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Quasi-isometry invariance
of group splittings

By Panos Papasoglu

Abstract

We show that a finitely presented one-ended group which is not commen-
surable to a surface group splits over a two-ended group if and only if its Cayley
graph is separated by a quasi-line. This shows in particular that splittings over
two-ended groups are preserved by quasi-isometries.

0. Introduction

Stallings in [St1], [St2] shows that a finitely generated group splits over a
finite group if and only if its Cayley graph has more than one end. This result
shows that the property of having a decomposition over a finite group for a
finitely generated group G admits a geometric characterization. In particular
it is a property invariant by quasi-isometries.

In this paper we show that one can characterize geometrically the prop-
erty of admitting a splitting over a virtually infinite cyclic group for finitely
presented groups. So this property is also invariant by quasi-isometries.

The structure of group splittings over infinite cyclic groups was understood
only recently by Rips and Sela ([R-S]). They developed a ‘JSJ-decomposition
theory’ analog to the JSJ-theory for three manifolds that applies to all finitely
presented groups. This structure theory underlies and inspires many of the
geometric arguments in this paper. A different approach to the JSJ-theory for
finitely presented groups has been given by Dunwoody and Sageev in [D-Sa].
Their approach has the advantage of applying also to splittings over Zn or
even, more generally, over ‘slender groups’.

Bowditch in a series of papers [Bo 1], [Bo 2], [Bo 3] showed that a one-
ended hyperbolic group that is not a ‘triangle group’ splits over a two-ended
group if and only if its Gromov boundary has local cut points. This charac-
terization implies that the property of admitting such a splitting is invariant
under quasi-isometries for hyperbolic groups. Swarup ([Sw]) and Levitt ([L])
contributed to the completion of Bowditch’s program which led also to the
solution of the cut point conjecture for hyperbolic groups.
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To state the main theorem of this paper we need some definitions: If Y is
a path-connected subset of a geodesic metric space (X, d) then one can define
a metric on Y , dY , by defining the distance of two points to be the infimum of
the lengths of the paths joining them that lie in Y . A quasi-line L ⊂ X is a
path-connected set such that (L, dL) is quasi-isometric to R and such that for
any two sequences (xn), (yn) ∈ L if dL(xn, yn) → ∞ then d(xn, yn) → ∞.

We say that a quasi-line L separates X if X −L has at least two compo-
nents that are not contained in any finite neighborhood of L.

With this notation we show the following:

Theorem 1. Let G be a one-ended, finitely presented group that is not
commensurable to a surface group. Then G splits over a two-ended group if
and only if the Cayley graph of G is separated by a quasi -line.

This easily implies that admitting a splitting over a two-ended group is a
property invariant by quasi-isometries. More precisely we have the following:

Corollary. Let G1 be a one-ended, finitely presented group that is not
commensurable to a surface group. If G1 splits over a two-ended group and G2

is quasi -isometric to G1 then G2 splits also over a two-ended group.

We note that a different generalization of Stalling’s theorem was obtained
by Dunwoody and Swenson in [D-Sw]. They show that if G is a one-ended
group, which is not virtually a surface group, then it splits over a two-ended
group if and only if it contains an infinite cyclic subgroup of ‘codimension 1’.
We recall that a subgroup J of G is of codimension 1 if the quotient of the
Cayley graph of G by the action of J has more than one end. The disadvantage
of this characterization is that it is not ‘geometric’; in particular our corollary
does not follow from it. On the other hand [D-Sw] contains a more general
result that applies to splittings over Zn. Our results build on [D-Sw] (in fact
we only need Proposition 3.1 of this paper dealing with the ‘noncrossing’ case).

The idea of the proof of Theorem 1 can be grasped more easily if we
consider the special case of G = Z3 �Z Z3. One can visualize the Cayley graph
of G as a tree in which the vertices are blown to copies of Z3 and two adjacent
vertices (i.e. Z3’s ) are identified along a copy of Z. Now the copies of Z3 are
‘fat’ in the sense that they cannot be separated by a ‘quasi-line’. The Cayley
graph of G on the other hand is not fat as it is separated by the cyclic groups
corresponding to the edge of the splitting. This is a pattern that stays invariant
under quasi-isometry: A geodesic metric space quasi-isometric to the Cayley
graph of G is also like a tree; the vertices of the tree are ‘fat’ chunks of space
that cannot be separated by ‘quasi-lines’ and two adjacent such ‘fat’ pieces are
glued along a ‘quasi-line’.

The proof of the general case is along the same lines but one has to take
account of the ‘hanging-orbifold’ vertices of the JSJ decomposition of G.
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The main technical problem is to show that when the Cayley graph of a
group is separated by a quasi-line then ‘fat’ pieces do indeed exist. To be more
precise one has to show that if any two points that are sufficiently far apart are
separated by a quasi-line then the group is commensurable to a surface group.
For this it suffices to show that the Cayley graph of G is quasi-isometric to
a plane. So what we are after is an up to quasi-isometry characterization of
planes.

The first such characterization was given by Mess in his work on the Seifert
conjecture ([Me]). There have been some more such characterizations obtained
recently by Bowditch ([Bo 4]), Kleiner ([Kl]) and Maillot ([Ma]).

The characterization that we need for this work is quite different from the
previous ones. ‘Large scale’ geometric problems are often similar to topological
problems. Our problem is similar to the following topological characterization
of the plane:

Let X be a one-ended, simply connected geodesic metric space such that
any two points on X are separated by a line. Then X is homeomorphic to a
plane.

We outline a proof of this in the appendix. It is based on the classic
characterization of the sphere given by Bing ([Bi]).

The proof of the large scale analog to this runs along the same line but is
more fuzzy as a quasi-prefix has to be added to the definitions and arguments.
Although we could carry out the analogy throughout the proof, we simplify
the argument in the end using the homogeneity of the Cayley graph. We use
in particular Varopoulos’ inequality to conclude in the nonhyperbolic case and
the Tukia, Gabai, Casson-Jungreis theorem on convergence groups ([T], [Ga],
[C-J]) to deal with the hyperbolic case.

The topological characterization of the plane presented in the appendix is
quite crucial for understanding the quasi-isometric characterization of planar
groups used here. We advise the reader to understand the topological argument
of the appendix before reading its ‘large scale’ generalization (Sections 1–3
of this paper). A principle underlying this work is that many topological
results have, when reformulated appropriately, large scale analogs. Both the
proofs and the statements of these analogs can be involved but this is more
due to the difficulty of ‘translation’ to large scale than genuine mathematical
difficulty. We hope that the statement and proof of Proposition 2.1 offers a
good introduction to ‘translating’ from topology to large scale.

We explain now how this paper is organized: In Section 2 we show
(Prop. 2.1) that if a quasi-line L separates a Cayley graph in three pieces
then points on L cannot be separated by quasi-lines. We state below Propo-
sition 2.1 (we state it in fact in a slightly different, but equivalent, way in
Section 2):
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Proposition 2.1. Let X be a locally finite simply connected complex and
let L be a quasi -line separating X, such that X − L has at least three distinct
essential connected components X1, X2, X3. If L1 is another quasi -line in X

then L is contained in a finite neighborhood of a single component of X − L1.

We call a component Xi essential if Xi ∪ L is one-ended. We remark
that the proposition above is similar to the following topological fact: Let X

be the space obtained by gluing three half-planes along their boundary line.
Then points on the common boundary line of the three half-planes cannot be
separated by any line in X. We will actually need a stronger and somewhat
less obvious form of this that is proved in Lemma A.1 of the appendix. The
proof of Proposition 2.1 is a ‘large scale’ version of the proof of Lemma A.1.

Proposition 2.1 is used in Section 3 to give a new ‘quasi-isometric’ char-
acterization of planar groups:

Theorem. Let G be a one-ended finitely presented group and let X = XG

be a Cayley complex of G. Suppose that there is a quasi -line L such that for any
K > 0 there is an M > 0 such that any two points x, y of X with d(x, y) > M

are K-separated by some translate of L, gL (g ∈ G). Then G is commensurable
to a fundamental group of a surface.

The theorem above is in fact slightly weaker than Theorem 3.1 that we
prove in Section 3. The proof of this is a ‘large scale’ version of the proof of
the main theorem of the appendix:

Theorem A. Let X be a locally compact, geodesic metric space and let
f : R+ → R+ be an increasing function such that limx→0 f(x) = 0. If X

satisfies the following three conditions then it is homeomorphic to the plane.

1) X is one-ended.

2) X is simply connected.

3) For any two points a, b ∈ X there is an f -line separating them.

We refer to the appendix for the definition of f -lines which is somewhat
technical. To make sense of the theorem above think of f -lines as proper lines,
i.e. homeomorphic images of R in X.

It turns out that to carry out our proof we need a stronger version of
Theorem 3.1 proved in Section 4. It says roughly that if G is not virtually
planar then its Cayley graph has an unbounded connected subset S such that
no two points on S can be separated by a quasi-line (Theorem 4.1). We call
such subsets solid. In the example G = Z3 �Z Z3 this subset corresponds to a
Z3-subgroup.

The proof of Theorem 4.1 is based on the homogeneity of the Cayley
graph of G. The characterization theorem of virtual surface groups given in
Section 4 allows us to pass from large scale geometry to splittings. The idea is
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that maximal unbounded solid sets are at finite Hausdorff distance from vertex
groups of the JSJ-decomposition of G. This is easier to show when these sets
are ‘big’, i.e. they are not themselves quasi-lines. This is the case for example
if G = Z3 �Z Z3. If on the other hand G is, say, a Baumslag-Solitar group then
all solid sets in its Cayley graph are quasi-lines.

In Section 5 we show (Proposition 5.3) that solid subsets correspond to
subgroups when they are not quasi-isometric to quasi-lines. In fact they are
vertex groups for the Bass-Serre tree corresponding to a splitting of G over a
two-ended group. We prove then Theorem 1, in case there are solid subsets of
X which are not quasi-lines, by applying [D-Sw].

In Section 6 we deal with the ‘exceptional’ case in which all solid subsets
are quasi-lines. This is split in several cases. We show depending on the case
either directly that G splits over a two ended subgroup by applying again
[D-Sw], or that G admits a free action on an R-tree, in which case we conclude
by Rips’ theory ([B-F]). This completes the proof of Theorem 1.

We note that Section 6 is essentially self-contained. It does not require
the technical results of the appendix and their large scale analogs. It could be
read directly after the preliminaries and the definition of solid sets in Section 4
as it offers a good illustration of how one can derive splitting results from
a mild geometric assumption which is valid in many cases (for example this
assumption holds for Baumslag-Solitar groups).

In Section 7 we show that JSJ decompositions are invariant under quasi-
isometries. More precisely we have the following:

Theorem 7.1. Let G1, G2 be one-ended finitely presented groups, let
Γ1,Γ2 be their respective JSJ-decompositions and let X1, X2 be the Cayley
graphs of G1, G2.

Suppose that there is a quasi -isometry f : G1 → G2. Then there is
a constant C > 0 such that if A is a subgroup of G1 conjugate to a ver-
tex group, an orbifold hanging vertex group or an edge group of the graph of
groups Γ1, then f(A) contains in its C-neighborhood (and it is contained in the
C-neighborhood of ) respectively a subgroup of G2 conjugate to a vertex group,
an orbifold hanging vertex group or an edge group of the graph of groups Γ2.

It is an interesting question whether Theorem 1 is true for finitely gen-
erated groups in general. The existence of a characterization like the one in
Theorem 1 was posed as a question by Gromov in the 1996 Group Theory
Conference in Canberra.

I would like to thank A. Ancona, F. Leroux, B. Kleiner, P. Pansu and
Z. Sela for conversations related to this work. I am grateful to David Epstein
for many stimulating discussions on plane topology and for his comments on
an earlier version of this paper.
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1. Preliminaries

A metric space X is called a geodesic metric space if for any pair of points
x, y in X there is a path p joining x, y such that length(p) = d(x, y). We
call such a path a geodesic. A geodesic triangle in a geodesic metric space X

consists of three geodesics a, b, c whose endpoints match. A geodesic metric
space X is called (δ)-hyperbolic if there is a δ ≥ 0 such that for all triangles
a, b, c in X any point on one side is in the δ-neighborhood of the two other
sides. If G is a finitely generated group then its Cayley graph can be made
a geodesic metric space by giving to each edge length 1. A finitely generated
group is called (Gromov) hyperbolic if its Cayley graph is a (δ)-hyperbolic
geodesic metric space. A path α : [0, l] → X is called a (K, L)-quasigeodesic
if there are K ≥ 1, L ≥ 0 such that length(α|[t,s]) ≤ Kd(α(t), α(s)) + L for all
t, s in [0, l]. In what follows we will always assume paths to be parametrized
with respect to arc length. A (not necessarily continuous) map f : X → Y is
called a (K, L) quasi-isometry if every point of Y is in the L-neighborhood of
the image of f and for all x, y ∈ X

1
K

d(x, y) − L ≤ d(f(x), f(y)) ≤ Kd(x, y) + L.

Definition 1.1. Let X, Y be metric spaces. A map f : X → Y is called
uniformly proper if for every M > 0 there is an N > 0 such that for all A ⊂ Y ,

diam(A) < M ⇒ diam(f−1(A)) < N.

We remark that this notion is due to Gromov. In [G2] embeddings that
are uniformly proper maps are called uniform embeddings. It is easy to see
that the inclusion map of a finitely generated group H in a finitely generated
group G is a uniformly proper map (where G and H are given the word metric
corresponding to some choice of system of generators for each).

In what follows we consider R as a metric space.

Definition 1.2. Let X be a metric space. Let L : R → X be a one-to-
one, continuous map. We suppose that L is parametrized with respect to arc
length (i.e. length(L[x, y]) = d(x, y) for all x, y). We then call L a line if it is
uniformly proper.

There is a distortion function associated to L, DL : R+ → R+ defined as
follows:

DL(t) = sup{diam(L−1(A)), where diam (A) ≤ t}.
We often identify L with its image L(R) and write L ⊂ X. If a = L(a′), b =
L(b′) are points in L, we denote by [a, b] the interval between a, b in L (so
[a, b] = L([a′, b′])), and by |b − a| the length of this interval. We write a < b if
a′ < b′. If t ∈ R we denote by a − t the point L(a′ − t).
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Definition 1.3. Let X be a metric space. We call L ⊂ X a quasi-line if
L is path connected and if there is a line L′ ⊂ L and N > 0 such that every
point in L can be joined to L′ by a path lying in L of length at most N .

One can also define quasi-lines as follows: Let L ⊂ X be a path connected
subset of X. We consider L as a metric space by defining the distance of two
points in L to be the length of the shortest path in L joining them (or the
infimum of the lengths if there is no shortest path). Then L is a quasi-line if:

i) L is quasi-isometric to R.

ii) L is uniformly properly embedded in X.

We say that L ⊂ X is an (f, N)-quasi-line, where f is a proper increasing
function, f : R+ → R+, if L lies in the N -neighborhood of a line L′ and
DL′(t) ≤ f(t) for all t > 0.

Suppose that the quasi-line L lies in the N -neighborhood of a line L′. We
define then a map a ∈ L → a′ ∈ L′ where d(a, a′) ≤ N . Clearly there are many
possible choices for this map; we choose one such map arbitrarily. If a, b ∈ L

we define the interval between a, b in L as follows:

[a, b]L = {x ∈ L : d(x, [a′, b′]) ≤ N}.
Clearly this depends on the map a → a′. It is convenient to talk about the
‘length’ of the intervals of L. We define length([a, b]L) = length([a′, b′]).

We similarly define a partial order on L by a < b if and only if a′ < b′. If
t ∈ R and a ∈ L then a + t is by definition the point a′ + t ∈ L′ ⊂ L. In what
follows when we write that a quasi-line L is in the N -neighborhood of a line
L′ we will tacitly imply that a map a → a′ is also given.

We will use throughout the notation for lines corresponding to quasi-lines,
so if L is an (f, N)- quasi-line we will denote by L′ the line corresponding to
L (see Def. 1.3).

The following definition is abusive but useful:

Definition 1.4. Let X be a metric space and let L be a quasi-line in X.
We call a connected component of X − L, Y , essential if Y ∪ L is one-ended.
We say that a quasi-line L separates X, if X − L has at least two essential
connected components and there is an M > 0 such that every nonessential
component of X − L is contained in the M -neighborhood of L.

The following proposition shows that our definition is equivalent to a
weaker and more natural notion of separation.

Proposition 1.4.1. Let X be a Cayley graph of a finitely presented
one-ended group G and let L be an (f, N)-quasi -line such that for every n > 0
there are x, y ∈ X such that d(x, L) > n, d(y, L) > n and x, y lie in different
components of X −L. Then there is an (f, N)-quasi -line L1 that separates X.
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Proof. We show first that there is an (f, N)-quasi-line L0 such that X−L0

has at least two essential components. For any r > 0 sufficiently big and for
any t ∈ L there is a path in X − L joining the two infinite components of
L − Bt(r). Without loss of generality we can assume that this path (except
its endpoints) is contained in a single component of X − L. We call this path
p(t, r).

Since X is locally finite and G is finitely presented we can assume that
there are a t ∈ L and an r0 > 0 such that p(t, r) lies for every r > r0 in the
same component of X −L, say C. Since G is one-ended C is clearly essential.
By our hypothesis we have that there is a sequence yn such that d(yn, L) > n

and yn /∈ C. Let qn be a geodesic joining yn to L with endpoint tn ∈ L and
such that length(qn) = d(yn, L). Let us denote by Tn the union L ∪ pn. We
then pick gn ∈ G such that gntn = t and next consider the sequence gnTn. It is
clear that there is a subsequence of gn, denoted for convenience also by gn, so
that gnTn converges on compact sets to a union L0 ∪p where L0 is a quasi-line
and p is an infinite half geodesic lying in the same component of X − L0. By
passing if necessary to a subsequence we can ensure that X − L0 has at least
one essential component disjoint from p.

Indeed, note that there is a sequence rn ∈ N, rn → ∞, such that for any
x ∈ L there are simple paths p(x, n) with the following properties (see Fig. 1):

1. p(x, n) is contained in C̄ and p(x, n) joins the two unbounded components
of L − Bx(rn).

2. p(x, n) ∩ Bx(rn) = ∅ and p(x, n) ⊂ Bx(rn+1).

3. There is a path q(x, n) contained in Bx(rn+2) ∩ C joining p(x, n) to
p(x, n + 1).

By passing to a subsequence we can ensure that for every k > 0 the following
holds: For every n > k,

gn(p(tn, n) ∪ q(tn, n)) = gk(p(tk, k) ∪ q(tk, k)).

This clearly implies that X −L0 has at least one essential component disjoint
from p.

Let C1 be the component of X − L0 containing p. Suppose that C1 ∪ L0

is not one-ended. Then there is a compact K such that (C1 ∪ L0) − K is
two-ended and there is an infinite component of L0 − K, say L+

0 , such that
C1 ∪ L+

0 is one-ended. We can then pick xn ∈ L+
0 , xn → ∞ and hn ∈ G such

that hnxn = t. By passing, if necessary, to a subsequence we can assume that
hnL0 converges on compact sets to a quasi-line, denoted, to simplify notation,
still by L0. As before we can ensure that X − L0 has at least two essential
components.
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Figure 1

We have shown therefore that there is a quasi-line L0 such that X−L0 has
at least two essential components. Note also that if L is an (f, N)-quasi-line
L0 is also an (f, N)-quasi-line.

Showing that there is a quasi-line satisfying the conclusion of the propo-
sition is proved in the same way: Suppose that there is a sequence zn ∈ X

such that d(zn, L0) > n for all n ∈ N and such that the zn do not belong to
any essential component of X − L0. We then pick geodesics qn joining zn to
L with length(qn) = d(zn, L0) and we pick kn ∈ G such that knzn = e (where
e is a fixed vertex). We show as above that there is a subsequence of knL0

converging on compact sets to a quasi-line L1 such that X − L1 has at least
three essential components.

We continue in the same way to produce new quasi-lines. It is clear that
this procedure terminates and produces a quasi-line, which we call, as in the
conclusion of the lemma, L1, such that if zn ∈ X satisfies that d(zn, L0) → ∞
then almost all zn lie in essential components of X − L1.

We remark that the procedure terminates because given f, N there is an
M > 0 such that for any (f, N)-quasi-line L, X − L has less than M essential
components.

Remark 1.4.2. We can show in the same way the following slightly
stronger result: Let X be a Cayley graph of a finitely presented one-ended
group G and let Ln be a sequence of (f, N)-quasi-lines such that for every
n > 0 there are x, y ∈ X such that d(x, Ln) > n, d(y, Ln) > n and x, y lie in
different components of X−Ln. Then there is a quasi-line L that separates X.

It is clear that a finite neighborhood of a quasi-line is itself a quasi-line.
The next proposition strengthens Proposition 1.4.1 to neighborhoods of quasi-
lines.
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Proposition 1.4.3. Let X be a Cayley graph of a finitely presented
one-ended group G. If an (f, N)-quasi -line L separates X then there is an
(f, N)-quasi -line L0 such that for every r > 0, Nr(L0) separates X.

Proof. We define a sequence of (f, N)-quasi-lines Ln (n > 0) such that
Nk(Ln) separates X for all k ≤ n. If N1(L) separates X we define L1 = L.
Otherwise we show as in Proposition 1.4.1 that there is an (f, N)-quasi-line L1

such that N1(L1) separates X. We continue inductively: if Nk+1(Lk) separates
X we define Lk+1 = Lk otherwise we modify Lk as in Proposition 1.4.1 to
obtain Lk+1. We can assume that all Lk contain the identity vertex e.

We note that by their construction the Lk satisfy the following:
For every r > 0 there is an M > 0 such that for all k ≥ r every nonessential

component of X − Nr(Lk) is contained in NM (Lk).
By passing to a subsequence we can assume that Be(k) ∩ Ln does not

depend on n for n ≥ k. We define L0 by x ∈ L0 if x ∈ Be(k) ∩ Lk. Clearly L0

has the property required.

The following proposition shows that the essential components of
X − L have a property that one can consider as a ‘large scale’ version of
local connectedness.

Proposition 1.4.4. Let X be a Cayley graph of a finitely presented
one-ended group G. If an (f, N)-quasi -line L separates X then there is an
(f, N)-quasi -line L0 which separates X and has the following property :

There is an r0 > 0 such that for each r > r0 there is an R > r such that
if d(x, L0) = r = d(y, L0), d(x, y) < f(3r) and x, y lie in the same essential
component of X − L0, then x, y can be joined by a path of length less than R

which does not meet L0.

Proof. We will show this by contradiction. Let L0 be a separating (f, N)-
quasi-line which satisfies the following 2 properties:

1. The number of essential components of X−L0 is the maximum possible.

2. If L1 is a separating (f, N)-quasi-line satisfying property 1 then
sup {d(x, L1)} ≤ sup {d(x, L0)} where the supremum is taken over all x that
lie in a nonessential component of X − L1 on the left side and respectively of
X − L0 on the right side. Loosely speaking 2 just says that the nonessential
components of X − L0 are as ‘big’ as possible.

Let r0 be such that if d(x, L0) ≥ r0 then x lies in an essential component of
X −L0. Suppose that L0 does not satisfy the conclusion of the proposition for
r0. There are then some r > r0 and sequences (xn), (yn) such that d(xn, yn) =
r, xn, yn lie in the same component of X − L0 and xn, yn cannot be joined
in X − L0 by any path of length less than n. We pick gn ∈ G such that
gnxn = e (where e is a fixed vertex). We have then as in Proposition 1.4.1 that
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a subsequence of gnL0 converges on compact sets to a quasi-line L1 such that
X −L1 has the same number of essential components as X −L0. By passing if
necessary to a subsequence we have that gnxn and gnyn converge respectively
to x0, y0. Clearly x0, y0 do not lie in the same essential component of X −L1.
It follows that at least one of them lies in a nonessential component of X −L1.
This however contradicts our assumption that L0 satisfies property 2.

It is easy to see that Proposition 1.4.4 can be strengthened so that is
applies to finite neighborhoods of quasi-lines as well:

Proposition 1.4.5. Let X be a Cayley graph of a finitely presented
one-ended group G. If an (f, N)-quasi -line L separates X then there is an
(f, N)-quasi -line L0 which satisfies the conclusion of Proposition 1.4.3 and has
the following property :

For any M > 0 there is an rM > 0 such that for each r > rM there is an
R > r such that if d(x, L0) = r = d(y, L0), d(x, y) < f(3r) and x, y lie in the
same essential component of X −NM (L0), then x, y can be joined by a path of
length less than R which does not meet NM (L0).

Proof. Left to the reader.

Definition 1.5. We say that a, b ∈ X are K-separated by a quasi-line L if
d(a, L) > K, d(b, L) > K and a ∈ X1, b ∈ X2 where X1, X2 are two distinct
essential connected components of X − L

It is easy to see that these notions are invariant under quasi-isometries:

Lemma 1.6. Let f : X → Y be a quasi -isometry of the geodesic metric
spaces X, Y . Let L ⊂ X be a quasi -line of X. Then there is an M > 0 such
that the M -neighborhood of f(L), NMf(L), is a quasi -line of Y .

Proof. Left to the reader.

Lemma 1.7. Let f : X → Y be a quasi -isometry of the geodesic metric
spaces X, Y . Let L ⊂ X be a quasi -line separating X. Then there is an M > 0
such that NM (f(L)) is a quasi -line separating Y .

Proof. Left to the reader.

Our interest in quasi-lines comes from the following:

Lemma 1.8. Let G be a finitely presented group that splits over a 2-ended
subgroup J . Let X be a Cayley graph of G. Then there is a neighborhood of J

in X that is a quasi -line separating X.
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Proof. Since separation is invariant by quasi-isometries we show this using
a complex naturally associated to the splitting of G (see [Sc-W]): If G =
A ∗J B let KJ , KA, KB be finite complexes with π1(KJ) = J, π1(KA) = A,
π1(KB) = B. We consider KJ × [−1, 1]. Let f : KJ → KA, g : KJ → KB be
cellular maps inducing on π1 the monomorphisms from J to A, B in G = A∗JB.
We glue KJ ×{−1}, KJ ×{1}, respectively to KA, KB by f, g and we obtain a
complex C with π1(C) = G. A similar construction applies if the splitting is an
HNN -extension. We make metric the 1-skeleton of the universal cover of C,
each C̃ being given edge length 1. With this metric C̃(1) is quasi-isometric
to X.

If T is the Bass-Serre tree of the splitting G = A∗JB there is a natural map
p : C̃ → T sending copies of K̃J × [−1, 1] to edges of T and collapsing copies
of K̃A, K̃B to vertices of T . We note that p implies distance nonincreasing. It
follows that if Z is a copy of K̃J ×{0} in C̃, C̃−Z has two components, C1, C2

neither of which is contained in a neighborhood of Z.
It remains to show that C1 and C2 are one-ended. We note that since C̃ is

one-ended, if C1 is not one-ended, and K is a compact set such that C1−K has
more than one unbounded component, then the closure in C̃ of each unbounded
component of C1 − K has unbounded intersection with Z. We note further
that if U is such an unbounded component of C1 −K and a, b are two vertices
of Z lying in the closure of U and Ū , then there is a path in Z joining a, b

which lies in Ū as well. Indeed consider a path u joining a, b in U and a path
w joining them in Z. Take a Van-Kampen diagram, D, for the closed path
u ∪ w (see [L-S, Ch. 6] for a definition of Van-Kampen diagrams). Take the
maximal connected subdiagram of D containing u which maps to Ū . Clearly
the boundary of this subdiagram contains a path joining a, b that maps to a
path in Z. We conclude that an unbounded component of Z −K is contained
in a finite neighborhood of U .

From the discussion above it follows that in order to show that C1 is
one-ended it suffices to prove the following:

If x is a fixed vertex in Z and if Bx(n) is the ball of radius n centered
at x then there is a path pn in C1 joining the distinct unbounded compo-
nents of Z − Bx(n). Note that for small n, Z − Bx(n) might have only one
unbounded component (and the condition becomes void) while for sufficiently
big n, Z−Bx(n) has exactly two unbounded components. We show below how
to construct the paths pn.

We fix now a vertex of Z, x, and we consider an infinite path, q, in C1

such that q(0) = x and such that d(q(n), Z) → ∞ as n → ∞. We note
that a conjugate of J acts co-compactly on Z. By passing, if necessary, to an
index 2 subgroup, say J0, we obtain a group acting co-compactly on Z which
preserves C1. So there is a k > 0 such that for any vertex y ∈ Z there is g ∈ J0

such that d(gy, x) < k.
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x x + r2 y − r2 y

p

q

Figure 2

Given n > 0 there is a vertex y ∈ Z and R > 0 such that d(y, q) > n + k

and By(n + k) ⊂ Bx(R). Since G is one-ended there is a path v joining some
vertex q(t) of q to Z without intersecting Bx(R). Consider now the path
qn = v∪q([0, t]). Clearly d(qn, y) > n+k. Let g ∈ J0 is such that d(gy, x) < k.
It is easy to see now that we can take pn to be the path gqn.

Lemma 1.9. Let G be a finitely presented group and let X be a Cayley
graph of G. Let L be a quasi -line separating X and let Y be an essential
component of X−L. Then given r1 > 0 there is r2 > 0 such that any x < y ∈ L

with length([x, y]L) > 2r2 can be joined by a path p lying in Y ∪ L such that

a. p ∩ Nr1([x + r2, y − r2]L) = ∅,
b. p ⊂ Nr2([x, y]L).

Proof. By choosing r2 sufficiently big we can ensure that

Nr1([x + r2, y − r2]L ∩ (−∞, x]L = ∅

and
Nr1([x + r2, y − r2]L ∩ [y,∞)L = ∅.

Since Y ∪L is one-ended there is a path, q, joining x, y in X−Nr1([x+r2, y−r2]L).
Let w be a path joining x, y which is contained in [x, y]L. We consider a Van-
Kampen diagram, D, for the closed path q ∪ w (see Figure 2).

Let f : D(1) → X be the natural map from the 1-skeleton of D to X.
We remark that f−1((X − Nr2([x, y]L)) ∪ Nr1([x + r2, y − r2]L)) does not sep-
arate f−1(x) from f−1(y) in D. That is, there is a vertex in f−1(x) which
can be joined in D to a vertex in f−1(y) by a path which does not meet
f−1((X −Nr2([x, y]L))∪Nr1([x + r2, y− r2]L)). Let us call this path p′. Using
the fact that L separates and that each point in L is at distance less than
N from L′ we can easily modify (if necessary) p′ to a path p satisfying the
conclusion of the lemma.

Convention. To translate topological arguments (like the ones in the ap-
pendix) to ‘quasi-isometric’ arguments one has to look at a space with larger
and larger scales. These scales are determined by constants that one can
explicitly compute. This is not very rewarding and so we use the following
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convention: We write that the statement P (r1, r2) that depends on two num-
bers r1, r2 holds for r2 � r1 � 0 if there is an R1 > 0 such that for each
r1 > R1 there is an R2 > r1 such that for all r2 > R2 the statement P (r1, r2)
is true. Similarly we write for r3 � r2 � r1 � 0, P (r1, r2, r3) holds etc.

2. Separation properties of quasi-lines

The main result of this section is Proposition 2.1. It is a technical result
that will allow us to assume in the next section that quasi-lines separate X

in at most two essential components. We note that Proposition 2.1 is a ‘large
scale’ analog of a topological result (Lemma A.1 of the appendix). Its proof is a
good illustration of the techniques used in this paper, namely the ‘translation’
of topological arguments into ‘large scale geometry’ arguments.

Although the results in this section can be stated for (large scale simply
connected) metric spaces in general we will state and prove them only for
locally finite, simply connected complexes. The reason is that we are interested
in applying them to Cayley complexes of finitely presented groups.

As usual we make metric the 1-skeleton of such complexes by giving each
edge length 1, and defining the distance of two vertices to be the length of the
shortest path joining them. In what follows we will also assume that quasi-
lines are simply connected ; this is done to simplify notation. The results that
follow are valid in general for ‘large scale’ simply connected complexes as by
definition quasi-lines are ‘large scale’, simply connected.

We can always ‘fill the holes’ of a given (f, N)-quasi-line L and replace it
by a simply connected one, as long as the quasi-line is contained in the Cayley
complex of a finitely presented group G. Indeed a quasi-line is contained in
the N -neighborhood of a line L′. We join each vertex of L to a vertex of L′ by
a path of length less than or equal to N . We add now to the presentation of
the group all words corresponding to simple closed curves of length less than
2N +1+ f(2N +1) in the Cayley graph of G. By this construction any closed
curve c in a quasi-line L is homotopic to a curve in L′ and therefore can be
contracted to a point. Moreover there is an M > 0 such that for any closed
curve in L the filling disc for c is contained in the M -neighborhood of c. In
other words the filling radius of closed curves in L is bounded by M . We
will assume in what follows that quasi-lines also have this property. We will
also assume that all separating quasi-lines considered satisfy the conclusion of
Propositions 1.4.3 and 1.4.5.

The proposition and the proof that follow give a ‘large scale analog’ of
Lemma A.1 of the appendix.

Proposition 2.1. Let X be a locally finite simply connected complex and
let L be a quasi -line separating X, such that X − L has at least three distinct
essential connected components X1, X2, X3. Then for any proper, increasing
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f : R+ → R+ and N > 0 there is a K > 0 such that any two vertices a, b ∈ L

that are sufficiently far apart cannot be K-separated by any (f, N) quasi-line
of X.

Proof. Suppose that L is contained in the M -neighborhood of a line L′ ⊂ L

(see Def. 1.3). It is clear that it suffices to show that there is K > 0 such that
any two points a, b ∈ L′ that are sufficiently far apart cannot be K-separated
by any (f, N)-quasi-line. Indeed this implies that any two points on L that are
sufficiently far apart cannot be K + 2M -separated by any (f, N)-quasi-line.

In the argument that follows we use four constants K1, K, R such that
K1 � K � R � 0. It will be clear that the argument is valid if R � 0,
K � R and K1 � K. One can of course give explicit estimates (in terms of f

and N) for K1, K, R but we leave this to the reader.
Let a < b ∈ L′ so that a, b are K1-separated by an (f, N) quasi-line L1.

By Lemma 1.9 a, b can be joined in Xi by a simple path pi that does not
intersect the 2K-neighborhood of the interval [a + K1

4 , b − K1
4 ]′L of L′. We

choose pi so that an initial and a terminal subpaths of pi are contained in L

while in between these subpaths pi does not intersect L. We call these ini-
tial and terminal subpaths, respectively, pi0, pi1 and call the subpath between
them p′i.

We consider the simple closed paths qi = pi ∪ [a, b]L′ (see Figure 3) and
note that by Van-Kampen’s theorem Xi ∪ L is simply connected for all i. Let
Di be Van-Kampen diagrams representing a contraction of qi to a point inside
Xi ∪ L.

L1

p1
X1

Lb

X2
p2

a

Figure 3

To simplify notation we denote by pi the subpath of ∂Di mapped onto pi.
Likewise we denote by [a, b] the subpath of ∂Di mapped onto [a, b]L′ .

We consider now the Van Kampen diagram D = D1 
 D2/ ∼ where ∼ is
given by the identification of the subpaths of D1, D2 that map onto [a, b]. We
call g the natural map g : D → X sending ∂D to p1 ∪ p2. Let a1, b1 ∈ [a, b]L′

be such that the following hold:
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a1 lies in the same essential component of X − L1 as a, d(a1, L1) ≥ 2R

and a1 is the maximal vertex in [a, b]L′ with these properties for the order
of L′.

b1 is 2R- separated from a by L1 and is the first vertex after a1 on [a, b]L′

with this property.

We assume that K is chosen so that the following holds: There is at most one
interval, [x, y]L′

1
of L′

1 with the following properties:

a. [x, y]L1 intersects [a1, b1]L.

b. BN (x) and BN (y) intersect g(∂D).

c. If z ∈ (x, y)L′
1

then BN (z) does not intersect g(∂D).

We will show now that there is an interval [x, y]L′
1

with the above properties
such that [x, y]L1 contains a path joining BN (x) to BN (y) which is contained in
X1∪X2. We assume that no such interval exists and we argue by contradiction.
Consider all maximal subdiagrams of D, say U , with the property that ∂U

is in g−1(L1). Since L1 is simply connected we can modify all such U so
that U ⊂ g−1(L1) (we cut away all such diagrams U and glue back diagrams
contracting ∂U to a point inside L1).

We consider now the connected components of D− g−1(L). Let V1 be the
component containing p′1 and V2 be the component containing p′2. Let w be a
simple path in ∂V1 separating p′1 from p′2. Then g(w) is contained in L. If I

is a minimal interval of L containing g(w) then one sees easily that I contains
[a + K1

4 , b − K1
4 ]L. We conclude that g(w) intersects both BR(a1), BR(b1).

Let a′1, b
′
1 be such that g(a′1) ∈ BR(a1), g(b′1) ∈ BR(b1). Then a′1, b

′
1 are

separated in D by a path, say q, such that g(q) ⊂ L1 and ∂q ⊂ ∂D. Now, ∂q

separates ∂D in two paths, say c1, c2. Clearly neither c1 nor c2 is contained
in L1. We consider the shortest path in L1, with the same endpoints as q,
which is contained in X1 ∪ X2. For convenience we still call this path q.
We consider Van-Kampen diagrams for c1 ∪ q and c2 ∪ q. Since q does not
intersect [a1, b1]L one of either c1 ∪ q or c2 ∪ q has the property that any Van-
Kampen diagram corresponding to it contains two points, say a′1, b

′
1, such that

g(a′1) ∈ BR(a1), g(b′1) ∈ BR(b1). Let us say this is the case for c1 ∪ q. We pick
a Van-Kampen diagram for c1 ∪ q, and repeat the procedure. This is bound to
stop after finitely many steps, producing a diagram in which the preimage of
BR(a1) is not separated from the preimage of BR(b1) by the preimage of L1,
a contradiction.

We showed therefore that there exists an interval [x, y]L′
1

of L′
1 with the

properties a,b,c described above such that [x, y]L1 contains a path joining
BN (x) to BN (y) which is contained in X1 ∪ X2.
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By considering D1, D3 we see that [x, y]L1 contains another path joining
BN (x) to BN (y) which is contained in X1 ∪ X3. This implies that BN (x),
BN (y) are both contained in X1. On the other hand by considering D2, D3 we
conclude that BN (x), BN (y) are both contained in X2, a contradiction. This
proves Proposition 2.1.

3. A geometric characterization of virtually planar groups

In this section we give a quasi-isometric characterization of virtual surface
groups. It is modeled after Theorem A of the appendix and its proof follows
closely the proof of this theorem. Roughly what we show is that if G is a
one-ended finitely presented group such that any two points in its Cayley
graph which are sufficiently far away are separated by a quasi-line, then G

is virtually a surface group. In the proof of Theorem A one shows that every
simple closed curve separates and uses a classical theorem of Bing [Bi] to
conclude the proof. For Theorem 3.1 below we distinguish two cases: in the
nonhyperbolic case we show also that appropriately chosen (with big filling
radius) ‘thickened’ simple closed curves separate while in the hyperbolic case
we show that ‘thickened’ geodesics separate. In the first case we conclude using
Varopoulos’ isoperimetric inequality and in the second using the Tukia-Gabai
theorem on convergence groups. To show that thickened simple closed curves
separate we argue as for Theorem A: We use separating quasi-lines to define
what it means for a point to be ‘inside’ a simple closed curve. (see the definition
after Lemma 3.2.1). The main technical result is Lemma 3.2 which parallels
Lemma A.3.3 of the appendix. This is used to show later in Lemma 3.4 that
the definition of ‘inside’ does not depend essentially on the quasi-line picked.

We state now the main result of this section:

Theorem 3.1. Let G be a one-ended group and let X = XG be a Cayley
complex of G. Suppose that there is a proper increasing f : R+ → R+ and
N > 0 such that for any K > 0 there is an M > 0 such that any two points
x, y of X with d(x, y) > M are K-separated by some (f, N) quasi -line. Then
G is commensurable to a fundamental group of a surface.

Proof. In the proof that follows we suppose that K � N . It will be clear
that the argument is valid for K sufficiently bigger than N , and it is easy to
obtain an explicit estimate for K. We will need some technical lemmas:

Let L be a quasi-line separating X and let L′ be its corresponding line. By
Proposition 2.1 X−L contains exactly two essential connected components. We
denote them respectively L+, L−. We denote L̄+ the union L+ ∪ L. Similarly
L̄− = L− ∪ L.

The next lemma is the ‘large scale’ analog of Lemma A.3.3 of the appendix.
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Lemma 3.2. Let L1, L2 be separating (f, N) quasi -lines and let L′
1, L

′
2 be

the corresponding lines. For r2 � r1 � 0 the following hold :
Let a, b ∈ L′

1 be such that a, b ∈ L−
2 , d(a, L2) ≥ r1, d(b, L2) ≥ r1 and for

all t ∈ (a, b)L′
1
, d(t, L̄+

2 ) < r1. Let I be a minimal interval of L2 containing
[a, b]L1 ∩ L2.

Let x ∈ I ∩L′
2, y ∈ (L2 − I)∩L′

2 be such that d(x, L1) > r2, d(y, L1) > r2.
Then any path p joining x, y and lying in L̄+

2 intersects [a, b]L1.

Proof. The proof is similar to that of Lemma A.3.3 of the appendix. We
need a lemma similar to Lemma A.3.3.1 of the appendix:

Lemma 3.2.0. With the notation of Lemma 3.2 the following holds:
Let S = ([a, b]L1∩L2)−([a, b]L1∩[x, y]L2). There is a path p′ in L̄−

2 joining
x, y and a Van-Kampen diagram g :D→X for p′ ∪ [x, y]L′

2
such that :

a) d(g(D), S) > r1.

b) d(p′, [a, b]L1 ∩ [x, y]L2) > r1.

Proof. Let p1 be a path in L̄−
2 joining x, y such that d(p1, [a, b]L1)

> 3r1. We note that such a path exists by our assumption that r2 � r1

and Lemma 1.9. Let g1 : D1 → X be a Van-Kampen diagram for p1 ∪ [x, y]L′
2
.

Let s ∈ g−1
1 (S) and let Os be the component of s in D1−g−1

1 (Nr1([x, y]L′
2
)∩L2).

If ∂Os ⊂ g−1
1 (Nr1([x, y]L′

2
) ∩ L2) we modify D1 as follows: Since ∂Os ⊂ L2 we

fill ∂Os in L2, so after the change g1(Os) ⊂ N2r1([x, y]L′
2
) ∩ L2.

By performing this ‘cut and paste’ operation for all s ∈ g−1
1 (S) as above

we get a Van-Kampen diagram, that we still call D1, such that all s ∈ g−1
1 (S)

belong to a single component of D1 − g−1
1 (Nr1([x, y]L′

2
) ∩ L2).

We consider now the subdiagram Dr1 of D1 consisting of all closed 2-cells
σ of D1 such that d(g1(σ), [x, y]L′

2
) ≤ 2r1. Let D′

1 be the connected component
of Dr1 containing [x, y]L′

2
. Clearly there is a path p2 ∈ ∂D′

1 joining x, y such
that d(g(p2), [a, b]L1 ∩ [x, y]L2) > r1. We then take p′ = g1(p2). Clearly if we
take D to be the subdiagram of D1 bounded by [x, y]L′

2
∪p2 and g = g1|D both

conditions a) and b) are satisfied.

We return now to the proof of Lemma 3.2 arguing by contradiction. Let
p be a path joining x, y in L̄+

2 such that p does not intersect [a, b]L1 . Let
h1 : E1 → X be a Van-Kampen diagram for p∪ [x, y]L′

2
such that h1(E1) ⊂ L̄+

2 .
Let h : E → X be the Van-Kampen diagram obtained by identifying D, E1

along [x, y]L′
2
.

Let r0 be such that r1 � r0 � 0. By Remark 3.3, there are z1, z2 ∈ [x, y]L′
2

such that z1, z2 are separated by L1 and d(z1, [a, b]L1) = d(z2, [a, b]L1) = 2r0.
Let t1 ∈ h−1(Nr0(z1)), t2 ∈ h−1(Nr0(z2)). Now, t1, t2 are separated by h−1(L1).
Therefore there is a minimal simple path c in h−1(L1) separating t1, t2. If c is
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a closed path then either t1 or t2 is contained in the region it bounds. We can
eliminate then one of t1, t2 by cutting the region bounded by c and gluing back
a Van-Kampen diagram for c whose image is contained in L1. If c is not closed
its endpoints are contained in ∂E. If c1, c2 are the endpoints of c then both
c1, c2 ∈ p′ and (by Lemma 3.2.0) [h(c1), h(c2)]L1 does not intersect [z1, z2]L2 .

We cut E open along c−{c1, c2} and obtain thus a diagram with a region,
say F , in its interior that is bounded by two copies of c. We join c1, c2 in F

by a path c̄. We extend h to c̄ by mapping it to a path lying in [h(c1), h(c2)]L1

that joins h(c1), h(c2). F is subdivided by c̄ in two regions. Each region is
bounded by c̄∪ c. We fill this regions by Van-Kampen diagrams that contract
h(c̄ ∪ c) to a point inside [h(c1), h(c2)]L1 . We obtain thus a diagram, that we
still call E for convenience, in which t1, t2 are separated by c̄. We remark that
h(c̄) does not intersect [z1, z2]L2 .

It is easy to see that repeating this ‘cut and paste’ operation finitely many
times we obtain a Van-Kampen diagram h : E → X, for p ∪ p′ such that the
following holds: If t1 ∈ h−1(Nr0(z1), t2 ∈ h−1(Nr0(z2) then t1, t2 are separated
in E by a simple path c ∈ h−1(L1) such that h(c) does not intersect [z1, z2]L2 .
This is clearly impossible.

Lemma 3.2 holds also for infinite intervals. More precisely we have the
following:

Lemma 3.2.1. Let L1, L2 be separating (f, N) quasi -lines and let L′
1, L

′
2

be the corresponding lines. For r2 � r1 � 0 the following holds:
Let a, c ∈ L′

1 be such that a ∈ L−
2 , c ∈ L+

2 and d(a, L2) ≥ r1, d(c, L2) ≥ r1

and for all t ∈ (a,∞]L′
1

d(t, L̄+
2 ) < r1. Let b ∈ [a, c]L1 ∩L2 and let I1, I2 be the

infinite connected components of L2 − Br1(b).
Let x ∈ I1, y ∈ I2 be such that d(x, L1) > r2, d(y, L1) > r2. Then any

path p joining x, y and lying in L̄+
2 intersects [a,∞)L1.

Proof. Left to the reader.

The following definition is similar to Definition A.4 of the appendix:

Definition. Let C be a closed curve in X and let L be an (f, N) quasi-
line. Let x ∈ L be such that d(x, C) > R. We say that a subpath of C lying
in L+ (or in L−) is R-above x if the following are satisfied:

1) ∂I ⊂ L.

2) x lies in the interval of L determined by ∂I.

3) I is a maximal subpath satisfying 1), 2).

We say that x is an (R, L)-interior point of C if there is an odd number of
subpaths of C in L+ that are R-above x.
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Note that for sufficiently big R this does not depend on our choice of line
L′ for L. When such an R is given we say simply that x is an L-interior point
of C an (rather than an (R, L)-interior point).

To state the next lemma we need a definition:

Definition. Let C be a simple closed curve. We say that C is locally
(c1, c2)-quasigeodesic if every subpath of C of length less than length(C)/2 is
a (finite) (c1, c2)-quasigeodesic.

The next lemma is an analogue of Lemma A.4.2 of the appendix:

Lemma 3.3. Let c1, c2, R > 0 be given. For any sufficiently big R1 > R

the following holds: Let C be a simple closed curve that is a locally (c1, c2)
quasi -geodesic and let L be a separating quasi -line of X, R1-separating a, b ∈ C.
Then there is an x ∈ L such that x is an (R, L)-interior point of C.

The proof, left to the reader, is the same as the proof of Lemma A.4.2 of
the appendix.

We need a definition:

Definition. We say that a quasi-line L1, r-crosses a quasi-line L2 at
[x, y]L1 if x, y are r-separated by L2. We also say that [x, y]L1 r-crosses L2.

Remark 3.3. As in Lemma A.2 of the appendix we remark that there is
a proper function g : R+ → R+ such that if L1 r-crossses L2 at [x, y]L1 then
L2 g(r)-crosses L1 at an interval [a, b]L2 contained in the r-neighborhood of
[x, y]L1 .

The following lemma is an analogue to Lemma A.4.3 of the appendix.

Lemma 3.4. Let C be a simple closed curve in X and let L1, L2 be sep-
arating quasi -lines. For any sufficiently big r > 0 and R � r the following
holds: Let x < y be points on L′

1 such that x is r-separated from y by L2. Sup-
pose that d([x, y]L1 , C) > R. If t ∈ [x, y]L1 ∩ L2 then t is an (R, L1)-interior
point of C if and only if it is an (R, L2)-interior point of C.

Proof. The proof is similar to the proof of Lemma A.4.3 of the appendix.
Some modifications however have to be made since L1, L2 are quasi-lines and
not lines, and so it is not possible to have a ‘planar’ picture of L1, L2 such that
points of L1 (or L2) separated by L2 are mapped on the plane to points that
are separated by the image of L2. What one can show roughly is that points
on L1 (or L2) ‘far away’ from L2 (or L1) are correctly mapped to the plane.
We explain this here in some detail.
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We define first a map from L′
1
L′

2 to the plane. Mapping L′
2 to the x-axis

in a length-preserving way, for convenience, we identify L′
2 to its image. We

assume r � r2 � r1 where r1, r2 are such that lemma 3.2 holds. To each
minimal interval [x1, x2]L′

1
of L1 such that [x1, x2]L1 r1-crosses L2 we associate

a point lying in [x1, x2]L1 ∩ L′
2.

Let J = [a, b]L′
1
be an interval of L′

1 satisfying the conditions of Lemma 3.2.
Using J we will define a map from a smaller interval contained in J to the plane.
Let [a, a1]L′

1
and [b1, b]L′

1
be minimal intervals such that [a, a1]L1 and [b1, b]L1

r1-cross L2. Let a2, b2 be the points on L′
2 corresponding to these intervals.

Let a′2, b
′
2 ∈ L′

1 be points on L′
1 such that d(a2, a

′
2) ≤ N , d(b2, b

′
2) ≤ N (where

a′2, b
′
2 are obtained by the usual map from the quasi-line L1 to the line L′

1).
We map then [a′2, b

′
2]L′

1
to a polygonal path joining a2, b2. This polygonal

path intersects the x-axis only at its endpoints and lies in the half-plane y > 0
if a, b ∈ L−

2 and in the half-plane y < 0 if a, b ∈ L+
2 .

In a similar way, we map infinite intervals of L′
1 using intervals of the form

[a,∞)L′
1

or of the form (−∞, a]L′
1

satisfying the conditions of Lemma 3.2.1.
We note now that we can write L′

1 as a union of intervals satisfying the
conditions of either Lemma 3.2 or 3.2.1. Two such intervals J1, J2 can intersect
‘near’ their endpoints. There is a natural order on this set of intervals of L′

1 as
each interval intersects exactly one other interval near each of its endpoints.
Call two intervals that intersect adjacent. If two intervals satisfying 3.2 or
3.2.1 are adjacent then using these intervals we define a map from two intervals
contained in them. These two new intervals intersect at exactly one point and
are mapped to polygonal lines which also intersect at exactly one point. We
can, therefore, using these maps define a map from L′

1 to the plane; each point
of L′

1 belongs to an interval [a′2, b
′
2]L′

1
as above and is mapped to the plane by

the corresponding map. We call g : L′
1 → R2 the map obtained in this way

and note that g might not be one-to-one. It is possible that two intervals,
say [a, b]L′

1
, [c, d]L′

1
, and are mapped to the plane so that g(a), g(b), g(c), g(d)

lie on the x-axis, (a, b)L′
1
, (c, d)L′

1
are mapped both, either in the upper or in

the lower half-plane and g(c) ∈ [g(a), g(b)] while g(d) /∈ [g(a), g(b)]. In this
case the image of [a, b]L′

1
intersects the image of [c, d]L′

1
. By changing the map

g if necessary we can assume that g([a, b]L′
1
) intersects g([c, d]L′

1
) at exactly

one point. We can further assume that for any pair of intervals as above for
which g(c), g(d) are either both inside or both outside [g(a), g(b)] the images
of [a, b]L′

1
, [c, d]L′

1
do not intersect.

We explain now how to modify g so that g(L′
1) is a line. We fix an interval

[a, b]L′
1
and consider all intervals such that their images intersect g([a, b]L′

1
). We

say g([c, d]L′
1
) intersects g([a, b]L′

1
), g(a), g(b), g(c), g(d) lie on the x-axis, and

(a, b)L′
1
, (c, d)L′

1
are both mapped in the upper half-plane. Let I be the bounded

interval of L′
1 − ((a, b)L′

1
∪ (c, d)L′

1
). I then joins an endpoint of [c, d]L′

1
to an

endpoint of [a, b]L′
1
. To fix ideas let us say that the endpoints of I are a, c. We
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change g so that g(I) = g(a) and so that g([c, d]L′
1
) becomes a polygonal path

in the upper half-plane joining g(d) to g(a). We pick this polygonal path so
that it does not intersect g((a, b]L′

1
) and any other paths of g(L′) in the upper

half-plane that have both their endpoints either inside or outside [g(a), g(d)].
If r3 � r2 we have that length(I) < r3 by Lemmas 3.2, 3.2.1. This mod-

ification is made for every interval [c, d]L′
1

whose image intersects g((a, b)L′
1
).

In this way eventually g((a, b)L′
1
) does not intersect any other polygonal path.

We continue by picking another interval and changing the map in the same
away to eliminate intersections with the image of this interval. As there are
countably many intervals, it is clear that we can eliminate all self -intersections
of g(L′

1). Note that after these modifications some intervals I of L′
1 are mapped

to a point but all such intervals have length smaller than r3.
For r3 big enough one can verify easily that if a, b ∈ L′

1 are such that
d(a, L2) > r3, d(b, L2) > r3, then a, b are r3-separated by L2 if and only if
g(a), g(b) are separated by g(L′

2).
The next lemma shows that this holds also for a, b ∈ L′

2:

Lemma 3.4.1. If a, b ∈ L′
2 are such that d(a, L1) > r3, d(b, L1) > r3 then

a, b are r3-separated by L1 if and only if g(a), g(b) are separated by g(L′
1).

Proof. We show first that if a, b ∈ L′
2 are not separated by L1 then

g(a), g(b) are not separated by g(L′
1). We note that there is a path p joining

a, b in X that does not intersect the r2-neighborhood of L1. Indeed, if this
were not so, X −Nr2(L1) would have more that two essential components (see
Def. 1.4). This contradicts the hypothesis of Theorem 3.1 (see Prop. 2.1). We
decompose p as a union p = p1∪· · ·∪pn where the pi’s are successive subpaths
lying in L̄+

2 or in L̄−
2 . Let ai, bi be the endpoints of pi. We fix some pi and

suppose that, say, pi ⊂ L̄+
2 . Note that if there is no path joining the points

g(ai), g(bi) in R2 − g(L′
1) then ai, bi are separated in L̄+

2 by an interval of L1

as in Lemma 3.2 (or in Lemma 3.2.1). This is impossible. We conclude that
g(a), g(b) are not separated by g(L′

1).
Similarly, if for a, b as in the lemma, g(a), g(b) are not separated by g(L′

1)
then it is easy to see that g(a), g(b) can be joined by a path that does not meet
g(Nr2(L1)). This in turn implies that a, b can be joined by a path that does
not meet L1.

Note that g(L′
1) and g(L′

2) separate the plane in two pieces. We define
g(L+

1 ) to be the component of R2 − g(L1) which contains g(a) for some a ∈ L′
2

such that a ∈ L+
1 and d(a, L1) > r3. We define similarly g(L−

1 ),g(L+
2 ),g(L−

2 ),
and now extend g to C, so that g will be defined on L1 
 L2 
 C.

Assuming that r � r3, we show how to map C to the plane so that
t ∈ [x, y]L′

1
∩L2 is an (R, L1)-interior point ((R, L2)-interior point) of C if and

only if g(t) is a g(L′
1) (g(L′

2) ) interior point of the image of C.
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We extend g to L1∪L2 in the obvious way by defining g(a) = g(a′), where
a → a′ is the usual map from a line to the corresponding quasi-line.

We decompose C as a union of successive paths C = C1 ∪ · · · ∪ Cn where
the endpoints of Ci are on L2 and Ci is contained in L̄+

2 or in L̄−
2 . We explain

now how to map each Ci to the plane. Let us say that the endpoints of Ci are
ai, bi and, to fix ideas, suppose that Ci is contained in L̄+

2 . We will map Ci to
the plane so that the following conditions hold:

1) If a ∈ Ci ∩ L1 then g(a) ∈ g(Ci).

2) If for some a ∈ L1, g(a) ∈ g(Ci), then d(a, Ci) < r3.

We orient Ci from ai to bi. Let c1, . . . , cr be the vertices of intersection of Ci

with L1 in the order they appear. If c1 ∈ L+
2 we map the subpath [ai, c1] of Ci

to be a polygonal line in g(L+
2 ) joining g(ai) to g(c1) and having the minimum

possible number of intersection points with g(L1). Note that any intersection
point of g([ai, c1]) with g(L1) lies in an interval of g(L1) that lies in g(L+

2 ) and
separates ai, c1. By the definition of g and Lemma 3.2 one sees easily that such
an interval contains a point g(t) such that either d(t, ai) < r3 or d(t, c1) < r3.
We choose g([ai, c1]) so that it intersects this interval exactly at a point g(t)
with the above property.

If c1 ∈ L−
1 then we pick a point s on L2 such that d(s, c1) < r3 and we

define g([ai, c1]) to be the union of three polygonal paths: the first joins g(ai)
to g(s) and lies in g(L+

2 ); the second joins g(s) to g(c1) and lies in g(L−
2 );

and the third is the inverse of the second. This path might intersect g(L1) at
points other than c1. We can however arrange, as before, that if g(t) is such
an intersection point then either d(t, ai) < r3 or d(t, c1) < r3.

We continue in the same way defining g([c1, c2]) to be a polygonal path
joining g(c1), g(c2) and lying in g(L+

2 ) if g(c1), g(c2) lie in g(L+
2 ). If one of

them or both lie in g(L−
2 ) then we define this path as before using an auxiliary

point on g(L2) close to the point in g(L−
2 ). We define g on all subpaths Ci in

the same way.
By the remarks made above we can arrange so that g satisfies the following:

If t ∈ C is such that g(t) ∈ g(C)∩g(L1) or g(t) ∈ g(C)∩g(L2) then, respectively,
d(t, L1) < r3 or d(t, L2) < r3.

Note that x is an L2 interior point of C if and only if g(x) is a g(L2)
interior point of g(C). Indeed this follows easily from the definition of g, the
extra intersection points with g(L2) that we might create defining g(C) do not
change the parity of intervals above g(x).

We will show now that x is an L1 interior point of C if and only if g(x)
is a g(L1) interior point of g(C). Let p = [b1, b2] be a subpath of C lying in
L̄+

1 with b1, b2 ∈ L1. Then p can be written as a union of successive subpaths
p = p1 ∪ · · · ∪ pn such that for each i one of the following two holds:
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1) g(pi) ⊂ R2 − g(L1) and the endpoints of g(pi) lie on g(L1) and are sepa-
rated on g(L1) by g(x), or

2) g(pi) ⊂ R2 − g(L1) and the endpoints of g(pi) lie on g(L1) and are not
separated on g(L1) by g(x).

We will show that in case 1) g(pi) lies in g(L̄+
1 ). Let q be a subpath of pi

satisfying the following:
Each endpoint of g(q) lies either on g(L1) or on g(L2), g(q) is contained

either in g(L̄+
2 ) or in g(L̄−

2 ) and there is a point t on q at distance bigger than
r3 from L1. To fix ideas we assume that g(q) lies in g(L̄+

2 ). We then join t to a
point s on L2 by a path that meets L2 only at s and does not intersect the r2

neighborhood of L1. Clearly s ∈ L+
1 . From Lemmas 3.2, 3.2.1 it follows that

g(s) and the endpoints of g(q) lie in the same component of g(L̄+
2 )−g(L1). This

implies that g(q) is at the same component of R2 − g(L1) as g(s). Therefore
g(pi) ⊂ g(L̄+

1 ).
From these observations it follows that the number of subpaths of g(p)

lying above g(x) in g(L+
1 ) is odd. This in turn implies that g(x) is a g(L1)

interior point for g(C) if and only if it is an L1-interior point for C. Since g(x)
is a g(L1) interior point for g(C) if and only if it is an g(L2) interior point for
g(C) the lemma follows.

We show now how to approximate any path in X by “polygonal paths”
i.e. paths made by intervals of quasi-lines. This is similar to Lemma A.4.4 of
the appendix.

Remark 3.5. Note that for any r > 0 there is an R > r such that for
any separating (f, N)-quasi-line L the following holds: If O ∈ X − Nr(L) and
d(O, L) > R then O lies in an essential component of X − Nr(L).

This is because (see §2) all separating quasi-lines considered satisfy the
conclusion of Proposition 1.4.3.

Lemma 3.6. For any r > 0 there is an R > r such that for any separating
(f, N)-quasi -line L the following holds: Let x, y ∈ X be such that d(x, L) =
d(y, L) = r +1 and let x′, y′ ∈ L be such that d(x, x′) = d(y, y′) = r +1. If x, y

lie in the same essential component of X −Nr(L) then x, y can be joined by a
path lying in (X − Nr(L)) ∩ NR([x′, y′]L.

Proof. The lemma follows easily from Proposition 1.4.5.

To construct the “polygonal paths” needed we use some constants M, R, r.
In what follows we suppose that M � R � r � 0. We describe below some
of the properties of these constants.

Suppose that r > N is big enough so that Lemma 3.4 holds. We take R big
enough so that Remark 3.5 and Lemma 3.6 hold for R/4 (where r is as given
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above). Let M > R be such that any two points x, y ∈ X with d(x, y) ≥ M

can be R-separated by a quasi-line.
We fix now O ∈ X and let B = BM (O) be the ball of radius M around O.

Clearly each vertex t in SM (O) is R-separated from O by a quasi-line Lt. We
call S the set of all these quasi-lines. For a quasi-line L ∈ S we denote by L+

the essential component of X − L containing O and by L− the other essential
component of X − L. For each quasi-line Li ∈ S we denote by Ii a minimal
interval of Li containing B2M (O) ∩ Li.

Definition. Two quasi-lines L1, L2 ∈ S cross if either there are x1, y1 ∈ I1

such that [x1, y1]L1 r-crosses L2 or if there are x2, y2 ∈ I2 such that [x2, y2]L2

r-crosses L1.

Definition. We call a subset T of S cross-connected if for any Lt, Ls ∈ T

there is a sequence L1 = Lt, L2, . . . , Ln = Ls such that all members of the
sequence lie in T and any two successive quasi-lines in this sequence cross.

We note that SM (O) is not necessarily connected. Since X is one ended
there is exactly one connected component of SM (O) that meets the frontier
of an unbounded connected component of X − B. We denote this connected
component by F .

We define now a finite sequence of subsets of S. We pick a point t ∈ F

and pick a quasi-line Lt ∈ S such that Lt R-separates O from t. Let T1 be a
maximal cross-connected subset of S containing Lt.

Given T1, . . . , Ti we explain how to define Ti+1: Suppose that there is a
vertex s ∈ F such that s is not R/2-separated from O by any quasi-line lying
in T1 ∪ · · · ∪ Ti. We then pick Ls ∈ S such that Ls R-separates s from O. We
define Ti+1 to be a maximal cross-connected subset of S containing Ls. If there
is no such vertex s then Ti+1 is not defined.

Let T1, . . . , Tn be the sequence defined in this way. We have the following:

Lemma 3.7. For any t ∈ F there is a quasi -line in Tn that R/4-separates
t from O.

Proof. We will prove this by contradiction. Let x be a vertex on F such
that there is a quasi-line L ∈ Tn such that L1 R-separates x from O and such
that no quasi-line in T1 ∪ · · · ∪ Tn−1 R/2-separates x from O. We consider the
set of points of F that are R/4-separated from O by some quasi-line in Tn.
Let F1 be the connected component of x in this set. Let y ∈ ∂F1 ∩ F . Let
L2 ∈ T1 ∪ · · · ∪ Tn−1 such that L2 R/2-separates y from O. We note that L2

does not R/2-separate x from O. Let p be a path in F1 joining x to y. We
distinguish two cases:

Case 1: L2 intersects p.

Case 2: L2 does not intersect p.
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We will arrive at a contradiction by showing in both cases that L2 ∈ Tn.
We deal first with case 1. Suppose that L2 intersects p at a point u. There is
a quasi-line L3 ∈ Tn that R

4 -separates u from O. Let u1 be the closest point
to u such that u1 ∈ L+

2 and d(u1, L2) = r + 1. Let q be a path joining O to
u1 in B2M (O) such that q does not intersect Nr(L2). Such a path exists by
Lemma 3.6. Clearly q intersects L3. Therefore there is a point on L3 lying in
L+

2 at a distance bigger than r from L2.
We distinguish again two cases: Either d(y, L3) ≤ R/4 or d(y, L3) > R/4.

In the first case there is a point y1 ∈ L3 with d(y, y1) ≤ R/4. Therefore
y1 ∈ L−

2 and d(y1, L2) > r. Therefore in this case L3 cross L2 and L2 ∈ Tn.
In the second case Lemma 3.6 implies that there is a path q1 in B2M

joining O to y1 such that q1 does not intersect Nr(L3). Clearly L2 intersects q1

at a point lying in L+
3 . Therefore L2 crosses L3 and again L3 ∈ Tn. This settles

case 1. Case 2 is treated similarly by considering L1, L2: Since L2 separates
x from O there is a point x1 ∈ L2 with d(x, x1) ≤ R/2. Therefore x1 ∈ L−

1

and d(x1, L1) > r. If d(y, L1) > R/4 by Remark 3.5 and Lemma 3.6 there is
a path joining O to y in B2M (O) in X − Nr(L1). This path intersects L2 so
that L2 crosses L1 and L2 ∈ Tn.

If d(y, L1) ≤ R/4 we pick a closest point to y, say y1, with the properties
that y1 ∈ L+

1 and d(y1, L1) = r+1. By Lemma 3.6 there is a path in X−Nr(L1)
lying in B2M (O) joining O to y1. This path intersects L2 at a point x2.
Therefore L2 crosses L1 and L2 ∈ Tn.

Lemma 3.7.1. There is a cross-connected subset of S, S′, such that any
point of SM (O) is R/4-separated from O by some element of S′.

Proof. Indeed for each t ∈ SM (O) that is not R/4-separated from O by
some element of Tn we pick a quasi-line Lt in S that R-separates t from O.
Clearly Lt intersects F so it crosses some element of Tn. We therefore obtain
S′ by adding to Tn all quasi-lines Lt as above.

The proof of Theorem 3.1 now proceeds by distinguishing two cases:
Either G is not a hyperbolic group or G is a hyperbolic group.

First case. G is not hyperbolic. We show in this case that G is commen-
surable with Z2. We recall the definition of the filling radius of a simple closed
curve in X given in [G2]:

Definition. The filling radius of a simple closed curve c in X is the
smallest r such that c can be contracted to a point in Nr(c). If D is a Van-
Kampen diagram for c and if f : D → X is such that f(∂D) = c then the
radius of D is the maximum of d(f(x), c) where x ranges over the vertices of D.

It is easy to construct long simple closed curves in X that are locally
(c1, c2) quasi-geodesics and have ‘big’ filling radii. This is a standard fact for
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p(t)

p1 p2

Figure 4

nonhyperbolic spaces, a consequence of the fact that the isoperimetric inequal-
ity satisfied by X is at least quadratic. We sketch below one such construction.
Note that the constants (c1, c2) obtained are by no means optimal.

Since G is not hyperbolic for any R > 0 there is an R-thick bigon in
X (see [P]). That is, there are two finite geodesic paths p, q with common
endpoints such that p is not contained in the R-neighborhood of q (see Fig. 4).
We parametrize p, q with respect to arclength as usual. Let max{d(p(t), q)} =
m > R and let t0 be such that d(p(t0), q) = m. Let t1 ∈ [t0 − 3m, t0 − 2m

3 ],
t2 ∈ [t0 + 2m

3 , t0 + 3m] be such that:

m/4 < d(p(t1), q) < d(p(t1 + s), q) + 2s/3 for all s ∈ [0, t0 − t1]

and
m/4 < d(p(t2), q) < d(p(t2 − s), q) + 2s/3 for all s ∈ [0, t2 − t0].

It is easy to see that such t1, t2 exist.
Let q(s1) be a point on q such that d(q(s), p(t1)) attains a minimum and

similarly let q(s2) be a point on q such that d(q(s), p(t2)) attains a minimum.
We join p(t1) to q(s1) by a geodesic p1 and p(t2) to q(s2) by a geodesic p2. We
consider now the simple closed curve c = p[t1, t2]∪ p1 ∪ p2 ∪ q[s1, s2]. We have:

R < 2m < length(c) < 16m.

It is easy to verify that c is a local (100, 1)-quasi-geodesic. We state this as a
lemma:

Lemma 3.8. Suppose that G is not hyperbolic. Then for any R > 0 there
is a simple closed curve c in X (the Cayley complex of G) that is a local
(100, 1)-quasi -geodesic, has length(c) > R and, such that the filling radius of c

is bigger than length(c)/100.

Proof. Indeed it is easy to verify that the simple closed curves c con-
structed above have filling radius bigger than length(c)/100.

Remark 3.9. It is easy to see that the filling radius of cn is also bigger
than length(c)/100, where cn is the curve obtained by traversing c n times in
the same direction.
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To finish the proof of Theorem 3.1 in this case it suffices to show that neigh-
borhoods of ‘long’ simple closed curves that are (100, 1) local-quasi-geodesics
separate X. We explain this below.

Let M, R, R1, r be as in Remark 3.5 and Lemma 3.6. The arguments
below hold for K � m � M � 0. Let c be a simple closed curve in X that
is a (100, 1) local-quasigeodesic and has length(c) � K. By Lemma 3.3 there
are a separating quasi-line L and x ∈ L such that x is a (L, K)-interior point
of c. Now, there is a path p, which does not intersect the 2m-neighborhood
of c, joining x to a point y such that d(y, c) > length(c)/100.

Indeed consider a Van-Kampen diagram, D, for c. Let f : D → X be the
simplicial map induced by the labelling of D for which f(∂D) = c. Consider
now f−1(N2m(c)). D − f−1(N2m(c)) has several connected components say
D1, . . . , Dn with ∂Di (i = 1, . . . , n) mapping to N2m(c). We define for each i

a map fi : ∂Di → c as follows: If v is a vertex of ∂Di we define fi(v) to be the
closest vertex of f(v) lying on c. We extend this to the edges by mapping the
edge [v1, v2] to the smallest subpath of c joining fi(v1), fi(v2). We note now
that for some i, say i0, the degree of fi0 : ∂(Di0) → c is bigger than 1. Indeed
it is clear that deg(f1) + · · ·+ deg(fn) = deg(f) = 1. By Remark 3.9 above we
have that the radius of Di0 is bigger than length(c)/100. On the other hand
by the separation properties of L we have that there is a vertex v of D such
that d(f(v), x) ≤ N .

Let v1 be a vertex of D such that d(f(v1), c) > length(c)/100. It is clear
then that we can join x to f(v) by a path not intersecting N2m(c) and then
join f(v) to f(v1) by a path lying in f(Di0) and hence not intersecting N2m(c).
The union of these two paths is a path p joining x to f(v1) = y. With the
above notation we have the following:

Lemma 3.10. y lies in a bounded component of X − Nm(c).

Proof. We will show that there is a point y1 ∈ p with d(y, y1) < M that
lies in a bounded component of X − Nm(c). This clearly implies the lemma
since y, y1 lie in the same component of X − Nm(c). Indeed, by Lemma 3.7.1,
for each point O on p we can pick a finite cross-connected set of separating
quasi-lines that separate O from SM (O). Using these separating quasi-lines
we can find a finite sequence of separating quasi-lines L1, . . . , Lk = L and a
sequence of points, x = a0 ∈ L0 = L, a1 ∈ L1, . . . , y1 = an ∈ Ln such that for
all i, d(ai, p) ≤ M and one of the following two conditions holds for Li, Li+1:

1) An interval [t, s]Li
of Li with t, s ∈ Bm(ai) r-crosses Li+1. Moreover

ai ∈ [t, s]Li
.

2) An interval [t, s]Li+1 of Li+1 with t, s ∈ Bm(ai+1) r-crosses Li. Moreover
ai ∈ [t, s]Li+1 .
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We explain here briefly how this sequence is constructed, starting with O = x

and using the construction of Lemma 3.7.1: If we call S′ the set of quasi-lines
separating x from SM (x) we note that there is a quasi-line L1 ∈ S′ such that
an interval of L1 with endpoints in B2M (x), r-crosses L. We pick now a point
a ∈ p that lies on some quasi-line La in S′. Clearly a is at distance bigger
than R from x. Since S′ is cross-connected and L1 r-crosses L we can find
quasi-lines L0 = L, L1, . . . , Li = La in S′ and intervals that satisfy at least one
of the above two conditions. We pick points a1 = x, a2, . . . , ai = a lying on
the intersection of these intervals with SM (x). We repeat the same procedure
replacing x by a = ai, picking in the same way a point on p that comes after a

as we traverse p from x to y. We continue until we arrive at a point y1 = an ∈ p

with d(y1, y) < M .
Note now that by Lemmas 3.7.1 and 3.4, since x is an L-interior point

of c, y1 is an Ln-interior point of c.
Since X is one ended X −Nm(c) has exactly one unbounded component,

say Y . Since Ln is infinite it intersects Y . Let z be a point in Y ∩ Ln with
d(z, c) > length(c). Clearly z is an Ln exterior point of c.

On the other hand if y1 and z both lie in Y we can join them by a path q

that does not intersect Nm(c). But then we can find a sequence of quasi-lines,
as we did above, ‘joining’ y1 to z. This however would imply that z is an
Ln-interior point of c, a contradiction. We conclude therefore that y1 lies in a
bounded component of X − Nm(c). Since y, y1 lie on the same component of
X − Nm(c) the same is true for y.

Lemma 3.10 easily implies that in this case G is virtually Z2 using
Varopoulos’ isoperimetric inequality ([V]) and Gromov’s theorem on groups of
polynomial growth ([G1]). We recall here Varopoulos’ inequality as stated in
[C-S]: Let H be a finitely generated group and let Y be the Cayley graph of H

for a finite set of generators of cardinality, say, k. For Ω ⊂ Y we denote by |Ω|
the number of vertices in Ω and by ∂Ω the number of vertices of Y at distance 1
from Ω (i.e., ∂Ω = {t ∈ Y : d(t, Ω) = 1} where d(t, Ω) = min{d(t, s) : s ∈ Ω}).

Let e be the vertex of Y corresponding to the identity element of G. Let
Bn(e) = {x ∈ Y : d(x, e) ≤ n} and let V (n) = |Bn(e)|. Let φ : R+ → N be the
function:

φ(λ) = inf{n ∈ N : V (n) > λ}.

Varopoulos’ inequality. H satisfies the isoperimetric inequality:

|Ω|
φ(2|Ω|) ≤ 8k|∂Ω|

for all Ω ⊂ H.
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As noted in [C-S] the inequality V (n) ≥ CnD implies the inequality

(∗) |Ω|D−1
D ≤ C|∂Ω|.

We now apply this inequality to G where we choose Ω to be the component
of X − Nm(c) containing y. To simplify notation we denote length(c) = n. In
this case we have the inequalities:

|Ω| ≥V (n/100),

|∂Ω| ≤C(m)n

where C(m) is a constant depending only on m and G.
By the inequality (∗) above we have that there is a constant C > 0 such

that V (n) ≤ Cn2 holds for G. Since G is one-ended we conclude that G is
commensurable with Z2. This clearly implies Theorem 3.1 in case 1.

Case 2. We assume that G is hyperbolic. As in case 1 we can show that
there is an m > 0 such that the m neighborhood of any bi-infinite geodesic
l in X separates X. This however implies that any pair of points of the
Gromov boundary of X, ∂X, separates ∂X. This is turn implies that ∂X is
homeomorphic to S1 (see [N, Ch. IV, Thm. 12.1]). Hence by the Tukia-Gabai
theorem ([T], [Ga]) on convergence groups of S1, G is commensurable to the
fundamental group of the surface of genus 2.

Remark 3.11. We did not use the full force of the hypothesis of Theo-
rem 3.1. Indeed instead of using the fact that for all K > 0 there is an M

such that any x, y with d(x, y) > M are K-separated by a quasi-line we used
the weaker hypothesis that there is a sufficiently big K1 for which there is M1

such that any x, y with d(x, y) > M1 are K1-separated by a quasi-line, and
there is a sufficiently big K2 > M1 for which there is an M2 such that any x, y

with d(x, y) > M2 are K2-separated by a quasi-line. The value of K1 for which
the above argument holds depends on f, N, G and the value of K2 for which
it holds depends on M1, f, N, G. Roughly speaking it is enough to be able to
K-separate points that are sufficiently far apart in X for some K ‘big enough’
rather than for all K. This will be important in the next section.

4. A more refined characterization of virtually planar groups

We keep in this section the notation of Theorem 3.1. To prove the quasi-
isometry invariance of splittings over 2-ended groups we need a stronger (and
more technical) version of Theorem 3.1. Roughly speaking we need to show
that if a group is not virtually planar then there are unbounded connected
subsets of its Cayley graph that cannot be ‘cut’ by quasi-lines. We make this
precise below.
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Definition. A connected subset of X, Y is an r-solid subset of X if for any
separating quasi-line L, Y is contained in the r-neighborhood of a component
of X − L.

We can now state the main result of this section:

Theorem 4.1. Let G be a one-ended, finitely presented group that is not
commensurable to a planar group. Let X be a Cayley complex of G. Then
there is an r > 0 such that X contains an unbounded r-solid subset.

Proof. We will prove this by contradiction. We start with a lemma that
follows easily from Theorem 3.1:

Lemma 4.2. Let G be a one-ended group that is not commensurable to a
planar group. Let X be a Cayley complex of G. Then for any x ∈ X there is
an r > 0 such that there is an unbounded, connected Y ⊂ X such that x ∈ Y

and if y ∈ Y then any quasi -line L separating x, y intersects either Br(x) or
Br(y).

Proof. Suppose not. Note that since G acts transitively on X the conclu-
sion of the lemma does not hold for any x ∈ X. We pick r1 � 0 and define
F (r1) to be the set of all y ∈ X such that a quasi-line separating x from y

intersects either Br(x) or Br(y). Let Y (r1) be the connected component of x

in F (r1). If Y (r1) is bounded then any vertex in ∂Y (r1) is r1-separated from
x by some quasi-line. So we can apply the construction of Lemmas 3.7.1–3.7.3
with BM (x) replaced by Y (r1). If M1 = diam(Y (r1)). We can define simi-
larly F (r2) and Y (r2) for r2 � r1. If Y (r2) is bounded we can use the same
construction and prove Lemma 3.10 under our weaker hypothesis. Therefore
the proof of Theorem 3.1 applies in our setting and G is commensurable to a
planar group, a contradiction.

In the next three lemmas we show, respectively, that a ‘bigon’, a ‘tri-
angle’ and a ‘rectangle’, made by crossing intervals of separating quasi-lines,
separate X.

With the notation of Theorem 4.1 we have the following:

Lemma 4.3. Let L1, L2 be (f, N)-quasi -lines separating X. Let r � M

� 0. Let I1, I2 be two disjoint intervals of L1 such that I1, I2 r-cross L2. Let I

be an interval of L1 containing I1∪I2 and let J be an interval of L2 containing
Nr(I ∩L2)∩L2. Then there is a point x such that d(x, I ∪ J) ≥ M and x lies
in a bounded component of X − (I ∪ J).

Proof. Let r � r2 � r3 � M . Let I1 = [a1, b1]L1 , I2 = [a2, b2]L1 and
suppose that b1 < a2. We assume without loss of generality that d(b1, L2) ≥ r

and b1 ∈ L+
2 . Let I0 be a maximal subinterval of I containing b1 such that
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I0 ⊂ Nr3(L
−
2 ). If J0 is a minimal subinterval of J containing J ∩ I0 one sees

easily that there is an x1 ∈ J0 such that d(x1, I) ≥ r2. Clearly there is an
x ∈ L+

1 such that x ∈ Br2(x1) and d(x, J ∪ I0) ≥ M . Lemma 3.2 implies then
that d(x, I ∪ J) ≥ M and that x satisfies the conclusion of Lemma 4.3.

The next two lemmas treat the cases of a ‘triangle’ and a ‘rectangle’. To
make sure that these are not degenerate we have to assume that their sides are
not close to each other. We make this precise in the following definition:

Definition. Let L1, L2 be separating quasi-lines and let I1, I2 be intervals
of L1, L2 respectively. We say that I1 (r1, r2)-fellowtravels I2 if there is a subin-
terval of I2 of length greater than r2 that is contained in the r1-neighborhood
of I1.

Lemma 4.4. Let L1, L2, L3 be (f, N)-quasi -lines separating X. Let R �
r1 � r2 � r3 � r � M � 0. Suppose that no Li contains a pair of dis-
joint intervals such that either both intervals r-cross some Lj or one of them
r-crosses Lj and the other (r3, r2)-fellowtravels Lj , (i, j ∈ Z/3Z). Suppose that
the following hold :

1. There are intervals Ji ⊂ Li such that Ji r1-crosses Li−1 and Li+1

(i ∈ Z/3Z).

2. If I1, I2 are minimal subintervals of J1, J2 with the property that I1, I2

r1-cross L3 then d(I1, I2) ≥ R.

Then there is a point x such that d(x, J1∪J2∪J3) ≥ M and x lies in a bounded
component of X − (J1 ∪ J2 ∪ J3).

Proof. Let J ′
1, J

′
2 be minimal subintervals of J1, J2 respectively such that

J ′
1 r1-crosses L2 and J ′

2 r1-crossses L1. Condition 2 in the statement of the
lemma implies that either J ′

1 ∩ I1 = ∅ or J ′
2 ∩ I2 = ∅ (or both these hold).

We may assume without loss of generality that J ′
1 ∩ I1 = ∅. Then J ′

1 by our
hypothesis does not r-cross L3. We may suppose without loss of generality
that J ′

1 ⊂ Nr(L+
3 ). Let I3 be a minimal interval of L3 containing (I1 ∩ L3) ∪

(I2 ∩ L3). Let x1 ∈ I3 be such that d(x1, J2 ∪ J3) > r3. Note that such a
point exists by our hypothesis that there is no interval of L1 disjoint from I1

that (r3, r2)-fellowtravels L3. We pick x ∈ L+
3 such that d(x, x1) ≤ r3/2 and

d(x, J1 ∪ J2 ∪ J3) ≥ M . By lemmas 3.2 and 3.2.1 it follows that x lies in a
bounded component of X − (J1 ∪ J2 ∪ J3).

Lemma 4.5. Let L1, L2, L3, L4 be (f, N)-quasi -lines separating X. Let
R � r1 � r2 � r3 � r � M � 0. Suppose that no Li contains a pair of
disjoint intervals such that either both intervals r-cross some Lj or one of them



QUASI-ISOMETRY INVARIANCE OF GROUP SPLITTINGS 791

r-crosses Lj and the other (r3, r2)-fellowtravels Lj. (i, j ∈ Z/4Z). Suppose that
the following hold : There are intervals Ji ⊂ Li such that Ji r1-crosses Li−1

and Li+1 (i ∈ Z/4Z). Assume further that if I1, I3 are minimal subintervals
of J1, J3 with the property that I1, I3 r1-cross L4 then d(I1, I3) ≥ R and that
J2 ⊂ Nr(L+

4 ). Then there is a point x such that d(x, J1 ∪ J2 ∪ J3 ∪ J4) ≥ M

and x lies in a bounded component of X − (J1 ∪ J2 ∪ J3 ∪ J4).

Proof. We note that under our assumptions on L1, L2, L3, L4 the following
holds (see Lemma 3.2.1): Let J = [c, d]Li

be a minimal interval of some Li such
that J r-crosses some Lj . Let us say that c ∈ L−

j and let c1 ∈ J ∩ Lj . Then
[c1,∞)Li

is contained in Nr(L+
j ). Moreover if x, y lie in distinct connected

components of Lj − Br(c) and if p is a path joining them in L̄+
j then either p

intersects Li or at least one of x, y is at distance smaller than r2 from [c1,∞)Li
.

The lemma follows easily by repeated applications of this observation. We
explain this in detail below and note that by our hypothesis it follows that
Ji ∩ Ji+1 �= ∅ (i ∈ Z/4Z).

Let I4 be a minimal subinterval of J4 containing (I1 ∩J4)∪ (I3 ∩J4). It is
easy to see that there is an x1 ∈ I4 such that d(x1, L1∪L2∪L3) > r3. We pick
x ∈ Bx1(r)∩L+

4 such that d(x, L1∪L2∪L3∪L4) > M . To fix ideas we assume
that x ∈ L+

i for all i. We claim that x satisfies the conclusion of the lemma.
Indeed if this is not the case there is a path p lying in L̄+

4 joining x to a point
on L4 − J4 such that p does not intersect J1 ∪ J2 ∪ J3 ∪ J4. Let y be the first
point of intersection of p with L1 ∪ L2 ∪ L3 ∪ L4. Suppose that y ∈ L1. The
observation we made above implies that d(y, L2) < r2. This in turn implies
that d(y, L3) < 2r2. This however is impossible. We argue similarly if y lies in
one of L2, L3, L4.

Now, let x ∈ X and let r � 0 be such that F (r), Y (r) are unbounded
where

F (r)={y∈X: if a quasi-line L separates x, y then L intersects Br(x)∪Br(y)}
and Y (r) is the connected component of x in F (r).

Let (y1, y2, . . . ) be an infinite path of distinct vertices in Y (r) such that
d(yi, yi+1) = 1 for all i. Then by our hypothesis that Theorem 4.1 does
not hold we have that for any n > 0 there are i > j such that yi, yj are
n-separated by a quasi-line Ln. By the definition of Y (r) Ln intersects Br(x).
Let us say that Ln intersects Br(x) at an and the path (yj , . . . , yi) at a vertex bn.
Clearly length([an, bn]Ln

) tends to infinity as n → ∞. We can choose n and
r1 > r big enough in this construction to ensure that no vertex of [an, bn]Ln

is
r1-separated from x by some quasi-line. We explain this in detail: Suppose
that some t ∈ [an, bn]Ln

is r1-separated from x by some quasi-line L. For suf-
ficiently big r1 there are t1 < t < t2 on Ln such that t1, t2 are r-separated
from t by L (see Remark 3.3). Since Ln n-separates some vertices yi, yj ∈ Y (r)
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and since L does not intersect Bx(r) we have that either x, yi, yj lie in the
same component of X −L or L separates yi or yj or both yi, yj from x and in
these cases L intersects respectively Br(yi), Br(yj) or both Br(yi),Br(yj). In
all cases we see easily that L contains two disjoint intervals which r1-cross Ln.
Lemma 4.3 implies that for some M such that r1 � M � 0 there are intervals
I ⊂ L J ⊂ Ln such that the ball Bx(M) is contained in a bounded component
of X − (I ∪ J).

We can now repeat the same argument replacing r1 by r2 � r1. As we
noted in Remark 3.11 these constructions imply that G is virtually a planar
group. We assume therefore that r1 is chosen big enough so that no vertex of
[an, bn]Ln

is r1-separated from x by some quasi-line.
Since X is locally finite, we can find a subsequence of Ln that we still

denote Ln for convenience, so that the following holds:

(∗) For all i > j, [ai, bi]Li
∩ [aj , bj ]Lj

contains an interval [aj , cj ]Lj
and

lim (length([aj , cj ]Lj
)) = ∞, as j → ∞.

Let us denote by L the set of all t ∈ X such that t ∈ [aj , cj ]Lj
for all

except possibly finitely many j. We remark that L is connected unbounded
and contained in Y (r1) (where Y (r1) is defined in a similar way as Y (r). We
note also that if F is a finite set of points in L then there is an interval [aj , cj ]Lj

containing F .
Now, let (z1, z2, . . . ) be an infinite path of distinct vertices in L such that

d(z1, x) ≤ r and d(zi, zi+1) = 1 for all i. Let R � r2 � r1. By our hypothesis
that Theorem 4.1 does not hold we have that for any n > 0 there are i > j > n

such that zi, zj are r2-separated by a quasi-line ln. Clearly we can pick k

big enough so that ln r2-crosses Lk. We can also suppose that ln does not
contain two disjoint intervals that r1-cross Lk. Indeed it suffices to choose
r1 big enough, as Lemma 4.3 implies that if this fails for all r1 then G is a
virtually surface group.

Let r3, r4 be such that r2 � r3 � r4 � r1. Let In be a minimal interval
of ln that r2-crosses Lk. We can assume that ln does not contain an interval
disjoint from In which (r4, r3)-fellowtravels Lk.

Indeed suppose that this is not the case for any r2 � r3 � 0. Let J be an
interval of Lk of length bigger than r3 that is contained in the r4-neighborhood
of an interval of ln. By our hypothesis that Theorem 4.1 does not hold and
since r3 � 0, there are x, y ∈ J and a quasi-line L0 such that L0 is r2 separating
x, y. Let J1 be a minimal interval of ln containing In such that J is contained
in the r4 neighborhood of J1. Let J2 be a minimal interval of Lk containing
J1 ∩ Lk and J . Let J3 be a minimal interval of L0 that intersects [x, y]Lk

and
r3-crosses both Lk and ln. We see then as in Lemma 4.4 that there is a point
z ∈ X such that z lies in a bounded component of X − (J1 ∪ J2 ∪ J3) and
d(x, J1∪J2∪J3) � M where M � r1. Clearly we can repeat this construction
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choosing bigger values for r2, r3, M . By Remark 3.11 this implies that G is
virtually a planar group.

Since all ln intersect the r1 neighborhood of x, given R � r2 we can
find quasi-lines lt, ls such that lt ∩ ls contains an interval I of length bigger
than R intersecting the r1-neighborhood of x. We observe now that we can
pick k big enough such that lt, ls r2-cross Lk. We suppose, to fix ideas, that
It ⊂ lt, Is ⊂ ls, Ik ⊂ Lk ∩ L are bounded intervals such that It, Is r2-cross Lk,
I ⊂ It ∩ Is, Ik contains It ∩Lk and Is ∩Lk and Ik r3-crosses both ls, lt. We can
also choose lt, ls so that if Jt ⊂ It, Js ⊂ Is are minimal subintervals of It, Is

that r1-cross Lk then d(Jt, Js) > R.
We can suppose,by picking r1 big enough, that It does not r1-cross ls.

Indeed if this is not the case, by Lemma 4.5 and Remark 3.11 we have that G

is virtually a planar group.
Since R � 0 there are points x, y ∈ I and a quasi-line L0 such that L0

r2-separates x, y. Let J be a minimal interval of L0 that contains I ∩L0 which
r3-crosses lt, ls. By applying Lemma 4.5 to the intervals It, Is, J, Ik and by
Remark 3.11 we see that G is virtually a planar group. This is a contradiction.

5. Large scale geometry of groups

In this section we assume that G is an one-ended group that is not virtually
a surface group. We denote as usual by X the Cayley complex of G. We
suppose that an (f, N) quasi-line separates X.

Our purpose here is to prove Theorem 1 when the Cayley graph of G

contains ‘big’ solid subsets. We showed in Section 4 that there are always
unbounded solid subsets. Here we will require something stronger, namely that
there are solid subsets that are not contained in finite neighborhoods of quasi-
lines. Note that this is in fact always the case when the JSJ-decomposition
of G has some nonhanging orbifold vertex group which is not 2-ended. An
example to keep in mind is G = Z3 ∗Z Z3. Maximal solid subsets in this group
are contained in finite neighborhoods of Z3 subgroups. An important step
is Lemma 5.2 below stating that if X contains an unbounded r-solid subset,
F , which is not a quasi-line then there is a finitely generated subgroup of G

acting co-compactly on this subset. This lemma provides a first link between
geometry and algebra. The idea then is to show that a finite neighborhood of
F separates X. The intersection of the closure of a component of X − F with
F is a quasi-line. By an argument similar to that of Lemma 5.2 we show that
this quasi-line is contained in a finite neighborhood of a 2-ended group. Using
[D-Sw] we conclude that Theorem 1 holds in this case.

We continue this section by characterizing groups which do not contain
‘big’ solid subsets (Lemma 5.1). We think of this case as ‘exceptional’ and will
treat it in the next section.
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By Theorem 4.1, X contains an unbounded r-solid subset. Let F be a
maximal, r-solid subset of X (where we order r-solid subsets by inclusion).
Note that a maximal r-solid subset exists by Zorn’s lemma. We distinguish
now two cases:

Case 1. For any n > 0 there is an x ∈ F such that Bn(x)∩F is contained
in the r-neighborhood of some (f, N) separating quasi-line of X.

Case 2. The hypothesis of case 1 does not hold.

Case 1 will be treated in detail in the next section. It is in a sense ‘ex-
ceptional’. In this case there are maximal r-solid subsets that are contained in
quasi-lines. More precisely we have the following lemma:

Lemma 5.1. Let F be a maximal r-solid subset of X. Suppose that for any
n > 0 there is an x ∈ F such that Bn(x)∩F is contained in the r-neighborhood
of some (f, N) quasi -line of X. Then there are a K > 0 and a maximal r-solid
subset of X, F1, such that F1 is contained in an (f, N + r) quasi -line L and L

is contained in the K-neighborhood of F1.

Proof. Clearly the r-neighborhood of an (f, N) quasi-line is an (f, N ′)-
quasi-line where N ′ = N + r. We pick K so that the following holds: For any
(f, N ′) quasi-line L if a path p with endpoints a, b is contained in L then [a, b]L
is contained in the K-neighborhood of p.

For each n ∈ N we pick xn such that Bn(x)∩F is contained in some (f, N ′)
quasi-line Ln. Let In be an interval of Ln contained in the K-neighborhood of
Bn(x) ∩ F with diam(In) > n/2. We translate In to the origin to an interval
gnIn = [an, bn] so that d(e, an) ≥ n/4, d(e, bn) ≥ n/4.

Since X is locally finite we can find a subsequence [ani
, bni

] such that the
following two conditions are satisfied:

(1) For all i < j the intersection of [ani
, bni

] ∩ [anj
, bnj

] contains an interval
of an (f, N ′) quasi-line, [ci, di], such that d(ci, e) > i, d(di, e) > i.

(2) [ci, di] ∩ gni
F = [cj , dj ] ∩ gnj

F .

We re-index this subsequence to avoid double indices, so we write [ai, bi]
for [ani

, bni
]. Let now L be the set of points lying in all but finitely many of

the [ci, di]. Clearly L is an (f, N ′) quasi-line. Let F1 be the set of points that
lie in [ci, di] ∩ giF for all but finitely many i. It is easy to see that F1 is a
maximal r-solid subset verifying the conditions of the lemma.

We now turn our attention to case 2.

Lemma 5.2. Let F be a maximal r-solid subset of X. Suppose that there
is an n > 0 such that for all x ∈ F , Bn(x) ∩ F is not contained in the
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r-neighborhood of any (f, N) quasi -line of X. Then there is a finitely generated
subgroup of G, H, such that hF = F for all h ∈ H and H acts co-compactly
on F .

Proof. We consider the set of subsets of Be(n) and call it S. Let t be a
vertex of F and let g ∈ G be such that gt = e. We say that the type of a vertex
t of F is s, where s ∈ S, if gBn(t)∩F = s. Clearly there are only finitely many
types. Let x ∈ F and R > 0 be such that for every vertex v of F there is a
vertex in BR(x)∩F with the same type as v. For each vertex vi ∈ B2R(x)∩F

we pick hi ∈ G such that hi(vi) is a vertex in BR(x) ∩ F with the same type
as vi. We claim that the subgroup, H, of G generated by the hi’s satisfies the
requirements of the lemma. We note that for all i,

F ∩ Bn(hivi) ⊂ hiF ∩ F.

If a vertex v ∈ hiF does not lie in F then there is a quasi-line L that
r-separates v from a vertex of F , say u. Since F ∩ Bn(hivi) is not contained
in the r-neighborhood of any quasi-line, there is a point in F ∩ Bn(hivi) that
is r-separated by L either from v or from u. But this contradicts the fact that
F and hiF are r-solid subsets. Hence hiF = F .

We show now that H acts co-compactly on F : Let v ∈ F , v /∈ Bn(x), such
that the shortest path in F that joins v to x is of length n. We call this path
p and let vj be the first vertex in p lying in B2R(x). Then hjv is joined to x

by a path lying in F of length less than n−R. This shows that for any v ∈ F

there is an h ∈ H such that hv ∈ BR(x).

If we consider F as a metric space, where the distance between any two
points in F is defined to be the infimum of the lengths of the paths in F

joining them, then it follows from Lemma 5.2 that the obvious map i : F → X

is uniformly proper.
For K ≥ 0 we consider the components of X − NK(F ). Since H acts co-

compactly on F there are finitely many such components modulo the action
of H. Let C be a component of X−NK(F ). We denote by ∂C the intersection
C ∩ NK(F ). Since F is connected and X simply connected we see that ∂C

is connected. Arguing as in Lemma 5.2 we can see that there is a finitely
generated subgroup of H, say HC , such that, for all h ∈ HC , hC = C and HC

acts co-compactly on ∂C. Indeed, by fixing a compact D ⊂ NK(F ) such that
HD = NK(F ) we have that only finitely many components of X−NK(F ) meet
D. Let us call the set of these components S, and let C be any component of
X − NK(F ). For any v ∈ ∂C we pick an hv ∈ H such that hvv ∈ D. We say
then that the type of v is hv(C) ∈ S. Clearly there are finitely many types
and by considering D1 ⊂ ∂C, D1 compact, connected, containing at least one
vertex of each type, we see, as in Lemma 5.2, that there is a finitely generated
subgroup of H, say HC , such that HCD1 = ∂C.
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If C is a connected component of X − NK(F ) we can consider ∂C as a
metric space where the distance of two points is defined to be the length of the
shortest path in ∂C joining them. Then the obvious inclusion map i : ∂C → X

is uniformly proper.
We show now that if a quasi-line separates X and we are in case 2 then

G splits over a two-ended group.

Proposition 5.3. Let G be a one-ended finitely presented group that is
not virtually planar, and let X be a Cayley complex of G. Suppose that an
(f, N)-quasi -line separates X and let F be an unbounded maximal r-solid subset
of X. With the assumption that there is an n > 0 such that for all x ∈ F ,
Bn(x) ∩ F is not contained in the r-neighborhood of any (f, N)-quasi -line, G

splits over a two-ended group.

Proof. We assume in this proof that r � 0. We can do that since if there
is an r1-solid subset of X, F1, with the property required in Proposition 5.3,
then for any r > r1 there is a maximal r-solid subset of X, F , containing F1.
By Lemma 5.2 there is a subgroup of G, H, acting co-compactly on F . If F is
contained in an r-neighborhood of a separating quasi-line then H is 2-ended
and X/H has more than one end. In this case the result follows by the ‘annulus
theorem’ of Dunwoody-Swenson ([D-Sw]).

We assume also that for every separating quasi-line L, X −L has exactly
two essential components. Indeed, if not, there is an r > 0 so that L is an
r-solid subset of X. If the maximal r-solid subset of X containing L is as in
case 1 then the result follows by our treatment of case 1 in the next section. If
the maximal r-solid subset of X containing L is as in case 2 then clearly there
is a 2-ended subgroup of G acting co-compactly on L and the result follows by
the ‘annulus theorem’ of Dunwoody-Swenson ([D-Sw]).

We will distinguish two cases:

Case 1: F with the path metric is quasi-isometric to R.

Case 2: F with the path metric is not quasi-isometric to R.

For case 1, it suffices to show that some neighborhood of F separates X in
at least two components, none of which is contained in a neighborhood of F .
Indeed there is a two-ended subgroup of G, say H, acting co-compactly on F .
If a neighborhood of F separates X then X/F has at least two ends and by
the annulus theorem of Dunwoody-Swenson ([D-Sw]) G splits over a two-ended
group.

If there is a c > 0, separating quasi-lines Ln and intervals [xn, yn]Ln
such

that d([xn, yn]Ln
, F ) < c and length([xn, yn]Ln

) > n then clearly Nc(F ) sep-
arates X as required above. Indeed using H we can translate all Ln so that
d([xn, yn]Ln

, x) < c and d(xn, x), d(yn, x) → ∞ as n → ∞ (where x is a fixed
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vertex of F ). Then there is a subsequence of Ln converging on compact sets to
a separating quasi-line L∞ contained in Nc(F ), so that Nc(F ) clearly separates.
We suppose therefore that no such sequence Ln exists.

Since the proposition is clearly true if X−F has more than one component
that is not contained in a neighborhood of F , we assume that X−F has exactly
one such component, say A. We denote by ∂F the intersection Ā ∩ F . Since
X is simply connected ∂F is connected and is in fact a quasi-line. Let l be a
line contained in ∂F . Using the fact that H acts co-compactly on F and the
remark made earlier it is easy to see that the following holds:

For every v ∈ ∂F there is a separating quasi-line L such that L (r − 1)-
separates v from some vertex of F and v is contained in a bounded component
of F − L. Moreover for any c > 0 every connected component of the set
Nc(F ) ∩ L is bounded.

If we denote by F ′ a maximal unbounded (r−1)-solid subset of F we have
that F ′ is contained in the (r − 1)-neighborhood of an essential component of
X−L that does not contain v. If a quasi-line L has this property we say that L

(r − 1)-separates v from F ′.
In fact it is sufficient to pick finitely many quasi-lines having this property

for a finite set of vertices of ∂F and then consider the images of these quasi-
lines by H. In this way we obtain a set S of quasi-lines such that for each
v ∈ ∂F there is an L ∈ S such that d(v, L) = r − 1 and L (r − 1)-separates v

from F ′.
Let L+ be the essential component of X −L which has the property that

its (r − 1)-neighborhood contains F ′ and L− be the essential component of
X − L containing a vertex v ∈ F such that d(v, L) = r − 1. We will say that
L (r − k)-separates x from F ′ if x ∈ L− and d(x, L) ≥ r − K.

Some auxiliary lemmas about quasi-lines in S are needed. We state them
below using the above notation.

Lemma 5.3.1. Let K > 0 be a given constant. Then for r sufficiently
big there is a constant C > 0 so that the following holds. Let L1, L2 ∈ S

and let v1, v2 ∈ l such that Li (i = 1, 2), (r − 1)-separates vi from F ′. Let
(a1, b1)l, (a2, b2)l be, respectively, the connected components of l − L1, l − L1

containing v1, v2. Suppose that L2 (r − 1)-separates b1 from F ′. Then there is
a point x in [a2 − C, b2 + C]L2 such that d(x, L1) > K and x ∈ L+

1 .

Proof. As usual we do not give explicit estimates for C, r. The argument
below holds for C � r � K � 0. Let C1, C2 be such that C � C2 � C1 � r.
Let b′1 be the closest point to b1 in L+

1 such that d(b1, L1) > K. Let c ∈ l be
a point in BC1(a2) such that c ∈ L+

1 ∩ L+
2 and d(c, L1) > K. Let p be a path

joining c to b′1 in X − NK(L1). Such a path exists by Lemma 3.6 and p then
intersects [a2 − C, b2 + C]L2 at a point x as required by the lemma since c, b′1
are separated by L2.
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Lemma 5.3.2. Let K > 0 be a given constant. Then for r sufficiently
big there is a constant C > 0 so that the following holds. Let L1, L2 ∈ S be
such that Li (r − 1)-separates vi from F ′ (i = 1, 2). Let (a1, b1)l, (a2, b2)l be,
respectively, the connected components of of l − L1, l − L2 containing v1, v2.
Suppose that L1 (r − 1)-separates some point a ∈ [a1, b1]l from F . Suppose
that L2 (r − k)-separates b1 from F ′ but that it does not (r − k)-separate a

from F ′. Then there is a point y in [a2 − C, b2 + C]L2 such that d(y, L1) > K

and y ∈ L−
1 .

Proof. The argument below holds for C � r � K. Clearly if a ∈ L−
2

the conclusion holds. We assume therefore that a ∈ L+
2 . Let C1 be such that

C � C1 � r. Let p be a path joining a to b1, lying in L−
1 ∩ BC1(a2) that

satisfies the following: if a point of p is at distance less than K from L1 then
it lies at distance less than (r − k) from b1. It is easy to see that such a path
exists for r � K. Clearly L2 intersects p at a point y satisfying the conclusion
of the lemma.

In order to show that a neighborhood of F separates we will show first how
to ‘approximate’ F by a sequence of quasi-lines such that any two successive
quasi-lines cross near F . We make this precise and explain it below. We order
as usual the points of l by identifying them with R.

We define a sequence of quasi-lines Ln as follows: Fix a ∈ l and pick
L1 ∈ S so that L1 (r − 1)-separates a from F ′. If [a1, b1]l (where b1 > a1)
is the connected component of l ∩ L̄−

1 containing a we pick L2 ∈ S so that
it (r − 1)-separates b1 from F ′. Continuing inductively, i.e. given Lk so that
[ak, bk]l (bk > ak) is the connected component of l ∩ L̄−

k containing bk−1, we
pick Lk+1 so that it (r − 1)-separates bk from F ′.

Given K, C > 0, we define two relations on the sequence {Ln : n ∈ N}:‘>’
and ‘cross’. We write Lm > Ln if Lm (r − k)-separates bn from F ′. We say
that Lm crosses Ln if [am − C, bm − C]Lm

K-crosses Ln.
Lemmas 5.3.1, 5.3.2 imply that we can choose r, K, C so that the following

hold: Ln > Ln−1 for all n > 1 and if Ln > Ln−1, Ln > Ln−2, . . . , Ln > Ln−m

hold but Ln > Ln−m−1 does not hold then Ln cross Ln−m. We note that there
is an m0 such that for any n and for m > m0, Ln > Ln−m does not hold. Now,
we have the following easy lemma:

Lemma 5.3.3. Let (L1, L2, . . . ) be an infinite sequence for which two
relations ‘ >’ and ‘cross’ are defined that satisfy the following properties:

a) Ln > Ln−1 for all n > 1.

b) There is an m0 such that for any n and for m > m0, Ln > Ln−m does
not hold.
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c) If Ln > Ln−1, Ln > Ln−2, . . . , Ln > Ln−m and Ln > Ln−m−1 does not
hold then Ln crosses Ln−m.

Then there is an infinite subsequence Li1 , Li2 , . . . such that for all n, Lin
crosses

Lin−1 and either Li1 > L1 or Li1 = L1.

Proof. Clearly a), b), c) imply that if n > m0 then there is a k < n so that
Ln crosses Lk. In fact by a) and c) we see also that if Ln > L1 does not hold
then Ln crosses some Lk where n > k ≥ 1. So we can construct inductively
arbitrarily big finite subsequences satisfying the conclusion of the lemma. But
then by a standard argument we see that such an infinite subsequence also
exists.

We now pick K > 0 so that Lemma 3.4 holds for quasi-lines that K-cross
(i.e. K plays the role of r in the notation of Lemma 3.4). We pick r, C so
that Lemmas 5.3.1, 5.3.2 hold and as in Lemma 5.3.3 we construct an infinite
subsequence of (L1, L2, . . . ) satisfying the conclusion of 5.3.3. We re-index this
subsequence, to simplify notation, and we call it still (L1, L2, . . . ).

Let us say that Li (r − 1)-separates from F ′ a vertex vi. Since H acts
cocompactly on F there is an M > 0 so that for each i ∈ N there is hi ∈ H

so that d(hivi, v1) < M . We consider then the sequence (hiL1, hiL2, . . . ).
Recall that by the construction of S, hiLn ∈ S for all n. By a standard
argument similar to the one of Lemma 5.3.3 we see that there is a bi-infinite
sequence of quasi-lines in S, such that for all v ∈ l there is some v′ ∈ L with
d(v, v′) < M such that v′ is (r − 1)-separated from F ′ by some element of
this bi-infinite sequence. To keep notation simple we denote this bi-infinite
sequence by (. . . , L−1, L0, L1, L2, . . . ).

To prove Proposition 5.3 it is enough, by the torus theorem ([D-Sw]) to
show now that there is a C > 0 so that the C-neighborhood of F separates
X, i.e. we will show that X − NC(F ) contains at least two components that
are not contained in any neighborhood of F . For this it suffices to show the
following: For each n > 0 there are un, vn such that d(un, F ) > n, d(vn, F ) > n

and un, vn are separated by NC(F ). We will explain below how to pick un, vn

and show that the C-neighborhood of F separates X where C is a constant so
that Lemmas 5.3.1, 5.3.2 (and the previous construction) hold.

Let v0 ∈ l be a vertex (r − 1)-separated from F ′ by L0. We consider
vertices xn, yn lying in distinct infinite connected components of L0 −BC(v0).
We suppose that d(xn, F ) � n, d(yn, F ) � n and n � C. We join xn, yn

in L−
0 by a simple path p such that d(p, F ) � n. We pick un ∈ p so that

d(un, L0) > n and join xn, yn in L+
0 by a simple path q such that d(v0, q) � n.

We arrange so that p, q intersect only at xn, yn.
Considering the simple closed curve c = p ∪ q, we see clearly that v0 is a

(C, L0)-interior point of this curve. We consider now the connected components
of the intersection q∩NC(F ). Note that F −BC(v0) has two infinite connected
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components, say F1, F2. Let t1, . . . , tm be vertices of q so that q ∩ NC(F ) is
contained in [t1, tm]q, [ti, ti+1)q intersects exactly one of NC(F1), NC(F2) for all
i and ti ∈ q∩NC(F ) for all i. If n is sufficiently big we can choose si ∈ (ti, ti+1)q

for all i so that d(si, NC(F )) > n. We claim now that at least one of the si

is separated from un by NC(F ). Suppose not, then we can join each si to
un by a path, say pi that does not meet NC(F ). Without loss of generality
we can assume that this path meets exactly one of the infinite components of
L0 − Br+2N (v0) and that it meets q only at si. Moreover we can assume that
pi ∩ L0 is connected.

If there is some i so that pi, pi+1 intersect distinct infinite components of
L0 −Br+2N (v0), we consider the simple closed curve ci = pi ∪ [si, si+1]q ∪ pi+1.
Clearly v0 is a (C, L0)-interior point of this curve. On the other hand ci

intersects exactly one of NC(F1), NC(F2), say NC(F1). If we pick a point w

sufficiently far from v0 on NC(F2) lying on some quasi-line Li then w is a
(C, Li)-exterior point of this curve. We see then as in the proof of Lemma 3.10
that NC(F2) has to intersect ci, a contradiction.

If for all i, pi, pi+1 intersect the same component of L0 − Br+2N (v0), say
the one containing yn, then we can argue similarly by considering the curve
obtained by the union of q1 with the subpath of p ∪ q with endpoints s1, un

containing xn. Therefore in either case we see that there is a point vn separated
from un by NC(F ) and neither un nor vn is contained in the n-neighborhood
of F . This proves Proposition 5.3 in case 1.

Case 2 can be treated similarly to case 1. We recall as remarked before
Proposition 5.3 that the following holds: If we consider for C > 0 a connected
component, say A, of X − NC(F ) and if we denote by ∂A the intersection
Ā∩NC(F ) we have that a finitely generated subgroup of H acts co-compactly
on ∂A. Here we denote as usual by H the finitely generated subgroup of G

acting co-compactly on F , provided by Lemma 5.2.
By the torus theorem ([D-Sw]), to conclude in case 2, it is enough to show

that for some C > 0 there is a connected component, say A, of X − NC(F ),
that does not lie in a neighborhood of F and such that ∂A is a quasi-line. Now,
let A be a connected component of X −F , that does not lie in a neighborhood
of F , and let ∂A = Ā ∩ F . Let l be a line in ∂A. As in case 1, for every
v ∈ l there is a separating quasi-line L (r − 1)-separating v from F . We
pick now C, r, K, C � r � K so that Lemmas 5.3.1, 5.3.2 hold and we
‘approximate’ l by crossing separating quasi-lines as we did in case 1. Note
that in this case we cannot suppose that there is a subgroup of G preserving l

and acting on it with finite quotient. We can however construct, as in Lemmas
5.3.1, 5.3.2, 5.3.3, a sequence of separating quasi-lines (L1, L2, . . . ) so that Li

(r − 1)-separates from F a point vi in l and Li crosses Li−1 for all i > 1
(where ‘cross’ is defined exactly as in case 1). Since H acts co-compactly on
F there is an M > 0 so that for each i > 1 there is an hi ∈ H so that
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d(hivi, v1) < M . As in case 1 we remark that we can extract a subsequence
of the sequence of sequences (hiL1, hiL2, . . . ) (i = 1, 2, . . . ) ‘converging’ to
a bi-infinite sequence of separating quasi-lines. To keep notation simple we
denote this bi-infinite sequence by (. . . , L−1, L0, L1, . . . ). We can arrange when
extracting this subsequence so that hil also converges to a line l1 ⊂ F .

We note that each Li crosses Li−1 (i ∈ Z) and each Li (r − 1)-separates
a point, ui ∈ F from F . As in case 1 we can construct a sequence wn ∈ X

such that the C-neighborhood of l1 separates wn from F and d(wn, F ) > n.
Clearly there is a connected component B of X−NC(F ) that contains infinitely
many elements of the sequence (wn) and ∂B is a quasi-line. This implies
Proposition 5.3 in case 2.

6. The exceptional case

In this section we treat case 1 of Section 5 assuming that there is a maximal
r′-solid subset of X, F , such that F is contained in the K-neighborhood of some
separating (f, N)-quasi-line L and L is contained in the K-neighborhood of F

for some K > 0. We distinguish two cases:

Case 1: X − L has more than two essential components.

Case 2: X − L has exactly two essential components.

We give an informal outline before going into the technical details: This
section is about the geometry of groups which have the property that all vertex
groups of their JSJ decomposition which are not hanging orbifold groups are
two-ended (for example, Baumslag-Solitar groups have this property). In such
groups maximal solid subsets are at finite Hausdorff distance from edge groups,
so they are quasi-lines. So solid subsets in this case are ‘small’ and we cannot
directly conclude that they are at finite distance from subgroups as in Section 5.
We show however that this is true under the additional assumption that a
maximal solid subset L separates X into at least 3 components (case 1). Note
that this is the case for example in Baumslag-Solitar groups. In such groups
bigger and bigger finite neighborhoods of L separate X into more and more
components. The idea of the argument now is the following: if x, y ∈ L

and g ∈ G such that gx = y then gL is contained in a bounded Hausdorff
neighborhood of L (where the bound does not depend on x, y). Indeed gL

cannot ‘escape’ far away from L, since gL would not separate X then. We
show finally that by carefully picking g we can find an infinite cyclic group 〈g〉
at finite Hausdorff distance from L. We then apply [D-Sw] to conclude the
outline.

In fact all groups dealt with in this section (except virtual surface groups)
fall in case 1. Case 2 is there for the following technical reason: Let G = π1(S)
be the fundamental group of a surface and assume that our L corresponds to
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a leaf of a lamination of S. Of course if we enlarge the set of quasi-lines, L will
not be solid. The problem is that we have no natural way to increase the set of
quasi-lines and see directly that G is a surface group. So in this case we pass
from the set of translates of L to an R-tree and use Rips’ theory to conclude.

We will deal first with case 1. Assume first that the following holds:

(∗): There are an x ∈ L and an R > 0 such that if x ∈ gL ∩ L then
gL is contained in the R-neighborhood of L. We denote by C1, . . . , Cn the
essential components of X −L and by D1, . . . , Dm the essential components of
X − NR(L) (where NR(L) is the R-neighborhood of L).

Suppose now that for some g ∈ G, x ∈ gL∩L. Then for each i = 1, . . . , n

there are k1, . . . , ki such that gCi is contained in a finite neighborhood of
Dk1 ∪ · · · ∪ Dki

and Dk1 ∪ · · · ∪ Dki
is contained in a finite neighborhood of

gCi. We pick xi ∈ L and gi ∈ G such that d(x, xi) → ∞ and gixi = x. By
the remark above we see that there are infinitely many pairs xi, xj such that
g−1
i gjCk is contained in a finite neighborhood of Ck and Ck is contained in a

finite neighborhood of g−1
i gjCk, for all k = 1, . . . , n. We pick xi, xj satisfying

this with d(xi, xj) � 0 and write g = g−1
i gj . Clearly Ct is contained in a finite

neighborhood of gsCt for all s ∈ Z and for all t = 1, . . . , n.
If gkL∩L = ∅ for some k then the essential component of X−L containing

gkL contains more than one of gkCi (i = 1, . . . , n), a contradiction. This
implies that gkL is contained in the R-neighborhood of L for all k ∈ Z. By our
assumption that d(xi, xj) � 0, the order of g is infinite. Clearly then X/〈g〉
has more than one end and by [D-Sw] it follows that G splits over a virtually
cyclic group.

Assume now that (∗) does not hold. We fix x ∈ L and we pick xi ∈ L

and gi ∈ G such that d(x, xi) → ∞ and gixi = x. By passing if necessary
to a subsequence we can arrange so that the following holds: If i > j then
gjL ∩ Bj(x) = giL ∩ Bj(x). Since L is r-solid, for some r > 0, for each i, j

we have that giL is contained in the r + 2N -neighborhood of some essential
component of X − gjL.

It is clear then, by the argument given, assuming (∗), that G splits over
a virtually cyclic group if for some i there are infinitely many j so that giL is
contained in the r+2N -neighborhood of gjL. Therefore, by passing if necessary
to a subsequence, we can assume that for each i, j neither giL is contained in the
r + 2N -neighborhood of gjL nor is gjL contained in the r + 2N -neighborhood
of giL.

We fix now i, j > 0 and we consider giL, gjL. Let C1, . . . , Cn be the
essential components of X−giL and let D1, . . . , Dn be the essential components
of X − gjL. We may assume without loss of generality that giL is contained in
the r+2N -neighborhood of D1 and gjL is contained in the r+2N -neighborhood
of C1.
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Let y ∈ gjL such that d(y, giL) > r + 2N . If y′ ∈ Dk, where k �= 1, and
d(y′, giL) > r + 2N then y′, y both lie in C1. This shows that for all k �= 1
Dk is contained in the r + 2N -neighborhood of C1. Similarly for k �= 1, Ck is
contained in the r + 2N -neighborhood of D1.

We pick now M > 0 such that for each i, BM (x) intersects all essential
components of X − giL. For a, b ∈ BM (x)− gML we write a ∼ b if there is an
i0 such that for all i > i0 a, b lie in the same essential component of X − giL.
Clearly ∼ is an equivalence relation. By the observations above we have that
there are at least 2n − 2 equivalence classes for ∼.

We consider now the (f, N) quasi-line L1 that is the limit of giL. More
precisely x ∈ L1 if there is i0 such that for all i > i0, x ∈ giL. Clearly
L1 is a separating quasi-line and if a, b ∈ BM (x) − gML are not equivalent
then a, b lie in different essential components of X − L1. We conclude that
X − L1 has at least 2n − 2 > n essential components. We can now repeat the
argument replacing L by L1. Note that L1 is also contained in a neighborhood
of a maximal r-solid subset of X. If G does not split over Z and is not a
virtually planar group, we arrive at a contradiction as the number of essential
components of X −L is bounded by a uniform bound for all separating (f, N)-
quasi-lines L. This proves our claim in case 1.

Case 2: X − L has exactly two essential components. Below, we denote
by dH the Hausdorff distance between two sets. Thus, if A, B are subsets
of X, dH(A, B) is the infimum of all r such that A, B are contained in the
r-neighborhood of each other. We distinguish again two cases:

Case 2a: The set S = {g ∈ G : dH(gL, L) < ∞} is infinite and

Case 2b: The set S = {g ∈ G : dH(gL, L) < ∞} is finite.

We treat first case 2a, noting that if there is an M > 0 such that dH(gL, L)
< M for all g ∈ S then we can find a g ∈ G of infinite order such that X/〈g〉
has at least two ends. Noting that S is a group and is infinite and since if x ∈ L

the orbit of x, Sx, is contained in the M -neighborhood of L, we have that S

is quasi-isometric to R, hence virtually cyclic. So by [D-Sw] we conclude that
either G is virtually planar or it splits over a virtually cyclic group.

We denote by C1, C2 the essential components of X −L, letting (gi) be an
infinite sequence of elements of S such that dH(giL, L) < ∞ and dH(giL, L)
→ ∞. We can assume that giC1 is contained in a finite neighborhood C1 for
each i. Indeed if this does not hold we can replace our sequence by g1gi. Now
L is an r-solid set for some r > 0. This implies that for each i either giC1 is
contained in Nr(C1 ∪ L) or giC2 is contained in Nr(C2 ∪ L). By passing to a
subsequence we can assume, without loss of generality, that giC1 is contained
in Nr(C1 ∪ L) for all i.
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Let now R � r and let j be such that for some t ∈ L, d(gjt, L) > R.
We claim that gj is then an element of infinite order. We will show in fact by
induction that d(gn

j t, L) > R/2 for all n. This is true by hypothesis for n = 1.
Assume it is true for n = k. Since L is r-solid for all x ∈ L if gk

j x /∈ C1 then
d(gk

j x, L) < r. So gk
j C1 is contained in the r neighborhood of C1 ∪ L. Now

d(gk+1
j t, gk

j L) = d(gjt, L) > R.

Let y be the point on L closest to gk+1
j t. If y does not lie in gk

j (C1) then
since gk+1

j t ∈ gk
j (C1), d(gk+1

j t, y) > R. Otherwise since gk
j C1 is contained in

the r-neighborhood of C1 ∪ L and R � r we have that d(y, gk
j L) < R/2 and

d(gk+1
j t, L) > R/2.
We consider now the connected components of X − (L∪ gjL). If there are

more than two such components that are not contained in a finite neighborhood
of L then there is a neighborhood of L, denoted by L1, that is a quasi-line and
has the property that X − L1 has more than two essential components. But
then by replacing L by L1 we conclude by case 1 that either G is virtually
planar or it splits over a virtually cyclic group. We can therefore assume that
all components of X − (L∪ gjL) except two are contained in NM (L) for some
M > 0 and moreover, that gjL is also contained in NM (L).

We note now that for any t ∈ C1 there is an n0 such that for all n > n0,
t /∈ gn

j C1. Indeed it is clear that if for some n0, t /∈ gn0
j C1 and d(t, gn0

j L) > M ,
then for all n > n0, t /∈ gn

j C1.
Let p be a finite path joining t to L. If t ∈ NM (gn

j C1) for all n then
gn
j (L) intersects NM (p) for all n > 0. This implies that d(g−n(t), L) < M for

all n > 0. It easily follows that X/〈gj〉 has more than one end and we can
conclude using the torus theorem ([D-Sw]).

We have, therefore, that the following holds: For every t ∈ X there is an
n ∈ Z such that d(t, gn

j L) < M , or, put it differently 〈gj〉NM (L) = X. We
have also that for all n, dH(gn

j L, gn+1
j L) < M . So X is ‘foliated’ by translates

of L. It is easy to see now, as in Section 3, that neighborhoods of simple closed
curves in X separate and neighborhoods of (bi)-infinite geodesics separate. So
by Varopoulos’ inequality and the Tukia-Gabai theorem G is commensurable
to a surface group. This concludes our argument in case 2a.

Passing now to case 2b, we suppose that the set S = {g ∈ G : dH(gL, L)
< ∞} is finite and S is a group. We define an equivalence relation on the set
V = {gL : g ∈ G}. For A, B ∈ V we say that A ∼ B if dH(A, B) < ∞. Note
that since S is finite there is an M which does not depend on A, B such that
if dH(A, B) < ∞ then dH(A, B) < M . We denote the equivalence class of A

by [A]. Let P = {[A] : A ∈ V }. We note that G acts on P . Moreover P

is equipped with a ‘separation’ relation, namely, [A] separates [B] from [C] if
B, C lie in finite neighborhoods of distinct essential components of X − A.
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Using this separation relation we will construct an R-tree T such that
P ⊂ T and the separation relation on P is induced by separation on T .

To simplify notation below we drop the brackets and write simply A for
[A] ∈ P . If A, B ∈ P we define the interval (A, B) to be the set of all C ∈ P that
separate A from B. We define [A, B] to be (A, B)∪ {A, B}. It is obvious that
[A, B] = [B, A]. Separation induces a linear order on intervals: If C, D ∈ [A, B]
we say that C < D if C separates A from D.

We note now that it is possible to show, and by applying Swenson’s con-
struction ([Swe]) using our countable set P , that G acts by homeomorphisms
on an R-tree.

We sketch below a more direct way to construct such an action using
the geometry of X. Let [A, B] be an interval in P and let Cn ∈ [A, B] be
a sequence such that Ci < Ci+1 for all i ∈ N. One sees easily then that
Cn has a subsequence Cnk

that converges on compact sets. To be precise,
there is point x ∈ X such that for any r ∈ N there is a k0 such that for all
s, t > k0, Bx(r)∩Cns

= Bx(r)∩Cnt
. Denote by C the limit of this subsequence

which is clearly a quasi-line separating X and X −C has at least two essential
components. Noting here that Cn is actually an equivalence class of quasi-
lines, to make sense of convergence we pick arbitrarily a quasi-line from each
equivalence class. Change of choice leads to a limit quasi-line C ′ that lies in a
finite neighborhood of C.

If X − C has more than two essential components we can conclude as in
case 2a. We assume therefore that this does not happen for any sequence Cn as
above. We note that we can extend our separation relation to C in the obvious
way and that we have Cn < C ≤ B. We remark that if there is some quasi-line
D ∈ [A, B] such that dH(C, D) < ∞ then in fact dH(C, D) ≤ M1 for some
M1 � M which does not depend on C, D. Indeed note that since C, D are r-
solid C is contained in the r-neighborhood of an essential component of X−D,
say X1, and D is contained in the r-neighborhood of an essential component of
X−C, say X2. If dH(C, D) > M1 there is a point t in X1∩X2 at distance bigger
than r + M from both C, D. Consider then a translate of L, gL, containing t.
Since gL is not contained in a finite neighborhood of D, it either r-crosses C or
D (a contradiction) or X−(C∪D) has more than two essential components. If
however X− (C∪D) has more than two essential components we can conclude
the argument as in case 1 and assume that this does not happen. We consider
now the set of all quasi-lines C obtained as limits of convergent subsequences
as described above. We have a natural equivalence relation on this set: C ∼ C ′

if dH(C, C ′) < ∞. We denote by [C] the equivalence class of C and by P̄ the
set obtained by adding all these new equivalence classes of quasi-lines to P . If
there is some quasi-line D ∈ P such that dH(C, D) < ∞ we simply identify
[C] and [D]. Note however that there is an M2 � M1 (which does not depend
on C) such that if dH(C, D) < ∞ then dH(C, D) < M2 for any two quasi-lines
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in P̄ (here we abuse notation as P̄ consists of equivalence classes of quasi-
lines; we simply consider all quasi-lines contained in these equivalence classes).
Indeed this is shown by the same argument used above: if there are two such
quasi-lines sufficiently far away there is a translate of L ‘between’ them and
either X − (C ∪ D) has more than two essential components (in which case
we conclude as in case 1) or the translate of L r-crosses at least one of C, D a
contradiction.

From the observation above, the cardinality of the set of elements g of G

such that dH(gC, C) < ∞ is bounded by a constant that does not depend on
C (where C is always a quasi-line obtained as a limit as described above).

We define intervals and order for P̄ as we did for P noting now that any
interval of P̄ has the supremum property. We say that A, B ∈ P̄ are adjacent
if (A, B) = ∅ and define an equivalence relation on the set of unordered pairs
of adjacent elements of P̄ as follows: {A, B} ∼ {A, C} if A /∈ (B, C). We take
the transitive closure of ∼. Denote by C(A, B) the equivalence class of the
pair of adjacent vertices {A, B}. For each equivalence class C(A, B), pick a
number lA,B so that the sum

∑
lA,B over all equivalence classes is finite. Note

that there are only countably many pairs {A, B} of adjacent elements of P̄

and thus countably many equivalence classes C(A, B).
We will now turn P̄ into an R-tree by joining any pair of adjacent elements

of P̄ by an interval. We perform this operation first on intervals of P̄ and then
glue these intervals together. Let [A, B] be an interval of P̄ . Clearly there are
at most countably many pairs of adjacent elements of P̄ . Let {{Ai, Bi}} be
the set of adjacent pairs in [A, B]. We consider now the union

[A, B] ∪ IAi,Bi

where IAi,Bi
is an interval of R of length lAi,Bi

. For convenience we assume
that Ai < Bi for all i. We extend the order < of [A, B] in the obvious way on
[A, B]∪IAi,Bi

(i.e. if t ∈ IAi,Bi
we define Ai < t < Bi etc.). Now [A, B]∪IAi,Bi

is
a linearly ordered set that has the supremum property. There are no adjacent
points for ‘<’ on this set and it has a countable dense set with respect to
the order topology so it is homeomorphic to [0, 1] with respect to the order
topology.

It is easy to supply a metric for these new intervals: We note that an
interval [A, B] of P̄ that contains no adjacent points is homeomorphic to [0, 1]
with respect to the order topology. Let us denote by P ′ the set of points of P

that are contained in some nondegenerate interval [A, B] that does not contain
any adjacent points. Clearly there is a countable set Σ of intervals [Ai, Bi] such
that P ′ = ∪[Ai, Bi] and such that [Ai, Bi]∩ [Aj , Bj ] is either empty or a point
if i �= j. For each [Ai, Bi] we pick an li > 0 such that

∑
li < ∞ and we choose

an order-preserving map hi : [Ai, Bi] → [0, li]. If [X, Y ] ⊂ [Ai, Bi] we define the
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length of [X, Y ] to be the length of hi([X, Y ]). If C, D ∈ P̄ we define dH(C, D)
to be the sum of the lengths of the intervals of [C, D] corresponding to adjacent
points in [C, D] plus the sum of the lengths of the intervals [C, D] ∩ [Ai, Bi]
where [Ai, Bi] ∈ Σ.

We explain now how to glue together all intervals constructed above to
obtain an R-tree. Denote by I[A, B] the interval [A, B] ∪ IAi,Bi

. If I[A, B],
I[C, D] are two such intervals we identify I[A, B], I[C, D] along [A, B]∩ [C, D].
We claim that this is an interval I[E, F ] (if it is nonempty). Indeed let X ∈
[A, B] ∩ [C, D]. We have then A < X < B and C < X < D (assuming
that A, B, C, D are distinct). The set of all Y such that A < Y < X and
C < Y < X has a maximum, say E. To see this note that if p1, p2 are paths
joining X to A, B then Y intersects p1, p2. Therefore if Yn is a sequence such
that A < Yn+1 < Yn < X and C < Yn+1 < Yn < X, a subsequence of Yn

converges to a quasi-line Ȳ . From this it follows that the set of Y ’s has a
maximum. Similarly the set of Y such that X < Y < B and X < Y < D has
a minimum, say F and [A, B] ∩ [C, D] = I[E, F ].

If E is adjacent to a point E1 ∈ [A, B] and to a point E2 ∈ [C, D] and
if {E, E1} and {E, E2} are equivalent then we identify also the midpoint of
IE,E1 ⊂ I[A, B] with the midpoint of IE,E2 ⊂ [C, D]. We make a similar
identification for F . Finally we identify I[A, B], I[C, D] along the convex
closure of the points identified.

By making these identifications on the set ∪I[A, B] we clearly obtain an
R-tree T . Since G acts on P̄ preserving intervals one sees easily that G acts
on T by homeomorphisms.

We show now that we can assume that the action is nonnesting. In-
deed suppose that for some element g ∈ G we have g([A, B]) ⊂ [A, B] and
g([A, B]) �= [A, B]. Note that by [A, B] here we denote a segment of T . Clearly
we can assume that A, B ∈ P . We have then that a subsequence of gnA con-
verges on compact sets on X to a quasi-line C ∈ P̄ . Clearly [C] is invariant by
g so that X/〈g〉 has more than two ends and we can conclude the argument
[D-Sw].

Since the cardinality of the stabilizer of any vertex of T lying in P̄ is
bounded by a fixed M > 0 we see that the action is stable. One sees easily
that the action of G on T has no global fixed point. By a result of Levitt ([L])
G admits a nontrivial, stable action by isometries on an R-tree with finite
segment stabilizers. So by Rips’ theory ([B-F]) we have that G splits over
a virtually cyclic group. By Proposition 5.3 and the preceding treatment of
‘exceptional cases’ we arrive at the following:

Theorem 1. Let G be a one-ended, finitely presented group that is not
commensurable to a surface group. Then G splits over a two-ended group if
and only if the Cayley graph of G is separated by a quasi-line.
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Corollary. Let G1 be a one-ended, finitely presented group that is not
commensurable to a surface group. If G1 splits over a two-ended group and G2

is quasi -isometric to G1 then G2 splits also over a two-ended group.

7. Quasi-isometry invariance of JSJ-decompositions

One can see, using the results of the previous sections, that JSJ-de-
compositions are preserved by quasi-isometries. We will consider the JSJ-
decomposition of one-ended finitely presented groups corresponding to split-
tings over 2-ended groups (see [D-Sa]).

Theorem 7.1. Let G1, G2 be one-ended finitely presented groups, let Γ1,Γ2

be their respective JSJ-decompositions and let X1, X2 be the Cayley graphs of
G1, G2. Suppose that there is a quasi -isometry f : G1 → G2. Then there
is a constant C > 0 such that if A is a subgroup of G1 conjugate to a ver-
tex group, an orbifold hanging vertex group or an edge group of the graph of
groups Γ1, then f(A) contains in its C-neighborhood (and it is contained in the
C-neighborhood of ) respectively a subgroup of G2 conjugate to a vertex group,
an orbifold hanging vertex group or an edge group of the graph of groups Γ2.

Proof. It suffices to show that images of edge groups of Γ1 by f are
contained in finite neighborhoods of edge groups of Γ2. We will argue by
contradiction. The idea of the proof that follows is that the images of the edge
groups of Γ1 furnish a new set of separating quasi-lines for G2; so we can use
this set and apply the machinery of the previous sections to show that some
vertex group of Γ2, which is not a hanging orbifold vertex group, admits a
splitting over a 2-ended group in which all its adjacent edge groups are elliptic.
This contradicts the properties of JSJ-decompositions (see [D-Sa]).

We will consider a set S of separating quasi-lines on X2. We define S

inductively: S0 is the set of all edge groups of Γ2 (to be more precise we
‘thicken’ these groups so that they verify the properties of quasi-lines stated
in Sections 1, 2). If E is an edge group of Γ1, such that f(E) is not contained
in a finite neighborhood of an edge group of Γ2 we thicken f(E) so that it
satisfies the conditions of Sections 1, 2 and we add it to S0. We do this for
all edge groups of Γ1. We then add all translates of these quasi-lines by the
action of G2. We call S1 the set obtained.

We thicken all quasi-lines in f−1(S1) so that they satisfy the requirements
of Sections 1, 2 and we consider all their translates by G1. Let us call this set
S′

2. We take S2 to be the quasi-lines obtained by all translates of the quasi-lines
in f(S′

2) (where we thicken quasi-lines as before). Let L be a quasi-line in S2

and let E ∈ S0.
By the results of Section 3 it follows that there is an N � 0 such that

if x, y ∈ L are separated by E and d(x, E), d(y, E) > N then L − E has two
unbounded components which are contained in distinct components of X2−E.
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We say then that L crosses E. If no edge group of Γ2 is crossed by an L ∈ S2

we define S = S1. Otherwise we collapse all edges of Γ2 which correspond to
quasi-lines which are crossed and we obtain a new graph Γ′

2.
We thicken all quasi-lines in f−1(S2) so that they satisfy the requirements

of Sections 1, 2 and we consider all their translates by G1. Let us call this set
S′

3. We take S3 to be the quasi-lines obtained by all translates of the quasi-
lines in f(S′

3) (where we thicken quasi-lines as before). If no edge group of Γ′
2

is crossed by a quasi-line in S3 we define S = S2. Otherwise we collapse the
edges of Γ′

2 which correpond to quasi-lines which were crossed and we repeat.
It is clear that this procedure terminates and produces a set S. Let us call
Γ the graph of groups obtained from Γ2 by successively collapsing edges as in
the previous procedure. Thus, no edge groups of Γ are crossed by quasi-lines
in S (of course Γ may be a single vertex in which case this is trivially true).

We note that the set S has the following property: There are A, B > 0 such
that for any L ∈ S and x, y ∈ L there is an (A, B)-quasi-isometry g : X2 → X2

such that d(g(x), y) < A and g(L) is contained in the A-neighborhood of L.
Indeed edge groups of Γ2 clearly have this property and at each inductive step
we just added translates either by the action of G2 or of G1 and so one sees
easily that this property is preserved.

Assume first that S = S1. In this case by our assumption there are a
vertex group V of Γ2 and an edge group E of Γ1, such that V minus a finite
neighborhood of f(E) has at least two components none of which is contained
in a finite neighborhood of f(E). We distinguish two cases depending on
whether V is a hanging orbifold group or not. If V is a hanging orbifold
group we pick a vertex group, V1, adjacent to E in Γ1 which is not a hanging
orbifold group. If some edge adjacent to V1 is not mapped by f in a finite
neighborhood of V then there is an edge group of Γ2 which is mapped by f−1

in a finite neighborhood of V1 and separates V1 so that we can interchange the
role of G1, G2 and argue as in the next case. We can assume therefore that
all edge groups adjacent to V1 are mapped by f in a finite neighborhood of V .
This implies that V1 is quasi-isometric to a subset of V hence is virtually free.
Moreover the set of ends of V1 maps to the set of ends of V . Every quasi-line in
V1 is mapped by f to a quasi-line in V which can be thickened to a separating
quasi-line. This induces a natural cyclic order (see [Bo 1]) on the set of ends
of V1 preserved by the action of V1. By Theorem 4.8 and Proposition 4.9 of
[Bo 1] it follows that V1 is a hanging orbifold group, a contradiction.

Assume now that V is not a hanging orbifold group. Let F be a maximal
r-solid subset of V , where r � 0. It is clear that V is not contained in a finite
neighborhood of F . There are again two cases: Either every such F is contained
in a finite neighborhood of some edge group of V or not. We claim that if the
first holds then V is virtually free. Indeed suppose not and let V̄ be a one
ended subgroup of V . If V̄ does not have any unbounded r-solid subsets then
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by the results of Sections 3, 4 we have that G2 is virtually a surface group. So
A contains some unbounded r-solid subset F which is at finite distance from
an edge group of V . In the same way as in Section 5 we see that A is not
contained in any finite neighborhood of X2 − F . By Proposition 3.1 of [D-Sw]
it follows that V splits over a 2-ended group and edge groups of Γ2 are elliptic
with respect to this splitting. So Γ2 can be refined, a contradiction.

Since all r-solid subsets of V are contained in finite neighborhoods of
edge groups of V one sees easily that every quasi-line in V can be thickened
so that it separates X2 in at least two essential components. It follows by
Theorem 4.8 and Proposition 4.9 of [Bo 1] that V is a hanging orbifold group,
a contradiction.

We assume therefore that there is a maximal r-solid subset of V , F , which
is not contained in a finite neighborhood of an edge group of V . If F is as in
case 2 of Section 5 then by Proposition 3.1 of [D-Sw] it follows that V splits
over a 2-ended group and the edge groups of Γ2 are elliptic with respect to this
splitting. So Γ2 can be refined using this splitting. This however contradicts
the fact that JSJ-decompositions ‘encode’ all splittings over 2-ended groups
(see [D-Sa]).

Therefore we can assume that F is as in case 1 of Section 5. In this case,
using Lemma 5.1 one produces a maximal r-solid subset of V , F ′, which is
a quasi-line. We claim that if F ′ is contained in a finite neighborhood of an
edge group, E′, of V then there is some L ∈ S which is an r-solid separating
quasi-line of V and which is not contained in a finite neighborhood of an edge
group of V . Note first that E′ is not contained in a finite neighborhood of F .
Indeed in this case translates of F along E′ would be contained in F and so (by
the construction of Lemma 5.1) F ′ would not be contained in a neighborhood
of E′. Therefore a neighborhood of F intersects E′ along connected sets of
bigger and bigger diameter but there is an unbounded connected subset of E′

which is not contained in this neighborhood of F . Therefore there are quasi-
lines in S separating this unbounded connected subset of E′ from F which
‘contain’ bigger and bigger connected subsets of E′. To be more precise there
is N > 0 and Ln ∈ S such that the N -neighborhood of Ln intersects E′ along a
connected subset of diameter bigger than n. We claim that for n big enough Ln

is r-solid. Indeed, if some L ∈ S crosses Ln then we can translate L along Ln

by (A, B)-quasi-isometries. So a translate of L crosses E′, which is impossible.
We can assume therefore that F ′ is not contained in a neighborhood of an edge
group of V ; if this is not the case we just replace it by some Ln.

Now we can apply the arguments of Section 6 to show again that the
JSJ-decomposition of G2 can be refined. We recall that in Section 6 there are
several cases to consider. Proposition 3.1 of [D-Sw] can be applied in all cases
except in the case where one obtains an action on an R-tree. In the case of a
nonnesting action we can refine Γ2 by Theorem 9.6 of [B-F] (Theorem 12.72 of
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[Ka]). We explain now how to obtain a refinement of Γ2 in the nesting R-trees
action case.

We recall that in the case of nesting actions translates of F ′ converge on
compact sets to a quasi-line, L̄, which is contained in a finite neighborhood of
a 2-ended group. One uses Proposition 3.1 of [D-Sw] to obtain a splitting. It
is possible however that L1 is contained in a finite neighborhood of an edge
group, E′, of V . So in this case the new splitting does not give a refinement
of Γ2. In this case too as before we have that there are N > 0 and a sequence
Ln ∈ S such that the N -neighborhood of Ln interects E′ along a connected
subset of diameter bigger than n. So we can again replace F ′ by some L ∈ S.
As before, using L we can either refine Γ2 using the arguments of Section 6
or obtain a nesting action on an R-tree. Since L is not contained in a finite
neighborhood of an edge group of V then one of the following holds:

- Either there is an N > 0 such that the N -neighborhood of L intersects
distinct edge groups of V along connected sets of arbitrarily big diameter
or

- translates of L converge on compact sets on a solid quasi-line L̄ such that
for any N > 0 there is an M > 0 such that each connected component
of the intersection of the N -neighborhood of L̄ with an edge group of V

is of diameter less than M .

In the second case if we replace L by L̄ and apply the machinery of Section 6
we obtain a splitting of V which can be used to refine Γ2 thereby arriving at
a contradiction.

In the first case we can translate distinct edge groups of V along L by
(A, B)-quasi-isometries and obtain translates of edge groups which cross, again
a contradiction. This finishes the proof in the case that S = S1.

The general case is treated in a similar way: Let V be a vertex group of Γ
which is obtained by collapsing some vertex group of Γ2 to a single vertex. We
consider maximal r-solid subsets of V . If each such subset of V is contained in
a finite neighborhood of an edge group of Γ then, as before, using Theorem 4.8
and Proposition 4.9 of [Bo 1] we conclude that V is a hanging orbifold group,
contradicting the properties of JSJ-decompositions (see [D-Sa]).

We assume therefore that V contains some r-solid subset F and that F

is contained in a nonhanging orbifold vertex group of Γ2. Indeed if no such F

exists in V we enlarge S by including sufficiently many separating quasi-lines,
from the orbifold vertex groups of Γ2 included in V , so that there is no r-solid
set in V with respect to this enlarged set of quasi-lines. Then by the previous
argument it follows that V is a hanging orbifold vertex group, a contradiction.

If F is as in case 2 of Section 5, using Proposition 3.1 of [D-Sw] one obtains
a splitting over some 2-ended group which is not contained (up to finite index)
in an edge group or a hanging orbifold vertex group of Γ2, a contradiction. If
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F is as in case 1 of Section 5 then (by Lemma 5.1) one obtains an r-solid set
F ′ which is a separating quasi-line. Again there are several cases to consider.
As before one can show that F ′ can be chosen so that it is not contained in a
finite neighborhood of an edge group of Γ. One then applies the arguments of
Section 6. In the cases where Proposition 3.1 of [D-Sw] applies one obtains a
splitting over a 2-ended subgroup which is not contained (up to finite index)
in an edge or hanging orbifold subgroup of Γ2, a contradiction. In the case
of a nonnesting R-tree action one notes that edge groups of Γ2 act elliptically
on this R-tree so by Proposition 9.6 of [B-F] one obtains a refinement of Γ2, a
contradiction.

Finally in the case of a nesting action on an R-tree, either one obtains
a refinement of Γ2 applying Proposition 3.1 of [D-Sw] or one shows as earlier
that there is a quasi-line, L1, in S which ‘fellow-travels’ for bigger and bigger
intervals, distinct edge groups of Γ. In this case we can translate one edge
group by (A, B)-quasi-isometries along L1 so that it crosses another. So some
edges group of Γ is crossed by a quasi-line in S, a contradiction.

We note that one can show by a similar argument that a half quasi-line
never separates the Cayley graph of a one-ended finitely presented group G.

Appendix

The problem of finding topological characterizations for the 2-sphere or
more generally for 2-dimensional manifolds was quite popular in the first half of
the twentieth century. Moore, Kuratowski, Janiszewski, Zippin, Van-Kampen,
Bing, Young (see [Mo], [Ku], [Z], [V], [Bi]) and others contributed to the solu-
tion of this problem. In this paper we used a ‘large scale’ characterization of
‘quasi-planes’ that was modeled on a new topological characterization of the
plane. We prove here the theorem that served as ‘model’ for the large scale
characterization. The statement of the theorem will be somehow unnatural
from the point of view of point set topology. The reason for that is that we
choose a statement that is similar to the ‘large scale’ characterization. A sim-
ilar characterization theorem more natural from the standpoint of point set
topology will appear elsewhere.

We will use the following theorem due to Bing (see [Bi]).

Theorem 1. Let X be a compact, connected and locally connected non-
degenerate metric space. If X is separated by each of its simple closed curves
but by no pair of its points then it is homeomorphic to a 2-sphere.

The characterization of the plane (=‘open’ 2-cell) that we prove here dif-
fers from this theorem in two ways: First we use separation by lines rather
than simple closed curves and second we assume that any two points in X

are separated by a line (rather than assuming that every line separates). This



QUASI-ISOMETRY INVARIANCE OF GROUP SPLITTINGS 813

second difference (unlike the first) is quite crucial. For example if one relaxes
condition 2 of Theorem 1 to: Any two points in X are separated by some
simple closed curve, then the conclusion is no longer true. Indeed any compact
surface X satisfies this. One can find wilder spaces satisfying this condition,
for example add smaller and smaller handles to a sphere so that the handles
converge to a point.

To make up for this we will assume that X is simply connected. This
is quite natural for us as the ‘large scale’ analog of the characterization given
here concerns Cayley graphs of finitely presented groups which are ‘large scale’-
simply connected.

Definitions. A metric space X is called a geodesic metric space if any
two points in X can be joined by an arc whose length is equal to the distance
between the two points. Also, X will be called one-ended if for any compact
K, X − K has exactly one unbounded component. A line in X is a proper,
one-to-one, continuous, rectifiable map L : R → X. We will often identify a
line L with its image L(R).

It is convenient to parametrize L with respect to arclength. In the rest
of this appendix we will assume all lines to be parametrized with respect to
arclength (so that length(L([a, b])) = |b − a|).

Let f : R+ → R+ be an increasing function such that limx→0 f(x) = 0.
We say that a line L is an f -line if |a − b| ≤ f(d(L(a), L(b))) for all a, b ∈ R.

We define an order on a line as follows: If a = L(a′), b = L(b′) where L is
a line we write a < b if a′ < b′. We denote by [a, b]L the set of all t ∈ L such
that a ≤ t ≤ b. Similarly we define (a, b)L. When there is no ambiguity we
write [a, b] instead of [a, b]L. If t ∈ R we denote by a + t the point L(a′ + t).

We say that a line L separates X if X − L has at least two connected
components and, for each connected component C of X −L, L is contained in
the closure C̄, of C. If a, b ∈ X we say that a line L separates a from b if L

separates X and a, b belong to distinct components of X − L.

Remarks. Note that our definition of separation is quite nonstandard.
If we take X in the above definitions to be a locally compact, connected and
locally connected space then X is arcwise connected. Moreover if L is a line
separating X and C is a component of X − L then C is arcwise connected.
Theorem A stated below holds also if we replace f -lines by lines. This require-
ment of ‘uniformity’ for lines is made so that the proof can be translated easier
to the ‘large scale’ argument used in the proof of the quasi-isometry invariance
of group splittings. We note that it is used only at the end of the proof (after
Lemma A.4.3).

One can weaken the hypothesis of the theorem further by assuming that
X has no cut points rather than assuming that it is one-ended. A more general
result without superfluous hypotheses will appear elsewhere.
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Now we can state the main result of this appendix:

Theorem A. Let X be a locally compact, geodesic metric space and let
f : R+ → R+ be an increasing function such that limx→0 f(x) = 0. If X

satisfies the following three conditions then it is homeomorphic to the plane.

1) X is one-ended.

2) X is simply connected.

3) For any two points a, b ∈ X there is an f -line separating them.

Proof. In the proof that follows we will call f -lines simply lines most of
the time. We will revert to the ‘f -line’ notation when it becomes relevant.

As the proof is rather long and technical we give now a brief outline of
our argument: In the classical characterization theorems (see [Z], [V]) one uses
separating curves to create finer and finer grids which approximate the space
and ‘in the limit’ converge to a plane. We cannot, however, do this in our
setting. Think for example of the (simply connected) space obtained by gluing
three closed half-planes along their boundary line. Take then two lines L1,
L2 in two distinct half-planes which intersect at exactly one point. A pair of
lines on the plane intersecting at one point cuts up the plane into four pieces,
while the lines L1, L2 cut up our space into only three pieces. The way to get
around this problem is to use cross-points (see Figure A.2 and the definition
before Lemma A.2) rather than intersection points. To carry out the proof we
appeal to the known characterization theorems (see e.g. [Bi]). This reduces the
problem to showing that simple closed curves in X separate. In other words
we have to show that the Jordan curve theorem holds in X. In Definition A.4
we explain how to pick a point ‘inside’ a simple closed curve. This definition
however depends on a separating line on which the point lies. We show then in
Lemma A.4.3 that being ‘inside’ is well defined for cross-points. This relies on
Lemma A.3 which says that lines that cross cut up X as they would cut up the
plane. Completing the proof of the Jordan curve theorem after Lemma A.4.3
is quite easy. We start the proof by showing that lines separate X in exactly
two pieces (Lemma A.1). This is quite intuitive, if one considers the space
defined above by gluing three half-planes one notes that points on the common
boundary line cannot be separated by lines. So Lemma A.1 is a generalization
of this fact. The simple connectedness assumption is quite crucial for this, as
it is for Lemma A.3 where similar arguments are used.

We will need the following lemma from plane topology:

Lemma A.0. Let O be a connected open subset of the open unit disk D.
Let K be a connected component of ∂O and let x, y ∈ O be such that d(x, K) < ε

and d(y, K) < ε. Then there is a path p in O connecting x to y such that p is
contained in the ε neighborhood of ∂O.
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Proof. We consider D to be lying on the plane. Let U be the union of
the open balls Bx(ε) with center x ∈ ∂O and radius ε. Let W = U ∩ D. Let
V be the connected component of W containing K. Clearly x, y ∈ V so there
is a path in D joining them that does not intersect ∂V .

On the other hand, x, y ∈ O so there is a path in D joining them that
does not intersect ∂O.

Noting that ∂O ∩ ∂V = ∅, we recall now Alexander’s lemma: Let x, y be
points and let F1, F2 be disjoint closed sets on the plane. If there are paths
joining x, y in R2 − F1 and in R2 − F2 then there is a path joining them in
R2 − (F1 ∪ F2) (see [N, Th. 9.2, p. 112]).

Since ∂O, ∂V are closed there is a path p lying in D joining x to y that
intersects neither ∂O nor ∂V . Clearly p is contained in O and lies in the ε

neighborhood of ∂O.

Lemma A.1. Let L be a line separating X. Then X −L has exactly two
components.

Proof. We will prove this by contradiction: Assume that X − L has at
least three components C1, C2, C3. Let a, b ∈ L. We will show that a, b cannot
be separated by any line in X. Without loss of generality we assume that
a < b. Suppose that a line L1 separates a from b. Say a ∈ A, b ∈ B where
A, B are connected components of X − L1. Let c = min(d(L1, {a, b}), d(a, b)).
Let ε1 = c/4. We take ai, bi ∈ L (i = 1, 2, 3) such that:

i) ai is joined to bi by a path pi ∈ C̄i such that pi ∩ L = {ai, bi} and

ii) length([ai, a]) < ε1, length([bi, b]) < ε1.

Without loss of generality we can assume that pi ∩ L1 has finitely many con-
nected components. Indeed if this is not the case for some pi we modify it as
follows: If J is a maximal interval of L1 with the properties that J is entirely
contained in Ci and its endpoints lie on pi then we modify pi by replacing the
subpath of pi with the same endpoints as J by J .

We can further assume that the pi are simple paths and we consider the
simple closed paths qi = pi ∪ [ai, bi].

The C̄i are simply connected. Indeed let w be a closed curve in C̄i and let
f : D → X be such that f(∂D) = w. Also, f−1(X − C̄i) is an open set in D

and the frontier of this open set is sent to L by f . Using Tietze’s theorem we
can modify f so that the whole open set is mapped to L. This shows that C̄i

is simply connected.
Let the Di be discs and let fi : Di → C̄i be maps such that fi(∂Di) = qi.

We assume further that fi restricted to ∂Di is injective. To simplify notation
we denote by pi the subpath of ∂Di mapped onto pi. Likewise we denote by
ai, bi the points of ∂Di mapped onto ai, bi. Let x̄ = sup{t ∈ L ∩A, t < b} and
let [x̄, ȳ]L be the connected component of L∩L1 containing x̄ (see Figure A.1).
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L1
p1

.

Figure A.1

For each Di there is a segment on ∂Di mapped onto [ai, bi]. We consider
now the disc D = D1 
 D2/ ∼ where t ∼ s if t ∈ ∂D1, s ∈ ∂D2 and f1(t) =
f2(s). We define f : D → X by f(t) = f1(t) if t ∈ D1 and f(t) = f2(t) if
t ∈ D2.

For convenience we will consider D to be the closed unit disc in the plane.
We will denote by U the open unit disc. So U = D − ∂D. Let ε > 0 be such
that the following conditions are satisfied:

1) There are x < x̄, y > ȳ on L such that Bx(2ε) ⊂ A and By(2ε) ∩ A = ∅.

2) If a segment I of L1 intersects [x, y]L and I ∩ (p1 ∪ p2 ∪ p3) = ∂I then I

contains [x̄, ȳ]L.

We consider now the components of D− f−1(L1) intersecting f−1(Bx(ε))
or f−1(By(ε)). Clearly there are finitely many such components as d(x, L1)
> 2ε, d(y, L1) > 2ε. Let O be such a component. We denote by ∂O the
closure of O, Ō in the plane, minus the interior of O in the plane. Suppose
that ∂O intersects ∂D at a subset of f−1(L1). Using Tietze’s theorem we can
modify f so as to map Ō to L1. We do this for all components of D− f−1(L1)
intersecting f−1(Bx(ε)) or f−1(By(ε)). We obtain thus a new map from D to
X which by abuse of notation we still call f .

Consider now the connected components of U−f−1(L). Let us call U1 the
connected component of U−f−1(L) such that the boundary of this component
in the plane contains ∂D1∩∂D and U2 the connected component of U−f−1(L)
such that the boundary of this component in the plane contains ∂D2 ∩ ∂D.
There is a connected component, say K1, of the boundary of Ū1 in U such
that the boundary of K1 in the plane contains a1, b1. Indeed, if not, then by
Alexander’s lemma (see [N, Th. 9.1.2, p. 110]) p1, p2 are joined by a path in
D − f−1(L), a contradiction. We have then f(K1) ⊂ L and f(K1) ⊃ [a1, b1].

We consider again the components of D−f−1(L1) intersecting f−1(Bx(ε))
or f−1(By(ε)). If O is such a component then ∂O ∩ ∂D is not contained in
f−1(L1). Then f(∂O) contains a segment of L1 intersecting ∂D at least two
points. We consider all segments J of L1 that are minimal segments with the
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properties that J lies in C̄1 ∪ C2 and the endpoints of J lie on ∂D. Clearly
there are finitely many such segments. We will show that some segment J

contains [x̄, ȳ]L.
Indeed suppose that this is not the case and pick a J as above. Say

J ⊂ (ȳ,∞)L1 . The endpoints of J separate ∂D in two arcs, say c1, c2. We
consider the closed curves c1 ∪ J , c2 ∪ J . Either c1 ∪ J or c2 ∪ J has the
property that every disc filling it contains two points that map to x, y. Say
this is the case for c1∪J . To simplify notation we still call D a disc filling c1∪J

and let g : D̄ → X sending ∂D to c1∪J . Since L1 separates x from y, g−1(L1)
separates g−1(x) from g−1(y). We consider all the connected components of
D − g−1(L1) that intersect either g−1(x) or g−1(y). Clearly there are finitely
many such components. Let O be such a component. If g(∂O) ⊂ L1, using
Tietze’s theorem we can modify g so that Ō maps to L1.We do this to all such
components obtaining a new filling disc for c1 ∪ J that we still call D. As
before we conclude that there is a component O of D − g−1(L1) such that O

intersects either g−1(x) or g−1(y) and g(∂O) is an interval of L1 with both its
endpoints on c1. As before we consider the set of segments that lie on C̄1 ∪C2

which are minimal with respect to this property. We pick one of them and
repeat the operation. It is clear that this procedure stops after finitely many
steps, producing a disc D that contains two points mapping to x, y which are
not separated by the preimage of L1 in D. This is a contradiction.

We showed therefore that there is a segment J ⊂ L1 with its endpoints
on c1 ∪ c2, contained in C̄1 ∪ C2 which contains [x̄, ȳ]L. By applying the same
argument to D1 
 D3 we conclude that there is an interval of L1 containing
[x̄, ȳ]L with its endpoints on ∂(D1 
 D3) that is contained in C̄1 ∪ C3. This is
clearly a contradiction.

For the rest of the proof of Theorem A we need more definitions:

Definitions. Let L be a separating line of X. We denote the two compo-
nents of X − L by L+, L−.

Let L1, L2 be separating lines of X. We say that L1 crosses L2 at
x ∈ L1 ∩L2 if for any neighborhood of x in L2, (x− ε, x+ ε)L2 , there are a, b ∈
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(x− ε, x + ε)L2 separated by L1. More generally if [x1, x2] is a connected com-
ponent of L1 ∩L2 we say that L1 crosses L2 at [x1, x2] if for any neighborhood
of [x1, x2] in L2, (x1 − ε, x2 + ε)L2 , there are a, b ∈ (x1 − ε, x2 + ε)L2 separated
by L1.

If I1 ⊂ L1, I2 ⊂ L2 are subintervals of L1, L2 containing x in their interior
we say that I1, I2 cross at x. Similarly we define what it means for two intervals
to cross at a common subinterval. We call x (resp. [x1, x2]) a cross-point (resp.
cross-interval) of L1, L2. We say that I1, I2 cross if they cross at some point
x or at some interval [x1, x2].

If {Li} is a set of separating lines, a set of intervals S = {Ii ⊂ Li} is called
cross-connected if for all I, J ∈ S there is a sequence Ik, k = 1, . . . , n where
Ik ∈ S, I1 = I, In = J and for k = 1, . . . , n − 1, Ik crosses Ik+1. We say then
that (I1, . . . , In) is a cross-path between I, J .

We define in a similar way what it means for a path p to cross a separating
line L.

Now, there is an easy lemma:

Lemma A.2. If L1 crosses L2 at x (or at [x1, x2]) then L2 crosses L1 at
x (or at [x1, x2]).

Proof. Indeed suppose that an interval I ⊂ L1 containing x at its interior
lies in (say) L̄+

2 . Then using the simple-connectedness of L̄+
2 we see that any

two points in L2−L1 sufficiently close to x can be joined by a path that avoids
L1, which contradicts the hypothesis of the lemma. We argue similarly if L1

crosses L2 at an interval [x1, x2].

The set of points that are either cross-points or lie on cross-intervals of two
lines is closed. So L1 − {cross-points and cross intervals of L1, L2} is a union
of intervals. If (a, b) is an interval in this set we say that a, b are successive
cross-points of L1, L2.

To simplify notation in the arguments that follow we suppose that two
lines cross always at points and not at intervals. It is quite clear how to
modify the proofs in order to take care of cross intervals. We leave this to the
reader.

Lemma A.3. Let L1, L2 be separating lines and let a < b be two successive
cross-points of L1, L2 on L1. Let I1 = [a, b]L1 , I2 = [a, b]L2. Then I1 ∪ I2

separates X.

Proof. Let x ∈ I2 −L1 (it is clear that such a point exists). Say L2 − I2 =
A∪B. We orient A, B towards I2. Let Ox be a connected open neighborhood
of x that does not meet L1. Let x1, x2 ∈ Ox lying respectively in L+

2 , L−
2 . We

will show that any path p joining x1, x2 intersects I1 ∪ I2. This clearly implies
Lemma A.3.
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We argue by contradiction: Let p be a path joining x1, x2 which does not
intersect I1 ∪ I2. We join x1 to x by a path p1 in Ox ∩ L+

2 and x2 to x by a
path p2 in Ox ∩ L−

2 . Now consider the closed path p ∪ p1 ∪ p2. To simplify
notation we again call this path p.

Without loss of generality we assume that p is a simple path which crosses
L2 necessarily (possibly several times). We have the following:

Lemma A.3.1. There are [c1, d1] ⊂ p, [c2, d2] ⊂ I1 such that c1, d1, c2,

d2 ∈ L2, c1, d1 separate c2, d2 on L2 and [c1, d1], [c2, d2] are contained both in
the closure of the same component of X − L2.

Proof. We will prove this by contradiction defining a map f from L2
p
I1

to the plane as follows:
We map L2 to the x-axis and then map the segments of p 
 I1 in L+

2 to
the upper half-plane (y > 0) and the the segments of p
 I1 in L−

2 to the lower
(y < 0) half-plane. The map sends subsegments of p 
 I1 lying in L+

2 (or in
L−

2 ) injectively on the plane but it might create intersections among different
such subsegments of p ∪ I1.

We arrange f also so that the following two conditions are satisfied:

a) If [a1, b1], [a2, b2] ⊂ (p ∪ I1) ∩ L̄+
2 (or [a1, b1], [a2, b2] ⊂ (p ∪ I1) ∩ L̄−

2 and
a1 < a2 < b1 < b2 we define f so that f([a1, b1]), f([a2, b2])intersect at
exactly one point.

b) If [a1, b1], [a2, b2] ⊂ (p ∪ I1) ∩ L̄+
2 (or [a1, b1], [a2, b2] ⊂ (p ∪ I1) ∩ L̄−

2 ) and
a1, b1 do not separate a2, b2 on L2 then f([a1, b1]) ∩ f([a2, b2]) = ∅.

Now f(p) is a closed curve so that it separates the plane. On the other
hand f(I1) ∩ f(p) = ∅ and f(I1) is connected so that f(I1) lies in the same
component of R2 − f(p). On the other hand the endpoints of f(I1) are equal
to the endpoints of f(I2) so they lie in distinct components of R2 − f(p).

Lemma A.3.2. There are [c1, d1] ⊂ p, [c2, d2] ⊂ I1 as in Lemma A.3.1 so
that c2, d2 are cross-points of I1 with L2.

Proof. We argue as in the proof of Lemma A.3.1 and we remark that we
can modify f(I1) so that all its points of intersection with f(L2) are cross-
points. If a pair of intervals with the properties required at Lemma A.3.2 does
not exist we arrive at a contradiction as in Lemma A.3.1.

Lemma A.3.3. Let [c1, d1] ⊂ p, [c2, d2] ⊂ I1 be as in Lemma A.3.2. Then
[c1, d1] intersects [c2, d2].

Proof. We assume without loss of generality that c2 ∈ [c1, d1]L2 . We will
need a lemma:
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Lemma A.3.3.1. There is a path p′ in L̄−
2 joining c1 to d1, and not

intersecting (c1, d1)L2 , that satisfies the following :
If q is the closed curve p′∪[c1, d1]L2 then there is a homotopy g1 : D1 → L̄−

2

such that d2 /∈ g1(D1) where D1 is a disk and g1(∂D1) = q.

Proof. Let p′ be a simple path in L̄−
2 joining c1 to d1 and not intersecting

(c1, d1)L2 . We suppose also that p′ is a union of three successive subpaths, the
first lying in L2 the second intersecting L2 only at its endpoints and the third
lying in L2 (see Figure A.3). This first and third subpaths maybe reduced to
a point. We denote the second subpath p′′.

Let q1 be the closed curve p′ ∪ [c1, d1]L2 . Let D1 be a disc and let g1 :
D1 → L̄−

2 be a map such that g1(∂D1) = q1. We assume that g1 restricted to
∂D1 is injective. As usual we call p′′ the subpath of ∂D1 mapped to p′′.

Let U be the union of all connected components O of D1 − g−1
1 (L2) such

that ∂O ⊂ g−1
1 (L2). Then ∂U ⊂ g−1

1 (L2) and by Tietze’s theorem we can
modify g1 so that g1(U) ⊂ L2. After this modification, D1 − g−1

1 (L2) is con-
nected and contains p′′ (except its endpoints). Of course it is possible that
d2 ∈ g1(D1). We will show below how to modify p′ and D1 so that d2 /∈ g1(D1).

For convenience we will consider D1 to be a square on the plane with
sides parallel to the axes. We assume moreover that [c1, d1]L2 corresponds to
the upper side of this square. For simplicity we will still denote this side by
[c1, d1]L2 .

Let x ∈ g−1
1 (d2). We consider the connected component of x, say Ox, in

D1 − g−1
1 ([c1, d1]L2). If ∂Ox ⊂ g−1

1 ([c1, d1]L2) then using Tietze’s theorem we
change g1 so that g1(Ox) ⊂ [c1, d1]L2 . Since there are finitely many components
Ox as above after finitely many steps either D1 satisfies the conditions of
the lemma or there is a single connected component of D1 − g−1

1 ([c1, d1]L2)
containing g−1

1 (d2).
Let ε > 0 be such that if x1 ∈ g−1

1 ([c1, d1]L2) and x2 ∈ g−1
1 (d2) then

d(x1, x2) > 4ε. We consider an ε-grid on the plane which partitions D1 and
join each square on the grid that meets g−1

1 (d2) to p′′ by a path that avoids
g−1
1 ([c1, d1]L2). Let δ > 0 be smaller than the distance of any such path from

g−1
1 ([c1, d1]L2). We consider now a δ-grid on the plane which partitions D1 and
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call Bδ the set of all squares on the grid intersecting g−1
1 ([c1, d1]L2). Let Cδ be

the connected component of [c1, d1]L2 in Bδ. Clearly g−1
1 (d2) does not meet Cδ.

Therefore there is a simple path pδ lying on ∂Cδ such that pδ separates D1

in two components one of which contains [c1, d1]L2 (the upper side of D1) and
the other g−1

1 (d2). Let C ′
δ be the component of D1 − pδ containing [c1, d1]L2 .

Now, g1(pδ) is the p′ required by the lemma and we can take C ′
δ for D1.

Let D2 be a disc and let g2 : D2 → L̄+
2 be a map such that g2(∂D2) =

[c1, d1]L2 ∪ [c1, d1] (here [c1, d1] ⊂ p as in Lemma A.3.3). We identify D1, D2

along [c1, d1]L2 and obtain a disk D and a map g : D → X such that g(∂D) =
p′ ∪ p (where p′, D1 are as in Lemma A.3.3.1).

Let a, b ∈ [c1, d1]L2 be such that the following two conditions hold:

i) a, b are separated by L1;

ii) if [x1, x2]L1 has x1, x2 ∈ ∂D and does not contain [c2, d2]L1 then [x1, x2]L1

does not intersect [a, b]L2 .

Such points exist since c2 ∈ [c1, d1]L2 is a cross-point of L1, L2. So we can find
a, b as above sufficiently close to c2.

We consider now g−1(a), g−1(b). If x lies in g−1(a) or in g−1(b) we consider
the connected component of x, say Ux, to be in D − g−1(L1). If g(∂Ux) ⊂ L1

we can, using Tietze’s theorem, change g so that g(Ux) ⊂ L1. We assume
therefore that for each x in g−1(a) or in g−1(b) the connected component of x

in D − g−1(L1) contains an interval of ∂D.
Let x, Ux be as above. Then ∂D − ∂Ux is a union of open intervals. Let

y be a point in g−1(a) or in g−1(b) such that y /∈ Ux. Then it is clear that Uy

intersects at most one component of ∂D − ∂Ux. Since there is a finite number
of components of D − g−1(L1) that intersect g−1({a, b}) it is easy to see that
there is an x ∈ g−1({a, b}) such that there is exactly one component, say α,
of ∂D − ∂Ux with the following property: for every y ∈ g−1({a, b}) such that
y /∈ Ux, Uy intersects α.

We consider the connected component of α in D−∂Ux and call it O. Now,
O intersects ∂D at α and K = ∂O is connected and separates x from α.

We show now how to modify D without altering g−1(a), g−1(b) so that for
any y ∈ g−1({a, b}), y /∈ Ux, x, y are separated by a simple path that maps to
an interval of L1 that does not contain c2. Note that ∂D − α is a simple path
β and both endpoints of β lie in K.

We define now two discs E1, E2 and maps: h1 : E1 → X, h2 : E2 → X.
Both E1, E2 are copies of D. To define h1, h2 we modify g as follows: h1 = g on
K∩β and h1 is thus defined on a closed subset of β. The complement of this set
is a union of open intervals. If (y1, y2) is such an interval, h1(y1) = g(y1) ∈ L1

and h1(y2) = g(y2) ∈ L1. We extend h1 on (y1, y2) by mapping this interval
injectively to the open interval of L1 with endpoints h1(y1), h1(y2). In this way
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we extend h1 on β and note that h1 maps β to an interval of L1 that does not
contain c2. We consider the complement of O in D. This is a closed subset of
the plane and h1 maps the frontier of this set to an interval of L1 that does
not contain d2. We extend h1 to the whole set using Tietze’s theorem. Finally
we define h1 = g on Ō.

We define h2 similarly: We set h2 = g on D − O and we define h2 on α

as we defined h1 on β; i.e., if i : ∂D → ∂D is a one-to-one map interchanging
α, β we define h2(x) = h1(i(x)). Also, O is an open set whose boundary is
mapped to an interval of L1 that does not contain d2 by h2. We extend h2 on
this open set using Tietze’s theorem.

As E1, E2 are simply copies of D we will use the same labellings for them
as for D. We can identify the arc β of E1 to the arc α of E2 and create a new
disc D̃. We define h : D̃ → X in the obvious way and note that h(∂D̃) = p′∪p,
so that we can replace D by D̃. We note that passing from D to D̃ we did
not change the inverse images of a, b. What we gained is that Ux is separated
from any y ∈ h−1({a, b}) by the arc β and h(β) is an interval of L1 that does
not contain c2.

We repeat this operation as follows: Let D̃ be the disc obtained at some
step and h : D̃ → X be such that h(∂D̃) = p′∪p. There is a finite set of points
x1 = x, x2, . . . , xn lying in h−1({a, b}) such that the corresponding open sets
Uxi

are disjoint and each xi is separated from any y ∈ h−1({a, b}) by some arc
γ such that h(γ) is an interval of L1 that does not contain c2. If there is still
some z ∈ h−1(a) that is not separated from some y ∈ h−1(b) by an arc γ as
above we choose a point z ∈ h−1({a, b}) in D̃ with the property that for every
y ∈ h−1({a, b}), such that Uy is not equal to some Uxi

, Uy intersects the same
component of ∂D̃−∂Uz. We repeat then the previous operation where z plays
now the role of x.

By repeating this operation a finite number of times we obtain a disc that
we still denote by D̃ and a map h : D̃ → X, with h(∂D̃) = p′ ∪ p which has
the following property: If x ∈ h−1(a) and y ∈ h−1(b) then there is a simple arc
γ separating x from y and h(γ) is an interval of L1 (with its endpoints on p′)
that does not contain c2. This however is impossible: there is a connected set
S ⊂ D̃ such that h(S) ⊃ [c1, d1]L2 . Since no arc γ as above intersects [a, b]L2

one sees easily that there are points x ∈ h−1(a) and y ∈ h−1(b) that are not
separated by any such arc. This contradiction proves Lemma A.3.3.

Clearly Lemmas A.3.1, A.3.2, A.3.3 imply Lemma A.3.

Remark A.3. There is a stronger form of Lemma A.3 that can be proved
in the same way. Although not needed here the ‘large scale’ version of it is
important and we state it here: I is an interval of intersection of L1, L2 if it is
a connected component of L1 ∩L2 that is not a single point. Now the stronger
version of Lemma A.3 is:
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Let L1, L2 be separating lines. Let a < b be two points of L1 lying
in L1 ∩ L2 such that each one of them is either a cross-point of L1, L2 or an
endpoint of an interval of intersection of L1, L2. Assume moreover that (a, b)L1

does not contain any cross-points of L1, L2. Let I1 = [a, b]L1 , I2 = [a, b]L2 .
Then I1 ∪ I2 separates X.

The following lemma is the main step in the proof of Theorem A.

Lemma A.4. Let C be a simple closed curve in X. Then C separates X.

Proof. We will need a technical definition:

Definition A.4. Let C be a simple closed curve in X and let L be a
separating line of X. Let x ∈ L − C. We say that a subpath of C, I, lying in
L̄+ (or in L−) is above x if the following are satisfied:

1) ∂I ⊂ L.

2) x lies in the interval of L determined by ∂I.

3) I is a maximal subpath satisfying 1), 2).

We say that x is an L-interior point of C if there is an odd number of subpaths
of C in L+ that are above x.

Remark A.4. Note that if C is a simple closed curve on the plane and
L is a straight line then an L-interior point of C lies inside C (i.e. lies in the
bounded component of (R2 − C)).

We have now some lemmas related to the above definition.

Lemma A.4.1. Let C be a simple closed curve and L a separating line
of X. Let x ∈ L − C. If there is an odd number of subpaths of C above x in
L+ then there is an odd number of subpaths of C above x in L−.

The proof is left to the reader.

Lemma A.4.2. Let C be a simple closed curve and let L be a separating
line of X separating a, b ∈ C. Then there is an x ∈ L − C such that x is an
L-interior point of C.

Proof. There is a y ∈ L such that there is at least one subpath I of C

above it in L+ and a subpath J above it in L−. Indeed, suppose this is not the
case. Let [c, d] be a maximal interval of L such that for each x ∈ (c, d)L − C

there is at least one subpath of C above x in L+. Then c, d are joined by a
subpath of C in L̄+. Indeed if not there is a subpath I of C in L+ such that at
least one endpoint of I lies in (c, d)L and every neighborhood of this endpoint
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in C does not lie in L̄+. Then there are points in L close to this endpoint such
that there are subpaths of C above them in L+ and in L−, a contradiction.
Now let C1 be the subpath joining c to d in L+. We may assume without loss
of generality that c < d in L. Now, C is oriented so that C1 is traversed from c

to d in the positive direction. If we now traverse C1, the subpaths of C after C1

lying in L+ intersect L in [d,∞) (otherwise [c, d] would not be maximal) and
by our hypothesis the same is true for the subintervals of C lying in L−. This
is clearly impossible; therefore there is a y ∈ L such that there are subpaths
of C above it both in L+ and in L−.

Assume now that y is not an L-interior point of C. Consider now the
subpaths of C above y in L+, L−. We traverse them successively and note that
there are two such paths I, J traversed successively such that I ∈ L+, J ∈ L−

(or the inverse). Say I = [a1, a2] ⊂ L+, J = [b1, b2] ⊂ L− traversed in the
order: a1 → a2 → b1 → b2. There is an ε > 0 such that C − [a1, b2]C is at
distance > ε from a2, b1. We consider then the points a2−ε, a2+ε, b1−ε, b1+ε

on L. We remark that the parity of the number of subintervals of C − [a2, b1]C
lying above a2 − ε and a2 + ε in L+ is different. The same is true for the
number of subintervals of C − [a2, b1]C lying above b1 − ε and b1 + ε in L−.

We note now that if a2 = b1 or [a2, b1]C = [a2, b1]L the above observations
imply that for at least one of a2−ε, a2 +ε, b1−ε, b1 +ε there is an odd number
of subintervals of C lying above it in L+ (in fact if a2 < b1 in L the parity of
such intervals is different for a2 − ε and b1 + ε while if a2 > b1 the parity of
such intervals is different for b1 − ε and a2 + ε).

Clearly the parity of the number of subintervals of C−[a2, b1]C lying above
points of [a2, b1]L −C in L+ or in L− remains constant. Indeed, otherwise the
parity of the number of subintervals of [a2, b1]C above points of [a2, b1]L − C

would have to change too. This would imply that C intersects itself on [a2, b1]L,
a contradiction.

Without loss of generality we suppose that for each point in [a2, b1]L − C

there is an odd number of subintervals of C − [a2, b1]C above it in L+ and
an even number of such subintervals in L−. We consider now the biggest
subinterval of L, [a, b]L,(say a < b on L) with the following properties:

1) [a2, b1]L ⊂ [a, b]L.
2) For all x ∈ [a, b]L − C the number of subintervals of [a2, b1]C above x

in L+ is odd.
If ([a, b]L −C)− ([a2, b1]L −C) = ∅ then the parity of the number of intervals
of C above a − ε, b + ε is different and we are done.

If ([a, b]L − C) − ([a2, b1]L − C) �= ∅ then there is a subinterval [x, y]L of
[a, b]L equal to a connected component of C ∩ [a, b]L (possibly reduced to a or
b) so that the parity of the number of subintervals of C above x − δ, y + δ is
different for some δ < ε chosen sufficiently small to ensure that x−δ, y+δ /∈ C.
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Lemma A.4.3. Let C be a simple closed curve in X and let L1, L2 be
separating lines. If x is a cross-point of L1, L2 then x is an L1-interior point
of C if and only if it is an L2-interior point of C.

Proof. Let p : S1 → C be a parametrization of C. We define a map f

from L1 
 L2 
 S1 to the plane as follows:
We map L1 to the x-axis in a length-preserving way. Then we map the

segments of L2 -((cross-points of L1, L2)∪(cross-intervals of L1, L2)) in L̄+
1

to the upper half-plane (y > 0) and the segments of L2 in L̄−
1 to the lower

(y < 0) half-plane. If (a, b) is such a segment lying in L̄+
1 we map it to the

polygonal line made out of three segments and having as vertices (f(a), 0),
(f(a), b− a)), (f(b), b− a)), (f(b), 0). Note that the image is the ‘open’ polyg-
onal line, so that (f(a), 0) and (f(b), 0) do not lie in the image of (a, b). The
map sends subsegments of L2 lying in L̄+

1 (or in L̄−
1 ) injectively on the plane.

If t is a cross-point of L1, L2 then we define f(t) by continuity so that f(t)
is a cross-point of f(L1), f(L2). We extend this map to the cross intervals of
L1, L2 in the obvious way and note that if t ∈ L2 is in L1 ∩ L2 but is not
a cross-point and does not lie on a cross-interval f(t) does not lie on f(L1).
Lemma A.3 ensures that we can find a map f from L1 
 L2 (satisfying the
above conditions) which maps L2 injectively on the plane.

We remark that f(L1), f(L2) are lines and they divide the plane in two
pieces. Also, a, b ∈ L1 are separated by L2 if and only if f(a), f(b) are separated
by f(L2). Indeed suppose that a, b ∈ L1 are not separated by L2. Then
they can be joined by a path p such that p ∩ L1 has finitely many connected
components and p ∩ L2 = ∅. We can write p as a union p = p1 ∪ · · · ∪ pk

where each pi lies in L̄+
1 or in L̄−

1 . By Lemma A.3.3 the endpoints of pi are not
separated in L̄+

1 (or in L̄−
1 ) by any interval of L2. This implies that their images

are not separated by an interval of f(L2). Therefore we can join f(a), f(b) by
a path which does not meet f(L2).

If there are a, b ∈ L1 which are separated by L2 such that f(a), f(b) are
not separated by f(L2) then by the argument above we have that L1 lies in
the closure of a single component of R2 − f(L2) which is impossible.

We will call f(L+
1 ) the component of R2 − f(L1) containing the images of

points of L2 that lie in L+
1 . We define similarly f(L−

1 ),f(L+
2 ),f(L−

2 ).
We explain now how to map S1 to the plane: We modify first p : S1 → X

as follows: Let q = [a, b] be an arc of S1 such that p(q) ⊂ L̄+
1 , p(q)∩L1 = p(∂q)

and x ∈ [p(a), p(b)]L1 . Let a, b be the endpoints of ∂q. We modify p so that it
becomes constant in an ε neighborhood of the a, b (we ‘thicken’ a, b to small
intervals).

Still calling the new map p, we then have p([a − ε, a + ε]) = p(a),
p([b − ε, b + ε]) = p(b) and p maps injectively the rest of S1 to C. We per-
form this modification for all arcs q as above and also for arcs with p(q) ⊂ L̄−

1
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or p(q) ⊂ L̄+
2 or p(q) ⊂ L̄−

2 and still call this map p. Clearly the image of
p is still C. Let q = [a + ε, b − ε] be an arc of S1 such that p(q) ⊂ L̄+

1 ,
p(q) ∩ L1 = p(∂q), x ∈ [p(a + ε), p(b − ε)]L1 and p(∂q) ∩ L2 = ∅. We can then
define p̄ : q → R2 so that the following holds:

1) For any t ∈ q, p(t) ∈ L+
2 if and only if p̄(t) ∈ f(L+

2 ) and p(t) ∈ L−
2 if and

only if p̄(t) ∈ f(L−
2 ).

2) p̄(q) ⊂ f(L+
1 ).

The existence of p̄ is an easy consequence of Lemma A.3.3. We note that p̄ is
not necessarily injective and define in this case p̄([a− ε, a + ε]) = p̄(a + ε) and
p̄([b − ε, b + ε]) = p̄(b − ε).

If q is an arc as above for which p(∂q)∩L2 �= ∅ then if p(∂q) intersects L2

only at cross-points of L1, L2 it is still possible to define p̄ on q so that 1), 2)
are satisfied. We explain what to do if an endpoint of q is an intersection point
of L1, L2 that is not a cross-point: Say p(a − ε) ∈ p(∂q) lies on an interval of
L2:[a1, a2]L2 where a1, a2 are cross-points of L1, L2 and [a1, a2]L2 lies in L̄+

1 or
in L̄−

1 .
If [a1, a2]L2 lies in L̄−

1 then we define p̄ on [a−ε, a+ε] so that p̄([a−ε, a+ε])
is an arc in f(L−

1 ) joining the image of a by f on f(L1) to the image of a by
f on f(L2) and which intersects f(L1 ∪ L2) only at its endpoints.

If [a1, a2]L2 lies in L̄+
1 then we define p̄ on [a−ε, a+ε] so that p̄([a−ε, a+ε])

is an arc in f(L+
1 ) joining the image of a by f on f(L1) to the image of a by

f on f(L2) and which intersects f(L1 ∪L2) only at its endpoints. We define p̄

similarly on [b − ε, b + ε] and finally on (a + ε, b − ε) so that conditions 1), 2)
above hold.

We define p̄ in the same way for all arcs which are as above but where L+
1

is replaced by one of L−
1 , L+

2 , L−
2 . It is possible that two such arcs overlap but

it is easy to see that we can define p̄ on the overlap in the same way for both
arcs.

We explain now how to extend p̄ to the rest of S1: Let (c, d) be a connected
component of S1 minus the union of arcs on which p̄ is already defined. If
both p(c), p(d) lie on L1 then p̄ is defined on (c, d) so that for any t ∈ (c, d),
p̄(t) ∈ f(L1) if and only if p(t) ∈ L1 and p̄(t) = f(p(t)) and so that if p̄(t) ∈ L2

then p(t) ∈ L2 and p̄(t) = f(p(t)). It is clear by Lemma A.3.3 that this can
be done. We define p̄ similarly if both p(c), p(d) lie on L2. Otherwise if, say
p(c) ∈ L1 and p(d) ∈ L2 then if p((c, d)) does not intersect L1 ∪ L2 we define
p̄ on (c, d) so that p̄([c, d]) is an arc joining p̄(c), p̄(d). This arc intersects
f(L1), f(L2) only at its endpoints. Otherwise we write [c, d] = [c, c1] ∪ [c1, d]
where one of [c, c1), (c1, d] intersects only one of the L1, L2 and the other has
both its endpoints on L1, L2. Finally we map each one of [c, c1], [c1, d] by p̄ as
described above. In all cases we have that for any t ∈ (c, d) if p̄(t) ∈ L1 then
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p(t) ∈ f(L1) and if p̄(t) ∈ L2 then p(t) ∈ f(L2). Also if either of these occurs
then p̄(t) = f(p(t)).

In this way we define p̄ on the whole of S1. We note now that by definition
x is an L1(L2)-interior point of C if and only if f(x) is an f(L1)(f(L2))-interior
point of p̄(S1). Since f(x) is an f(L1)-interior point of p̄(S1) if and only if it
is an f(L2)-interior point of p̄(S1) we have that x is an L1-interior point of C

if and only if x is an L2-interior point of C.

To finish the proof of Lemma A.4 we need to show that every path in X

can be approximated by ‘polygonal paths’, i.e. paths made out of intervals of
separating lines. We explain now how this can be done.

Let O ∈ X. Let t ∈ S1(O) (i.e. d(O, t) = 1). There is a line Lt separating
O from t. For each t ∈ S1(O) choose a line Lt separating t from O. Since X is
locally compact there is a finite set of lines S′ = {L1, . . . , Ln} such that each
point t ∈ S1(O) is separated from O by some Li. Suppose that this set of lines
is minimal with respect to this property. Clearly there is an ε > 0 such that:

a) d(Li, O) > ε for i = 1, . . . , n.

b) For every t ∈ S1(O) there is an Li separating t, O such that d(Li, t) > ε.

Denote by L̄+
i the closure of the component of X − Li that contains O and

denote by Ii the smallest interval of Li containing Li ∩ B1(O) (where i =
1, . . . , n).

We call S′ the set of all the Ii and let S be a maximal cross-connected
subset of S′. Note that the following holds: If x ∈ Is∩S1(O) is separated from
O by Lt then Is crosses It. Indeed let y ∈ S1(O) be a point that is separated
from O by Ls and is not separated from O by Lt. Let q be a geodesic joining
O to y and let y1, y2 be, respectively, the first and the last point of intersection
of q with Lt. Clearly if q intersects Ls before y1 then Is crosses It. We now
modify q by replacing [y1, y2]q with [y1, y2]Lt

. The new path still joins O to y,
so that it has to cross Ls. This clearly implies that there is a point of Is lying
in L+

t which in turn implies that Is crosses It.

Lemma A.4.4. X−S is disconnected and O lies in a bounded component
of X − S.

Proof. Without loss of generality we suppose that L1, . . . , Lk are the lines
in S. Let C be the component of O in X − (L1 ∪ · · · ∪ Lk). Note that ∂C

is connected. Indeed let a, b ∈ Li ∩ ∂C. There is path q joining a, b in C̄.
Consider q ∪ [a, b]Li

and a filling disc for this path, say f : D → X. Then,
as in Lemma A.1 we see that a, b are contained in the same component of the
boundary of the connected component of f−1(C) that contains q (or to be
precise f−1(q)∩∂D). It follows that a, b can be joined to each other by a path
lying in ∂C. Since S is cross-connected, ∂C is connected.
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Clearly ∂C cannot contain an infinite interval of some Li (i = 1, . . . , k).
In fact if an interval of some Li is contained in ∂C then it is either contained
in B1−ε(O) or it lies outside B1(O). Since ∂C is connected this implies that
∂C is contained in B1−ε(O); therefore it is contained in S.

Of course we could have made the same construction using Sδ(O) for any
δ > 0 instead of 1.

We return now to the proof of Lemma A.4. Let L be a line separating
two points a, b ∈ C. Then by Lemma A.4.2 there is an x ∈ L − C that is an
L-interior point of C. Let y ∈ L be a point such that L ∩ C ⊂ (−∞, y − 1)L.
Then y is not an L-interior point of C. We will show that any path joining x to
y intersects C. Indeed suppose not. Then there is a path p joining x to y and
a 1 > ε > 0 such that d(p, C) > ε, where d(p, C) = min{d(t, s)|t ∈ p, s ∈ C}.

Let δ > 0 be such that if t, s ∈ L and d(t, s) ≤ δ then [t, s]L is contained
in Bε(t). Note here that by our hypothesis that lines are f -lines, δ depends
only on ε and not on L. This is the only place where we use the hypothesis
that lines in this proof are f -lines.

As in Lemma A.4.4 for each point O ∈ p we pick a finite number of lines
separating O from Sδ(O). Using the compactness of p and Lemma A.4.4 we
see that there is a finite sequence of lines L1, . . . , Ln such that L crosses L1 at
x0, Lk crosses Lk−1 at xk−1 (k = 1 . . . n), Ln crosses L at xn, x0, x1, . . . , xn are
contained in the δ neighborhood of p and d(x0, x) < δ, d(xn, y) < δ.

By Lemma A.4.3 we have that x0 is an L-interior point of C if and only if
xn is an L-interior point of C. As d(x0, x) < δ, d(xn, y) < δ we conclude that
x, y are either both L-interior points of C or neither is an L-interior point of
C. This is clearly a contradiction and finishes the proof of Lemma A.4.

To prove Theorem A we will use Theorem 1. Since X is one-ended no pair
of points separates X. We can compactify X by adding one point at infinity.
Clearly the compact space obtained thus is not separated by any pair of its
points. We note that the argument of Lemma A.4 applies also to lines, so
that every line in X separates X. We conclude that each simple closed curve
in the space obtained by the one point compactification of X separates. So
by Theorem 1 this space is a sphere. Clearly then X is homeomorphic to the
plane.
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