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Quadratic forms of signature (2, 2) and
eigenvalue spacings on rectangular 2-tori

By Alex Eskin∗, Gregory Margulis∗∗, and Shahar Mozes∗∗*

1. Introduction

The Oppenheim conjecture, proved by Margulis [Mar1] (see also [Mar2]),
asserts that for a nondegenerate indefinite irrational quadratic form Q in n ≥ 3
variables, the set Q(Zn) is dense. In [EMM] (where we used the lower bounds
established in [DM]) a quantitative version of the conjecture was established.
Namely:

Let ρ be a continuous positive function on the sphere {v ∈ Rn | ‖v‖ = 1},
and let Ω = {v ∈ Rn | ‖v‖ < ρ(v/‖v‖)}. We denote by TΩ the dilate of Ω by
T . For an indefinite quadratic form Q in n variables, let NQ,Ω(a, b, T ) denote
the cardinality of the set

{x ∈ Zn : x ∈ TΩ and a < Q(x) < b}.
We recall from [EMM] that for any such Q there exists a constant λQ,Ω such
that for any interval (a, b), as T → ∞,

Vol({x ∈ Rn : x ∈ TΩ and a ≤ Q(x) ≤ b}) ∼ λQ,Ω(b − a)Tn−2.(1)

Theorem 1.1 ([EMM, Th. 2.1]). Let Q be an indefinite quadratic form
of signature (p, q), with p ≥ 3 and q ≥ 1. Suppose Q is not proportional to a
rational form. Then for any interval (a, b), as T → ∞,

NQ,Ω(a, b, T ) ∼ λQ,Ω(b − a)Tn−2,(2)

where n = p + q, and λQ,Ω is as in (1).

If the signature of Q is (2, 1) or (2, 2) then Theorem 1.1 fails; in fact
there are irrational forms for which along a subsequence Tj , NQ,Ω(a, b, Tj) >

Tn−2
j (log Tj)1−ε. Such forms may be obtained by consideration of irrational
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forms which are very well approximated by split rational forms. It should be
noted that the asymptotically exact lower bounds established by Dani and
Margulis (see [DM]) hold for any irrational indefinite quadratic form in n ≥ 3
variables.

Observe also that whenever a form of signature (2, 2) has a rational isotropic
subspace L then L∩TΩ contains on the order of T 2 integral points x for which
Q(x) = 0; hence NQ,Ω(−ε, ε, T ) ≥ cT 2, independently of the choice of ε. Thus
to obtain an asymptotic formula similar to (2) in the signature (2, 2) case, we
must exclude the contribution of the rational isotropic subspaces. We remark
that an irrational quadratic form of signature (2, 2) may have at most four
rational isotropic subspaces (see Lemma 10.3).

The space of quadratic forms in four variables is a linear space of dimen-
sion 10. Fix a norm ‖ · ‖ on this space.

Definition 1.2. (EWAS) A quadratic form Q is called extremely well ap-
proximable by split forms (EWAS) if for any N > 0 there exists a split integral
form Q′ and 2 ≤ k ∈ R such that∥∥∥∥Q − 1

k
Q′

∥∥∥∥ ≤ 1
kN

.

Our main result is:

Theorem 1.3. Suppose Ω is as above. Let Q be an indefinite quadratic
form of signature (2, 2) which is not EWAS. Then for any interval (a, b), as
T → ∞,

ÑQ,Ω(a, b, T ) ∼ λQ,Ω(b − a)T 2,(3)

where the constant λQ,Ω is as in (1), and ÑQ,Ω counts the points not contained
in isotropic subspaces.

As observed above, lattice points belonging to isotropic rational 2-di-
mensional subspaces have to be excluded. It turns out also that points be-
longing to a wider class of subspaces (which we shall call “quasinull”) have
to be treated separately. Given the form Q consider the orthogonal group
SO(Q) ⊂ SL(4, R) of all the orientation preserving linear transformations
preserving Q. It acts on the 6-dimensional space ∧2R4. This representa-
tion is reducible and ∧2R4 decomposes into a direct sum of two irreducible
3-dimensional spaces, ∧2R4 = V1 ⊕ V2 (see Lemma 2.1). We observe that a
2-dimensional subspace L ⊂ R4 is isotropic if and only if the corresponding
1-dimensional subspace ∧2L ⊂ ∧2R4 lies in one of the subspaces Vi. Equiv-
alently, if we let {w1, w2} be a basis of L then L is isotropic if and only if
‖π1(w1 ∧ w2)‖ · ‖π2(w1 ∧ w2)‖ = 0, where πi : ∧2R4 → Vi, i = 1, 2, are the
projections to Vi so that v = π1(v) + π2(v). Given a rational 2-dimensional
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subspace L let {w1, w2} be an integral basis of L ∩ Z4. The subspace will be
called µ1-quasinull if

‖π1(w1 ∧ w2)‖ · ‖π2(w1 ∧ w2)‖ < µ1,

where µ1 > 0 is a fixed constant, and ‖ · ‖ is a Euclidean norm on ∧2R4.
Since most results do not depend on the choice of the parameter µ1, we

will often use the term quasinull subspace to refer to a µ1-quasinull subspace.
We also define the norm of a 2-dimensional rational subspace L to be the norm
of w1 ∧ w2 where {w1, w2} is any integral basis of L ∩ Z4.

The following theorem is valid without any diophantine conditions:

Theorem 1.4. Suppose Ω is as above. Let Q be any indefinite quadratic
form of signature (2, 2) not proportional to a rational form. Then for any
interval (a, b), as T → ∞,

lim sup
1
T 2

N ′
Q,Ω(a, b, T ) ≤ λQ,Ω(b − a),(4)

where the constant λQ,Ω is as in (1), and N ′
Q,Ω counts the points not contained

in quasinull subspaces of norm at most T .

With a diophantine condition we have:

Theorem 1.5. Suppose Q is a quadratic form of signature (2, 2) which
is not EWAS. Let XQ,Ω(a, b, T ) denote the number of integral points v ∈ TΩ
such that a < Q(v) < b and v lies in some nonisotropic quasinull subspace of
norm at most T . Then, as T → ∞,

XQ,Ω(a, b, T ) = o(T 2).(5)

We also recall:

Theorem 1.6 (Dani-Margulis). Suppose Ω is as above. Let Q be any in-
definite
quadratic form in n ≥ 3 variables, not proportional to a rational form. Then
for any interval (a, b), as T → ∞,

lim inf
1

Tn−2
NQ,Ω(a, b, T ) ≥ λQ,Ω(b − a),(6)

where the constant λQ,Ω is as in (1).

To deduce Theorem 1.3 from Theorem 1.4, Theorem 1.6 and Theorem 1.5
one can argue as follows: Suppose Q of signature (2, 2) is not EWAS (see
Definition 1.2); then by Theorem 1.5, XQ,Ω(a, b, T ) is o(T 2). Hence, if 0 
∈ (a, b)
we get

lim sup
T→∞

NQ,Ω(a,b,T )
T 2 = lim sup

T→∞
ÑQ,Ω(a,b,T )

T 2 = lim sup
T→∞

N ′
Q,Ω(a,b,T )

T 2 ≤ λQ,Ω(b − a).
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However, the universal lower bound of Dani-Margulis (Theorem 1.6) implies
that for any irrational Q, lim infT→∞

1
T 2 NQ,Ω(a, b, T ) = λQ,Ω(b − a). Hence

for Q not EWAS and 0 
∈ (a, b) we get NQ,Ω(a, b, T ) ∼ λQ,Ω(b − a)T 2 which is
equivalent to Theorem 1.3.

Eigenvalue spacings on flat 2-tori. It has been suggested by Berry
and Tabor that the eigenvalues of the quantization of a completely integrable
Hamiltonian follow the statistics of a Poisson point-process, which means their
consecutive spacings should be independent and identically distributed expo-
nentially distributed. For the Hamiltonian which is the geodesic flow on the
flat 2-torus, it was noted by P. Sarnak [Sar] that this problem translates to
one of the spacing between the values at integers of a binary quadratic form,
and is related to the quantitative Oppenheim problem in the signature (2, 2)
case. We briefly recall the connection following [Sar].

Let ∆ ⊂ R2 be a lattice and let M = R2/∆ denote the associated flat
torus. The eigenfunctions of the Laplacian on M are of the form fv(·) =
e2πi〈v,·〉, where v belongs to the dual lattice ∆∗. The corresponding eigenvalues
are 4π2‖v‖2, v ∈ ∆∗. These are the values at integral points of the binary
quadratic B(m, n) = 4π2‖mv1 + nv2‖2, where {v1, v2} is a Z-basis for ∆∗. We
will identify ∆∗ with Z2 using this basis.

We label the eigenvalues (with multiplicity) by

0 = λ0(M) < λ1(M) ≤ λ2(M) . . . .

It is easy to see that Weyl’s law holds, i.e.

|{j : λj(M) ≤ T}| ∼ cMT,

where cM = (area M)/(4π). We are interested in the distribution of the local
spacings λj(M) − λk(M). In particular, for 0 
∈ (a, b), set

RM (a, b, T ) =
|{(j, k) : λj(M) ≤ T, λk(M) ≤ T, a ≤ λj(M) − λk(M) ≤ b}|

T
.

The statistic RM is called the pair correlation. The Poisson-random model
predicts, in particular, that

lim
T→∞

RM (a, b, T ) = c2
M (b − a).(7)

Note that the differences λj(M) − λk(M) are precisely the integral values of
the quadratic form QM (x1, x2, x3, x4) = B(x1, x2) − B(x3, x4).

P. Sarnak showed in [Sar] that (7) holds on a set of full measure in the
space of tori. Some remarkable related results for forms of higher degree and
higher dimensional tori were proved in [V1], [V2] and [V3]. These methods,
however, cannot be used to explicitly construct a specific torus for which (7)
holds. A corollary of Theorem 1.3 is the following:
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Theorem 1.7. Let M be a 2-dimensional flat torus rescaled so that one
of the coefficients in the associated binary quadratic form B is 1. Let A1, A2

denote the two other coefficients of B. Suppose that there exists N > 0 such
that for all triples of integers (p1, p2, q) with q ≥ 2,

max
i=1,2

∣∣∣∣Ai −
pi

q

∣∣∣∣ >
1

qN
.

Then, for any interval (a, b) not containing 0, (7) holds, i.e.

lim
T→∞

RM (a, b, T ) = c2
M (b − a).

In particular, the set of (A1, A2) ⊂ R2 for which (7) does not hold has zero
Hausdorff dimension.

Thus, if one of the Ai is diophantine (e.g. algebraic), then M has a spec-
trum whose pair correlation satisfies the Berry-Tabor conjecture.

This establishes the pair correlation for the flat torus or “boxed oscilla-
tor” considered numerically by Berry and Tabor. We note that without some
diophantine condition, (7) may fail.

Let ΩM ⊂ R4 denote the set {x : max(B(x1, x2)
1/2, B(x3, x4)

1/2) ≤ 1}.
By construction, if (m1, n1, m2, n2) ∈ Z4 ∩ TΩ, then B(m1, n1) and B(m2, n2)
are two eigenvalues of size at most T 2, and thus QM (m1, n1, m2, n2) is a dif-
ference between two points in the spectrum of size at most T 2. An elementary
calculation (cf. [Sar]) shows that λQM ,ΩM

= (areaM/4π)2 = c2
M . Thus, one

arrives at the following:

Proposition 1.8 (see [Sar]). The equation (7) holds for M if and only
if (3) holds with Q = QM , Ω = ΩM .

Thus in view of Proposition 1.8, Theorem 1.7 is indeed a corollary of
Theorem 1.3.

Remark. The case where M is rectangular is simpler since in that case
the quasinull subspaces can be easily described, allowing for an elementary
proof of Theorem 1.5. This is written out in Section 9.

Outline of the proofs. Both [EMM] and this paper are based on the
following approach. In order to estimate NQ,Ω(a, b, T ) we make a transition
to considering certain integrals on the space of unimodular lattices in Rn, i.e.
SL(n, R)/SL(n, Z). This transition is based on the transitivity of the action of
the orthogonal group SO(Q) on the level sets of the quadratic form Q. We fix
a suitably chosen compact set U ⊂ Rn -{0} such that for v ∈ U , a ≤ Q(v) ≤ b.
Let f̂ denote the function on the space of lattices SL(n, R)/SL(n, Z) which
associates to each lattice ∆ the number of points in ∆ ∩ U . Because of the
transitivity of the action of SO(Q), any vector v ∈ Zn with T/2 ≤ ‖v‖ ≤ T and
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a ≤ Q(v) ≤ b can be brought into U by an appropriate element g ∈ SO(Q).
Note that the number of points in the lattice gZ4 lying in U is exactly equal
to the number of points in the lattice Zn lying in g−1U . Hence the number of
points in Zn lying in g−1U is equal to f̂(gZn). By varying g ∈ SO(Q) in an
appropriate way, the sets g−1U can be made to cover the set R = {v ∈ R4 :
a ≤ Q(v) ≤ b and T/2 ≤ ‖v‖ ≤ T}. Thus, the number of integer points in R,
i.e. NQ(a, b, T )−NQ(a, b, T/2) may be approximated by an integral of the form
T 2

∫
H f̂(gZ4) dg, where H is a suitably chosen subset of SO(Q). Note that one

needs on the order of T 2 translates of U to cover R, since g is volume-preserving
and the volume of R is asymptotic to T 2.

Observe that for any choice of U , f̂ is unbounded. In [DM] S.G. Dani
and G.A. Margulis have used integrals of the form

∫
H φ(gZn) dg where φ is

a bounded function with φ ≤ f̂ to give asymptotically exact lower bounds
on the number of lattice points in sets of the form {v ∈ Rn : a < Q(v) <

b} ∩ TΩ for indefinite irrational quadratic forms, n ≥ 3. The proof of these
estimates uses M. Ratner’s measure classification theorem (see [Ratner]) as
well as the methods developed by Dani and Margulis for studying unipotent
flows via “linearization”; see [DM]. One also needs to have an estimate of the
contribution of elements of lattices lying at the “cusps” of SL(n, R)/SL(n, Z),
i.e., outside of large compact subsets.

At this point there is a significant difference between the cases considered
in [EMM] and the present case. (Note that the main result of [EMM] does not
hold for all forms of signature (2, 2).) However, the contributions of lattices
having either a single short vector or three independent short vectors is still
estimated as in [EMM]. In estimating the contribution of those lattices having
a two-dimensional sublattice spanned by short vectors one has to exclude the
lattice points belonging to quasinull subspaces. One of the main technical tools
of the current paper is the estimate provided by Theorem 2.6 for the contri-
bution of these lattices excluding the points coming from quasinull subspaces.
The proof of Theorem 2.6 (which is outlined in Section 5) occupies Sections
5–8. The contribution of quasinull spaces is estimated in Section 9 for the case
of rectangular tori, and in Section 10 in the general case.

Acknowledgments. We would like to thank P. Sarnak for his encourage-
ment and for many useful conversations.

2. Passage to the space of lattices

Fix a quadratic form Q of signature (2, 2) and discriminant 1. Then there
exists an element gQ ∈ SL(4, R) such that for any v ∈ Rn, Q(v) = B(gQv),
where B is the “standard” quadratic form B(z1, z2, z3, z4) = z1z4 − z2z3. Let
Λ denote gQZ4 so that Q(Z4) = B(Λ).
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We identify R4 with M2(R) by sending (z1, z2, z3, z4) to
(

z1 z2

z3 z4

)
. Then

the determinant function on M2(R) becomes the quadratic form B of signature
(2, 2). This shows that the orthogonal group H = SO(B) is locally isomorphic
to SL(2, R)× SL(2, R) with the action of g = (g1, g2) ∈ SL(2, R)× SL(2, R) on
v ∈ M2(R) given by v → g1vg−1

2 . Write H = H1 ×H2 (almost direct product).
Let eij ∈ M2(R) denote the elementary matrix with 1 in row i column j

and 0’s elsewhere. Then e11, e12, e21 and e22 form a basis for M2(R) ≈ R4. The
following lemma is standard:

Lemma 2.1 (Reducibility of the representation of SO(2,2) on ∧2R4).

(a) The space ∧2R4 ≈ ∧2M2(R) splits as a direct sum of two invariant
subspaces V1 ⊕ V2 each of dimension 3. A basis for V1 is given by
f

(1)
1 = e11 ∧ e12, f

(1)
2 = e21 ∧ e22, f

(1)
3 = e11 ∧ e22 − e12 ∧ e21. A basis for

V2 is given by f
(2)
1 = e11∧e21, f

(2)
2 = e12∧e22, f

(2)
3 = e11∧e22 +e12∧e21.

(b) H1 fixes each vector in V2 and H2 fixes each vector in V1. On Vi, Hi

fixes the quadratic form Q(xf
(i)
1 + yf

(i)
2 + zf

(i)
3 ) = z2 − xy.

(c) Let πi denote the projection ∧2R4 → Vi. Let L be a two-dimensional
subspace of R4, and let v1, v2 be a basis for L. Then

Q(π1(v1 ∧ v2)) = Q(π2(v1 ∧ v2))

= the discriminant of the restriction of B to L .

The restriction of B to L is identically 0 if and only if π1(v1 ∧ v2) = 0
or π2(v1 ∧ v2) = 0.

Let Λ be a lattice in R4. A subspace L of R4 is called Λ-rational if L ∩ Λ
is a lattice in L. Let L be a 2-dimensional Λ-rational subspace L of R4, and let
v1, v2 be an integral basis for L∩Λ. Write vL = v1 ∧ v2. Note that up to sign,
vL depends only on L and Λ and does not depend on the choice of integral
basis. In view of Lemma 2.1 (c), the restriction of B to L is identically 0 if
and only if ‖π1(vL)‖‖π2(vL)‖ = 0.

Definition 2.2 (Quasinull subspace). Let Λ be a lattice in R4. Fix µ1,
0 < µ1 < 1. A Λ-rational subspace L of R4 is called µ1-quasinull with respect
to Λ if dim(L) = 2 and

‖π1(vL)‖‖π2(vL)‖ < µ1.(8)

Instead of the standard quadratic form B and the lattice Λ = gQZ4, we
often consider the given form Q(v) = B(gQv) and the standard lattice Z4. We
will then say that a Z4-rational subspace L is µ1-quasinull if and only if gQL

is µ1-quasinull with respect to Λ. We will also occasionally omit µ1.
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Instead of working directly with SO(2, 2) we work with SL(2, R)×SL(2, R),

which is locally isomorphic. Let bt ∈ SL(2, R) denote the matrix
(

et/2 0
0 e−t/2

)
,

let at = (bt, bt) and let K = SO(2) × SO(2) denote the standard maximal
compact subgroup of SL(2, R)× SL(2, R). Let dk denote the normalized Haar
measure on K.

As in [EMM], for a lattice ∆ ⊂ R4 and a function f ∈ C∞
0 (R4 − {0}), let

f̂(∆) =
∑
v∈∆

f(v).

Recall that in [EMM, Th. 2.3] we proved that for Q of signature (p, q) with
p ≥ 3 and q ≥ 1, and as long as Q is not proportional to a rational form (so
that SO(Q)Λ is not closed), and for any continuous function ν on K, we have

lim
n→∞

∫
K

f̂(atkΛ)ν(k) dk =
∫

K
ν(k) dk

∫
SL(p+q,R)/SL(p+q,Z)

f̂(∆) dµ(∆).(9)

This was used to obtain the main result [EMM, Th. 2.1] (which is restated as
Theorem 1.1 in the present paper).

In the case of signature (2, 2), (9) may fail in general because of the con-
tribution of quasinull subspaces. We will need the following modification: Let
XT (Λ) denote the set of v ∈ Λ which do not belong to any quasinull subspace
of Λ of norm at most T , and let

f̃(g; Λ) =
∑

v∈XT (Λ)

f(gv).(10)

In order to prove Theorem 1.4 we prove the following theorem:

Theorem 2.3. Let Q be any quadratic form of signature (2, 2) and dis-
criminant 1 which is not proportional to a rational form. Let gQ ∈ SL(4, R)
be such that for all v ∈ R4, Q(v) = B(gQv), and let Λ = gQZ4. Then, for any
function f ∈ C∞

0 (R4 − {0}), and any continuous function ν on K,

lim sup
t→∞

∫
K

f̃(atk; Λ)ν(k) dk ≤
∫

K
ν(k) dk

∫
SL(4,R)/SL(4,Z)

f̂(∆) dµ(∆),(11)

where µ denotes the normalized Haar measure on the space of lattices
SL(4, R)/SL(4, Z).

Theorem 1.4 follows from Theorem 2.3 by an argument identical to that
used in [EMM, §3.4, §3.5] to deduce [EMM, Th. 2.1] (i.e. Theorem 1.1) from
[EMM, Th. 2.3] (i.e. (9)), with the natural modifications due to the fact that
we assert and assume only inequalities. Essentially, the proof is based on the
identity of the form∫

K
f̃(atk; Λ)ν(k) dk =

∑
v∈XT (Λ)

∫
K

f(atkv)ν(k) dk,(12)
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obtained by integrating (10). The right-hand side of (12) is then related to
the number of lattice points v ∈ [et/2, et]∂Ω with a < Q(v) < b which are not
contained in quasinull subspaces of norm at most T (where T = et).

Let ∆ be a lattice in R4. As in [EMM], for any ∆-rational subspace L,
we denote by d∆(L) or simply by d(L) the volume of L/(L ∩ ∆). Let us note
that d(L) is equal to the norm of e1∧ · · ·∧ e� in the exterior power ∧�R4 where
� = dimL and {e1, · · · , e�} is a basis over Z of L ∩ ∆. If L = {0} we write
d(L) = 1.

We recall the following:

Lemma 2.4 ([EMM, Lemma 5.6]). For any two ∆-rational subspaces L

and M

d(L)d(M) ≥ d(L ∩ M)d(L + M).(13)

As in [EMM] we use the notation:

αi(∆) = sup
{ 1

d(L)

∣∣∣ L is a ∆-rational subspace of dimension i
}

, 0 ≤ i ≤ 4,

(14)

α(∆) = max
0≤i≤4

αi(∆).

We recall the following theorem:

Theorem 2.5. Suppose i = 1 or 3. Then for any ξ > 0,

sup
t≥0

∫
K

αi(atkΛ)2−ξ dk < ∞.

Hence there exists a constant c depending only on ξ and Λ such that for all
t > 0 and all δ > 0,

|{k ∈ K : αi(atkΛ) > 1/δ}| < cδ2−ξ.

Proof. The first assertion is proved in [EMM, §5] (see the proof of equation
(5.75)). The second assertion follows from the first and Chebechev’s inequality.

The analogous assertion for α2 is false even when ξ = 1; this accounts
for the failure of Theorem 1.1 in the signature (2, 2) case. However, in this
situation, we prove a substitute: see Theorem 2.6 below.

Suppose g ∈ SL(4, R), and Λ is as above. Let

α̂2(g; Λ) = sup
{

1
d(gL)

: dim(L) = 2, L is rational and not µ1-quasinull
}

.
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Theorem 2.6. There exists a constant c depending only on µ1 and Λ
such that for all 0 < δ � 1 and all t > 0,

|{k ∈ K : α̂2(atk; Λ) > 1/δ}| < cδ1.05.(15)

Hence, for any θ < 1.05,

sup
t≥0

∫
K

α̂2(atk; Λ)θ < ∞.

In Section 3 we derive Theorem 2.3 from Theorem 2.5 and Theorem 2.6.
After making some preliminary calculations in Section 4, we will begin the
proof of Theorem 2.6 (which is the main technical point of this paper) in
Section 5.

3. Proof of Theorem 2.3

In this section, we deduce Theorem 2.3 from Theorem 2.5, and Theo-
rem 2.6. This argument is very similar to the proof of [EMM, Th. 3.5] in
[EMM, §5].

Lemma 3.1. For every function f ∈ C∞
0 (R4 -{0}) there exists a constant

c = c(f) such that for all g ∈ SL(4, R),

f̃(g; Λ) ≤ cα̂(g; Λ)

where α̂(g; Λ) = max (1, α1(gΛ), α̂2(g; Λ), α3(gΛ)).

Proof of Lemma 3.1. This is an easy modification of a well known lemma
of Schmidt; see [Sch, Lemma 2].

Proof of Theorem 2.3. We may assume that f̃ is nonnegative. Let

A(r) = {∆ ∈ SL(4, R)/SL(4, Z) : α1(∆) > r}.
Choose a continuous nonnegative function gr on SL(4, R)/SL(4, Z) such that
gr(∆) = 1 if ∆ ∈ A(r + 1), gr(∆) = 0 if ∆ /∈ A(r) and 0 ≤ gr(∆) ≤ 1 if
∆ ∈ A(r) − A(r + 1). Then

∫
K

f̃(atk; Λ) dk =
∫

K
f̃(atk; Λ)gr(atkΛ) dk +

∫
K

f̃(atk; Λ)(1 − gr(atkΛ)) dk.

(16)

But,

f̃(atk; Λ)gr(atkΛ)≤ cα̂(atk; Λ)gr(atkΛ)

= cα̂(atk; Λ)−0.04gr(atkΛ)α̂(atk; Λ)1.04

≤B1r
−0.04α̂(atk; Λ)1.04
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(the last inequality is true because α̂(atk; Λ) ≥ α1(atkΛ) and gr(atkΛ) = 0 if
α1(atkΛ) ≤ r). Therefore

∫
K

f̃(atk; Λ)gr(atkΛ)ν(k) dk ≤ B1r
−0.04

(
sup
k∈K

|ν(k)|
) ∫

K
α̂(atk; Λ)1.04 dk.

(17)

According to Theorem 2.5 and Theorem 2.6 there exists B such that∫
K

α̂(atk; Λ)1.04 dk < B,

for any t ≥ 0. Then (17) implies that∫
K

f̃(atk; Λ)gr(atkΛ)ν(k) dk ≤ BB1r
−1.04

(
sup
k∈K

|ν(k)|
)

.(18)

Let h(∆) = f̂(∆)(1 − gr(∆)). Then for all t > 0 and all k ∈ K,

f̃(atk; Λ)(1 − gr(atkΛ)) ≤ h(atkΛ).(19)

Since the function h is continuous and has compact support, [EMM, Th. 4.5]
implies that for every ε > 0 and every quadratic form Q not proportional to a
rational form, there exists t0 > 0 such that for Λ = gQZ4 and every t > t0,∣∣∣∣∣

∫
K

h(atkΛ)ν(k) dk −
∫

K
ν(k) dk

∫
SL(4.R)/SL(4,Z)

h(∆) dµ(∆)

∣∣∣∣∣ <
ε

2
.(20)

It is easy to see that (16), (18), (19) and (20) imply (11) if r is sufficiently
large.

4. The rectangles

We will eventually establish (15), but first we need to study carefully the
sets {k ∈ K : d(atkL) < η}, where L is a two-dimensional subspace. This
will be done in this section.

Let bt =
(

et/2 0
0 e−t/2

)
, and kθ =

(
cos θ sin θ

− sin θ cos θ

)
.

Then at = (bt, bt) and k = (kθ, kθ′). If we use the norm

‖v‖′ = max(‖π1(v)‖, ‖π2(v)‖)

for defining α2 and d then the set {k ∈ K : d(atkL) < η} is the direct product
of the sets {θ : ‖btkθπ1(vL)‖ < η} and {θ′ : ‖btkθ′π2(vL)‖ < η}. As we
shall see below, each set {θ : ‖btkθπ1(vL)‖ < η} is either an interval or a
union of two intervals; thus our set {k ∈ K : d(atkL) < η} is a union of up
to four rectangles. Note that these rectangles (and all rectangles appearing in
this paper) have sides parallel to the coordinate axes.
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More generally, we may also consider sets of the form

{(θ, θ′) : ‖btkθπ1(vL)‖ < η1, ‖btkθ′π2(vL)‖ < η2}.

Let Mt(L) = mink∈k ‖atkvL‖′.

Implied constants. In this section, all implied constants are either abso-
lute, or depend only on µ1 and Λ.

Lemma 4.1. There is a constant c � 1 such that the following holds:
Suppose L is not µ1-quasinull with respect to Λ, t � 1 and Mt(L) � 1. Then,
both of the sets {θ : ‖btkθπ1(vL)‖ < c} and {θ′ : ‖btkθ′π2(vL)‖ < c}
are not all of SO(2). Also, if ‖vL‖ � 1 then for some j ∈ {1, 2} the set
{φ : ‖btkφπj(vL)‖ < Mt(L)−0.1} is not all of SO(2).

Proof. It is easy to check that for any v ∈ R3 and t � 1,

‖bt‖−1‖v‖ ≤ min
θ

‖btkθv‖ ≤ max
θ

‖btkθv‖ ≈ ‖bt‖‖v‖.(21)

Write vL = π1(vL) + π2(vL). Without loss of generality we may assume
‖π2(vL)‖ ≥ ‖π1(vL)‖. Since Mt(L) � 1, from (21) we see that ‖π2(vL)‖ �
‖bt‖. Hence since L is not µ1-quasinull with respect to Λ, ‖π1(vL)‖ ≥ ‖bt‖−1.
Then, by (21), maxθ ‖btkθπ1(vL)‖ ≈ ‖bt‖‖π1(vL)‖ ≥ c as required. Since L is
Λ-rational, ‖vL‖ ≥ c0 where c0 = c0(Λ); hence ‖π2(vL)‖ ≥ c0/2. This implies
(for any θ < 1),

max
θ

‖btkθπ2(vL)‖ ≈ ‖bt‖‖π2(vL)‖≥ (c0/2)‖bt‖ ≥ (c0/2)‖bt‖−θ

≥ (c0/4)(‖bt‖‖π2(vL)‖)−θ ≥ cMt(L)−θ,

as required. (Here c depends only on µ1 and Λ.)

For an interval I ⊂ S1 and c > 0, let cI denote the interval with the same
center as I and length c|I|. Similarly for a rectangle R = I1 × I2 and c > 0,
let cR denote the rectangle cI1 × cI2

We approximate the sets

{(θ, θ′) : ‖btkθπ1(vL)‖ < η1, ‖btkθ′π2(vL)‖ < η2}

by sets RL,±,±
t (η1, η2) which are rectangles (rather than unions of rectangles),

and whose center does not depend on t. A major difficulty is that the aspect
ratio of the rectangles is not bounded (even if η1 = η2). However, the modified
family has the following properties:

Proposition 4.2. Suppose L is not µ1-quasinull with respect to Λ,
t � 1, and Mt(L) � 1. There exist rectangles RL,±±

t (δ1, δ2) = I
π1(L),±
t (δ1) ×

I
π2(L),±
t (δ2), such that the following properties hold :
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(a) The rectangles RL,±±
t (η1, η2) approximate the sets

{(θ, θ′) : ‖btkθπ1(vL)‖ < η1, ‖btkθ′π2(vL)‖ < η2};

i.e. there exists 0 < c < 1 such that if Mt(L) � δi � maxk ‖πi(atkvL)‖
then

RL,±±
t (cδ1, cδ2)(22)

⊂ {(θ, θ′) : ‖btkθπ1(vL)‖ < δ1, ‖btkθ′π2(vL)‖ < δ2}
⊂ RL,++

t (c−1δ1, c
−1δ2)

∪RL,+−
t (c−1δ1, c

−1δ2) ∪ RL,−+
t (c−1δ1, c

−1δ2) ∪ RL,−−
t (c−1δ1, c

−1δ2).

(b) The rectangles RL
t shrink as t increases; i.e. there exists an absolute

constant C < ∞ such that if maxk ‖πi(atkvL)‖ � δi � Mt(L), τ � 0
and δi � Mt+τ (L), then

RL,±±
t+τ (δ1, δ2) ⊂ Ce−τ/2Rv,±±

t (δ1, δ2).(23)

(c) Measure ratio estimate. If maxk ‖πi(atkvL)‖ � ηi � δi � Mt(L), then

|RL,±±
t (δ1, δ2)|

|RL,±±
t (η1, η2)|

�
(

δ1δ2

η1η2

)1/2

.(24)

(d) The alternative. Either one side is determined ; i.e. for maxk ‖πi(atkvL)‖
� δi � Mt(L),

RL,±±
t (δ1, δ2) has at least one side of length ≈ e−tMt(L)−1/2δ

1/2
i ,(25)

or the minimum does not decrease; i.e. for τ > 0,

Mt+τ (L) ≥ Mt(L).(26)

Proposition 4.2 is proved in Appendix A.

Notation. We use the notation RL,±±
t (η) to denote RL,±±

t (η, η).

5. The scheme of the proof of Theorem 2.6

Let Lt(δ) denote the set of non-µ1-quasinull Λ-rational 2-dimensional sub-
spaces L such that for some k ∈ K, d(atkL) < δ. We have:

(27) {k ∈ K : α̂2(atk; Λ) > 1/δ}

=
⋃

L∈Lt(δ)

{k ∈ K : d(atkL) < δ} ⊂
⋃
σ∈±
ρ∈±

 ⋃
L∈Lt(δ)

RL,σρ
t (c−1δ)

 ,
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where c is as in Proposition 4.2 (a). Let τ > 0 be a parameter to be chosen
later. Let

Lt,new(δ) = Lt(δ) -Lt−τ (δ), and Lt,old(δ) = Lt(δ) ∩ Lt−τ (δ).

We will consider old and new subspaces separately. The reason for this
will become apparent in Section 7. The proof of Theorem 2.6 consists of the
following steps:

Step 1 (Contribution of old subspaces). There exists a constant τ > 0
(depending only on µ1 and Λ) such that for any ω > 1 and any ξ > 0 there exist
constants κ = κ(ω, ξ, µ1,Λ) < 1, t0 = t0(µ1,Λ), δ0 = δ0(ω, ξ, τ, µ1,Λ) > 0, and
B = B(ω, ξ, τ, µ1,Λ) > 0 such that for any δ < δ0, any t > t0 + τ , and any
σ, ρ ∈ {+,−},∣∣∣∣∣∣

⋃
L∈Lt,old(δ)

RL,σρ
t (ωδ)

∣∣∣∣∣∣ ≤ κ

∣∣∣∣∣∣
⋃

L∈Lt−τ (δ)

RL,σρ
t−τ (ωδ)

∣∣∣∣∣∣ + Bδ2−ξ.

Step 2 (Contribution of new subspaces). For any ω > 1 there exist con-
stants t0 = t0(µ1,Λ), δ0 = δ0(µ1,Λ, ω) > 0, and B1 = B1(µ1,Λ, ω) such that
for any τ > 0, any δ < δ0, any t > t0 + τ , and any σ, ρ ∈ {+,−},∣∣∣∣∣∣

⋃
L∈Lt,new(δ)

RL,σρ
t (ωδ)

∣∣∣∣∣∣ ≤ B1δ
1.05.

Proof of Theorem 2.6 assuming Step 1 and Step 2. To prove (15) it is
clearly enough to estimate the measure of the right-hand side of (27) with fixed
σ and ρ. Henceforth we fix σ and ρ and drop the ±± from the notation.

Choose ξ > 0 such that 1.05 < 2− ξ, and choose τ such that Step 1 holds.
Choose ω1 = ω1(τ) > 1 such that for any v ∈ ∧2R4 and any s, 0 < s < τ ,
ω−1

1 ‖v‖ ≤ ‖asv‖ ≤ ω1‖v‖. Choose ω = c−1ω1, where c is as in Proposi-
tion 4.2 (a). Suppose δ is sufficiently small and t is sufficiently large so that
both Step 1 and Step 2 hold. In the argument below, all implied constants
depend on µ1, Λ, τ and ω. Let

h(t) =

∣∣∣∣∣∣
⋃

L∈Lt(δ/ω1)

RL
t (ωδ)

∣∣∣∣∣∣ ,

hold(t) =

∣∣∣∣∣∣
⋃

L∈Lt,old(δ/ω1)

RL
t (ωδ)

∣∣∣∣∣∣ ,
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and

hnew(t) =

∣∣∣∣∣∣
⋃

L∈Lt,new(δ/ω1)

RL
t (ωδ)

∣∣∣∣∣∣ ,

so that h(t) ≤ hold(t) + hnew(t). By Step 2, hnew(t) = O(δ1.05). By Step 1,

hold(t + τ) ≤ κh(t) + O(δ2−ξ) ≤ κhold(t) + O(δ1.05).(28)

We may assume that δ is small enough so that h(0) = 0. Hence, since κ < 1,
(28) implies that for n ∈ N, hold(nτ) = O(δ1.05). Then, for n ∈ N, h(nτ) =
O(δ1.05).

Now let t > 0 be arbitrary. We may write t = nτ + s, where 0 < s < τ .
Then, by the definition of ω1, for each L ∈ Lt(δ/ω1), L ∈ Lnτ (δ), and
RL

t (c−1δ) ⊂ RL
nτ (ωδ). Hence, the measure of the right-hand side of (27) is

bounded by h(nτ) = O(δ1.05). This proves (15).

6. Proof of Step 1

The proof is based on Proposition 4.2 (b); indeed, if the rectangles RL(ωδ)
were disjoint, then Step 1 would follow directly from Proposition 4.2 (b). In
general, these rectangles are not disjoint, but the overlap is contained in the
region where either α1 or α3 is large. In fact, we have the following lemma
(which follows immediately from Lemma 2.4):

Lemma 6.1. Suppose L and M are two distinct 2-dimensional ∆-rational
lattices with d(L) < δ, d(M) < δ. Then α1(∆) > 1/δ or α3(∆) > 1/δ. Hence,
by Proposition 4.2 (a),

RL
t (ωδ)∩RM

t (ωδ) ⊂ {k ∈ K : α1(atkΛ) > c/(ωδ)}(29)

∪{k ∈ K : α3(atkΛ) > c/(ωδ)},

where c is as in Proposition 4.2 (a).

Now the measure of the right-hand side of (29) can be bounded by using
Theorem 2.5. However, to complete the proof, we will need a certain covering
lemma (Lemma 6.4 below).

6.1. Two covering lemmas.

Definition 6.2. A rectangle R ∈ R2 will be called a quasi-square if the
ratio of its sides is between 1/2 and 2.

Lemma 6.3 (Covering by quasi-squares). Let {Sj} be a countable collec-
tion of quasi-squares in R2, with sides parallel to the coordinate axes, and let
E =

⋃
j Sj. Then there is a subcollection D of pairwise disjoint quasi -squares
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such that E ⊂
⋃

D 6Sj and so that the total area of the remaining quasi -squares
satisfies ∣∣∣∣∣∣

⋃
S 
∈D

S

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
i
=j

(6Si) ∩ (6Sj)

∣∣∣∣∣∣ .(30)

Proof. This is well known. The proof consists of ordering the quasi-squares
by size, and repeatedly adding to P the largest quasi-square which is disjoint
from the union of the quasi-squares already in D. Note that each remaining
quasi-square S is contained in (6S) ∩ (6T ) where T is a quasi-square already
in D.

Lemma 6.4 (Covering by rectangles). Let {Rj} be a countable collection
of rectangles in R2 with sides parallel to the coordinate axes. Suppose∣∣∣∣∣∣

⋃
j 
=k

(6Rj) ∩ (6Rk)

∣∣∣∣∣∣ ≤ ε.(31)

Then for ν � 1, ∣∣∣∣∣∣
⋃
j

νRj

∣∣∣∣∣∣ ≤ 42ν

∣∣∣∣∣∣
⋃
j

Rj

∣∣∣∣∣∣ + 21ε.(32)

Proof. Using cuts perpendicular to its longer side, each of the rectangles
Rj may be divided into a finite set of quasi-squares. Partitioning these into
21 classes P(k)

j , k = 0 . . . 20, so that a quasi-square from class P(k+1)
j follows

a quasi-square from class P(k)
j (mod 21), we obtain Rj = �20

k=0 �S∈P(k)
j

S. For

each 1 ≤ k ≤ 21 let P(k) =
⋃

P(k)
j .

If S is a quasi-square [−a, a]× [−b, b], let S† denote the “cross” [−νa, νa]×
[−b, b] ∪ [−a, a] × [−νb, νb]. Clearly |S†| ≤ 2ν|S|, and⋃

j

(νRj) ⊂
⋃
j,k

⋃
S∈P(k)

j

S† =
⋃
k

⋃
S∈P(k)

S†.

Hence to estimate
∣∣∣⋃j(νRj)

∣∣∣, we need to estimate
∣∣⋃

S∈P(k) S†∣∣ for each k.

Note that if S, T ∈ P(k) and S 
= T , then (6S) ∩ (6T ) ⊂
⋃

i
=j(6Ri) ∩ (6Rj).
Thus, by Lemma 6.3, we obtain a subcollection D(k) ⊂ P(k) of disjoint

quasi-squares such that∣∣∣∣∣ ⋃
S∈P(k) -D(k)

S

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

⋃
S,T∈P(k)

S 
=T

(6S) ∩ (6T )

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
i
=j

(6Ri) ∩ (6Rj)

∣∣∣∣∣∣ ≤ ε.(33)
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Observe that
∣∣⋃

S∈D(k) S†∣∣ ≤ 2ν
∣∣⋃

S∈D(k) S
∣∣. Thus for each k,∣∣∣∣∣ ⋃

S∈P(k)

S†
∣∣∣∣∣ ≤

∣∣∣∣∣ ⋃
S∈D(k)

S†
∣∣∣∣∣ +

∣∣∣∣∣ ⋃
S∈P(k) -D(k)

S†
∣∣∣∣∣

≤ 2ν

∣∣∣∣∣ ⋃
S∈D(k)

S

∣∣∣∣∣ +

∣∣∣∣∣ ⋃
S∈P(k) -D(k)

S

∣∣∣∣∣ .

By (33) the lemma follows.

6.2. The proof of Step 1. We may assume that ω is sufficiently large and
δ sufficiently small so that by Proposition 4.2 (b), for L ∈ Lt,old(δ), RL

t (ωδ) ⊂
Ce−τRL

t−τ (ωδ). Also by Lemma 6.1 and Theorem 2.5, for any ξ > 0,∣∣∣∣∣∣∣∣
⋃

L,M∈Lt−τ (δ)

L
=M

RL
t−τ (ωδ) ∩ RM

t−τ (ωδ)

∣∣∣∣∣∣∣∣≤ |{k : α1(atkΛ) > c/(ωδ)}|

+ |{k : α3(atkΛ) > c/(ωδ)}| = O(δ2−ξ),

where the implied constant depends only on µ1, Λ, ξ and ω. Choose τ > 0
such that Ce−τ/2 < 1/2, and let κ = 2Ce−τ/2. Then, by Lemma 6.4,∣∣∣∣∣∣

⋃
L∈Lt,old(δ)

RL
t (ωδ)

∣∣∣∣∣∣ ≤ 2Ce−τ/2

∣∣∣∣∣∣
⋃

L∈Lt,old(δ)

Rt−τ (ωδ)

∣∣∣∣∣∣ + O(δ2−ξ)

≤ κ

∣∣∣∣∣∣
⋃

L∈Lt−τ (δ)

Rt−τ (ωδ)

∣∣∣∣∣∣ + O(δ2−ξ).

7. The nesting property

In this section we begin the proof of Step 2. In this section (and the rest
of the proof of Step 2) τ and t are fixed; we also assume that t is sufficiently
large and δ sufficiently small so that Proposition 4.2 holds. In this section all
constants are independent of t and δ, but may depend on µ1, Λ, ω, τ and the
constants in Section 4.

Let c < 1 be as in Lemma 4.1. Let N > 1 be a parameter to be chosen
later (see Proposition 7.4 below), and let c0 = c/N3. If L is not µ1-quasinull,
then by Lemma 4.1 at least one of the rectangles RL

1 = RL
t (c0δ

−0.1, c0) or
RL

2 = RL
t (c0, c0δ

−0.1) does not wrap around the torus. We call this rectangle
RL

big. We will also use the “intermediate” rectangles RL
int = RL(δ0.1).

The strategy of the proof of Step 2 is as follows: For every L ∈ Lt,new(δ),
RL(ωδ) ⊂ RL

int ⊂ RL
big. We have the next estimates (which follow immediately

from Proposition 4.2 (c)):
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Lemma 7.1. Suppose L ∈ Lt(δ). Then,

|RL
t (ωδ)| = ON

(
δ0.9|RL

int|
)
,(34)

and

|RL
t (ωδ)| = ON

(
δ1.05|RL

big|
)
.(35)

If the rectangles {RL
big : L ∈ Lt(δ)}, were disjoint, Step 2 would fol-

low immediately from Lemma 7.1. However, in general, these rectangles may
intersect. Their main combinatorial property is the following:

Lemma 7.2. Suppose L and M are two distinct elements in Lt(δ), and
RL

t (ωδ) intersects RM
big. Then L intersects M nontrivially (i.e. dim(L ∩ M)

> 0). More generally, for any N > 1, there exists δ0 = δ0(N, µ1,Λ, ω) such that
if δ < δ0 and RL

t (ωδ) intersects NRM
big, then L and M intersect nontrivially.

Proof of Lemma 7.2. Pick k ∈ RL
t (ωδ) ∩ NRM

big. Then d(atkL) = ON (δ),
and d(atkM) = ON (δ−0.1). In particular, d(atkL)d(atkM) = ON (δ0.9) � 1.
Hence, by Lemma 2.4 atkL and atkM intersect nontrivially. Thus, L and M

intersect nontrivially.

Note that Lemma 7.2 can be applied only when a “small” rectangle RL
t (ωδ)

intersects a “big” rectangle RM
big; there is no information gained when two

“big” rectangles overlap. The following property is useful for overcoming this
difficulty:

Definition 7.3 (the nesting property). Let Rj be a collection of rectan-
gles in R2. This collection has the nesting property if there is a constant N > 1
such that for any i, j, i 
= j, one of the following holds:

(i) Ri and Rj are disjoint.
(ii) Rj ⊂ NRi.
(iii)Ri ⊂ NRj .

For example, collections of squares have the nesting property. However,
in general, collections of rectangles do not (unless for example the aspect ratio
is bounded).

The main result of this section is the following proposition:

Proposition 7.4 (New subspaces have the nesting property). There are
a constant N > 1, independent of t and δ, and a decomposition of Lt,new(δ)
into four disjoint subsets Lq

t (δ) such that for each q, the collections {RL
int :

L ∈ Lq
t (δ)} and {RL

big : L ∈ Lq
t (δ)} both have the nesting property.

Proposition 7.4 is the main advantage of working with Lt,new(δ) instead
of Lt(δ). Before beginning the proof of Proposition 7.4 we state a corollary:
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Corollary 7.5. Suppose L, M ∈ Lq
t (δ) and RL

big intersects RM
big. Then

L intersects M nontrivially.

Proof of Corollary 7.5. Suppose RL
big intersects RM

big. Using Proposi-
tion 7.4 we may assume without loss of generality that RL

big ⊂ NRM
big; hence

RL
t (ωδ) ⊂ NRM

big. Now the corollary follows from Lemma 7.2.

We now start the proof of Proposition 7.4, first noting the following:

Lemma 7.6. Suppose L ∈ Lt,new(δ). Then Mt(L) ≈ δ (where Mt(L) is as
defined in §4).

Proof. Since L ∈ Lt(δ), Mt(L) ≤ δ. Since L 
= Lt−τ (δ), Mt−τ (L) ≥ δ;
then Mt(L) ≥ δ/‖aτ‖.

The advantage of Lt,new(δ) compared to Lt(δ) is the following:

Lemma 7.7 (Fixed side). Suppose L ∈ Lt,new(δ). Then for any η � δ,
the rectangle RL

t (η) has at least one side of length ≈ e−tδ−1/2η1/2. For any
η1, η2 � δ, RL

t (η1, η2) has at least one side of length either ≈ e−tδ−1/2η
1/2
1 or

≈ e−tδ−1/2η
1/2
2 .

Proof. Since L ∈ Lt(δ), Mt(L) ≤ δ. Since L 
∈ Lt−τ (δ), Mt−τ (L)>δ.
Hence the second alternative of part (d) of Proposition 4.2 cannot hold.
Hence the first alternative holds, and thus RL

t−τ (η) has a side of length ≈
e−tMt−τ (L)−1/2η1/2 ≈ e−tδ−1/2η1/2. Thus the same holds for RL

t (η). The
proof of the second assertion is identical.

Proof of Proposition 7.4. We only prove the assertion for the “big” rect-
angles; the proof for the “intermediate” rectangles is identical. Suppose L ∈
Lt,new(δ). By Lemma 7.7, there exist constants c3, c4 depending only on µ1,
Λ, ω and τ such that RL

big either has a side of length between c3e
−tδ−0.55 and

c4e
−tδ−0.55 or has a side of length between c3e

−tδ−1/2 and c4e
−tδ−1/2; this side

can be either “vertical” or “horizontal”. Thus there are four possibilities for
each L. For 1 ≤ q ≤ 4 let Lq

t (δ) denote the set of L ∈ Lt,new(δ) for which the
q’th possibility occurs. Now let N = 2c4/c3; the proposition follows.

We will also use the following version of the nesting property:

Lemma 7.8 (the nesting lemma). Suppose L1, . . . Lm ∈ Lq
t (δ). Then one

of the following holds:

(a)
⋂m

j=1 R
Lj

big = ∅.
(b) The sets can be reordered so that for 1 ≤ i < j ≤ m,

RLi

big ⊂ NR
Lj

big.(36)
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Proof. In view of Lemma 7.7, one can just order the rectangles RL
big by

increasing size.

8. Proof of Step 2

In this section all implied constants depend on µ1,Λ, τ , ω and N (and
hence ultimately only on µ1 and Λ).

8.1. Preliminaries. In view of Corollary 7.5, if some point belongs to many
sets of the form RLi

big where all Li ∈ Lq
t (δ), then for i 
= j, dim(Li ∩ Lj) = 1.

The following lemma is immediately obvious:

Lemma 8.1. Suppose L1, L2, . . . , Lm are distinct two-dimensional sub-
spaces of R4 and for 1 ≤ i < j ≤ m, dim(Li ∩ Lj) = 1. Then at least one of
the following holds:

(a) dim(L1 ∩ L2 ∩ · · · ∩ Lm) = 1.

(b) dim(L1 + L2 + · · · + Lm) = 3.

Thus, if many rectangles RLj have a common point, then either all the Lj

have a common vector, or all the Lj lie in a common 3-dimensional subspace, or
both. In view of this, we will need some information about the sets F (η) = {k :
d(atkH) < η}, where H is either a vector or a three-dimensional subspace.
Thus, we will use the following lemma:

Lemma 8.2. Let H be a Λ-rational subspace of dimension 1 or 3. For
η > 0 let F (η) denote the set {k ∈ K : d(atkH) < η}. Suppose R1 and
R2 are disjoint rectangles such that for i = 1, 2, |Ri ∩ F (η)| ≥ 0.9|Ri|, and let
λ > 1 be such that 3λR1 and 3λR2 are still disjoint and of diameter at most
π/8. Then, for some i ∈ {1, 2},

|Ri| ≤ c1λ
−1|(λRi) ∩ F (c2η)|,

where c1 > 0 and c2 > 1 depend only on Λ.

Proof. See Appendix B.

8.2. Proof of Step 2. Notational convention. In this subsection, we use
the notation α13(∆) = max(α1(∆), α3(∆)). Let Lq

t (δ) be as in Section 7. We
fix q.

Definition 8.3 (The class Ω0). Let Ω0 ⊂ Lq
t (δ) denote the subspaces L ∈

Lq
t (δ) such that

RL
t (ωδ) ⊂ {k ∈ K : α13(atkΛ) > b0δ

−0.55},(37)
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where b0 is a constant to be chosen later, depending only on ω, τ , µ1, Λ and
N (and independent of t and δ).

Lemma 8.4 (The contribution of Ω0).∣∣∣∣∣ ⋃
L∈Ω0

RL
t (ωδ)

∣∣∣∣∣ ≤ ∣∣{k ∈ K : α13(atkΛ) ≥ b0δ
−0.55}

∣∣ = O(δ1.05).

Proof. This follows immediately from (37) and Theorem 2.5.

Lemma 8.5 (Intermediate rectangles are disjoint). Suppose L, M ∈ Lq
t (δ)

- Ω0, and L 
= M . Then RL
int and RM

int are disjoint.

Proof. Suppose not. Then by Proposition 7.4, we may assume that RL
int ⊂

NRM
int. Then RL

t (ωδ) ⊂ NRM
int. Let k ∈ RL

t (ωδ) ⊂ NRM
int be arbitrary. Then

datkΛ(atkL) = O(δ) and datkΛ(atkM) = O(δ0.1). Hence

datkΛ(atkL) datkΛ(atkM) = O(δ1.1).

Then by Lemma 2.4,

datkΛ(atk(L ∩ M)) datkΛ(atk(L + M)) = O(δ1.1).

Thus, either datkΛ(atk(L∩M)) = O(δ0.55) or datkΛ(atk(L+M)) = O(δ0.55). In
either case, α13(atkΛ) ≥ b0δ

−0.55 as long as b0 is sufficiently small. Since k ∈
RL

t (ωδ) is arbitrary, this implies that L belongs to Ω0 which is a contradiction.

We now choose b0 in Definition 8.3 so that Lemma 8.5 holds.

Definition 8.6 (The class Ω1). Let Ω1 ⊂ Lq
t (δ) - Ω0 denote the set of sub-

spaces L ∈ Lq
t (δ) - Ω0 such that

|RL
t (ωδ) ∩ {k ∈ K : α13(atkΛ) > b1δ

−0.55}| ≥ 0.1|RL
t (ωδ)|,(38)

where b1 is a constant to be chosen later, depending only on ω, τ , µ1, Λ and
N (and independent of t and δ).

Lemma 8.7 (The contribution of Ω1).∣∣∣∣∣ ⋃
L∈Ω1

RL
t (ωδ)

∣∣∣∣∣ = O(δ1.05).

Proof. In view of Lemma 8.5 and the fact that RL
t (ωδ) ⊂ RL

int, the rect-
angles {RL

t (ωδ) : L ∈ Ω1} are pairwise disjoint. Now the estimate follows
immediately from (38) and Theorem 2.5.
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The following lemma is a refinement of Lemma 7.2:

Lemma 8.8. Suppose L, M ∈ Lq
t (δ) - Ω0 - Ω1, L 
= M and RL

t (ωδ) ⊂
NRM

big. Then dim(L ∩ M) = 1, and for all

k ∈ RL
t (ωδ) ∩ {k ∈ K : α13(atkΛ) ≤ b1δ

−0.55},

datkΛ(atk(L ∩ M)) = O(δ0.35) and datkΛ(atk(L + M)) = O(δ0.35).

Proof. Suppose k ∈ RL
t (ωδ). Then datkΛ(atkL) = O(δ) and datkΛ(atkM) =

O(δ−0.1). Hence, by Lemma 2.4,

datkΛ(atk(L ∩ M)) datkΛ(atk(L + M)) = O(δ0.9).(39)

Hence, at least one of the factors in (39) is O(δ0.45) � 1. This implies that
atkL and atkM intersect nontrivially; thus L and M intersect nontrivially, and
so dim(L ∩ M) = 1.

Now suppose k ∈ RL
t (ωδ) ∩ {k : α13(atkΛ) ≤ b1δ

−0.55}. Then,

datkΛ(atk(L ∩ M)) ≥ α−1
3 (atkΛ) ≥ b−1

1 δ0.55,(40)

and

datkΛ(atk(L + M)) ≥ α−1
1 (atkΛ) ≥ b−1

1 δ0.55.(41)

From (39), (40) and (41) it follows that for k ∈ RL
t (ωδ) ∩ {k : α13(atkΛ) ≤

b1δ
−0.55},

datkΛ(atk(L ∩ M)) = O(δ0.35) and datkΛ(atk(L + M)) = O(δ0.35).
(42)

But, since L 
∈ Ω1, |RL
t (ωδ) ∩ {k : α13(atkΛ) ≤ b1δ

−0.55}| ≥ 0.9|RL
t (ωδ)|.

We now choose b1 in Definition 8.6 so that Lemma 8.8 holds.

Definition 8.9 (The class Ω2). Let Ω2 ⊂ Lq
t (δ) - Ω0 - Ω1 denote the set of

subspaces L ∈ Lq
t (δ) - Ω0 - Ω1 such that

|RL
t (ωδ)| ≤ b3δ

0.45|RL
int ∩ {k ∈ K : α13(atkΛ) ≥ b4δ

−0.35}|,
where the constants b3 < ∞ and b4 > 0 are to be chosen later, depending only
on ω, τ , µ1, Λ and N (and independently of t and δ).

Lemma 8.10 (The contribution of Ω2).∣∣∣∣∣ ⋃
L∈Ω2

RL
t (ωδ)

∣∣∣∣∣ = O(δ1.05).

Proof. This is a formal consequence of Lemma 8.5 and Theorem 2.5.
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Lemma 8.11. Suppose L1, L2, L3 ∈ Lq
t (δ) - Ω0 - Ω1 - Ω2. Then RL1

big∩RL2
big∩

RL3
big = ∅.

Proof. Suppose not. Then by Lemma 7.8, after possibly renumbering the
Lj , we may assume that for 1 ≤ j < k ≤ 3, R

Lj

big ⊂ NRLk

big. Then by the first
assertion of Lemma 8.8 (or by Lemma 7.2), for 1 ≤ j < k ≤ 3, dim(Lj∩Lk) = 1.
Now by Lemma 8.1, either dim(L1 ∩ L2 ∩ L3) = 1 or dim(L1 + L2 + L3) = 3
(or both). Without loss of generality, we may assume that the former holds;
then let H = L1 ∩ L2 ∩ L3.

Let Rj = R
Lj

t (ωδ). Since for j = 1, 2, Rj ⊂ NRL3
big, by Lemma 8.8 for

every k ∈ Rj either α13(atkΛ) > b1δ
−0.55 or datkΛ(atkH) ≤ b5δ

0.35 where b5

is the implied constant in Lemma 8.8. Since Lj 
∈ Ω1, the set Rj ∩ {k :
α13(atkΛ) ≤ b1δ

−0.55} is of area at least 0.9|Rj |, and for each of its points k,
datkΛ(atkH) ≤ b5δ

0.35. Hence |Rj ∩ {k : datkΛ(atkH) ≤ b5δ
0.35}| ≥ 0.9|Rj |.

We now choose λ to be the largest number such that 3λRj ⊂ R
Lj

int. Then
by Lemma 8.5, 3λR1 and 3λR2 are disjoint. In view of the construction of
the rectangles RL(η) we have λ−1 = O(δ0.45). Observe that the diameters
of 3λRj are smaller than π/8. We may now apply Lemma 8.2 with η =
b5δ

0.35 and conclude (as long as b3 in Definition 8.9 is sufficiently big and b4 in
Definition 8.9 is sufficiently small), that for some j ∈ {1, 2}, Lj ∈ Ω2. This is
a contradiction.

We now choose b3, b4 in Definition 8.9 so that Lemma 8.11 holds.

Lemma 8.12 (The contribution of the rest of the subspaces). Let L′ de-
note Lq

t (δ) - Ω0 - Ω1 - Ω2. Then∣∣∣∣∣ ⋃
L∈L′

RL
t (ωδ)

∣∣∣∣∣ = O(δ1.05).

Proof. In view of Lemma 8.11, the rectangles {RL
big : L ∈ L′} cover each

point at most twice. Now the estimate follows from Lemma 7.1.

Now Step 2 follows immediately from Lemmas 8.4, 8.7, 8.10 and 8.12.
This completes the proof of Theorem 2.6.

9. Quasinull subspaces and rectangular tori

For the case of the rectangular torus of sides π and π/β, the eigenvalues
are values at integers of the binary quadratic form qβ(m, n) = m2 + β2n2. Let
Qβ(x1, x2, x3, x4) = qβ(x1, x2) − qβ(x3, x4). In this case we have four isotropic
subspaces, i.e. {x1 = ±x3, x2 = ±x4}.
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Let B(·) be the standard form as defined in Section 2. Then Qβ(v) =
B(gQβ

v), where gQβ
is given by the change of variable z1 = x1 − x3,

z2 = β(x2 − x4), z3 = β(x2 + x4), z4 = x1 + x3. Let Λβ = gQβ
Z4; then Λβ

consists of the vectors (w1, βw2, βw3, w4), with wi ∈ Z, and also w1 ±w4 ∈ 2Z,
w2 ± w3 ∈ 2Z. By construction, Qβ(Z4) = B(Λβ).

In this section, we give an elementary proof of Theorem 1.5 for the special
case of rectangular tori (i.e. Q = Qβ). We first make the following:

Definition 9.1 (Exceptional subspaces). Fix a constant 0 < µ < 1/2.
A subspace L of R4 is called exceptional if dimL = 2 and L spanned by
the vectors u1 = (A, B,−A, B) and u2 = (C, D, C,−D) or by the vectors
u1 = (A, B,−A,−B) and u2 = (C, D, C, D) where A, B, C, D ∈ Z−{0} satisfy
the condition ∣∣∣∣AD

BC
− β2

∣∣∣∣ <
µ

(BC)2
.(43)

Observe that (43) implies that AD/BC is a convergent pn/qn in the continued
fraction expansion of b2. Note also that n is determined by L and let us denote
Φ(L) = n.

Note that Qβ(u1) = Qβ(u2) = 0, but the restriction of Qβ to L is nonzero. In
fact,

Qβ(λ1u1 + λ2u2) = (AD − β2BC)λ1λ2.(44)

Lemma 9.2 (Quasinull implies exceptional). Let Qβ, gQβ
, Λβ be as in

the beginning of this section. There exist constants µ1 > 0, c > 1 (depending
only on µ in Definition 9.1 and β) such that the following holds: Let L be any
Λβ-rational subspace with ‖vL‖ > c which is µ1-quasinull with respect to Λβ.
Then the Z4-rational subspace g−1

Qβ
L is an exceptional subspace in the sense of

Definition 9.1.

Proof. Let v1 = (w1, βw2, βw3, w4) and v2 = (w′
1, βw′

2, βw′
3, w

′
4) be a

reduced integral basis for L ∩ Λβ. From the definition of Λβ, w1, w2, w3, w4 ∈
Z and w′

1, w
′
2, w

′
3, w

′
4 ∈ Z. Since the basis is reduced, ‖vL‖ = ‖v1 ∧ v2‖ ≥

c0‖v1‖‖v2‖ where c0 is an absolute constant. Let µ1 = c0µ/4 and let c = 4µ1/β.
Since ‖vL‖ = ‖π1(vL)‖ + ‖π2(vL)‖ > c, (8) implies that either

‖π1(vL)‖ <
2µ1

‖vL‖ <
β

2
,(45)

or

‖π2(vL)‖ <
2µ1

‖vL‖ <
β

2
.(46)
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Without loss of generality, we may assume that (46) holds. Using Lemma 2.1,
we get

π2(vL) =β(w1w
′
3 − w3w

′
1)e11 ∧ e21 + β(w2w

′
4 − w4w

′
2)e12 ∧ e22(47)

+
1
2
((w1w

′
4 − w4w

′
1) + β2(w2w

′
3 − w3w

′
2))(e11 ∧ e22 + e12 ∧ e21).

Considering the coefficient of e11 ∧ e21 we get β|w1w
′
3 − w3w

′
1| < β. Hence

|w1w
′
3 − w3w

′
1| < 1. But w1w

′
3 − w3w

′
1 ∈ Z, thus w1w

′
3 − w3w

′
1 = 0. Similarly,

by considering the coefficient of e12 ∧ e22 we get w2w
′
4 − w4w

′
2 = 0. Thus, v1

and v2 may be written as

v1 = λ1(y1, 0, βy3, 0) + λ2(0, y2, 0, βy4) and(48)

v2 = λ′
1(y1, 0, βy3, 0) + λ′

2(0, y2, 0, βy4),

where λ1, λ2, λ
′
1, λ

′
2, y1, y2, y3, y4 ∈ Z. Substituting into the coefficient of e11 ∧

e22 + e12 ∧ e21 in (47) and using (46) we get

|(λ1λ
′
2 − λ2λ

′
1)(y1y4 + β2y2y3)| <

4µ1

‖vL‖ .

Since λ1λ
′
2 − λ2λ

′
1 ∈ Z and λ1λ

′
2 − λ2λ

′
1 
= 0 (otherwise v1 and v2 would be

linearly dependent), |λ1λ
′
2 − λ2λ

′
1| ≥ 1. Also ‖vL‖ ≥ c0‖v1‖‖v2‖ ≥ c0|y2y3|.

Hence

|y1y4 + β2y2y3| <
4µ1

c0|y2y3|
<

µ

|y2y3|
.(49)

Now the lemma follows from (48), (49) and the definition of gQβ
.

Lemma 9.3 (Contribution of exceptional lattices).Suppose β2 is diophan-
tine, i.e. there exists N > 0 such that for all relatively prime pairs of integers
(p, q), |β2−p/q| > q−N . Then, for any interval (a, b), lim supT→∞

1
T 2 Xβ(a, b, T )

= 0, where Xβ counts the points in the exceptional subspaces.

Proof. Let pn/qn denote the continued fraction approximations to β2.
Then, since β2 is diophantine, εn = |β2 − pn/qn| > q−N

n for all n.
Suppose L is an exceptional subspace. Without loss of generality, we

may assume that L is spanned by the vectors u1 = (A, B,−A, B) and u2 =
(C, D, C,−D) where A, B, C, D ∈ Z and because of (43), (AD)/(BC) = pn/qn

for n = Φ(L). Hence, there exists ν > 0 such that AD = νpn and BC = νqn.
Let NL(a, b, T ) denote the number of nondiagonal solutions in L, i.e the

number of vectors v = λ1u1 + λ2u2 with λ1, λ2 ∈ Z − {0} such that ‖v‖ < T

and a < Qβ(v) < b.
Note that u1 and u2 are orthogonal. Since we are considering nondiagonal

solutions both λ1 and λ2 are nonzero. Then the condition that ‖v‖ < T implies
(by Schmidt’s lemma) that NL < T 2/(‖u1‖‖u2‖) � T 2/(νqn).
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By (44), the quadratic form restricted to L is Q(λ1u1 + λ2u2) =
(AD − β2BC)λ1λ2 = νqnεnλ1λ2, where εn = AD

BC − β2 satisfies ‖εn‖ > q−N
n .

Thus, if there exists a nondiagonal solution, (i.e. with |λ1λ2| ≥ 1), we must
have νqnεn < ρ where ρ = max(|a|, |b|). Hence we need only consider excep-
tional subspaces with ν < ρ/(qnεn). The total contribution Nn =

∑
Φ(L)=n NL

is bounded by

Nn(a, b, T ) =
∑

Φ(L)=n

NL(a, b, T )(50)

≤
ρ/(qnεn)∑

ν=1

∑
AD=νpn

BC=νqn

T 2

νqn
≤

ρ/(qnεn)∑
ν=1

τ(νpn)τ(νqn)
T 2

νqn
,

where τ is the divisor function. Using the estimate τ(q) < cεq
ε which holds

for any ε > 0 as well as the diophantine condition on β by which ‖εn‖ > q−N
n ,

one deduces that

Nn(a, b, T ) ≤ Cε
T 2

q
1−(2N+4)ε
n

,(51)

where Cε is independent of T and n. Fix ε < 1/(2N + 4) so that θ = 1 −
(2N + 4)ε > 0.

Also note that because of the form of Qβ restricted to L, any Nn is
bounded by a constant Rn independent of T . Pick any M > 0. Then

lim sup
T→∞

1
T 2

Xn(a, b, T ) = lim sup
T→∞

(
1
T 2

M−1∑
n=1

Nn(a, b, T ) +
1
T 2

∞∑
n=M

Nn(a, b, T )

)

≤ lim sup
T→∞

1
T 2

M−1∑
n=1

Rn + Cε

∞∑
n=M

q−θ
n ≤ Cε

∞∑
n=M

q−θ
n .

Letting M → ∞ we obtain the desired estimate, since the sum
∑∞

n=1(1/qθ
n)

converges by the properties of continued fractions.

Now Theorem 1.5, in the special case Q = Qβ, follows from Lemma 9.2
and Lemma 9.3. This completes the proof of Theorem 1.3 in the special case
of rectangular tori.

10. The contribution of quasinull subspaces

10.1. Structural preliminaries.

Lemma 10.1. Given three transversal 2-dimensional subspaces V1, V2 and
V3 of R4, there is a unique (up to proportionality) quadratic form Q such that
the restriction of Q to each Vi is zero. If the subspaces are defined over Q then
Q is rational and split.
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Proof. We may choose a basis {e1, e2, e3, e4} for R4 such that {e1, e2} is a
basis for V1 and {e3, e4} is a basis for V2. Now the (symmetric) matrix of Q in

this basis is of the form


0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

. The remaining entries of this matrix

are determined up to proportionality by the three linear equations implied by
the condition that the restriction of Q to V3 is zero.

Proposition 10.2. Let Q be a quadratic form of signature (2, 2). Then
∧2R4 decomposes into two invariant subspaces V1 and V2.

(a) The subspaces V1 and V2 are orthogonal with respect to the 6-variable bi-
linear form Q(6)(v, w) = v∧w. The restriction of Q(6) to Vi has signature
(2, 1).

(b) The pair of subspaces (V1, V2) determines Q up to proportionality.

(c) The map f taking (V1, V2) to Q/proportionality is a rational map defined
over Q.

(d) If V1 is rational and the restriction of Q(6) to V1 is split over Q then
Q = f(V1, V

⊥
1 ) is a split form defined over Q.

Proof of (a). Follows from Lemma 2.1.

Proof of (b). If V1 is given, then V2 is determined by (a). This implies
that all the isotropic 2-dimensional subspaces of Q are given. Since any null
vector of Q is the intersection of two isotropic 2-subspaces, we have that the
null cone of Q is determined. Hence Q is determined up to proportionality.

Proof of (c). The rationality of f is clear from the construction. The fact
that f is defined over Q follows from the fact that f is bijective. Note that the
pair (V1, V

⊥
1 ) may be defined over Q even if V1 is not rational.

Proof of (d). The restriction of Q(6) to V1 is split over Q if and only if
there exists a basis for V1 consisting of null-vectors for Q(6). Now the statement
follows from Lemma 10.1.

Lemma 10.3. Let Q be an irrational quadratic form of signature (2, 2).
Then Q has at most four rational isotropic subspaces.

Proof. Suppose Q has at least five rational isotropic subspaces. Let N

denote the light cone of Q(6). Then for some i, N∩Vi has at least three linearly
independent rational points, and thus the lemma follows from Lemma 10.1.
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10.2. The number of quasinull subspaces. For a rational subspace L ⊂ R4,
let the norm of L denote the length of vL = v1 ∧ v2 ∈ ∧2R4, where {v1, v2} is
any integral basis for L ∩ Z4. The norm is equal to the volume of L/(L ∩ Z4).

Theorem 10.4. Suppose Q is not EWAS (see Definition 1.2). Then there
exists δ > 0 such that the number of quasinull subspaces of norm between T/2
and T is O(T 1−δ).

To prove Theorem 10.4 we work in ∧2R4 ∼= R6. Instead of counting
quasinull subspaces L ⊂ R4, we count the associated vectors vL ∈ ∧2R4. The
following obvious lemma summarizes the properties of this transition.

Lemma 10.5. Given µ1 > 0 there exists c > 0 such that for any
µ1-quasinull subspace L of norm between T/2 and T , the corresponding prim-
itive vector w = vL ∈ ∧2R4 ∼= R6 satisfies the following conditions:

(a) Q(6)(w) = 0 (recall Q(6)(w) denotes w ∧ w).

(b) For some i ∈ {1, 2}, ‖πi(w)‖ < c/T (where πi is the orthogonal projection
on Vi).

(c) T/2 ≤ ‖w‖ ≤ T .

Conversely, the above conditions, with an appropriate choice of c = c(µ1),
imply that w corresponds to a 2-dimensional quasinull subspace of R4 of norm
between T/2 and T .

Hence to prove Theorem 10.4, it suffices to count the number of vectors
in R6 satisfying (a)–(c) of Lemma 10.5. Without loss of generality we may
assume i = 2.

Define

Q(3)(v) = Q(6)(π1(v)).

Note that for any vector w satisfying (a)–(c) of Lemma 10.5,

|Q(3)(w)| < const.

Let gT ∈ GL(6, R) denote the linear transformation which is the identity
on V1 and stretches by a factor of T on V2. Note that gT preserves Q(3). Let
∆T denote the image of Z6 under gT .

Thus it suffices to estimate the number of primitive vectors w ∈ ∆T

satisfying the following conditions:

(a′) |Q(3)(w)| < const.

(b′) ‖π2(w)‖ < const′.

(c′) T/2 ≤ ‖w‖ ≤ T .
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Let H1 ⊂ SL(6, R) denote the group which acts via the identity on V2

and preserves Q(3). Then H1
∼= SO(2, 1). Let {w1, w2, w3} be a basis for V1 in

which Q(3)(xw1 + yw2 + zw3) = 2xz − y2. Let at ∈ H1 be defined by

atw1 = etw1,

atw2 = w2,

atw3 = e−tw3.

Let K ∼= SO(2) be the intersection of H1 with the group preserving the norm
‖xw1+yw2+zw3‖ = (x2+y2+z2)1/2. Then K is a maximal compact subgroup
of H1.

Proposition 10.6. There exists a bounded function f supported on a
compact set in R6 such that the number of vectors in ∆T satisfying (a′)–(c′) is
bounded above by ∫

K
f̂(atk∆T ) dm(k),

where dm(k) is the normalized Haar measure on K, t = log T , and

f̂(∆) =
∑
v∈∆

f(v).

Proof. See [EMM, §3], and also the paragraph following the statement of
Theorem 2.3 in the present paper.

Recall the definitions of the functions αi and α from Section 2. We note
the following:

Lemma 10.7.

(i) α6(∆T ) = T−3.

(ii) For any j, 1 ≤ j ≤ 6, αj(∆T ) ≤ 1.

(iii) There is an absolute constant c such that for any j, 2 ≤ j ≤ 6, αj(∆T ) ≤
cαj−1(∆T ).

(iv) There is a constant C < ∞ such that α4(∆T ) ≤ CT−1/3.

Proof. (i) is immediate from the fact that α6(Λ) = 1 and the definition
of ∆T . (ii) and (iii) are also clear from the definitions.

To prove (iv) let W̃ denote the ∆T -rational 4-dimensional subspace such
that 1/d4(W̃ ) = α4(W̃ ), and let W = g−1

T (W̃ ) denote the corresponding ra-
tional subspace. Suppose d4(W̃ ) ≤ C−1T 1/3; then W̃ has a reduced basis
w̃1, . . . w̃4, where all vectors have length at most C−1T 1/3. Let wi = g−1

T w̃i
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and ST = {w ∈ R4 : ‖w‖ ≤ T and ‖π2(w)‖ ≤ 1/T}. Let B ⊂ W de-
note the intersection of W with the ball of radius C−1T 1/3. By construction,
wi ∈ B ∩ ST , and the wi are four linearly independent vectors in Z4. Then
the 4-dimensional volume of B ∩ ST must be bounded below by an absolute
constant. But, from the form of ST , the 4-dimensional volume of B ∩ ST is at
most an absolute constant times C−3. This is a contradiction if C is sufficiently
large.

Lemma 10.8. There exist absolute constants σ > 0, and ρ > 0 such that
for every sufficiently small δ > 0 and any T > 2, the following holds: let Q,
T , ∆T , gT be as in Lemma 10.7. Suppose α3(∆T ) ≥ T−δ, and let U3 denote
the ∆T -rational 3-dimensional subspace such that 1/d3(U3) = α3(∆T ). Then
one of the following holds:

(a) The restriction of Q(6) to g−1
T U3 is anisotropic over Q.

(b) There exists a split integral form Q′, with ‖Q′‖ ≤ T σδ, such that for
some 1 ≤ λ ∈ R, ‖Q − 1

λQ′‖ ≤ T−ρ. If w ∈ g−1
T U3 is any rational

point satisfying Q(6)(w) = 0, then w corresponds to a rational isotropic
subspace of Q′.

Proof. Suppose that Q(6) restricted to g−1
T U3 is isotropic, hence split

over Q. Let Q′′ = f(g−1
T U3, g

−1
T U⊥

3 ) denote a quadratic form of determinant ±1
associated with g−1

T U3 as in Proposition 10.2. Let Q′ be the unique primitive
integral form which is a multiple of Q′′. Since g−1

T U3 has a reduced integral
basis of vectors of norm at most T δ, g−1

T U⊥
3 also has an integral basis bounded

by a fixed power of T δ. Hence, the coefficients of Q′ are also bounded by a fixed
power of T δ, see Lemma 10.1 and Proposition 10.2 (d). Choose λ ∈ R so that
Q and 1

λQ′ have the same determinant. By Proposition 10.2 (c), ‖Q− 1
λQ′‖ is

bounded by a fixed power of T δ−1. This, for sufficiently small δ < 1, implies
that (b) holds.

For 1 ≤ j ≤ 6, consider the representation of H1 on ∧j(R6). We have
∧j(R6) = W0 ⊕

(
⊕mj

i=1Wi

)
where H1 acts trivially on W0, and acts via the

3-dimensional representation on each Wi, 1 ≤ i ≤ mj . Let pi denote the
associated projections.

Now, ‖ · ‖∗ is the norm on R3 defined in [EMM, (5.23)]. Let ‖ · ‖# denote
the norm on ∧j(R6) defined by

‖w‖# = max(‖p0(w)‖, max
1≤i≤mj

‖pi(w)‖∗).

For a lattice ∆ in R4 and a ∆-rational subspace M , we define d#
∆(M) =

‖e1 ∧ · · · ∧ em‖#, where {e1, . . . , em} ⊂ ∆ is a basis for M .
We now continue the proof of Theorem 10.4. Let δ be as in Lemma 10.8.

We may assume δ < 1/3. Let U1 ⊂ U2 ⊂ U3 ⊂ U4 ⊂ U5 ⊂ U6
∼= R6 be defined
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as follows: U1 is spanned by the shortest vector in ∆T , U2 is spanned by U0 and
the shortest vector in ∆T outside U1, etc. It is a standard fact from reduction
theory that there exists a constant C6 depending only on the dimension such
that

1
di(Ui)

≤ αi(∆T ) ≤ C6
1

di(Ui)
.

By Lemma 10.7 (iv), d4(U4) > C−1
6 C−1T 1/3. Let k ≥ 0 be the largest integer

such that dk(Uk) < C−1
6 C−1T δ. Then, k ≤ 3. For 1 ≤ i ≤ k, and g ∈ SL(6, R)

let

α
(−)
i (g∆T ) = sup

{ 1

d#
g∆T

(gL)

∣∣∣ L is a ∆T -rational subspace

of dimension i not contained in Uk

}
(this is an abuse of notation because α

(−)
i depends on g as well as on g∆T ).

For k + 1 ≤ i ≤ 6, set α
(−)
i = αi. We now claim that for 1 ≤ i ≤ 3,

α
(−)
i (∆T ) ≤ const · T−δ/3.(52)

Indeed, if k = 0, (52) is clear. let v denote the shortest vector in U ′
i which is

not contained in Uk. Note that d(U ′
i) ≥ const · ‖v‖ (since the length of every

vector in ∆T is bounded from below). Also note that ‖v‖ ≥ const · d(Uk)1/k

(otherwise v would belong to Uk). Thus,

C−1
6 C−1T δ ≤ d(Rv + Uk) ≤ ‖v‖d(Uk) ≤ const · ‖v‖k+1,

hence ‖v‖ ≥ const · T
δ

k+1 which implies the result for k = 1, 2. For k = 3, we
have by Lemma 10.7 (iv),

C−1T 1/3 ≤ d(Rv + Uk) ≤ ‖v‖d(Uk);

thus ‖v‖ ≥ T
1
3
−δ. Now, (52) follows in this case as well.

As in [EMM, §5] let Aτ be the averaging operator defined by

(Aτf)(x) =
∫

K
f(aτkx) dm(k).

Then, arguing as in the proof of [EMM, Lemma 5.7] we see that the following
inequalities hold with ω = ω(τ):

Aτα
(−)
1 ≤ α

(−)
1 + ω2

√
α

(−)
2 ,(53)

Aτα
(−)
2 ≤ α

(−)
2 + ω2

√
α1α

(−)
3 + ω2√α4,

Aτα
(−)
3 ≤ α

(−)
3 + ω2√α2α4 + ω2√α1α5 + ω2√α6,

Aτα4 ≤ α4 + ω2√α2α6 + ω2√α3α5,

Aτα5 ≤ α5 + ω2√α4α6.
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In the above, we used the fact that if L is a subspace which is not contained
in Uk, and M is any other subspace, then L + M is also not contained in Uk.
(However, L ∩ M may belong to Uk.)

We also have

Aτα1 ≤ α1 + ω2√α2,(54)

Aτα2 ≤ α2 + ω2√α1α3 + ω2√α4,

Aτα3 ≤ α3 + ω2√α2α4 + ω2√α1α5 + ω2√α6.

Let

β1 = T δ/16α
(−)
1 + α1,(55)

β2 = T δ/8α
(−)
2 + α2,

β3 = T δ/4α
(−)
3 + α3,

β4 = T δ/2α4,

β5 = T δα5,

β6 = α6 = T−3.

Now from (53) and (54) we get

Aτβ1 ≤ β1 + ω2
√

β2,(56)

Aτβ2 ≤ β2 + ω2
√

β1β3 + ω2
√

β4,

Aτβ3 ≤ β3 + ω2
√

β2β4 + ω2
√

β1β5 + ω2
√

β6,

Aτβ4 ≤ β4 + ω2
√

β2β6 + ω2
√

β3β5,

Aτβ5 ≤ β5 + ω2
√

β4β6.

From these inequalities we derive the following:

Claim 10.9. For any ρ > 0 there exists Cρ so that for any sufficiently
large T , and 1 ≤ i ≤ 6,

(Atβi)(∆T ) ≤ CρT
ρ,

where t = log T .

Proof of claim. This argument is similar to the proofs of Proposition
5.12 and Lemma 5.13 in [EMM]. Let q(i) = i(6 − i). Fix ε > 0, and consider
the linear combination

β =
6∑

i=1

εq(i)βi.

Then β satisfies the inequality

Aτβ ≤ T−3 + (1 + 6εω2)β(57)
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(cf. [EMM, eqns. (5.65)–(5.67)]). Let

β̃(h) =
∫
K

β(hk∆T ) dm(k).

Note that β̃ is spherically symmetric, i.e.

β̃(KhK) = β̃(h), h ∈ H1.(58)

It follows from the uniform continuity of log β̃ that for a suitable neighborhood
V of the identity,

1
2
β̃(h) < β̃(uh) < 2β̃(h), h ∈ H1, u ∈ V.(59)

According to [EMM, 5.11] there exists a neighborhood U of 1 in H1 such that
aτUat ⊂ KV aτatK for any t ≥ 0 and τ ≥ 0. Then we get from (58) and (59)
that

(Aτ β̃)(at) =
∫

K
β̃(atkaτ ) dm(k) ≥

∫
U∩K

β̃(aτkat) dm(k) >
1
2
m(U ∩ K)β̃(aτat).

(60)

Hence, from (57) and (60) we have

β̃(aτat) ≤
2

m(U ∩ K)

(
T−3 + (1 + 6εω2)β̃(at)

)
.(61)

Given ρ > 0 we choose τ = τ(ρ) > 1 so that log(4/m(U ∩ K))/τ ≤ ρ, and
ε = ε(τ) > 0 so that 1 + 6εω2 ≤ 2 (recall ω = ω(τ)). We assume that T is
large enough so that 2T−3/m(U ∩ K) < 1. Hence we get

β̃(aτat) < eρτ β̃(at) + 1.(62)

Using induction on n we get from (62) that for n ∈ N,

β̃(anτ ) < (β̃(1) + 1)enτρ,(63)

where we have used the fact that eρτ ≥ 4. Since {ar | 0 ≤ r ≤ τ} belongs to
V i for some i where V 1 = V, V i = V V i−1, it follows that for any t > 0,

β̃(at) < C(β̃(1) + 1)etρ,(64)

where C = C(τ). Recall that β̃(at) = (Atβ)(∆T ), and β̃(1) = β(1). Note that
β(1) is bounded by a constant in view of (55), (52) and Lemma 10.7 (iii),(iv).
Now let t = log T . This shows that

(Atβ)(∆T ) ≤ C ′
ρT

ρ,

from which the claim follows.
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Hence, in view of (55), for all i,

Atα
(−)
i (∆T ) ≤ C ′

ρT
ρ−δ/16 ≤ C ′′T−δ/32,

where we chose ρ < δ/32. Now, using Proposition 10.6, we see that the number
of primitive w ∈ ∆T satisfying (a′), (b′), (c′) which are not contained in Uk is
O(T 1−δ/32). Equivalently, the number of primitive w ∈ Z6 satisfying (a),(b),(c)
of Lemma 10.5 which are not contained in g−1

T Uk is O(T 1−δ/32). It remains
to count the number of primitive points of g−1

T Uk satisfying (a), (b), (c) of
Lemma 10.5.

Now if k = 1, g−1
T U1 has at most one primitive point. If k = 2, then there

may be at most 2 primitive points in g−1
T U2 satisfying (a) from Lemma 10.5

(there are two points if the restriction of Q(6) to g−1
T U2 is split, no points

otherwise). If k = 3, and Q is not EWAS then for an appropriate choice of δ,
the restriction of Q(6) to g−1

T U3 must be anisotropic by Lemma 10.8. Hence
there are no points satisfying (a) in g−1

T U3. Thus in all cases, there are at most
three primitive points in g−1

T Uk satisfying (a)–(c). Hence, the total number of
primitive vectors in Z6 satisfying (a)–(c) is O(T 1−δ).

One corollary of the argument is the following:

Proposition 10.10. Suppose Q is any (possibly rational) quadratic form
of signature (2, 2). Then the number of quasinull subspaces of norm between
T/2 and T is O(T log T ).

In fact, in view of Lemma 10.8 part (b), we also proved the following
statements:

Proposition 10.11. There exists an absolute constant ρ > 0 such that
the following holds: Suppose Q is any irrational quadratic form of signature
(2, 2). Then for every sufficiently small δ > 0 and for every T > 2 one of the
following holds:

(a) The number of quasinull subspaces of Q of norm between T/2 and T is
O(T 1−δ).

(b) There exists a split integral quadratic form Q′ and 1 ≤ λ ∈ R satisfying
‖Q − 1

λQ′‖ ≤ T−ρ such that the number of quasinull subspaces of Q

of norm between T/2 and T which are not isotropic subspaces of Q′ is
O(T 1−δ). The coefficients of Q′ are bounded by a fixed power of T δ.

10.3. Proof of Theorem 1.5.

Lemma 10.12. Given a Z4-rational quasinull subspace L, if any Z-basis
for L ∩ Z4 contains a vector of norm greater than 2T , L is T -degenerate.
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Then for any C < ∞, the number of lattice points v contained in T -degenerate
quasinull subspaces L with ‖vL‖ ≤ CT such that a < Q(v) < b and ‖v‖ ≤ T is
o(T ).

Proof. It is convenient to work with the standard form B. As in Section 2,
let gQ be such that Q(v) = B(gQv), and let Λ = gQZ4. For a Λ-rational
subspace L, let vL denote the shortest vector in L ∩ Λ. Let Ω be the image
under gQ of the unit ball. Let f , at, K be as in Section 2. We know that the
number of points in L ∩ Λ ∩ TΩ is bounded by

T 2
∑

v∈L∩Λ

∫
K

f(atkv) dk,(65)

where t = log T . Let

H(R) = {k ∈ K : ‖atkvL‖ < R}.

Since all vectors in L∩Λ∩TΩ are integral multiples of vL, the integral in (65)
can be restricted to H(Rf ) ⊂ K where Rf = max{‖v‖ : f(v) 
= 0}. Also if
M > 0 is any constant, the number of points in L∩Λ∩TΩ is also bounded by

M + T 2
∑

v∈L∩Λ

∫
H(Rf /M)

f(atkv) dk.(66)

Indeed if k 
∈ H(Rf/M), i.e ‖atkvL‖ > Rf/M , then at most M integral mul-
tiples of vL can be in the support of f . Also,∑

v∈L∩Λ

f(atkv) ≤ const · α1(atkΛ),(67)

and for k ∈ H(Rf/M), α1(atkΛ) ≥ M/Rf . Substituting (67) into (66) and
summing over all T -degenerate quasinull subspaces, we get

CMT log T + const · T 2

∫
C(M/Rf )

α1(atkΛ) dk,

where C(M/Rf ) = {k ∈ K : α1(atkΛ) ≥ M/Rf}, and we have used Proposi-
tion 10.10 to bound the number of quasinull subspaces. Pick any 0 < ξ < 1,
then the above expression is bounded by

CMT log T + const · T 2

(
Rf

M

)ξ ∫
C(M/Rf )

α1(atkΛ)1+ξ dk,

and the integral is bounded independently of T by Theorem 2.5. Since M is
arbitrary, this implies that the total contribution of the T -degenerate quasinull
subspaces is o(T 2).

Proof of Theorem 1.5. In view of Lemma 10.12 we need only estimate
the number of points in the non-T -degenerate quasinull subspaces. Let M � 1



714 ALEX ESKIN, GREGORY MARGULIS, AND SHAHAR MOZES

be a parameter to be chosen later. Let T � 1 be arbitrary. For a Z4-rational
subspace L, let vL = v1 ∧ v2, where {v1, v2} is any Z-basis for L ∩ Z4. We say
that a quasinull subspace is short if ‖vL‖ ≤ M , and is long if M ≤ ‖vL‖ ≤ T .

The number of short subspaces is bounded depending on M . Since we are
assuming that the restriction of the quadratic form to L is not identically 0,
the number of points v in L ∩ Λ such that a < Q(v) < b and ‖v‖ ≤ T is O(T )
as T → ∞. Thus, for any choice of M , the contribution of the short subspaces
is o(T 2).

To estimate the contribution of the long subspaces, divide them into
dyadic intervals, S/2 ≤ ‖vL‖ ≤ S. (the shortest interval begins at M ; the
longest ends at T ). By Theorem 10.4, in each dyadic interval there are at most
C(δ)S1−δ subspaces; since each subspace is T -nondegenerate, it contributes
at most O(T 2/S) points. Hence the contribution of each dyadic interval is
at most C ′(δ)T 2/Sδ. Letting S = 2kM and summing the resulting geometric
series, we see that the total contribution of the long intervals is C ′′(δ)T 2/M δ.

Since one may choose M arbitrary large, we see that the total contribution
is o(T 2).

Appendix A. A proof of Proposition 4.2

Notation. All the constants in this appendix are absolute. We use the
notation a ≈ b to indicate that there exist constants 0 < c < C such that
c < a

b < C. We write a � b to indicate that there exists a “large” constant
κ such that a > κb. A statement of the form “there exists c > 0 such that if
a � b then ...” means that “there exist constants c > 0 and κ > 1 such that
if a > κb then ...”.

A.1. Transition to the hyperbolic plane. Set G = SL(2, R), K = SO(2),

bt =
(

et/2 0
0 e−t/2

)
, and B = {bt}. On K\G we consider the right G-invariant

metric d(·, ·) normalized so that d(Kbt, K) = t. This identifies K\G with the
hyperbolic disk H2 of curvature −1. Let p : G → H2 be the natural projection.
Let e = p(1) denote the origin of H2.

The space of the 3-dimensional representation of G can be considered
to be the space S2 of 2-by-2 symmetric matrices, with the action given by
g · v = gvgt. This action preserves the determinant of v, which is a quadratic
form of signature (2, 1).

Lemma A.1. Suppose v ∈ S2. Then, if det v > 0, there exists a point
zv ∈ H2 and a number λv > 0 such that

‖g · v‖ = λv

√
cosh(2d(p(g), zv)) ≈ λve

d(p(g),zv).(68)
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If det v < 0 there exists a geodesic γv ∈ H2 and a number λv > 0 such that

‖g · v‖ = λv

√
cosh(2d(p(g), γv)) ≈ λve

d(p(g),γv).(69)

Proof. Let v1 = 1√
2

(
1 0
0 1

)
and v2 = 1√

2

(
1 0
0 −1

)
. Note that for any

v ∈ S2 with det v 
= 0 there exists gv ∈ G such that gv · v = λvvi, where i = 1
if det v > 0, and i = 2 if det v < 0. Hence it is enough to prove the lemma for
v = v1 and for v = v2.

If v = v1, then the stabilizer of v is K, and ‖bt · v‖ =
√

(e2t + e−2t)/2 =√
cosh 2t. Since, G = KBK and the norm ‖ · ‖ is K-invariant, (68) follows. If

v = v2 then the stabilizer of v2 is the group H =
(

cosh s sinh s

sinh s cosh s

)
. Then, as

above, ‖bt · v‖ =
√

(e2t + e−2t)/2 =
√

cosh 2t. Since G = KBH, for any g ∈ G

we may write g = kbth where k ∈ K and h ∈ H; then ‖g · v‖ =
√

cosh 2t,
but since p(B) and p(H) are orthogonal geodesics in H2, t = d(p(bt), e) =
d(p(bt), p(H)) = d(p(g), p(H)). This proves (69).

A.2. Some hyperbolic geometry. We now recall some well known lemmas
from hyperbolic geometry.

Lemma A.2. Suppose ∆ ⊂ H2 is an isosceles triangle, with sides a, a

and b. Let θ denote the angle opposite b. Suppose b � 1 and θ � 1. Then,

θ ≈ e
b
2−a.

Proof. The hyperbolic law of cosines states that

cosh b = cosh2 a − sinh2 a cos θ.

This can be rewritten as

2 sin2 θ

2
=

cosh b − 1
sinh2 a

.

Now the lemma easily follows.

Lemma A.3. Let ∆ be a right-angled triangle in H2. Let t denote the
length of the side opposite the right angle. Let θ denote another angle of ∆,
and let ρ denote the length of the side opposite θ. Then, if t � 1 and θ � 1,

θ ≈ eρ−t.

Proof. By the hyperbolic law of sines,
sinh t

sin π
2

=
sinh ρ

sin θ
.

Hence,

sin θ =
sinh ρ

sinh t
≈ eρ−t.



716 ALEX ESKIN, GREGORY MARGULIS, AND SHAHAR MOZES

Lemma A.4. Suppose d(p, e) = t, d(q, e) ≥ t. Set p′ = eq ∩ S(t, e) where
S(t, e) denotes the circle of radius t centered at e. Then,

d(q, p′) + d(p′, p) ≤ d(q, p) ≤ d(q, p′) + d(p′, p) + O(1).

Proof. This follows from the fact that the angle at p′ between p′q and p′p
is greater than π/2.

Lemma A.5. There exists an absolute constant C so that the following
holds: Let γ ⊂ H2 be a geodesic. Let q+ and q− in ∂H2 denote the endpoints of
γ, and let L+ and L− denote the geodesic rays eq+ and eq− respectively. Let
r = d(γ, e), and let �±, also geodesic rays, denote the intersection of L± with
the complement of the ball B(r, e) (see Figure 1). Then,

hd(γ, �+ ∪ �−) < C,

where hd denotes the Hausdorff distance.

q+

�+

γ

q−

�−

r

e

Figure 1. Lemma A.5.

Proof. Let q = B(r, e)∩γ, p± = B(r, e)∩�±. It is clear that hd(γ, �+∪�−) =
d(q, p+) = d(q, p−). By considering the right-angled triangle (e, q, q+) we see
that d(q, L+) = O(1). Let p′+ ∈ L+ denote the closest point to q, so that
d(p′+, q) = O(1). Then, since the path e → p′+ → q is “almost a geodesic”,
d(e, p′+) = d(e, q)−d(p′+, q)+O(1) = r+O(1). Since d(e, p+) = r and both p+

and p′+ lie on L+, d(p+, p′+) = O(1). Hence d(p+, q) ≤ d(p+, p′+) + d(p′+, q) =
O(1).

A.3. Proof of Proposition 4.2. For v ∈ R3 and t > 0, let

mt(v) = min
θ

‖btkθv‖.

The properties of the sets {k ∈ K : ‖btkv‖ < δ} which imply Proposition 4.2
are summarized in the following:
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Lemma A.6. Let v ∈ R3 be such that maxk ‖btkv‖ � 1. Then, there exist
intervals Iv,+

t (δ), Iv,−
t (δ) such that the following properties hold :

(a) There exists c > 0 such that for all δ > 0 with maxk ‖btkv‖ � δ � mt(v),

Iv,±
t (cδ) ⊂ {θ : ‖btkθv‖ < δ} ⊂ Iv,+

t (c−1δ) ∪ Iv,−
t (c−1δ).(70)

(b) There exists C < ∞ such that if maxk ‖bikv‖ � δ � mt(v), τ � 0 and
δ � mt+τ (v),

Iv,±
t+τ (δ) ⊂ Ce−τ/2Iv,±

t (δ).(71)

(c) If maxk ‖btkv‖ � η ≥ δ � mt(v), then

|Iv,±
t (δ)|

|Iv,±
t (η)|

�
(

δ

η

)1/2

.(72)

(d) Either for all δ with maxk ‖btkv‖ � δ � mt(v),

|Iv,±
t (δ)| ≈ e−tmt(v)−1/2, δ1/2,(73)

or for all τ ≥ 0,

mt+τ (v) ≥ mt(v).(74)

Proof of Lemma A.6. Suppose first that det v > 0. We let Iv,+
t (δ) =

Iv,−
t (δ) = {k ∈ K : ‖btkv‖ < δ}, where λv is as in (68). Then (a) of

Lemma A.6 is trivially satisfied. In the case det v > 0 we drop the ± from the
notation. Let ρ be defined by the equation

δ

λv

def=
√

cosh 2ρ ≈ eρ.(75)

Then, in view of (68),

{p(g) ∈ H2 : ‖g · v‖ < δ} = B(zv, ρ).

We may identify the K with the unit circle; then Iv
t (δ) = {k ∈ K : ‖btk ·v‖ < δ}

may be identified with the set of angles at which the set S(t, e) ∩ B(zv, ρ) is
visible from the origin. Thus the center of the interval Iv

t (δ) is always the
same; it is the angle at which zv is visible from e.

Let r = d(e, zv). In view of (68), mt(v) (considered as a function of t) is
decreasing for t ≤ r and increasing for t ≥ r. Also, in view of (68),

mt(v) ≈ λve
|t−r|.(76)
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zv

ρ
p′

t

p

e

r

Figure 2. The case det v > 0, t ≤ r.

Also, maxk ‖btkv‖ ≈ λve
t+r. Thus, the assumption maxk ‖btkv‖ � δ � mt(v)

implies

t + r � ρ � 1 + |t − r|.(77)

Now suppose t ≤ r. Let p ∈ S(t, e) denote a point such that d(p, zv) = ρ, and
let p′ = S(t, e)∩ezv (see Fig. 2). Then, by Lemma A.4, d(p, p′) = ρ−r+t+O(1).
In view of (77), d(p, p′) � 1. Hence, by Lemma A.2 (with b = d(p, p′) and

a = d(e, p) = d(e, p′) = t), we get |Iv
t (δ)| ≈ e

ρ−r+t
2 −t. Hence, using (75) we get

|Iv
t (δ)| ≈ λ−1/2

v e−r/2e−t/2δ1/2.(78)

In view of (76), (78) implies (73); hence (d) holds for this case.
Now suppose t ≥ r. Since, in this range mt(v) is an increasing function

of t, (d) holds. Let q ∈ S(t, e) be a point such that d(q, zv) = ρ, and let p

denote the intersection of eq with S(r, e) (see Fig. 3). Then, by Lemma A.4,
d(p, zv) = ρ + t− r + O(1). In view of (77), d(p, zv) � 1. Now, by Lemma A.2

(with b = d(p, zv) and a = d(p, e) = d(zv, e) = r) we get |Iv
t (δ)| ≈ e

ρ+r−t
2 −r.

Hence, by (75) (78) still holds when t ≥ r as long as δ � mt(v). Now (b) and
(c) follow immediately from (78). This completes the proof of Lemma A.6 for
the case det v > 0.

Now suppose det v < 0. Let λv and γv be as in (69), and set r = d(γv, e).
In view of (69), for t ≥ r, mt(v) = λv (since S(t, e) intersects γv). Hence if
t ≥ r then mt(v) is not increasing and (d) is automatically satisfied.

Let ρ be as in (75). We denote by Nρ(γv) the set {z ∈ H2 : d(z, γ) ≤ ρ}.
Then, in view of (69), the set {k ∈ K : ‖btkv‖ ≤ δ} may be identified with
the set of angles at which S(t, e) ∩ Nρ(γv) is visible from the origin e.

Let �+ and �− be as in Lemma A.5. For σ ∈ {+,−} set Nρ(�σ) =
{z ∈ H2 : d(z, �σ) ≤ ρ}. We define Iv,σ

t (δ) to be the set of angles at which
the set S(t, e)∩Nρ(�σ) is visible from the origin. Then, in view of Lemma A.5,
(a) of Lemma A.6 holds.
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q

p
ρ

zv

r
e

t

Figure 3. The case det v > 0, t ≥ r.

α

�σ

pσ

ρ
e

r

tc

Figure 4. The neighborhood of a geodesic ray.

Let pσ denote the endpoint of �σ; then d(pσ, e) = r. Let α denote the
geodesic orthogonal to � passing through pσ (see Fig. 4). Let tc > r be as in
Figure 4; then for t < tc, |Iv,σ

t | is given by (78). If t > tc, let p be a point on
∂Nρ(�σ) ∩ S(t, e), and let q 
= pσ denote the closest point on �σ to p. Then
the triangle (e, q, p) is a right triangle, and by Lemma A.3, |Iv,σ

t (δ)| ≈ eρ−t ≈
λ−1

v e−tδ. Hence, as long as maxk ‖btkv‖ � δ � mt(v),

|Iv,σ
t (δ)| ≈

{
λ
−1/2
v e−r/2e−t/2δ1/2 t < tc

λ−1
v e−tδ t > tc

.(79)

Since |Iv,σ
t | is a continuous function of t, (b) and (c) of Lemma A.6 follow

immediately from (79). To show (d), we note that if t > r then mt(v) = λv

and is thus nonincreasing. If t < r then for z ∈ S(t, e), d(z, �σ) = d(z, pσ) and
hence (76) and (78) hold. Thus (73) follows as in the case det v > 0. This
completes the proof of Lemma A.6 in the case det v < 0.

The remaining case det v = 0 can be considered as a limiting case of the
“ball” case det v > 0; we pass to the limit by sending zvi

→ ∞ and λvi
→ 0

while keeping λvi
ed(zvi

,e) def= cv constant. The function ‖gv‖ becomes essentially
a Buseman function, and its level sets are horocycles. It is easy to show that
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(78) becomes

|Iv
t (δ)| ≈ c−1/2

v e−t/2δ1/2.

and (76) becomes

mt(v) ≈ c1/2
v e−t.

Then the assertions for the lemma follow immediately.

Proof of Proposition 4.2. We let the rectangle RL,±,±
t (δ1, δ2) be the prod-

uct of the intervals I
π1(vL),±
t (δ1) and I

π2(vL),±
t (δ2). It is clear that parts (a)–

(c) of Proposition 4.2 follow immediately from the corresponding assertion of
Lemma A.6. To derive (d) of Proposition 4.2 from (d) of Lemma A.6 we may
argue as follows: Note that Mt(L) = max(mt(π1(vL)), mt(π2(vL))). Without
loss of generality, we may assume that Mt(L) = mt(π1(vL)). By Lemma A.6
part (d), either (73) or (74) holds. If (73) holds then (25) holds. If (74) holds,
then for any τ > 0, Mt+τ (L) ≥ mt+τ (π1(vL)) ≥ mt(π1(vL)) = Mt(L), hence
(26) holds. Thus, part (d) of Proposition 4.2 also holds.

Appendix B. Proof of Lemma 8.2

In this appendix we prove Lemma 8.2. The following lemma describes the
shapes of the sets F (η):

Lemma B.1. There exist constants 0 < η0 < η1 < 1 and κ > 1 depending
only on Λ such that the following holds: Let H be either a one-dimensional
or a three-dimensional Λ-rational subspace, and let v = vH , where vH is as
defined in Section 2.

Suppose t > 0. Suppose δ
def= mink datkΛ(atkH) < η0. Let λ2

1 ≤ λ2
2

be the eigenvalues of vtv (where R4 is identified, when dimH = 1 or ∧3R4,
when dimH = 3, with M2(R)). Let FH(η) ⊂ R2 denote the region {(x, y) :
|λ1 − λ2xy| < e−tη, and |λ2x| < η and |λ2y| < η}. Then for 8δ < η < η1,

FH(κ−1η) ⊂ {(tan(α − α0), tan(β − β0)) : ‖at(kα, kβ)v‖ < η} ⊂ FH(κη),

for some α0 ∈ R, β0 ∈ R depending only on v.

Proof of Lemma B.1. We may replace v by
(

λ1 0
0 λ2

)
, with |λ1| < |λ2|.

Then

kv =
(

cos α sinα

− sinα cos α

) (
λ1 0
0 λ2

) (
cos β sinβ

− sinβ cos β

)
(80)

=
(

λ1 cos α cos β − λ2 sinα sinβ λ1 cos α sinβ + λ2 sinα cos β

−λ1 sinα cos β − λ2 cos α sinβ −λ1 sinα sinβ + λ2 cos α cos β

)
.
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Hence,

atkv =
(

et(λ1 cos α cos β − λ2 sinα sinβ) λ1 cos α sinβ + λ2 sinα cos β
−λ1 sin α cos β − λ2 cos α sinβ e−t(−λ1 sinα sinβ + λ2 cos α cos β)

)
.

Note that ‖a−1
t ‖ = e−t, and ‖v‖ ≥ |λ2|. Hence,

δ = min
k

‖atkv‖ ≥ e−t|λ2|.(81)

Since |λ2| is comparable to the norm of v, we have |λ2| > c0, where c0

depends only on Λ. If det v = 0, then λ1 = 0. If δ = mink ‖atkv‖ < η0 then
|det v| = |λ1λ2| ≤ η2

0. Hence, if we choose η0 small enough, we may always
assume that |λ1| � |λ2|.

Suppose ‖atkv‖<η<η1�1. Then from the (1, 1) coefficient, | sinα sinβ|
< 2/|λ2| � 1. From the (1, 2) coefficient, | sinα cos β‖ < 2/|λ2|, and from the
(2, 1) coefficient, | cos α sinβ| < 2/|λ2|. Hence | sinα| � 1, and | sinβ| � 1.
Thus α is near 0 or π and β is near 0 or π. After possibly applying the
transformations α → α + π, β → β + π (which have the effect of changing the
signs of λ1 and λ2), we may assume that α and β are near 0. Thus we may
assume that | cos α| > 1/2 and | cos β| > 1/2. Let C0 = | cos α cos β|−1, and let
x = tanα, y = tanβ. The inequalities ‖atkv‖ < η may be rewritten as:

|λ1 − λ2xy|< C0e
−tη,(82)

| − λ1x − λ2y|< C0η,(83)

|λ1y + λ2x|< C0η,(84)

|λ2 − λ1xy|< C0e
tη,(85)

where we note that 1 < C0 < 4 always.
We first observe that since |λ1| � |λ2|, the equations (83) and (84) are

equivalent to |x| < (const)η/|λ2| and |y| < (const)η/|λ2|. The equation (82) is
equivalent to the first condition in the definition of FH(η). These observations
imply that if κ is sufficiently large, {k : ‖atkv‖ < η} ⊂ FH(κη).

To establish the other inclusion FH(κ−1η) ⊂ {k : ‖atkv‖ < η} suppose
k = (kα, kβ) ∈ FH(κ−1η). As above, let x = tanα, y = tanβ. It is clear that
if κ is sufficiently large, then (82), (83) and (84) are satisfied with η/4 in place
of η. Also, since η < η1 � 1 and |λ2| > c0 > 0, it follows from the second and
third conditions in the definition of FH(κ−1η) that |x| < 1 and |y| < 1. Then,

|λ2 − λ1xy| ≤ |λ2| + |λ1| ≤ 2|λ2| ≤ 2etδ ≤ C0e
t(η/4),

where in the next-to-last estimate we used (81) and in the last estimate we
used the condition η > 8δ. Hence, ‖atkv‖ < η as required. This shows the
inclusion FH(κ−1η) ⊂ {k : ‖atkv‖ < η} which completes the proof of the
lemma.
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In view of Lemma B.1, the set F (η) is contained in a small neighborhood
of the origin. Hence we may assume that the Jacobian of the map (α, β) →
(tanα, tanβ) is bounded between 1/2 and 2. Lemma 8.2 would follow from
the next result:

Lemma B.2. Let H be a Λ-rational subspace of dimension 1 or 3. For
η > 0 let FH(η) ⊂ R2 be as in Lemma B.1. Suppose R1 and R2 are disjoint
rectangles such that for i = 1, 2, |Ri ∩ F (η)| ≥ 0.6|Ri|, and let λ > 1 be such
that 3λR1 and 3λR2 are still disjoint and of diameter at most π/8. Then, for
some i ∈ {1, 2},

|Ri| ≤ c3λ
−1|(λRi) ∩ FH(2η)|.

where c3 > 0 depends only on Λ.

Note that FH(η) = F ∩ S(η2), where η2 = η/|λ2|, S(η2) denotes the
square centered at the origin of side length η2 and F is a region between two
hyperbolas as in Lemma B.4.

The proof of Lemma B.2 will be carried out in two steps. The following
lemma allows us to reduce to the case when Ri ⊂ FH(η), i = 1, 2.

Lemma B.3. Let R be a rectangle such that |R ∩FH(η)| ≥ 0.6|R|. Then,
there exists a rectangle R′ ⊂ R such that R′ ⊂ FH(η) and |R′| > 1

(100)2 |R|.

Proof of Lemma B.3. After replacing R by R∩S(η2) we may assume that
R ⊂ S(η2). Consider a partition of R into 100 × 100 equal disjoint subrect-
angles. Each of the boundary curves of the region F is a monotone function.
Clearly, a monotone curve can intersect at most 200 of these subrectangles.
Since there are at most four boundary curves, the number of subrectangles
intersected by boundary curves is at most 800. If no subrectangle is contained
in F , then F∩R is covered by subrectangles intersecting boundary curves, and
hence we would have |R∩F| < 0.08|R| < 0.6|R|, contradicting the assumption.

Lemma B.4. Let P =[x0 − a, x0]×[y0 − b, y0] and Q=[x0 − A, x0 + A] ×
[y0 − B, y0 + B] be rectangles. Suppose x0 > 0, y0 > 0, 0 < a < A, and 0 < b

< B. Assume that the origin (0, 0) does not belong to Q. Let ω1 =
(x0 − a)(y0 − b) and let ω2 = x0y0. Denote F ′ = {(x, y) : ω1 ≤ xy ≤ ω2}, so
that P ⊂ F ′. Then,

|Q ∩ F ′| ≥ 1
8

min(a/A, b/B)|Q| =
1
2

min(aB, Ab).

Proof. After rescaling we may assume that ω2 = 1 and ω1 < 1. Let α, β

be as in Figure 5 (i.e. α is the distance from the midpoint of the top side of
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bP
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y0

x0

Figure 5. The proof of Lemma B.4.

Q to the intersection of the top side of Q with the hyperbola xy = 1; we set
α equal to half the length of the top side if the hyperbola and the top side do
not intersect).

Suppose α > 1
2A. For x0 − α ≤ u ≤ x0 let h(u) denote the length of the

intersection of Q ∩ F ′ with the line x = u. We note that h(u) is a decreasing
function on [x0 − α, x0], and since P ⊂ F ′, h(x0) ≥ b. Hence

|Q ∩ F| ≥
∫ x0

x0−α
h(u) du ≥ αb ≥ 1

2Ab.

If β > 1
2B then a similar argument shows that |Q∩F| ≥ 1

2bB. Thus the lemma
follows from the next statement:

Claim B.5. Either α ≥ 1
2A or β ≥ 1

2B.

Proof of Claim B.5. If the hyperbola xy = 1 does not intersect both the
top and the right sides of Q, the claim is automatically satisfied. Thus, we may
assume that the hyperbola intersects both the top and the right side. Hence,

α =x0 −
1

y0 + B
,

β = y0 −
1

x0 + A
.

If B > y0 then A < x0 (because (0, 0) 
∈ Q). Hence, α = x0 − 1/(y0 + B) ≥
x0 − 1/(2y0) = x0/2 ≥ A/2, which proves the claim in this case. Similarly, if
A > x0 then B < y0 (because (0, 0) 
∈ Q) and then β = y0 − 1/(x0 + A) ≥
y0 − 1/(2x0) = y0/2 ≥ B/2.

Finally if A < x0 and B < y0 we have Ay0 < 1 and Bx0 < 1. Then

αβ =
(

x0 −
1

y0 + B

) (
y0 −

1
x0 + A

)
=

AB

(1 + Ay0)(1 + Bx0)
≥ 1

4
AB.
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Thus either α ≥ A/2 or β ≥ B/2. This completes the proof of the claim and
thus of Lemma B.4.

We now complete the proof of Lemma B.2. Let R1 and R2 be as in
Lemma B.2. Since 3λR1 and 3λR2 are disjoint, we may assume that for some
j ∈ {1, 2}, 3λRj does not contain the origin. Denote Rj by R, and let R′ ⊂ R

be as in Lemma B.3. There is a quadrant containing at least half of R′;
without loss of generality we may assume it is the first quadrant. Partition
the intersection of R′ with the first quadrant into 3 × 3 equal subrectangles,
and let P = [x0 − a, x0] × [y0 − b, y0] denote the middle subrectangle. Let
Q = [x0 − A, x0 + A] × [y0 − B, y0 + B] be the biggest rectangle centered
around the top right corner of P and be completely contained in λR. Note
that the area of Q is at least a fixed fraction of the area of λR. Let F ′ be as
in Lemma B.4. We observe that F ′ ⊂ F . Thus by Lemma B.4,

|λR ∩ F| ≥ |λR ∩ F ′| ≥ |Q ∩ F ′| ≥ 1
8

min(a/A, b/B)|Q| ≥ cλ−1|λR| = cλ|R|.

Thus, if either λR ∩ F ′ ⊂ S(η2) or λR ∩ F ′ ⊂ S(2η2), Lemma B.2 is proved.
Suppose not; then without loss of generality we may assume that λR ∩ F ′

intersects both of the lines y = η2 and y = 2η2. Thus, λR contains the points
(1
2(ω2/η2), 2η2) and (ω2/η2, η2), (where ω2 is as in Lemma B.4). Then, 3λR

contains the origin, which is a contradiction. This completes the proof of
Lemma B.2.
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