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Statistical properties of unimodal maps:
the quadratic family

By Artur Avila and Carlos Gustavo Moreira*

Abstract
We prove that almost every nonregular real quadratic map is Collet-

Eckmann and has polynomial recurrence of the critical orbit (proving a con-
jecture by Sinai). It follows that typical quadratic maps have excellent ergodic
properties, as exponential decay of correlations (Keller and Nowicki, Young)
and stochastic stability in the strong sense (Baladi and Viana). This is an im-
portant step in achieving the same results for more general families of unimodal
maps.
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Introduction

Here we consider the quadratic family, fa = a − x2, where −1/4 ≤ a ≤ 2
is the parameter, and we analyze its dynamics in the invariant interval.

The quadratic family has been one of the most studied dynamical systems
in the last decades. It is one of the most basic examples and exhibits very
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rich behavior. It was also studied through many different techniques. Here we
are interested in describing the dynamics of a typical quadratic map from the
statistical point of view.

0.1. The probabilistic point of view in dynamics. In the last decade Palis
[Pa] described a general program for (dissipative) dynamical systems in any
dimension. In short, he shows that ‘typical’ dynamical systems can be mod-
eled stochastically in a robust way. More precisely, one should show that such
typical systems can be described by finitely many attractors, each of them
supporting an (ergodic) physical measure: time averages of Lebesgue-almost-
every orbit should converge to spatial averages according to one of the physical
measures. The description should be robust under (sufficiently) random per-
turbations of the system; one asks for stochastic stability.

Moreover, a typical dynamical system was to be understood, in the
Kolmogorov sense, as a set of full measure in generic parametrized families.

Besides the questions posed by this conjecture, much more can be asked
about the statistical description of the long term behavior of a typical system.
For instance, the definition of physical measure is related to the validity of the
Law of Large Numbers. Are other theorems still valid, like the Central Limit
or Large Deviation theorems? Those questions are usually related to the rates
of mixing of the physical measure.

0.2. The richness of the quadratic family. While we seem still very far
away from any description of dynamics of typical dynamical systems (even in
one-dimension), the quadratic family has been a remarkable exception. Let us
describe briefly some results which show the richness of the quadratic family
from the probabilistic point of view.

The initial step in this direction was the work of Jakobson [J], where
it was shown that for a positive measure set of parameters the behavior is
stochastic; more precisely, there is an absolutely continuous invariant measure
(the physical measure) with positive Lyapunov exponent: for Lebesgue almost
every x, |Dfn(x)| grows exponentially fast. On the other hand, it was later
shown by Lyubich [L2] and Graczyk-Swiatek [GS1] that regular parameters
(with a periodic hyperbolic attractor) are (open and) dense. While stochastic
parameters are predominantly expanding (in particular have sensitive depen-
dence to initial conditions), regular parameters are deterministic (given by the
periodic attractor). So at least two kinds of very distinct observable behavior
are present in the quadratic family, and they alternate in a complicated way.

It was later shown that stochastic behavior could be concluded from
enough expansion along the orbit of the critical value: the Collet-Eckmann
condition, exponential growth of |Dfn(f(0))|, was enough to conclude a pos-
itive Lyapunov exponent of the system. A different approach to Jakobson’s
Theorem in [BC1] and [BC2] focused specifically on this property: the set of
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Collet-Eckmann maps has positive measure. After these initial works, many
others studied such parameters (sometimes with extra assumptions), obtain-
ing refined information of the dynamics of CE maps, particularly informa-
tion about exponential decay of correlations1 (Keller and Nowicki in [KN] and
Young in [Y]), and stochastic stability (Baladi and Viana in [BV]). The dy-
namical systems considered in those papers have generally been shown to have
excellent statistical descriptions2.

Many of those results also generalized to more general families and some-
times to higher dimensions, as in the case of Hénon maps [BC2].

The main motivation behind this strong effort to understand the class of
CE maps was certainly the fact that such a class was known to have positive
measure. It was known however that very different (sometimes wild) behavior
coexisted. For instance, it was shown the existence of quadratic maps without
a physical measure or quadratic maps with a physical measure concentrated
on a repelling hyperbolic fixed point ([Jo], [HK]). It remained to see if wild
behavior was observable.

In a big project in the last decade, Lyubich [L3] together with Martens
and Nowicki [MN] showed that almost all parameters have physical measures:
more precisely, besides regular and stochastic behavior, only one more behavior
could (possibly) happen with positive measure, namely infinitely renormaliz-
able maps (which always have a uniquely ergodic physical measure). Later
Lyubich in [L5] showed that infinitely renormalizable parameters have mea-
sure zero, thus establishing the celebrated regular or stochastic dichotomy.
This further advancement in the comprehension of the nature of the statis-
tical behavior of typical quadratic maps is remarkably linked to the progress
obtained by Lyubich on the answer of the Feigenbaum conjectures [L4].

0.3. Statements of the results. In this work we describe the asymptotic
behavior of the critical orbit. Our first result is an estimate of hyperbolicity:

Theorem A. Almost every nonregular real quadratic map satisfies the
Collet-Eckmann condition:

lim inf
n→∞

ln(|Dfn(f(0))|)
n

> 0.

1CE quadratic maps are not always mixing and finite periodicity can appear in a robust
way. This phenomena is related to the map being renormalizable, and this is the only
obstruction: the system is exponentially mixing after renormalization.

2It is now known that weaker expansion than Collet-Eckmann is enough to obtain stochas-
tic behavior for quadratic maps, on the other hand, exponential decay of correlations is ac-
tually equivalent to the CE condition [NS], and all current results on stochastic stability use
the Collet-Eckmann condition.
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The second is an estimate on the recurrence of the critical point. For
regular maps, the critical point is nonrecurrent (it actually converges to the
periodic attractor). Among nonregular maps, however, the recurrence occurs
at a precise rate which we estimate:

Theorem B. Almost every nonregular real quadratic map has polynomial
recurrence of the critical orbit with exponent 1:

lim sup
n→∞

− ln(|fn(0)|)
ln(n)

= 1.

In other words, the set of n such that |fn(0)| < n−γ is finite if γ > 1 and
infinite if γ < 1.

As far as we know, this is the first proof of polynomial estimates for the
recurrence of the critical orbit valid for a positive measure set of nonhyperbolic
parameters (although subexponential estimates were known before). This also
answers a long standing conjecture of Sinai.

Theorems A and B show that typical nonregular quadratic maps have
enough good properties to conclude the results on exponential decay of corre-
lations (which can be used to prove Central Limit and Large Deviation theo-
rems) and stochastic stability in the sense of L1 convergence of the densities
(of stationary measures of perturbed systems). Many other properties also
follow, like existence of a spectral gap in [KN] and the recent results on almost
sure (stretched exponential) rates of convergence to equilibrium in [BBM]. In
particular, this answers positively Palis’s conjecture for the quadratic family.

0.4. Unimodal maps. Another reason to deal with the quadratic family
is that it seems to open the doors to the understanding of unimodal maps.
Its universal behavior was first realized in the topological sense, with Milnor-
Thurston theory. The Feigenbaum-Coullet-Tresser observations indicated a
geometric universality [L4].

A first result in the understanding of measure-theoretical universality was
the work of Avila, Lyubich and de Melo [ALM], where it was shown how to re-
late metrically the parameter spaces of nontrivial analytic families of unimodal
maps to the parameter space of the quadratic family. This was proposed as
a method to relate observable dynamics in the quadratic family to observable
dynamics of general analytic families of unimodal maps. In that work the
method is used successfully to extend the regular or stochastic dichotomy to
this broader context.

We are also able to adapt those methods to our setting. The techniques
developed here and the methods of [ALM] are the main tools used in [AM1]
to obtain the main results of this paper (except the exact value of the polyno-
mial recurrence) for nontrivial real analytic families of unimodal maps (with
negative Schwarzian derivative and quadratic critical point). This is a rather
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general set of families, as trivial families form a set of infinite codimension.
For a different approach (still based on [ALM]) which does not use negative
Schwarzian derivative and obtains the exponent 1 for the polynomial recur-
rence, see [A], [AM3].

In [AM1] we also prove a version of Palis conjecture in the smooth setting.
There is a residual set of k-parameter C3 (for the equivalent C2 result, see [A])
families of unimodal maps with negative Schwarzian derivative such that al-
most every parameter is either regular or Collet-Eckmann with subexponential
bounds for the recurrence of the critical point.

Acknowledgements. We thank Viviane Baladi, Mikhail Lyubich, Marcelo
Viana, and Jean-Christophe Yoccoz for helpful discussions. We are grateful to
Juan Rivera-Letelier for listening to a first version, and for valuable discussions
on the phase-parameter relation, which led to the use of the gape interval in
this work. We would like to thank the anonymous referee for his suggestions
concerning the presentation of this paper.

1. General definitions

1.1. Maps of the interval. Let f : I → I be a C1 map defined on some in-
terval I ⊂ R. The orbit of a point p ∈ I is the sequence {fk(p)}∞k=0. We say that
p is recurrent if there exists a subsequence nk → ∞ such that lim fnk(p) = p.

We say that p is a periodic point of period n of f if fn(p) = p, and n ≥ 1 is
minimal with this property. In this case we say that p is hyperbolic if |Dfn(p)|
is not 0 or 1. Hyperbolic periodic orbits are attracting or repelling according
to |Dfn(p)| < 1 or |Dfn(p)| > 1.

We will often consider the restriction of iterates fn to intervals T ⊂ I,
such that fn|T is a diffeomorphism. In this case we will be interested on the
distortion of fn|T ,

dist(fn|T ) =
supT |Dfn|
infT |Dfn| .

This is always a number bigger than or equal to 1; we will say that it is small
if it is close to 1.

1.2. Trees. We let Ω denote the set of finite sequences of nonzero integers
(including the empty sequence). Let Ω0 denote Ω without the empty sequence.
For d ∈ Ω, d = (j1, . . . , jm), we let |d| = m denote its length.

We denote σ+ : Ω0 → Ω by σ+(j1, . . . , jm) = (j1, . . . , jm−1) and σ− :
Ω0 → Ω by σ−(j1, . . . , jm) = (j2, . . . , jm).

For the purposes of this paper, one should view Ω as a (directed) tree with
root d = ∅ and edges connecting σ+(d) to d for each d ∈ Ω0. We will use Ω
to label objects which are organized in a similar tree structure (for instance,
certain families of intervals ordered by inclusion).
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1.3. Growth of functions. Let f : N → R+ be a function. We say that f

grows at least exponentially if there exists α > 0 such that f(n) > eαn for all n

sufficiently big. We say that f grows at least polynomially if there exists α > 0
such that f(n) > nα for all n sufficiently big.

The standard torrential function T is defined recursively by T (1) = 1,
T (n+1) = 2T (n). We say that f grows at least torrentially if there exists k > 0
such that f(n) > T (n − k) for every n sufficiently big. We will say that f

grows torrentially if there exists k > 0 such that T (n − k) < f(n) < T (n + k)
for every n sufficiently big.

Torrential growth can be detected from recurrent estimates easily. A suf-
ficient condition for an unbounded function f to grow at least torrentially is
an estimate,

f(n + 1) > ef(n)α

for some α > 0. Torrential growth is implied by an estimate,

ef(n)α

< f(n + 1) < ef(n)β

with 0 < α < β.
We will also say that f decreases at least exponentially (respectively tor-

rentially) if 1/f grows at least exponentially (respectively torrentially).

1.4. Quasisymmetric maps. Let k ≥ 1 be given. We say that a homeo-
morphism f : R → R is quasisymmetric with constant k if for all h > 0

1
k
≤ f(x + h) − f(x)

f(x) − f(x − h)
≤ k.

The space of quasisymmetric maps is a group under composition, and
the set of quasisymmetric maps with constant k preserving a given interval is
compact in the uniform topology of compact subsets of R. It also follows that
quasisymmetric maps are Hölder.

To describe further the properties of quasisymmetric maps, we need the
concept of quasiconformal maps and dilatation so we just mention a result
of Ahlfors-Beurling which connects both concepts: any quasisymmetric map
extends to a quasiconformal real-symmetric map of C and, conversely, the re-
striction of a quasiconformal real-symmetric map of C to R is quasisymmetric.
Furthermore, it is possible to work out upper bounds on the dilatation (of an
optimal extension) depending only on k and conversely.

The constant k is awkward to work with: the inverse of a quasisymmetric
map with constant k may have a larger constant. We will therefore work with
a less standard constant: we will say that h is γ-quasisymmetric (γ-qs) if h

admits a quasiconformal symmetric extension to C with dilatation bounded
by γ. This definition behaves much better: if h1 is γ1-qs and h2 is γ2-qs then
h2 ◦ h1 is γ2γ1-qs.
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If X ⊂ R and h : X → R has a γ-quasisymmetric extension to R we will
also say that h is γ-qs.

Let QS(γ) be the set of γ-qs maps of R.

2. Real quadratic maps

If a ∈ C we let fa : C → C denote the (complex) quadratic map a−z2. For
real parameters in the range −1/4 ≤ a ≤ 2, there exists an interval Ia = [β,−β]
with

β =
−1 −

√
1 + 4a

2

such that fa(Ia) ⊂ Ia and fa(∂Ia) ⊂ ∂Ia. For such values of the parameter a,
the map f = fa|Ia

is unimodal; that is, it is a self map of Ia with a unique
turning point. To simplify the notation, we will usually drop the dependence
on the parameter and let I = Ia.

2.1. The combinatorics of unimodal maps. In this subsection we fix a real
quadratic map f and define some objects related to it.

2.1.1. Return maps. Given an interval T ⊂ I we define the first return map
RT : X → T where X ⊂ T is the set of points x such that there exists n > 0
with fn(x) ∈ T , and RT (x) = fn(x) for the minimal n with this property.

2.1.2. Nice intervals. An interval T is nice if it is symmetric around 0
and the iterates of ∂T never intersect int T . Given a nice interval T we notice
that the domain of the first return map RT decomposes in a union of intervals
T j , indexed by integer numbers (if there are only finitely many intervals, some
indexes will correspond to the empty set). If 0 belongs to the domain of RT ,
we say that T is proper. In this case we reserve the index 0 to denote the
component of the critical point: 0 ∈ T 0.

If T is nice, it follows that for all j ∈ Z, RT (∂T j) ⊂ ∂T . In particular,
RT |T j is a diffeomorphism onto T unless 0 ∈ T j (and in particular j = 0 and
T is proper). If T is proper, RT |T 0 is symmetric (even) with a unique critical
point 0. As a consequence, T 0 is also a nice interval.

If RT (0) ∈ T 0, we say that RT is central.
If T is a proper interval then both RT and RT 0 are defined, and we say

that RT 0 is the generalized renormalization of RT .

2.1.3. Landing maps. Given a proper interval T we define the landing map
LT : X → T 0 where X ⊂ T is the set of points x such that there exists n ≥ 0
with fn(x) ∈ T 0, and LT (x) = fn(x) for the minimal n with this property.
We notice that LT |T 0 = id.
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2.1.4. Trees. We will use Ω to label iterations of noncentral branches
of RT , as well as their domains. If d ∈ Ω, we define T d inductively in the
following way. We let T d = T if d is empty and if d = (j1, . . . , jm) we let
T d = (RT |T j1 )−1(T σ−(d)).

We denote R
d
T = R

|d|
T |T d which is always a diffeomorphism onto T .

Notice that the family of intervals T d is organized by inclusion in the same
way as Ω is organized by (right side) truncation (the previously introduced tree
structure).

If T is a proper interval, the first return map to T naturally relates to
the first landing to T 0. Indeed, denoting Cd = (Rd

T )−1(T 0), the domain of the
first landing map LT is easily seen to coincide with the union of the Cd, and
furthermore LT |Cd = R

d
T .

Notice that this allows us to relate RT and RT 0 since RT 0 = LT ◦ RT .

2.1.5. Renormalization. We say that f is renormalizable if there is an
interval 0 ∈ T and m > 1 such that fm(T ) ⊂ T and f j(intT ) ∩ intT = ∅ for
1 ≤ j < m. The maximal such interval is called the renormalization interval
of period m, with the property that fm(∂T ) ⊂ ∂T .

The set of renormalization periods of f gives an increasing (possibly
empty) sequence of numbers mi, i = 1, 2, . . . , each related to a unique renor-
malization interval T (i) which forms a nested sequence of intervals. We include
m0 = 1, T (0) = I in the sequence to simplify the notation.

We say that f is finitely renormalizable if there is a smallest renormaliza-
tion interval T (k). We say that f ∈ F if f is finitely renormalizable and 0 is
recurrent but not periodic. We let Fk denote the set of maps f in F which are
exactly k times renormalizable.

2.1.6. Principal nest. Let ∆k denote the set of all maps f which have (at
least) k renormalizations and which have an orientation reversing nonattracting
periodic point of period mk which we denote pk (that is, pk is the fixed point
of fmk |T (k) with Dfmk(pk) ≤ −1). For f ∈ ∆k, we denote T

(k)
0 = [−pk, pk].

We define by induction a (possibly finite) sequence T
(k)
i , such that T

(k)
i+1 is the

component of the domain of RT
(k)
i

containing 0. If this sequence is infinite,
then either it converges to a point or to an interval.

If ∩iT
(k)
i is a point, then f has a recurrent critical point which is not

periodic, and it is possible to show that f is not k + 1 times renormalizable.
Obviously in this case we have f ∈ Fk, and all maps in Fk are obtained in
this way: if ∩iT

(k)
i is an interval, it is possible to show that f is k + 1 times

renormalizable.
We can of course write F as a disjoint union ∪∞

i=0Fi. For a map f ∈ Fk

we refer to the sequence {T (k)
i }∞i=1 as the principal nest.
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It is important to notice that the domain of the first return map to T
(k)
i

is always dense in T
(k)
i . Moreover, the next result shows that, outside a very

special case, the return map has a hyperbolic structure.

Lemma 2.1. Assume T
(k)
i does not have a nonhyperbolic periodic orbit in

its boundary. For all T
(k)
i there exists C > 0, λ > 1 such that if x, f(x), . . . ,

fn−1(x) do not belong to T
(k)
i then |Dfn(x)| > Cλn.

This lemma is a simple consequence of a general theorem of Guckenheimer
on hyperbolicity of maps of the interval without critical points and nonhyper-
bolic periodic orbits (Guckenheimer considers unimodal maps with negative
Schwarzian derivative, and so this applies directly to the case of quadratic
maps, the general case is also true by Mañé’s Theorem, see [MvS]). Notice
that the existence of a nonhyperbolic periodic orbit in the boundary of T

(k)
i

depends on a very special combinatorial setting; in particular, all T
(k)
j must

coincide (with [−pk, pk]), and the k-th renormalization of f is in fact renor-
malizable of period 2.

By Lemma 2.1, the maximal invariant of f |I\T (k)
i

is an expanding set,

which admits a Markov partition (since ∂T
(k)
i is preperiodic, see also the proof

of Lemma 6.1); it is easy to see that it is indeed a Cantor set3 (except if i = 0
or in the special period 2 renormalization case just described). It follows that
the geometry of this Cantor set is well behaved; for instance, its image by any
quasisymmetric map has zero Lebesgue measure.

In particular, one sees that the domain of the first return map to T
(k)
i has

infinitely many components (except in the special case above or if i = 0) and
that its complement has well behaved geometry.

2.1.7. Lyubich’s regular or stochastic dichotomy. A map f ∈ Fk is called
simple if the principal nest has only finitely many central returns; that is, there
are only finitely many i such that R|T (k)

i
is central. Such maps have many good

features; in particular, they are stochastic (this is a consequence of [MN] and
[L1]).

In [L3], it was proved that almost every quadratic map is either regular
or simple or infinitely renormalizable. It was then shown in [L5] that infinitely
renormalizable maps have zero Lebesgue measure, which establishes the regular
or stochastic dichotomy.

Due to Lyubich’s results, we can completely forget about infinitely renor-
malizable maps; we just have to prove the claimed estimates for almost every
simple map.

3Dynamically defined Cantor sets with such properties are usually called regular Cantor
sets.
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During our discussion, for notational reasons, we will fix a renormalization
level κ; that is, we will only analyze maps in ∆κ. This allows us to fix some
convenient notation: given g ∈ ∆κ we define Ii[g] = T

(κ)
i [g], so that {Ii[g]} is

a sequence of intervals (possibly finite). We use the notation Ri[g] = RIi[g],
Li[g] = LIi[g] and so on (so that the domain of Ri[g] is ∪Ij

i [g] and the domain
of Li[g] is ∪ C

d
i [g]). When doing phase analysis (working with fixed f) we

usually drop the dependence on the map and write Ri for Ri[f ].
(Notice that, once we fix the renormalization level κ, for g ∈ ∆κ, the

notation Ii[g] stands for T
(κ)
i [g], even if g is more than κ times renormalizable.)

2.1.8. Strategy. To motivate our next steps, let us describe the general
strategy behind the proofs of Theorems A and B.

(1) We consider a certain set of nonregular parameters of full measure
and describe (in a probabilistic way) the dynamics of the principal nest. This
is our phase analysis.

(2) From time to time, we transfer the information from the phase space
to the parameter, following the description of the parapuzzle nest which we will
make in the next subsection. The rules for this correspondence are referred to
as phase-parameter relation (which is based on the work of Lyubich on complex
dynamics of the quadratic family).

(3) This correspondence will allow us to exclude parameters whose crit-
ical orbit behaves badly (from the probabilistic point of view) at infinitely
many levels of the principal nest. The phase analysis coupled with the phase-
parameter relation will assure us that the remaining parameters still have full
measure.

(4) We restart the phase analysis for the remaining parameters with extra
information.

After many iterations of this procedure we will have enough information
to tackle the problems of hyperbolicity and recurrence.

We first describe the phase-parameter relation, and we will delay all sta-
tistical arguments until Section 3.

A larger outline of this strategy, including the motivation and organization
of the statistical analysis, appeared in [AM2].

2.2. Parameter partition. Part of our work is to transfer information from
the phase space of some map f ∈ F to a neighborhood of f in the parameter
space. This is done in the following way. We consider the first landing map Li:
the complement of the domain of Li is a hyperbolic Cantor set Ki = Ii \ ∪C

d
i .

This Cantor set persists in a small parameter neighborhood Ji of f , changing in
a continuous way. Thus, loosely speaking, the domain of Li induces a persistent
partition of the interval Ii.
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Along Ji, the first landing map is topologically the same (in a way that
will be clear soon). However the critical value Ri[g](0) moves relative to the
partition (when g moves in Ji). This allows us to partition the parameter
piece Ji in smaller pieces, each corresponding to a region where Ri(0) belongs
to some fixed component of the domain of the first landing map.

Theorem 2.2 (topological phase-parameter relation).Let f ∈ Fκ. There
is a sequence {Ji}i∈N of nested parameter intervals (the principal parapuzzle
nest of f) with the following properties.

(1) Ji is the maximal interval containing f such that for all g ∈ Ji the
interval Ii+1[g] = T

(κ)
i+1[g] is defined and changes in a continuous way.

(Since the first return map Ri[g] has a central domain, the landing map
Li[g] : ∪C

d
i [g] → Ii[g] is defined .)

(2) Li[g] is topologically the same along Ji; there exist homeomorphisms
Hi[g] : Ii → Ii[g], such that Hi[g](Cd

i ) = C
d
i [g]. The maps Hi[g] may

be chosen to change continuously.

(3) There exists a homeomorphism Ξi : Ii → Ji such that Ξi(C
d
i ) is the set

of g such that Ri[g](0) belongs to C
d
i [g].

The homeomorphisms Hi and Ξi are not uniquely defined, since it is easy
to see that we can modify them inside each C

d
i window keeping the above

properties. However, Hi and Ξi are well defined maps if restricted to Ki.
This fairly standard phase-parameter result can be proved in many differ-

ent ways. The most elementary proof is probably to use the monotonicity of
the quadratic family to deduce the topological phase-parameter relation from
Milnor-Thurston’s kneading theory by purely combinatorial arguments. An-
other approach is to use Douady-Hubbard’s description of the combinatorics
of the Mandelbrot set (restricted to the real line) as does Lyubich in [L3] (see
also [AM3] for a more general case).

With this result we can define, for any f ∈ Fκ, intervals J j
i = Ξi(I

j
i )

and J
d
i = Ξi(I

d
i ). From the description given it immediately follows that

two intervals Ji1 [f ] and Ji2 [g] associated to maps f and g are either disjoint
or nested, and the same happens for intervals J j

i or J
d
i . Notice that if g ∈

Ξi(C
d
i ) ∩ Fκ then Ξi(C

d
i ) = Ji+1[g].

We will concentrate on the analysis of the regularity of Ξi for the spe-
cial class of simple maps f : one of the good properties of the class of simple
maps is better control of the phase-parameter relation. Even for simple maps,
however, the regularity of Ξi is not great; there is too much dynamical infor-
mation contained in it. A solution to this problem is to forget some dynamical
information.
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2.2.1. Gape interval. If i > 1, we define the gape interval Ĩi+1 as follows.
We have that Ri|Ii+1 = Li−1 ◦ Ri−1 = R

d
i−1 ◦ Ri−1 for some d, so that

Ii+1 = (Ri−1|Ii
)−1(Cd

i−1). We define the gape interval Ĩi+1 = (Ri−1|Ii
)−1(Id

i−1).
Notice that Ii+1 ⊂ Ĩi+1 ⊂ Ii. Furthermore, for each Ij

i , the gape interval
Ĩi+1 either contains or is disjoint from Ij

i .

2.2.2. The phase-parameter relation. As discussed before, the dynamical
information contained in Ξi is entirely given by Ξi|Ki

; a map obtained by Ξi

by modification inside a C
d
i window still has the same properties. Therefore

it makes sense to ask about the regularity of Ξi|Ki
. As anticipated before we

must erase some information to obtain good results.
Let f ∈ Fκ and let τi be such that Ri(0) ∈ Iτi

i . We define two Cantor sets,
Kτ

i = Ki ∩ Iτi

i which contains refined information restricted to the Iτi

i window
and K̃i = Ii \ (∪Ij

i ∪ Ĩi+1), which contains global information, at the cost of
erasing information inside each Ij

i window and in Ĩi+1.

Theorem 2.3 (phase-parameter relation). Let f be a simple map. For
all γ > 1 there exists i0 such that for all i > i0,

PhPa1: Ξi|Kτ
i

is γ-qs,

PhPa2: Ξi|K̃i
is γ-qs,

PhPh1: Hi[g]|Ki
is γ-qs if g ∈ Jτi

i ,

PhPh2: the map Hi[g]|K̃i
is γ-qs if g ∈ Ji.

The phase-parameter relation follows from the work of Lyubich [L3], where
a general method based on the theory of holomorphic motions was introduced
to deal with this kind of problem. A sketch of the derivation of the specific
statement of the phase-parameter relation from the general method of Lyubich
is given in the appendix. The reader can find full details (in a more general
context than quadratic maps) in [AM3].

Remark 2.1. One of the main reasons why the present work is restricted
to the quadratic family is related to the topological phase-parameter relation
and the phase-parameter relation. The work of Lyubich uses specifics of the
quadratic family, specially the fact that it is a full family of quadratic-like
maps, and several arguments involved have indeed a global nature (using for
instance the combinatorial theory of the Mandelbrot set). Thus we are only
able to conclude the phase-parameter relation in this restricted setting.

However, the statistical analysis involved in the proofs of Theorem A and
B in this work is valid in much more generality. Our arguments suffice (without
any changes) for any one-parameter analytic family of unimodal maps fλ with
the following properties:
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(1) For every λ, fλ has a quadratic critical point and negative Schwarzian
derivative,4

(2) For almost every nonregular parameter λ, fλ has all periodic orbits re-
pelling (so that Lemma 2.1 holds), is conjugate to a quadratic simple map, and
the topological phase-parameter relation5 and the phase-parameter relation6

are valid at λ.

The assumption of a quadratic critical point is probably the hardest to
remove at this point, so our analysis does not apply, say, for the families
a − x2n, n > 1. It is worthwhile to point out that most of the arguments
developed in this paper go through for higher criticality. The key missing links
are in the starting points of this paper: zero Lebesgue measure of infinitely
renormalizable parameters and of finitely renormalizable parameters without
exponential decay of geometry (in the sense of [L1]), and growth of moduli of
parapuzzle annuli (in the sense of [L3]) for almost every parameter.

3. Measure and capacities

3.1. Quasisymmetric maps. If X ⊂ R is measurable, let us denote |X| its
Lebesgue measure. Let us make explicit the metric properties of γ-qs maps to
be used.

For each γ, there exists a constant k ≥ 1 such that for all f ∈ QS(γ), for
all J ⊂ I intervals,

1
k

( |J |
|I|

)k

≤ |f(J)|
|f(I)| ≤

(
k|J |
|I|

)1/k

.

Furthermore limγ→1 k(γ) = 1. So for each ε > 0 there exists γ > 1 such
that k(2γ − 1) < 1 + ε/5. From now on, once a given γ close to 1 is chosen, ε

will always denote a small number with this property.

3.2. Capacities and trees. The γ-capacity of a set X in an interval I is
defined as follows:

pγ(X|I) = sup
h∈QS(γ)

|h(X ∩ I)|
|h(I)| .

4More generally it is enough to ask that the first return map to a sufficiently small nice
interval have negative Schwarzian derivative.

5Actually one only needs the topological phase-parameter relation to be valid for all deep
enough levels of the principal nest.

6In [AM1] it is shown how to work around this condition for most families satisfying
condition (1). The results obtained are weaker though, and the statistical analysis is slightly
harder.
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This geometric quantity is well adapted to our context, since it is well
behaved under tree decompositions of sets. In other words, if Ij are disjoint
subintervals of I and X ⊂ ∪ Ij then

pγ(X|I) ≤ pγ(∪jIj |I) sup
j

pγ(X|Ij).

3.3. A measure-theoretic lemma. Our procedure consists in obtaining
successively smaller (but still full-measure) classes of maps for which we can
give a progressively refined statistical description of the dynamics. This is done
inductively as follows: we pick a class X of maps (which we have previously
shown to have full measure among nonregular maps) and for each map in X

we proceed to describe the dynamics (focusing on the statistical behavior of
return and landing maps for deep levels of the principal nest); then we use
this information to show that a subset Y of X (corresponding to parameters
for which the statistical behavior of the critical orbit is not anomalous) still
has full measure. An example of this parameter exclusion process is given by
Lyubich in [L3] where he shows using a probabilistic argument that the class
of simple maps has full measure in F .

Let us now describe our usual argument (based on the argument of Lyu-
bich which in turn is a variation of the Borel-Cantelli Lemma). Assume at
some point we know how to prove that almost every simple map belongs to a
certain set X. Let Qn be a (bad) property that a map may have (usually some
anomalous statistical parameter related to the n-th stage of the principle nest).
Suppose we prove that if f ∈ X then the probability that a map in Jn(f) has
the property Qn is bounded by qn(f) which is shown to be summable for all
f ∈ X. We then conclude that almost every map does not have property Qn

for n big enough.
Sometimes we also apply the same argument, proving instead that qn(f)

is summable where qn(f) is the probability that a map in Jτn
n (f) has property

Qn, (recall that τn is such that f ∈ Jτn
n (f)).

In other words, we apply the following general result.

Lemma 3.1. Let X ⊂ R be a measurable set such that for each x ∈ X a
sequence Dn(x) of nested intervals converging to x is defined such that for all
x1, x2 ∈ X and any n, Dn(x1) is either equal or disjoint to Dn(x2). Let Qn be
measurable subsets of R and qn(x) = |Qn ∩ Dn(x)|/|Dn(x)|. Let Y be the set
of all x ∈ X which belong to at most finitely many Qn. If

∑
qn(x) is finite for

almost any x ∈ X then |Y | = |X|.

Proof. Let Yn = {x ∈ X|
∑∞

k=n qk(x) < 1/2}. It is clear that Yn ⊂ Yn+1

and | ∪ Yn| = |X|.
Let Zn = {x ∈ Yn||Yn ∩ Dm(x)|/|Dm(x)| > 1/2, m ≥ n}. It is clear that

Zn ⊂ Zn+1 and | ∪ Zn| = |X|.
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For m ≥ n, let Tm
n = ∪x∈Zn

Dm(x). Let Km
n = Tm

n ∩ Qm. Of course,

|Km
n | =

∫
T m

n

qm ≤ 2
∫

Yn

qm.

And, also, ∑
m≥n

∫
Yn

qm ≤ 1
2
|Yn|.

This shows that
∑

m≥n |Km
n | ≤ |Yn|, so that almost every point in Zn

belongs to at most finitely many Km
n . We conclude then that almost every

point in X belongs to at most finitely many Qm.

The following obvious reformulation will often be convenient:

Lemma 3.2. In the same context as above, assume that there exist se-
quences Qn,m, m ≥ n of measurable sets and let Yn be the set of x belonging
to at most finitely many Qn,m. Let qn,m(x) = |Qn,m ∩ Dm(x)|/|Dm(x)|. Let
n0(x) ∈ N ∪ {∞} be such that

∑∞
m=n qn,m(x) < ∞ for n ≥ n0(x). Then for

almost every x ∈ X, x ∈ Yn for n ≥ n0(x).

In practice, we will estimate the capacity of sets in the phase space: that is,
given a map f we will obtain subsets Q̃n[f ] in the phase space, corresponding to
bad branches of return or landing maps. We will then show that for some γ > 1
we have

∑
pγ(Q̃n[f ]|In[f ]) < ∞ or

∑
pγ(Q̃n[f ]|Iτn

n [f ]) < ∞. We will then use
PhPa2 or PhPa1, and the measure-theoretical lemma above to conclude that
with total probability among nonregular maps, for all n sufficiently big, Rn(0)
does not belong to a bad set.

From now on when we prove that almost every nonregular map has some
property, we will just say that with total probability (without specifying) such
a property holds.

(To be strictly formal, we have fixed the renormalization level κ (in partic-
ular to define the sequence Jn without ambiguity), so that applications of the
measure theoretical argument will actually be used to conclude that for almost
every parameter in Fκ a given property holds. Since almost every nonregular
map belongs to some Fk, this is equivalent to the statement regarding almost
every nonregular parameter.)

4. Statistics of the principal nest

4.1. Decay of geometry. As before, let τn ∈ Z be such that Rn(0) ∈ Iτn
n .

An important parameter in our construction will be the scaling factor

cn =
|In+1|
|In|

.
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This variable of course changes inside each Jτn
n window, however, not by much.

From PhPh1, for instance, we get that with total probability

lim
n→∞

sup
g1,g2∈Jτn

n

ln(cn[g1])
ln(cn[g2])

= 1.

This variable is by far the most important in our analysis of the statistics
of return maps. Often considering other variables (say, return times), we will
show that the distribution of those variables is concentrated near some average
value. Our estimates will usually give a range of values near the average, and
cn will play an important role. Due (among other issues) to the variability of
cn inside the parameter windows, the ranges we select will depend on cn up
to an exponent (say, between 1 − ε and 1 + ε), where ε is a small, but fixed,
number. From the estimate we just obtained, for big n the variability (margin
of error) of cn will fall comfortably in such range, and we need not elaborate
more.

A general estimate on the rates of decay of cn was obtained by Lyubich:
he shows that (for a finitely renormalizable unimodal map with a recurrent
critical point), cnk

decays exponentially (on k), where nk−1 is the subsequence
of noncentral levels of f . For simple maps, the same is true with nk = k, as
there are only finitely many central returns. Thus we can state:

Theorem 4.1 (see [L1]). If f is a simple map then there exists C > 0,
λ < 1 such that cn < Cλn.

Let us use the following notation for the combinatorics of a point x ∈ In.
If x ∈ Ij

n we let j(n)(x) = j and if x ∈ C
d
n we let d(n)(x) = d.

Lemma 4.2. With total probability, for all n sufficiently big,

p2γ−1(|d(n)(x)| ≤ k|In) < kc1−ε/2
n ,(4.1)

p2γ−1(|d(n)(x)| ≥ k|In) < e−kc
1+ε/2
n .(4.2)

Also,

p2γ−1(|d(n)(x)| ≤ k|Iτn
n ) < kc1−ε/2

n ,(4.3)

p2γ−1(|d(n)(x)| ≥ k|Iτn
n ) < e−kc

1+ε/2
n .(4.4)

Proof. Let us compute the first two estimates.
Since I0

n is in the middle of In, we have as a simple consequence of the
Real Schwarz Lemma (see [L1] and (4.8) in Lemma 4.5 below) that

cn

4
<

|Cd
n|

|Id
n|

< 4cn.
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As a consequence

p2γ−1(|d(n)(x)| = m|In) < (4cn)1−ε/3

and we get the estimate (4.1) summing on 0 ≤ m ≤ k.
For the same reason, we get that

p2γ−1(|d(n)(x)| ≥ m + 1|In)

<

(
1 −

(cn

4

)1+ε/3
)

p2γ−1(|d(n)(x)| ≥ m|In).

This implies

p2γ−1(|d(n)(x)| ≥ m|In) ≤
(

1 −
(cn

4

)1+ε/3
)m

.

Estimate (4.2) follows from(
1 −

(cn

4

)1+ε/3
)k

< (1 − c1+ε/2
n )k

< ((1 − c1+ε/2
n )c

−1−ε/2
n )kc

1+ε/2
n

< e−kc
1+ε/2
n .

The two remaining estimates are analogous.

Let us now transfer this result (more precisely the second pair of estimates)
to the parameter in each Jτn

n window using PhPa1. To do this notice that
the measure of the complement of the set of parameters in Jτn

n such that
c−1+2ε
n < sn < c−1−2ε

n can be estimated by 2cε
n for n big which is summable

for all ε by Theorem 4.1. So we have:

Lemma 4.3. With total probability,

lim
n→∞

ln(sn)
ln(c−1

n )
= 1.

The parameter sn influences the size of cn+1 in a determinant way.

Corollary 4.4. With total probability,

lim inf
n→∞

ln(ln(c−1
n+1))

ln(c−1
n )

≥ 1.(4.5)

In particular, cn decreases at least torrentially fast.

Proof. It is easy to see (by, for instance, the Real Schwarz Lemma; see
[L1]; see also item (4.9) in Lemma 4.5 below) that there exists a constant K > 0
(independent of n) such that for each d ∈ Ω, both components of I

σ+(d)
n \ I

d
n
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have size at least (eK − 1)|Id
n|. In particular, by induction, if Rn(0) ∈ C

d
n

we have that both gaps of In \ C
d
n have size at least (eKsn − 1)|Cd

n|. Taking
the preimage by Rn, and using the Real Schwarz Lemma again, we see that
cn+1 < CeKsn/2 for some constant C > 0 independent of n. We conclude that

lim inf
ln(c−1

n+1)
sn

≥ K

2
,

and since cn → 0 as n → ∞ we have

lim inf
ln(ln(c−1

n+1))
ln(sn)

≥ 1

which together with Lemma 4.3 implies (4.5).

Remark 4.1. In the proof of Corollary 4.4, the constant K > 0 is related
to the real bounds. In our situation, since we have decay of geometry, we can
actually take K → ∞ as n → ∞, so we actually have

ln(c−1
n+1)

sn
→ ∞

torrentially fast.

4.2. Fine partitions. We use Cantor sets Kn and K̃n to partition the phase
space. In many circumstances we are directly concerned with intervals of this
partition. However, sometimes we just want to exclude an interval of given
size (usually a neighborhood of 0). This size does not usually correspond to
(the closure of) a union of gaps, so we instead should consider in applications
an interval which is a union of gaps, with approximately the given size 7. The
degree of relative approximation will always be torrentially good (in n), so we
usually won’t elaborate on this. In this section we just give some results which
will imply that the partition induced by the Cantor sets are fine enough to
allow torrentially good approximations.

The following lemma summarizes the situation. The proof is based on
estimates of distortion, the Real Schwarz Lemma and the Koebe Principle (see
[L1]), and is very simple, so we just sketch the proof.

7We need to consider intervals which are unions of gaps due to our phrasing of the phase-
parameter relation, which only gives information about such gaps. However, this is not
absolutely necessary, and we could have proceeded in a different way: the proof of the phase-
parameter relation actually shows that there is a holonomy map between phase and parameter
intervals (and not only Cantor sets) corresponding to a holomorphic motion for which we can
obtain good qs estimates. While this map is not canonical, the fact that it is a holonomy
map for a holomorphic motion with good qs estimates would allow our proofs to work.
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Lemma 4.5. The following estimates hold :

|Ij
n|

|In|
= O(

√
cn−1),(4.6)

|Id
n|

|Iσ+(d)
n |

= O(
√

cn−1),(4.7)

cn

4
<

|Cd
n|

|Id
n|

< 4cn,(4.8)

|Ĩn+1|
|In|

= O(e−sn−1).(4.9)

Proof (Sketch). Since R
d
n has negative Schwarzian derivative, it immedi-

ately follows that the Koebe space8 of C
d
n inside I

d
n has at least order c−1

n .
It is easy to see that Rn−1|In

can be written as φ ◦ f where φ extends to a
diffeomorphism onto In−2 with negative Schwarzian derivative and thus with
very small distortion. Since Rn−1(I

j
n) is contained on some C

d
n−1, we see that

the Koebe space of Ij
n in In is at least of order c

−1/2
n−1 which implies (4.6).

Let us now consider an interval I
d
n. Let Ij

n be such that R
σ+(d)
n (Id

n) = Ij
n.

We can pullback the Koebe space of Ij
n inside In by R

σ+(d)
n , so that (4.6) implies

(4.7). Moreover, this shows by induction that the Koebe space of I
d
n inside In

is at least of order c
−|d|/2
n−1 . Since Rn−1(Ĩn+1) ⊂ I

d
n−1 with |d| = sn−1, the Koebe

space of Ĩn+1 in In is at least c
−|d|/4
n−2 , which implies (4.9).

It is easy to see that R
d
n|Id

n
can be written as φ ◦ f ◦ R

σ+(d)
n , where φ has

small distortion. Due to (4.6), R
σ+(d)
n |Id

n
also has small distortion, so that a

direct computation with f (which is purely quadratic) gives (4.8).

In other words, distances in In can be measured with precision √
cn−1|In|

in the partition induced by K̃n, due to (4.6) and (4.9) (since e−sn−1 � cn−1).
Distances can be measured much more precisely with respect to the par-

tition induced by Kn; in fact we have good precision in each I
d
n scale. In other

words, inside I
d
n, the central gap C

d
n is of size O(cn|Id

n|) (by (4.8)) and the other
gaps have size O(√cn−1|Cd

n|) (by (4.7) and (4.8)).

8The Koebe space of an interval T ′ inside an interval T ⊃ T ′ is the minimum of |L|/|T ′|
and |R|/|T ′| where L and R are the components of T \ T ′. If the Koebe space of T ′ inside T
is big, then the Koebe Principle states that a diffeomorphism onto T ′ which has an extension
with negative Schwarzian derivative onto T has small distortion. In this case, it follows that
the Koebe space of the preimage of T ′ inside the preimage of T is also big.
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4.3. Initial estimates on distortion. To deal with the distortion control
we need some preliminary known results. Those estimates are based on the
Koebe Principle and the estimates of Lemma 4.5. All needed arguments are
already contained in the proof of Lemma 4.5, so we won’t get into details.

Proposition 4.6. The following estimates hold :

(1) For any j, if Rn|Ij
n

= fk, dist(fk−1|f(Ij
n)) = 1 + O(cn−1).

(2) For any d, dist(Rσ+(d)
n |Id

n
) = 1 + O(√cn−1).

We will use the following immediate consequence for the decomposition
of certain branches.

Lemma 4.7. With total probability,

(1) Rn|I0
n

= φ ◦ f where φ has torrentially small distortion.

(2) R
d
n = φ2 ◦ f ◦ φ1 where φ2 and φ1 have torrentially small distortion and

φ1 = R
σ+(d)
n .

4.4. Estimating derivatives.

Lemma 4.8. Let wn denote the relative distance in In of Rn(0) to
∂In ∪ {0}:

wn =
d(Rn(0), ∂In ∪ {0})

|In|
, where d(x, X) = inf

y∈X
|y − x|.

With total probability,

lim sup
n→∞

− ln(wn)
ln(n)

≤ 1.

In particular Rn(0) /∈ Ĩn+1 for all n large enough.

Proof. This is a simple consequence of PhPa2, by the fact that n−1−δ is
summable, for all δ > 0 (by (4.9) to obtain the last conclusion).

From now on we suppose that f satisfies the conclusions of the above
lemma.

Lemma 4.9. With total probability,

lim sup
n→∞

supj �=0 ln(dist(f |Ij
n
))

ln(n)
≤ 1/2.
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Proof. Denote by P
d
n a |Cd

n|/n1+δ neighborhood of C
d
n. Notice that the

gaps of the Cantor sets Kn inside I
d
n which are different from C

d
n are torrentially

(in n) smaller than C
d
n, so that we can take P

d
n as a union of gaps of Kn up to

torrentially small error.
It is clear that if h is a γ-qs homeomorphism (γ close to 1) then

|h(P d
n \ Cd

n)| ≤ n−1−δ/2|h(Cd
n)|.

Notice that if C
d
n is contained in Ij

n with j = τn, then P
d
n does not intersect

Iτn
n . Since the C

d
n are disjoint,

pγ(∪(P d
n \ Cd

n)|Iτn
n ) ≤ n−1−δ/2

which is summable.
Transferring this estimate to the parameter using PhPa1 we see that with

total probability, if n is sufficiently big, if Rn(0) does not belong to C
d
n then

Rn(0) does not belong to P
d
n as well. In particular, if n is sufficiently big, the

critical point 0 will never be in a n−1/2−δ/5|Ij
n+1| neighborhood of any Ij

n+1

with j = 0 (the change from n−1−δ to n−1/2−δ/5 is due to taking the inverse
image by Rn|In+1 , which corresponds, up to torrentially small distortion, to
taking a square root, and causes the division of the exponent by two). This
implies the required estimate on distortion since f is quadratic.

Lemma 4.10. With total probability,

lim sup
n→∞

supd∈Ω ln(dist(Rd
n))

ln(n)
≤ 1

2
.(4.10)

In particular, for n big enough, supd∈Ω dist(Rd
n) ≤ 2n and |DRn(x)| > 2,

x ∈ ∪j �=0I
j
n.

Proof. By Lemma 4.7, Lemma 4.9 implies (4.10). If j = 0, by (4.6) of
Lemma 4.5 we get that |Rn(Ij

n)|/|Ij
n| = |In|/|Ij

n| > c
−1/3
n−1 , so that dist(Rn|Ij

n
)

≤ 2n implies that for all x ∈ Ij
n, |DRn(x)| > c

−1/3
n−1 2−n > 2.

Remark 4.2. Lemma 4.9 has also an application for approximation of in-
tervals. This result implies that if Ij

n = (a, b) and j = 0, we have 1/2n < b/a

< 2n. As a consequence, for any symmetric (about 0) interval In+1 ⊂ X ⊂ In,
there exists a symmetric (about 0) interval X ⊂ X̃, which is union of Ij

n and
is such that |X̃|/|X| < 2n (approximation by union of C

d
n, with |X̃|/|X| tor-

rentially close to 1, follows more easily from the discussion on fine partitions).

We will also need to estimate derivatives of iterates of f , and not only of
return branches.
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Lemma 4.11. With total probability, if n is sufficiently big and if x ∈ Ij
n,

j = 0, and Rn|Ij
n

= fK , then for 1 ≤ k ≤ K, |(Dfk(x))| > |x|c3
n−1.

Proof. First notice that by Lemmas 4.8 and 4.7, Rn|I0
n

= φ ◦ f with
|Dφ| > 1, provided n is big enough (since φ has small distortion and there
is a big macroscopic expansion from f(I0

n) to Rn(I0
n)). Also, by Lemma 4.4,

|In| decays so fast that
∏n

r=1 |In| > c
3/2
n−1 for n big enough. Finally, by Lemma

4.10, for n big enough, |DRn(x)| > 1 for x ∈ Ij
n, j = 0. Let n0 be so big that

if n ≥ n0, all the above properties hold.
From hyperbolicity of f restricted to the complement of In0 (from Lemma

2.1), there exists a constant C > 0 such that if s0 is such that fs(x) /∈ I0
n0

for
every s0 ≤ s < k then |Dfk−s0(fs0(x))| > C.

Let us now consider some n ≥ n0. If k = K, we have a full return and the
result follows from Lemma 4.10.

Assume now k < K. Let us define d(s), 0 ≤ s ≤ k such that fs(x) ∈
Id(s) \ I0

d(s) (if fs(x) /∈ I0 we set d(s) = −1). Let m(s) = maxs≤t≤k d(t). Let us
define a finite sequence {kr}l

r=0 as follows. With k0 = 0 and when kr < k we
let kr+1 = max{kr < s ≤ k|d(s) = m(s)}. Notice that d(ki) < n if i ≥ 1, since
otherwise fki(x) ∈ In so that k = ki = K which contradicts our assumption.

The sequence 0 = k0 < k1 < · · · < kl = k satisfies n = d(k0) > d(k1) >

· · · > d(kl). Let θ be maximal with d(kθ) ≥ n0. Now

|Dfk−kθ(fkθ(x))| > C|Df(fkθ(x))|,

and so if θ = 0 then Dfk(x) > |2Cx| and we are done.
Assume now θ > 0. Then

|Dfk−kθ(fkθ(x))| > C|Df(fkθ(x))| > C|Id(kθ)+1|.

For 1 ≤ r ≤ θ, the action of fkr−kr−1 near fkr−1(x) is obtained by applying
the central component of Rd(kr) followed by several noncentral components of
Rd(kr). Since d(kr) ≥ n0, we can estimate

|Dfkr−kr−1(fkr−1(x))| > |DRd(kr)(f
kr−1(x))| > |Df(fkr−1(x))|.

For r = 1, this argument gives |Dfk1(x)| ≥ |Df(x)|, while for r > 1 we can
estimate

|Dfkr−kr−1(fkr−1(x))| > |Df(fkr−1(x))| > |Id(kr−1)+1|.
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Combining it all we get

|Dfk(x)| = |Dfk1(x)| · |Dfk−kθ(fkθ(x))|
θ∏

r=2

|Dfkr−kr−1(fkr−1(x))|

> |2x| · C · |Id(kθ)+1|
θ∏

r=2

|Id(kr−1)+1| = |2Cx|
θ∏

r=1

|Id(kr)+1|

≥ |2Cx|
n∏

r=0

|Ir| > |x|c3
n−1.

5. Sequences of quasisymmetric constants and trees

5.1. Preliminary estimates. From now on, we will need to transfer esti-
mates on the capacity of certain sets from level to level of the principal nest. In
order to do so we will need to consider not only γ-capacities with some γ fixed,
but different constants for different levels of the principal nest. Next, we will
make use of sequences of constants converging (decreasing) to a given value γ.
We recall that γ is some constant very close to 1 such that k(2γ−1) < 1+ε/5,
with ε very small.

We define the sequences ρn = (n + 1)/n and ρ̃n = (2n + 3)/(2n + 1), so
that ρn > ρ̃n > ρn+1 and lim ρn = 1. We define the sequence γn = γρn and an
intermediate sequence γ̃n = γρ̃n.

As we know, the generalized renormalization process relating Rn to Rn+1

has two phases, first Rn to Ln and then Ln to Rn+1. The following remarks
shows why it is useful to consider the sequence of quasisymmetric constants
due to losses related to distortion.

Remark 5.1. Let S be an interval contained in I
d
n. Using Lemma 4.7 we

have R
d
n|S = ψ2 ◦ f ◦ ψ1, where the distortion of ψ2 and ψ1 are torrentially

small and ψ1(S) is contained in some Ij
n, j = 0. If S is contained in I0

n we may
as well write Rn|S = φ ◦ f , and the distortion of φ is also torrentially small.

In either case, if we decompose S in 2km intervals Si of equal length, where
k is the distortion of either R

d
n|S or Rn|S and m is subtorrentially big (say,

m < 2n), the distortion obtained restricting to any interval Si will be bounded
by 1+m−1. Indeed, in the case S ⊂ I0

n, we have dist(Rn|Si
) ≤ dist(φ) dist(f |Si

).
Now k = dist(Rn|S) ≥ dist(φ)−1 dist(f |S). Since f is quadratic,

dist(f |Si
) − 1 ≤ |Si|

|S| (dist(f |S) − 1) ≤ 1
2km

(k dist(φ) − 1)

≤ dist(φ)
2m

.

Since dist(φ)−1 is torrentially small, dist(f |Si
) ≤ 1+(2/3)m−1 and dist(Rn|Si

)
≤ 1+m−1. The case S ⊂ I

d
n is entirely analogous, when we consider dist(Rd

n|Si
)
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≤ dist(ψ2) dist(f |ψ1(Si)) dist(ψ1), and use torrentially small distortion of ψ1

and ψ2. The estimate now becomes

dist(f |ψ1(Si)) − 1 ≤ |ψ1(Si)|
|ψ1(S)| (dist(f |ψ1(S)) − 1)

≤ dist(ψ1)
2km

(k dist(ψ1) dist(ψ2) − 1)

≤ dist(ψ1)2 dist(ψ2))
2m

and we conclude again that dist(Rd
n|Si

) ≤ 1 + m−1.

Remark 5.2. Now, let us fix γ such that the corresponding ε is small
enough. We have the following estimate for the effect of the pullback of a
subset of In by the central branch Rn|I0

n
. With total probability, for all n

sufficiently big, if X ⊂ In satisfies

pγ̃n
(X|In) < δ ≤ n−1000

then
pγn+1((Rn|In+1)

−1(X)|In+1) < δ1/5.

Indeed, let V be a δ1/4|In+1| neighborhood of 0. Then Rn|In+1\V has
distortion bounded by 2δ1/4.

Let W ⊂ In be an interval of size λ|In|. Of course

pγ̃n
(X ∩ W |W ) < δλ−1−ε.

We decompose each side of In+1 \ V as a union of n3δ−1/4 intervals of
equal length. Let W be such an interval. From Lemma 4.8, it is clear that the
image of W covers at least δ1/2n−4|In| and then that

pγ̃n
(X ∩ Rn(W )|Rn(W )) < δ(1−ε)/2n4+4ε.

So we conclude that (since the distortion of Rn|W is of order 1 + n−3 by
Remark 5.1)

pγn+1((Rn|In+1)
−1(X) ∩ W |W ) < δ(1−ε)/2n5

(we use the fact that the composition of a γn+1-qs map with a map with small
distortion is γ̃n-qs). Since

pγn+1(V |In+1) < (2δ1/4)1−ε,

we get the required estimate.

5.2. More on trees. We will need the following application of the above
remarks:

Lemma 5.1. With total probability, for all n sufficiently big

pγ̃n
((Rd

n)−1(X)|Id
n) < 2npγn

(X|In).
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Proof. Decompose I
d
n in nln(n) intervals of equal length, say, {Wi}nln(n)

i=1 .
Then by Lemma 4.10, |Rd

n(Wi)| > n−2 ln n|In|, and so we get

pγn
(Rd

n(Wi) ∩ X|Rd
n(Wi)) < n4 ln(n)pγn

(X|In).

Applying Remark 5.1, we see that

pγ̃n
((Rd

n)−1(X) ∩ Wi|Wi) < n4 ln(n)pγn
(X|In),

(we use the fact that the composition of a γ̃n-qs map with a map with small
distortion is γn-qs) which implies the desired estimate.

By induction we get:

Lemma 5.2. With total probability, for n big enough, if X1, . . . , Xm ⊂
Z \ {0}

pγ̃n
(d(n)(x) = (j1, . . . , jm, . . . , j|d(n)(x)|),ji ∈ Xi, 1 ≤ i ≤ m|In)

≤ 2mn
m∏

i=1

pγn
(j(n)(x) ∈ Xi|In).

The following is an obvious variation of the previous lemma fixing the
start of the sequence.

Lemma 5.3. With total probability, for n big enough, if X1, . . . , Xm ⊂
Z \ {0}, and if d = (j1, . . . , jk),

pγ̃n
(d(n)(x) = (j1, . . . , jk, jk+1, . . . , jk+m, . . . , j|d(n)(x)|), ji+k ∈ Xi, 1 ≤ i ≤ m|Id

n)

≤ 2mn
m∏

i=1

pγn
(j(n)(x) ∈ Xi|In).

In particular, with d = (τn),

pγ̃n
(d(n)(x) = (τn, j1, . . . , jm, jm+1, . . . , j|d(n)(x)|), ji ∈ Xi, 1 ≤ i ≤ m|Iτn

n )

≤ 2mn
m∏

i=1

pγn
(j(n)(x) ∈ Xi|In).

The last part of the above lemma will often be necessary in order to apply
PhPa1.

Sometimes we are more interested in the case where the Xi are all equal.
Let Q ⊂ Z \ {0}. Let Q(m, k) denote the set of d = (j1, . . . , jm) such that

#{1 ≤ i ≤ m, ji ∈ Q} ≥ k.
Define qn(m, k) = pγ̃n

(∪d∈Q(m,k)I
d
n|In).

Let qn = pγn
(∪j∈QIj

n|In).
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Lemma 5.4. With total probability, for n large enough,

qn(m, k) ≤
(

m

k

)
(2nqn)k.(5.1)

Proof. We have the following recursive estimates for qn(m, k):

(1) qn(1, 0) = 1, qn(1, 1) ≤ qn ≤ 2nqn, and qn(m + 1, 0) ≤ 1 for m ≥ 1,

(2) qn(m + 1, k + 1) ≤ qn(m, k + 1) + 2nqnqn(m, k).

Indeed, (1) is completely obvious and if (j1, . . . , jm+1) ∈ Q(m + 1, k + 1)
then either (j1, . . . , jm) ∈ Q(m, k+1) or (j1, . . . , jm) ∈ Q(m, k) and jm+1 ∈ Q,
so that (2) follows from Lemma 5.1. It is clear that (1) and (2) imply, by
induction, (5.1).

We recall that by Stirling’s formula,(
m

qm

)
<

mqm

(qm)!
<

(
3
q

)qm

.

So we can get the following estimate. For q ≥ qn,

qn(m, (6 · 2n)qm) <

(
1
2

)(6·2n)qm

.(5.2)

This is also used in the following form. If q−1 > 6 · 2n (it is usually the
case, since q will be torrentially small)∑

k>q−2

qn(k, (6 · 2n)qk) < 2−nq−1

(
1
2

)(6·2n)q−1

.(5.3)

This can be interpreted as a large deviation estimate in this context.

6. Estimates on time

Our aim in this section is to estimate the distribution of return times
to In: they are concentrated around c−1

n−1 up to an exponent close to 1.
The basic estimate is a large deviation estimate which is proved in the

next subsection (Corollary 6.5) and states that for k ≥ 1 the set of branches
with time larger than kc−4

n has capacity less than e−k.

6.1. A large deviation lemma for times. Let rn(j) be such that Rn|Ij
n

=
f rn(j). We will also use the notation rn(x) = rn(j(n)(x)), the n-th return time
of x (there should be no confusion for the reader, since we consistently use j

for an integer index and x for a point in the phase space).
Let

An(k) = pγn
(rn(x) ≥ k|In).
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Since f restricted to the complement of In+1 is hyperbolic, from Lemma 2.1,
it is clear that An(k) decays exponentially with k:

Lemma 6.1. With total probability, for all n > 0, there exists C > 0,
λ > 1 (which depend on n) such that An(k) < Cλk.

Proof. Consider a Markov partition for f |I\In+1
, that is, a finite union of

intervals M1, . . . , Mm such that

(1) ∪m
i=1Mi = I \ In+1.

(2) For every 1 ≤ i ≤ m, f |Mi
is a diffeomorphism.

(3) f(∪m
i=1∂Mi) ⊂ ∪m

i=1∂Mi.

It is easy to see that such a Markov partition also satisfies

(4) For every 1 ≤ i ≤ m, either

f(Mi) =
⋃

Mj⊂f(Mi)

Mj or f(Mi) = In+1 ∪
⋃

Mj⊂f(Mi)

Mj .

(To construct such a Markov partition, notice first that the boundary
of In+1 is preperiodic to a periodic orbit q (of period p). In particular,
fs(∂In+1) = q for some integer s > p. Let K be the (finite) set of all x

which never enter int In+1 and such that f j(x) = q for some j ≤ s. Since
In+1 is nice, ∂In+1 ⊂ K, and since s > p, q ∈ K. In particular K is forward
invariant. It is easy to see that the connected components of I \ (K ∪ In+1)
form a Markov partition of I \ In+1.)

It follows that if f j(x) ∈ ∪m
i=1 intMi, 0 ≤ j ≤ k, then there exists a unique

interval x ∈ Mk(x) such that fk|Mk(x) is a diffeomorphism onto some Mj .
Notice that if k ≥ 1, f(Mk(x)) = Mk−1(f(x)).

By Lemma 2.1, if y ∈ Mk(x), |Dfk(y)| is exponentially big in k. In
particular,

∑k−1
j=0 |f j(Mk(x))| < C ′ for some constant C ′ > 0 independent of

Mk(x). Since f is C2, dist(f |Mk(x)) is uniformly bounded in k. Notice that the
bounds on distortion depend on n. (An alternative to this classical argument
is to obtain the bounded distortion from the negative Schwarzian derivative.)

By Lemma 2.1 again, the set of points x ∈ I which never enter In+1 has
empty interior: for every T ⊂ I there is an iterate f r(T ) which intersects In+1

(otherwise the exponentially growing intervals f r(T ) ⊂ I would eventually
become bigger than I). So there exists r > 0 such that, for every Mj , there
exists x ∈ Mj and tj < r with f tj (x) ∈ int In+1. It follows that there exists an
interval Ej ⊂ Mj such that f tj (Ej) ⊂ int In+1.

Fixing some Mk(x) with fk(Mk(x)) = Mj , let Ek(x) = (fk|Mk(x))−1(Ej).
By bounded distortion, it follows that |Ek(x)|/|Mk(x)| is uniformly bounded
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from below independently of Mk(x). In particular, p2γ(Mk(x)\Ek(x)|Mk(x))
< λ for some constant λ < 1.

Let Mk be the union of the Mk(x) and Ek be the union of the Ek(x).
Then Mk+r ∩ Ek = ∅. In particular, p2γ(M (k+1)r|I) < λp2γ(Mkr|I).

We conclude that p2γ(Mk|In) < Cλk/r for some constant C > 0. If
k > rn(0), then Mk ∩ In contains the set of points x ∈ In such that f j(x) /∈ In,
1 ≤ j ≤ k, that is, all points x ∈ In with rn(x) > k. Adjusting C and λ if
necessary, we have An(k) < Cλk.

Remark 6.1. It turns out that λ depends strongly on n. Indeed, it is
possible to show that λ is torrentially close to 1. The argument above does not
give any estimate on the behavior of λ as n grows, but it will be used below
as the basis of an inductive argument which will give explicit estimates on λ

for n big.

Let ζn be the maximum ζ ≤ cn−1 such that for all k ≥ ζ−1 we have

An(k) ≤ e−ζk(6.1)

and finally let αn = min1≤m≤n ζm.

Our main result in this section is to estimate αn. We will show that with
total probability, for n big we have αn+1 ≥ c4

n. For this we will have to do a
simultaneous estimate for landing times, which we define now.

Let ln(d) be such that Ln|Id
n

= f ln(d). We will also use the notation
ln(x) = ln(d(n)(x)).

Let us define

Bn(k) = pγ̃n
(ln(x) > k|In).(6.2)

Bτn
n (k) = pγ̃n

(ln(x) > k + rn(τn)|Iτn
n ).(6.3)

Lemma 6.2. If k > c
−3/2
n α

−3/2
n then

Bn(k) < e−c
3/2
n α

3/2
n k,(6.4)

and

Bτn
n < e−c

−3/2
n α

3/2
n k.(6.5)

Proof. We first show (6.4). Let k > c
−3/2
n α

−3/2
n be fixed. Let m0 = α

3/2
n k.

Notice that by Lemma 4.2

pγ̃n
(|d(n)(x)| ≥ m0|In) ≤ e−c

5/4
n α

3/2
n k.(6.6)
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Fix now m < m0. Let us estimate

pγ̃n
(|d(n)(x)| = m, ln(x) > k|In).(6.7)

For each d = (j1, . . . , jm) we can associate a sequence of m positive integers
ri such that ri ≤ rn(ji) and

∑
ri = k. The average value of ri is at least k/m

so we conclude that ∑
ri≥k/2m

ri > k/2.(6.8)

Recall also that

k

2m
>

1

(2α
3/2
n )

> α−1
n .(6.9)

Given a sequence of m positive integers ri as above we can make the
following estimate using Lemma 5.2

pγ̃n
(d(n)(x) = (j1, . . . , jm), rn(ji) ≥ ri|In)(6.10)

≤ 2mn
m∏

j=1

pγn
(rn(x) ≥ rj |In)

≤ 2mn
∏

rj≥α−1
n

pγn
(rn(x) ≥ rj |In)

≤ 2mn
∏

rj≥k/2m

e−αnrj

≤ 2mne−αnk/2.

The number of sequences of m positive integers ri with sum k is(
k + m − 1

m − 1

)
≤ 1

(m − 1)!
(k + m − 1)m−1(6.11)

≤ 1
m!

(k + m)m ≤
(

2ek

m

)m

.

Notice that

2mn

(
2ek

m

)m

≤
(

2n+3k

m

) m

k2n+3 k2n+3

(6.12)

≤
(

2n+3k

m0

) m0
k2n+3 k2n+3

(since x1/x decreases for x > e)

≤
(

2n+3

α
3/2
n

)m0

≤ eα
5/4
n k.
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So we can finally estimate

pγ̃n
(|d(n)(x)| = m, ln(x) ≥ k|In) ≤ 2mn

(
2ek

m

)m

e−αnk/2(6.13)

< e(α
1/4
n −1/2)αnk.

Summing up on m we get

pγ̃n
(|d(n)(x)| < m0, ln(x) ≥ k|In)(6.14)

≤ m0e
(α

1/4
n −1/2)αnk

< e(2α
1/4
n −1/2)αnk (since

ln(m0)
k

≤ ln(k)
k

≤ α5/4
n )

≤ e−αnk/3.

As a direct consequence we get

Bn(k) < e−αnk/3 + e−c
5/4
n α

3/2
n k < e−c

3/2
n α

3/2
n k,(6.15)

concluding the proof of (6.4).
For the proof of (6.5) one proceeds analogously. Take k and m0 as before.

By Lemma 4.7 one gets

pγ̃n
(|d(n)(x)| ≥ m0|Iτn

n ) ≤ e−c
5/4
n α

3/2
n k.(6.16)

For any m < m0, if d = (τn, j1, . . . , jm) and ln(d) > k+rn(τn) then there exists
ri ≤ rn(ji) with

∑m
i=1 ri = k. Repeating the argument of (6.10) (and using

Lemma 5.3 instead of Lemma 5.2) one gets, for any such sequence r1, . . . , rm,

pγ̃n
(d(n)(x) = (τn, j1, . . . , jm), rn(ji) ≥ ri|Iτn

n ) ≤ 2mne−αnk/2.(6.17)

The previous combinatorial estimate can be applied again to obtain

pγ̃n
(|d(n)(x)| = m + 1, ln(x) > k + rn(τn)|Iτn

n ) < e(α
1/4
n −1/2)αnk.(6.18)

Summing up (6.18) on m < m0 and using (6.16) we obtain estimate (6.5).

Let vn = rn(0) be the return time of the critical point.

Lemma 6.3. With total probability, for n large enough,

vn+1 < c−2
n α−2

n /2.

Proof. By the definition of αn and PhPa2, it follows that with total
probability, for n large enough,

rn(τn) < c−1
n−1α

−1
n .
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Recall that d(n)(0) is such that Rn(0) ∈ C
d(n)(0)
n . Using Lemma 6.2, more

precisely estimate (6.5), together with PhPa1, we get with total probability,
for n large enough,

ln(d(n)(0)) − rn(τn) < nα−3/2
n c−3/2

n ,

and thus

vn+1 < vn + c−1
n−1α

−1
n + nα−3/2

n c−3/2
n < vn + α−2

n c−2
n /4.

Notice that αn decreases monotonically; thus for n0 big enough and for n > n0,

vn+1 < vn0 +
n∑

k=n0

α−2
k c−2

k /4 < vn0 + α−2
n c−2

n /3.

which for n big enough implies vn+1 < c−2
n α−2

n /2.

Lemma 6.4. With total probability, for n large enough,

αn+1 ≥ min{α4
n, c4

n}.

Proof. Let k ≥ max{α−4
n , c−4

n }. From Lemma 6.3 one immediately sees
that if rn+1(j) ≥ k then Rn(Ij

n+1)) is contained on some C
d
n with ln(d) =

rn+1(j) − vn ≥ k/2 ≥ nα
−3/2
n c

−3/2
n .

Applying Lemma 6.2 we have Bn(k/2) < e−α
3/2
n c

3/2
n k/2.

Applying Remark 5.2 we get

An+1(k) < e−kα
3/2
n c

3/2
n /200 < e−k min{α4

n,c4
n}.

Since cn decreases torrentially, we get

Corollary 6.5. With total probability, for n large enough αn+1 ≥ c4
n.

Remark 6.2. In particular, by Lemma 6.3, for n big, vn < c−2
n−1α

−2
n−1/2 <

c−4
n−1.

6.2. Consequences.

Lemma 6.6. With total probability, for all n sufficiently large,

pγ̃n
(ln(x) < c−1+ε

n |In) < cε/2
n ,(6.19)

pγ̃n
(ln(x) > c−1−5ε/3

n |In) ≤ e−c
−ε/4
n ,(6.20)

pγ̃n
(ln(x) − rn(x) < c−1+ε

n |Iτn
n ) < cε/2

n ,(6.21)

pγ̃n
(ln(x) − rn(x) > c−1−5ε/3

n |Iτn
n ) ≤ e−c

−ε/4
n .(6.22)
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Proof. We will concentrate on estimates (6.19) and (6.20), since (6.21)
and (6.22) are analogous.

We have ln(d) ≥ |d|, and from Lemma 4.2

pγ̃n
(|d(n)(x)| ≤ c−1+ε

n |In) ≤ cε/2
n ,

which implies (6.19).
On the other hand, by the same lemma,

pγ̃n
(|d(n)(x)| ≥ c−1−ε

n |In) ≤ e−c
−ε/2
n .

Defining
Xm =

⋃
d=(j1,...,jm),

rn(jm)>c
−ε/2
n c−4

n−1

Id
n

we have
pγ̃n

(Xm|In) ≤ 2ne−c
−ε/2
n < e−c

−ε/3
n .

Since
c−1−ε
n c−ε/2

n c−4
n−1 < c−1−5ε/3

n ,

we conclude that if x satisfies ln(x) > c
−1−5ε/3
n and |dn(x)| < c−1−ε

n then x

belongs to some Xm with 1 ≤ m ≤ c−1−ε
n . So we get

pγ̃n
(ln(x) > c−1−5ε/3

n |In) ≤ e−c
−ε/2
n + c−1−ε

n e−c
−ε/3
n < e−c

−ε/4
n

which implies (6.20).

Corollary 6.7. With total probability, for all n sufficiently large,

pγn+1(rn+1(x) < c−1+ε
n |In+1) < cε/10

n ,(6.23)

pγn+1(rn+1(x) > c−1−2ε
n |In+1) ≤ e−c

−ε/5
n ≤ cn

n.(6.24)

Proof. Notice that rn+1(j) = vn + ln(d), where Rn(Ij
n+1) ⊂ C

d
n. By

Remark 6.2, we can estimate vn < c−10
n−1. The distribution of rn+1(j) − vn can

then be estimated by the distribution of ln(d) from Lemma 6.6, with a slight
loss given by Remark 5.2.

Using PhPa2 we get

Lemma 6.8. With total probability, for all n sufficiently big,

lim
n→∞

ln(rn(τn))
ln(c−1

n−1)
= 1.(6.25)
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Corollary 6.9. With total probability, for all n sufficiently large,

pγ̃n
(ln(x) < c−1+ε

n |Iτn
n ) ≤ cε/10

n ,(6.26)

pγ̃n
(ln(x) > c−1−11ε/6

n |Iτn
n ) ≤ e−c

−ε/5
n .(6.27)

Proof. Just use Lemma 6.8 together with estimates (6.21) and (6.22) of
Lemma 6.6.

Corollary 6.10. With total probability,

lim
n→∞

ln(vn+1)
ln(c−1

n )
= 1.

Proof. Notice that vn+1 = vn + ln(d) where Rn(0) ∈ C
d
n. Using Corollary

6.9 and PhPa1 we get c−1+ε
n < ln(d) < c

−1−11ε/6
n . By Remark 6.2, vn < c−10

n−1,
so c−1+ε

n < vn+1 < c−1−2ε
n . Letting ε go to 0 we get the result.

Remark 6.3. Using Lemma 4.8, we see that |Rn(In+1)| > 2−n|In|. Since
|Df(x)| < 4, x ∈ I, it follows that |DRn(x)| < 4vn , x ∈ In+1. In particular,
Corollary 6.10 implies that with total probability, for all ε > 0, for all n big
enough,

2−nc−1
n <

|Rn(In+1)|
|In+1|

< 4vn < 4c−1−ε
n−1 ,

so that ln(c−1
n ) < c−1−2ε

n−1 . Together with Corollary 4.4, This implies that

lim
n→∞

ln(ln(c−1
n ))

ln(c−1
n−1)

= 1,

and so c−1
n grows torrentially (and not faster).

7. Dealing with hyperbolicity

In this section we show by an inductive process that the great majority
of branches are reasonably hyperbolic. In order to do that, in the following
subsection, we define some classes of branches, with “very good” distribution
of times, which are not too close to the critical point. The definition of very
good distributions of times has an inductive component: they are compositions
of many very good branches of the previous level. The fact that most branches
are very good is related to the validity of some type of Law of Large Numbers
estimate.

7.1. Some kinds of branches and landings.

7.1.1. Standard landings. Let us define the set of standard landings of
level n, LS(n) ⊂ Ω, as the set of all d = (j1, . . . , jm) satisfying the following.
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LS1: (m not too small or large). c
−1/2
n < m < c−1−2ε

n .

LS2: (No very large times). rn(ji) < c−14
n−1 for all i.

LS3: (Short times are sparse in large enough initial segments). For c−2
n−1 ≤

k ≤ m

#{1 ≤ i ≤ k, rn(ji) < c−1+2ε
n−1 } < (6 · 2n)cε/10

n−1k.

LS4: (Large times are sparse in large enough initial segments) For c
−1/n
n ≤ k ≤

m

#{1 ≤ i ≤ k, rn(ji) > c−1−2ε
n−1 } < (6 · 2n)e−c

ε/5
n−1k.

Lemma 7.1. With total probability, for all n sufficiently big,

pγ̃n
(d(n)(x) /∈ LS(n)|In) < c1/3

n /2,(7.1)

pγ̃n
(d(n)(x) /∈ LS(n)|Iτn

n ) < c1/3
n /2.(7.2)

Proof. Let us start with estimate (7.1) (on In). Let us estimate the
complement of the set of landings which violate each item of the definition.

(LS1) This was estimated before (see Lemma 4.2); an upper bound is
c
1/3
n /3 (with ε small).

(LS2) By Corollary 6.5 the γn-capacity of {rn(x) > c−14
n−1} is at most

e−c−10
n−1 � c3

n. Using Lemma 5.1, we see that the γ̃n-capacity of the set of
d = (j1, . . . , jm) with rn(ji) > c−14

n for some i ≤ c−1−2ε
n (in particular for some

i ≤ m if m is as in LS1) is bounded by 2nc−1−2ε
n c3

n � cn.
(LS3) This is a large deviation estimate, and so we follow the ideas of

§5.2, particularly estimate (5.2). Put q = c
ε/10
n−1 . By the inequality (6.23) of

Corollary 6.7, we can estimate the γ̃n-capacity corresponding to the violation
of LS3 for some fixed c−2

n−1 ≤ k ≤ c−1−2ε
n by(

1
2

)(6·2n)qk

≤
(

1
2

)c
−3/2
n−1

� c3
n.

Summing up over k ≤ c−1−2ε
n (and in particular for k ≤ m as in LS1) we get

the upper bound cn.
(LS4) We use the method of the previous item. Put q = e−c

−ε/5
n−1 . By

estimate (6.24) of Corollary 6.7, we can bound the γ̃n-capacity corresponding
to the violation of LS4 for some fixed c

−1/n
n ≤ k ≤ c−1−2ε

n by(
1
2

)(6·2n)qk

� c3
n.
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Summing up over k ≤ c−1−2ε
n (and in particular for k ≤ m as in LS1) we get

the upper bound cn.
Adding the losses of the four items, we get the estimate (7.1). To establish

estimate (7.2) (on Iτn
n ), the only item which changes is LS2; we have to be

careful since if rn(τn) is very large then automatically LS2 is violated for every
d which starts by τn. But this was taken care of in Lemma 6.8, and with this
observation the estimates are the same.

7.1.2. Very good returns and excellent landings. Define the set of very
good returns, VG(n0, n) ⊂ Z \ {0}, n0, n ∈ N, n ≥ n0 by induction as follows.
We let VG(n0, n0) = Z \ {0} and supposing VG(n0, n) already defined, we
define LE(n0, n) ⊂ LS(n) (excellent landings) as the set of standard landings
satisfying the following extra condition:

LE: (Not very good moments are sparse in large enough initial segments). For
all c−2

n−1 < k ≤ m,

#{1 ≤ i ≤ k, ji /∈ VG(n0, n)} < (6 · 2n)c1/20
n−1k.

And we define VG(n0, n+1) as the set of j such that Rn(Ij
n+1) = C

d
n with

d ∈ LE(n0, n) and the satisfying the extra condition:

VG: (distant from 0). The distance of Ij
n+1 to 0 is bigger than c

1/3
n |In+1|.

Lemma 7.2. With total probability, for all n0 sufficiently big and all
n ≥ n0, if

pγn
(j(n)(x) /∈ VG(n0, n)|In) < c

1/20
n−1(7.3)

then

pγ̃n
(d(n)(x) /∈ LE(n0, n)|In) < c1/3

n ,(7.4)

pγ̃n
(d(n)(x) /∈ LE(n0, n)|Iτn

n ) < c1/3
n .(7.5)

Proof. We first use Lemma 7.1 to estimate the γ̃n-capacity of branches
not in LS(n) by c

1/3
n /2.

Let q = c
1/20
n−1 . Using the hypothesis and estimate (5.2) of §5.2 (see also

the estimate of the complement of LS3 in Lemma 7.1) we first estimate the
γ̃n-capacity of the set of landings which violate LE for a specific value of k

with k ≥ c−2
n−1 by (1/2)(6·2

n)qk and then summing on k we get∑
k≥c−2

n−1

(
1
2

)(6·2n)qk

� cn.

This argument works both for (7.4) (in In) and (7.5) (in Iτn
n ).
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Lemma 7.3. With total probability, for all n0 sufficiently big and for all
n ≥ n0,

pγn
(j(n)(x) /∈ VG(n0, n)|In) < c

1/20
n−1 .(7.6)

Proof. It is clear that with total probability, for n0 sufficiently big and
n ≥ n0, the set of branches Ij

n at distance at least c
1/3
n−1|In| from 0 has

γn-capacity bounded by c
1/8
n−1.

For n = n0, (7.6) holds (since all branches are very good except the central
one). Using Lemma 7.2, if (7.6) holds for n then (7.4) also holds for n. Pulling
back estimate (7.4) by Rn|In+1 (using Remark 5.2), we get (7.6) for n + 1. By
induction on n, (7.6) holds for all n ≥ n0.

Using PhPa2 we get (using the measure-theoretical argument of Lemma 3.2)

Lemma 7.4. With total probability, for all n0 big enough, for all n big
enough, τn ∈ VG(n0, n).

Lemma 7.5. With total probability, for all n0 big enough and for all
n ≥ n0, if j ∈ VG(n0, n + 1) then

1
2
mc−1+2ε

n−1 < rn+1(j) < 2mc−1−2ε
n−1 ,

where as usual, m is such that Rn(Ij
n+1) = C

d
n and d = (j1, . . . , jm).

Proof. Notice that rn+1(j) = vn +
∑

rn(ji). To estimate the total time
rn+1(j) from below we use LS3 and get

1
2
mc−1+2ε

n−1 < (1 − 6 · 2ncε/10
n )mc−1+2ε

n−1 < rn+1(j).

To estimate from above, we notice that vn < c−4
n−1 and by LS2 and LS4∑

rn(ji)>c−1−2ε
n−1

rn(ji) < 6 · 2nc−14
n−1e

−c
−ε/5
n−1 m < m,

so that

rn+1(j) < mc−1−2ε
n−1 + m + c−4

n−1 < 2mc−1−2ε
n−1 .

Remark 7.1. Using LS1 we get the estimate c
−1/2
n < rn+1(j) < c−1−3ε

n for
j ∈ VG(n0, n + 1).

Let j ∈ VG(n0, n + 1). We can write Rn+1|Ij
n+1

= f rn+1(j), that is, a big
iterate of f . One may consider which proportion of those iterates belongs to
very good branches of the previous level. More generally, we can truncate the
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return Rn+1, that is, we may consider k < rn+1(j) and ask which proportion
of iterates up to k belongs to very good branches.

Lemma 7.6. With total probability, for all n0 big enough and for all n ≥
n0, the following holds.

Let j ∈ VG(n0, n+1), and let d = (j1, . . . , jm) be such that Rn(Ij
n+1) = C

d
n.

Let mk be biggest possible with

vn +
mk∑
j=1

rn(ji) ≤ k

(the amount of full returns to level n before time k) and let

βk =
∑

1≤i≤mk,
ji∈VG(n0,n)

rn(ji)

(the total time spent in full returns to level n which are very good before time k).
Then 1 − βk/k < c

1/100
n−1 if k > c

−2/n
n .

Proof. Let us estimate first the time ik which is not spent on noncritical
full returns:

ik = k −
mk∑
j=1

rn(ji).

This corresponds exactly to vn plus some incomplete part of the return jmk+1 .
This part can be bounded by c−4

n−1 + c−14
n−1 (use Corollary 6.10 to estimate vn

and LS2 to estimate the incomplete part).
Using LS2 we conclude now that

mk > (k − c−4
n−1 − c−14

n−1)c
14
n−1 > c−1/n

n

and so mk is not too small.
Let us now estimate the contribution hk from full returns ji with time

higher than c−1−2ε
n−1 . Since mk is big, we can use LS4 to conclude that the

number of such high time returns must be less than cn
n−1mk, so that their

total time is at most cn−14
n−1 mk.

The not-very-good full returns on the other hand can be estimated by LE
(given the estimate on mk); they are at most c

1/21
n−1mk. So we can estimate the

total time lk of not-very-good full returns with time less than c−1−2ε
n−1 by

c
1/25
n−1 c−1−2ε

n−1 mk.

Since mk is big, we can use LS3 to estimate the proportion of branches with
not-too-small time, and so we conclude that at most c

ε/11
n−1mk branches are not

very good or have time less than c−1+2ε
n−1 . Thus, βk can be estimated from below

as
(1 − c

ε/11
n−1)c−1+2ε

n−1 mk.
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It is easy to see then that ik/βk � c
1/100
n−1 , hk/βk � c

1/100
n−1 . If ε is small

enough, we also have
lk/βk < 2c

1/25−4ε
n−1 < c

1/90
n−1 .

So (ik + hk + lk)/βk is less than c
1/100
n−1 . Since ik + hk + lk + βk = k we have

1 − βk/k < (ik + hk + lk)/βk.

7.1.3. Cool landings. Let us define the set of cool landings LC(n0, n) ⊂ Ω,
n0, n ∈ N, n ≥ n0 as the set of all d = (j1, . . . , jm) in LE(n0, n) satisfying

LC1: (Starts very good). ji ∈ VG(n0, n), 1 ≤ i ≤ c
−1/30
n−1 .

LC2: (Short times are sparse in large enough initial segments). For c
−ε/5
n−1 ≤

k ≤ m

#{1 ≤ i ≤ k, rn(ji) < c−1+2ε
n−1 } < (6 · 2n)cε/10

n−1k.

LC3: (Not very good moments are sparse in large enough initial segments).
For all c

−1/30
n−1 ≤ k ≤ m

#{1 ≤ i ≤ k, ji /∈ VG(n0, n)} < (6 · 2n)c1/60
n−1k.

LC4: (Large times are sparse in large enough initial segments). For c−200
n−1 ≤

k ≤ m

#{1 ≤ i ≤ k, rn(ji) > c−1−2ε
n−1 } < (6 · 2n)c100

n−1k.

LC5: (Starts with no large times). rn(ji) < c−1−2ε
n−1 , 1 ≤ i ≤ ec

−ε/5
n−1 /2.

Notice that LC4 and LC5 overlap, since c−200
n−1 < ec

−ε/5
n−1 /2 as do LC1 and

LC3. From this we can conclude that we can control the proportion of large
times or not-very-good times in all moments (and not only for large enough
initial segments).

Lemma 7.7. With total probability, for all n0 sufficiently big and all
n ≥ n0,

pγ̃n
(d(n)(x) /∈ LC(n0, n)|In) < c

1/100
n−1(7.7)

and for all n big enough

pγ̃n
(d(n)(x) /∈ LC(n0, n)|Iτn

n ) < c
1/100
n−1 .(7.8)

Proof. We follow the ideas of the proof of Lemma 7.1. Let us start with
estimate (7.7). Notice that by Lemmas 7.3 and 7.2 we can estimate the γ̃n-
capacity of the complement of excellent landings by c

1/3
n . The computations

below indicate what is lost going from excellent to cool due to each item of the
definition:
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(LC1) This is a direct estimate analogous to LS2. By Lemma 7.3, the
γn-capacity of the complement of very good branches is bounded by c

1/20
n−1 , so

an upper bound for the γ̃n-capacity of the set of landings which do not start
with c

−1/30
n−1 very good branches is given by

2nc
1/20
n−1 c

−1/30
n−1 � c

1/100
n−1 .

(LC2) This is essentially the same large deviation estimate of LS3. We
put q = c

ε/10
n−1 . By estimate (6.23) of Corollary 6.7, the γ̃n-capacity of the set

of landings violating LC2 for a specific value of k is bounded by (1/2)(6·2
n)qk,

and summing up on k (see also estimate (5.3)) we get the upper bound

∑
k≥c

−ε/5
n−1

(
1
2

)(6·2n)c
ε/10
n−1k

≤ (2−nc
−ε/10
n−1 )

(
1
2

)(6·2n)c
−ε/10
n−1

� c
1/100
n−1 .

(LC3) In analogy to the previous item, we set q = c
1/60
n−1 and using Lemma

7.3 we get an upper bound

∑
k≥c

−1/30
n−1

(
1
2

)(6·2n)c
1/60
n−1k

≤ (2−nc
−1/60
n−1 )

(
1
2

)(6·2n)c
−1/60
n−1

� c
1/100
n−1 .

(LC4) As before, we set q = c100
n−1 and using estimate (6.24) of Corollary

6.7 we get

∑
k≥c−200

n−1

(
1
2

)(6·2n)c100
n−1k

≤ (2−nc−100
n−1 )

(
1
2

)(6·2n)c−100
n−1

� c
1/100
n−1 .

(LC5) This is a direct estimate as in LC1; using estimate (6.24) of Corol-
lary 6.7 we get

2ne−c
ε/5
n−1ec

−ε/5
n−1 /2 � c

1/100
n−1 .

Putting those together, we obtain (7.7). For (7.8), we must be careful to
have τn ∈ VG(n0, n) and rn(τn) < c−1−2ε

n−1 ; otherwise we would have immediate
problems due to LC1 and LC5. But we took care of those properties in Lemmas
7.4 and 6.8, and with this observation the estimates are the same as before.

Transferring the result to the parameter, using PhPa1, we get (using the
measure-theoretical argument of Lemma 3.2).

Lemma 7.8. With total probability, for all n0 big enough, for all n big
enough, Rn(0) ∈ C

d
n with d ∈ LC(n0, n).
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7.2. Hyperbolicity.

7.2.1. Preliminaries. For j = 0, we define

λn(j) = inf
x∈Ij

n

ln |DRn(x)|
rn(j)

.

And λn = infj �=0 λn(j). As a consequence of the exponential estimate on
distortion for returns (which competes with torrential expansion from the decay
of geometry), together with hyperbolicity of f in the complement of I0

n we
immediately have the following

Lemma 7.9. With total probability, for all n sufficiently big, λn > 0.

Proof. By Lemma 2.1, there exists a constant λ̃n > 0 such that each
periodic orbit p of f whose orbit is entirely contained in the complement of
In+1 must satisfy ln |Dfm(p)| > λ̃nm, where m is the period of p. On the
other hand, each noncentral branch Rn|Ij

n
has a fixed point. By Lemma 4.10,

sup dist(Rn|Ij
n
) ≤ 2n and of course limj→±∞ rn(j) = ∞, and so we have

lim inf
j→±∞

λn(j) ≥ λ̃n.

On the other hand, for any j = 0, λn(j) > 0 by Lemma 4.10, and so
λn > 0.

7.2.2. Good branches. The “minimum hyperbolicity” lim inf λn of the
parameters we will obtain will in fact be positive, as it follows from one of the
properties of Collet-Eckmann parameters (uniform hyperbolicity on periodic
orbits, see [NS]), together with our estimates on distortion.

However our strategy is not to show that the minimum hyperbolicity is
positive, but that the typical value of λn(j) stays bounded away from 0 as n

grows (and is in fact bigger than λn0/2 for n > n0 big). Since we also have
to estimate the hyperbolicity of truncated branches it will be convenient to
introduce a new class of branches with good hyperbolic properties.

We define the set of good returns G(n0, n) ⊂ Z \ {0}, n0, n ∈ N, n ≥ n0

as the set of all j such that

G1: (hyperbolic return).

λn(j) ≥ λn0

1 + 2n0−n

2
.

G2: (hyperbolicity in truncated return). For c
−3/(n−1)
n−1 ≤ k ≤ rn(j)

inf
x∈Ij

n

ln |Dfk(x)|
k

≥ λn0

1 + 2n0−n+1/2

2
− c

2/(n−1)
n−1 .
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Notice that since cn decreases torrentially, for n sufficiently big G2 implies
that if j is good then for c

−3/(n−1)
n−1 ≤ k ≤ rn(j),

inf
x∈Ij

n

ln |Dfk(x)|
k

≥ λn0

1 + 2n0−n

2
.

Lemma 7.10. With total probability, for all n0 big enough and for all
n > n0, VG(n0, n) ⊂ G(n0, n).

Proof. Let us prove that if G1 is satisfied for all j ∈ VG(n0, n), then
VG(n0, n + 1) ⊂ G(n0, n + 1) (notice that by definition of λn0 the hypothesis
is satisfied for n0). Fix j ∈ VG(n0, n + 1) and define

ak = inf
x∈Ij

n+1

ln |Dfk(x)|
k

.

Consider values of k in the range c
−3/n
n ≤ k ≤ rn+1(j) (notice that if k =

rn+1(j) belongs to this range by Remark 7.1).
We let (as usual) Rn(Ij

n+1) ⊂ C
d
n, d = (j1, . . . , jm). Notice that by Corol-

lary 6.10, vn < c−4
n−1 < k. Let us say that ji was completed before k if

vn + rn(j1) + · · · + rn(ji) ≤ k. We let the queue be defined as

qk = inf
x∈C

d
n

ln |Dfk−r ◦ f r(x)|

where r = vn + rn(j1) + · · · + rn(jmk
) with jmk

the last complete return.
We show first that |DRn(x)| > 1 if x ∈ Ij

n+1. Indeed, by Lemma 4.7,
DRn|In+1 = φ ◦ f , where φ has small distortion, so that by Lemma 4.8,

|Dφ(x)| >
|Rn(In+1)|
2|f(In+1)|

>
2−n|In|
|In+1|2

,

while by VG, |Df(x)| = |2x| ≥ c
1/3
n |In+1|, so that |DRn(x)| > c

−1/2
n .

By Lemma 4.10, any complete return before k produces some expansion;
that is, the absolute value of the derivative of such a return is at least 1. On
the other hand, −qk can be bounded from above by − ln(cnc5

n−1) by Lemma
4.11. We have

−qk

k
≤ − ln(cnc5

n−1)

c
−3/n
n

� c2/n
n .

Now we use Lemma 7.6 and get

ak >
βk

k

λn0(1 + 2n0−n)
2

− −qk

k

≥ λn0(1 + 2n0−n−1/2)
2

− −qk

k

which gives G2. If k = rn+1(j) then qk = 0, which gives G1.
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7.2.3. Hyperbolicity in cool landings.

Lemma 7.11. With total probability, if n0 is sufficiently big, for all n

sufficiently big, if d ∈ LC(n0, n) then for all c
−4/(n−1)
n−1 < k ≤ ln(d),

inf
x∈C

d
n

ln |Dfk(x)|
k

≥ λn0

2
.

Proof. Fix such d ∈ LC(n0, n), and let as usual d = (j1, . . . , jm). Let

ak = inf
x∈C

d
n

ln |Dfk(x)|
k

.

Analogously to Lemma 7.6, we define mk as the number of full returns
before k, so that mk is the biggest integer such that

mk∑
i=1

rn(ji) ≤ k.

We define
βk =

∑
1≤i≤mk,

ji∈VG(n0,n)

rn(ji)

(counting the time up to k spent in complete very good returns) and

ik = k −
mk∑
i=1

rn(ji).

(counting the time in the incomplete return at k).
Let us now consider two cases: either all iterates are part of very good

returns (that is, all ji, 1 ≤ i ≤ mk are very good and if ik > 0 then jmk+1 is
also very good), or some iterates are not part of very good returns.

Case 1 (All iterates are part of very good returns). Since full good returns
are very hyperbolic by G1 and very good returns are good, we just have to
worry about possibly losing hyperbolicity in the incomplete time. To control
this, we introduce the queue

qk = inf
x∈C

d
n

ln |Df ik ◦ fk−ik(x)|.

We have −qk ≤ − ln(c1/3
n−1c

5
n−1) by Lemma 4.11 and VG, using that the incom-

plete time is in the middle of a very good branch. Let us split again in two
cases: ik big or otherwise.

Subcase 1a (ik ≥ c
−4/(n−1)
n−1 ). If the incomplete time is big, we can use G2

to estimate the hyperbolicity of the incomplete time (which is part of a very
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good return): qk/ik > λn0/2. We have

ak > λn0

(1 + 2n0−n)
2

· k − ik
k

+
qk

ik
· ik

k
>

λn0

2
.

Subcase 1b (ik < c
−4/(n−1)
n−1 ). If the incomplete time is not big, we

cannot use G2 to estimate qk, but in this case ik is much less than k: since
k > c

−4/(n−1)
n−1 , at least one return was completed (mk ≥ 1), and since it must

be very good we conclude that k > c
−1/2
n−1 by Remark 7.1, so that for n big

ak > λn0

(1 + 2n0−n)
2

· k − ik
k

− −qk

k
>

λn0

2
.

Case 2 (Some iterates are not part of a very good return). By LC1,
mk > c

−1/30
n−1 . Notice that by LC2, if mk > c

−ε/5
n−1 then

k − ik > c−1+2ε
n−1 mk/2.

So it follows that mk > c
−1/30
n−1 implies that k > c

−35/34
n−1 (with small ε).

For the incomplete time we have −qk ≤ − ln(cnc5
n−1) < c−1−ε

n−1 , and so

−qk/k < c
1/100
n−1 .

Arguing as in Lemma 7.6, we split k − βk − ik (time of full returns which
are not very good) in a part relative to returns with high time (more than
c−1−2ε
n−1 ) which we denote hk and in a part relative to returns with low time

(less than c−1−2ε
n−1 ) which we denote lk. Using LC4 and LC5 to bound the

number of returns with high time, and using LS2 to bound their time, we get

hk < c−14
n−1(6 · 2n)c100

n−1mk,

and using LC1 and LC3 we have

lk < c−1−2ε
n−1 (6 · 2n)c1/60

n−1mk < c
−79/80
n−1 mk,

provided ε is small enough.
Since k > c−1+2ε

n−1 mk/2 we have

hk + lk
k

< 4c
1/85
n−1 ,

provided ε is small enough.
Now if ik < c−1−2ε

n−1 then ik/k < c
1/80
n−1 (with ε small), and if ik > c−1−2ε

n−1

then by LC5, mk ≥ ec
−ε/5
n−1 > c−n

n−1, so that by LS2, ik/k < ik/mk < c−14
n−1/c−n

n−1.

Thus, in both cases ik/k < c
1/80
n−1 .

From our estimates on ik and on hk and lk we have 1 − (βk/k) < c
1/90
n−1 .

Now very good returns are very hyperbolic, and full returns (even not very
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good ones) always give derivative at least 1 from Lemma 4.10. Now, we have
the estimate

ak > λn0

(1 + 2n−n0)
2

· βk

k
− −qk

k
>

λn0

2
for n big.

8. Main Theorems

8.1. Proof of Theorem A. We must show that with total probability, f is
Collet-Eckmann. We will use the estimates on hyperbolicity of cool landings
to show that if the critical point always falls in a cool landing then there is
uniform control of the hyperbolicity along the critical orbit.

Let

ak =
ln |Dfk(f(0))|

k

and en = avn−1.
It is easy to see that if n0 is big enough such that the conclusions of both

Lemmas 7.8 and 7.11 are valid, we obtain for n large enough that

en+1 ≥ en
vn − 1

vn+1 − 1
+

λn0

2
· vn+1 − vn

vn+1 − 1

and so

lim inf
n→∞

en ≥ λn0

2
.(8.1)

Let now vn − 1 < k < vn+1 − 1. Define qk = ln |Dfk−vn(fvn(0))|.
Assume first that k ≤ vn + c

−4/(n−1)
n−1 . From LC1 we know that τn is very

good; so by LS1, rn(τn) > c
−1/2
n−1 , and so k is in the middle of this branch (that

is, vn ≤ k ≤ vn + rn(τn) − 1). Using that |Rn(0)| > |In|/2n (see Lemma 4.8),
we get by Lemma 4.11 that

−qk < − ln(2−ncn−1c
5
n−1) < c−1−ε

n−2 .

Since vn > c−1+ε
n−1 (by Lemma 6.10) we have

ak ≥ en
vn − 1

k
− −qk

k
>

(
1 − 1

2n

)
en − 1

2n
.(8.2)

If k > vn + c
−4/(n−1)
n−1 , using Lemma 7.11 we get

ak ≥ en
vn − 1

k
+

λn0

2
· k − vn + 1

k
.(8.3)

It is clear that estimates (8.1), (8.2) and (8.3) imply that lim infk→∞ ak ≥
λn0/2 and so f is Collet-Eckmann.
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8.2. Proof of Theorem B. We must obtain, with total probability, upper
and lower (polynomial) bounds for the recurrence of the critical orbit. It will be
easier to study first the recurrence with respect to iterates of return branches,
and then estimate the total time of those iterates.

8.2.1. Recurrence in terms of return branches. The principle of the phase
analysis is very simple: for the essentially Markov process generated by itera-
tion of the noncentral branches of Rn, most orbits (in the qs sense) approach
0 at a polynomial rate before falling in In+1. From this we conclude, using the
phase-parameter relation, that with total probability the same holds for the
critical orbit.

Lemma 8.1. With total probability, for n big enough and for 1 ≤ i ≤ c−2
n−1,

ln |Ri
n(0)|

ln(cn−1)
< (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Proof. Notice that due to torrential (and monotonic) decay of cn, we can
estimate |In| = c1+δn

n−1 , with δn decaying torrentially fast.
From Lemma 4.8, we have

ln |Rn(0)|
ln cn−1

<
ln(2−n|In|)

ln cn−1
< 1 + 4ε

and the result follows for i = 1.
For 1 ≤ j ≤ 2ε−1, let Xj ⊂ In be a c

(1+2ε)(1+jε)
n−1 neighborhood of 0. For n

big, we can estimate (due to the relation between |In| and cn−1)

|Xj |
|In|

<
c
(1+2ε)(1+jε)
n−1

c1+2ε
n−1

= c
jε(1+2ε)
n−1

(we of course consider Xj as a union of C
d
n, so that its size is near the required

size; the precision is high enough for our purposes due to Remark 4.2).
We have to make sure that the critical point does not land in some Xj for

c
(1−j)ε
n−1 < i ≤ c−jε

n−1. This requirement can be translated on Rn(0) not belonging
to a certain set Yj ⊂ In such that

Yj =
⋃

c
(1−j)ε
n−1 ≤|d|<c−jε

n−1

(Rd
n)−1(Xj).

By Lemma 4.8, it is clear that no Xj intersects Iτn
n , so we easily get

pγ(Yj |Iτn
n ) ≤ c−jε

n−1c
(1+ε)jε
n−1 ≤ cε2

n−1

and

pγ(
2ε−1⋃
j=1

Yj |Iτn
n ) < 2ε−1cε2

n−1.
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Applying PhPa1, the probability that for some 1 ≤ j ≤ 2ε−1 and c
(1−j)ε
n−1 <

i ≤ c−jε
n−1 we have |Ri

n(0)| < c
(1+2ε)(1+jε)
n−1 is at most 2ε−1cε2

n−1, which is summable.
In particular, with total probability, for j and i as above, we have for n big
enough

ln |Ri
n(0)|

ln(cn−1)
≤ (1 + 2ε)(1 + jε)

< (1 + 4ε)(1 + (j − 1)ε) < (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Lemma 8.2. With total probability, for n big enough and for c−1−ε
n−1 < i

≤ sn,
ln |Ri

n(0)|
ln(cn−1)

< (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Proof. The argument is the same as for the previous lemma, but the
decomposition has a slightly different geometry. Let

xj = c
(1+2ε)(1+(1+ε)j+1)
n−1 ,

so that
xj

|In|
<

c
(1+2ε)(1+(1+ε)j+1)
n−1

c1+ε
n−1

< c
(1+2ε)(1+ε)j+1

n−1 .

Let K be biggest with xK > c1−ε
n . For 0 ≤ j ≤ K, let Xj ⊂ In be an xj

neighborhood of 0 (approximated as union of C
d
n, notice that xj > c1−ε

n �
|In+1| for 0 ≤ j ≤ K, so that the approximation is good enough for our
purposes due to Remark 4.2). Let Yj ⊂ In be such that

Yj =
⋃

c
−(1+ε)j

n−1 ≤|d|<c
−(1+ε)j+1
n−1

(Rd
n)−1(Xj).

By Lemma 4.8, it is clear that no Xj intersects Iτn
n , so we easily get

pγ(Yj |Iτn
n ) ≤ c

−(1+ε)j+1

n−1 c
(1+ε)j+2

n−1 ≤ c
ε(1+jε)
n−1

and

pγ(
K⋃

j=0

Yj |Iτn
n ) <

∞∑
j=0

c
ε(1+jε)
n−1 =

cε
n−1

1 − cε2

n−1

< c
ε/2
n−1.

Applying PhPa1, the probability that for some 0 ≤ j ≤ K and

c
−(1+ε)j

n−1 < i ≤ c−(1+ε)j+1

we have
|Ri

n(0)| < c
(1+2ε)(1+(1+ε)j+1)
n−1
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is at most c
ε/2
n−1, which is summable. In particular, with total probability, for

j and i as above, we have

ln |Ri
n(0)|

ln(cn−1)
< (1 + 2ε)(1 + (1 + ε)j+1)

< (1 + 4ε)(1 + (1 + ε)j) < (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

This covers the range c−1
n−1 < i ≤ c

−(1+ε)K+1

n−1 . For c
−(1+ε)K+1

n−1 < i ≤ sn,
notice that Ri

n(0) /∈ In+1, so that

ln |Ri
n(0)|

ln cn−1
<

ln(|In+1|/2)
ln cn−1

<
1 + 4ε

1 + 2ε
· ln c1−ε

n

ln cn−1

≤ 1 + 4ε

1 + 2ε
· lnxK+1

ln cn−1
(by definition of K)

≤ (1 + 4ε)(1 + (1 + ε)K+1)

≤ (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Both cases are summarized below:

Corollary 8.3. With total probability, for n big enough and for 1 ≤ i

≤ sn,
ln |Ri

n(0)|
ln(cn−1)

< (1 + 4ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

8.2.2. Total time of full returns. We must now relate the return times in
terms of Rn to the return times in terms of f .

For 1 ≤ i ≤ sn, let ki be such that Ri
n(0) = fki(0).

Lemma 8.4. With total probability, for n big enough and for c−ε
n−1 < i

≤ sn,
ln(ki)

ln(c−1
n−1)

> (1 − 3ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Proof. By Lemma 7.8, Rn(0) belongs to a cool landing, so that using LC2
(which allows us to estimate the average of return times over a large initial
segment of cool landings) we get

ki

i − 1
> c−1+3ε

n−1 .
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This immediately gives

ln(ki)
ln(c−1

n−1)
> (1 − 3ε) +

ln(i − 1)
ln(c−1

n−1)
> (1 − 3ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Using that vn > c−1+ε
n−1 (from Corollary 6.10) and that ki ≥ vn we get for

1 ≤ i ≤ c−ε
n−1,

ln(ki)
ln(c−1

n−1)
≥ ln(vn)

ln(c−1
n−1)

>
ln(c−1+ε

n−1 )

ln(c−1
n−1)

> (1−3ε)(1+ε) ≥ (1−3ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Together with Lemma 8.4, this gives

Corollary 8.5. With total probability, for n big enough and for 1 ≤ i

≤ sn,
ln(ki)

ln(c−1
n−1)

> (1 − 3ε)

(
1 +

ln(i)
ln(c−1

n−1)

)
.

8.2.3. Upper and lower bounds. Notice that |Rn(0)| = |fvn(0)| ≤ cn−1, so
using Lemma 6.10 we get

lim sup
n→∞

− ln |fn(0)|
ln(n)

≥ lim sup
n→∞

− ln |fvn(0)|
ln(vn)

≥ lim sup
n→∞

− ln(cn−1)
ln(vn)

≥ 1.

Let now vn ≤ k < vn+1. If |fk(0)| < k−1−10ε then Lemma 6.10 implies
that fk(0) ∈ In and so k = ki for some i. It follows from Corollaries 8.3 and
8.5 that

|fki(0)| > k−1−10ε
i .

Varying ε we get

lim sup
n→∞

− ln |fn(0)|
ln(n)

≤ 1.

Appendix: Sketch of the proof of the phase-parameter relation

The proof of the phase-parameter relation uses ideas from complex anal-
ysis. We will provide a sketch of the proof assuming familiarity with the work
[L3]. For a more general result (with all details fully worked out), see [AM3].

Given a simple map f , one can define (as in §3 of [L3]) a sequence of
holomorphic families of generalized quadratic-like maps Ri, i ≥ 1, related by
generalized renormalization. To fix notation, the parameter space of those
families will be denoted Λi[f ], so that for each g ∈ Λi[f ] the family defines a
generalized quadratic-like map Ri[g] : U j

i [g] → Ui[g]. Moreover, the family Ri
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is equipped (with a holomorphic motion hi of the U j
i and Ui) and proper. The

following properties of this sequence of families will be important for us:

(1) Λi[f ] ∩ R = Ji[f ], and for g ∈ Ji[f ], Ui[g] ∩ R = Ii[g] and U j
i [g] ∩ R =

Ij
i [g].

(2) For g ∈ Ji[f ], the map Ri[g] : ∪U j
i [g] → Ui[g] is an extension of the

real first return map Ri[g] : Ij
i [g] → Ii[g] defined before. For j = 0 (respectively

for j = 0), Ri[g] : U j
i [g] → Ui[g] is a homeomorphism (respectively a double

covering).

(3) The modulus of Ui[f ]\Ui+1[f ] grows at least linearly in i ([GS2], [L2]).

(4) The modulus of Λi[f ] \ Λi+1[f ] grows at least linearly in i ([L3]).
Define τi as before by Ri[f ](0) ∈ Iτi

i [f ]. Let Λj
i [f ] denote the set of

g ∈ Λi[f ] such that Ri[g](0) ∈ U j
i [g]. We have:

(5) Λj
i [f ] ∩ R = J j

i [f ] and in particular Λτi

i [f ] ∩ R = Jτi

i [f ].

By Lemma 4.8 of [L3], the holomorphic motion hi of Ui, U j
i (corresponding

to Ri) has uniformly bounded dilation (independently of i) when restricted to
Ui\U0

i . Item (3) above implies that for i big, there is an annulus of big modulus
(linear growth in i) contained in Ui[f ] \ (U0

i [f ] ∪ U τi

i [f ]) and going around
U τi

i [f ]. By transverse quasiconformality of holomorphic motions (Corollary
2.1 of [L3]), and the λ-Lemma of [MSS], this estimate can be transferred to
the parameter space, and so we get:

(6) The modulus of Λi[f ] \ Λτi

i [f ] grows at least linearly in i.

For each g ∈ Λi[f ], denote by Li[g] the first landing map to U0
i [g] obtained

by iteration of noncentral branches of Ri[g]. By item (2) above, we have:

(7) For g ∈ Ji[f ], the domain of Li[g] is a union ∪d∈ΩW
d
i [g] of disks

such that W
d
i [g] ∩ R = C

d
i [g] and Li[g] extends the real first landing map

Li[g] : ∪d∈ΩC
d
i [g] → I0

i [g] defined before.
The family Li is also equipped with a holomorphic motion ĥi of Ui and

the W
d
i (see §3.5 of [L3]). Define Γd

i [f ] as the set of g ∈ Λi[f ] such that
Ri[g](0) ∈ W

d
i [g]. The λ-Lemma and (6) imply:

(8) For g ∈ Jτi

i [f ], there exists a real-symmetric qc map of C, whose
dilation goes to 1 as i grows, taking Ui[f ] to Ui[g], and taking any W

d
i [f ] to

W
d
i [g].

Items (7) and (8) prove PhPh1 in the phase-parameter relation.
Item (6) and transverse quasiconformality of holomorphic motions imply:

(9) There is a real-symmetric qc map of C, whose dilation goes to 1 as
i grows, taking U τi

i [f ] to Λτi

i [f ], and taking any W
d
i [f ] contained in U τi

i [f ] to
Γd

i [f ].
Items (5), (7) and (9) prove PhPa1 in the phase-parameter relation.
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Notice that for any g ∈ Λi[f ], and for every d the map Li[g] : W
d
i [g] →

U0
i [g] extends to a holomorphic diffeomorphism R

d
i [g] : U

d
i [g] → Ui[g]. It is

easy to see that ĥi (as defined in §3.5 of [L3]) is also a holomorphic motion of
the U

d
i .

Define Λ̃i+1[f ] as the set of g such that Ri[g](0) ∈ U
di

i [g], where di is chosen
such that Ri[f ](0) ∈ C

di

i [f ]. It follows that Λi+1[f ] = Γdi

i [f ] ⊂ Λ̃i+1[f ] ⊂
Λτi

i [f ]. By (3), the modulus of U
di

i [f ] \ W
di

i [f ] grows at least linearly in i. By
(6) and transverse quasiconformality of holomorphic motions, this implies:

(10) The modulus of Λ̃i[f ] \ Λi[f ] grows at least linearly in i.
For g ∈ Λi[f ], the map Ri[g] : U0

i [g] → Ui[g] extends to a bigger domain
Ũi+1[g] = (Ri−1[g]|Ui[g])−1(U

di−1

i−1 [g]), as a double covering map onto Ui−1[g]
(notice that U0

i [g] ⊂ Ũi+1[g] ⊂ Ui[g]). It follows:

(11) If g ∈ Ji[f ] then Ũi+1[g] ∩ R = Ĩi+1[g].
The holomorphic motion ĥi−1 (corresponding to Li−1) naturally lifts to a

holomorphic motion h̃i of Ui, Ũi+1 and all U j
i not contained in Ũi+1, which is

defined (in principle) over Λi[f ], but extends to a holomorphic motion defined
over Λ̃i[f ].

Item (10) and yet another application of the λ-Lemma imply:

(12) For g ∈ Ji[f ], there exists a real-symmetric qc map of C, whose
dilation goes to 1 as i grows, taking Ui[f ] to Ui[g], and taking any U j

i [f ] not
contained in Ũi+1[f ] to U j

i [g].
Items (2), (11) and (12) prove PhPh2 in the phase-parameter relation.
Item (10) and transverse quasiconformality of holomorphic motions imply:

(13) There is a real-symmetric qc map of C, whose dilation goes to 1 as i

grows, taking Ui[f ] to Λi[f ], and taking any U j
i [f ] not contained in Ũi+1[f ] to

Λj
i [f ].

Items (2), (11) and (13) prove PhPa2 in the phase-parameter relation. All
items of the phase-parameter relation are proved.
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