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On the holomorphicity of genus two
Lefschetz fibrations

By Bernd Siebert∗ and Gang Tian∗*

Abstract

We prove that any genus-2 Lefschetz fibration without reducible fibers and
with “transitive monodromy” is holomorphic. The latter condition comprises
all cases where the number of singular fibers µ ∈ 10N is not congruent to 0
modulo 40. This proves a conjecture of the authors in [SiTi1]. An auxiliary
statement of independent interest is the holomorphicity of symplectic surfaces
in S2-bundles over S2, of relative degree ≤ 7 over the base, and of symplectic
surfaces in CP2 of degree ≤ 17.
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Introduction

A differentiable Lefschetz fibration of a closed oriented four-manifold M

is a differentiable surjection p : M → S2 with only finitely many critical points
of the form t ◦ p(z, w) = zw. Here z, w and t are complex coordinates on M

and S2 respectively that are compatible with the orientations. This general-
ization of classical Lefschetz fibrations in Algebraic Geometry was introduced
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by Moishezon in the late seventies for the study of complex surfaces from the
differentiable viewpoint [Mo1]. It is then natural to ask how far differentiable
Lefschetz fibrations are from holomorphic ones. This question becomes even
more interesting in view of Donaldson’s result on the existence of symplectic
Lefschetz pencils on arbitrary symplectic manifolds [Do]. Conversely, by an
observation of Gompf total spaces of differentiable Lefschetz fibrations have
a symplectic structure that is unique up to isotopy. The study of differen-
tiable Lefschetz fibrations is therefore essentially equivalent to the study of
symplectic manifolds.

In dimension 4 apparent invariants of a Lefschetz fibration are the genus
of the nonsingular fibers and the number and types of irreducible fibers. By
the work of Gromov and McDuff [MD] any genus-0 Lefschetz fibration is in
fact holomorphic. Likewise, for genus 1 the topological classification of elliptic
fibrations by Moishezon and Livné [Mo1] implies holomorphicity in all cases.
We conjectured in [SiTi1] that all hyperelliptic Lefschetz fibrations without
reducible fibers are holomorphic. Our main theorem proves this conjecture in
genus 2. This conjecture is equivalent to a statement for braid factorizations
that we recall below for genus 2 (Corollary 0.2).

Note that for genus larger than 1 the mapping class group becomes reason-
ably general and group-theoretic arguments as in the treatment of the elliptic
case by Moishezon and Livné seem hopeless. On the other hand, our methods
also give the first geometric proof for the classification in genus 1.

We say that a Lefschetz fibration has transitive monodromy if its mon-
odromy generates the mapping class group of a general fiber.

Theorem A. Let p : M → S2 be a genus-2 differentiable Lefschetz fibra-
tion with transitive monodromy. If all singular fibers are irreducible then p is
isomorphic to a holomorphic Lefschetz fibration.

Note that the conclusion of the theorem becomes false if we allow reducible
fibers; see e.g. [OzSt]. The authors expect that a genus-2 Lefschetz fibration
with µ singular fibers, t of which are reducible, is holomorphic if t ≤ c · µ for
some universal constant c. This problem should also be solvable by the method
presented in this paper. One consequence would be that any genus-2 Lefschetz
fibration should become holomorphic after fiber sum with sufficiently many
copies of the rational genus-2 Lefschetz fibration with 20 irreducible singular
fibers. Based on the main result of this paper, this latter statement has been
proved recently by Auroux using braid-theoretic techniques [Au].

In [SiTi1] we showed that a genus-2 Lefschetz fibration without reducible
fibers is a two-fold branched cover of an S2-bundle over S2. The branch locus
is a symplectic surface of degree 6 over the base, and it is connected if and
only if the Lefschetz fibration has transitive monodromy. The main theorem
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therefore follows essentially from the next isotopy result for symplectic surfaces
in rational ruled symplectic 4-manifolds.

Theorem B. Let p : M → S2 be an S2-bundle and Σ ⊂ M a con-
nected surface symplectic with respect to a symplectic form that is isotopic to a
Kähler form. If deg(p|σ) ≤ 7 then Σ is symplectically isotopic to a holomorphic
curve in M , for some choice of complex structure on M .

Remark 0.1. By Gromov-Witten theory there exist surfaces H, F ⊂ M ,
homologous to a section with self-intersection 0 or 1 and a fiber, respectively,
with Σ ·H ≥ 0, Σ ·F ≥ 0. It follows that c1(M) ·Σ > 0 unless Σ is homologous
to a negative section. In the latter case Proposition 1.7 produces an isotopy
to a section with negative self-intersection number. The result follows then
by the classification of S2-bundles with section. We may therefore add the
positivity assumption c1(M) · Σ > 0 to the hypothesis of the theorem. The
complex structure on M may then be taken to be generic, thus leading to CP2

or the first Hirzebruch surface F1 = P(OCP1 ⊕OCP1(1)).

For the following algebraic reformulation of Theorem A recall that Hurwitz
equivalence on words with letters in a group G is the equivalence relation
generated by

g1 . . . gigi+1 . . . gk ∼ g1 . . . [gigi+1g
−1
i ]gi . . . gk.

The bracket is to be evaluated in G and takes up the ith position. Hurwitz
equivalence in braid groups is useful for the study of algebraic curves in rational
surfaces. This point of view dates back to Chisini in the 1930’s [Ch]. It has
been extensively used and popularized in work of Moishezon and Teicher [Mo2],
[MoTe]. In this language Theorem A says the following.

Corollary 0.2. Let x1, . . . , xd−1 be standard generators for the braid
group B(S2, d) of S2 on d ≤ 7 strands. Assume that g1g2 . . . gk is a word in pos-
itive half-twists gi ∈ B(S2, d) with (a)

∏
i gi = 1 or (b)

∏
i gi = (x1x2 . . . xd−1)d.

Then k ≡ 0 mod 2(d − 1) and g1g2 . . . gk is Hurwitz equivalent to

(a) (x1x2 . . . xd−1xd−1 . . . x2x1)
k

2d−2

(b) (x1x2 . . . xd−1xd−1 . . . x2x1)
k

2d−2
−d(d−1)(x1x2 . . . xd−1)d.

Proof. The given word is the braid monodromy of a symplectic surface Σ
in (a) CP1×CP1 or (b) F1 respectively [SiTi1]. The number k is the cardinality
of the set S ⊂ CP1 of critical values of the projection Σ → CP1. By the theorem
we may assume Σ to be algebraic. A straightfoward explicit computation gives
the claimed form of the monodromy for some distinguished choice of generators
of the fundamental group of CP1\S. The change of generators leads to Hurwitz
equivalence between the respective monodromy words.
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In the disconnected case there are exactly two components and one of
them is a section with negative, even self-intersection number. Such curves are
nongeneric from a pseudo-holomorphic point of view and seem difficult to deal
with analytically. One possibility may be to employ braid-theoretic arguments
to reduce to the connected case. We hope to treat this case in a future paper.

A similar result holds for surfaces of low degree in CP2.

Theorem C. Any symplectic surface in CP2 of degree d ≤ 17 is symplec-
tically isotopic to an algebraic curve.

For d = 1, 2 this theorem is due to Gromov [Gv], for d = 3 to Sikorav [Sk]
and for d ≤ 6 to Shevchishin [Sh]. Note that for other symplectic 4-manifolds
homologous symplectic submanifolds need not be isotopic. The hyperelliptic
branch loci of the examples in [OzSt] provide an infinite series inside a blown-up
S2-bundle over S2. Furthermore a quite general construction for homologous,
nonisotopic tori in nonrational 4-manifolds has been given by Fintushel and
Stern [FiSt].

Together with the classification of symplectic structures on S2-bundles
over S2 by McDuff, Lalonde, A. K. Liu and T. J. Li (see [LaMD] and references
therein) our results imply a stronger classification of symplectic submanifolds
up to Hamiltonian symplectomorphism. Here we wish to add only the simple
observation that a symplectic isotopy of symplectic submanifolds comes from
a family of Hamiltonian symplectomorphisms.

Proposition 0.3. Let (M, ω) be a symplectic 4-manifold and assume that
Σt ⊂ M , t ∈ [0, 1] is a family of symplectic submanifolds. Then there exists a
family Ψt of Hamiltonian symplectomorphisms of M with Ψ0 = id and Σt =
Ψt(Σ0) for every t.

Proof. At a P ∈ Σt0 choose complex Darboux coordinates z = x + iy,
w = u+ iv with w = 0 describing Σt0 . In particular, ω = dx∧dy+du∧dv. For
t close to t0 let ft, gt be the functions describing Σt as graph w = ft(z)+igt(z).
Define

Ht = −(∂tgt) · (u − ft) + (∂tft) · (v − gt).

Then for every fixed t

dHt = −(u − ft)∂t(dgt) + (v − gt)∂t(dft) − (∂tgt)du + (∂tft)dv.

Thus along Σt

dHt = −(∂tgt)du + (∂tft)dv = ω¬
(
(∂tft)∂u + (∂tgt)∂v

)
.

The Hamiltonian vector field belonging to Ht thus induces the given deforma-
tion of Σt.
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To globalize patch the functions Ht constructed locally over Σt0 by a
partition of unity on Σt0 . As Ht vanishes along Σt, at time t the associated
Hamiltonian vector field along Σt remains unchanged. Extend Ht to all of M

arbitrarily. Finally extend the construction to all t ∈ [0, 1] by a partition of
unity argument in t.

Guide to content. The proofs in Section 9 of the main theorems follow es-
sentially by standard arguments from the Isotopy Lemma in Section 8, which
is the main technical result. It is a statement about the uniqueness of iso-
topy classes of pseudo-holomorphic smoothings of a pseudo-holomorphic cycle
C∞ =

∑
a maC∞,a in an S2-bundle M over S2. In analogy with the integrable

situation we expect such uniqueness to hold whenever c1(M) · C∞,a > 0 for
every a. In lack of a good parametrization of pseudo-holomorphic cycles in the
nonintegrable case we need to impose two more conditions. The first one is
inequality (∗) in the Isotopy Lemma 8.1∑

{a|ma>1}

(
c1(M) · C∞,a + g(C∞,a) − 1

)
< c1(M) · C∞ − 1.

The sum on the left-hand side counts the expected dimension of the space of
equigeneric deformations of the multiple components of C∞. A deformation
of a pseudo-holomorphic curve C ⊂ M is equigeneric if it comes from a de-
formation of the generically injective pseudo-holomorphic map Σ → M with
image C. The term c1(M) · C∞ on the right-hand side is the amount of pos-
itivity that we have. In other words, on a smooth pseudo-holomorphic curve
homologous to C we may impose c1(M) ·C − 1 point conditions without loos-
ing unobstructedness of deformations. It is this inequality that brings in the
degree bounds in our theorems; see Lemma 9.1.

The Isotopy Lemma would not lead very far if the sum involved also the
nonmultiple components. But we may always add spherical (g = 0), nonmul-
tiple components to C∞ on both sides of the inequality. This brings in the
second restriction that M is an S2-bundle over S2, for then it is a Kähler
surface with lots of rational curves. The content of Section 7 is that for
S2-bundles over S2 we may approximate any pseudo-holomorphic singularity
by the singularity of a pseudo-holomorphic sphere with otherwise only nodes.
The proof of this result uses a variant of Gromov-Witten theory. As our iso-
topy between smoothings of C∞ stays close to the support |C∞| it does not
show any interesting behaviour near nonmultiple components. Therefore we
may replace nonmultiple components by spheres, at the price of introducing
nodes. After this reduction we may take the sum on the left-hand side of (∗)
over all components.

The second crucial simplification is that we may change our limit almost
complex structure J∞ into an almost complex structure J̃∞ that is integrable
near |C∞|. This might seem strange, but the point of course is that if Cn → C∞
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then Cn will generally not be pseudo-holomorphic for J̃∞. Hence we cannot
simply reduce to the integrable situation. In fact, we will even get a rather
weak convergence of almost complex structures J̃n → J̃∞ for some almost
complex structures J̃n making Cn pseudo-holomorphic. The convergence is
C0 everywhere and C0,α away from finitely many points. The construction in
Section 5 uses Micallef and White’s result on the holomorphicity of pseudo-
holomorphic curve singularities [MiWh].

The proof of the Isotopy Lemma then proceeds by descending induction on
the multiplicities of the components and the badness of the singularities of the
underlying pseudo-holomorphic curve |C∞|, measured by the virtual number
of double points. We sketch here only the case with multiple components. The
reduced case requires a modified argument that we give in Step 7 of the proof
of the Isotopy Lemma. It would also follow quite generally from Shevchishin’s
local isotopy theorem [Sh]. By inequality (∗) we may impose enough point
conditions on |C∞| such that any nontrivial deformation of |C∞|, fulfilling
the point conditions and pseudo-holomorphic with respect to a sufficiently
general almost complex structure, cannot be equisingular. Hence the induction
hypothesis applies to such deformations. Here we use Shevchishin’s theory
of equisingular deformations of pseudo-holomorphic curves [Sh]. Now for a
sequence of smoothings Cn we try to generate such a deformation by imposing
one more point condition on Cn that we move away from Cn, uniformly in n.
This deformation is always possible since we can use the induction hypothesis
to pass by any trouble point. By what we said before the induction hypothesis
applies to the limit of the deformed Cn. This shows that Cn is isotopic to a
J̃∞-holomorphic smoothing of C∞.

As we changed our almost complex structure we still need to relate this
smoothing to smoothings with respect to the original almost complex struc-
ture J∞. But for a J∞-holomorphic smoothing of C∞ the same arguments give
an isotopy with another J̃∞-holomorphic smoothing of C∞. So we just need
to show uniqueness of smoothings in the integrable situation, locally around
|C∞|. We prove this in Section 4 by parametrizing holomorphic deformations
of C∞ in M by solutions of a nonlinear ∂̄-operator on sections of a holomor-
phic vector bundle on CP1. The linearization of this operator is surjective
by a complex-analytic argument involving Serre duality on C, viewed as a
nonreduced complex space, together with the assumption c1(M) · C∞,a > 0.

One final important point, both in applications of the lemma as well as
in the deformation of Cn in its proof, is the existence of pseudo-holomorphic
deformations of a pseudo-holomorphic cycle under assumptions on genericity
of the almost complex structure and positivity. This follows from the work
of Shevchishin on the second variation of the pseudo-holomorphicity equation
[Sh], together with an essentially standard deformation theory for nodal curves,
detailed in [Sk]. The mentioned work of Shevchishin implies that for any suffi-
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ciently generic almost complex structure the space of equigeneric deformations
is not locally disconnected by nonimmersed curves, and the projection to the
base space of a one-parameter family of almost complex structures is open.
From this one obtains smoothings by first doing an equigeneric deformation
into a nodal curve and then a further small, embedded deformation smoothing
out the nodes. Note that these smoothings lie in a unique isotopy class, but
we never use this in our proof.

Conventions. We endow complex manifolds such as CPn or F1 with
their integrable complex structures, when viewed as almost complex mani-
folds. A map F : (M, JM ) → (N, JN ) of almost complex manifolds is pseudo-
holomorphic if DF ◦JM = JN ◦DF . A pseudo-holomorphic curve C in (M, J)
is the image of a pseudo-holomorphic map ϕ : (Σ, j) → (M, J) with Σ a not
necessarily connected Riemann surface. If Σ may be chosen connected then C

is irreducible and its genus g(C) is the genus of Σ for the generically injective ϕ.
If g(C) = 0 then C is rational.

A J-holomorphic 2-cycle in an almost complex manifold (M, J) is a locally
finite formal linear combination C =

∑
a maCa where ma ∈ Z and Ca ⊂ M is a

J-holomorphic curve. The support
⋃

a Ca of C will be denoted |C|. The subset
of singular and regular points of |C| are denoted |C|sing and |C|reg respectively.
If all ma = 1 the cycle is reduced. We identify such C with their associated
pseudo-holomorphic curve |C|. A smoothing of a pseudo-holomorphic cycle
C is a sequence {Cn} of smooth pseudo-holomorphic cycles with Cn → C in
the C0-topology; see Section 3. By abuse of notation we often just speak of a
smoothing C† of C meaning C† = Cn with n � 0 as needed.

For an almost complex manifold Λ0,1 denotes the bundle of (0, 1)-forms.
Complex coordinates on an even-dimensional, oriented manifold M are the
components of an oriented chart M ⊃ U → Cn. Throughout the paper we
fix some 0 < α < 1. Almost complex structures will be of class Cl for some
sufficiently large integer l unless otherwise mentioned. The unit disk in C
is denoted ∆. If S is a finite set then �S is its cardinality. We measure
distances on M with respect to any Riemannian metric, chosen once and for
all. The symbol ∼ denotes homological equivalence. An exceptional sphere in
an oriented manifold is an embedded, oriented 2-sphere with self-intersection
number −1.
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1. Pseudo-holomorphic S2-bundles

In our proof of the isotopy theorems it will be crucial to reduce to a fibered
situation. In Sections 1, 2 and 4 we introduce the notation and some of the
tools that we have at disposal in this case.

Definition 1.1. Let p : M → B be a smooth S2-fiber bundle. If M =
(M, ω) is a symplectic manifold and all fibers p−1(b) are symplectic we speak
of a symplectic S2-bundle. If M = (M, J) and B = (B, j) are almost com-
plex manifolds and p is pseudo-holomorphic we speak of a pseudo-holomorphic
S2-bundle. If both preceding instances apply and ω tames J then p : (M, ω, J)
→ (B, j) is a symplectic pseudo-holomorphic S2-bundle.

In the sequel we will only consider the case B = CP1. Then M → CP1 is
differentiably isomorphic to one of the holomorphic CP1-bundles CP1×CP1 →
CP1 or F1 → CP1.

Any almost complex structure making a symplectic fiber bundle over a
symplectic base pseudo-holomorphic is tamed by some symplectic form. To
simplify computations we restrict ourselves to dimension 4.

Proposition 1.2. Let (M, ω) be a closed symplectic 4-manifold and
p : M → B a smooth fiber bundle with all fibers symplectic. Then for any
symplectic form ωB on B and any almost complex structure J on M making
the fibers of p pseudo-holomorphic, ωk := ω + k p∗(ωB) tames J for k � 0.

Proof. Since tamedness is an open condition and M is compact it suffices
to verify the claim at one point P ∈ M . Write F = p−1(p(P )). Choose a frame
∂u, ∂v for TP F with

J(∂u) = ∂v, ω(∂u, ∂v) = 1.

Similarly let ∂x, ∂y be a frame for the ω-perpendicular plane (TP F )⊥ ⊂ TP M

with
J(∂x) = ∂y + λ∂u + µ∂v, ω(∂x, ∂y) = 1

for some λ, µ ∈ R. By rescaling ωB we may also assume (p∗ωB)(∂x, ∂y) = 1.
Replacing ∂x, ∂y by cos(t)∂x + sin(t)∂y, − sin(t)∂x + cos(t)∂y, t ∈ [0, 2π], the
coefficients λ = λ(t), µ = µ(t) vary in a compact set. It therefore suffices to
check that for k � 0

ωk−1

(
∂x + α∂u + β∂v, J(∂x + α∂u + β∂v)

)
k + α2 + β2

= 1 +
αµ − βλ

k + α2 + β2

is positive for all α, β ∈ R. This term is minimal for

α = −
√

k
1+(λ/µ)2 , β =

√
k

1+(µ/λ)2 ,

where the value is 1 −
√

λ2+µ2

4k . This is positive for k > (λ2 + µ2)/4.
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Denote by T 0,1
M,J ⊂ T C

M the anti-holomorphic tangent bundle of an al-
most complex manifold (M, J). Consider a submersion p : (M, J) → B of
an almost complex 4-manifold with all fibers pseudo-holomorphic curves. Let
z = p∗(u), w be complex coordinates on M with w fiberwise holomorphic.
Then

T 0,1
M,J = 〈∂z̄ + a∂z + b∂w, ∂w̄〉

for some complex-valued functions a, b. Clearly, a vanishes precisely when p is
pseudo-holomorphic for some almost complex structure on B. The Nijenhuis
tensor NJ : TM ⊗ TM → TM , defined by

4NJ(X, Y ) = [JX, JY ] − [X, Y ] − J [X, JY ] − J [JX, Y ],

is antisymmetric and J-antilinear in each entry. In dimension 4 it is therefore
completely determined by its value on a pair of vectors that do not belong to a
proper J-invariant subspace. For the complexified tensor it suffices to compute

NC
J (∂z̄ + a∂z + b∂w, ∂w̄)

=−1
2
[∂z̄ + a∂z + b∂w, ∂w̄] +

i

2
J [∂z̄ + a∂z + b∂w, ∂w̄]

=
1
2
(∂w̄a)

(
∂z − iJ∂z

)
+ (∂w̄b)∂w.

Since ∂z − iJ∂z and ∂w are linearly independent we conclude:

Lemma 1.3. An almost complex structure J on an open set M ⊂ C2 with
T 0,1

M,J = 〈∂z̄ + a∂z + b∂w, ∂w̄〉 is integrable if and only if ∂w̄a = ∂w̄b = 0.

Example 1.4. Let T 0,1
M,J = 〈∂z̄ +w∂w, ∂w̄〉. Then z and we−z̄ are holomor-

phic coordinates on M .

The lemma gives a convenient characterization of integrable complex struc-
tures in terms of the functions a, b defining T 0,1

M,J . To globalize we need a con-
nection for p. The interesting case will be p pseudo-holomorphic or a = 0, to
which we restrict from now on.

Lemma 1.5. Let p : M → B be a submersion endowed with a connection
∇ and let j be an almost complex structure on B. Then the set of almost
complex structures J making

p : (M, J) −→ (B, j)

pseudo-holomorphic is in one-to-one correspondence with pairs (JM/B, β) where

(1) JM/B is an endomorphism of TM/B with J2
M/B = − id.

(2) β is a homomorphism p∗(TB) → TM/B that is complex anti-linear with
respect to j and JM/B:

β(j(Z)) = −JM/B(β(Z)).
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Identifying TM = TM/B ⊕ p∗(TB) via ∇ the correspondence is

J =
(

JM/B β

0 j

)
.

Proof. The only point that might not be immediately clear is the equiva-
lence of J2 = − id with complex anti-linearity of β. This follows by computing

J2 =

(
J2

M/B JM/B ◦ β + β ◦ j

0 j2

)
.

Lemma 1.6. Let p : (M, J) → (B, j) be a pseudo-holomorphic submer-
sion, dimM = 4, dimB = 2. Then locally in M there exists a differentiable
map

π : M −→ C

inducing a pseudo-holomorphic embedding p−1(Q) → C for every Q ∈ B.
Moreover, to any such π let

β : p∗(T 0,1
B,j) −→ T 1,0

M/B,JM/B

be the homomorphism provided by Lemma 1.5 applied to the connection belong-
ing to π. Let w be the pull -back by π of the linear coordinate on C and u a
holomorphic coordinate on B. Then z := p∗(u) and w are complex coordinates
on M , and

β(∂ū) = −2bi∂w,

for the C-valued function b on M with

T 0,1
M,J = 〈∂w̄, ∂z̄ + b∂w〉.(1)

Proof. Since p is pseudo-holomorphic, J induces a complex structure
on the fibers p−1(Q), varying smoothly with Q ∈ B. Hence locally in M

there exists a C-valued function w that fiberwise restricts to a holomorphic
coordinate. This defines the trivialization π.

In the coordinates z, w define b via β(∂ū) = −2bi∂w. Then

J(∂z̄) = −i∂z̄ − 2bi∂w,

so the projection of ∂z̄ onto T 0,1
M,J is

(∂z̄ + iJ(∂z̄))/2 = ∂z̄ + b∂w.

The two lemmas also say how to define an almost complex structure mak-
ing a given p : M → B pseudo-holomorphic, when starting from a complex
structure on the base, a fiberwise conformal structure, and a connection for p.
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For the symplectic isotopy problem we can reduce to a fibered situation
by the following device.

Proposition 1.7. Let p : (M, ω) → S2 be a symplectic S2-bundle. Let
Σ ⊂ M be a symplectic submanifold. Then there exists an ω-tamed almost
complex structure J on M and a map p′ : (M, J) → CP1 with the following
properties.

(1) p′ is isotopic to p.

(2) p′ is pseudo-holomorphic.

(3) Σ is J-holomorphic.

Moreover, if {Σt}t is a family of symplectic submanifolds there exist families
{p′t}t and {Jt} with the analogous properties for every t.

Proof. We explained in [SiTi1, Prop. 4.1] how to obtain a symplectic
S2-bundle p′ : M → CP1, isotopic to p, so that all critical points of the
projection Σ → CP1 are simple and positive. This means that near any critical
point there exist complex coordinates z, w on M with z = (p′)∗(u) for some
holomorphic coordinate u on CP1, so that Σ is the zero locus of z − w2. We
may take these coordinates in such a way that w = 0 defines a symplectic
submanifold. This property will enter below when we discuss tamedness.

Since the fibers of p′ are symplectic the ω-perpendicular complement to
TM/CP1 in TM defines a subbundle mapping isomorphically to (p′)∗(TCP1). This
defines a connection ∇ for p′. By changing ∇ slightly near the critical points
we may assume that it agrees with the connection defined by the projections
(z, w) → w.

The coordinate w defines an almost complex structure along the fibers of
p′ near any critical point. Since at (z, w) = (0, 0) the tangent space of Σ agrees
with TM/CP1 , this almost complex structure is tamed at the critical points
with respect to the restriction ωM/CP1 of ω to the fibers. Choose a complex
structure JM/CP1 on TM/CP1 that is ωM/CP1-tamed and that restricts to this
fiberwise almost complex structure near the critical points.

By Lemma 1.5 it remains to define an appropriate endomorphism

β : (p′)∗(TCP1) −→ TM/CP1 .

By construction of ∇ and the local form of Σ we may put β ≡ 0 near the critical
points. Away from the critical points, let z = (p′)∗(u) and w be complex
coordinates as in Lemma 1.6. Then Σ is locally a graph w = f(z). This graph
will be J = J(β)-holomorphic if and only if

∂z̄f = b(z, f(z)).
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Here b is related to β via β(∂ū) = −2bi∂w. Hence this defines β along Σ away
from the critical points. We want to extend β to all of M keeping an eye on
tamedness. For nonzero X + Y ∈ (p′)∗(TCP1) ⊕ TM/CP1 the latter requires

0 < ω(X + Y, J(X + Y )) = ω(X, j(X)) + ω(Y, JM/CP1(Y )) + ω(Y, β(X)).

Near the critical points we know that ω(X, j(X)) > 0 because w = 0 defines
a symplectic submanifold. Away from the critical points, X and j(X) lie
in the ω-perpendicular complement of a symplectic submanifold and therefore
ω(X, j(X)) > 0 too. Possibly after shrinking the neighbourhoods of the critical
points above, we may therefore assume that tamedness holds for β = 0. By
construction it also holds with the already defined β along Σ. Extend this β

differentiably to all of M arbitrarily. Let χε : M → [0, 1] be a function with
χε|Σ ≡ 1 and with support contained in an ε-neighbourhood of Σ. Then for ε

sufficiently small, χε · β does the job.
If Σ varies in a family, argue analogously with an additional parameter t.

In the next section we will see some implications of the fibered situation
for the space of pseudo-holomorphic cycles.

2. Pseudo-holomorphic cycles on pseudo-holomorphic S2-bundles

One advantage of having M fibered by pseudo-holomorphic curves is that
it allows us to describe J-holomorphic cycles by Weierstrass polynomials, cf.
[SiTi2]. Globally we are dealing with sections of a relative symmetric product.
This is the topic of the present section. While we have been working with
this point of view for a long time it first appeared in print in [DoSm]. Our
discussion here is, however, largely complementary.

Throughout p : (M, J) → B is a pseudo-holomorphic S2-bundle. To study
J-holomorphic curves C ⊂ M of degree d over B we consider the d-fold relative
symmetric product M [d] → B of M over B. This is the quotient of the d-fold
fibered product Md

B := M ×B · · · ×B M by the permutation action of the
symmetric group Sd. Set-theoretically M [d] consists of 0-cycles in the fibers of
p of length d.

Proposition 2.1. There is a well -defined differentiable structure on M [d],
depending only on the fiberwise conformal structure on M over B.

Proof. Let Φ : p−1(U) → CP1 be a local trivialization of p that is com-
patible with the fiberwise conformal structure; see the proof of Lemma 5.1 for
existence. Let u be a complex coordinate on U . To define a chart near a 0-cycle∑

maPa choose P ∈ CP1 \ {Φ(Pa)} and a biholomorphism w : CP1 \ {P} � C.
The d-tuples with entries disjoint from Φ−1(P ) give an open Sd-invariant sub-
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set
U × Cd ⊂ Md

B.

Now the ring of symmetric polynomials on Cd is free. A set of generators
σ1, . . . , σd together with z = p∗(u) provides complex, fiberwise holomorphic
coordinates on (U × Cd)/Sd � U × Cd ⊂ M [d].

Different choices lead to fiberwise biholomorphic transformations. The
differentiable structure is therefore well-defined.

We emphasize that different choices of the fiberwise conformal structure
on M over B lead to different differentiable structures on M [d]. Note also
that Md

B −→ M [d] is a branched Galois covering with covering group Sd. The
branch locus is stratified according to partitions of d, parametrizing cycles
with the corresponding multiplicities. The discriminant locus is the union
of all lower-dimensional strata. The stratum belonging to a partition d =
m1 + · · ·+m1 + · · ·+ms + · · ·+ms with m1 < m2 < · · · < ms and mi occurring
di-times is canonically isomorphic to the complement of the discriminant locus
in M [d1] ×B · · · ×B M [ds].

Proposition 2.2. There exists a unique continuous almost complex struc-
ture on M [d] making the covering

Md
B −→ M [d]

pseudo-holomorphic.

Proof. It suffices to check the claim locally in M [d]. Let w : U ×C → C be
a fiberwise holomorphic coordinate as in the previous lemma. Let z = p∗(u)
and b be as in Lemma 1.6, so

T 0,1
M,J =

〈
∂w̄, ∂z̄ + b(z, w)∂w

〉
.

Let wi be the pull-back of w by the ith projection Md
B → M . By the definition

of the differentiable structure on M [d], the rth elementary symmetric polyno-
mial σr(w1, . . . , wd) descends to a locally defined smooth function σr on M [d].
The pull-back of u to M [d], also denoted by z, and the σr provide local complex
coordinates on M [d]. The almost complex structure on Md

B is

T 0,1
Md

B

=
〈
∂w̄1 , . . . , ∂w̄d

, ∂z̄ + b(z, w1)∂w1 + · · · + b(z, wd)∂wd

〉
.

The horizontal anti-holomorphic vector field

∂z̄ + b(z, w1)∂w1 + · · · + b(z, wd)∂wd

is Sd-invariant, hence descends to a continuous vector field Z on M [d]. Together
with the requirement that fiberwise the map Md

B → M [d] be holomorphic,
Z determines the almost complex structure on M [d].
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Remark 2.3. The horizontal vector field Z in the lemma, hence the almost
complex structure on M [d], will generally only be of Hölder class C0,α′

in the
fiber directions, for some α′ > 0; see [SiTi1]. However, at 0-cycles

∑
mµPµ

with J integrable near {Pµ} it will be smooth and integrable as well. In fact, by
Lemma 1.3 integrability is equivalent to holomorphicity of b along the fibers.
This observation will be crucial below.

Proposition 2.4. There is an injective map from the space of J-holo-
morphic cycles on M of degree d over B and without fiber components to the
space of JM [d]-holomorphic sections of q : M [d] → B. A cycle C =

∑
maCa

maps to the section

u �−→
∑

a

maCa ∩ p−1(u),

the intersection taken with multiplicities. The image of the subset of reduced
cycles are the sections with image not entirely lying in the discriminant locus.

Proof. We may reduce to the local problem of cycles in ∆ × C. In this
case the statement follows from [SiTi2, Theorem I].

Remark 2.5. By using the stratification of M [d] by fibered products
M [d1]×B · · ·×B M [dk] with

∑
di ≤ d it is also possible to treat cycles with mul-

tiple components. In fact, one can show that a pseudo-holomorphic section of
M [d] has an image in exactly one stratum except at finitely many points. Now
the almost complex structure on a stratum agrees with the almost complex
structure induced from the factors. The claim thus follows from the proposi-
tion applied to each factor. Because this result is not essential to what follows
details are left to the reader.

To study deformations of a J-holomorphic cycle it therefore suffices to
look at deformations of the associated section of M [d]. Essentially this is what
we will do; but as we also have to treat fiber components we describe our
cycles by certain polynomials with coefficients taking values in holomorphic
line bundles over B. We restrict ourselves to the case B = CP1.

The description depends on the choice of an integrable complex structure
on M fiberwise agreeing with J . Thus we assume now that p : (M, J0) → CP1

is a holomorphic CP1-bundle. There exist disjoint sections S, H ⊂ M with
e := H ·H ≥ 0. Then H ∼ S + eF where F is a fiber, and S · S = −e. Denote
the holomorphic line bundles corresponding to H, S by LH and LS . Let s0, s1

be holomorphic sections of LS , LH respectively with zero loci S and H. We
also choose an isomorphism LH � LS ⊗ p∗(L)e, where L is the holomorphic
line bundle on CP1 of degree 1.
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Note that if Hd ⊂ M [d] denotes the divisor of cycles
∑

a maPa with Pa ∈ H

for some a then

M [d] \ Hd = Sd(L−e) =
d⊕

ν=1

L−νe.

In fact, M \ H = L−e.

Proposition 2.6. Let J be an almost complex structure on M making
p : M → CP1 pseudo-holomorphic and assume J = J0 near H and along the
fibers of p.

1) Let C =
∑

a maCa be a J-holomorphic 2-cycle homologous to dH+kF ,
d > 0, and assume H �⊂ |C|. Let a0 be a holomorphic section of Lk+de with
zero locus p∗(H ∩ C), with multiplicities.

Then there are unique continuous sections ar of Lk+(d−r)e, r = 1, . . . , d,
so that C is the zero locus of

p∗(a0)sd
0 + p∗(a1)sd−1

0 s1 + · · · + p∗(ad)sd
1,

as a cycle.

2) There exist Hölder continuous maps

βr :
d⊕

ν=1

L−νe −→ L−re ⊗ Λ0,1
CP1 , r = 1, . . . , d,

so that a local section sd
0 + p∗(α1)sd−1

0 s1 + · · · + p∗(αd)sd
1 = 0 of M [d] \ Hd is

JM [d]-holomorphic if and only if

∂̄αr = βr(α1, . . . , αd), r = 1, . . . , d.

3) Let C be a J-holomorphic 2-cycle homologous to dH + kF and with
H �⊂ |C|. Decompose C = C̄ +

∑
maFa with the second term containing all

fiber components. Assume that J = J0 also near

p−1
(
p(|C̄| ∩ H) ∩ p(|C̄| ∩ S)

)
∪

⋃
a Fa.

Let a0
r be sections of Lk+(d−r)e associated to C according to (1). Then there

exists a neighbourhood D ⊂
⊕d

r=0 Lk+(d−r)e of the graph of (a0
0, . . . , a

0
d) and

Hölder continuous maps

br : D −→ Lk+(d−r)e ⊗ Λ0,1
CP1 , r = 1, . . . , d,

so that a section (a0, . . . , ad) of D → CP1 with a0 holomorphic defines a
J-holomorphic cycle if and only if

∂̄ar = br(a0, . . . , ad), r = 1, . . . , d.(2)
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Conversely, any solution of (2) with δ(a0, . . . , ad) �≡ 0 corresponds to a
J-holomorphic cycle without multiple components. Here δ is the discriminant.

Moreover, if J is integrable near |C| then the br are smooth near the
corresponding points of D.

Proof. 1) Assume first that a = 1 and m1 = 1. Then either C is a
fiber and p∗(a0) is the defining polynomial; or C defines a section of M [d] as in
Proposition 2.4. Any 0-cycle of length d on p−1(Q) � CP1 is the zero locus of
a section of OCP1(d) that is unique up to rescaling. The restrictions of sr

0s
d−r
1

to any fiber form a basis for the space of global sections of OCP1(d). Hence,
after choice of a0 the ar are determined uniquely for r = 1, . . . , d away from
the zero locus of a0. If a0(Q) = 0 choose a neighbourhood U of Q so that
C|p−1(U) = C ′ + C ′′ with |C ′| ∩S = ∅, |C ′′| ∩H = ∅. By the same argument as
before we have unique Weierstrass polynomials of the form

p∗(a′0)s
d′

0 + · · · + p∗(a′d′−1)s0s
d′−1
1 + sd′

1 ,

sd′′

0 + p∗(a′′1)s
d′′−1
0 s1 + · · · + p∗(a′′d′′)sd′′

1

defining C ′ and C ′′ respectively. Multiplying produces a polynomial defining C.
The first coefficient a′0 vanishes to the same order at Q as a0. In fact, this order
equals the intersection index of C ′ and C with H respectively. This shows
a0 = a′0 · e for some holomorphic function e on U with e(Q) �= 0. Therefore
a1, . . . , ad extend continuously over Q.

In the general case let Fa be the polynomial just obtained for C = Ca.
Put

F(a0,...,ad) =
∏
a

Fma
a .

The coefficient of sd
0 has the same zero locus as p∗(a0); so after rescaling by a

constant, F(a0,...,ad) has the desired form.

2) Since J and J0 agree fiberwise and both make p pseudo-holomorphic,
the homomorphism J −J0 factors over p∗TCP1 and takes values in TM/CP1 . Let
β be the section of T 1,0

M/CP1,J ⊗ p∗Λ0,1
CP1 thus defined. Locally β is nothing but

the homomorphism obtained by applying Lemma 1.6 to a local J0-holomorphic
trivialization of M . Because M \ H = L−e there is a canonical isomorphism

T 1,0
M/CP1,J0

∣∣
M\H � p∗(L−e).

This isomorphism understood, we obtain an Sd-invariant map

(w1, . . . , wd) �−→ (−1)r i

2

∑
ν

σr−1(w1, . . . , ŵν , . . . , wd) ⊗ β(z, wν)

from (L−e)⊕d to L−re ⊗ Λ0,1
CP1 . Define βr(α1, . . . , αd) as the induced map from

Sd(L−e) = M [d] \ Hd. The claim on pseudo-holomorphic sections of M [d] \ Hd
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is clear from the definition of JM [d] in Proposition 2.2 and the description of β

in Lemma 1.6.
Hölder continuity of the βr follows from the local consideration in [SiTi1].

3) Let U be a neighbourhood of p−1
(
p(|C̄| ∩H)∩ p(|C̄| ∩S)

)
∪

⋃
Fa with

J = J0 on p−1(U). Over Q ∈ CP1 define D as those tuples (a0, . . . , ad) with

a0 = 0 =⇒ ad �= 0 or Q ∈ U.

If as = 0 for s = 0, . . . , m − 1 and am �= 0 define

br(a0, . . . , ad) := am · βd−m
r−m (am+1/am, . . . , ad/am),

where βd′

r is βr from (2) for d = d′. We also put br(0, . . . , 0) = 0. We claim
that the br are continuous. Over U this is clear as all terms vanish.

Let w be a complex coordinate on M defining a local J0-holomorphic
trivialization of M \ H → CP1. Let w1, . . . , wd be the induced coordinate
functions on Md

CP1 and b the function encoding J . Pulling back br via Md
CP1 →

M [d] gives

a0 ·
d∑

ν=1

σr−1(w1, . . . , ŵν , . . . , wd)b(z, wν).(3)

It remains to show that if {λ(n)
1 , . . . , λ

(n)
d }n and {a(n)

0 }n are sequences with
a

(n)
r := a

(n)
0 σr(λ

(n)
1 , . . . , λ

(n)
d ) converging to (0, . . . , 0, am, . . . , ad) with am �= 0,

ad �= 0, then (3) converges towards am · βd−m
r−m (am+1/am, . . . , ad/am). After

reordering we may assume that λ
(n)
1 , . . . , λ

(n)
m correspond to the m points con-

verging to H. By hypothesis b(z, w) = 0 for |w| � 0. Moreover, since a
(n)
d

converges with nonzero limit and all a
(n)
r are bounded, the λ

(n)
ν stay uniformly

bounded away from 0. Hence for any subset I ⊂ {1, . . . , d}

a
(n)
0

∏
ν∈I

λ(n)
ν

converges. The limit is 0 if {1, . . . , m} �⊂ I. Evaluating expression (3) at
wν = λ

(n)
ν and taking the limit gives

lim
n→∞

(
a

(n)
0 ·

d∑
ν=m+1

σr−1(λ
(n)
1 , . . . , λ̂(n)

ν , . . . , λ
(n)
d ) · b(z, λ(n)

ν )
)

= am · lim
n→∞

d∑
ν=m+1

σr−m−1(λ
(n)
m+1, . . . , λ̂

(n)
ν , . . . , λ

(n)
d ) · b(z, λ(n)

ν )

= am · βd−m
r−m (am+1/am, . . . , ad/am),

as had to be shown.
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The expression for br also shows that the local equation for pseudo-holo-
morphicity of a section σr = ar(z)/a0(z) of M [d] \ Hd is

∂z̄ar(z) = a0βr(a1, . . . , ad) = br(a0, . . . , ad).

This extends over the zeros of a0. The converse follows from the local situation
already discussed at length in [SiTi2].

Finally we discuss regularity of the br. The partial derivatives of br in
the z-direction lead to expressions of the same form as br with b(z, wν) re-
placed by ∇k

zb(z, wν). These are continuous by the argument in (2). If J is
integrable near |C| then b is holomorphic there along the fibers of p. Hence
the br and its derivatives in the z-direction are continuous and fiberwise holo-
morphic. Uniform boundedness thus implies the desired estimates on higher
mixed derivatives.

Remark 2.7. It is instructive to compare the linearizations of the equa-
tions characterizing J-holomorphic cycles of the coordinate dependent descrip-
tion in this proposition and the intrinsic one in Proposition 2.4. We have to
assume that C has no fiber components. Let σ be the section of q : M [d] → CP1

associated to C by Proposition 2.4. There is a PDE acting on sections of
σ∗(TM [d]/CP1) governing (pseudo-) holomorphic deformations of σ. For the in-
tegrable complex structure this is simply the ∂̄-equation. There is a well-known
exact sequence

0 −→ C −→
d⊕

r=0

Lk+(d−r)e −→ σ∗(TM [d]/CP1

)
−→ 0,

describing the pull-back of the relative tangent bundle. The ∂̄J -equation giving
J-holomorphic deformations of σ acts on the latter bundle. On the other hand,
the middle term exhibits variations of the coefficients a0, . . . , ad. The constant
bundle on the left deals with rescalings.

The final result of this section characterizes certain smooth cycles.

Proposition 2.8. In the situation of Proposition 2.4 let σ be a differen-
tiable section of M [d] → S2 intersecting the discriminant divisor transversally.
Then the 2-cycle C belonging to σ is a submanifold and the projection C → S2

is a branched cover with only simple branch points. Moreover, C varies differ-
entiably under C1-small variations of σ.

Proof. Away from points of intersection with the discriminant divisor the
symmetrization map Md

B → M [d] is locally a diffeomorphism, and the result
is clear. Moreover, the discriminant divisor is smooth only at points

∑
mµPµ

with
∑

mµ = d − 1; this is the locus where exactly two points come together.
We may hence assume m1 = 2 and ma = 1 for a > 1. At

∑
mµPµ the
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d − 2 coordinates wµ at Pµ, µ > 2, and w1 + w2, w1w2 descend to complex
coordinates on Sd(CP1). Similarly, the variation of the Pµ for µ > 2 lead
only to multiplication of δ(a0, . . . , ad) by a smooth function without zeros. It
therefore suffices to discuss the case d = 2. Then C is the zero locus

a0(z)w2 + a1(z)w + a2(z) = 0.

The assumption says that, say, z = 0 is a simple zero of

δ(α1, α2) = α2
1 − 4α2.

By assumption there exists a function h(z) with h(0) �= 0 and δ(α1, α2) =
h2(z) · z. Replacing w by u = 2h−1(w + α1

2 ) brings C into standard form
u2 − z = 0. Hence C is smooth and the projection to z has a simple branch
point over z = 0. The same argument is valid for small deformations of σ.

3. The C0-topology on the space of pseudo-holomorphic cycles

This section contains a discussion of the topology on the space of pseudo-
holomorphic cycles, which we denote Cycpshol(M) throughout. Let C(M) be
the space of pseudo-holomorphic stable maps. An element of C(M) is an iso-
morphism class of pseudo-holomorphic maps ϕ : Σ → M where Σ is a nodal
Riemann surface, with the property that there are no infinitesimal biholomor-
phisms of Σ compatible with ϕ. The C0-topology on C(M) is generated by
open sets UV,ε defined for ε > 0 and V a neighbourhood of Σsing as follows.
To compare ψ : Σ′ → M with ϕ consider maps κ : Σ′ → Σ that are a diffeo-
morphism away from Σsing and that over a branch of Σ at a node have the
form {

z ∈ ∆
∣∣ |z| > τ

}
−→ ∆, reiφ �−→ r − τ

1 − τ
eiφ

for some 0 ≤ τ < 1. Then ψ : Σ′ → M belongs to UV,ε if such a κ exists with
maximal dilation over Σ \ V less than ε and with

dM

(
ψ(z), ϕ(κ(z))

)
< ε for all z.

Recall that the dilation measures the failure of a map between Riemann sur-
faces to be holomorphic. Note also that an intrinsic measure for the size of
the neighbourhood V of the singular set on noncontracted components is the
diameter of ϕ(V ) in M ; on contracted components one may take the smallest
ε with V contained in the ε-thin part. The latter consists of endpoints of loops
around the singular points of length < ε in the Poincaré metric.

For a fixed almost complex structure of class Cl,α, C0-convergence of
pseudo-holomorphic stable maps implies Cl+1,α-convergence away from the sin-
gular points of the limit. If one wants convergence of derivatives away from
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the singularities for varying J one needs C0,α-convergence of J for some α > 0.
We will impose this condition separately each time we need it.

The C0-topology on C(M) induces a topology on Cycpshol(M) via the map

C(M) −→ Cycpshol(M),
(
ϕ : C =

⋃
aCa → M

)
�−→

∑
a

maϕ(Ca).

Here ma is the covering degree of Ca → ϕ(Ca). From this point of view the
compactness theorem for Cycpshol(M) follows immediately from the version for
stable maps. We call this topology on Cycpshol(M) the C0-topology.

Alternatively, one may view Cycpshol(M) as a closed subset of the space
of currents on M , or of the space of measures on M . We will not use this point
of view here.

Next we turn to a semi-continuity property of pseudo-holomorphic cycles
in the C0-topology. For a pseudo-holomorphic curve singularity (C, P ) in a
4-dimensional almost complex manifold M define δ(C, P ) as the virtual num-
ber of double points. This is the number of nodes of the image of a small,
general, J-holomorphic deformation of the parametrization map from a union
of unit disks to M belonging to (C, P ). This number occurs in the genus for-
mula. If C =

⋃d
a=1 Ca is the decomposition of a pseudo-holomorphic curve

into irreducible components, the genus formula says
d∑

a=1

g(Ca) =
C · C − c1(M) · C

2
+ d −

∑
P∈Csing

δ(C, P ).(4)

We emphasize that in this formula C has no multiple components. For a proof
perform a small, general pseudo-holomorphic deformation ϕa : Σa → M of
the pseudo-holomorphic maps with image Ca. This is possible by changing J

slightly away from Csing. The result is a J ′-holomorphic nodal curve for some
small perturbation J ′ of J . The degree of the complex line bundle ϕ∗

a(TM )/TΣa

equals Ca · Ca minus the number of double points of Ca. This expresses the
genus of Σa in terms of Ca ·Ca, c1(M) ·Ca and

∑
P∈(Ca)sing

δ(Ca, P ). Sum over
a and adjust by the intersections of Ca with Ca′ for a �= a′ to deduce (4).

As a measure for how singular the support of a pseudo-holomorphic cycle
is, we introduce

δ(C) :=
∑

P∈|C|sing

δ(|C|, P ).

Similarly, as a measure for nonreducedness of a pseudo-holomorphic cycle C =∑
a maCa put

m(C) :=
∑

a

(ma − 1).

So δ(C) = 0 if and only if |C| is smooth and m(C) = 0 if and only if C has no
multiple components.

The definition of the C0-topology on the space of pseudo-holomorphic
cycles implies semi-continuity of the pair (m, δ).
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Lemma 3.1. Let (M, J) be a 4-dimensional almost complex manifold with
J tamed by some symplectic form. Let Cn ⊂ M be Jn-holomorphic cycles with
Jn → J in C0 and in C0,α away from a set not containing any closed pseudo-
holomorphic curves, also, assume Cn → C∞ in the C0-topology.

Then m(Cn) ≤ m(C∞) for n � 0, and if m(Cn) = m(C∞) for all n then
δ(Cn) ≤ δ(C∞). Moreover, if also δ(Cn) = δ(C∞) for all n then for n � 0,
there is a bijection between the irreducible components of |Cn| and of |C∞|
respecting the genera.

Proof. By the definition of the cycle topology, for n � 0 each component
of C∞ deforms to parts of some component of Cn. This sets up a surjective
multi-valued map ∆ from the set of irreducible components of C∞ to the set of
irreducible components of Cn. The claim on semi-continuity of m follows once
we show that the sum of the multiplicities of the components Cn,i ∈ ∆(C∞,a)
does not exceed the multiplicity of C∞,a.

By the compactness theorem we may assume that the Cn lift to a converg-
ing sequence of stable maps ϕn : Σn → M . Let ϕ∞ : Σ∞ → M be the limit.
This is a stable map lifting C∞. For a component C∞,a of C∞ of multiplicity
ma choose a point P ∈ C∞,a in the part of C0,α-convergence of the Jn and away
from the critical values of ϕ∞. Let H ⊂ M be a local oriented submanifold
of real codimension 2 with cl(H) intersecting |C| transversally and positively
precisely in P ∈ H. As C0,α-convergence of almost complex structures implies
convergence of tangent spaces away from the critical values, H is transverse to
Cn for n � 0 with all intersections positive. Now any component of Cn with
a part degenerating to C∞,a intersects H, and H · Cn gives the multiplicity of
C∞,a in C∞. The claimed semi-continuity of multiplicities thus follows from
the deformation invariance of intersection numbers.

The argument also shows that equality m(C∞) = m(Cn) can only hold
if ∆ induces a bijection between the nonreduced irreducible components of
Cn and C∞ respecting the multiplicities. This implies convergence |Cn| →
|C∞|, so we may henceforth assume Cn and C∞ to be reduced, and ϕn to be
injective. Note that ϕ∞ may contract some irreducible components of Σ∞. In
any case,

∑
a g(C∞,a) is the sum of the genera of the noncontracted irreducible

components of Σ∞, and it is not larger than the respective sum for Σn. The
latter equals

∑
i g(Cn,i) if Cn =

⋃
i Cn,i. By the genus formula (4) we conclude

δ(Cn) =
∑

Q∈(Cn)sing

δ(Cn, Q) ≤
∑

P∈(C∞)sing

δ(C∞, P ) = δ(C∞).

If equality holds, there is a bijection between the singular points of |Cn| and
|C∞| respecting the virtual number of double points. The genus formula then
shows that ∆ respects the genera of the irreducible components.
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In the fibered situation of Proposition 2.4 convergence in Cycpshol(M) in
the C0-topology implies convergence of the section of M [d]:

Proposition 3.2. Let p : M → B be an S2-bundle. For every n let
Cn be a pseudo-holomorphic curve of degree d over B for some almost com-
plex structure making p pseudo-holomorphic. Assume that Cn → C in the
C0-topology and that C contains no fiber components. Let σn and σ be the
sections of M [d] → B corresponding to Cn and C, respectively, according to
Proposition 2.4. Then

σn
n→∞−→ σ in C0.

Proof. We have to show the following. Let Ū × S2 → M be a local
trivialization with Ū ⊂ B a closed ball, and let V ⊂ S2 be an open set so
that |C| ∩ (Ū × V ) → Ū is proper. Let d′ be the degree of C|Ū×V over Ū ,
counted with multiplicities. Then for n sufficiently large Cn ∩ (Ū × V ) → Ū

will be a (branched) covering of the same degree d′. In fact, any P ∈ |C|
has neighbourhoods of this form with V arbitrarily small. Away from the
critical points of the projection to Ū both C and Cn would then have exactly
d′ branches on Ū × V , counted with multiplicities. In the coordinates on M [d]

exhibited in Proposition 2.1 the components of σn are elementary symmetric
functions in these branches. As V can be chosen arbitrarily small this implies
C0-convergence of σn towards σ.

By the definition of the topology on C(M) the Cn lie in arbitrarily small
neighbourhoods of |C|. Properness of |C| ∩ (Ū × V ) → Ū implies

∂(Ū × V ) ∩ |C| ⊂ ∂Ū × V.(5)

By compactness of (∂Ū × V ) ∩ |C| we may replace |C| in this inclusion by a
neighbourhood. Therefore (5) holds with Cn replacing |C|, for n � 0. We
conclude that Cn ∩ (Ū × V ) → Ū is proper for n � 0 too, hence a branched
covering. Let dn be its covering degree.

Convergence of the Cn in the C0-topology implies that for every n there
exist stable maps ϕn : Σn → M , ψn : Σ∞,n → M lifting Cn and C respectively
and a κn : Σn → Σ∞,n as above with

dM

(
ϕn(z), ψn(κn(z))

)
−→ 0

uniformly. Let Z ⊂ B be the union of the critical values of p ◦ ϕn and of
p ◦ ψn for all n. This is a countable set, hence has dense complement. Choose
Q ∈ Ū \ Z and put F = p−1(Q). By hypothesis F is Jn-holomorphic and
transverse to ϕn and ψn for every n. Therefore, for each n the cardinality of
An := ϕ−1

n (F ∩ (Ū × V )) and of ψ−1
n (F ∩ (Ū × V )) are dn and d′ respectively.

Since P is a regular value of p ◦ ψn, for n � 0 the image κn(An) lies entirely
in the regular part of noncontracted components of Σ∞,n. On this part the
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pull-back of the Riemannian metric on M allows uniform measurements of
distances. In this metric the distance of κn(An) from ψ−1

n (F ∩ (Ū × V )),
viewed as 0-cycle, tends to zero for n → ∞. Therefore dn = d′ for n � 0.

In a situation where the description of Proposition 2.6(3) applies we obtain
convergence of coefficients, even under the presence of fiber components in the
limit.

Proposition 3.3. Given the data p : (M, J) → CP1, J0, s0, s1, C, ar of
Proposition 2.6(3) assume that Jn is a sequence of almost complex structures
making p pseudo-holomorphic and so that Jn = J0 on a neighbourhood of
H ∪ p−1

(
p(C̄ ∩ H) ∩ p(C̄ ∩ S)

)
∪

⋃
Fa that is independent of n. Let {Cn}n be

a sequence of Jn-holomorphic curves converging to C = C̄ +
∑

a maFa in the
C0-topology. Let a0,n be holomorphic sections of Lk+de with zero locus p(Cn∩H)
converging uniformly to a0.

Then the sections ar,n of Lk+(d−r)e corresponding to Cn converge uniformly
to ar for all r.

Proof. From Proposition 2.6(3) the ar,n fulfill equations

∂̄ar,n = br,n(a0,n, . . . , ad,n),

with uniformly bounded right-hand side. Cover CP1 with 2 disks intersecting
in an annulus Ω whose closure does not contain any zeros of a0. Then H∩|C|∩
p−1(Ω) = ∅. Thus over Ω the branches of Cn stay uniformly bounded away
from H; hence the ar,n are uniformly bounded over Ω. The Cauchy integral
formula on each of the two disks implies a uniform estimate∥∥ar,n

∥∥
1,p

≤ c ·
(∥∥∂̄ar,n

∥∥
p
+

∥∥ar,n|Ω
∥∥
∞

)
.

Therefore, in view of boundedness of br,n everywhere and of ar,n on Ω we
deduce a uniform estimate on the Hölder norm∥∥ar,n

∥∥
0,α

≤ c′.

Thus it suffices to prove pointwise convergence of the ar,n on a dense set.
Away from the zeros of a0 union

⋃
a p(Fa) convergence follows from Propo-

sition 3.2. In fact, the quotients ar,n/a0,n occur as coefficients of the local
section

sd
0 + p∗(a1,n/a0,n)sd−1

0 s1 + · · · + p∗(ad,n/a0,n)sd
1 = 0

of M [d]\Hd; see Proposition 2.6(2). These sections correspond to a sequence of
pseudo-holomorphic curves converging to a pseudo-holomorphic cycle without
fiber components as considered in Proposition 3.2.

Note that since C0-convergence Cn → C implies convergence of the
0-cycles H ∩ Cn → H ∩ C, any sequence of holomorphic sections a0,n with
zero locus p(Cn ∩ H) converges after rescaling.
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4. Unobstructed deformations of pseudo-holomorphic cycles

We are interested in finding unobstructed deformations of a pseudo-holo-
morphic cycle C in a pseudo-holomorphic S2-bundle. In the relevant situations
this is possible after changing the almost complex structure. In this section
we give sufficient conditions for unobstructedness, while the construction of an
appropriate almost complex structure occupies the next section.

The describing PDE follows from Proposition 2.6(3). Recall the assump-
tions there: J integrable near |C|, standard fiberwise and near H union all
fiber components of |C| union p−1

(
p(|C̄| ∩ H) ∩ p(|C̄| ∩ S)

)
. In the nota-

tion of loc.cit., to set up the operator choose T ⊂ O(Lk+de), and an open
D′ ⊂

⊕d
r=1 Lk+(d−r)e with

a0(CP1) ×CP1 D′ ⊂ D for all a0 ∈ T.

Take p > 2 and write W 1,p
CP1(D′) ⊂

⊕d
r=1 W 1,p(CP1, Lk+(d−r)e) for the open set

of Sobolev sections taking values in D′. View PDE (2) in Proposition 2.6 as a
family of differentiable maps

W 1,p
CP1(D′)−→

d⊕
r=1

Lp(CP1, Lk+(d−r)e ⊗ Λ0,1
CP1),(6)

(ar)r=1,...,d �−→
(
∂̄ar − br(a0, a1, . . . , ad)

)
r=1,...,d

,

parametrized by a0 ∈ T . Because the br depend holomorphically on ar the
linearization of this map takes the form

W 1,p
( ⊕d

r=1 Lk+(d−r)e
)
−→ Lp

( ⊕d
r=1 Lk+(d−r)e ⊗ Λ0,1

CP1

)
, v �−→ ∂̄v − R · v.

Here R is a d × d-matrix with entries in Hom
(
Lk+(d−r)e, Lk+(d−r′)e ⊗ Λ0,1

CP1

)
.

Proposition 4.1. Assume that there exists a J-holomorphic section
S ⊂ M representing H − eF and that k ≥ 0. Then ∂̄ − R is surjective.
Moreover, for any Q ∈ CP1 the restriction map

ker
(
∂̄ − R

)
−→

⊕
r≥1L

k+(d−r)e
Q

is surjective.

Proof. Unlike the case of rank 1, the surjectivity of ∂̄ −R does not follow
from topological considerations. Instead we are going to identify the kernel of
this operator with sections of the holomorphic normal sheaf

NC|M = Hom(I/I2,OC)

of C in M , with zeros along H. Here I is the ideal sheaf of the possibly
nonreduced subspace C of a neighbourhood of |C| in M where J is integrable.
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The cokernel of ∂̄ − R is then isomorphic to H1(NC|M (−H)), which in turn
vanishes by an essentially topological argument. The proof proceeds in three
lemmas.

Local solutions of ∂̄v−R ·v = 0 form a locally free OCP1-module K of rank
d, that is, the sheaf of holomorphic sections of a holomorphic vector bundle
over CP1 of rank d. Similarly, because p is holomorphic in a neighbourhood of
C the push-forward sheaf

p∗(NC|M (−H)) : U �−→ NC|M (−H)
(
p−1(U)

)
is a locally free OCP1-module of the same rank d.

Lemma 4.2. K � p∗
(
NC|M (−H)

)
.

Proof. This correspondence holds for any base B, so let us write B instead
of CP1 for brevity. Consider first the case with C smooth and transverse to
H and p : C → B having only simple branch points. Then NC|M is the
sheaf of holomorphic sections of

(
TM |C

)
/TC . Let a be the section of M [d]

associated to C according to Proposition 2.4. Away from the critical points
of p|C the inclusion TM/B → TM induces an isomorphism TM/B|C � NC|M .
Let Θ be a holomorphic section of TM/B(−H) along C ∩ p−1(U), U ⊂ B open.
Since TMd

B/B =
⊕

q∗i (TM/B), qi : Md
B → M the ith projection, Θ induces

an Sd-invariant holomorphic section Θ̃ of TMd
B/B over C ×B · · · ×B C ⊂ Md

B.
Recall the symmetrization map Φ : Md

B → M [d] from Proposition 2.2. By the
definition of the almost complex structure on M [d] this map is holomorphic
near C ×B · · ·×B C. Thus Φ∗(Θ̃) is a holomorphic section of a∗(TM [d]/B). The
vanishing of Θ on C∩H translates into the vanishing of the normal component
of Φ∗(Θ̃) along the divisor Hd ⊂ M [d] introduced before Proposition 2.6. In
other words, Φ∗(Θ̃) is a section of a∗(TM [d]/B(− log Hd)

)
. It is clear that this

sets up an isomorphism between p∗(NC|M (−H)) and a∗(TM [d]/B(− log Hd)
)
.

We claim that the module of sections over U of the latter sheaf is canonically
isomorphic to K. Then define

Ψ : p∗
(
NC|M (−H)

)
−→ K

away from the critical points of p|C by sending Θ to Φ∗(Θ̃).
To prove the claim we have to characterize holomorphic sections of TM [d]/B

along the image of a in the coordinates (z, w) : M \ (H ∪ F ) → C2. Let
σ1, . . . , σd be the fiberwise holomorphic coordinates on M [d] induced by w; see
Proposition 2.2. Let

Z = ∂z̄ + β1∂σ1 + · · · + βd∂σd

be the antiholomorphic horizontal vector field defining the complex struc-
ture. A locally defined function f is holomorphic if and only if it is fiber-
wise holomorphic and if Zf = 0. Thus a fiberwise holomorphic local sec-
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tion Θ =
∑

r hr∂σr
of TM [d]/B is holomorphic if and only if Z(Θf) = 0 for

every fiberwise holomorphic function f with Zf = 0. For such f we have
Z(Θf) =

∑
i,j(Zhj − hi∂σi

βj)∂σj
f . Expanding and comparing coefficients

gives

∂z̄hj +
∑

i

(βi∂σi
hj − hi∂σi

βj) = 0,(7)

for all i, j. Now a local section
∑

r νr(z)∂σr
of a∗(TM [d]/B

)
is holomorphic if

and only if there exists a local holomorphic section
∑

r hr∂σr
of TM [d]/B with

νr = hj ◦ a. Since ∂z̄αr = βr(z,a) equation (7) then implies

∂z̄νr −
∑

jνj∂σj
βr|(z,a) = 0.(8)

Conversely, if the latter equation is fulfilled, there exist fiberwise holomorphic
hr fulfilling (7) and with νr = a∗hr. So (8) is the desired characterization of
holomorphic sections of a∗(TM [d]/B

)
. Rescaling the coordinates σr by a0 leads

to v = (a0ν1, . . . , a0νd). Noting that br = a0βr we see that v corresponds to a
holomorphic section of a∗(TM [d]/B

)
if and only if ∂̄v − R · v = 0.

The map Ψ is an isomorphism wherever defined so far. To finish the case
where C is smooth, transverse to H and with only simple branch points it
remains to extend Ψ over the critical points of p|C . As we are in a purely
holomorphic situation now we are free to work in actual holomorphic coordi-
nates. Note that if C splits into several connected components then M [d] is
naturally a fibered product with one factor for each component of C. Since
our isomorphism Ψ respects this decomposition the problem is local in C. We
may therefore assume C to be defined by u2 − z = 0 with u, z holomorphic
coordinates and z descending to B. In this case ∂z and −u∂z are a frame for
p∗(NC|M ). Away from z = 0 take linear combinations with 2u∂z + ∂u ∈ TC to
lift to TM/C . Thus

∂z = − 1
2u

∂u, −u∂z =
1
2
∂u

in NC|M . Compute

Ψ(∂z) = −Ψ
(

1
2u∂u

)
= −

(
σ1
2σ2

∂σ1 + σ2
1−2σ2

2σ2
∂σ2

)∣∣
σ1=0
σ2=0

= ∂σ2

Ψ(−u∂z) = Ψ
(

1
2∂u

)
=

(
∂σ1 + σ1

2 ∂σ2

)∣∣
σ1=0
σ2=0

= ∂σ1 .

Therefore Ψ is extended to an isomorphism over all of B.
For the general case we know by [SiTi1] that locally in B there exists

a holomorphic deformation {Cs}s of C over the 2-polydisk ∆2, say, with Cs

smooth and with p|Cs
only simply branched for all s �= 0. The previous reason-

ing gives an isomorphism of holomorphic vector bundles over B × (∆2 \ {0}).
Since the vector bundles extend over B×{0} this morphism extends uniquely.
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Define Ψ as the restriction of this extension to B × {0}. Then Ψ is an iso-
morphism because the determinant of the extension does not vanish in codi-
mension 1; and it is unique because any two deformations of C fit into a joint
deformation with the locus of nonsimply branched curves having higher codi-
mension.

Lemma 4.3. Let C =
∑r

a=0 maCa, ma > 0, be a compact holomorphic
1-cycle on a complex manifold X of dimension 2 and let L be a holomorphic
line bundle over C. Assume that for all 0 < r′ ≤ r, 0 ≤ m < ma:

c1(L) · C0 < 0, and c1(L) · Cr′ < mC2
r′ +

∑r′−1
a=0 maCa · Cr′ .

Then H0(C, L) = 0.

Proof. By induction over
∑

ma. We identify effective 1-cycles with com-
pact complex subspaces without further notice. If

∑
ma = 1 we are dealing

with a holomorphic line bundle of negative degree over a reduced space C = C0,
which has no nonzero global sections. In the general case let L be the sheaf of
holomorphic sections of L and s ∈ H0(C, L). The effective cycle C ′ = C − Cr

fulfills the induction hypothesis. In view of the exact sequence

0 −→ L⊗ IC′/C −→ L|C −→ L|C′ −→ 0,

the section s lifts to L ⊗ IC′/C . Because ICr
· IC′ = IC the second factor is

IC′/IC = IC′ ⊗OX/ICr
= OCr

(−C ′).

Thus L ⊗ IC′/C is the sheaf of holomorphic sections of a line bundle over Cr

of degree

degCr

(
L ⊗ IC′/IC

)
= c1(L) · Cr − C ′ · Cr

= c1(L) · Cr −
∑r−1

a=0maCa · Cr − (mr − 1)C2
r ,

which is < 0 by assumption. Hence s vanishes identically.

Lemma 4.4. If k ≥ 0 then H1(C,NC|M (−H)) = 0 and p∗(NC|M (−H)) is
globally generated.

Proof. By Serre duality on C

H1(NC|M (−H))∨ � H0(C, I/I2(H) ⊗ KM (C)) = H0(C, KM (H)|C).

Now the first part of the statement follows by Lemma 4.3 above with L =
KM (H). To verify the hypotheses write C =

∑r
a=0 maCa with Ca = S at

most for a = r > 0. If Ca ∼ daH + kaF then for a < r

0 ≤ S · Ca = ka,
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and ka = 0 only if da > 0. Hence C2
a = d2

ae + 2daka ≥ 0 and

degCa
KM (H) = −(daH + kaF ) · (H + (2 − e)F ) = −(2da + ka) < 0.

If Cr = S then degCr
KM (H) = e − 2,∑r−1

a=0maCa ∼ dH + kF − mrS = (d − mr)H + (k + mre)F,

and, for 0 ≤ m < mr,

mC2
r +

∑r−1
a=0maCa · Cr = −me + (k + mre) ≥ k + e.

Hence in any case the inequalities required in Lemma 4.3 hold.
Global generation follows by a standard dimension argument with the

Riemann-Roch formula provided H1(NC|M (−H − F )) = 0. This is also true
here because degCa

KM (H+F ) = −(da+ka) < 0 and degS KM (H+F ) = e−1.

In summary, Lemma 4.2 identified the sheaf of local solutions of ∂̄v−B ·v
= 0 with p∗(NC|M (−H)). Because ∂̄ − B is locally surjective, standard argu-
ments of cohomology theory then give an identification

coker
(
∂̄ − B

)
� H1

(
CP1, p∗(NC|M (−H))

)
.

Because p|C is a finite morphism the latter sheaf equals H1(C,NC|M (−H)).
The latter vanishes by Lemma 4.4. Moreover, since by the same lemma
p∗(NC|M (−H)) is globally generated, so is K. This gives the claimed sur-
jectivity of the restriction.

Remark 4.5. In place of Proposition 2.6 and Proposition 4.1 one can use
the fact from complex analytic geometry that the moduli space of compact
complex hypersurfaces in a complex manifold X is smooth at points C with
H1(C,NC|X) = 0. Since this result is not trivial we prefer to give the elemen-
tary if somewhat cumbersome explicit method described here.

Surjectivity of ∂̄ − B implies a parametrization of pseudo-holomorphic
deformations of C by a finite-dimensional manifold. Our unobstructedness
result, Proposition 4.7 below, states this in a form appropriate for the isotopy
problem. In the proof we need the following version of the Sard-Smale theorem.

Proposition 4.6. Let S, X, Y be Banach manifolds, Φ : S × X → Y

a smooth map with Φ|{s}×X Fredholm for all s ∈ S. If Z ⊂ Y is a direct
submanifold (the differential of the inclusion map has a right-inverse) that is
transverse to Φ then the set

{s ∈ S |Φ|{s}×X is transverse to Z}
is of second category in S.

Proof. Apply the Sard-Smale theorem to the projection Φ−1(Z) → S.
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Proposition 4.7. Let p : (M, J0) → CP1 be a holomorphic CP1-bundle
with H, S disjoint holomorphic sections, H · H ≥ 0. For U, V ⊂ M open sets
with H ⊂ V consider the space JU,V of almost complex structures J on M with
J = J0 fiberwise and on V , integrable on U and making S holomorphic. Write

MU,V :=
∐

J∈JU,V

MJ

with MJ the space of J-holomorphic cycles in M .
Assume that C = C̄ +

∑
maFa is a J-holomorphic cycle homologous to

dH +kF with d > 0, k ≥ 0, for J ∈ JU,V with |C| ⊂ U , H �⊂ |C|, V containing
H∪p−1

(
p(|C̄|∩H)∩p(|C̄|∩S)

)
∪

⋃
Fa. Here C̄ contains all nonfiber components

of C. Then

(1) MU,V and MJ are Banach manifolds at C.

(2) The map MU,V → JU,V is locally around C a projection.

(3) The subset of singular cycles in MJ is nowhere dense and does not locally
disconnect MJ at C. Similarly for MU,V .

Proof. In Proposition 4.1 we established surjectivity of the linearization
of the map (6). An application of the implicit function theorem with J ∈ JU,V

and a0 as parameters thus establishes (1) and (2).
We show the density claim in (3) for MJ , the case of MU,V works anal-

ogously. For the time being assume that C has no fiber components. Apply
Proposition 4.6 with S ⊂ MJ an open neighbourhood of {C} and

Φ : S × CP1 −→ M [d], (C ′, Q) �−→ C ′ ∩ p−1(Q).

For the definition of M [d] see Section 2. This map is well-defined for C ′ close to
C by the absence of fiber components. In local coordinates provided by Propo-
sition 2.6(1) it is evaluation of (a0, . . . , ad) at points of CP1, hence smooth. For
Z ⊂ M [d] choose the strata Di ⊂ M [d] of the discriminant locus parametriz-
ing 0-cycles

∑
maCa with fixed partition d =

∑
ma indexed by i. The top-

dimensional stratum D0 parametrizes 0-cycles with exactly one point of mul-
tiplicity 2; it is a locally closed submanifold of M [d] of codimension 2. All
other strata Di, i > 0, have codimension at least 4. Since X and Y are finite-
dimensional here, the Fredholm condition is vacuous. Transversality of Φ to
Z = Di follows for all i from the following lemma.

Lemma 4.8. For any Q ∈ CP1 the map

MJ −→ Sd(p−1(Q)) � CPd

is a submersion at C.
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Proof. On solutions of the linearized equation ∂̄v−B ·v = 0 the differential
of the map in question is evaluation at Q. The claim thus follows from the
surjectivity statement in Proposition 4.1.

Now since codimR Di > 2 for i > 0 transversality of Φ|{C′}×CP1 means that
p−1(Q)∩C ′ has no point of multiplicity larger than 2, for all Q ∈ CP1. On the
other hand, by Proposition 2.8 transversal intersections with D0 translate into
smooth points P of C ′ with the projection C ′ → CP1 being simply branched
at P .

For the remaining part of claim (3) we apply Proposition 4.6 with S the
space of paths

γ : [0, 1] → MJ

connecting two smooth curves C ′, C ′′ sufficiently close to C. The map is

Φ : S ×
(
[0, 1] × CP1) −→ M [d], (γ, t, Q) �−→ γ(t) ∩ p−1(Q).

and Z runs over the Di as before. Again, transversality follows by Lemma 4.8.
For dimension reasons we still obtain γ(t) ∩ Di = ∅ for i > 0. It remains to
argue that not only γ is transverse to D0 but even γ(t) is for every t ∈ [0, 1].
Let W ⊂ [0, 1] × CP1 be the one-dimensional submanifold of (t, Q) with γ(t)
having a point of multiplicity 2 over Q. Let v ∈ TCP1 be in ker(Dq) where q is
the projection

q : W → [0, 1].

Then since D0 ⊂ M [d] is an analytic divisor and the differential of Φ along
t = const is complex linear, it follows that i · v is also in ker(Dq). But W is
one-dimensional, so v = 0 as had to be shown. This finishes the proof, provided
C does not have fiber components.

In the general case let Z ⊂ MJ be the subset of cycles with fiber com-
ponents. A cycle C ′ ∈ Z has a unique decomposition C ′ = C̄ ′ +

∑
maFa

for certain fibers Fa and with C̄ ′ ∼ dH + (k −
∑

ma)F . The space of such
configurations is of real codimension 2d

∑
a ma. Therefore Z is a union of sub-

manifolds of real codimension at least 2, and these may be avoided in any path
by small perturbations. Apply the previously established density result to this
perturbed path to obtain a path of smooth cycles.

5. Good almost complex structures

Our objective is now to construct an almost complex structure J as re-
quired in Proposition 4.7, making an arbitrary pseudo-holomorphic curve in a
pseudo-holomorphic S2-bundle J-holomorphic. In the next result, we construct
an appropriate integrable complex structure J0.
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Lemma 5.1. Let p : M → S2 be an S2-bundle and let JM/B be a complex
structure on the fibers of p. Let H, S ⊂ M be disjoint sections. Then there
exists an integrable complex structure J0 on M with J0|TM/B

= JM/B, making
p a holomorphic map and H, S holomorphic divisors.

Moreover, if U ⊂ S2 is an open subset and f : p−1(U) → U × S2 is
a trivialization mapping H, S to constant sections then J0 may be chosen to
make this trivialization holomorphic.

Proof. Since S · S = −H · H we may assume H · H ≥ 0. Put e := H · H,
and let F be a fiber with F ⊂ p−1(U) if U �= ∅. Denote by P the intersection
point of H and F . It suffices to produce a map

f : M \ {P} −→ CP1

with the following properties.

(1) f |p−1(Q) is a biholomorphism for every Q ∈ S2 \ p(F ).

(2) f−1(0) = H \ {P}, f−1(∞) ⊂ (S ∪ F ) \ {p}.

(3) There exists a complex coordinate u on an open set U ′ ⊂ S2 containing
p(F ) so that

p∗(u)e · f : p−1(U ′) \ (H ∪ S ∪ F ) −→ C

extends differentiably to a map p−1(U ′) → CP1 inducing a biholomor-
phism F → CP1.

In fact, away from F this map may be used to define a holomorphic trivializa-
tion of p, while near F one may take p∗(u)e · f .

Since H · H = e, a tubular neighbourhood of H is diffeomorphic to a
neighbourhood of the zero section in the complex line bundle of degree e over
CP1. Let z, w be complex coordinates near P with z = p∗(u), w fiberwise
holomorphic and H given by w = 0. Consider the zero locus of w − ze. This
is a local section of p intersecting H at P of multiplicity e = H · H. Hence
this zero locus extends to a section H ′ isotopic to H and with H ∩ H ′ ⊂ {P},
H ′ ∩ S = ∅. Under the presence of a trivialization over U ⊂ S2 mapping H, S

to constant sections, choose H ′ holomorphic over U .
Away from F we now have an S2-bundle with three disjoint sections

and fiberwise complex structure. The uniformization theorem thus provides
a unique map f : M \ F → CP1 that is fiberwise biholomorphic and maps
H, H ′, S to 0, 1,∞ respectively.

It remains to verify (3). Take for u the function with z = p∗(u) as before.
Multiplying f by a constant λ �= 0 on sections has the effect of keeping H and
S fixed, but scaling H ′ = f−1(1) by λ−1. Thus p∗(u)e · f corresponds to the
family with H ′ replaced by the graph of ze/p∗(ue) ≡ 1. This family extends
over u = 0.
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We are now in position to construct an almost complex structure so that
a given pseudo-holomorphic cycle has unobstructed deformations.

Lemma 5.2. Let p : (M, J) → CP1 be a pseudo-holomorphic S2-bundle
and H, S disjoint J-holomorphic sections. Let C ⊂ M be a J-holomorphic
curve.

Then for every δ > 0 there exist a C1-diffeomorphism Φ : M → M and an
almost complex structure J̃ on M with the following properties.

(1) Φ is smooth away from a finite subset A ⊂ M , and DΦ|A = id, Φ(S) = S,
Φ(H) = H.

(2) ‖DΦ − id ‖∞ < δ, Φ|M\Bδ(A) = id.

(3) Φ(C) and H, S are J̃-holomorphic.

(4) p : (M, J̃) → CP1 is a pseudo-holomorphic S2-bundle.

(5) J̃ is integrable in a neighbourhood of |C|.

(6) There exists an integrable complex structure J0 on M and an open set
V ⊂ M containing H and all fiber components of C, so that J̃ = J0

fiberwise and on V .

Proof. Define F = p−1(∞). Without restriction we may assume F ⊂ C

and S, H �⊂ C. Decompose C = C̄ ∪
⋃

a Fa with the second term containing
the fiber components. To avoid discussions of special cases replace C by the
closure of p−1

(
p(C̄ ∩ H)

)
. For the construction of J0 we would like to apply

Lemma 5.1. However, since we want J̃ = J0 near the fiber components of C

and DΦ|A = id, it is not in general possible to achieve J0|TM/CP1
= J |TM/CP1

.
For each Q ∈

(
C̄ ∩

⋃
a Fa

)
\ (H ∪ S) take a local J-holomorphic section Di of

p through Q. For each a there exists a local trivialization p−1(Va) = Va ×CP1

restricting to a biholomorphism (Fa, J |TFa
) → CP1 and sending Di and H, S

to constant sections. Define the fiberwise complex structure JM/CP1 near the
Fa by pulling back the complex structure on CP1 via these trivializations.
Extend this to the rest of M arbitrarily. Now define the reference complex
structure J0 by applying Lemma 5.1 with the data M, JM/CP1 , S, H and the
chosen trivialization near

⋃
Fa.

Next we construct the diffeomorphism Φ. Put

A = (C ∪ H ∪ S)sing ∪ Crit(p|C̄reg
),

where Crit(.) denotes the set of critical points of a map. This is a finite set.
For each P ∈ A let z, w be J0-holomorphic coordinates near P with z = p∗(u),
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z(P ) = w(P ) = 0. If P ∈ H ∪ S we also require w(H ∪ S) = {0}. Let b(z, w)
be the function defining J near P via T 0,1

M,J = 〈∂w̄, ∂z̄ + bP ∂w〉. Then

ΨP = (z, w − bP (0, 0)w̄) : VP −→ C2

is a chart for M mapping J |P to the standard complex structure on TC2,0.
Note that in this chart p is the projection onto the first coordinate of C2. Now
ΨP (C∩VP ) is pseudo-holomorphic with respect to an almost complex structure
agreeing at 0 ∈ C2 with the standard complex structure I on C2. Thus Theo-
rem 6.2 of [MiWh] applies. It gives a diffeomorphism ΦP of a neighbourhood of
the origin in C2 of class C1 mapping ΨP (C ∩ VP ) to a holomorphic curve, and
with DΦP |0 = id. Moreover, by our choices ΨP (H ∪S) is already holomorphic
and hence, by the construction in [MiWh] remains pointwise fixed under ΦP .
Therefore there exists, for any sufficiently small δ > 0, a diffeomorphism Φ of
M with

Φ|M\Bδ(A) = id, ‖DΦ‖ < δ, Φ|Bδ/2(P ) = Ψ−1
P ◦ ΦP ◦ ΨP ∀P ∈ A,

and with Φ|H = id, Φ|S = id. This is the desired diffeomorphism of M .
For the definition of J̃ observe that on Bδ/2(P ), for δ sufficiently small

and P ∈ A, the transformed curve Φ(C) is pseudo-holomorphic with respect
to Ψ∗

P (I). On this part of M define J̃ = Ψ∗
P (I). For P ∈ A ∩ (H ∪ S ∪

⋃
Fa),

moreover, bP ≡ 0; hence Ψ∗
P (I) = J0. This is true at Fa ∩ C̄ by the definition

of J0, and for P ∈ (H ∪ S) ∩ C̄ because p and H, S are pseudo-holomorphic
for both J and J0. Therefore we may put J̃ = J0 on Bδ/2(H ∪ S ∪

⋃
Fa) for δ

sufficiently small. So far we have defined J̃ on V := Bδ/2(A ∪ H ∪ S ∪
⋃

Fa).
To extend to the rest of M let

w : M \ (H ∪ F ) −→ C
be the restriction of a meromorphic function on (M, J0) inducing a biholomor-
phism on each fiber as in the proof of Lemma 5.1. Let u : CP1 \ p(F ) � C and
put z = p∗(u). To define J̃ agreeing with J0 fiberwise is equivalent to giving a
complex valued function b via

T 0,1

M,J̃
= 〈∂w̄, ∂z̄ + b(z, w)∂w〉;

see Lemmas 1.5, 1.6. The condition that Φ(C) be pseudo-holomorphic pre-
scribes b along Φ(Creg). Moreover, J̃ coincides with J0 near H ∪F if and only
if b has compact support, and the already stated definition of J̃ on V forces b

also to vanish there. This fixes b on Φ(C) ∪ V .

Lemma 5.3. There exists an extension of b to C2 with compact support
and so that ∂w̄b = 0 in a neighbourhood of Φ(C).

Proof. Let P ∈ Φ(Creg) be a noncritical point of Φ(Creg) → CP1. In a
neighbourhood UP ⊂ M of P write Φ(C) as graph w = λ(z). We define

bP (z, w) = ∂z̄λ(z)
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on UP . Cover a neighbourhood of Φ(C) \ V with finitely many such UP . Let
{ρP } be a partition of unity subordinate to the cover {UP ∩Φ(C)} of Φ(C)\V .
For any P the projection p|UP∩Φ(C) is an open embedding. Hence there exists
a function σP on p(UP ∩ Φ(C)) with ρP = p∗(σP )|Φ(C). Then p∗(σP )|UP

is a
partition of unity for {UP } in a neighbourhood U of Φ(C) \ V in M . Put

b(z, w) =
{ ∑

P σP (z) · bP (z, w), (z, w) ∈ U

0 (z, w) ∈ V.

For well-definedness it is crucial that w be globally defined on M \ (H ∪ F ).
Now b(z, w) is a smooth function on a neighbourhood of

(
V ∪Φ(C)

)
\ (H ∪F )

in M with the desired properties. Extend this arbitrarily to M \ (H ∪F ) with
compact support.

To finish the proof of Lemma 5.2 it remains to remark that J̃ keeps p

pseudo-holomorphic by construction.

The results of this and the last section will be useful for the isotopy prob-
lem in combination with the following lemma (cf. also [Sh, Lemma 6.2.5]).

Lemma 5.4. In the situation of Lemma 5.2 let {Jn}n be a sequence of al-
most complex structures making p pseudo-holomorphic and converging towards
J in the C0-topology on all of M and in the C0,α

loc -topology on M \A. For every n

let Cn be a smooth Jn-holomorphic curve with Cn ∩A = ∅ and so that Cn → C

in the C0-topology. Let Φ, J̃ be a diffeomorphism and almost complex structure
from the conclusion of Lemma 5.2.

Then, possibly after going over to a subsequence, there exists a finite set
Ã ⊂ M containing A and almost complex structures J̃n with the following
properties.

(1) p is J̃n-holomorphic.

(2) Φ(Cn) is J̃n-holomorphic.

(3) J̃n → J̃ in C0 on M and in C0,α
loc on M \ Ã.

An analogous statement holds for sequences of paths {Cn,t}t, {Jn,t}t uni-
formly converging to C and J respectively.

Proof. By the Gromov compactness theorem a subsequence of the Cn

converges as stable maps. Note that C0-convergence of the almost complex
structures is sufficient for this theorem to be applicable [IvSh]. If ϕ : Σ → M

is the limit then C = ϕ∗(Σ). Define Ã as the union of A and of Φ◦ϕ of the set
of critical points of p◦Φ◦ϕ. Note that by the definition of convergence of stable
maps, away from Ã the convergence Φ(Cn) → Φ∗(C) is as tuples of sections.
In other words, for P ∈ Φ(|C|) \ Ã, say of multiplicity m in C, there exists a
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neighbourhood UP of P and disjoint Jn-holomorphic sections λ1,n, . . . , λm,n of
p over p(UP ) so that

λi,n
n→∞−→ λ, i = 1, . . . , m,

and λ has image Φ(|C|) ∩ UP . By elliptic regularity and C0,α-convergence of
the Jn away from A this convergence is even in C1,α. To save on notation
we now write C, Cn, Jn instead of Φ∗(C), Φ(Cn), Φ∗(Jn) respectively. The
assumptions remain the same except that Jn may only be continuous at points
of A.

A diagonal argument reduces the statement to convergence in
C0,α(M \ Bε(Ã)) for any fixed small ε > 0 in place of C0,α

loc -convergence on
M \ Ã. The construction of J̃n proceeds on three types of regions, which are
M \ Bε/2(|C|), B3ε(Ã), and Bε(|C|) \ B2ε(A).

On M \ Bε/2(|C|) take J̃n = J̃ . For the definition near Ã observe that
Jn fulfills all requirements except that it is possibly only continuous at A.
However, since the distance δn from Cn to A is positive, there exist smooth
J̃n agreeing with Jn away from Bδn/2(A) and still converging to J̃ in the
C0-topology.

The interesting region is Bε(|C|) \ Bε/2(A). Let z = p∗(u), w be local
complex coordinates on M near some P ∈ |C| with u holomorphic and w

fiberwise J̃-holomorphic. Assume that

w = λi,n(z), i = 1, . . . , m,

describe the branches of Cn near P as above. Since p is pseudo-holomorphic
but w need not be fiberwise Jn-holomorphic, the almost complex structure Jn

is now equivalent to two functions an, bn via

T 0,1
M,Jn

= 〈∂z̄ + bn∂w, ∂w̄ + an∂w〉.

A section φ(z) = (z, λ(z)) is Jn-holomorphic if and only if

φ∗∂z̄ = ∂z̄ + ∂z̄λ ∂w + ∂z̄λ̄ ∂w̄

lies in T 0,1
M,Jn

. This is the case if and only if

φ∗∂z̄ = (∂z̄ + bn∂w) + ∂z̄λ̄(∂w̄ + an∂w).

Comparing coefficients gives the equation ∂z̄λ = bn + an∂z̄λ̄. Thus pseudo-
holomorphicity of the ith branch of Cn is equivalent to the equation

∂z̄λi,n − an(z, λi,n)∂z̄λ̄i,n = bn(z, λi,n).

To define J̃n fiberwise agreeing with J̃ requires a function b̃n with

∂z̄λi,n = b̃n(z, λi,n)

for all i.
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The intersection of the fibers of p with Bε(|C|) defines a family of closed
disks ∆z near P , |z| � 1. Take a triangulation of ∆0 with vertices Cn ∩∆0 in
the interior of ∆0 as in the following figure.

λi,n

Triangulation of Cn ∩ ∆0.

The lines in the interior are straight in the w-coordinate. Take δ so small
that the triangulation deforms to ∆z for all |z| ≤ δ. Let fP,n be the fiberwise
piecewise linear function on Bε(|C|)∩{|z| < δ} restricting to ∂z̄λi,n − b̃(z, λi,n)
along the ith branch of Cn and vanishing at the vertices on the boundary.

Lemma 5.5. ∣∣∇(λi,n − λj,n)
∣∣∣∣λi,n − λj,n

∣∣α −→ 0.

Proof. The difference u = λi,n − λj,n of two branches fulfills the elliptic
equation

∂z̄u − an(z, λi,n)∂z̄ū

=
(
an(z, λi,n) − an(z, λj,n)

)
∂z̄λ̄j,n + bn(z, λi,n) − bn(z, λj,n).

Elliptic regularity gives an estimate

‖∇u‖0,α ≤ c ·
(
‖an‖0,α‖λ‖1,α + ‖bn‖0,α + 1

)
· ‖u‖α

∞,

with c not depending on n. This implies the desired convergence.

The lemma implies that the Hölder norm of fP,n tends to 0 for
n → ∞. Let f̃P,n be a smoothing of fP,n agreeing with fP,n at the vertices of
the triangulation and so that

‖f̃P,n‖0,α ≤ ‖fP,n‖0,α + n−1.

Then near P the desired almost complex structure J̃n will be defined by b̃P,n =
f̃P,n + b̃.

To glue, keeping Cn and p pseudo-holomorphic, we observe that our local
candidates for J̃n fiberwise all agree with J̃ . It therefore suffices to glue the
corresponding sections β̃n of T 0,1

M/CP1 ⊗ p∗(Λ0,1
CP1) (Lemma 1.6) using a partition
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of unity. Since Lemma 1.6 requires a fiberwise coordinate π = w do this
in three steps: First on a neighbourhood of a general fiber, minus a general
section, then in a neighbourhood of H, and finally on M \ (H ∪ F ).

The statement for paths {Cn,t}, {Jn,t} follows locally in t by the same
reasoning with an additional parameter t; extend this to all t with a partition
of unity argument.

6. Generic paths and smoothings

In this section we discuss the existence of certain generic paths of al-
most complex structures. Let p : (M, ω, J) → CP1 be a symplectic pseudo-
holomorphic S2-bundle. For the purpose of this section J denotes the space
of tamed almost complex structures on M making p pseudo-holomorphic. En-
dowed with the Cl-topology J is a separable Banach manifold.

We will use the following notion of positivity.

Definition 6.1. An almost complex manifold (M, J) is monotone if for
every J-holomorphic curve C ⊂ M it holds

c1(M) · C > 0.

Lemma 6.2. For any J in a path-connected Baire subset Jreg ⊂ J there
exist disjoint J-holomorphic sections S, H ⊂ M with H2 = −S2 ∈ {0, 1}.
Moreover, such J enjoy the following properties:

(1) Any irreducible J-holomorphic curve C ⊂ M not equal to S is homologous
to

dH + kF, d, k ≥ 0,

where F is the class of a fiber.

(2) (M, J) is monotone (Definition 6.1).

In particular, there are no J-holomorphic exceptional spheres on M except
possibly S.

Proof. For J = I the (generic) integrable complex structure S is a holo-
morphic section of minimal self-intersection number. Then c1(M, J) is Poincaré
dual to

2S + (2 − S · S)F.

We first consider the case M = F1. The expected complex dimension of the
space of smooth J-holomorphic spheres representing S is

c1(M, J) · S + dimC(M) − dimC Aut(CP1) = (2S + 3F ) · S − 1 = 0.
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This is no surprise as S is an exceptional sphere. For J ∈ J any reducible
J-holomorphic curve representing S is the union of one section representing
S−lF and l > 0 fibers. The expected complex dimension of such configurations
is

(2S + 3F )(S − lF ) − 1 + l = −l.

Standard transversality arguments show that such reducible J-holomorphic
representatives of S do not occur for J in a path-connected Baire subset of J .
Note that for any curve C ⊂ M variations of J ∈ J span the cokernel of the
∂̄J -operator, so transversality indeed applies. (If C = F is a fiber the cokernel
is trivial since deformations of C as fiber span the normal bundle.)

Similar reasoning gives the existence of a J-holomorphic section H ∼
S + F . Here the expected complex dimension is 2, so we impose two incidence
conditions to reduce to dimension 0.

Now if C ∼ dH + kF is a J-holomorphic curve different from S then

0 ≤ C · S = (dH + kF ) · S = k, 0 ≤ C · F = (dH + kF ) · F = d

shows that d, k ≥ 0, d + k > 0 unless C = S. In any case

c1(M) · C = (2S + 3F ) · (dH + kF ) = 2k + 3d > 0.

For M = CP1 × CP1 we have S · S = 0, c1(M) = 2S + 2F , the expected
complex dimension of spheres representing S is 1, and the expected complex
dimension of singular configurations splitting off l fibers is 1−l. Impose one in-
cidence condition to reduce the expected complex dimensions by 1. Proceed as
before to deduce the existence of disjoint J-holomorphic sections representing
S ∼ H for generic J .

This time

0 ≤ C · H = (dH + kF ) · H = k, 0 ≤ C · F = (dH + kF ) · F = d

shows that d, k ≥ 0 with at least one inequality strict. Thus again

c1(M) · C = (2H + 2F ) · (dH + kF ) = 2k + 2d > 0

for any nontrivial C ⊂ M .

The other, much deeper genericity result that we will use, is due to
Shevchishin. For the readers convenience we state it here adapted to our
situation, and give a sketch of the proof.

Theorem 6.3 ([Sh, Ths. 4.5.1 and 4.5.3]). Let M be a symplectic 4-man-
ifold and S ⊂ M a finite subset. There is a Baire subset Jreg of the space of
tamed almost complex structures on M with the following properties.

(1) Jreg is path connected.
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(2) For a path {Jt}t∈[0,1] in Jreg let M{Jt},S be the disjoint union over
t ∈ [0, 1] of the moduli spaces of nonmultiple pseudo-holomorphic maps
ϕ : Σ → (M, Jt) with S ⊂ ϕ(Σ), for any closed Riemann surface Σ. Then
there exists a Baire subset of paths {Jt} such that M{Jt},S is a manifold,
at ϕ of dimension

2c1(M) · ϕ∗[Σ] + 2g(Σ) − 1 − 2�S,

and the projection
M{Jt},S −→ [0, 1]

is open at all ϕ except possibly if c1(M) · ϕ∗[Σ] − �S ≤ 0, g(Σ) > 0 and
ϕ is an immersion.

Proof (sketch). We assume S = ∅; the general case is similar. Let M
be the disjoint union of the moduli spaces of J-holomorphic maps to M for
every J ∈ J . Define Mreg to be the subset of pairs (ϕ : Σ → M, J) with
the cokernel of the linearization of the ∂̄J -operator at ϕ having dimension at
most 1. Let Jreg be the complement of the image of M \ Mreg in J . A
standard transversality argument shows that a generic path of almost complex
structures lies entirely in Jreg. Then one estimates the codimension of subsets
of Mreg where the cokernel is 1-dimensional. This subset is further stratified
according to the so-called order and secondary cusp index of the critical points
of ϕ. It turns out that a generic path misses all strata except possibly for the
case of order 2 and secondary cusp index 1. For this latter case, the crucial
point is the existence of explicit second order perturbations of ϕ showing that
the map

∇DN : TJ ,J −→ Hom(ker(DN,ϕ), coker(DN,ϕ))

is surjective; see [Sh, Lemma 4.4.1]. Here DN,ϕ is a ∂̄-operator on the tor-
sion free part of ϕ∗(TM )/TΣ. The implicit function theorem then allows us
to compute the dimension of strata with coker(DN,ϕ) of specified dimension.
The remaining singularities of order 2 and secondary cusp index 1 have local
expressions

ϕ(τ) =
(
τ2 + O(|τ |3), τ3 + O(|τ |3+ε)

)
,

and so are topologically ordinary cusps. Moreover, there must be at least
c1(M) · ϕ∗[Σ] cusps present.

A further ingredient of the proof is that the presence of a sufficiently
generic cusp contributes complex directions in the second variation of the ∂̄J -
equation. This implies the following: Let ϕ be a critical point of the projection
M{Jt} −→ [0, 1] and assume c1(M) · ϕ∗[Σ] > 0. Then there is a 2-dimensional
submanifold A ⊂ M{Jt} at ϕ with real coordinates x, y so that

A −→ M{Jt} −→ [0, 1], (x, y) �−→ x2 − y2.

Therefore M{Jt} −→ [0, 1] is open at ϕ.



998 BERND SIEBERT AND GANG TIAN

Remarks 6.4. 1. The proof of the theorem shows that we may restrict
ourselves to any subspace J in the space of tamed almost complex structures
on M having the following properties: For any J ∈ J and any J-holomorphic
map ϕ : (Σ, j) → M there exist variations Jt of J in J and jt of j so that
terms of the form (∂tJt, ∂tjt) span the cokernel of the linearization of the
∂̄J -operator at ϕ. Moreover, we need enough freedom in varying ∂tJt in the
normal direction to find solutions of equation (4.4.6) in [Sh].

Variations of J and j enter in the form (∂tJt) ◦ Dϕ ◦ j + J ◦ Dϕ ◦ (∂tjt)
into this linearization. Therefore, both conditions are fulfilled if, on some open
set of smooth points of ϕ(Σ) variations inside J can be prescribed arbitrarily
in the normal direction to ϕ(Σ) in M .

2. Similarly, if variations of J inside J fulfill the two conditions only on
an open subset M′ ⊂ M then the analogous conclusions of the theorem for
M′ hold true.

3. The theorem also holds if we replace S by a path {S(t)}t∈[0,1].

Proposition 6.5. If M in Theorem 6.3 is the total space of a symplectic
S2-bundle the same conclusions hold for almost complex structures making p

pseudo-holomorphic; moreover, in this case we may additionally assume that
for any J ∈ Jreg the conclusions of Lemma 6.2 hold.

Proof. By the remark, for J ∈ J the only curves that might cause prob-
lems are fibers of p. These have always unobstructed deformations. By the
same token, in the definition of Jreg we are free to remove the set of bad almost
complex structures from Lemma 6.2.

The main application of this is the existence of smoothings of J-holomor-
phic cycles occurring along generic paths of almost complex structures. Our
proof uses the unobstructedness of deformations of nodal curves in monotone
manifolds, due to Sikorav. It generalizes the well-known unobstructedness
lemma for smooth pseudo-holomorphic curves C with c1(M) · C > 0 [Gv,
2.1C1], [HoLiSk]. In the case where all components are rational the result is
due to Barraud [Ba]. For the readers convenience we include a sketch of the
proof.

Theorem 6.6 ([Sk, Cor. 2]). Let (M, J) be an almost complex manifold
and C ⊂ M a J-holomorphic curve with at most nodes as singularities and
S ⊂ C a finite set. Assume that for each irreducible component Ca ⊂ C, it
holds

c1(M) · Ca > �(Ca ∩ S).

Then a neighbourhood of C in the space of J-holomorphic cycles is parametrized
by an open set in Cd with d = (c1(M) ·C +C ·C)/2. The subset parametrizing
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nodal curves is a union of complex coordinate hyperplanes. Each such hyper-
plane parametrizes deformations of C with one of the nodes unsmoothed.

In particular, for d > 0 a J-holomorphic smoothing of C exists.

Proof (sketch). We indicate the proof for S = ∅; the general case is similar.
Let ϕ : Σ → M be the injective J-holomorphic stable map with image C.
Standard gluing techniques for J-holomorphic curves give a parametrization
of deformations of ϕ as J-holomorphic stable maps by the finite-dimensional
solution space of a nonlinear equation on S × V ; here S ⊂ CN parametrizes
a certain universal holomorphic deformation of Σ together with some marked
points and V is a linear subspace of finite codimension in a space of sections
of ϕ∗(TM ). The differential of the equation in the V -direction is Fredholm and
varies continuously with s ∈ S. The precise setup differs from approach to
approach; see for example [LiTi], [Si]. The following discussion holds for either
of these.

The statement of the theorem follows from this by two observations. First,
if Σ has r nodes then S is naturally a product S1 × S2, where S1 ⊂ Cr

parametrizes deformations of the nodes of Σ, while S2 takes care of changes
of the complex structure of the (normalization of the) irreducible components
of Σ together with points marking the position of the singular points of Σ. In
particular, the ith coordinate hyperplane in S1 corresponds to deformations
of Σ with the ith node unsmoothed. The observation is that the ∂̄J -equation
is not only differentiable relative to S but even relative to S1. In fact, vari-
ations along the S2-direction merely change the complex structure of Σ away
from the nodes. This variation is manifestly differentiable in all of the gluing
constructions.

For the second observation let Σ̂ =
∐

i Σi → Σ be the normalization
of Σ; this is the unique generically injective proper holomorphic map with Σ̂
smooth. Write ϕ̂ for the composition with ϕ. Let Dϕ be the linearization of
the ∂̄J -operator acting on sections of ϕ∗(TM ), and D̃ϕ the analogous opera-
tor with variations in the S2-directions included. There is a similar operator
DN,ϕ acting on sections of N := ϕ̂∗(TM )/dϕ̂(TΣ), see e.g. [Sh, §1.5] for details.
Both Dϕ and DN,ϕ are 0-order perturbations of the ∂̄-operator on ϕ∗(TM ) and
on N respectively, for the natural holomorphic structures on these bundles.
The adjoint of DN,ϕ thus has an interpretation as 0-order perturbation of the
∂̄-operator acting on sections of (N ⊗Λ0,1

Σ )∗ � det ϕ̂∗(T ∗
M ). Thus ker(D∗

N,ϕ) re-
stricted to Σi consists of pseudo-analytic sections of a holomorphic line bundle
of degree −c1(M) · ϕ̂∗[Σi], which is < 0 by hypothesis. Recall that solutions of
linear equations of the form ∂z̄f + α(z)∂zf + β(z)f = 0 bear much in common
with holomorphic functions. They are therefore called pseudo-analytic func-
tions; see [Ve]. One standard fact is the existence of a differentiable function g

with egf holomorphic. It follows that every zero of a pseudo-analytic section
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contributes positively. Hence a pseudo-analytic section of a complex line bun-
dle of negative degree must be trivial. This shows ker(D∗

N,ϕ) = 0 and in turn
DN,ϕ is surjective.

The point is that this well-known surjectivity implies surjectivity of D̃ϕ.
Partially descending a similar diagram of section spaces on Σ̂ to Σ gives the
following commutative diagram with exact rows:

0 −−−→ C∞(TΣ) −−−→ C∞(ϕ∗(TM )) −−−→ C∞(N) −−−→ 0

∂̄

� Dϕ

� �DN,ϕ

0 −−−→ Ω0,1(TΣ)
dϕ−−−→ Ω0,1(ϕ∗(TM )) −−−→ Ω0,1(N) −−−→ 0.

Here smoothness of a section at a node means smoothness on each branch plus
continuity. Note that the surjectivity of C∞(ϕ∗(TM )) → C∞(N) holds only in
dimension 4 and because C has at most nodes as singularities. The diagram
implies

coker(DN,ϕ) = Ω0,1(ϕ∗(TM ))
/(

dϕ
(
Ω0,1(TΣ)

)
+ Dϕ

(
C∞(ϕ∗(TM ))

))
.

This is the same as coker(D̃ϕ). In fact, D̃ϕ applied to variations of the complex
structure of Σ spans dϕ(Ω0,1(TΣ)) modulo Dϕ(C∞(TΣ)), and

Dϕ(C∞(TΣ)) ⊂ Dϕ(C∞(ϕ∗(TM ))).

Summing up, we have shown that coker(D̃ϕ) = 0, and D̃ϕ is the differential
relative S1 of the ∂̄-operator acting on sections of ϕ∗(TM ).

We are now ready for the main result of this section.

Lemma 6.7. Let (M, ω) be a symplectic 4-manifold and J a tamed al-
most complex structure. Assume that J = Jt0 for some generic path {Jt}
as in Theorem 6.3(2). Let C =

∑
a maCa be a J-holomorphic cycle with

c1(M) · Ca > 0 for all a. Suppose that Ca′ is an exceptional sphere precisely
for a′ > a0 and that

Ca′ ·
( ∑

a<a′

maCa

)
≥ ma′

holds for every a′ > a0.
Then there exists a J-holomorphic smoothing C† of C. Moreover, if

U ⊂ M is open and C|U = C1 + C2 is a decomposition without common irre-
ducible components, then there exists a deformation of C into a nodal curve C†

with all nodes contained in U and C† ∩ U is the union of separate smoothings
of C1 and C2.

Proof. Assume first that no Ca is an exceptional sphere. Let ϕa : Σa → M

be the generically injective J-holomorphic map with image Ca. Consider the



LEFSCHETZ FIBRATIONS 1001

moduli space M{Jt} of tuples of Jt-holomorphic maps

(ϕ′
a,i)a,i : (Σ1,1, . . . ,Σ1,m1 , . . . ,Σa,1, . . . ,Σa,ma

, . . . ) −→ Mm,

together with t ∈ [0, 1]. Here Σa,i denotes the closed surface underlying Σa

with some complex structure depending on i. By Theorem 6.3, M{Jt} is a
smooth manifold of expected dimension and the projection

M{Jt} −→ [0, 1]

is open at any (ϕ′
a,i). The subset of tuples (ϕ′

a,i) with one of the maps ϕ′
a,i

having a critical point is of real codimension at least 2. Similarly, since we have
excluded the possibility of exceptional spheres, the condition that ϕ′

a,i and ϕ′
a′,i′

for (a, i) �= (a′, i′) have a common tangent line is also of real codimension 2.
Thus taking {Jt} generic we may assume these configurations correspond to a
locally finite union of locally closed submanifolds of real codimension at least 2.

We may thus choose a J-holomorphic perturbation (ϕ′
a,i) of the tuple with

entries ϕa,i = ϕa avoiding the subset of singular configurations. The image of
(ϕ′

a,i) is a J-holomorphic curve C with at most nodes as singularities and
such that each component evaluates positively on c1(M). An application of
Theorem 6.6 now shows that a smoothing of C exists. This finishes the proof
under the absence of exceptional spheres.

In the general case write C = C̄ +
∑

e meEe with the second term con-
taining the exceptional spheres. The previous construction applied to C̄ yields
a smooth J-holomorphic curve Σ = C̄† ⊂ M . Because Σ contains no excep-
tional sphere and J = Jt0 , the space of smooth J-holomorphic curves with a
common tangent with E1 and homologous to Σ is nowhere dense in the space
of all such J-holomorphic maps. This follows by the same transversality argu-
ment and dimension count as in the proof of nodality in [Sh], Theorem 4.5.1.
Deforming Σ slightly we may therefore assume the intersection with E1 to be
transverse. Now apply Theorem 6.6 to Σ∪E1. Because Σ·E1 > 0 the result is a
J-holomorphic smoothing Σ1 of C̄ + E1 not containing E1. An induction over∑

e me finishes the construction. The assumption on the intersection numbers
of exceptional components with the rest of the curve guarantees that in the in-
duction process the intersection of any exceptional component with Σi remains
nonempty.

The statement on the existence of partial smoothings is clear from the
proof.

7. Pseudo-holomorphic spheres with prescribed singularities

Proposition 7.1. Let p : (M, J) → CP1 be a pseudo-holomorphic
S2-bundle. Let W ⊂ M be open and

ϕ : ∆ −→ W
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a proper, injective, J-holomorphic map. Assume that there exists an integrable
complex structure J0 on M making p a holomorphic map, and with J |W =
J0|W , J |TM/CP1

= J0|TM/CP1
.

Then for any k > 0 there exists a J-holomorphic sphere

ψk : CP1 −→ M

approximating ϕ to kth order at 0:

dM (ϕ(τ), ψk(τ)) = o(|τ |k).

Proof. Let S, H be disjoint holomorphic sections of p with e := H ·H > 0,
and F a fiber not containing ϕ(0). There exists a holomorphic map

f : M \ (F ∩ H) −→ CP1

with f−1(∞) = H \(F ∩H), f−1(0) ⊂ S∪F , inducing an isomorphism on each
fiber, cf. Lemma 5.1. Let u : CP1 \ p(F ) → C be a holomorphic coordinate.
Put z = p∗(u) and w = f |M\(H∪F ). Thus z, w are holomorphic coordinates on
M \ (H ∪ F ) with p : (z, w) �→ z and so that

T 0,1
M,J = 〈∂w̄, ∂z̄ + b(z, w)∂w〉;

see Lemma 1.6. We may assume that the image of ϕ is not contained in a fiber,
for otherwise the proposition is trivial. By changing the domain of ϕ slightly
we may then assume (p ◦ ϕ)∗(z) = τm for the standard coordinate τ on the
domain ∆ of ϕ.

The Taylor expansion with respect to the coordinates z, w of ϕ at τ = 0 up
to order k defines a polynomial map ∆ → M . For k ≥ m this approximation
of ϕ takes the form

τ �−→ (τm, h(τ))

for some polynomial h of degree at most k. Since any holomorphic CP1-bundle
over CP1 is projective, (M, J0) is a projective algebraic variety. Hence for any
k′ > k the map

τ �−→ (τm, h(τ) + τk′
)

extends to a J0-holomorphic map

ψ0 : CP1 −→ M

osculating to ϕ at τ = 0 to order at least k. By the choice of w it holds
ψ0(CP1) ∩ S ∩ F = ∅. Hence

(ψ0)∗[CP1] · S = k′,

and (ψ0)∗[CP1] ∼ mH + k′F . Let TM/CP1 be the relative tangent bundle.
Because p is pseudo-holomorphic this is a complex line bundle. Put l =
deg ψ∗

0(TM/CP1). Now c1(TM/CP1) is Poincaré-dual to 2H − eF ; hence

l = (2H − eF )(mH + k′F ) = 2k′ + me > k.
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To show the existence of ψk in the statement of the proposition we consider
a modified Gromov-Witten invariant. Let J be the space of almost complex
structures J ′ on M of class Cl with J ′|W = J0|W , J ′|TM/CP1

= J0|TM/CP1
and

where p is pseudo-holomorphic. Note that by Lemma 1.2 tamedness on any
compact subset in J is implicit in this definition. Let M be the disjoint union
over J ′ ∈ J of the moduli spaces of J ′-holomorphic maps

ψ : CP1 −→ M,

with

(i) ψ∗[CP1] = (ψ0)∗[CP1] in H2(M, Z).

(ii) in the chosen holomorphic coordinates τ on CP1 and (z, w) on M\(H∪F ):

ψ(τ) = (τm, h(τ) + τ l+1 · v(τ)).

In particular, p ◦ ψ = p ◦ ϕ.

Lemma 7.2. The forgetful map

M −→ J

is a Fredholm map of Banach manifolds of index 0.

Proof. Let ψ(τ) = (τm, h + τ l+1v0) be J ′-holomorphic. Let b′(z, w) be
the function describing J ′ on M \ (H ∪ F ) � C2. Then ∂τ̄ = mτ̄m−1∂z̄, and
J ′-holomorphicity of ψ is equivalent to

∂τ̄ (h + τ l+1v0) = mτ̄m−1b′(τm, h(τ) + τ l+1v0).

Therefore a deformation (τm, h+τ l+1(v0+η)) of ψ inside M is J ′-holomorphic
if and only if

∂τ̄ η = m
τ̄m−1

τ l+1

(
b′

(
τm, h + τ l+1(v0 + η)

)
− b′

(
τm, h(τ) + τ l+1v0

))
.

Linearizing with fixed b′ gives the equation

∂τ̄ η = mτ̄m−1(∇wb′) · η + mτ̄m−1
( τ̄

τ

)l+1
(∇w̄b′) · η̄.

As τ l+1 globalizes as a section of OCP1(l + 1), the intrinsic meaning of η is
as a section of ψ∗(TM/CP1)(−l − 1). So globally our PDE is an equation of
CR-type acting on sections of a complex line bundle over CP1 of degree −1.
The index is computed by the Riemann-Roch formula to be 0. Moreover, as
ψ is generically injective, the cokernel can be spanned by variations of b′. An
application of the implicit function theorem finishes the proof of the lemma.



1004 BERND SIEBERT AND GANG TIAN

Since J is connected there exists a path {Jt} in J connecting J0 with
J1 = J . By a standard application of the Sard-Smale theorem the restriction
of M to a generic path {Jt} is a one dimensional manifold M{Jt} over [0, 1].
We claim that M{Jt} is compact. Let ψi ∈ M be Jti

-holomorphic, and ti →
t0. The Gromov compactness theorem gives a Jt0-holomorphic cycle C∞ =∑

maC∞,a to which a subsequence of ψi(CP1) converges. By the homological
condition and the local form of the elements of M near ϕ(0) there is exactly one
component of C∞ that projects onto CP1. All other components are fibers. So
the expected dimension drops by 2 for each such bubbling off. Hence bubbling
off can be avoided in a generic path as claimed.

We have thus shown that M{Jt} → [0, 1] is a cobordism. It remains to
observe the following fact.

Lemma 7.3. The fiber of

M{Jt} −→ [0, 1]

over 0 consists of one element.

Proof. Let ψ ∈ M{Jt} be J0-holomorphic. If ψ �= ψ0 then the intersection
index of ψ(CP1) with ψ0(CP1) at ψ(0) is at least m · (l + 1). But

ψ0(CP1) · ψ(CP1) = (mH + k′F )2 = m2e + 2mk′ = ml,

which is absurd. Hence ψ0 is the only holomorphic map in M{Jt}.

We are now ready to finish the proof of Proposition 7.1. The parity of the
cardinality of the fiber stays constant in a one-dimensional cobordism. Hence,
by the lemma, the fiber of M{Jt} → [0, 1] over 1 must be nonempty. We may
take for ψk any element in this fiber (end of proof of proposition).

8. An isotopy lemma

Our main technical result is the following Isotopy Lemma.

Lemma 8.1. Let p : (M, J) → CP1 be a pseudo-holomorphic S2-bundle
with disjoint J-holomorphic sections H, S. Let {Jn} be a sequence of almost
complex structures making p pseudo-holomorphic. Suppose that Cn ⊂ M ,
n ∈ N, are smooth Jn-holomorphic curves and that

Cn
n→∞−→ C∞ =

∑
a

maC∞,a

in the C0-topology, with c1(M) · C∞,a > 0 for every a and Jn → J in C0 and
in C0,α

loc away from a finite set A ⊂ M . Also assume:



LEFSCHETZ FIBRATIONS 1005

(∗) If C ′ =
∑

a m′
aC

′
a is a nonzero J ′-holomorphic cycle C0-close to a subcycle

of
∑

ma>1 maC∞,a, with J ′ ∈ Jreg as in Proposition 6.5, then∑
{a|m′

a>1}

(
c1(M) · C ′

a + g(C ′
a) − 1

)
< c1(M) · C ′ − 1.

Then any J-holomorphic smoothing C†
∞ of C∞ is symplectically isotopic

to some Cn. The isotopy from Cn to C†
∞ can be chosen to stay arbitrarily close

to C∞ in the C0-topology, and to be pseudo-holomorphic for a path of almost
complex structures that stays arbitrarily close to J in C0 everywhere, and in
C0,α

loc away from a finite set.

Remark 8.2. A J-holomorphic smoothing of C∞ exists by Proposition 6.7
provided J = Jt0 for some generic path {Jt}t as in Proposition 6.3. For the
condition on exceptional spheres observe that for homological reasons M con-
tains at most one of them, say S. Then either C∞ = S and there is nothing
to prove, or Cn · S ≥ 0 and

S · (Cn − mS) = S · Cn + m ≥ m.

Proof of the lemma. By Lemma 1.2 there exists a symplectic structure
taming J . We may therefore asume J tamed whenever needed.

Recall the functions m, δ defined in Section 3. Order the pairs (m, δ)
lexicographically:

(m̂, δ̂) < (m, δ) ⇐⇒ m̂ < m or
(
m̂ = m and δ̂ < δ

)
.

We do an induction over (m(C∞), δ(C∞)). The induction process is inspired
by the proof of [Sh, Th. 6.2.3], but the logic is different under the presence of
multiple components.

The starting point is (m(C∞), δ(C∞)) = (0, 0). Then C∞ is a smooth
pseudo-holomorphic curve and the statement is trivial.

So let us assume the theorem has been established for all (m, δ) strictly
less than (m(C∞), δ(C∞)). The proof of the induction step proceeds in eight
parts, referred to as Steps 1–8.

1) Enhancing J . One of the two sections H, S deforms J-holomorphically,
say H. We may therefore assume H �⊂ |C∞|. Apply Lemma 5.2 to C =
|C∞| ∪ p−1

(
p(|C∞| ∩ H)

)
and J . The result is a C1-diffeomorphism Φ of M ,

smooth away from a finite set A′ ⊂ M , and an almost complex structure J̃

integrable in a neighbourhood of |C∞| ∪ H, and making p and H, S pseudo-
holomorphic. By perturbing J̃ slightly away from |C∞| we may assume that
(M, J̃) is monotone. Moreover, Φ∗(C∞) is now a J̃-holomorphic cycle with
unobstructed deformation theory in the sense made precise in Proposition 4.7.
The homological condition on C∞ required there follows because Cn·S ≥ 0. We



1006 BERND SIEBERT AND GANG TIAN

claim that it suffices to prove the theorem under the assumption that the limit
almost complex structure J has this special form for any particular smoothing
C†
∞. By taking the union with the finite set in the hypothesis we may assume

A′ = A.
Change Cn and Jn slightly to achieve Cn ∩ A = ∅. For example, apply

a diffeomorphism that is a small translation near A and the identity away
from this set. After going over to a subsequence Lemma 5.4 now provides
almost complex structures J̃n on M making p pseudo-holomorphic with J̃n → J̃

in C0 and in C0,α away from A, and so that Φ(Cn) is J̃n-holomorphic. The
sequence Φ(Cn) → Φ∗(C∞) fulfills the hypothesis of the lemma. Assuming
that we can prove the lemma for J = J̃ , pick for every n � 0 an isotopy
{C̃n,t}t∈[0,1] between Φ(Cn) and a smoothing of Φ∗(C∞); here C̃n,t is pseudo-
holomorphic for a path {J̃n,t} with J̃n,t → J̃ and C̃n,t → Φ∗(C∞) uniformly in
the respective C0-topologies for n → ∞. Changing C̃n,t and J̃n,t slightly near A

by an appropriate translation we may also assume C̃n,t ∩A = ∅ for all t. Then
{Φ−1(C̃n,t)} is an isotopy connecting Cn with a smoothing of C∞. Another
application of Lemma 5.4, now to Φ−1, allows us to find paths {Jn,t} of smooth
almost complex structures, converging to J uniformly in C0 for n → ∞, so that
Φ−1(C̃n,t) is Jn,t-holomorphic.

To get the statement of the lemma, apply this reasoning both to the
original sequence {Cn} and to the given sequence of J-holomorphic smoothings
of C∞. This gives an isotopy of Cn and of some smoothing C†

∞ with the
Φ-preimage of some particular J̃-holomorphic smoothing of Φ∗(C∞).

We can henceforth add the following hypotheses to the lemma.

(∗∗) For some integrable complex structure J0 on M the pair (C∞, J) fulfills
the hypotheses of Proposition 4.7.

Recall that Proposition 4.7 in particular required the specification of an
open neighbourhood of |C∞| where J is integrable. Moreover, by the conclusion
of this proposition it now even suffices to produce an isotopy of Cn with some Ĵ-
holomorphic smoothing for Ĵ sufficiently close to J and of the form as required
in this proposition. Here we need also Proposition 3.3 to the effect that C0-
convergence of cycles implies convergence of coefficients in the description of
Proposition 2.6(3).

In Step 5 we will ask J to have a certain genericity property, which can
be achieved by perturbing J̃ in the normal direction near some smooth points
of |C∞|.

2) Replacement of nonmultiple components of C∞ by J-holomorphic
spheres. Let P ∈ |C∞|sing and write

ϕ : ∆ −→ M
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for any pseudo-holomorphic parametrization of a branch of |C∞| that belongs
to a nonmultiple component of C∞ at P . Denote by C̄∞ the sum of the
multiple components of C∞, as cycles. For the singularities at P of the curves
underlying C∞ and C̄∞ we have

(|C∞|, P ) = (|C̄∞|, P ) ∪
⋃

ϕ(ϕ(∆), P ).

Since J = J0 near P , by hypothesis (∗∗) from Step 1, Proposition 7.1 applies.
We obtain a sequence

ψk : CP1 −→ M

of J-holomorphic spheres approximating ϕ at 0 ∈ ∆ ⊂ CP1 to order k. Note
that the approximation of fiber components is exact, and for k sufficiently large
no other approximating sphere is contained in a fiber. We do not indicate the
dependence of ψk on ϕ in the notation. For k � 0 the topological types of
the curve singularities (|C∞|, P ) and of (|C̄∞|, P )∪

⋃
ϕ(ψk(CP1), P ) agree. Fix

such a k. For θ > 0 define the annulus Aθ = B2θ(P ) \ Bθ(P ). For θ > 0
sufficiently small the intersections

Aθ ∩ |C∞| and Aθ ∩ (|C̄∞| ∪
⋃

ϕψk(CP1))

are isotopic by an isotopy in Aθ that is the identity near |C̄∞|. Therefore, for
each nonmultiple branch ϕ there exists a map

ψ : CP1 −→ M,

which agrees with ψk over M \ B2θ(P ) and with ϕ over Bθ(P ), and which
is isotopic to ϕ on Aθ. Let J ′ be a small perturbation of J agreeing with J

near |C̄∞| and making p and ψ pseudo-holomorphic. At the expense of further
changes of J and ψ away from |C̄∞|, we obtain an almost complex structure
J ′ and a J ′-holomorphic map ψ′ : CP1 → M where

• J ′ agrees with J in a neighbourhood of |C̄∞|.

• ψ′ is isomorphic to ϕ over a neighbourhood of P .

• Except possibly at P the map ψ′ is an immersion intersecting |C̄∞| trans-
versely.

Do this inductively for all reduced branches of C∞ at all singular points
of |C∞|. The result is an almost complex structure J ′ agreeing with J near
|C̄∞| and making p pseudo-holomorphic, and a J ′-holomorphic cycle C ′

∞ all
of whose nonmultiple components are rational. We refer to the part of the
added components away from the singularities of |C∞| as parasitic part. Let
U ⊂ M be a neighbourhood of |C̄∞| so that C ′

∞ agrees with C∞ on U except
for smooth branches of parasitic components away from the singularities of
|C∞|. We can take the intersection of U with the parasitic part of |C ′

∞| to be
a union of disks.
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Similarly adjust the sequence Cn. By C0,α-convergence of the almost com-
plex structures the tangent spaces of Cn converge to the tangent spaces of |C∞|
away from the multiple components of C∞. Hence, for all n � 0 there exist an
almost complex structure J ′

n making p pseudo-holomorphic, a J ′
n-holomorphic

immersion ϕ′
n : Σ′

n → M and an open set Vn ⊂ Σ′
n with the following proper-

ties.

• J ′
n = Jn on U , J ′

n
n→∞−→ J ′ in C0 and in C0,α

loc away from |C∞|sing ∪ A.

• ϕ′
n(Σ′

n) n→∞−→ C ′
∞.

• ϕ′
n|Vn

is isomorphic to the inclusion Cn ∩U → M , which is a part of the
original curve, as a pseudo-holomorphic map.

Define C ′
n = ϕ′

n(Σ′
n). In analogy with C ′

∞ we call Σ′
n \Vn and ϕ′

n(Σ′
n \Vn) the

parasitic part of Σ′
n and of C ′

n respectively.
A note on notation: Because for most of the proof we work with curves

having a parasitic part we henceforth drop the primes on all symbols. To refer
to the original curves and almost complex structures we place an upper index 0,
so that the original sequences now read C0

n = ϕ0
n(Σ0

n) → C0
∞ and J0

n → J0.

3) Description of further strategy. If C∞ has multiple components the
further strategy is to deform ϕn away from C∞, as pseudo-holomorphic map
and uniformly in n. In the deformation process we fix enough points so that
any occurring degeneration has better singularities, measured by (m, δ). Thus
induction applies and we can continue with any smoothing of the degenera-
tion. Therefore, the deformation process is always successful. The result is
a sequence of Jn-holomorphic curves {C ′

n} with C ′
n containing the set of cho-

sen points and symplectically isotopic to Cn in the required way, but with
a uniform distance from |C∞|. For the same reason as before, lim C ′

n is a
J-holomorphic cycle with better singularities. Next we replace the parasitic
part with the removed part of C0

∞ and apply the induction hypothesis, if nec-
essary. This will eventually lead to a J ′-holomorphic smoothing (C0

∞)† of the
original cycle C0

∞ that is isotopic to C0
n, with J ′ arbitrarily close to J and

fulfilling the other conditions stated in Proposition 4.7. This was left to be
shown in Step 1.

If C∞ is reduced this argument does not work because we cannot pre-
scribe enough points in the deformation to move away. Instead the pseudo-
holomorphic deformation ϕn,t of ϕn will now be with respect to a generic path
{Jn,t}t of almost complex structures connecting Jn with J . The deformation
process is successful as long as ϕn,t stays close to ϕn. Otherwise a diagonal
argument gives a sequence ϕn,tn

converging to a J-holomorphic curve with
improved singularities as above.
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Alternatively, the reduced case follows from the local isotopy theorem due
to Shevchishin [Sh, Th. 6.2.3]. In fact, in this case our proof comes down to
a global version of the proof given there. For the sake of completeness we
nevertheless provide full details here.

4) Restoration of reduced part. The rest of the proof will repeatedly require
replacements of the parasitic part by the removed part of the original curves C0

n

or C0
∞. The purpose of this paragraph is to make this process precise. A point

of caution concerns the nodes that have been generated by the introduction of
parasitic components. To simplify the proof we use the fibered structure here,
although this is not strictly necessary. For the following it is useful to choose
a metric dcyc on Cycpshol(M) inducing the C0-topology. Normalize dcyc in such
a way that dcyc(C, C∞) ≤ ε implies |C| ⊂ Bε(|C∞|).

Denote by Chr
∞ the union of the nonmultiple components of C∞ that are

not fibers of p (“horizontal, reduced”). Reduced fiber components of C∞ can
only arise from reduced fiber components of C0

∞, so these do not require any
attention. The projection

p : Chr
∞ −→ CP1

is a holomorphic (branched) covering. Throughout this step write Z =
p(|C0

∞|sing). For small θ

A := cl
(
B2θ(Z)

)
\ Bθ(Z)

is a union of annuli containing no branch points of this covering. Take θ also so
small that Chr

∞ ∩ p−1(A) � U , U the neighbourhood of C̄∞ = C̄0
∞ from Step 2.

Then
Ã := Chr

∞ ∩ p−1(A) ∩ U

is also a union of annuli, which are disjoint from |C̄∞|, one for each branch of
Chr
∞ near a singular point of |C0

∞|. Choose

θ′ < min{dM (Ã, |C̄∞|), dM (Ã, M \ U)}
and less than

1
2

min
{
dM (x, y)

∣∣x, y ∈ p−1(A) ∩ |C0
∞| ∩ U, x �= y, p(x) = p(y)

}
.

Then there exists a tubular neighbourhood

Θ : Ã × ∆ −→ M,

of Ã with image a union of connected components of Bθ(Chr
∞)∩p−1(A), so that

∆Q := Θ({Q} × ∆), Q ∈ Ã, are J-holomorphic disks contained in the fibers
of p. By construction, ∆Q · C∞ = 1 for the intersection numbers. Then for
ε > 0 sufficiently small it holds also ∆Q ·C = 1 for every J ′-holomorphic cycle
C with dcyc(C, C∞) < ε and ‖(J ′ − J)|im(Θ)‖0,α < ε. In such cases Θ−1(|C|) is
the graph of a function Ã → ∆.
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We now choose ε > 0 so small that if dcyc(C, C∞) < ε then also
(m(C), δ(C)) ≤ (m(C∞), δ(C∞)) and equality holds if and only if there is
a bijection between the components of C and C∞ respecting multiplicities
(Lemma 3.1). Later we will let ε tend to zero.

Definition 8.3. We say that restoration applies to a J ′-holomorphic cycle
C if (a) dcyc(C, C∞) < ε, ‖(J ′ − J)|im(Θ)‖0,α < ε. (b) Let B be an irreducible
component of |C| \ p−1(Bθ(Z)) intersecting im(Θ). Then B ∩ p−1(A) ∩ U is
connected.

Intuitively (b) says that C viewed as deformation of C∞, does not smooth
out self-intersection points involving the parasitic part. The irreducible com-
ponents of |C| \ (p|U )−1(Bθ(Z)) intersecting im(Θ) are then deformations of
the nonfiber parasitic part of C∞. From still another point of view the compo-
nents of |C| \ (p|U )−1(Bθ(Z)) are pseudo-holomorphic curves with boundary;
(b) requires each such curve that intersects im(Θ) to have only one boundary
component.

multiple part of C0
∞

interpolation
C

im(Θ)

reduced part of C0
∞

Restoration Process.

To define our uniform restoration process choose a smooth function ρ : A →
[0, 1] that is identically 0 near the interior boundary components ∂Bθ(Z) and
identically 1 near the exterior boundary components ∂B2θ(Z). Let C be a cycle
to which restoration applies. Let λ, λ0

∞ : Ã → ∆ be the functions with graphs
Θ−1(|C|) and Θ−1(|C0

∞|) respectively. The restoration of C is the following
cycle: On (p|U )−1(Bθ(Z)) take the restriction of C; on M \ (p|U )−1(B2θ(Z))
take the sum of the nonmultiple components of C0

∞ and all components of
C|(p|U )−1(B2θ(Z)) not intersecting im(Θ); on (p|U )−1(A) take Θ of the graph of
p∗(ρ)λ0

∞+(1−p∗(ρ))λ. Because the restriction of the nonmultiple components
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of C0
∞ to p−1(A) lies in im(Θ) the result is indeed a cycle. Let U ′ ⊂ U be a

neighbourhood of |C̄∞| with U ′ ∩ im(Θ) = ∅. This neighbourhood exists by
the choice of θ′.

Lemma 8.4. Let C be a J ′-holomorphic cycle to which restoration applies.
Then its restoration C0 is pseudo-holomorphic for an almost complex structure
J0 with

‖(J0 − J∞)|M\U ′‖0,α + ‖(J0 − J ′)|U‖0,α < c(ε),

where c(ε) does not depend on C or J ′ and c(ε) ε→0→ 0. Moreover, J0 may be
taken to vary continuously under variations of C and J ′, and to be integrable
in U if J ′ is so.

Proof. Elliptic regularity provides higher estimates on the function
λ : Ã → ∆ defining C on im(Θ). As in the proof of Lemma 5.4 this al-
lows to interpolate uniformly between J∞ on M \U ′ and J ′ on U by an almost
complex structure making C0 pseudo-holomorphic.

For the induction argument it will be crucial that restoration is compatible
with (m, δ).

Lemma 8.5. Let C be a cycle to which restoration applies and assume
(m(C), δ(C)) < (m(C∞), δ(C∞)). Then for the restoration C0 of C it holds
(m(C0), δ(C0)) < (m(C0

∞), δ(C0
∞)).

Proof. Since m depends only on the nonreduced part of a cycle, which
restoration does not affect, it suffices to discuss the case m(C) = m(C∞). By
our choice of ε equality δ(C) = δ(C∞) then implies the existence of a bijection
between the irreducible components of C and C∞ respecting the multiplicities.
This bijection is compatible with restoration. Now the difference between
δ(C∞) and δ(C0

∞) has two sources. First, self-intersections of the parasitic
part of C∞. By construction these all lie off U , the neighbourhood of the
multiple part |C̄∞|. Hence this defect equals the virtual number of double
points of |C∞| on M \ U . Second, intersections of the parasitic part of C∞
with the multiple part |C̄∞|. In view of the mentioned bijection of irreducible
components both contributions remain unchanged when comparing δ(C) and
δ(C0). Hence δ(C∞) − δ(C0

∞) = δ(C) − δ(C0) and the assertion follows.

5) The incidence conditions |x| ⊂ |C∞|. Write

C∞ =
∑

a

maC∞,a.

(Note that by our convention from the end of Step 2 the ma and C∞,a in
the hypothesis of the lemma are now m0

a, C
0
∞,a.) For each a choose points
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xa
1, . . . , x

a
ka

∈ C∞,a in general position with

ka := c1(M) · C∞,a + g(C∞,a) − 1.

Since c1(M) ·C∞,a > 0 this number is nonnegative. Hypothesis (∗) applied to
C ′ = C̄∞ together with rationality of the reduced part of C∞ implies

k :=
∑

a

ka ≤ c1(M) · C∞ − 1.(9)

The inequality is strict if C∞ has multiple components. In the reduced case
all components of C∞ are rational and then equality holds. Write xa =
(xa

1, . . . , x
a
ka

) and x = (x1, . . . , xk) for the concatenation of the xa. Let ϕ∞,a :
Σ∞,a → M be the generically injective J-holomorphic map with image C∞,a.
Consider the moduli space Ma,xa of pseudo-holomorphic maps ϕ : (Σ∞,a, ja) →
(M, J) representing [C∞,a] in homology and with |xa| ⊂ ϕ(Σ∞,a). Here ja may
vary. By Remark 6.4(2) we may assume J to be regular for all small, nontrivial
deformations of ϕ∞,a keeping the incidence conditions xa; it suffices to change
the almost complex structure in the normal direction near a general point of
C∞,a. If ma > 1 this leads to a change of J̃ in Step 1; if ma = 1 change J ′

away from the neighbourhood U of |C̄∞| in its construction in Step 2.
Then Ma,xa is a manifold of dimension(

c1(M) · C∞,a + g(Σ∞,a) − 1
)
− ka = 0.(10)

Hence ϕ∞,a is an isolated point of Ma,xa for every a. From this we deduce
that relevant deformations of C∞ lead to a drop in (m, δ).

Proposition 8.6. Let C be a J ′-holomorphic cycle with dcyc(C, C∞) < ε

and |x| ⊂ |C|. Assume that one of the following applies.

(i) J ′ = Jt for a general path {Jt} of almost complex structures and |C| is
not a nodal curve.

(ii) J ′ = J , C �= C∞.

Then
(m(C), δ(C)) < (m(C∞), δ(C∞)).

Proof. By the definition of ε before Definition 8.3 it holds (m(C), δ(C)) ≤
(m(C∞), δ(C∞)). Moreover, in the case of equality every component of C is
the image of some J ′-holomorphic deformation ϕa of ϕ∞,a with |xa| ⊂ im(ϕa).
(Preservation of the incidence condition may require a smaller choice of ε.)
By dimension count (10) the parametrizing moduli space of generically injec-
tive pseudo-holomorphic maps with incidence conditions has expected relative
dimension 0 over the space of almost complex structures. The subspace of
nonimmersions is of real codimension at least 2. Hence nonimmersions do not
occur over a general path of almost complex structures.
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In the second case ϕ∞,a is an isolated point in Ma,xa . So equality can
only occur if ϕa = ϕ∞,a for all a; that is, C = C∞.

6) The nonreduced case: Deforming Cn uniformly away from C∞. Deform
Cn and Jn slightly to achieve |x| ⊂ Cn for all n. For example, near xi apply a
locally supported diffeomorphism of M moving one branch of Cn to xi.

We first treat the case when C∞ has multiple components. The purpose
of this step is to establish the following result.

Lemma 8.7. For every n � 0 there exists a pseudo-holomorphic curve
C ′

n ⊂ M to which restoration applies and having the following properties.

(1) The restoration of C ′
n is smooth and isotopic to C0

n through a family of
pseudo-holomorphic curves within ε-distance to C0

∞ with respect to dcyc,
for a family of almost complex structures with C0,α-distance to J0

n getting
arbitrarily small with increasing n.

(2) |x| ⊂ C ′
n.

(3) dcyc(C ′
n, C∞) = ε/2.

Proof. The proof is by descending induction over the degree c1(M)·Cn. For
a first try take paths xn(t) on M with xn(0) ∈ Cn\|x| and d

dtdM (xn(t), |C∞|) =
ε. Such paths exist for all n provided that ε is sufficiently small. Write x̃(t)
for the concatenation (x1, . . . , xk, xn(t)) of x and xn(t). Choose a C0,α-small
continuous deformation {Jn,t}t∈[0,1] of Jn so that

• {Jn,t} fulfills the properties of Theorem 6.3,2 with S(t) = |x̃(t)|.

Note that the expected (real) dimension of deformations of C∞ not decreasing
(m, δ) and containing |x̃(t)| is −2, so these do not occur for generic {Jn,t}; cf.
Proposition 8.6.

It now suffices to produce a continuous family {Cn,t}t of pseudo-holo-
morphic cycles, ε-close to C∞ and with Cn,0 = Cn, such that Cn,t is
Jn,t-holomorphic and contains |x̃(t)|. In fact, by Lemma 6.7 and Remark 8.2
any Cn,t has a partial pseudo-holomorphic smoothing C†

n,t to which restoration
applies with smooth result (C†

n,t)
0. Since (m(Cn,t), δ(Cn,t)) < (m(C∞), δ(C∞))

holds for every t, and in view of Lemmas 8.4 and 8.5 the induction hypothesis
shows the existence of the requested pseudo-holomorphic isotopy between C0

n

and (C†
n,t)

0 for any t. By application of a continuous family of small diffeo-
morphisms we can assure |x| ⊂ C†

n,t for every t. Because dM (xn(t), |C∞|) = εt

there exists t0 ≤ 1/2 with dcyc(C
†
n,t0 , C∞) = ε/2. Then C ′

n = C†
n,t0 is the

desired pseudo-holomorphic curve.
Consider the set of times t0 ∈ [0, 1] such that a continuous family Cn,t

with the requested properties exists on the intervall [0, t0]. By the Gromov
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compactness theorem this set is closed, unless dcyc(Cn,t0 , C∞) = ε. In the
latter case there exists t < t0 with dcyc(Cn,t, C∞) = ε/2 and we are done as
before. Openness at t0 follows from Theorem 6.3 as long as Cn,t0 is reduced
and irreducible.

If Cn,t0 is nonreduced or reducible write

Cn,t0 =
a0∑

a=1

Cn,t0,a.

Here the Cn,t0,a may not be distinct. Split x arbitrarily into a0 tuples |xa| with

|xa| ⊂ Cn,t0,a.

Let ka be the number of entries of xa. Since by (9) the number of entries
k =

∑
a ka of x is less than c1(M) · Cn,t0 − 1 there exists an a with

ka < c1(M) · Cn,t0,a − 1.

By Lemma 6.7 there exists a Jn,t0-holomorphic deformation of Cn,t0,a to a nodal
curve Ĉn,t0 containing |xa| in the image. In the further deformation process
we want only to deform Ĉn,t0 and keep the other components. To this end,
change the path Jn,t for t > t0 so that it stays constant on a neighbourhood of⋃

a′ �=a Cn,t0,a′ . This is possible by Remark 6.4(2). We also choose a new path
x′

n(t) so that x′
n(t) �∈

⋃
a′ �=a Cn,t0,a′ . Now apply the previous reasoning with

Cn replaced by Ĉn,t0 and x̃(t) by the concatenation of xa and x′
n(t).

Because the degree c1(M) · Cn,t∞,a decreases by an integral amount each
time we split the curve, after finitely many changes of {Jn,t} the deformation
will be successful for all t. The result is the desired continuous family of
pseudo-holomorphic cycles Cn,t.

7) The reduced case: Pseudo-holomorphic deformation of Cn over a path
{Jn,t}t∈[0,1] connecting Jn with J . If C∞ is reduced there is no room for im-
posing one more point constraint without spoiling unobstructedness of the de-
formation. Instead choose general paths {Jn,t}t∈[0,1] of tamed almost complex
structures connecting Jn with J , such that

Jn,t
n→∞−→ J

uniformly in the C0-topology everywhere and in the C0,α-topology locally on
M \ A. By Remark 6.4(2) we can also arrange Jn,t to be integrable on the
neighbourhood U of |C̄∞| for every t > 1/2.

For n � 0 and t ∈ [0, 1) we seek to find a Jn,t-holomorphic nodal curve
Cn,t with

(i) Restoration applies to Cn,t.
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(ii) The restoration of Cn,t is smooth and isotopic to C0
n through a family of

pseudo-holomorphic curves within ε-distance to C0
∞ with respect to dcyc,

for a family of almost complex structure with C0,α-distance to J0
n getting

arbitrarily small with increasing n.

(iii) |x| ⊂ C ′
n.

Lemma 8.8. For every ε > 0 one of the following two cases occurs.

(1) There exists an n > 0 so that Cn,t with properties (i)–(iii) exists for all
t < 1.

(2) For every n � 0 there exists Cn,tn
with properties (i)–(iii) and so that

dcyc(Cn,tn
, C∞) = ε/2.

Proof. For t = 0 we may take Cn,t = Cn. Let τn ∈ [0, 1] be maximal
with the property that for each t ∈ [0, τn) a curve Cn,t obeying (i)–(iii) exists.
Assume that τn < 1. Let {Cn,ti

}i be a sequence of pseudo-holomorphic curves
obeying (i)–(iii) and with ti ↗ τn for i → ∞. By the Gromov compactness
theorem, after going over to a subsequence, we may assume cycle-theoretic
convergence

Cn,ti

i→∞−→ Cτn
.

Since {Jn,t} is generic at τn < 1 and |x| ⊂ Cτn
, Proposition 8.6 implies that

Cτn
is reduced and δ(Cτn

) < δ(C∞) unless Cτn
is nodal. If δ drops, we ar-

gue as in the nonreduced case: Restoration and application of the induction
hypothesis show the existence of Cn,t for t > τn with the requested proper-
ties, provided dcyc(Cτn

, C∞) < ε. Otherwise there exists Cn,tn
as in (2) (with

slightly smaller ε). In the nodal case the existence of Cn,t for t > τn follows
from the deformation theory of nodal curves Theorem 6.6.

Note that this line of reasoning fails in the nonreduced case, because in the
proof of closedness |x| may end up unevenly distributed on Cn,τn

if |Cn,τn
| is

reducible near a multiple component of C∞. A smoothing of Cn,τn
preserving

the incidence conditions may then not exist.

8) Taking the limit. Assume first that either C∞ is nonreduced or that
Lemma 8.8(2) applies. Let C ′

n be the sequence of deformations of Cn con-
structed in this lemma or in Lemma 8.7 in Step 6 respectively. By the Gromov
compactness theorem we may assume convergence

C ′
n

n→∞−→ C ′
∞.

By construction dcyc(C ′
∞, C∞) ≥ ε/2, hence C ′

∞ �= C∞. Also because
|x| ⊂ C ′

∞, Proposition 8.6 implies

(m(C ′
∞), δ(C ′

∞)) < (m(C∞), δ(C∞)).
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By construction restoration applies to C ′
∞. The result is pseudo-holomorphic

for an almost complex structure J ′0 fulfilling the requirements of Proposi-
tion 4.7 for the neighbourhoods of |C∞| and H chosen in Step 1 once and for
all. Hence a J ′0-holomorphic smoothing of this curve exists by this proposition
or by Remark 8.2. The induction hypothesis shows that it is symplectically
isotopic to the restoration of C ′

n, hence to C0
n. Letting ε → 0 gives the desired

J ′0-holomorphic smoothing of C0
∞.

In the remaining case Lemma 8.8(1) there is a family of restored curves
C0

n,t that is pseudo-holomorphic for a family of almost complex structures that
are integrable in the fixed neighbourhood of |C∞|∪H and fiberwise agree with
J0 for t > 1/2. In this case the isotopy statement follows for n sufficiently
large and t close to 1 from the unobstructedness result, Proposition 4.7.

In any case we thus have produced the desired isotopy between C0
n and

a pseudo-holomorphic smoothing of C0
∞ under the additional hypothesis (∗∗).

This was left to be shown in Step 1. The proof of Lemma 8.1 is finished.

9. Proofs of Theorems A, B and C

This section provides the proofs of the three main theorems stated in the
introduction. We shall use one more lemma.

Lemma 9.1. Let (M, J) be an almost complex manifold diffeomorphic to
CP2 or to an S2-bundle over S2. Assume that C ⊂ M is a nontrivial irreducible
pseudo-holomorphic curve with c1(M) · C > 0. Then for all m > 1

m(c1(M) · C − 1) > c1(M) · C + g(C) − 1(11)

in either of the following cases.

(i) M = CP2 and C ∼ dH with d ≤ 8, H ⊂ CP2 a hyperplane.

(ii) M = CP1 × CP1 or F1 and C ∼ dH + kF with d ≤ 3, k ≥ 0, where F

and H are a fiber and a section of the symplectic S2-bundle M → CP1

respectively with H · H ∈ {0, 1}.

(iii) M = F1 and C ∼ dH + kF with d + k ≤ 8, notation as in (ii).

Proof. Since c1(M) · C > 0 it suffices to establish (11) for m = 2. For (i)
the genus formula (4) yields

g − 1 ≤ d2 − 3d

2
.

Inequality (11) thus follows from

2(3d − 1) > 3d +
d2 − 3d

2
or d2 − 9d + 4 < 0.

This is true for 1 ≤ d ≤ 8.
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For M = CP1 ×CP1, we note that H ·H = 0 and the genus formula reads

g − 1 ≤ (dH + kF )2 − (dH + kF )(2H + 2F )
2

= dk − d − k.

So (11) will follow from the fact that

2(2d + 2k − 1) > 2d + 2k + (dk − d − k) = dk + d + k,

which is equivalent to
(k − 3)(3 − d) > −7.

This is true for any k > 0 as long as d ≤ 3 and for k = 0, 1 ≤ d ≤ 3.
Finally the case M = F1. Then H · H = 1, c1(M) = 2H + F ,

g − 1 ≤ (dH + kF )2 − (dH + kF )(2H + F )
2

=
d2 + 2dk − 3d − 2k

2
,

and (11) follows from

2(3d + 2k − 1) > 3d + 2k +
d2 + 2dk − 3d − 2k

2
=

d2 + 2dk + 3d + 2k

2
,

or

k(2d − 6) + d2 − 9d + 4 < 0.(12)

For k ≥ 0 and 1 ≤ d ≤ 3 the first term is nonpositive and

d2 − 9d + 4 < 0,

so the result follows. For d = 0, k ≥ 1 we obtain

−6k + 4 ≤ −2 < 0.

If d ≥ 4 but k ≤ 8 − d inequality (12) implies as a sufficient condition

(8 − d)(2d − 6) + d2 − 9d + 4 = −d2 + 13d − 44 < 0.

This inequality holds true for all d. The proof is finished.

Remark 9.2. We gave (i) in the lemma only to illustrate the origin of the
degree restriction d ≤ 17 for CP2. For technical reasons we have to do the
computation on the CP1-bundle F1, with some additional properties covered
by case (iii) in the lemma.

Proof of Theorem B. Let ω be the symplectic form on M . Denote by
Σ ⊂ M the symplectic submanifold. By Proposition 1.7 there exists a map
p : M → CP1 and an ω-tamed almost complex structure J on M making p

a pseudo-holomorphic map and Σ a J-holomorphic curve. Let H, S, F be two
disjoint sections and a fiber of p respectively, with H ·H ∈ {0, 1}. According to
Remark 0.1 we may assume c1(M) ·Σ > 0. Then deformations of Σ as pseudo-
holomorphic curves are unobstructed by the smooth case of Theorem 6.6.
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Possibly after deforming Σ slightly we may therefore assume J ∈ Jreg for
the Baire subset Jreg ⊂ J introduced in Section 6. Since ω tames also the
integrable complex structure I on M , Lemma 6.2, Theorem 6.3 and Proposi-
tion 6.5 imply the existence of a path {Jt}t∈[0,1] of ω-tamed almost complex
structures having the following properties.

(i) J0 = J , J1 = I and p : (M, ω, Jt) → CP1 is a symplectic pseudo-
holomorphic S2-bundle for every t.

(ii) (M, Jt) is monotone for every t.

(iii) The path {Jt}t∈[0,1] is generic in the sense of Theorem 6.3(2).

(iv) Any Jt-holomorphic curve C ⊂ M , C �∼ S is homologous to dH + kF

with d ≥ 0, k ≥ 0.

Consider the set Ω of τ ∈ [0, 1] so that for every t ≤ τ a smooth
Jt-holomorphic curve Ct ⊂ M exists that is isotopic to Σ through an iso-
topy of ω-symplectic submanifolds. By definition, Ω is an interval. It is open
as a subset of [0, 1] by the smooth case of Theorem 6.6. It remains to show that
it is closed. Let tn ↗ τ , tn ∈ Ω. For each n choose a Jtn

-holomorphic curve
Cn symplectically isotopic to Σ. By the Gromov compactness theorem we may
assume that the Cn converge to a Jτ -holomorphic cycle C∞ =

∑
a maC∞,a.

Now Jtn
→ Jτ , Cn → C∞ fulfill the hypotheses of Lemma 8.1. Condi-

tion (∗) follows from Lemma 9.1(ii). The conclusion of Lemma 8.1 in conjunc-
tion with Remark 8.2 now shows that τ ∈ Ω. Hence Ω = [0, 1] (end of proof of
Theorem B).

Proof of Theorem C. The proof is essentially the same as that of The-
orem B. As we are not in a fibered situation we proceed as follows. Let
σ : F1 → CP2 be the blowing up in a point P ∈ CP2 \Σ. Choose a Kähler form
ω̃ on F1 that agrees with σ∗(ω) away from σ−1(Bε(P )) for ε < dM (P,Σ)/2.
Now run the program in the proof of Theorem B to the ω̃-symplectic surface
σ−1(Σ). By Remark 6.4 we are free to take the Jt and all intermediately occur-
ring almost complex structures to agree with the standard integrable complex
structure on σ−1(Bε(P )). Then Jt descends to an ω-tamed almost complex
structure J̄t on CP2. If Ct is a smooth Jt-holomorphic curve homologous to
σ−1(Σ) then Ct is disjoint from S = σ−1(P ) for homological reasons. Thus
σ(Ct) is a smooth J̄t-holomorphic curve, hence symplectic with respect to ω.

It remains to verify assumption (∗) in Lemma 8.1. Let C ′ =
∑

a≥0 m′
aC

′
a

be a Jt-holomorphic cycle homologous to dH, where H is a section with
H · H = 1. By Lemma 6.2(1) there are no Jt-holomorphic curves homolo-
gous to aH + bF with b < 0 except S ∼ H −F . Therefore, if C ′

a ∼ daH + kaF
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with ka ≥ 0 for a > 0, and m′
0C

′
0 = mS then

d = m +
∑
a>0

m′
ada and m =

∑
a>0

m′
aka.

Hence d =
∑

a>0 m′
a(da +ka). Now if d ≤ 17 and C ′ has a multiple component

then da+ka ≤ 8 for all a. Assumption (∗) therefore follows from Lemma 9.1(iii)
(end of proof of Theorem C).

Proof of Theorem A. The main theorem of [SiTi1] implies that M → S2

factors over a degree 2 cover of an S2-bundle p : P → S2, branched along
a symplectic surface B ⊂ P with p|B a simply branched cover of S2. The
assumption on the monodromy means that B is connected. By Theorem B
there exists a symplectic isotopy Bt connecting B = B0 to a holomorphic curve
B1 with respect to the integrable complex structure. Apply Proposition 1.7
with Σt = Bt. The result is a family Jt of almost complex structures and a
family of S2-bundles pt : P → S2 such that

(1) Bt is Jt-holomorphic.

(2) pt : (P, Jt) → CP1 is pseudo-holomorphic.

Perturbing Bt slightly using the smooth case of Theorem 6.6 we can achieve
that Bt → CP1 has only simple branch points for every t. Let Mt be the
two-fold cover of P branched along Bt. Then Mt → S2 is a genus-2 symplectic
Lefschetz fibration for every t. This shows that M → S2 is even isotopic to a
holomorphic Lefschetz fibration (end of proof of Theorem A).
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