

1
b

deg PQ(Ξ̃) (≤) 0 ;

i.e. P is slope-(semi)stable.

Corollary 5.8. If X is a curve, our notion of (semi)stability for prin-
cipal bundles coincides with that of Ramanathan.

Let us characterize (semi)stability in terms of the Killing form, as an-
nounced in the introduction. An orthogonal sheaf, relative to a scheme S, is a
pair

(ES , ES ⊗ ES −→ OX×S)

such that the bilinear form induced on the fibers of ES over closed points
(x, s) ∈ X × S where it is locally free, is nondegenerate. For instance, if
(ES , ϕS) is a g′-sheaf, the Killing form gives an orthogonal structure to ES .

Definition 5.9 (Orthogonal filtration). A filtration E• ⊂ E of an orthog-
onal sheaf is said to be orthogonal if E⊥

i = E−i−1 for all i. In terms of Eλ• : if
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the integers
λ1 < λ2 < · · · < λt < λt+1

can be denoted
γ−l < γ−l+1 < · · · < γl−1 < γl

so that
γ−i = −γi, and E⊥

γi
= Eγ−i−1 .

Observe that an orthogonal filtration is necessarily balanced. These fil-
trations were introduced in our former article [G-S1] in order to define the
(semi)stability of an orthogonal sheaf as the condition of admitting no orthog-
onal filtration of negative (nonpositive) Hilbert polynomial.

Corollary 5.10. Let P = (P, E, ψ) be a principal G-sheaf, or just let
(E, ϕ) be a g′-sheaf. An algebra filtration of E is balanced if and only if it is
orthogonal. Therefore, P is (semi)stable in the sense of Definition 0.26 if and
only if it is so in the sense of Definition 0.3.

Proof. We have seen that a balanced algebra filtration of g′-sheaves is
induced from a filtration of Lie algebras as in (5.10). On the other hand, for a
semisimple Lie algebra we have

(g′α)⊥ =
⊕

β �=−α

g′β

for α, β ∈ R(h) ∪ {0}. The first statement follows easily from these two facts.
The second follows from the first.

Finally, we remark that the notion of a semistable sheaf of rank r is not
equivalent to the one of semistable principal GL(r)-sheaf. Think, for instance,
of vector bundles of rank 2 on P2 with c1 = 1 and c2 = 0 and their correspond-
ing principal GL(2)-bundles of numerical invariants (d1 = 1, c1 = 0, c2 = 7). It
can be seen that the moduli space of semistable sheaves of rank 2, c1 = 1 and
c2 = 2, and the one of semistable principal GL(2)-sheaves on P2 with numerical
invariants (d1 = 1, c1 = 0, c2 = 7) are nonisomorphic.

In the next simplest case, the plane P̃2 blown up in a closed point, we can
observe that even the notion of (semi)stability itself differs for vector bundles
and for their corresponding principal bundles:

Denote D the exceptional divisor, R the fiber of the natural ruling, and p

a closed point outside E. For m, c ∈ Z, let L = OP̃2(mR), M = OP̃2(−cD +
(c + m)R), and F an extension

0 −→ L −→ F −→ M ⊗ Ip −→ 0

which is locally free, i.e. not in the kernel of α

Ext1(M ⊗ Ip, L) α−→ H0(Ext1(M ⊗ Ip, L)) = C −→ H2(M∨ ⊗ L) = 0 .
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For the vector bundle F and the corresponding principal GL(2)-bundle,
the following table of (semi)stability, with respect to the ample line bundle
OP̃2(D + 2R), can be checked (for details, see math.AG/0206277 v2):

(c, m) Vector bundle Principal bundle
(-1,4) unstable unstable
(-1,3) semistable unstable
(-1,2) stable unstable
(3,-4) unstable semistable
(3,-5) stable semistable
(4,-5) unstable stable
(4,-6) stable stable

IMAFF - CSIC, Serrano 113 bis, 28006 Madrid, Spain
E-mail address: tg@imaff.cfmac.csic.es

Departamento de Algebra, Facultad de Ciencias Matemáticas, Universidad
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