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The uniqueness of the helicoid

By William H. Meeks III∗ and Harold Rosenberg

In this paper we will discuss the geometry of finite topology properly
embedded minimal surfaces M in R3. M of finite topology means M is home-
omorphic to a compact surface M̂ (of genus k and empty boundary) minus a
finite number of points p1, ..., pj ∈ M̂ , called the punctures. A closed neigh-
borhood E of a puncture in M is called an end of M . We will choose the ends
sufficiently small so they are topologically S1 × [0, 1) and hence, annular. We
remark that M̂ is orientable since M is properly embedded in R3.

The simplest examples (discovered by Meusnier in 1776) are the helicoid
and catenoid (and a plane of course). It was only in 1982 that another example
was discovered. In his thesis at Impa, Celso Costa wrote down the Weierstrass
representation of a complete minimal surface modelled on a 3-punctured torus.
He observed the three ends of this surface were embedded: one top catenoid-
type end1, one bottom catenoid-type end, and a middle planar-type end2 [8].
Subsequently, Hoffman and Meeks [15] proved this example is embedded and
they constructed for every finite positive genus k embedded examples of genus
k and three ends.

In 1993, Hoffman, Karcher and Wei [14] discovered the Weierstrass data
of a complete minimal surface of genus one and one annular end. Computer
generated pictures suggested this surface is embedded and the end is asymp-
totic to an end of a helicoid. Hoffman, Weber and Wolf [17] have now given
a proof that there is such an embedded surface. Moreover, computer evidence
suggests that one can add an arbitrary finite number k of handles to a heli-
coid to obtain a properly embedded genus k minimal surface asymptotic to a
helicoid.

For many years, the search went on for simply connected examples other
than the plane and helicoid. We shall prove that there are no such examples.

∗The research of the first author was supported by NSF grant DMS-0104044.
1Asymptotic to the end of some catenoid.
2Asymptotic to the end of some plane.
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Theorem 0.1. A properly embedded simply-connected minimal surface in
R3 is either a plane or a helicoid.

In the last decade, it was established that the unique 1-connected example
is the catenoid. First we proved such an example is transverse to a foliation of
R3 by planes [23], and then Pascal Collin [6] proved this property implies it is
a catenoid.

There is an important difference between M with one end and those with
more than one end. The latter surfaces have the property that one can find
planar or catenoid type ends in their complement. This limits the surface to
a region of space where it is more accessible to analysis. Clearly the helicoid
admits no such end in its compliment. To find planar and catenoidal type ends
in the compliment of an M with at least two ends, one solves Plateau problems
in appropriate regions of space and passes to limits to obtain complete stable
minimal surfaces. Then the stable surface has finite total curvature by [10],
and hence has a finite number of standard ends.

In addition to proving the uniqueness of the helicoid, we also describe the
asymptotic behavior of any properly embedded minimal annulus A in R3, A

diffeomorphic to S1 × [0, 1). We prove that either A has finite total Gaussian
curvature and is asymptotic to the end of a plane or catenoid or A has infinite
total Gaussian curvature and is asymptotic to the end of a helicoid. In fact, if
A has infinite total curvature, we prove that A has a special conformal analytic
representation on the punctured disk D∗ which makes it into a minimal surface
of “finite type” (see [12], [26], [27]). In this case the stereographic projection
of the Gauss map g : D∗ → C ∪ {∞} has finite growth at the puncture in the
sense of Nevanlinna. Since a nonplanar properly embedded minimal surface
in R3 with finite topology and one end always has infinite total curvature and
one annular end, such a surface always has finite type.

Theorem 0.2. Suppose M is a properly embedded nonplanar minimal
surface with finite genus k and one end. Then, M is a minimal surface of
finite type, which means, after a possible rotation of M in R3, that :

1. M is conformally equivalent to a compact Riemann surface M punctured
at a single point p∞;

2. If g : M → C ∪ {∞} is the stereographic projection of the Gauss map,
then dg/g is a meromorphic 1-form on M with a double pole at p∞;

3. The holomorphic 1-form dx3 + idx∗
3 extends to a meromorphic 1-form on

M with a double pole at p∞ and with zeroes at each pole and zero of g

of the same order as the zero or pole of g. The meromorphic function g

has k zeroes and k poles counted with multiplicity.

In fact, this analytic representation of M implies M is asymptotic to a helicoid.
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A consequence of the above theorem is that the moduli space of properly
embedded one-ended minimal surfaces of genus k is an analytic variety; we
conjecture that this variety always consists of a single point, or equivalently,
there exists a unique properly embedded minimal surface with one end for each
integer k.

Theorem 0.2 and the main theorem in [6] have the following corollary:

Corollary 1. If M is a properly embedded minimal surface in R3 of
finite topology, then each annular end of M is asymptotic to the end of a
plane, a catenoid or a helicoid.

The above corollary demonstrates the strong geometric consequences that
finite topology has for a properly embedded minimal surface. In particular,
the Gaussian curvature of M is uniformly bounded.

The validity of the following “bounded curvature conjecture” would show
that the hypotheses of Theorems 0.1 and 0.2 can be weakened by changing
“proper” to “complete”, since by Theorem 1.6, a complete embedded minimal
surface of bounded curvature is proper.

Conjecture 1. Any complete embedded minimal surface in R3 with
finite genus has bounded Gaussian curvature.

This paper is organized as follows. In Section 1 we establish the following
properties for minimal laminations of R3. A minimal lamination consists of
either one leaf, which is a properly embedded minimal surface, or if there
is more than one leaf in the lamination, then there are planar leaves. The
set of planar leaves P is closed and each limit leaf is planar. In each open
slab or halfspace in the complement of P there is at most one leaf of the
lamination, which (if it exists) has unbounded curvature and is proper in the
slab or halfspace. Each plane in the slab or halfspace separates such a leaf into
exactly two components. Furthermore, if the lamination has more than one
leaf, then each leaf of finite topology is a plane.

In Section 2 we begin the study of a properly embedded simply-connected
minimal surface M , which we will always assume is not a plane. The starting
point is the theorem of Colding and Minicozzi concerning homothetic blow-
downs of M . They prove that any sequence of homothetic scalings of M ,
with the scalings converging to zero, has a subsequence λ(i)M that converges
to a minimal foliation L in R3 consisting of parallel planes and such that
the convergence is smooth except along a connected Lipschitz curve S(L) that
meets each leaf in a single point. They also prove S(L) is contained in a double
cone C around the line passing through the origin and orthogonal to the planes
in L. Notice that if N is a properly embedded triply-periodic minimal surface,
then no sequence of homothetic blow-downs of N can converge to a lamination.
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Also notice that if N is a vertical helicoid, then any homothetic blow-down of
N is the foliation by horizontal planes and the singular set of convergence is
the x3-axis. In this section we prove that for a given M , a homothetic blow-
down L is independent of the choice of scalings converging to zero and that M

is transverse to the planes in L. In particular, the Gauss map of M omits the
two unit vectors orthogonal to the planes in L.

We denote the unique homothetic blow-down foliation of M by L(M),
which we may assume consists of horizontal planes. From the uniqueness
of L(M), we get the following useful picture of M in Section 2. Let C be
the vertical double cone mentioned above which contains the singular set of
convergence S(L(M)). There exists a solid hyperboloid H of revolution with
boundary asymptotic to the boundary of the cone C such that for W defined
to be the closure of R3 − H, W ∩ M consists of two multisheeted graphs of
asymptotically zero gradient over their projection on the x1x2-plane.

In Section 3 we prove that there is a positive integer n0 such that if G is
a minimal graph over a proper subdomain D in R2 × {0} with zero boundary
values and bounded gradient, then G can have at most n0 components that
are not contained in the x1x2-plane. Motivated by this result, Li and Wang
[19] have shown that one can drop our bounded gradient hypothesis and still
obtain the finite connectivity property for G. In Section 4 we use our finite
connectedness result, on minimal graphs of bounded gradient and our descrip-
tion of W ∩ M , to prove that each plane in L(M) intersects M transversely
in one proper arc. Furthermore, we prove in Theorem 4.4, using results in [7],
that M can be conformally parametrized by C and in this parametrization the
third coordinate function can be expressed as x3 = Re(z). In Section 5 we use
Theorem 4.4 and the uniqueness of L(M) to prove that the stereographically
projected Gauss map is g(z) = eaz+b from which it follows that M is a vertical
helicoid. In Section 6 we prove that if M has finite genus and one end, then
M is a surface of finite type.

1. Minimal laminations of R3

A closed set L in R3 is called a minimal lamination if L is the union
of pairwise disjoint connected complete injectively immersed minimal surfaces.
Locally we require that there are C1,α coordinate charts f : D×(0, 1) → R3, 0 <

α < 1, with L in f(D× (0, 1)) the image of the D×{t}, t varying over a closed
subset of (0, 1). The minimal surfaces in L are called the leaves of L.

A leaf L of a minimal lamitation L is smooth (even analytic), and if K is
a compact set of an L which is a limit leaf of L, then the leaves of L converge
smoothly to L over K; the convergence is uniform in the Ck-topology for any k.

Our work will depend upon the following (very important) curvature es-
timates of Colding and Minicozzi [4], which we will refer to as the curvature
estimates C. There exists an ε > 0 such that the following holds. Let y ∈ R3,



THE UNIQUENESS OF THE HELICOID 731

r > 0 and Σ ⊂ B2r(y) ∩ {x3 > x3(y)} ⊂ R3 be a compact embedded minimal
disk with ∂Σ ⊂ ∂B2r(y). For any connected component Σ′ of Br(y) ∩ Σ with
Bεr(y) ∩ Σ′ �= Ø, one has supΣ′ |AΣ′ |2 ≤ r−2.

A consequence of these curvature estimates is the following. Let Σ be any
compact smooth surface passing through the origin with boundary contained
in the boundary of the ball B(1) of radius one centered at the origin. There
is an ε and a constant c such that if D is an embedded minimal disk in B(1),
disjoint from Σ, and with boundary contained in the boundary of B(1), then in
B(ε), the curvature of D is bounded by c. This can be seen by homothetically
expanding Σ; the ε depends on the norm of the second fundamental form of Σ
in the ball B(1

2). In our applications Σ will be a stable minimal disk for which
one always has a bound on the norm of the second fundamental form in B(1

2),
by curvature estimates for stable surfaces.

In this section we will prove a general structure theorem that explains
some of the geometric properties that hold for a minimal lamination L of R3.
A properly embedded minimal surface is the simplest example of a minimal
lamination.

The only known examples of minimal laminations of R3 with more than
one leaf are closed sets of parallel planes in R3 and the second author conjec-
tures that these are the only ones. In fact, we will prove that in the case L has
more than one leaf, then every leaf of L with finite topology is a plane.

We say that a minimal surface M in R3 has locally bounded curvature if the
intersection of M with any closed ball has Gaussian curvature bounded from
below by a constant that only depends on the ball. Every leaf L of a minimal
lamination L of R3 has locally bounded Gaussian curvature. The reason that
the curvature is locally bounded is that the intersection of L with a closed ball
is compact and the Gaussian curvature function is continuous.

Lemma 1.1. Suppose M is a complete connected embedded minimal sur-
face in R3 with locally bounded Gaussian curvature. Then one of the following
holds:

(1) M is properly embedded in R3;

(2) M is properly embedded in an open halfspace of R3 with limit set the
boundary plane of this halfspace;

(3) M is properly embedded in an open slab of R3 with limit set consisting of
the boundary planes.

Proof. Let xn be any sequence of points in M , converging to some x in R3.
Since M has locally bounded curvature, there is a δ = δ(x) such that for n

sufficiently large, M is a graph Fn over the disk Dδ(xn) in the tangent plane
to M at xn, of radius δ and centered at xn. Moreover each such local graph
Fn has bounded geometry.



732 WILLIAM H. MEEKS III AND HAROLD ROSENBERG

Choose a subsequence of the xn so that the tangent planes to M at the
subsequence converge to some plane P at x. Then the Fn of this subsequence
will be graphs (for n large) over the disk D of radius δ/2 in P centered at x.
By compactness of minimal graphs, a subsequence of the Fn will converge to
a minimal graph F∞ over D, x ∈ F∞.

Notice that F∞ at x does not depend on the subsequence of the xn. If
yn ∈ M is a sequence converging to x with the tangent planes of M at yn

converging to a plane Q at x. Then P = Q and the local graphs Gn of M

at yn converge to F∞ as well. If this were not the case then F∞ and G∞
would cross each other near x (i.e, x ∈ F∞ ∩ G∞ and the maximum principle
implies there are points of F∞ ∩ G∞ near x where they meet transversely).
Now F∞ is the uniform limit of the graphs Fn and G∞ is the uniform limit
of the graphs Gn so near a point of transverse intersection of F∞ and G∞ we
would have Fi intersecting Gj transversely for i, j large. This contradicts that
M is embedded. Notice also that each Fn is disjoint from F∞; this follows by
the same reasoning as above. Thus we have a local lamination contained in
the closure M of M .

Each point y ∈ ∂F∞ is also an accumulation point of M so there is a limit
graph F∞(y) over a disk of radius δ(y) centered at y. By uniqueness of limits,
F∞(y) = F∞ where they intersect. Thus F∞ may be continued analytically
to obtain a complete minimal surface in M̄ . The lamination L is obtained by
taking the closure of all the limit surfaces so obtained.

Next we will prove that any limit leaf of L is a plane.
Let L be a limit leaf and L̂ the universal covering space of L. The expo-

nential map of L is a local diffeormorphism and there is a normal bundle ν

over L̂, of varying radius, that submerses in R3. Give ν the flat metric induced
by the submersion; L̂ is the zero section of ν.

Let D̂ be a compact simply-connected domain of L̂, D its projection into L.

Each point of D has a neighborhood that is a uniform limit of (pairwise disjoint)
local graphs of M . The usual holomony construction allows one to lift these
local graphs along the lifting of paths in D to obtain D̂ as a uniform limit of
pairwise-disjoint embedded minimal surfaces En in ν.

It is known that any compact domain F (here F = D̂) that is a limit of
disjoint minimal domains En is stable. Here is a proof. If F were unstable, the
first eigenvalue λ1 of the stability operator L of the minimal surface F (here
L = ∆− 2K) is negative. Let �n denote the unit normal vector field along F in
ν and f the eigenfunction of λ1, L(f) + λ1f = 0, f > 0 in F and f = 0 on ∂F.

Consider the variation of F : F (t) = {x + tf(x)�n(x) | x ∈ F}. The first
variation Ḣ(0) of the mean curvature of F (t) at t = 0 is given by L(f). Since
λ1 < 0, and f(x) > 0 for x ∈ Int(F ), it follows that the mean curvature vector
of F (t), for t small, points away from F , i.e, 〈 �Ht(x), �n(x)〉 > 0.

Now for t0 small, choose n large so that E(n) is close enough to F so there
is a nonempty intersection of F (t0) and E(n). As t decreases from t0 to 0, the
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F (t) go from F (t0) to F . So there will be a smallest positive t so that D(t)
has a nonempty intersection with E(n). Let y ∈ F (t) ∩ E(n). Near y, E(n)
is on the mean convex side of F (t). Since E(n) is a minimal surface, this is
impossible.

Hence, by the stability theorem of Fischer-Colbrie and Schoen [11] or do
Carmo and Peng [9], L̂ is a plane, hence L as well, and so each limit leaf of L
is a plane. Lemma 1.1 follows immediately from the fact that the limit leaves
of L are planes.

Remark 1.2. F. Xavier [29] proved that a complete nonflat immersed min-
imal surface of bounded curvature in R3 is not contained in a halfspace. Hence,
if one replaces “locally bounded curvature” by “bounded curvature,” the pos-
sibilities 2 and 3 cannot occur in Lemma 1.1.

Lemma 1.3. Suppose M is a complete connected embedded minimal sur-
face in R3 with locally bounded curvature. If M is not proper and P is a limit
plane of M , then, for any ε > 0, the closed ε-neighborhood of P intersects M

in a connected set and the curvature of this set is unbounded.

Proof. Suppose P is a limit plane of M and, to be concrete, suppose P

is the x1x2-plane and that M lies above P . Let P (ε) be the plane at height
ε and suppose that M intersects the closed slab S between P and P (ε) in at
least two components M(1), M(2). By Sard’s theorem, we may assume that
P (ε) intersects M transversely. We know that M is proper in the open slab
between P and P (ε) since through any accumulation point of M in the open
slab there would pass a limit plane of M .

Let R be the region of S − P bounded by M(1) ∪ M(2). Since P is a
limit plane of both M1 and M2, then R is a complete flat 3-maniflold whose
boundary is a good barrier for solving Plateau problems (see [24]). Consider a
smooth compact exhaustion Σ(1),Σ(2), . . . ,Σ(n), . . . of M(1). Let Σ̃(i) ⊂ R

with ∂Σ̃(i) = ∂Σ(i) be least-area surfaces Z2-homologous to Σ(i) in R. Stan-
dard curvature estimates and local area bounds imply that a subsequence of
the Σ̃(i) converges to a complete properly embedded stable minimal surface
Σ in R with boundary ∂M(1). Since R is proper in S − P and since S − P

is simply-connected, Σ separates S. Therefore, Σ is orientable and the curva-
ture estimates of Schoen [28] then imply curvature estimates at any uniform
distance from P (ε).

By the Halfspace Theorem in [16], or rather its proof, Σ cannot be proper
in S. As in the previous lemma, the limit set of Σ is a plane P ′ ⊂ S, and clearly
P ′ = P . Since Σ has curvature estimates near P , there exists a δ, 0 < δ < ε/2,
such that the normal lines to Σ(δ) = Σ∩{(x1, x2, x3) | 0 < x3 < δ} are close to
vertical lines. Hence, the orthogonal projection π : Σ(δ) → P is a submersion
onto its image. Furthermore, given any compact disk D ⊂ P, every component
of π−1(D) is compact. Using this compactness property, and a slight variation
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of the following lemma, it follows that π is injective on each component ∆
of Σ(δ). Therefore, ∆ is proper graph in S, which we observed before cannot
occur. This argument gives a contradiction and the end of the argument proves
that M has unbounded curvature in S.

Lemma 1.4. Suppose M and N are smooth connected manifolds of the
same dimension such that N is simply-connected and M may have boundary.
If π : M → N is a proper submersion onto its image and π|∂M is injective on
each boundary component of M , then π is injective. In particular, if M is a
smooth immersed surface with boundary in R3, the projection π : M → R2 to
the x1x2-plane is a proper submersion onto its image and π|∂M is injective,
then M is a graph over π(M) ⊂ R2 × {0}.

Proof. If M has no boundary, then π : M → N is a connected covering
space and the lemma follows since N is simply-connected.

If ∂ is a boundary component of M , then π(∂) is a properly embedded
codimension-one submanifold of N . Since N is simply-connected, π(∂) sepa-
rates N into two open components. We label these components of N − π(∂)
by C(M) and C(∂), where C(M) is the component such that the closure of
π−1(C(M)) contains ∂ as boundary component. Now consider the quotient
space M̂ obtained from the disjoint union of M with all the closures of C(∂α),
∂α a boundary component of M , with identification map π, π : ∂M → ∪C(∂α).
Let π̂ : M̂ → N be the natural projection that extends π on M ⊂ M̂ . It is
straighforward to check that π̂ is a connected covering space of N . Since N is
simply-connected, π̂ is injective which proves the lemma.

Lemma 1.5. If M is a complete embedded minimal surface in R3 with
finite topology and locally bounded curvature, then M is properly embedded
in R3.

Proof. Suppose now that M has finite topology and lies in the upper
halfspace of R3 with limit set the x1x2-plane P . If M has bounded curvature
in some ε-neighborhood of P , then it was proved above that M is proper in
this neighborhood and has a plane in its closure. This is impossible by the
Halfspace Theorem. It remains to prove that M has bounded curvature in an
ε-neighborhood of P .

Arguing by contradiction, assume that M does not have bounded curva-
ture. In this case, there is an annular end E ⊂ M whose Gaussian curvature
is not bounded in the slab S = {(x1, x2, x3) | 0 ≤ x3 ≤ 1}. After a homoth-
ety of M , we may assume that ∂E is contained in the ball B0 of radius one
centered at the origin. Since M has locally bounded curvature, the part of E

inside B(0) has bounded curvature.
Since E ∩ S does not have bounded curvature, there exists a sequence

p(1), . . . , p(i), . . . in E ∩ S with ‖p(i)‖ ≥ i and |K(p(i))| ≥ i. After possibly
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rotating M around the x3-axis and choosing a subsequence, we may assume
that the sequence (5/‖p(i)‖) · p(i) converges to the point (5, 0) in the x1x2-
plane. Let B be the ball of radius one in the x1x2-plane and centered at (5, 0).
Notice that there is no compact connected minimal surface with one boundary
curve in B0 and the other boundary curve in B (pass a catenoid between B0

and B). Using the convex hull property of a compact minimal surface, it is easy
to check that [(5/‖p(i)‖)E]∩B consists only of simply-connected components
which are disjoint from the boundary of (5/‖p(i)‖)E. The curvature estimates
C defined at the beginning of this section imply that, as i → ∞, the curvature
of (5/‖p(i)‖)E at (5/‖p(i)‖)·p(i) converges to 0. But the Gaussian curvature at
such points approaches −∞ as i → ∞. This contradiction proves the lemma.

The next theorem follows immediately from the previous lemmas.

Theorem 1.6. Suppose L is a minimal lamination of R3. If L has one
leaf, then this leaf is a properly embedded surface in R3. If L has more than
one leaf, then L consists of the disjoint union of a nonempty closed set of
parallel planes P ⊂ L together with a collection of complete minimal surfaces
of unbounded Gaussian curvature that are properly embedded in the open slabs
and halfspaces of R3 −P and each of these open slabs and halfspaces contains
at most one leaf of L. In this case every plane, parallel to but different from
the planes in P, intersects at most one of the leaves of L and separates such a
leaf into two components. Furthermore, in the case L contains more than one
leaf, the leaves of L of finite topology are planes.

Remark 1.7. Meeks, Perez and Ros [20] have shown that the properness
conclusion of Lemma 1.5 holds if M has finite genus and locally bounded
curvature. In particular, by Theorem 1.6, if L is a minimal laminiation of
R3 with more than one leaf, then the leaves of L of finite genus are planes.
Theorem 1.6 and its aforementioned generalization by Meeks, Perez and Ros
plays an important role in recent advances in classical minimal surface theory
([20], [21], [22]).

2. The transversality of the homothetic blow-down L of M with M

The main goal of this section is to prove that M is transverse to any
homothetic blow-down of M . To accomplish this we will need the following
theorem which is due to Colding and Minicozzi [4].

Theorem 2.1. Let Σi ⊂ BRi
⊂ R3 be a sequence of embedded minimal

disks with ∂Σi ⊂ ∂BRi
where Ri → ∞. If supB1∩Σi

|A|2 → ∞, then there exists
a subsequence, Σj , and (after a rotation of R3) a Lipschitz curve S : R → R3
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with x3(S(t)) = t so for any α < 1 the sequence Σj\S are multi -valued graphs
and converges in the Cα-topology to the foliation, F = {x3 = t | t ∈ R}, of R3.
Moreover, for all r > 0, t, then supBr(S(t))∩Σj

|A|2 → ∞.

Theorem 2.2. Suppose M is a properly embedded nonflat simply-con-
nected minimal surface in R3 and λ(i) ∈ R+ with λ(i) → 0. Then:

(1) A subsequence M(ij) of the surfaces λ(i)M converges to a foliation L of
R3 by planes, which is independent of the sequence λ(i) → 0. The sense
of convergence will be made clear in the proof.

(2) The planes in L are transverse to M . In particular, the Gauss map of
M misses the pair of unit vectors orthogonal to the planes in L.

Proof. Given a sequence λ(i) ∈ R+, λ(i) → 0, define the related sequence
M(i) = λ(i)M . Given any ball B ⊂ R3, every boundary component of ev-
ery component of M(i) ∩ B bounds a disk in M(i), which is contained in B

by the convex ball property; hence, every component of M(i) ∩ B is simply-
connected. Also note that in arbitrarily small neighborhoods of the origin
every subsequence of the surfaces {M(i)}i∈N fails to have bounded curvature.
Although it is not stated in the hypothesis of Theorem 2.1 that the simply-
connected surfaces Σi need not be connected, the conclusion of Theorem 2.1
still holds under this weaker hypothesis.

It follows that for any sequence λ(i) ∈ R+, λ(i) → 0, a subsequence
M(ij) = λ(ij)M converges to a foliation L of R3 by parallel planes. Further-
more, the convergence M(ij) → L is smooth except along a Lipschitz curve
S(L). The curve S(L) passes through the origin and is contained in a double
cone C = C(L) with cone point at the origin and axis orthogonal to L. Fur-
thermore, the aperature of the cone C only depends on the Lipschitz constant
of S(L) which, in turn, depends only on curvature estimates C defined at the
beginning of Section 1. Colding and Minicozzi also prove a unique extension
result, Theorem 0.2 of [2] for the multigraphs M(ij) that begin around S(L)
near the origin. Specifically, they prove that these beginning flat multigraphs
extend all the way to infinity as flat multigraphs with well-defined limiting
normal vector and consequently: L is independent of the sequence λ(i) → 0.

This proves statement 1 in Theorem 2.2.
Assume now that L is the foliation of R3 by horizontal planes. Let E

be the compact vertical cylinder centered along the x3-axis and such that
E ∩ C = E ∩ ∂C = ∂E, which consists of the circles S+ = ∂C ∩ {(x1, x2, 1)}
and S− = ∂C ∩ {(x1, x2,−1)}.

Assume that the sequence M(i) converges to L with singular set S(L).
For each i large, M(i) ∩ E consists of a positive finite number of compact
arcs α(i, 1), . . . , α(i, n(i)) with one end point on each boundary curve of E,
a finite number of boundary arcs β(i, 1), . . . , β(i, k(i)) with end points in the
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same component of ∂E and another subset which consists of a finite set of
points. For i large, the tangent lines of the associated α and β curves are
almost horizontal and each β arc is a graph over its projection to the boundary
component of E containing its end points. As i → ∞, the associated β curves
converge to the graphs of a constant function with a value of ±1. For i large,
each associated α curve is a high order multisheeted graph over its projection
on S− with winding number going to infinity as i → ∞. Colding and Minicozzi
[4] have proven that the number of α curves is two, which simplifies some of the
arguments that follow. However, we will not use this fact and instead prove
this fact at the end of the proof of Theorem 2.2.

Let Ẽ(i) be the closure of the component of E −
k(i)⋃
j=1

β(i, j) that contains

the α curves. After a small deformation of the top and bottom curves of Ẽ(i)
into Ẽ(i), these new curves γ(i,+), γ(i,−) bound a cylinder E(i) ⊂ E such
that E(i) intersects M(i) only along the old α curves and E(i) intersects each
α curve in a connected arc. We will assume that in this construction, γ(i,+)
and γ(i,−) converge C1 to the original boundary curves of E as i → ∞.

After a small C1-perturbation of the horizontal circle foliation of E(i), we
may assume that γ(i,+) and γ(i,−) are leaves of the perturbed foliation and
that each leaf of the induced foliation by closed curves on E(i) intersects each
α-type curve transversely in a single point. Fix a parametrization γ(i, t) of the
leaves of this foliation of E(i), −1 ≤ t ≤ 1, such that γ(i, t) is approximately a
horizontal circle at height t and such that for any fixed t, γ(i, t) converges C1

to the circle of height t on E as i → ∞.
Since each γ(i, t) is a graph over the convex circle S− in the plane

{(x1, x2,−1)}, Rado’s theorem [18] implies that each γ(i, t) is the boundary of
a unique minimal disk D(i, t) which is a graph over the disk {(x1, x2, x3) | x2

1 +
x2

2 ≤ 1, x3 = −1}. These disks D(i, t) vary in a C1-manner with the parameter
t and give rise to a C1-foliation of the solid “cylinder” W (i) =

⋃
−1≤t≤1

D(i, t).

Furthermore, as ∂D(i, t) converges C1 to the circle on E of height t, these
foliations of W (i) converge in the C1-norm to the foliation by horizontal disks
of the solid cylinder with boundary E.

By Sard’s theorem, we may assume that the disks D(i,±1), D(i,±1
2)

are each transverse to M(i) ∩ W (i). We now prove that each disk D(i, t),
−1

2 ≤ t ≤ 1
2 , is transverse to M(i) for i large. Suppose to the contrary that

there exists a sequence t(ij), −1
2 < t(ij) < 1

2 , such that D(ij , t(ij)) intersects
a disk component K(ij) of M(ij) ∩ W (ij) nontransversely. After replacing by
a subsequence, we will assume that ij = i.

Since D(i, t(i)) ∩ K(i) is an analytic subset of K(i) with a singularity at
an interior point of K(i), this subset separates the disk K(i) into at least four
components, with at least two components on each side of D(i, t(i)). To see
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this, first note that each component of K(i)−D(i, t(i)) contains points on the
associated α curves. The reason for this is that if ∆ ⊂ [K(i) − D(i, t(i))] is
a connected component with boundary disjoint from E(i), then there exists a
closed curve γ in [K(i) ∩ D(i, t(i))] − ∂D(i, t(i)). The curve γ bounds a disk
∆̃ in K(i) that is contained in W (i) by the convex hull property for i large.
Since D(i, 1) and D(i,−1) are disjoint from ∆̃, there is a highest or lowest
graph D(i, t0) such that D(i, t0) ∩ ∆̃ �= Ø. Since t0 �= t(i), the disk D(i, t0)
intersects ∆̃ with ∆̃ on one side of D(i, t0), which contradicts the maximum
principle for minimal surfaces. This proves that for W (i, 1

2) =
⋃
1
2
≤t

D(i, t), the

set K(i) ∩ W (i, 1
2) consists of at least two components, K(i, 1), K(i, 2), each

with associated α-type curves in their boundary.
Without loss of generality, we may assume that the disk D(i, 2

3) ⊂ W (i, 1
2)

intersects K(i, 1) and K(i, 2) transversely. Let γ(i) be one of the arcs in
K(i, 1) ∩ D(i, 2

3) or in K(i, 2) ∩ D(i, 2
3). Since ∂D(i, 2

3) intersects each α-type
curve in E(i) in a single point, the end points of γ(i) lie on different α-type
curves on ∂W (i, 1

2). Since M(i) separates R3, for i large the unit normals to
M(i) at the points of ∂D(i, t) ∩ M(i) alternate up and down as one traverses
∂D(i, t). In particular, for every such γ(i) there is a point p(γ(i)) on γ(i) where
the Gauss map is horizontal.

Since, away from the singular set S(L), all the points of M(i) have normal
vectors converging to the vertical, the points p(γ(i)) on M(i) converge to the
point S(2

3) = S(L) ∩ {q ∈ R3 | x3(q) = 2
3} as i → ∞. Hence, for any

ε > 0 the maximum absolute curvature in the ε-neighborhood of the p(γ(i))
in either K(i, 1) or K(i, 2) goes to infinity as i → ∞. Since D(i, 1

2) converges
to the horizontal disk of height 1

2 , there exists an ε > 0 such that for i large,
d(S(2

3), ∂W (i, 1
2)) > ε. A theorem of Meeks-Yau [24] implies that ∂K(i, 1)

bounds a stable embedded minimal disk F (i) in the closure of the component
of W (i, 1

2)−[K(i, 1)∪K(i, 2)] containing K(i, 1)∪K(i, 2) in its boundary. Since
K(i, 1) and K(i, 2) each have S(2

3) as a limit coming from the points p(γ(i))
and F (i) separates K(i, 1) and K(i, 2) in the topological ball W (i, 1

2), there
are points q(i) ∈ F (i) converging to S(2

3) as i → ∞. But then the curvature
estimates for stable minimal surfaces in [28] imply that the Gaussian curvature
of the collection of F (i) is uniformly bounded near S(2

3) and so the curvature
estimates C defined at the beginning of Section 1 imply that the curvatures of
K(i, 1) and of K(i, 2) are uniformly bounded in some fixed neighborhood of
S(2

3) for i large, which we observed at the beginning of this paragraph leads to
a contradiction. This contradiction proves that every disk D(i, t), −1

2 ≤ t ≤ 1
2 ,

is transverse to M(i) for i large.
Let W̃ (i) =

⋃
− 1

2
≤t≤ 1

2

D(i, t). Now consider the homothetic expansions

(1/λ(i))W̃ (i) with the related foliations F(i) obtained from homothetically
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expanding the disks D(i, t), −1
2 ≤ t ≤ 1

2 , by the factor 1/λ(i). The foliations
F(i) converge in the C1-norm to the foliation of R3 by horizontal planes, which
is L. Since the leaves in F(i) are transverse to M and the Gauss map of M

is an open mapping, the planes in L must be transverse to M . This proves
statement 2 that M is transverse to L.

For the sake of completeness, we now prove that for i large, the number
n(i) of α-type arcs equals two. A slight modification of the arguments used
to prove the transversality of the planes in L with M shows that for i large
M ∩ W̃ (i) is a connected disk K(i). The disk K(i), for i large, has bound-
ary consisting of n(i) α-type curves. The parametrized disk foliation of W̃ (i)
induces a natural parameter function F : W̃ (i) → [−1

2 , 1
2 ] restricted to K(i).

Since the leaves D(i, t) are transverse to K(i), F |K(i) has no interior critical
points. By elementary Morse theory, the lack of interior critical points for
F |K(i) implies n(i) is two.

This completes the proof of Theorem 2.2.

Uniqueness of the homothetic blow-down L(M) implies strong asymptotic
convergence properties for M outside the cone C associated to L(M). For the
remainder of this section we will assume that L(M) is the foliation of R3 by
horizontal planes.

Definition 2.1. Let H be a solid hyperboloid of revolution with boundary
asymptotic to the boundary of the cone C and let K = H ∩ M . We define W
to be the closure of R3 −H.

Theorem 2.3. After a possible homothety of M , M∩W is a multisheeted
graph over its projection onto the x1x2-plane with two simply-connected compo-
nents, M(1), M(2), each with one boundary component which is a proper arc.
After choosing an orientation of M , for any divergent sequence of points in
M(1), the sequence of unit normal vectors at these points converges to (0, 0, 1)
and for any divergent sequence of points in M(2) the unit normals converge
to (0, 0,−1). In particular, the multisheeted graphs M(1), M(2) have asymp-
totically zero gradient and sublinear growth. Note that K = M − [Int(M(1)) ∪
Int(M(2))] is a strip in M .

Proof. Fix a divergent sequence of points {p(i)} ∈ M ∩ W and consider
the associated sequence (1/‖p(i)‖)M = M(i) of homothetic scalings of M .
If the normal line of M at p(i) does not converge to a vertical line, then
the points q(i) = p(i)/‖p(i)‖ must have a subsequence q(ij) that converges
to a point q ∈ S2 − Int(C). Since L(M) is a foliation by horizontal planes,
any convergent subsequence of M(ij) must have q as a singular point. But
q /∈ Int(C) which contradicts the property that the singular set of convergence
is contained in Int(C)∪{(0, 0, 0)}. This contradiction proves that outside some
compact subset of M ∩ W, the Gauss map of M is bounded away from the



740 WILLIAM H. MEEKS III AND HAROLD ROSENBERG

horizontal. Hence, after a homothety of M , we may assume that the Gauss
map on M ∩ W is bounded away from the horizontal and is asymptotic to
the vertical. By the last paragraph in the proof of Theorem 2.2, ∂(M ∩ W)
has two boundary curves and hence M ∩W consists of two components which
are multisheeted graphs over their projections to the x1x2-plane. Since M

separates R3, these two multisheeted graphs have opposite orientations. The
theorem now follows from these observations.

3. Finiteness of minimal graphs of bounded gradient

The main theorem of this section concerns nontrivial minimal graphs with
bounded gradient and zero boundary values.

Theorem 3.1. Suppose that G is a minimal graph of a function f defined
on a proper domain D of Rn. Assume f has zero boundary values and the
gradient of f is bounded. Then there are at most a finite number of components
of D where f is nonconstant.

It is a conjecture of Meeks that in dimension two a graph G with non-
planar components described above has at most two components and only one
component in the sublinear growth case.

Note that the theorem follows by proving the special case where the func-
tion f is nonnegative. We will consider positive minimal graphs u over a
possibly disconnected domain D of Rn, with zero boundary values. Let Hd

denote graphs over D whose growth is at most polynomial of degree d; i.e., a
graph u is in Hd if there is some constant C > 0 such that

|u(x)| ≤ C(1 + rd),

where r = ‖x‖ is the Euclidean norm. The proof of Theorem 3.1 is inspired
by the techniques in the paper [5].

The paper of Colding and Minicozzi [5] solves affirmatively a conjecture
of Yau: On an open complete manifold with nonnegative Ricci curvature, the
space of harmonic functions with polynomial growth of a fixed rate, is finite
dimensional. More generally, they prove this result for open complete manifolds
which have the doubling property (a volume growth condition) and satisfy a
uniform Neumann-Poincaré inequality. Both of these conditions hold for Rn

with the canonical metric.
Harmonicity is used in their proof only to obtain a reverse Poincaré in-

equality.

Reverse Poincaré inequality. If Ω > 1, there is a constant C = C(Ω) such
that if u is harmonic on M , p ∈ M and r > 0, then

r2

∫
Bp(r)

|∇u|2 ≤ C

∫
Bp(Ωr)

u2.
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A reverse Poincaré inequality also holds for solutions of uniformly quasi-
elliptic operators L in divergence form on Rn. (The minimal surface operator is
not of this type.) Colding-Minicozzi use this to show the space of L-harmonic
functions on Rn, with polynomial growth of a fixed rate, is finite dimensional.

Now suppose u is a minimal graph over a domain D of Rn with zero
boundary values. Extend u to Rn to be zero on the complement of D and
denote this extension by u as well. Clearly the extended u is not an entire
minimal graph over Rn but it is reasonable to believe the space of such u is
finite dimensional. We remark that the minimal graph operator is

L(u) = div(∇u
w ), w =

√
1 + |∇u|2,

and this operator is not quite in the form considered in [5]. This leads to the
gradient bound we have as hypothesis.

Definition 3.1. Let B(r) denote the ball of radius r centered at the origin
of Rn, and W 2,1(B(r)) be the (2, 1) Sobolev space on B(r). Following [5], we

define Wk2(B(r)) = {u ∈ W 2,1(B(r)) |
∫

B(r)
u2 + r2

∫
B(r)

|∇u|2 ≤ k2}.

A set {fj} ⊂ W 2,1(B(r)) is orthonormal on B(r) if∫
B(r)

fifj = δj
i .

We state a special case of Proposition 2.5 in [5].

Proposition 3.2. Given k > 0, there exists an N = N(k2) > 0 such that
there exist at most N − 1 functions in Wk2(B(2R)), that are orthonormal on
B(R).

We refer to [5] for the proof; they prove the more general result on open
complete manifolds satisfying the doubling property and a uniform Neumann-
Poincaré inequality.

Let P (d) denote the space of functions u on Rn such that there exists
K > 0 so that ∫

B(r)
u2 ≤ K(r2d+n + 1).

Clearly if u is the entire extension of a minimal graph with zero boundary
values, and u ∈ Hd, then u ∈ P (d).

We quote the result:

Proposition 3.3 ([5, 4.16]). Suppose u1, . . . , u2l ∈ P (d) are linearly in-
dependent. Given Ω > 0 and m0 > 0, there exists m ≥ m0, l̂ ≥ l

2Ω−4d−2n,
and functions v1, . . . , vl̂ in the linear span of the ui such that∫

B(Ωm+1)
vj

2 ≤ 2Ω4d+2n,
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and ∫
B(Ωm)

vivj = δj
i .

Finally, we need a version of the

Reverse Poincaré inequality. Let u be the entire extension of a minimal
graph with zero boundary values. Let C = C(u) be a positive upper bound
for |∇u|. For λ > 1, one has

r2

∫
B(r)

|∇u|2 ≤ 4c

(λ − 1)2

∫
B(λr)

u2,

where c =
√

1 + C(u)2.

Proof. We know that u satisfies the equation L(u) = div (∇u
w ) = 0, w =√

1 + |∇u|2. Let φ be a cut-off function on B(λr), φ = 1 on B(r), φ = 0 on
∂B(λr) and |∇φ| ≤ 1

r(λ−1) . Then

div
(

φ2u
∇u

w

)
=φ2u div

(∇u

w

)
+

〈
∇(φ2u),

∇u

w

〉
= 2φu

〈
∇φ,

∇u

w

〉
+ φ2

〈
∇u,

∇u

w

〉
.

Since ∫
B(λr)

div
(

φ2u
∇u

w

)
=

∫
∂B(λr)

φ2u

〈∇u

w
, u

〉
= 0,

we have

0 = −
∫

B(λr)
2φu,

〈
∇φ,

∇u

w

〉
−

∫
B(λr)

φ2

〈
∇u,

∇u

w

〉
.

The Cauchy-Schwarz inequality yields

−
∫

B(λr)
2φu

〈
∇φ,

∇u

w

〉
≤ 2

(∫
B(λr)

φ2

w
|∇u|2

) 1
2

 ∫
B(λr)

u2

w
|∇φ|2


1
2

.

Thus, ∫
B(λr)

φ2 |∇u|2
w

≤ 4
∫

B(λr)

u2

w
|∇φ|2,

so ∫
B(r)

|∇u|2
w

≤ 4
∫

B(λr)
u2|∇φ|2,

since φ = 1 on B(r) and w ≥ 1. Then the estimate for |∇φ| and sup w, yields
the Reverse Poincaré inequality.
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Now we can prove the main result of this section, which has Theorem 3.1
as a corollary.

Theorem 3.4. Let C be a positive constant. The number of positive min-
imal graphs over disjoint domains of Rn with zero boundary values and gradient
at most C is bounded.

Proof. Suppose that u1, . . . , u2l are positive minimal graphs with zero
boundary values, over disjoint domains of Rn, with |∇uj | ≤ C. The entire ex-
tensions of {uj} to Rn are linearly independent. Notice that bounded gradient
implies linear growth, hence each ui ∈ Hd, with d = 1.

Let Ω > 2. By Proposition 3.3, there exists m arbitrarily large, l̂ ≥
l
2Ω−4d−2n and functions v1, . . . , vl̂ in the linear span of the {uj}, such that∫

B(Ωm+1)
v2
i ≤ 2Ω4d+2n,

and ∫
B(Ωm)

vivj = δj
i .

Apply the Reverse Poincaré-inequality to vi, with r = 2Ωm, λ = Ω/2, λr =
Ωm+1, to obtain

r2

∫
B(r)

|∇vi|2 ≤ 4c

(Ω/2 − 1)2

∫
B(λr)

v2
i .

Notice that the Reverse-Poincaré-inequality is linear in functions with disjoint
supports; so it applies to the vi. Then for each vi one obtains

r2

∫
B(r)

|∇vi|2 +
∫

B(r)
v2
i ≤

(
8c

(Ω/2 − 1)2
+ 2

)
Ω4d+2n.

Let k2 denote the constant on the right side of the last inequality. This
inequality implies each vi is in Wk2(B(r)). Apply Proposition 3.3 (with 2R =
r), to conclude there exists an N = N(k2) (independent of m), such that
l̂ < N . Then l < 2NΩ4d+2n and the theorem is proved.

4. Nonexistence of asymptotic curves and consequences

In Theorem 2.3 we described a decomposition of M into three components
– a smooth proper strip K and two disks M(1), M(2), each having one non-
compact boundary component and such that the projection π of M(1)∪M(2)
to the x1x2-plane is a proper submersion onto its image. In this section, we will
use this special decomposition of M to prove that the holomorphic function
h = x3 + ix∗

3 : M → C is a conformal diffeomorphism. This result will follow
from the proof of the nonexistence of certain asymptotic curves for h.
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Definition 4.1. An integral curve γ : [0,∞) → M of ∇x3 or −∇x3 is an
asymptotic curve with asymptotic value γ(∞) ∈ R if lim

t→∞
x3(γ(t)) = γ(∞).

Proposition 4.1. If none of the integral curves of ∇x3 or −∇x3 are
asymptotic curves, then h = x3 + ix∗

3 : M → C is a conformal diffeomorphism.

Proof. Recall from Theorem 2.2 that ∇x3 is never zero and so all inte-
gral curves of M are proper on M . Suppose that there are no asymptotic
curves for ∇x3 or −∇x3. Let Γ ⊂ M be one of the proper arcs in x−1

3 (0). Let
F : M × R → M be the flow of ∇x3 and D ⊂ M be the open subdomain that
is the image F (Γ × R). We first prove that D = M . If not, let p ∈ ∂(M −D)
and let α be the integral curve of ∇x3 with α(0) = p. By hypothesis, α|[0,∞)
is not an asymptotic curve of ∇x3. Without loss of generality, we may assume
that x3(p) = −1. Choose an embedded arc δ : [0, 1] → M with δ(0) = p,
δ((0, 1]) ⊂ D and x3(δ([0, 1]) = −1. Let F (p) : δ([0, 1]) × [0,∞) → M de-
note the flow F (p) for ∇x3 across δ([0, 1]). Since α is not an asymptotic
curve for ∇x3, then for some t0 ∈ [0,∞), x3(α(t0)) = x3((F (p)(δ(0), t0))) = 0.

Since p /∈ D, α(t0) is contained in a component Γ̃ of x−1
3 (0) different from Γ.

By continuity of F , points near p on δ flow to points near α(t0) on Γ̃
for t near t0. But x−1

3 (F (δ( 1
n , tn))) is on Γ for some tn. Since x3 is strictly

increasing on the integral curves of ∇x3, this contradicts that Γ∩ Γ̃ = Ø. This
contradiction proves that D = M .

Since the gradient of the function h = x3 + ix∗
3 : M → C is never zero,

h is a local diffeomorphism that is injective on each integral curve of ∇x3.
Since ∇x∗

3 is also never zero, h is injective on Γ. Since D = M , h maps Γ
diffeomorphically to an open interval I on the imaginary axis of C and maps
each integral curve of ∇x3 diffeomorphically to a complete horizontal line in
C passing through some point of I. Hence, M is conformally diffeomorphic
to I × R. If I were not the entire imaginary axis, then M(+) = x−1

3 ([0,∞))
would be conformally diffeomorphic to the unit disk with a closed interval
removed from its boundary. This contradicts Theorem 3.1 in [7] that states
that for any properly immersed minimal surface Σ in R3, each component of
the proper subdomain Σ(+) = {p ∈ Σ | x3(p) ≥ 0} has full harmonic measure,
which implies M(+) is a closed disk with a closed subset of Lebesgue measure
zero removed from its boundary. Hence, I is the entire imaginary axis and
h(M) = C, which proves the proposition.

Proposition 4.1 reduces the proof of showing h : M → C is a conformal
diffeomorphism to demonstrating that ∇x3 and −∇x3 have no asymptotic in-
tegral curves. We will prove that the existence of an asymptotic integral curve
yields an infinitely disconnected graph G contained in M(1)∪M(2) with bound-
ary values in a fixed horizontal plane, which is impossible by Theorem 3.1.
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Lemma 4.2. If W is a component of x−1
3 ((−∞, 0]) with an infinite number

of boundary curves, then W is conformally diffeomorphic to the closed unit disk
D with a closed countable set E removed from ∂D. The set E has a single limit
point ∗ and ∗ is a limit of points in E on both sides of ∗ on ∂D. Also, K ∩W ,
considered to be a subset of D, is noncompact with ∗ as its unique limit point
in E, where K is the strip in M defined in Definition 2.1.

Proof. A simple application of the maximum principle for harmonic func-
tions shows that each component of x−1

3 ((−∞, 0]) is simply-connected and
every boundary component is noncompact. By Theorem 3.1 in [7], W is con-
formally diffeomorphic to D with a closed subset E ⊂ ∂D of Lebesgue measure
zero in ∂D removed. We will identify W with D −E. Since W has an infinite
number of boundary curves, E is infinite and has at least one limit point. We
first prove that such a limit point is also a limit point of K ∩ W in D.

Suppose that there was a limit point ∗ of E that was not a limit point
of K ∩ W . Then for some ε sufficiently small, the half ball V = B(∗, ε) =
{p ∈ D −E | d(p, ∗) ≤ ε} is disjoint from K and δ = {p ∈ D −E | d(p, ∗) = ε}
is a compact arc.

Now consider the family of solid cylinders

C(t) =
{
(x1, x2, x3) | x2

1 + x2
2 ≤ t2

}
of radius t in R3. Let K(t) = K ∪ [C(t) ∩ M ]. Let P = x−1

3 (0) and note that
K(t)∩∂W ⊂ K(t)∩C(t)∩P is compact. Also, note that K(t)∩D and K ∩D

have the same limit points, if any, in E because K(t) − Int(K) is compact.
Choose t0 large enough so that the compact arc δ is contained in K(t0).

Let D be the closure in D − E of the component of V − K(t0) that
contains the limit point ∗. Elementary separation arguments, applied in the
simply-connected surface M , show that D has an infinite number of boundary
arcs and exactly one of these boundary arcs contains a finite positive number
of arcs and points in ∂K(t0) with the remainder of the boundary components
of D being disjoint from K(t0). To see this consider the open domain M −D,
each component of which has one boundary arc. Since the interior of K(t0)
is connected, it is contained in one of the components of M − D and so its
closure in M intersects only one of the arcs of ∂(M −D) = ∂D, which proves
our claim concerning ∂D.

Let π denote the projection of ∂D to the x1x2-plane P . The map π|∂D is
injective on the portion of ∂D outside C(t0), since π is the identity function on
this part of the boundary of D. But π|[∂D ∩ ∂C(t0)] is also injective. To see
this first note that ∂D∩∂C(t0) consists of a finite collection of pairwise disjoint
compact arcs which lie below the plane P and have end points on the circle
∂C(t0)∩P . Since the projection π on each of these arcs is a submersion, each



746 WILLIAM H. MEEKS III AND HAROLD ROSENBERG

of these arcs is a graph over an arc in the image circle. Note that D separates
the region R defined to be the intersection of the following three regions: the
halfspace below the plane P , the set R3 − Int(C(t0)) and W. The reason D
separates the region R is that the generator of H1(R, Z) = Z can be chosen to
be a circle γ on C(t0) ∩ R disjoint from D ∩ C(t0) which is compact; such a γ

must have odd intersection number with any properly embedded surface Σ in
R, ∂Σ ⊂ ∂R, that fails to separate R. Since D separates R, observe that for
an arc α ⊂ ∂D ∩ ∂C(t0), there cannot be another such arc β of ∂D ∩ ∂C(t0)
which lies immediately above or below α. Otherwise, since D separates R, the
normal vectors of D along α and the normal vectors to D along β would lie
in different hemispheres but the projection π orients D, so this is impossible.
Hence, π|[∂D∩∂C(t0)] is injective from which it follows that π|∂D is injective.

Let W ′ denote the closed subdomain of M with boundary being the proper
arc σ in ∂D that contains arcs of ∂K(t0) and such that W ′ is disjoint from K.
Since π|W ′ is a proper submersion and π|∂W ′ is injective, W ′ is a graph over
its projection onto the x1x2-plane. However, D ⊂ W ′ and W ′ − [Int(D) ∪ σ]
consists of an infinite number of subgraphs of W ′ whose union is a graph over
a proper infinitely disconnected subdomain of P and the boundary of this
graph lies in P . The existence of this graph contradicts Theorem 3.1. This
contradiction proves that every limit point of E ⊂ ∂D is a limit point of K∩W

in E.
Since K ∩ ∂W is compact and K ∩ W has at most one end, K ∩ W ⊂ D

has exactly one limit point in E, which must be a limit point of E. Hence,
E has exactly one limit point ∗, which implies E is countable. It remains to
prove that ∗ is a limit of points in E on both sides of ∗ on the circle ∂D.

Suppose ∗ is only a single sided limit in E ⊂ ∂D and we will derive a con-
tradiction. Recall the enlargements K(t) of K and note that ∗ is their unique
limit point in D as well. Let M(1, t) and M(2, t) denote the components of
[W − Int(K(t))] ⊂ D that have the limit point ∗. Elementary separation prop-
erties (as applied in the fourth paragraph of this proof) imply that M(1, t)
and M(2, t) each have exactly one boundary component that contains points
of ∂K(t). The assumption that ∗ is a single sided limit implies that M(1, t) or
M(2, t) has a finite number of boundary components but not both. Suppose
M(1, t) has a finite number of boundary components and M(2, t) has an infi-
nite number of boundary components. By choosing t0 sufficiently large (large
enough so that the component of K(t0)∩W containing the end of K(t0) inter-
sects the boundary arc in M(1, t) with end point ∗), ∂M(1, t0) is connected.
Furthermore, one end of ∂M(1, t0) is on ∂K(t0) and x3 → −∞ on this end;
the other end is in the plane P . Both ends of ∂M(1, t0), when considered to
lie in D, have ∗ as their limit point on ∂D.

Let H(t0) = H ∪ C(t0) be the simply-connected solid region of R3 from
which we obtained K(t0) as H(t0)∩M . Let R be the closure of the complement
of H(t0) in the lower halfspace {(x1, x2, x3) | x3 ≤ 0}. Although M(2, t0) does
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not separate R, it does separate R − M(1, t0). We check this by showing that
M(1, t0) ∪ M(2, t0) separates R into two components. If not, there exists a
closed curve α in R that intersects M(2, t0) transversely in a single point and
is disjoint from M(1, t0).

Note that ∂R is an annulus that contains the generator of the fundamental
group of R. M(1, t0) and M(2, t0) each have exactly one boundary component
that fails to separate ∂R, namely, the boundary components that contain a
proper noncompact arc of ∂K(t0). The curve α is homologous in R to some
nonzero integer multiple of the generating circle C in ∂R. But the intersection
number of C with ∂M(1, t0) and with ∂M(2, t0) is ±1. Since the intersection
number is well-defined on homology, α must intersect M(1, t0), a contradiction.
Hence, M(2, t0) separates R − M(1, t0).

Recall that K(t0) lies in one component of the complement of the interior
of M(2, t0) and each boundary component of M(2, t0) separates M into two
components. Let {β(i) | i ∈ N} be an enumeration of the boundary com-
ponents of ∂M(2, t0) that are different from the boundary arc β containing
portions of ∂K(t0) and note that β(i) ⊂ (P − C(t0)). Given a β(i), let F (i)
be the closure of the component of P − β(i) that is disjoint from C(t0). Let
F̂ (i) be the region in M , disjoint from K(t0), with ∂F̂ (i) = β(i). Since π|F̂ (i)
is a proper submersion onto its image and π|∂F̂ (i) is injective, F̂ (i) is a graph
over a domain in P disjoint from C(t0), and hence, F̂ (i) is a graph over F (i).

We now check that F (i)∩F (j) = Ø for i �= j. If not, we may assume that
for some i �= j, F (i) � F (j) and F (i) is a maximal such domain contained
in F (j). Since F̂ (n) is a graph over F (n) for all n, points of M(2, t0) close
to β(i) lie below the strip T = F (j) − Int(F (i)) and points of M(2, t0) close
to β(j) lie below P − Int(F (j)). Since C(t0) contains the end points of every
component in M(1, t0) ∩ P and the disk F (j) is disjoint from C(t0), the strip
T is disjoint from M(1, t0) (since T ⊂ F (j)). Since M(2, t0) is a multisheeted
graph, the closure of the component X ⊂ R − [M(1, t0) ∪ M(2, t0)] that lies
above M(2, t0) near β(i) is the same component that lies above M(2, t0) near
β(j). But then a small arc in P intersecting β(j) transversely in a single point
has its end points in ∂X but intersects M(2, t0) transversely in a single point,
which means that M(2, t0) does not separate R−M(1, t0) as previously shown.

This contradiction proves F (i)∩F (j) = Ø for i �= j. Hence,
∞⋃
i=1

F̂ (i) is a graph

over
∞⋃
i=1

F (i). The existence of this graph contradicts Theorem 3.1 and proves

the lemma.

Definition 4.2. Suppose that γ : [0,∞) → M is an asymptotic integral
curve for ∇x3. Let W (γ) be the component of x−1

3 ((−∞, γ(∞)]) that contains
γ. If γ is an asymptotic curve for −∇x3, then let W (γ) denote the component
of x−1

3 ([γ(∞),∞)) containing γ.
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Recall, by Lemma 4.2, that W (γ) is conformally D−E(γ), where E(γ) is
a finite set or E(γ) is countable with exactly one (two-sided) limit point. As
before, we will identify W (γ) with D−E(γ); note that the set E(γ) corresponds
to the ends of W (γ) under this identification.

Definition 4.3. Since an asymptotic curve γ of ∇x3 or −∇x3 is proper in
D − E(γ) and E(γ) corresponds to the ends of W (γ), γ has a unique limit
point L(γ) ∈ E(γ). We say that γ is a simple asymptotic curve if L(γ) is an
isolated point of E(γ).

Lemma 4.3. None of the asymptotic integral curves of ∇x3 or −∇x3 are
simple.

Proof. Suppose to the contrary that there exists a simple asymptotic
integral curve γ for ∇x3 and we will derive a contradiction. In order to be a
simple asymptotic curve, there must exist a compact embedded arc δ in W (γ)
with one end point in each of the local pair of arcs α(1), α(2) in ∂D − E(γ),
in a small neighborhood of L(γ) in D, which have an end point equal to L(γ).
The curve δ separates W (γ) into two closed components; let D(δ) denote the
component that has the limit point L(γ).

The disk D(δ) is conformally the closed unit disk with a single point
removed from its boundary. A straightforward application of Schwartz re-
flection and Riemann’s removable singularities theorem shows that h = x3 +
ix∗

3 : D(δ) → C extends smoothly to the puncture L(γ) ∈ ∂D(δ) with value
lim
t→∞

h ◦ γ(t) = ∗ ∈ {z ∈ C | Re(z) = γ(∞)}. Note that along an integral
curve of ∇x3 or −∇x3 the conjugate function x∗

3 remains constant. It follows
that the image of the two arcs α(1), α(2), by h, are contained in {z ∈ C |
Re(z) = γ(∞)} and these arcs have limiting value ∗. In particular, W (γ) has
two distinct boundary components, β−(0), β+(0), containing α(1), α(2), respec-
tively. Here, we may assume that h(β−(0)) ⊂ {Re(z) = γ(∞), Im(z) ≤ Im(∗)}
and h(β+(0)) ⊂ {Re(z) = γ(∞), Im(z) ≥ Im(∗)}. Assume that β±(0) : R →
W (γ) ⊂ D are parametrizations so that lim

t→∞
β±(0)(t) = L(γ).

Let W (γ, 1) be the component of x−1
3 ([γ(∞),∞)) that contains β+(0) in

its boundary and let W (γ,−1) be the component with β−(0) in its boundary.
By Lemma 4.2, lim

t→∞
β±(0)(t) corresponds to an isolated end of W (γ,±1). Let

β+(1) be the “other” boundary curve in W (γ, 1) next to β+(0) in the sense
that lim

t→∞
β+(0)(t) = lim

t→∞
β+(1)(t).

The curve β+(1) is distinct from β+(0) and, after correctly parametrizing
β+(1), lim

t→∞
h ◦ β+(1)(t) = ∗. In a similar manner we define the curve β−(1) ⊂

W (γ,−1). We next consider the two components W (γ,±2) in x−1
3 ((−∞, γ(∞)])

such that β±(1) ⊂ ∂W (γ,±2). Another application of Lemma 4.2 gives
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rise to an associated pair of boundary components, β+(2) ⊂ W (γ, 2) and
β−(2) ⊂ W (γ,−2). Continuing in this manner yields an infinite sequence
of domains {W (γ, i) | i ∈ Z} in M , each of which has a distinguished pair
of oriented boundary components, β+(i), β+(i − 1), for i > 0, and, for i <

0, β−(−i), β−(−i − 1) and where W (γ, 0) = W (γ). A straightforward separa-
tion argument proves that all of these domains and arcs are distinct.

Since K intersects only a finite number of the curves {β±(i) | i ∈ N}
and these curves are distinct, there is an n ∈ N such that β+(n) is disjoint
from K. After possibly reversing the signed index, we may assume that K lies
in the same component of M − β+(n) that contains β+(n− 1). By elementary
separation properties, all of the domains W (γ, i), i ≥ n, lie in the closure of
the component of M − β+(n) disjoint from K.

Let G be the subdomain of M with boundary β+(n) that is disjoint from
K. By Lemma 1.4, G is a graph with boundary values in the plane P (γ) =
{(x1, x2, x3) | x3 = γ(∞)}. The collection {W (γ, i) | i ≥ n} represents an
infinite number of subgraphs whose boundary is in P (γ). The existence of
these graphs contradicts Theorem 3.1 and proves the lemma.

Theorem 4.4. There are no asymptotic curves for ∇x3 or −∇x3. In
particular, by Propostion 4.1, h = x3 + ix∗

3 : M → C is a conformal diffeomor-
phism.

Proof. Suppose γ is an asymptotic integral curve of ∇x3. By Lemma 4.3,
γ is not simple. In particular, L(γ) ∈ E(γ) ⊂ ∂D is a limit point of E(γ) and
so W (γ) contains an infinite number of boundary components. Lemma 4.2
implies that L(γ) is the unique limit point of E(γ), L(γ) is a two-sided limit
point and L(γ) is the unique limit point of W (γ)∩K in D. Since K intersects
only a finite number of the boundary curves in W (γ), there exists an embedding
of the compact interval σ : I = [−1, 1] → ∂D with end points σ(±1) ∈ ∂D −
E(γ), σ(0) = L(γ) and σ(I) ∩ K = Ø. Furthermore, we may assume that
σ−1(E(γ)) = {0,± 1

n | n ∈ N and n ≥ 2}.
Consider a point p ∈ σ(I)∩ (E(γ)−L(γ)). There exists an ε(p) > 0 such

that, for the closed metric ball B̃(p, ε(p)) ⊂ D, B(p, ε(p)) = B̃(p, ε(p)) − {p}
is disjoint from K and B(p, ε(p)) is conformally equivalent to the unit disk
with one point removed from the boundary. Here the boundary of B(p, ε(p))
consists of two arcs on σ(I) − E(γ) that limit to p and a compact arc in D

corresponding to the points in D of distance ε(p) from p. A slight modification
of the proof of Lemma 4.3 shows that h = x3 + ix∗

3 : B(p, ε(p)) → C∪{∞} has
a well-defined limiting value p(∗) at p contained in the circle {z ∈ C ∪ {∞} |
z = ∞ or Re(z) = γ(∞)}. If p(∗) �= ∞, then, there is a simple asymptotic
curve in M which is contained in the subset W (γ) with limit point p ∈ E(γ),
which contradicts Lemma 4.3. Hence, we may assume that p(∗) = ∞.
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Since h : B(p, ε(p)) → C∪{∞} has a well-defined limit at p which is ∞, an
application of the Schwartz reflection principle, as in the proof of Lemma 4.3,
proves the existence of some closed neighborhood N(p) of p in B(p, ε(p)) that
goes diffeomorphically under h to {z ∈ C | Re(z) ≤ γ(∞) and |z| ≥ R0} for
some large positive R0.

Consider the inverse image β(p) of the proper arc (−∞,−R0] ⊂ R ⊂ C
under (h|N(p))−1. Then β(p) has limit point p and the x3-coordinate of β(p)
is less than or equal to −R0. Suppose we choose p to be the point σ(1

2) ∈ E(γ)
or the point σ(−1

2) ∈ E(γ). These choices yield proper embedded arcs β(1
2)

and β(−1
2), which we may assume are disjoint. Now join the end points of

β(−1
2) and β(1

2) in W (γ) by an embedded compact arc so that the union of
the three arcs is a properly embedded curve β in Int(W (γ)) with limit points
σ(±1

2) in E(γ).

The arc β bounds a closed subdomain W (γ, β) of W (γ) that contains the
end of γ limiting to L(γ). Each boundary component δ in ∂W (γ, β) − β is
contained in σ(I) and so is disjoint from K. For each such δ let Λ(δ) denote
the closed subdomain of M bounded by δ that is disjoint from K. Define
W (β) to be the union of W (γ, β) with all of the components Λ(δ) where δ

is a boundary component of ∂W (γ, β) − β. Since K ∩ Λ(δ) = Ø for each
such δ, W (β)∩K = W (γ, β)∩K and so it follows that sup(x3|(W (β)∩K)) =
sup(x3|(W (γ, β) ∩ K)) ≤ γ(∞).

Since β is the union of three arcs, where on each such arc x3 is bounded
from above by γ(∞) by some fixed amount, there exists an ε > 0 such
that −∞ < x3(β) < γ(∞) − 2ε. Now consider the component F (γ) of
x−1

3 ([γ(∞)− ε,∞)) that contains the end of γ with limiting x3-value γ(∞). If
F (γ) had a finite number of boundary components, then F (γ) is conformally
the disk D with a finite set E ⊂ ∂D removed. In this case our previous argu-
ments show that h = x3 + ix∗

3 : F (γ) → {z ∈ C | Re(z) ≥ γ(∞)−ε} ⊂ C∪{∞}
extends smoothly across the finite set E ⊂ ∂D to the constant function
γ(∞) − ε. But since the end of γ lies in F (γ) and γ takes on an asymp-
totic value that is not the value of the extended map on ∂D, the extended
map could not be continuous. Thus, F (γ) must have an infinite number of
boundary components.

Since F (γ) intersects W (β) (they both contain the end of γ with limiting
x3-value γ(∞)) and β is disjoint from F (γ), then F (γ) ⊂ W (β). In particular,
x3|(F (γ) ∩ K) is bounded from above by γ(∞) but, by definition of F (γ),
x3|(F (γ) ∩ K) is bounded from below by γ(∞) − ε. Therefore, F (γ) ∩ K is
compact. Since F (γ) contains an infinite number of boundary components and
F (γ) ∩ K is compact, Lemma 4.2 now gives the desired contradiction. This
completes the proof that ∇x3 and −∇x3 have no asymptotic integral curves.
The second statement in the theorem now follows from Proposition 4.1.
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5. The Gauss map and the uniqueness of the helicoid

Throughout this section, unless otherwise stated, M will denote a prop-
erly embedded simply-connected minimal surface in R3 with L(M) being the
foliation of R3 by horizontal planes.

Every conformal minimal immersion f : Σ → R3 has an analytic repre-
sentation in terms of a holomorphic 1-form dh, where h = x3 + ix∗

3, and the
stereographic projection g : Σ → C ∪ {∞} of its Gauss map G : Σ → S2.
Namely, assuming f(p0) = (0, 0, 0), then f can be recovered from dh and g by
integration:

f(p) = Re

∫ p

p0

(
1
2

(
1
g
− g

)
dh,

1
2

(
1
g

+ g

)
i dh, dh

)
.

The above representation is called the Weierstrass representation of f : Σ →
R3. If the surface in question is a vertical helicoid, then we can take Σ = C,
g(z) = eαz for some α ∈ iR, and dh = dz.

By Theorem 4.4 and elementary covering space theory, we know that, after
a possible rotation, a properly embedded simply-connected minimal surface M

in R3 can be parametrized by C with x3 = Re(z) and g(z) = eH(z) for some
entire function H(z) on C. It remains to prove that H(z) = αz for some
α ∈ iR − {0}.

If H(z) = anzn + · · ·+ a0 is a nonconstant polynomial, then g(z) = eH(z)

has an essential singularity at infinity. In this case there exists a sequence of
points p(i) in C with |p(i)| → ∞ and |g(z)| → 1. Since the Gaussian curvature
can be expressed in C coordinates by

K = −16
( |g||g′|

(1 + |g|2)2
)2

= −16|H ′|2
( |g|2

(1 + |g|2)2
)2

,

then K(p(i)) → −∞ if H(z) is not a polynomial of degree one. If H(z) = az+b,

then after a conformal affine change of coordinates w, H(w) = iw and dw = cdz

for some c ∈ C, which means that M is an associate surface to a vertical
helicoid. But such a surface is known to be embedded only if it is actually a
vertical helicoid (see, for example, [25]). This gives a proof of the following
lemma.

Lemma 5.1. A complete minimal surface M defined as f : C → R3 with
x3 = Re(z) and g(z) = eH(z), where H(z) is a nonconstant polynomial, has
bounded nonzero Gaussian curvature if and only if H(z) is linear. In particular,
by the above discussion, if M is embedded, has bounded curvature and H(z) is
a polynomial, then M is a vertical helicoid.

Proposition 5.2. H(z) is a linear function.

We will prove H(z) is linear through a series of lemmas.
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Lemma 5.3. If, for some latitude γ in S2, the inverse image g−1(γ) is a
connected embedded arc, then H(z) is linear.

Proof. Recall that ez : C → S2−{0,∞} is a covering map and g(z) = eH(z).
Suppose g−1(γ) is a connected embedded arc α : R → M . It follows that g has
no branch points on g−1(γ), so H has no branch points on g−1(γ). Then
H ◦α : R → C parametrizes an arc α̃ that is a vertical line in C. For any point
p ∈ α̃, H−1(p) consists of one point in M . Hence, H is a holomorphic function
defined on M = C of degree one, which implies H is linear.

Lemma 5.4. Suppose H(z) is not a polynomial. Then, for some
latiude γ ⊂ S2, G−1(γ) consists of an infinite number of proper arcs Γ =
{α(k) | k ∈ N} contained in the solid hyperboloid H defined in Section 2. For
every n ∈ N, there exists a large T (n) ∈ R+ such that for all t ≥ T (n) or for
all t ≤ −T (n), the horizontal plane P (t) at height t intersects at least n arcs
in Γ.

Proof. By Sard’s theorem, almost every value of x3 ◦ G : M → [−1, 1]
is a regular value. By our choice of H, there exists an ε > 0 such that
(x3 ◦ G)−1((−ε, ε)) ⊂ H. Let r ∈ (−ε, ε) be a regular value of x3 ◦ G and
γ be a latitude at height r. Since H(z) is not a polynomial, G−1(γ) consists
of an infinite number of arcs Γ = {α(k) | k ∈ N}. Since H has only two ends,
one of the ends of H must contain the ends of an infinite number of ends of
arcs in Γ. Suppose that the top end of H contains this infinite set of ends
of Γ. Since every horizontal slab intersects H in a compact set, for every in-
teger n, there exists a large positive T (n) such that G−1(γ) ∩ x−1

3 ([T (n),∞))
contains noncompact arcs with boundary at height T (n) representing ends of
at least n components in Γ. Since x3 restricted to each of these components
is proper, every horizontal plane P (t), t ≥ T (n), must intersect each of these
components, which completes the proof of the lemma.

Now consider a sequence of homothetic scalings λ(i)M , λ(i) → 0, such
that λ(i)M converges to a foliation of R3 by horizontal planes with singular
curve S that intersects each of these planes in one point. Let p ∈ S be the
singular point of height 4 and let B be the ball of radius 1 centered at p. Denote
by d : B → [0, 1] the distance function to ∂B. Let K denote the Gaussian
curvature function on λ(i)M . For each i, choose a point p(i) ∈ λ(i)M in B

where the function

ki : λ(i)M ∩ B → [0,∞), ki(x) =
√
|K(x)| · d(x),

has its maximum value. Suppose K(i) is the absolute value of the Gaussian
curvature at p(i). Let M(i) =

√
K(i)[λ(i)M − p(i)], where −p(i) refers to

translation by −p(i). It is straightforward to prove that the Gaussian curvature
of the collection {M(i)} is uniformly bounded on compact subsets of R3. Also,
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a subsequence M(ij) of the M(i) converges smoothly to a minimal lamination
L of R3.

Lemma 5.5. L is a properly embedded simply-connected minimal surface
M̂ with bounded curvature whose Gauss map misses the values {0,∞} and
whose Gaussian curvature is −1 at the origin. Furthermore, the convergence
of M(ij) to M̂ is of multiplicity one and L(M̂) = L(M). (Recall that L(Σ)
is the unique homothetic blow -down of a properly embedded simply-connected
minimal surface Σ.)

Proof. Note that the leaf of L passing through the origin has Gaussian
curvature −1 at the origin. Since the curvature of an M(i) defined above is in
fact actually bounded from below by −2 in any fixed compact subset for i suf-
ficiently large, the leaves of L have bounded Gaussian curvature. Theorem 1.6
implies L is a properly embedded connected minimal surface M̂ .

Since the convergence of the M(ij) to M̂ is smooth and M̂ is proper,
the M(ij) converge to M̂ with multiplicity one, otherwise M̂ would be stable
and flat. Since this multiplicity one convergence property will be important
in the proof that M is a helicoid, we give the argument here. Let Σ be a
smooth compact subdomain of M̂ (which we can suppose is simply-connected
by passing to a covering space) and let N(Σ) be a neighborhood of Σ obtained
by exponentiating an ε-neighborhood of the zero section of the normal bundle
to Σ. Since M̂ is proper and the surfaces M(ij) converge smoothly to M̂ , for
ij large, N(Σ) intersects M(ij) in a finite number of normal graphs over Σ.
By taking the difference of two distinct such graphs, and normalizing so that
the difference has norm one at some fixed interior point of Σ, one can pass to a
convergent subsequence that converges to a positive solution of the linearized
equation, which yields a positive Jacobi function on Σ. Therefore Σ, and hence
M̂ is stable. By [9] and [11], M̂ is a flat plane, which contradicts the fact that
M̂ has curvature −1 at the origin.

We now observe that M̂ is simply-connected. Let γ be a simple closed
curve in M̂ . Since M(ij) converges smoothly on compact subsets of R3 with
multiplicity one to M̂ , for ij large, we can lift γ to a unique closest closed curve
γ(j) ⊂ M(ij). The curve γ(j) bounds a disk D(j) on M(ij) and the disks D(j)
converge (they have uniformly bounded curvature and by the isoperimetric
inequality have uniformly bounded area) to a disk in M̂ bounding γ. This
proves M̂ is simply-connected.

The fact that the Gauss map of M̂ misses {0,∞} follows from the obser-
vation that the minimal surfaces M(ij) converging to M̂ do not have vertical
normals and the Gauss map of M̂ is an open map. Consider L(M̂); since M̂ is
conformally C by Theorem 4.4, Picard’s theorem implies its Gauss map cannot
miss four points in S2. Hence, Theorem 2.2 implies L(M̂) is the foliation of
R3 by horizontal planes.
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We now return to the proof of Proposition 5.2.

Proof. By Lemma 5.3, it suffices to prove that there exists a latitude
γ ⊂ S2 such that G−1(γ) ⊂ M is a connected embedded arc. We first will
prove that H(z) is a polynomial.

Reasoning by contradiction, suppose that H(z) is not a polynomial. By
Lemma 5.4, we can assume that for any integer n there is a T (n) such that
for every t greater than or equal to T (n), the horizontal plane P (t) at height
t intersects at least n components of G−1(γ).

Consider a sequence of homothetic scalings λ(i)M , λ(i) → 0, such that
λ(i)M converges to the foliation of R3 by horizontal planes. Let p ∈ S(L) be
the point at height 4 and let B denote the closed ball of radius one centered
at p. For appropriately chosen points p(i) ∈ λ(i)M and after passing to a
subsequence, the previous arguments imply that the homothetic expansions
M(i) =

√
K(i)[λ(i)M − p(i)] converge smoothly (with multiplicity one) to a

simply-connected minimal M̂ of nonzero bounded curvature.
Since the point p(i) ∈ λ(i)M lies in B, whose center is at height 4 and

whose radius is one, it follows that x3(p(i)) ≥ 3. From this fact and using that
λ(i) → 0, we deduce that for all n ∈ N, p(i) lies above height λ(i)T (n) for i

large, and therefore at least n components of the preimage of γ through the
Gauss map of λ(i)M will intersect the horizontal plane containing p(i). After a
translation and homothetic expansion, this intersection property implies that
the horizontal plane P at height zero must intersect at least n components of
G−1

i (γ), where Gi stands for the Gauss map of M(i) (for i large).
Since almost every r ∈ [−1, 1] is a regular value, we may assume r is chosen

sufficiently small, a regular value of both x3 ◦G and x3 ◦Ĝ, so that the latitude
γ at height r satisfies G−1(γ) ⊂ Ĥ where Ĥ is the hyperboloid associated to
M̂ . Since Γ̂ = Ĝ−1(γ) contains a finite number k of arcs which enter the slab
x3

−1([−2, 2]), for i large, there are at most k arcs in Γi = Gi
−1(γ) that enter

the region Ĥ ∩ x3
−1([−1, 1]). But by the previous paragraph, for i large, there

is at least one other arc α(i) ∈ Γi that intersects the plane P at a point q(i)
outside Ĥ; q(i) will be a divergent sequence in P ∩ M(i).

Now consider a new sequence of surfaces: N(i) = (1/‖q(i)‖)M(i). By the
theorems in Section 2 and Lemma 5.5, a subsequence of the N(i) converges
to the foliation L(M̂) = L(M) of R3 by horizontal planes with associated
singular curve S(L(M̂)) passing through the origin and contained in a solid
vertical double cone C with vertex at the origin. Since L(M̂) is the foliation by
horizontal planes and the tangent plane of N(i) at q(i)/‖q(i)‖ is bounded away
from the horizontal, then any limit point of the sequence of points q(i)/‖q(i)‖
must be contained in C. Since this sequence of points of N(i) lies on the unit
circle in P , we obtain a contradiction which proves H(z) is a polynomial.

We now know that since H(z) is not linear, then it is a polynomial of
degree greater than one. Our previous arguments imply that there is a lattitude
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γ such that G−1(γ) consists of at least two proper arcs in H. By a slight
modification of the proof of Lemma 5.4, we can assume that there is a T such
that for every t greater than or equal to T , the horizontal plane P (t) at height
t intersects at least two components of G−1(γ).

As in the proof that H(z) is a polynomial, we can construct a sequence
M(i) of minimal surfaces by translating and homothetically altering the surface
M , which converges to a properly embedded minimal surface M̂ . As before M̂

is simply-connected and has bounded curvature. By our previous arguments,
the related function Ĥ(z) is a polynomial and L(M̂) = L(M) is a foliation of
R3 by horizontal planes. By Theorem 4.4, h = x3 +ix∗

3 : M̂ → C is a conformal
diffeomorphism. By Lemma 5.1, M̂ is a vertical helicoid and so for i large,
G−1

i (γ) ∩ Ĥ contains exactly one component which intersects the horizontal
plane P . Since G−1

i (γ) ∩ P contains another point q(i) outside of Ĥ, our
previous argument used to show H(z) is a polynomial, gives a contradiction,
which completes the proof of Proposition 5.2.

Finally, using Proposition 5.2 and Lemma 5.1, we deduce that M is a
vertical helicoid. This completes the proof of Theorem 0.1 stated in the intro-
duction.

6. Minimal surfaces of finite type

Recently Hoffman, Weber and Wolf [17] gave a rigorous analytic proof
of the existence of a properly embedded minimal surface M in R3 that is
conformally diffeomorphic to a rhombus torus punctured in a single point.
This surface was constructed earlier by Hoffman, Karcher and Wei [13], [14].
The surface M is an example of a minimal surface of finite type, which means,
among other things, that its Gauss map has finite growth in the sense of
Nevanlinna.

In the case the minimal surface is properly embedded, Theorem 0.2 in the
introduction gives an explicit description of what it means to be a properly
embedded minimal surface of finite type. In the general case we refer the
interested reader to the following papers for a complete discussion of the general
theory of immersed minimal surfaces of finite type [12], [25], [27].

For our purposes we would like to consider the more general problem of
describing the asymptotic geometry of a properly embedded minimal annulus
A = [0,∞)×S1 in R3. The main result in this section is that such an annulus
is either asymptotic to a plane, an end of a catenoid or to a helicoid. If A

has finite total curvature, then it is well-known that A is asymptotic to the
end of a catenoid or to a plane. This result follows easily from the Weierstrass
representation and from the facts that A is conformally a punctured disk and
that the Gauss map on A extends meromorphically across the puncture.
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We now analyze the case where A has infinite total curvature. What we
will prove is that even though A is not simply-connected and has boundary, our
analysis of the simply-connected empty-boundary case given in the previous
sections can be adapted to deal with A. Most of this proof will consist of an
analysis of the modifications in the proof of Theorem 0.1 that need to be taken
into account because A is not simply-connected or because A has boundary.
We now give this proof.

Consider λ(i) ∈ R+, λ(i) → 0, and let A(i) = λ(i)A. Since ∂A is compact,
it follows that for any compact ball B ⊂ R3 disjoint from the origin and for
i sufficiently large, every component of A(i) ∩ B is simply-connected. Hence,
by the compactness and regularity results of Colding and Minicozzi that are
used to prove Theorem 2.1, a subsequence of the A(i) (denoted again by A(i))
converges to a minimal foliation L of R3 by planes and the singular set S(L)
of convergence of the A(i) to L is a connected transverse Lipschitz curve.
Thus, with minor modifications, Theorem 2.1 holds in our context with A

replacing M .
Statement 1 of Theorem 2.2 holds in our new situation for the same reason

as before. However, statement 2 in Theorem 2.2 that the limit foliation L is
transverse to A fails because of the introduction of a finite number of critical
points of the coordinate function orthogonal to the planes in L that may arise
from ∂A. However, after removing a compact set from A, which does not affect
the limit blow-down, the Gauss map on A misses the unit normal vectors to L.

The uniqueness of L implies that Theorem 2.3 also essentially holds for A.
In Section 4 we proved that h = x3 + ix∗

3 : M → C is a conformal dif-
feomorphism. In the present case, what we would like to prove is that, after
removing a compact subset of A, h : A → C is a proper embedding of A.
If A is the end of a properly embedded minimal surface, then, by Cauchy’s
theorem, the conjugate function x∗

3 is well-defined. In the general case the
function ix∗

3 may have a nonzero imaginary period λ ∈ iR. In this case
h : A → C/Λ = R × (iR/λ) = R × S1 is well-defined. The analysis that ±∇x3

has no asymptotic curves does not now change in any substantial way from the
simply-connected case, which shows that in these coordinates x3(z) = Re(z)

Finally, the proof that g = eH(z), H(z) linear, given in the simply-
connected case, goes through without modification in the case the period λ

is 0 and, in the case λ �= 0, there is little modification in the original proof to
be made as ex+iy is periodic in the imaginary direction like h. It now follows
from the analysis in [26] and [12] that A is of finite type and is asymptotic to a
helicoid. This completes the proof of Theorem 0.2 stated in the introduction.
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