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0. Introduction

In this paper, we solve the following extension problem.

Problem 1. Suppose we are given a function f : E → R, where E is a
given subset of Rn. How can we decide whether f extends to a Cm−1,1 function
F on Rn ?

Here, m ≥ 1 is given. As usual, Cm−1,1 denotes the space of functions
whose (m − 1)rst derivatives are Lipschitz 1. We make no assumption on the
set E or the function f .

This problem, with Cm in place of Cm−1,1, goes back to Whitney [15],
[16], [17]. To answer it, we prove the following sharp form of the Whitney
extension theorem.

Theorem A. Given m, n ≥ 1, there exists k, depending only on m

and n, for which the following holds.
Let f : E → R be given, with E an arbitrary subset of Rn.
Suppose that, for any k distinct points x1, . . . , xk ∈ E, there exist (m−1)rst

degree polynomials P1, . . . , Pk on Rn, satisfying

(a) Pi(xi) = f(xi) for i = 1, . . . , k;

(b) |∂βPi(xi)| ≤ M for i = 1, . . . , k and |β| ≤ m − 1; and

(c) |∂β(Pi − Pj)(xi)| ≤ M |xi − xj |m−|β| for i, j = 1, . . . , k and |β| ≤ m − 1;
with M independent of x1, . . . , xk.

Then f extends to a Cm−1,1 function on Rn.

The converse of Theorem A is obvious, and the order of magnitude of the
best possible M in (a), (b), (c) may be computed from f(x1), . . . , f(xk) by
elementary linear algebra, as we spell out in Sections 1 and 2 below. Thus,
Theorem A provides a solution to Problem 1. The point is that, in Theorem A,
we need only extend the function value f(xi) to a jet Pi at a fixed, finite number
of points x1, . . . , xk. To apply the standard Whitney extension theorem (see
[9], [13]) to Problem 1, we would first need to extend f(x) to a jet Px at
every point x ∈ E. Note that each Pi in (a), (b), (c) is allowed to depend on
x1, . . . , xk, rather than on xi alone.

To prove Theorem A, it is natural to look for functions F of bounded
Cm−1,1-norm on Rn, that agree with f on arbitrarily large finite subsets
E1 ⊂ E. Thus, we arrive at a “finite extension problem”.

Problem 2. Given a function f : E → R, defined on a finite subset
E ⊂ Rn, compute the order of magnitude of the infimum of the Cm norms of
all the smooth functions F : Rn → R that agree with f on E.
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To “compute the order of magnitude” here means to give computable
upper and lower bounds Mlower, Mupper, with Mupper ≤ A Mlower, for a constant
A depending only on m and n. (In particular, A must be independent of the
number and position of the points of E.) Here, we have passed from Cm−1,1

to Cm. For finite sets E, Problem 2 is completely equivalent to its analogue
for Cm−1,1. (See Section 18 below for the easy argument.)

Problem 2 calls to mind an experimentalist trying to determine an un-
known function F : Rn → R by making finitely many measurements, i.e.,
determining F (x) for x in a large finite set E. Of course, the experimentalist
can never decide whether F ∈ Cm by making finitely many measurements, but
she can ask whether the data force the Cm norm of F to be large (or perhaps
increasingly large as more data are collected). Real measurements of f(x) will
be subject to experimental error σ(x) > 0. Thus, we are led to a more general
version of Problem 2, a “finite extension problem with error bars”.

Problem 3. Let E ⊂ Rn be a finite set, and let f : E → R and σ : E →
[0,∞) be given. How can we tell whether there exists a function F : Rn → R,
with |F (x) − f(x)| � σ(x) for all x ∈ E, and ‖F‖Cm(Rn) � 1?

Here, P � Q means that P ≤ A · Q for a constant A depending only on
m and n. (In particular, A must be independent of the set E.)

This problem is solved by the following analogue of Theorem A for finite
sets E.

Theorem B. Given m, n ≥ 1, there exists k#, depending only on m

and n, for which the following holds.
Let f : E → R and σ : E → [0,∞) be functions defined on a finite set

E ⊂ Rn. Let M be a given, positive number. Suppose that, for any k distinct
points x1, . . . , xk ∈ E, with k ≤ k#, there exist (m − 1)rst degree polynomials
P1, . . . , Pk on Rn, satisfying

(a) |Pi(xi) − f(xi)| ≤ σ(xi) for i = 1, . . . , k;

(b) |∂βPi(xi)| ≤ M for i = 1, . . . , k and |β| ≤ m − 1; and

(c) |∂β(Pi −Pj)(xi)| ≤ M · |xi − xj |m−|β| for i, j = 1, . . . , k and |β| ≤ m− 1.

Then there exists F ∈ Cm(Rn), with ‖F‖Cm(Rn) ≤ A · M , and |F (x) −
f(x)| ≤ A · σ(x) for all x ∈ E.

Here, the constant A depends only on m and n.

Again, the point of Theorem B is that we need look only at a fixed number
k# of points of E, even though E may contain arbitrarily many points. The-
orem B solves Problem 3; by specialization to σ ≡ 0, it also solves Problem 2.
Once we know Theorem B, a compactness argument using Ascoli’s theorem
allows us to deduce Theorem A, in a more general form involving error bars.
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In turn, Theorem B may be reduced to the following result, by applying the
standard Whitney extension theorem.

Theorem C. Given m, n ≥ 1, there exist k# and A, depending only on
m and n, for which the following holds. Let f : E → R and σ : E → [0,∞) be
functions on a finite set E ⊂ Rn. Suppose that, for every subset S ⊂ E with at
most k# elements, there exists a function FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ 1,
and |FS(x) − f(x)| ≤ σ(x) for all x ∈ S.

Then there exists a function F ∈ Cm(Rn), with ‖F‖Cm(Rn) ≤ A, and
|F (x) − f(x)| ≤ A · σ(x) for all x ∈ E.

Thus, Theorem C is the heart of the matter. In a moment, we sketch
some of the ideas in the proof of Theorem C.

First, however, we make a few remarks on the analogue of Problem 1 with
Cm in place of Cm−1,1. This is the most classical form of Whitney’s extension
problem. Whitney himself solved the one-dimensional case in terms of finite
differences (see [16]). A geometrical solution for the case of C1(Rn) was given
by Glaeser [8], who introduced the notion of an “iterated paratangent bundle”.
The correct notion of an iterated paratangent bundle relevant to Cm(Rn) was
introduced by Bierstone-Milman-Paw�lucki. (See [1], which proves an extension
theorem for subanalytic sets.) It would be very interesting to generalize the
extension theorem of [1] from subanalytic to arbitrary subsets of Rn. I hope
that the ideas in this paper will be helpful in carrying this out. I have been
greatly helped by discussions with Bierstone and Milman. Note: Since the
above was written there has been progress on this matter; see forthcoming
papers by Bierstone-Milman-Pawlucki, and by me.

Y. Brudnyi and P. Shvartsman conjectured a result analogous to our The-
orem C, but without the function σ, and with Cm−1,1 replaced by more general
function spaces. They conjectured also that the extension F may be taken to
depend linearly on f . For function spaces between C0 and C1,1, they succeeded
in proving their conjectures by the elegant method of “Lipschitz selection,” ob-
taining in particular an optimal k#. Their results solve our Problem 1 in the
simplest nontrivial case, m = 2. We refer the reader to [2], [3], [4], [5], [6], [10],
[11], [12] for the above, and for additional results and conjectures. A forthcom-
ing paper [7] will settle some of the issues raised by Brudnyi and Shvartsman,
to whom I am grateful for bringing these matters to my attention.

Next, we explain some ideas from the proof of Theorem C, sacrificing
accuracy for ease of understanding.

One ingredient in our proof is the following standard result on convex sets.

Helly’s Theorem (see, e.g., [14]). Let J be a family of compact, convex
subsets of Rd, any (d+1) of which have nonempty intersection. Then the whole
family J has nonempty intersection.
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The following observation is typical of our repeated applications of Helly’s
theorem in the proof of Theorem C. Let P denote the vector space of (m−1)rst

degree polynomials on Rn, and let D be its dimension. For F ∈ Cm(Rn) and
y ∈ Rn, let Jy(F ) denote the (m − 1) jet of F at y. Let E, f, σ be as in the
hypotheses of Theorem C. Fix y ∈ Rn. Then there exists a polynomial Py ∈ P,
with the following property:

(1) Given S ⊂ E with at most k#/(D + 1) elements, there exists
FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ 1, |FS(x) − f(x)| ≤ σ(x) on S,
and Jy(FS) = Py.

Thus, we can pin down the (m − 1) jet of FS at a single point y, at the
cost of passing from k# to k#/(D +1). We may regard Py as a plausible guess
for the (m− 1) jet at y of the function F in the conclusion of Theorem C. Let
us call Py a “putative Taylor polynomial”.

To prove (1), let S denote the family of subsets S ⊂ E with at most
k#/(D + 1) elements. To each S ⊂ E (not necessarily in S), we associate a
subset K(S) ⊂ P, defined by

K(S) = {Jy(F ) : ‖F‖Cm(Rn) ≤ 1, |F (x) − f(x)| ≤ σ(x) on S}.
Each K(S) is convex and bounded. In this heuristic introduction, we ignore
the question of whether K(S) is compact. If S1, . . . , SD+1 ∈ S are given, then
S = S1 ∪ · · · ∪ SD+1 ⊂ E has at most k# elements, hence K(S) is nonempty,
thanks to the hypothesis of Theorem C. On the other hand, we have the
obvious inclusion K(S) ⊆ K(Si) for each i. Therefore, K(S1) ∩ · · · ∩ K(SD+1)
is nonempty, for any S1, . . . , SD+1 ∈ S. Applying Helly’s theorem, we obtain
a polynomial Py ∈ P belonging to K(S) for every S ∈ S. Property (1) is now
immediate from the definition of K(S).

Unfortunately, property (1) need not uniquely specify the polynomial Py.
Therefore, if we are not careful, we may associate to two nearby points y and
y′ putative Taylor polynomials Py and Py′ that have nothing to do with each
other. If we are hoping that Py and Py′ will be the jets of a single Cm function
at the points y and y′, then we will be in for a surprise.

To express the ambiguity in choosing a putative Taylor polynomial, we
introduce the notion of a polynomial that is “small on E near y”. If y ∈ Rn

and P̂ ∈ P is a polynomial, then we say that P̂ is small on E near y, provided
the following holds:

(2) Given S ⊂ E with at most k#/(D + 1) elements, there exists
ϕS ∈ Cm(Rn), with ‖ϕS‖Cm(Rn) ≤ A, |ϕS(x)| ≤ Aσ(x) on S, and
Jy(ϕS) = P̂ .

Here, A is a suitable constant. The connection of this notion to the
ambiguity of the putative Taylor polynomial Py is immediately clear. If two
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polynomials P
(1)
y and P

(2)
y both satisfy (1), then their difference P

(1)
y − P

(2)
y

evidently satisfies (2), with A = 2. Conversely, if Py satisfies (1), and P̂ satisfies
(2), then one sees easily that Py + P̂ satisfies the following condition, which is
essentially as good as (1):

(3) Given S ⊂ E with at most k#/(D + 1) elements, there exists
F̃S ∈ Cm(Rn), with ‖F̃S‖Cm(Rn) ≤ A+1, |F̃S(x)−f(x)| ≤ (A+1) ·σ(x)
on S, and Jy(F̃S) = Py + P̂ .

Thus, the ambiguity in the putative Taylor polynomial lies precisely in the
freedom to add an arbitrary polynomial P̂ ∈ P that is “small on E near y”.

It is therefore essential to keep track of which polynomials P̂ are small
on E near y. If A is a set of multi-indices β = (β1, . . . , βn) of order |β| =
β1 + · · ·+ βn ≤ m− 1, then let us say that E has “type A” at y (with respect
to σ) if there exist polynomials Pα ∈ P, indexed by α ∈ A, that satisfy the
conditions:

(4) Each Pα is small on E near y, and

(5) ∂βPα(y) = δβα (Kronecker delta) for β, α ∈ A.

Note that if E has type A, then automatically E has type A′ for any
subset A′ ⊂ A.

A crucial idea in our proof is to formulate a “Main Lemma for A”, for
each set A of multi-indices of order ≤ m − 1. The Main Lemma for A says
roughly that if E has “type A” at y, then a local form of Theorem C holds in
a fixed neighborhood of y. Suppose we can prove the Main Lemma for all A.
Taking A to be the empty set, we know that (trivially) E has type A at every
point y ∈ Rn. Hence, a local form of Theorem C holds in a ball of fixed radius
about any point y. A partition of unity allows us to patch together these local
results, and deduce Theorem C.

Thus, we have reduced matters to the task of proving the Main Lemma
for any set A of multi-indices of order ≤ m − 1. We proceed by induction on
A, where the sets A are given a natural order <. In particular, if A′ ⊂ A, then
A < A′ under our order; thus, the empty set is maximal, and the set M of all
multi-indices of order ≤ m − 1 is minimal under <. The induction on A thus
starts with A = M and ends with A = empty set.

For A = M, the Main Lemma is trivial, essentially because the hypothesis
that E is of type M forces σ(x) to be so big that we may take F ≡ 0 in the
conclusion of Theorem C, without noticing the error.

For the induction step, we fix A �= M, and assume that the Main Lemma
holds for all A′ < A. We have to prove the Main Lemma for A. Thus, suppose
E is of type A at y. We start with a cube Q◦ of small, fixed sidelength,
centered at y. We then make a Calderón-Zygmund decomposition of Q◦ into
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subcubes {Qν}. To construct the Qν , we repeatedly “bisect” Q◦ into ever
smaller subcubes, stopping at Qν when, after rescaling Qν to the unit cube,
we find that E has type A′ for some A′ < A. Using the induction hypothesis,
we can deal with each Qν locally. We can patch together the local solutions
using a partition of unity adapted to the Calderón-Zygmund decomposition.
This completes the induction step, establishing the Main Lemma for every A,
and completing the proof of Theorem C.

We again warn the reader that the above summary is oversimplified. For
instance, there are actually two Main Lemmas for each A. The phrases “pu-
tative Taylor polynomial”, “small on E near y”, and “type A” do not appear
in the rigorous discussion below; they are meant here to motivate some of the
rigorous developments in Sections 1 through 19.

In Section 19 below, we give a (wasteful) effective bound for the constant
k# in Theorems B, C and the constant k in Theorem A.

It is a pleasure to thank Eileen Olszewski for skillfully TEXing my hand-
written manuscript, and suffering through many revisions.

1. Notation

Fix m, n ≥ 1 throughout this paper.
Cm(Rn) denotes the space of functions F : Rn → R whose derivatives of

order ≤ m are continuous and bounded on Rn. For F ∈ Cm(Rn), we define
‖F‖Cm(Rn) = supx∈Rn max|β|≤m |∂βF (x)|, and

‖∂mF‖C0(Rn) = sup
x∈Rn

max
|β|=m

|∂βF (x)|.

For F ∈ Cm(Rn) and y ∈ Rn, we define Jy(F ) to be the (m− 1) jet of F at y,
i.e., the polynomial

Jy(F )(x) =
∑

|β|≤m−1

1
β!

(
∂βF (y)

)
· (x − y)β.

Cm−1,1(Rn) denotes the space of all functions F : Rn → R, whose deriva-
tives of order ≤ m − 1 are continuous, and for which the norm

‖F‖Cm−1,1(Rn) = max
|β|≤m−1

 sup
x∈Rn

|∂βF (x)| + sup
x,y∈Rn

x�=y

|∂βF (x) − ∂βF (y)|
|x − y|


is finite.

Let P denote the vector space of polynomials of degree ≤ m − 1 on Rn

(with real coefficients), and let D denote the dimension of P.
Let M denote the set of all multi-indices β = (β1, . . . , βn) with |β| =

β1 + · · · + βn ≤ m − 1.
Let M+ denote the set of multi-indices β = (β1, . . . , βn) with |β| ≤ m.
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If α and β are multi-indices, then δβα denotes the Kronecker delta, equal
to 1 if β = α and 0 otherwise.

We will be dealing with functions of x parametrized by y (x, y ∈ Rn).
We will often denote these by ϕy(x), or by P y(x) in case x → P y(x) is a
polynomial for fixed y. When we write ∂βP y(y), we always mean the value of(

∂
∂x

)β
P y(x) at x = y; we never use ∂βP y(y) to denote the derivative of order

β of the function y → P y(y).
We write B(x, r) to denote the ball with center x and radius r in Rn. If Q

is a cube in Rn, then δQ denotes the diameter of Q; and Q� denotes the cube
whose center is that of Q, and whose diameter is three times that of Q.

If Q is a cube in Rn, then to “bisect” Q is to partition it into 2n congruent
subcubes in the obvious way. Later on, we will fix a cube Q◦ ⊂ Rn, and define
the class of “dyadic” cubes to consist of Q◦, together with all the cubes arising
from Q◦ by repeated bisection. Each dyadic cube Q other than Q◦ arises from
bisecting a dyadic cube Q+ ⊆ Q◦, with δQ+ = 2δQ. We call Q+ the dyadic
“parent” of Q. Note that Q+ ⊂ Q�.

For any finite set X, write #(X) to denote the number of elements of X.
If X is infinite, then we define #(X) = ∞.

This paper is divided into sections. The label (p.q) refers to formula (q)
in Section p. Within Section p, we abbreviate (p. q) to (q).

Let �x = (x1, . . . , xk) be a finite sequence consisting of k distinct points
of Rn. On the vector space P ⊕ · · · ⊕ P (k copies), we define quadratic forms
Q◦(·; �x), Q1(·; �x), Q(·; �x) as follows. Given �P = (Pµ)1≤µ≤k ∈ P ⊕ · · · ⊕ P, we
define

Q◦(�P ; �x) =
∑

1≤µ≤k

∑
|β|≤m−1

(∂β(Pµ)(xµ))2

Q1(�P ; �x) =
∑

1≤µ,ν≤k

(µ�=ν)

∑
|β|≤m−1

(∂β(Pµ − Pν)(xν))2 · |xµ − xν |−2(m−|β|)

Q(�P ; �x) =Q◦(�P ; �x) + Q1(�P ; �x).

If f : E → R with x1, . . . , xk ∈ E, then we define ‖f‖2
Cm(�x) to be the minimum

of Q(�P ; �x) over all �P = (Pµ)1≤µ≤k ∈ P ⊕ · · · ⊕ P subject to the constraints
Pµ(xµ) = f(xµ) for all µ = 1, . . . , k.

Note that elementary linear algebra gives

‖f‖2
Cm(�x) =

k∑
µ,ν=1

aµν(�x)f(xµ)f(xν)

for a positive-definite matrix (aµ ν(�x)) whose entries are rational functions of
x1, . . . , xk.
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2. Statement of results

Theorem 1. Given m, n ≥ 1, there exist constants k#, A, depending only
on m and n, for which the following holds.

Let E ⊂ Rn be a finite set, and let f : E → R and σ : E → [0,∞) be
functions on E.

Assume that, for every subset S ⊂ E with #(S) ≤ k#, there exists a
function FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ 1, and |FS(x) − f(x)| ≤ σ(x) for
all x ∈ S.

Then there exists a function F ∈ Cm(Rn), with ‖F‖Cm(Rn) ≤ A, and
|F (x) − f(x)| ≤ Aσ(x) for all x ∈ E.

Theorem 2. Given m, n ≥ 1, there exist constants k#, A, depending only
on m and n, for which the following holds.

Let E ⊂ Rn be an arbitrary subset, and let f : E → R and σ : E → [0,∞)
be functions on E.

Assume that, for every subset S ⊂ E with #(S) ≤ k#, there exists a
function FS ∈ Cm−1,1(Rn), with ‖FS‖Cm−1,1(Rn) ≤ 1, and |FS(x) − f(x)| ≤
σ(x) for all x ∈ S.

Then there exists a function F ∈ Cm−1,1(Rn), with ‖F‖Cm−1,1(Rn) ≤ A,
and |F (x) − f(x)| ≤ Aσ(x) for all x ∈ E.

Theorem 3. Given m, n ≥ 1, there exists k#, depending only on m

and n, for which the following holds.
Let E ⊂ Rn be an arbitrary subset, and let f : E → R be a function on E.

Then f extends to a Cm−1,1 function on Rn, if and only if

sup
�x

‖f‖Cm(�x) < ∞,

where �x varies over all sequences (x1, . . . , xk) consisting of at most k# distinct
elements of E.

3. Order relations involving multi-indices

We introduce an order relation on multi-indices. Let α = (α1, . . . , αn)
and β = (β1, . . . , βn) be distinct multi-indices. Since α and β are distinct, we
cannot have α1 + · · · + αk = β1 + · · · + βk for all k = 1, . . . , n. Let k̄ be the
largest k for which α1 + · · · + αk �= β1 + · · · + βk. Then we say that α < β if
and only if α1 + · · · + αk̄ < β1 + · · · + βk̄. One checks easily that this defines
an order relation, which we use on multi-indices throughout this paper.

Next, we introduce an order relation on subsets of M, the set of multi-
indices of order at most m − 1. Suppose that A and B are distinct subsets
of M. Then the symmetric difference A � B = (A�B)∪ (B�A) is nonempty.
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Let α be the least element of A � B (under the above ordering on multi-
indices). We say that A < B if α belongs to A. Again, one checks easily
that this defines an order relation; and we use this order relation on sets of
multi-indices throughout this paper.

We need a few simple results on the above order relations.

Lemma 3.1. If α and β are multi -indices with |α| < |β|, then α < β.

Lemma 3.2. If A, Ā ⊂ M, and if A ⊆ Ā, then Ā ≤ A.

Lemma 3.3. Let A ⊂ M, and let φ : A → M. Suppose that

(1) φ(α) ≤ α for all α ∈ A.

(2) For each α ∈ A, either φ(α) = α or φ(α) /∈ A.

Then φ(A) ≤ A, with equality if and only if φ is the identity map.

Lemmas 3.1 and 3.2 are immediate from the definitions. We give the proof
of Lemma 3.3, first showing that φ(A) ≤ A. We use induction on #(A), the
number of elements of A. For #(A) = 0, the lemma holds trivially, since
A = φ(A) = empty set. For the induction step, fix k ≥ 1, assume that (1) and
(2) imply φ(A) ≤ A whenever #(A) = k − 1, and fix A ⊂ M with #(A) = k.
Let α be the least element of A, and let β be the least element of φ(A). From
(1) we see that β ≤ α. If β < α, then β is the least element of φ(A) � A;
hence φ(A) < A by definition. If instead β = α, then we apply our induction
hypothesis to A � {α}. Note that #(A � {α}) = k − 1, and that

(3) (A � {α}) � φ(A � {α}) = A � φ(A).

The inductive hypothesis gives φ(A�{α}) ≤ A�{α}, and therefore φ(A) ≤ A,
thanks to (3). This completes the induction step. Hence, (1) and (2) imply
φ(A) ≤ A. Also, (2) shows at once that φ(A) �= A whenever φ is not the
identity map. The proof of Lemma 3.3 is complete.

Note that in view of Lemma 3.2, the empty set is maximal, and the set
M is minimal, under the order <.

4. Statement of two main lemmas

Fix A ⊆ M. We state two results involving A.

Weak Main Lemma for A. Given m, n ≥ 1, there exist constants
k#, a0, depending only on m and n, for which the following holds. Suppose we
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are given a finite set E ⊂ Rn and functions f : E → R and σ : E → (0,∞).
Suppose we are given also a point y0 ∈ Rn and a family of polynomials Pα ∈ P,
indexed by α ∈ A. Assume that the following conditions are satisfied :

(WL1) ∂βPα(y0) = δβ α for all β, α ∈ A.

(WL2) |∂βPα(y0) −δβα| ≤ a0 for all α ∈ A, β ∈ M.

(WL3) Given S ⊂ E with #(S) ≤ k#, and given α ∈ A, there exists ϕS
α ∈

Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ a0.

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S.

(c) Jy0(ϕS
α) = Pα.

(WL4) Given S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm(Rn), with

(a) ‖FS‖Cm(Rn) ≤ C.

(b) |FS(x) − f(x)| ≤ Cσ(x) for all x ∈ S.

Then there exists F ∈ Cm(Rn), with

(WL5) ‖F‖Cm(Rn) ≤ C ′ and

(WL6) |F (x) − f(x)| ≤ C ′σ(x) for all x ∈ E ∩ B(y0, c′).

Here, C ′ and c′ in (WL5, 6) depend only on C, m, n in (WL1, . . . , 4).

Strong Main Lemma for A. Given m, n ≥ 1, there exists k#, de-
pending only on m and n, for which the following holds. Suppose we are given
a finite set E ⊂ Rn, and functions f : E → R and σ : E → (0,∞). Suppose we
are given also a point y0 ∈ Rn, and a family of polynomials Pα ∈ P, indexed
by α ∈ A. Assume that the following conditions are satisfied :

(SL1) ∂βPα(y0) = δβ α for all α, β ∈ A.

(SL2) |∂βPα(y0)| ≤ C for all α ∈ A, β ∈ M with β ≥ α.

(SL3) Given S ⊂ E with #(S) ≤ k#, and given α ∈ A there exists ϕS
α ∈

Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ C.

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S.

(c) Jy0(ϕS
α) = Pα.
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(SL4) Given S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm(Rn), with

(a) ‖FS‖Cm(Rn) ≤ C.

(b) |FS(x) − f(x)| ≤ Cσ(x) for all x ∈ S.

Then there exists F ∈ Cm(Rn), with

(SL5) ‖F‖Cm(Rn) ≤ C ′

and

(SL6) |F (x) − f(x)| ≤ C ′σ(x) for all x ∈ E ∩ B(y0, c′).

Here, C ′ and c′ in (SL5, 6) depend only on C, m, n in (SL1, . . . , 4).

5. Plan of the proof

We explain here the plan of our proof of the two Main Lemmas, and
indicate briefly how these lemmas imply Theorems 1, 2, 3. To prove the Main
Lemmas for A, we proceed by induction on A, where subsets A ⊆ M are
ordered by < as described in Section 3. More precisely, we will prove the
following results.

Lemma 5.1. The Weak Main Lemma and the Strong Main Lemma both
hold for A = M. (Recall that M is minimal under <.)

Lemma 5.2. Fix A ⊂ M, with A �= M. Assume that the Strong Main
Lemma holds for each Ā < A. Then the Weak Main Lemma holds for A.

Lemma 5.3. Fix A ⊆ M, and assume that the Weak Main Lemma holds
for all Ā ≤ A. Then the Strong Main Lemma holds for A.

Once we have established these three lemmas, the two Main Lemmas must
hold for all A, by induction on A.

Next, we explain how to deduce Theorems 1, 2, 3 from the above Main
Lemmas. Taking A to be the empty set in, say, the Weak Main Lemma, we see
that hypotheses (WL 1, 2, 3) hold vacuously; hence we obtain the following
result.

Local Theorem 1. Given m, n ≥ 1, there exist k#, A, c′ depending
only on m and n, for which the following holds. Let E ⊂ Rn be finite, and let
f : E → R and σ : E → (0,∞) be functions. Let y0 ∈ Rn. Assume that, given
S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ 1, and
|FS(x) − f(x)| ≤ σ(x) for all x ∈ S.

Then there exists F ∈ Cm(Rn), with ‖F‖Cm(Rn) ≤ A, and |F (x)−f(x)| ≤
Aσ(x) for all x ∈ E ∩ B(y0, c′).
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Once we have Local Theorem 1, it is easy to relax the hypothesis σ : E →
(0,∞) to σ : E → [0,∞) by a limiting argument. We may then deduce a
local version of Theorem 2 by a compactness argument, reducing matters to
the Local Theorem 1 by Ascoli’s theorem. Next, a partition of unity allows
us to pass from the local versions of Theorems 1 and 2 to the full results as
given in Section 2. Finally, Theorem 3 follows from the special case σ ≡ 0
of Theorem 2, by application of the standard Whitney extension theorem for
Cm−1,1 to each S ⊂ E with #(S) ≤ k#. The details of how we pass from our
Main Lemmas to Theorems 1, 2, 3 are given in Section 18 below.

We end this section with a few remarks on the proofs of Lemmas 5.1, 5.2,
5.3. We will see that Lemma 5.1 is easy, and Lemma 5.3 may be proven
without much trouble, by making a rescaling of the form (x1, . . . , xn) →
(λ1x1, . . . , λnxn) on Rn, for properly chosen λ1, . . . , λn. The hard work goes
into the proof of Lemma 5.2. A key property of subsets A ⊆ M, relevant to
the proof of Lemma 5.2, is as follows.

We say that A ⊆ M is monotonic if, for any α ∈ A, we have α + γ ∈ A
for all multi-indices γ of order |γ| ≤ m − 1 − |α|.

Lemma 5.2 is easy for nonmonotonic A. The main work in our proof lies
in establishing Lemma 5.2 for monotonic A. This completes our discussion of
the plan of the proof.

6. Starting the main induction

In this section, we give the proof of Lemma 5.1. We will show here that
the Strong Main Lemma holds for A = M. The argument for the Weak Main
Lemma is nearly identical.

Suppose E, f, σ, y0, Pα(α ∈ A) satisfy hypotheses (SL1, . . . , 4) with
A = M. From (SL1) with A = M, we see that Pα(x) = 1

α!(x − y0)α for
all α ∈ A. In particular, P0(x) = 1. Hence, (SL3) with α = 0, tells us the
following:

Given S ⊂ E with #(S) ≤ k#, there exists ϕS ∈ Cm(Rn), with

(a) ‖∂mϕS‖C0(Rn) ≤ C.

(b) |ϕS(x)| ≤ Cσ(x) for all x ∈ S.

(c) Jy0(ϕS) = 1.

We take k# = 1, and apply the above result to S = {y} for an arbitrary
y ∈ E. From (a) and (c) above, we conclude that

(1) |ϕS − 1| ≤ 1
2 on B(y0, c′), with c′ determined by C, m, n in (a), (b), (c).
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In particular, if y ∈ E ∩ B(y0, c′), then (b) and (1) give 1
2 ≤ |ϕS(y)| ≤ Cσ(y).

Thus,

(2) σ(y) ≥ 1
2C for all y ∈ E ∩ B(y0, c′).

Next, we apply (SL4) with k# = 1, S = {y}, y ∈ E ∩ B(y0, c′).
We conclude that there exists FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ C and
|FS(y) − f(y)| ≤ Cσ(y).

In particular, |FS(y)| ≤ C and |FS(y) − f(y)| ≤ Cσ(y). Hence, |f(y)| ≤
C + Cσ(y) ≤ 2C2σ(y) + Cσ(y), thanks to (2). Thus, |f(y)| ≤ (2C2 + C) · σ(y)
for all y ∈ E ∩ B(y0, c′). Consequently, the conclusions (SL5, 6) hold, with
F ≡ 0. The proof of Lemma 5.1 is complete.

7. Nonmonotonic sets

In this section, we will prove Lemma 5.2 in the (easy) case of nonmono-
tonic A.

Lemma 7.1. Fix a nonmonotonic set A ⊂ M, and assume that the Strong
Main Lemma holds for all Ā < A. Then the Weak Main Lemma holds for A.

Proof. Since A is not monotonic, there exist multi-indices ᾱ, γ̄, with

ᾱ ∈ A, ᾱ + γ̄ ∈ M � A.(1)

We set

Ā = A ∪ {ᾱ + γ̄},(2)

and we take k# as in the Strong Main Lemma for Ā. By Lemma 3.2 we have
Ā < A; hence, we may assume here that the Strong Main Lemma holds for Ā.

Let E, f, σ, y0, Pα(α ∈ A) be as in the Weak Main Lemma for A. Thus,
(WL1, . . . , 4) hold. We must prove that there exists F ∈ Cm(Rn) satisfying
(WL5, 6).

Define

Pᾱ+γ̄(x) =
∑

|β̄|≤m−1−|γ̄|

(
1
β̄!

∂β̄Pᾱ(y0)
)
· (x − y0)β̄+γ̄ · ᾱ!

(ᾱ + γ̄)!
.(3)

Thus, Pα ∈ P is defined for all α ∈ Ā. From (3) we obtain easily, for any
β ∈ M, that

∂βPᾱ+γ̄(y0) =


β!
β̄!

∂β̄Pᾱ(y0) · ᾱ!
(ᾱ + γ̄)!

if β = β̄ + γ̄ for a multi-index β̄

0 if β doesn’t have the form β̄ + γ̄

 .
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Consequently, (WL2) gives

|∂βPᾱ+γ̄(y0) − δβ,ᾱ+γ̄ | ≤ C ′a0 for all β ∈ M,(4)

with C ′ determined by m and n.
From (4) and another application of (WL2), we see that

|∂βPα(y0) − δβα| ≤ C ′a0 for all α ∈ Ā, β ∈ M,(5)

with C ′ depending only on m and n.
If a0 is a small enough constant determined by m and n, then (5) shows

that the matrix
(∂βPα(y0))α,β∈Ā

is invertible, and that the inverse matrix (Mα′α)α′, α∈Ā satisfies

|Mα′α| ≤ C ′′(6)

with C ′′ depending only on m and n. We fix a0 to be a small enough constant,
depending only on m and n, guaranteeing (6). By definition of (Mα′α), we
have

δβα =
∑
α′∈Ā

∂βPα′(y0) · Mα′α for all β, α ∈ Ā.(7)

We define

P̄α =
∑
α′∈Ā

Pα′ · Mα′α for all α ∈ Ā.(8)

From (7), (8), we have

∂βP̄α(y0) = δβα for all α, β ∈ Ā.(9)

From (5), (6), (8) we have

|∂βP̄α(y0)| ≤ C ′′′ for all α ∈ A, β ∈ M,(10)

with C ′′′ depending only on m and n.
Next, let S ⊂ E be given, with #(S) ≤ k#. For α ∈ A, let ϕS

α be as in
(WL3). We define also

ϕᾱ+γ̄(x) = (x − y0)γ̄χ(x − y0) · ϕS
ᾱ(x) · ᾱ!

(ᾱ + γ̄)!
on Rn,(11)

where χ satisfies

‖χ‖Cm(Rn) ≤ C ′
1, χ = 1 on B(0, 1), supp χ ⊂ B(0, 2),(12)

with C ′
1 determined by m and n.

From (WL2, 3(a), 3(c)), we see that ‖ϕS
ᾱ‖Cm(B(y0,2)) ≤ C ′′

1 , with C ′′
1

determined by m and n. Together with (12), this implies

‖∂mϕᾱ+γ̄‖C0(Rn) ≤ C ′′′
1 with C

′′′

1 determined by m and n.(13)
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Also, for x ∈ S we have |ϕᾱ+γ̄(x)| ≤ C ′
2|ϕS

ᾱ(x)| with C ′
2 determined by m and

n, simply because |(x − y0)γ̄χ(x − y0)| ≤ C ′
2 on Rn (see (11), (12)). Hence,

(WL3 (b)) implies

|ϕᾱ+γ̄(x)| ≤ C ′
2|ϕS

ᾱ(x)| ≤ C3σ(x) for all x ∈ S,(14)

with C3 determined by C, m, n in (WL1, . . . , 4).
Also, from (11), (12) and (WL3 (c)), we find that

ϕᾱ+γ̄(x) − ᾱ!
(ᾱ + γ̄)!

· (x − y0)γ̄Pᾱ(x) = O(|x − y0|m) as x → y0.

On the other hand, (3) implies

Pᾱ+γ̄(x) − ᾱ!
(ᾱ + γ̄)!

· (x − y0)γ̄Pᾱ(x) = O(|x − y0|m) as x → y0.

Hence,

ϕS
ᾱ+γ̄(x) − Pᾱ+γ̄(x) = O(|x − y0|m) as x → y0.(15)

Since ϕᾱ+γ̄ ∈ Cm(Rn) and Pᾱ+γ̄ ∈ P, (15) implies

Jy0(ϕS
ᾱ+γ̄) = Pᾱ+γ̄ .(16)

From (13), (14), (16) together with (WL3), we have the following result.

(17) Let S ⊂ E with #(S) ≤ k#, and let α ∈ Ā.

Then there exists ϕS
α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ C4,

(b) |ϕS
α(x)| ≤ C4σ(x) for all x ∈ S,

(c) Jy0(ϕS
α) = Pα,

where C4 is determined by C, m, n in (WL1, . . . , 4).
Next, given S ⊂ E with #(S) ≤ k#, and given α ∈ Ā, define

ϕ̄S
α =

∑
α′∈Ā

ϕS
α′Mα′α.(18)

From (17)(a),(b) and (6), we see that

‖∂mϕ̄S
α‖C0(Rn) ≤ C5(19)

and
|ϕ̄S

α(x)| ≤ C5σ(x) for all x ∈ S,(20)

with C5 determined by C, m, n in (WL1, . . . , 4).
Also, (8), (18), (17)(c) together yield

Jy0(ϕ̄S
α) = P̄α.(21)

Now we can check that E, f, σ, y0, P̄α(α ∈ Ā) satisfy the hypotheses
(SL1, . . . , 4) of the Strong Main Lemma for Ā, with a constant determined
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by C, m, n in (WL1, . . . , 4). In fact, (SL1) for the P̄α is just (9); (SL2) for
the P̄α is immediate from (10); (SL3) for the P̄α is immediate from (19), (20),
(21); and (SL4) for the P̄α is just (WL4). (Note that, to prove (SL2) for the
P̄α, we need (10) only for β ≥ α.)

Applying the Strong Main Lemma for Ā, we conclude that there exists
F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ C6, and |F (x) − f(x)| ≤ C6σ(x) for all x ∈ E ∩ B(y0, c7),
(22)

where C6 and c7 are determined by C, m, n in (WL1, . . . , 4) for the Pα (α ∈ A).
However, (22) is the conclusion of the Weak Main Lemma for A. Thus,

the Weak Main Lemma holds for A. The proof of Lemma 7.1 is complete.

8. A consequence of the main inductive assumption

In this section, we establish the following result.

Lemma 8.1. Fix A ⊂ M, and assume that the Strong Main Lemma holds,
for all Ā < A. Then there exists k#

old, depending only on m and n, for which
the following holds. Let A > 0 be given. Let Q ⊂ Rn be a cube, Ê ⊂ Rn a
finite set, f̂ : Ê → R and σ : Ê → (0,∞) functions on Ê. Suppose that, for
each y ∈ Q��, we are given a set Āy < A and a family of polynomials P̄ y

α ∈ P,
indexed by α ∈ Āy. Assume that the following conditions are satisfied :

(G1) ∂βP̄ y
α(y) = δβα for all β, α ∈ Āy, y ∈ Q��.

(G2) |∂βP̄ y
α(y)| ≤ Aδ

|α|−|β|
Q for all α ∈ Āy, β ≥ α, y ∈ Q��.

(G3) Given S ⊂ Ê with #(S) ≤ k#
old, and given y ∈ Q�� and α ∈ Āy, there

exists ϕS
α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ Aδ

|α|−m
Q ,

(b) |ϕS
α(x)| ≤ Aδ

|α|−m
Q σ(x) for all x ∈ S,

(c) Jy(ϕS
α) = P̄ y

α .

(G4) Given S ⊂ Ê with #(S) ≤ k#
old, there exists FS ∈ Cm(Rn), with

(a) ‖∂βFS‖C0(Rn) ≤ Aδ
m−|β|
Q for all β with |β| ≤ m,

(b) |FS(x) − f̂(x)| ≤ Aσ(x) for all x ∈ S.

Then there exists F ∈ Cm(Rn), with

(G5) ‖∂βF‖C0(Rn) ≤ A′δm−|β|
Q for all β with |β| ≤ m, and
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(G6) |F (x) − f̂(x)| ≤ A′σ(x) for all x ∈ Ê ∩ Q�.

Here, A′ depends only on A, m, n.

Proof. By a rescaling, we may reduce matters to the case δQ = 1. In

fact, we set
=
Q = δ−1

Q Q,
=
P

y

α (x) = δ
−|α|
Q ·P̄ δQy

α (δQx),
=
ϕ

=
S

α (x) = δ
−|α|
Q · ϕS

α (δQx),
=
S= δ−1

Q S,
=
F

=
S

(x) = δ−m
Q ·FS(δQx),

=
f (x) = δ−m

Q · f̂(δQx),
=
σ (x) = δ−m

Q ·σ(δQx),
=
E= δ−1

Q · Ê.

If (G1, . . . , 4) hold for Q, Ê, f̂ , σ, then (G1, . . . , 4) hold also for
=
Q,

=
E,

=
f,

=
σ

with the same constant A. If Lemma 8.1 holds in the case δQ = 1, then

in particular it holds for
=
Q,

=
E,

=
f,

=
σ. Hence, there exists

=
F∈ Cm(Rn), with

‖
=
F ‖Cm(Rn) ≤ A′, and |

=
F (x)−

=
f (x)| ≤ A′ =

σ (x) for all x ∈
=
E ∩

=
Q

�

.

Defining F (x) = δm
Q ·

=
F (δ−1

Q x), we conclude that F satisfies (G5, 6). Thus,
as claimed, it is enough to prove Lemma 8.1 in the case δQ = 1.

Let δQ = 1, and assume (G1, . . . , 4). For each y ∈ Q��, the hypothe-
ses (SL1, . . . , 4) for the Strong Main Lemma for Āy hold, with Ê, f̂ , σ, y,

P̄ y
α(α ∈ Āy), A in place of E, f, σ, y0, P̄α(α ∈ A), C in (SL1, . . . , 4). In

fact, (SL1, . . . , 4) for Ê, f̂ , σ, y, P̄ y
α(α ∈ Āy), A are immediate from (G1, . . . ,

4), where we define k#
old to be the maximum of all the k# arising in the Strong

Main Lemma for all Ā(Ā < A).
Hence, for each y ∈ Q��, the Strong Main Lemma for Āy produces a

function F y ∈ Cm(Rn), with

‖F y‖Cm(Rn) ≤ A′, and |F y(x) − f̂(x)| ≤ A′σ(x) for all x ∈ E ∩ B(y, c′),
(1)

where A′ and c′ are determined by A, m, n in (G1, . . . , 4).
To exploit (1), we use a partition of unity

1 =
νmax∑
ν=1

θν(x) on Q�, where(2)

0 ≤ θν ≤ 1 on Rn;(3)

supp θν ⊂ B(yν , c
′) with(4)

yν ∈ Q�� and c′ as in (1);(5)

‖θν‖Cm(Rn) ≤ C ′; and(6)

νmax ≤ C ′; where C ′ is determined by c′, m, n,
hence by A, m, n.

(7)

We then define F =
∑νmax

ν=1 θν · F yν . From (1), (6), (7) we conclude that

‖F‖Cm(Rn) ≤ C ′′ with C ′′ determined by A, m, n.(8)
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From (1), . . . , (5), we conclude that every x ∈ E ∩ Q� satisfies

|F (x) − f̂(x)|=
∣∣∣∣ νmax∑

ν=1

θν(x)F yν (x) −
νmax∑
ν=1

θν(x)f̂(x)
∣∣∣∣

≤
νmax∑
ν=1

θν(x) · |F yν (x) − f̂(x)|

≤
νmax∑
ν=1

θν(x) · A′σ(x)

=A′σ(x).

Thus

|F (x) − f̂(x)| ≤ A′σ(x) for all x ∈ E ∩ Q�,(9)

with A′ determined by A, m, n.
Estimates (8) and (9) are the conclusions of Lemma 8.1, since we are

assuming that δQ = 1. The proof of the lemma is complete.

9. Setup for the main induction

In this section, we give the setup for the proof of Lemma 5.2 in the mono-
tonic case.

We fix m, n ≥ 1 and A ⊂ M. We let k# be a large enough integer,
determined by m and n, to be picked later. Suppose we are given a finite set
E ⊂ Rn, functions f : E → R and σ : E → (0,∞), a point y0 ∈ Rn, a family
of polynomials Pα ∈ P indexed by α ∈ A, and a positive number a1. We fix
A, k#, E, f, σ, y0, (Pα)α∈A, a1 until the end of Section 15, making the following
assumptions.

(SU0) A is monotonic, and A �= M.

(SU1) The Strong Main Lemma holds for all Ā < A.

(SU2) ∂βPα(y0) = δβα for all β, α ∈ A.

(SU3) |∂βPα(y0) −δβα| ≤ a1 for all α ∈ A, β ∈ M.

(SU4) a1 is less than a small enough constant determined by m and n.

(SU5) Given S ⊂ E with #(S) ≤ k#, and given α ∈ A, there exists ϕS
α ∈

Cm(Rn), with

(a) ‖∂mϕS
α ‖C0(Rn) ≤ a1.

(b) |ϕS
α(x)| ≤ σ(x) for all x ∈ S.

(c) Jy0(ϕS
α) = Pα.
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(SU6) Given S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm(Rn), with

(a) ‖FS‖Cm(Rn) ≤ 1,

(b) |FS(x) − f(x)| ≤ σ(x) for all x ∈ S.

The main effort of this paper goes into proving the following result.

Lemma 9.1. Assume (SU0, . . . , 6). Then there exists F ∈ Cm(Rn), with

(a) ‖F‖Cm(Rn) ≤ A,

(b) |F (x) − f(x)| ≤ Aσ(x) for all x ∈ E ∩ B(y0, a), where A and a are
determined by a1, m, n.

Once we establish Lemma 9.1, then Lemma 5.2 will follow easily, as we
explain in a moment. First, however, we point out a few minor differences
between Lemmas 9.1 and 5.2. In the Weak Main Lemma, the constant a0

depends only on m and n. Hence, the same is true in Lemma 5.2. On the
other hand, in Lemma 9.1, the analogous constant a1 is said merely to be less
than a small enough constant determined by m and n. We do not assume in
Lemma 9.1 that a1 is determined by m and n. Also, if we compare (WL3
(b)) and (WL4) with (SU5 (b)) and (SU6), we see that the constant C in the
statement of the Weak Main Lemma has in effect been set equal to 1 in the
statement of Lemma 9.1.

Now we check that Lemma 5.2 follows from Lemma 9.1. Thus, we fix
A ⊂ M (A �= M) as in Lemma 5.2, and assume that the Strong Main Lemma
holds for all Ā < A. We must prove that the Weak Main Lemma holds for A.
This follows at once from Lemma 7.1 if A is nonmonotonic. Hence, we may
assume that A is monotonic. We will show that the Weak Main Lemma for
A holds in the special case C = 1. To see this, we invoke Lemma 9.1, with a1

taken to be a constant determined by m and n, small enough to satisfy (SU4).
We take a0 = a1, and assume the hypotheses (WL1, . . . , 4) of the Weak Main
Lemma, with C = 1. Let us check that hypotheses (SU0, . . . , 6) are satisfied.

In fact, we are assuming (SU0, 1, 4). The remaining hypotheses (SU2,
3, 5, 6) are precisely the hypotheses (WL1, . . . , 4) of the Weak Main Lemma
for A, with C = 1. Thus, (SU0, . . . , 6) are satisfied. Applying Lemma 9.1, we
obtain a function F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ A, and |F (x) − f(x)| ≤ Aσ(x) for all x ∈ E ∩ B(y0, a),(1)

where A and a are determined by a1, m, n. Since we have picked a1 to depend
only on m and n, it follows that also A and a are determined by m and n.
Therefore, (1) is precisely the conclusion (WL5, 6) of the Weak Main Lemma
for A, with C = 1.
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Thus, we have proven the Weak Main Lemma for A, in the special case
C = 1. On the other hand, it is trivial to reduce the Weak Main Lemma
for A to the special case C = 1. In fact, if hypotheses (WL1, . . . , 4) are
satisfied, with C �= 1, then we just set σ̃(x) = Cσ(x) and f̃(x) = (C+1)−1f(x)
for all x ∈ E. One checks that (WL1, . . . , 4) are satisfied, with C = 1, by
E, f̃ , σ̃, y0,A, Pα(α ∈ A). Applying the Weak Main Lemma for A, with C = 1,
to E, f̃ , σ̃, y0, Pα(α ∈ A), we obtain the conclusion of the Weak Main Lemma
for A, for our original E, f, σ, y0, Pα(α ∈ A).

This proves the Weak Main Lemma for A in the general case, and com-
pletes the proof of the following result.

Lemma 9.2. Lemma 9.1 implies Lemma 5.2.

We begin the work of proving Lemma 9.1. We write c, C, C ′, etc. to de-
note constants determined entirely by m and n and call such constants “con-
trolled”. We write a, a′, A, A′, etc. to denote constants determined by a1, m, n

in (SU0, . . . , 6) and call such constants “weakly controlled”.
We fix a constant k#

old, depending only on m and n, as in Lemma 8.1.
These conventions will remain in effect through the end of Section 15.

10. Applying Helly’s theorem on convex sets

In this section, we start the proof of Lemma 9.1, by repeatedly applying
the following well-known result (Helly’s Theorem; see [14]).

Lemma 10.0. Let J be a family of compact convex subsets of Rd. Suppose
that any (d + 1) of the sets in J have nonempty intersection. Then the whole
family J has nonempty intersection.

We assume (SU0, . . . , 6) and adopt the conventions of Section 9. For
M > 0, S ⊂ E, y ∈ Rn, define

Kf (y;S, M) =

P ∈ P :
There exists F ∈ Cm(Rn), with
‖F‖Cm(Rn) ≤ M , |F (x) − f(x)| ≤ Mσ(x)
for all x ∈ S, andJy(F ) = P

 .

(1)

For M > 0, k ≥ 1, y ∈ Rn, we then define

Kf (y; k, M) =
⋂
S⊂E

#(S)≤k

Kf (y;S, M).(2)

Thus, if P ∈ Kf (y; k, M), then for any subset S ⊂ E with #(S) ≤ k,
there exists FS ∈ Cm(Rn), with ‖FS‖Cm(Rn) ≤ M , |FS(x) − f(x)| ≤ Mσ(x)
for all x ∈ S, and Jy(FS) = P .
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Lemma 10.1. Suppose we are given k#
1 , with k# ≥ (D+1)k#

1 and k#
1 ≥ 1.

Then Kf (y; k#
1 , 2) is nonempty, for all y ∈ Rn.

Proof. We start with a small remark. Given a point y ∈ Rn and a
polynomial P̃ ∈ P, there exists G̃ ∈ Cm(Rn), with

‖G̃‖Cm(Rn) ≤ C · max
|β|≤m−1

|∂βP̃ (y)| and Jy(G̃) = P̃ .(3)

This remark shows easily that

Closure (Kf (y;S, M)) ⊂ Kf (y;S, M ′) whenever M ′ > M.(4)

To check (4), fix y ∈ Rn, S ⊂ E, M ′ > M , and P ∈ Closure (Kf (y;S, M)).
Given ε > 0, there exists Pε ∈ Kf (y;S, M) with max|β|≤m−1 |∂β(P − Pε)(y)|
< ε.

Applying (3) to P̃ = P − Pε, we obtain Gε ∈ Cm(Rn), with ‖Gε‖Cm(Rn)

≤ Cε, and Jy(Gε) = P − Pε. Moreover, since Pε ∈ Kf (y;S, M), there
exists Fε ∈ Cm(Rn), with ‖Fε‖Cm(Rn) ≤ M , |Fε(x) − f(x)| ≤ M σ(x) on S,
Jy(Fε) = Pε.

Taking F = Fε + Gε with ε small enough, we find that

‖F‖Cm(Rn) ≤ M + Cε, |F (x) − f(x)| ≤ Mσ(x) + Cε on S, Jy(F ) = P.

Recall that M ′ > M , S ⊂ E, E is finite, and σ(x) is strictly positive on E.
Hence, for ε > 0 small enough,

M + Cε < M ′, and Mσ(x) + Cε < M ′σ(x) on S.

Using such an ε to define F , we obtain

‖F‖Cm(Rn) ≤ M ′, |F (x) − f(x)| ≤ M ′σ(x) on S, and Jy(F ) = P.(5)

Since we have found an F ∈ Cm(Rn) satisfying (5), we know that P belongs
to Kf (y;S, M ′). The proof of (4) is complete.

Now let S1, . . . , SD+1 ⊂ E be given, with #(Si) ≤ k#
1 for each i. Fix

y ∈ Rn, and set S = S1 ∪ · · · ∪ SD+1. We have S ⊂ E and #(S) ≤ (D + 1) ·
k#

1 ≤ k#. Hence, by (SU6), there exists FS ∈ Cm(Rn), with

‖FS‖Cm(Rn) ≤ 1, and |FS(x) − f(x)| ≤ σ(x) on S.

Define P = Jy(FS). Then, for each i = 1, . . . , D + 1, we have obviously

‖FS‖Cm(Rn) ≤ 1, |FS(x) − f(x)| ≤ σ(x) on Si, and Jy(FS) = P.

Hence, P belongs to Kf (y;Si, 1) for each i. Consequently, the sets Kf (y;Si, 1)
for i = 1, . . . , D + 1 have nonempty intersection.

Thus, the sets Kf (y;S, 1) ⊂ P (S ⊂ E, #(S) ≤ k#
1 ) have the property that

any (D +1) of them have nonempty intersection. Moreover, each Kf (y;S, 1) is
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easily seen to be a convex, bounded subset of the D-dimensional vector space P.
Hence, by Lemma 10.0, the closures of the Kf (y;S, 1) (S ⊂ E, #(S) ≤ k#

1 )
have nonempty intersection. Applying (4), we see that the intersection of
Kf (y;S, 2) over all S ⊂ E with #(S) ≤ k#

1 is nonempty. That is, Kf (y; k#
1 , 2)

is nonempty. The proof of Lemma 10.1 is complete.

In the same spirit, we can prove the following result.

Lemma 10.2. Suppose k#
1 ≥ (D +1)k#

2 , and suppose P ∈ Kf (y; k#
1 , C) is

given. Then, for any y′ ∈ Rn, there exists P ′ ∈ Kf (y′; k#
2 , C ′), with

|∂β(P − P ′)(y)|, |∂β(P − P ′)(y′)| ≤ C ′′|y − y′|m−|β| for all β ∈ M.

Proof. The result is trivial for y′ = y; just take P ′ = P . Suppose
y′ �= y. Then, for a constant Γ(y, y′) determined by y, y′, m and n, we have the
following small remark.

Given P̃ ∈ P there exists G̃ ∈ Cm(Rn) with(6)

‖G̃‖Cm(Rn) ≤ Γ(y, y′) · max
|β|≤m−1

|∂βP̃ (y′)|, Jy′(G̃) = P̃ , Jy(G̃) = 0.

Fix P as in the hypotheses of the lemma. For each S ⊂ E and M > 0, define

Ktemp(S, M) =

P ′ ∈ P :
There exists F ∈ Cm(Rn), with ‖F‖Cm(Rn) ≤ M ,
|F (x) − f(x)| ≤ Mσ(x) on S, Jy(F ) = P , and
Jy′(F ) = P ′

.

Using the small remark (6), we can show that

Closure(Ktemp(S, M)) ⊂ Ktemp(S, M ′) for M ′ > M.(7)

To check (7), let P ′ ∈ Closure (Ktemp (S, M)) be given, and let ε > 0. Then
there exists P ′

ε ∈ Ktemp(S, M), with max|β|≤m−1 |∂β(P ′ − P ′
ε) (y′)| < ε.

Since P ′
ε ∈ Ktemp(S, M), there exists Fε ∈ Cm(Rn), with ‖Fε‖Cm(Rn) ≤ M ,

|Fε(x) − f(x)| ≤ Mσ(x) on S, Jy(Fε) = P, Jy′(Fε) = P ′
ε.

Also, applying (6) to P ′ − P ′
ε, we obtain a function Gε ∈ Cm(Rn), with

‖Gε‖Cm(Rn) ≤ Γ(y, y′)ε, Jy(Gε) = 0, Jy′(Gε) = P ′ − P ′
ε.

Putting F = Fε + Gε with ε small enough we obtain the following:

‖F‖Cm(Rn) ≤M + Γ(y, y′) · ε ≤ M ′,

|F (x) − f(x)| ≤Mσ(x) + Γ(y, y′) · ε ≤ M ′σ(x) on S.

(Recall: S ⊂ E, E is finite, σ(x) > 0 on E.)

Jy(F ) = P and Jy′(F ) = P ′.

Hence, P ′ ∈ Ktemp(S, M ′), completing the proof of (7).
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Next, let S1, · · · , SD+1 ⊂ E be given, with #(Si) ≤ k#
2 for each i. Set

S = S1 ∪ · · · ∪ SD+1. Thus, S ⊂ E, and #(S) ≤ (D + 1)k#
2 ≤ k#

1 . Since
P ∈ Kf (y; k#

1 , C) it follows that there exists FS ∈ Cm(Rn), with

‖FS‖Cm(Rn) ≤ C, |FS(x) − f(x)| ≤ Cσ(x) on S, Jy(FS) = P.

Define P ′ = Jy′(FS). Then obviously, for i = 1, . . . , D + 1, we have

‖FS‖Cm(Rn) ≤ C, |FS(x) − f(x)| ≤ Cσ(x) on Si, Jy(FS) = P, Jy′(FS) = P ′.

Hence, P ′ ∈ Ktemp(Si, C) for each i = 1, . . . , D + 1.
We have shown that any D + 1 of the sets Ktemp(S, C) (where S ⊂ E,

#(S) ≤ k#
2 ) have nonempty intersection. Moreover, one checks easily that

each Ktemp(S, C) ⊂ P is a bounded, convex subset of a D-dimensional vector
space. Applying Lemma 10.0, we see that the closures of the sets Ktemp(S, C)
(all S ⊂ E with #(S) ≤ k#

2 ) have nonempty intersection.
Hence,

⋂
S⊂E

#(S)≤k
#
2

Ktemp(S, C ′) is nonempty, for any C ′ > C.

Let P ′ ∈
⋂
S⊂E

#(S)≤k
#
2

Ktemp(S, C ′). Then, by definition, given S ⊂ E with

#(S) ≤ k#
2 , there exists FS ∈ Cm(Rn), with

‖FS‖Cm(Rn) ≤ C ′, |FS(x) − f(x)| ≤ C ′σ(x) on S, Jy′(FS) = P ′,(8)

and Jy(FS) = P .
In particular, this implies P ′ ∈ Kf (y′; k#

2 , C ′). Moreover, if we take S

to be the empty set in (8), then we obtain a function F ∈ Cm(Rn), with
‖F‖Cm(Rn) ≤ C ′, Jy′(F ) = P ′, Jy(F ) = P .

By Taylor’s theorem, the polynomials P, P ′ satisfy

|∂βP ′(y′) − ∂βP (y′)|=
∣∣∣∣∂βP ′(y′) −

∑
|γ|≤m−1−|β|

1
γ!

(
∂γ+βP (y)

)
· (y′ − y)γ

∣∣∣∣
= |∂βF (y′) −

∑
|γ|≤m−1−|β|

1
γ!

(
∂γ+βF (y)

)
·(y′ − y)γ | ≤ C ′′|y − y′|m−|β|

for |β| ≤ m − 1, and similarly |∂βP (y) − ∂βP ′(y)| ≤ C ′′|y − y′|m−|β| for |β| ≤
m − 1.

The proof of Lemma 10.2 is complete.

The next lemma is again proved using the same ideas as above. It asso-
ciates to each point y near y0 a family of polynomials P y

α , analogous to the
polynomials Pα associated to y0.
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Lemma 10.3. Suppose k# ≥ (D + 1) · k#
1 , and let y ∈ B(y0, a1) be given.

Then there exist polynomials P y
α ∈ P, indexed by α ∈ A, with the following

properties:

(WL1)y ∂βP y
α(y) = δβα for all β, α ∈ A.

(WL2)y |∂βP y
α(y) − δβα| ≤ Ca1 for all α ∈ A, β ∈ M.

(WL3)y Given α ∈ A and S ⊂ E with #(S) ≤ k#
1 , there exists ϕS

α ∈ Cm(Rn),
with

(a) ‖∂mϕS
α‖C0(Rn) ≤ Ca1.

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S.

(c) Jy(ϕS
α) = P y

α .

Proof. For y = y0, the lemma is trivial; we just set P y
α = Pα(α ∈ A) and

invoke (SU2, 3, 5). Suppose y �= y0. For a constant Γ(y, y0) determined by
y, y0, m and n we have the small remark:

Given P̃ ∈ P, there exists G̃ ∈ Cm(Rn) with(9)

‖G̃‖Cm(Rn) ≤ Γ(y, y0) · max
|β|≤m−1

|∂βP̃ (y)|, Jy(G̃) = P̃ , Jy0(G̃) = 0.

Now, given α ∈ A, S ⊂ E and M > 0, we define

Kα(S, M) =

P ′ ∈ P :
There exists ϕS

α ∈ Cm(Rn) with ‖∂mϕS
α ‖C0(Rn)

≤ Ma1, |ϕS
α(x)| ≤ Mσ(x) on S, Jy0(ϕS

α) = Pα,
and Jy(ϕS

α) = P ′

 .

By a now-familiar argument using (9), we know that

Closure(Kα(S, M)) ⊂ Kα(S, M ′) for any M ′ > M.(10)

Each Kα(S, M) is a bounded convex subset of the D-dimensional vector
space P. Moreover, it follows from (SU5) by a now-familiar argument that⋂D+1

i=1 Kα(Si, 1) is nonempty, whenever S1, . . . , SD+1 ⊂ E with #(Si) ≤ k#
1 for

each i. Lemma 10.0 therefore shows that, for each α ∈ A, the closures of all
the Kα(S, 1) (S ⊂ E with #(S) ≤ k#

1 ) have nonempty intersections.
Therefore by (10), there exist polynomials P̄ y

α (α ∈ A), belonging to
Kα(S, 2) for all S ⊂ E with #(S) ≤ k#

1 . Thus, given S ⊂ E with #(S) ≤ k#
1 ,

and given α ∈ A, there exists ϕ̄S
α ∈ Cm(Rn), with

‖∂mϕ̄S
α‖C0(Rn) ≤ 2a1,(11)

|ϕ̄S
α(x)| ≤ 2σ(x) for all x ∈ S,(12)

Jy0(ϕ̄S
α) =Pα and Jy(ϕ̄S

α) = P̄ y
α .(13)
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We apply (11), (12), (13) with S = empty set. Thus, there exists ϕ̄α with

‖∂mϕ̄α‖C0(Rn) ≤ 2a1, Jy0(ϕ̄α) = Pα, Jy(ϕ̄α) = P̄ y
α .(14)

Also y ∈ B(y0, a1), (14) and (SU3, 4) imply

|∂βP̄ y
α(y) − ∂βPα(y0)| ≤ Ca1 for all α ∈ A, β ∈ M,

and therefore

|∂βP̄ y
α(y) − δβα| ≤ C ′a1 for all α ∈ A, β ∈ M,(15)

thanks to (SU3). In particular, the matrix (∂βP̄ y
α(y))β,α∈A has an inverse

(Mα′α)α′,α∈A, with

|Mα′α − δα′α| ≤ C ′′a1 for all α′, α ∈ A.(16)

(Here and in the next few paragraphs we use (SU4).) By definition, we have∑
α′∈A

∂βP̄ y
α′(y) · Mα′α = δβα for all β, α ∈ A.(17)

Now define

P y
α =

∑
α′∈A

P̄ y
α′Mα′α for all α ∈ A.(18)

From (15), (16), (17), we see that

∂βP y
α(y) = δβα for all β, α ∈ A,(19)

and that

|∂βP y
α(y) − δβα| ≤ C ′′′a1 for all α ∈ A, β ∈ M.(20)

Moreover, let S ⊂ E be given, where #(S) ≤ k#
1 . With ϕ̄S

α as in (11), . . . ,(13),
define

ϕS
α =

∑
α′∈A

ϕ̄S
α′Mα′α for all α ∈ A.(21)

From (11), (16), (21) we obtain

‖∂mϕS
α‖C0(Rn) ≤ Ca1 for all α ∈ A.(22)

From (12), (16), (21) we have

|ϕS
α(x)| ≤ Cσ(x) for all α ∈ A, x ∈ S.(23)

From (13), (18), (21), we see that

Jy(ϕS
α) = P y

α for all α ∈ A.(24)

The conclusions of the lemma are (19), (20), (22), (23), (24). The proof
of Lemma 10.3 is complete.
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Lemma 10.4. Suppose k# ≥ (D + 1)k#
1 and k#

1 ≥ (D + 1)k#
2 . Let

y ∈ B(y0, a1), and let (P y
α)α∈A satisfy conditions (WL1)y· · · (WL3)y, as in the

conclusion of Lemma 10.3. Let y′ ∈ Rn be given. Then there exist polynomials
(P̃ y′,y

α )α∈A, with the following property :
Given α ∈ A and S ⊂ E with #(S) ≤ k#

2 , there exists ϕS
α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖ C0(Rn) ≤ C ′a1.

(b) |ϕS
α(x)| ≤ C ′σ(x) for all x ∈ S.

(c) Jy(ϕS
α) = P y

α .

(d) Jy′(ϕS
α) = P̃ y′,y

α .

Proof. The lemma is trivial for y′ = y; we just set P̃ y′,y
α = P y

α and invoke
(WL3)y. Suppose y′ �= y. Then, for a constant Γ(y, y′) determined by y−y′, m
and n, the following small remark holds.

Given P̃ ∈ P, there exists G̃ ∈ Cm(Rn), with(25)

‖G̃‖Cm(Rn) ≤ Γ(y, y′) · max
|β|≤m−1

|∂βP̃ (y′)|, Jy(G̃) = 0, Jy′(G̃) = P̃ .

Now, given α ∈ A, M > 0, S ⊂ E, we define

K[α](S, M) =

P ′ ∈ P :
There exists ϕ ∈ Cm(Rn), with
‖∂mϕ‖C0(Rn) ≤ Ma1, |ϕ(x)| ≤ Mσ(x)
on S, Jy(ϕ) = P y

α , Jy′ (ϕ) = P ′

 .

As usual, (25) shows that

Closure(K[α](S, M)) ⊂ K[α](S, M ′) for all M ′ > M.(26)

Each K[α](S, M) is easily seen to be a bounded convex subset of the D-
dimensional vector space P. Moreover, a familiar argument using (WL3)y

shows that
D+1⋂
i=1

K[α](Si, C) is nonempty, for any S1, . . . , SD+1 ⊂ E with #(Si) ≤

k#
2 for each i.

Consequently, Lemma 10.0 shows that the intersection of all the sets
Closure(K[α](S, C)) (S ⊂ E with #(S) ≤ k#

2 ) is nonempty. Applying (26),
we find that for each α ∈ A, there exists P̃ y′,y

α ∈ P, with P̃ y′,y
α belonging to

K[α](S, C ′) for each S ⊂ E with #(S) ≤ k#
2 .

The conclusions of Lemma 10.4 are now immediate from the definition of
K[α](S, C ′).

Next, for y ∈ Rn, k ≥ 1, M > 0, we define

K#
f (y; k, M) = {P ∈ Kf (y; k, M) : ∂βP (y) = 0 for all β ∈ A}.
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Lemma 10.5. Suppose k# ≥ (D + 1)k#
1 and k#

1 ≥ 1. Then, for a large
enough controlled constant C, the set K#

f (y; k#
1 , C) is nonempty for each y ∈

B(y0, a1).

Proof. By Lemma 10.1, there exists P ∈ Kf (y; k#
1 , 2). By definition, we

have

Given S ⊂ E with #(S) ≤ k#
1 , there exists FS ∈ Cm(Rn), with(27)

‖FS‖Cm(Rn) ≤ 2, |FS(x) − f(x)| ≤ 2σ(x) on S, and Jy(FS) = P.

Taking S to be the empty set in (27), we learn that

|∂βP (y)| ≤ C for all β ∈ M.(28)

By Lemma 10.3, there exist polynomials P y
α(α ∈ A) satisfying (WL1)y, . . . , (WL3)y.

We define

P̃ = P −
∑
α∈A

(∂αP (y)) · P y
α .(29)

From (WL1)y and (29), we have

∂βP̃ (y) = ∂βP (y) −
∑
α∈A

(∂αP (y)) · δβα = 0 for all β ∈ A.(30)

Let S ⊂ E with #(S) ≤ k#
1 , and let ϕS

α, FS be as in (WL3)y and (27). Also,
fix θ ∈ Cm(Rn), with

0 ≤ θ ≤ 1 on Rn, supp θ ⊂ B(y, 1), θ = 1 on B(y, 1/2), ‖θ‖Cm(Rn) ≤ C.

(31)

Then define

F̃S = FS −
∑
α∈A

(∂αP (y))ϕS
αθ.(32)

From (WL2)y, (WL3(a))y, (WL3(c))y, we conclude that |∂βϕS
α| ≤ C on B(y, 1),

for |β| ≤ m. Hence, (31) gives

‖ϕS
αθ‖Cm(Rn) ≤ C ′ for each α ∈ A.(33)

Putting (27), (28) and (33) into (32), we find that

‖F̃S‖Cm(Rn) ≤ C ′′.(34)

Also, for x ∈ S, we have |F̃S(x) − f(x)| ≤ |FS(x) − f(x)|+
∑

α∈A
|∂αP (y)|·

|ϕS
α(x)θ(x)| (by (32)) ≤ C ′′σ(x), by (27), (28), (WL3(b))y, and (31). Thus,

|F̃S(x) − f(x)| ≤ C ′′σ(x) on S.(35)
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From (WL3(c))y, (27), (29), (31), (32), we find that

Jy(F̃S) = Jy(FS) −
∑
α∈A

(∂αP (y))Jy(ϕS
αθ) = P −

∑
α∈A

(∂αP (y))P y
α = P̃ .(36)

Thus, given S ⊂ E with #(S) ≤ k#
1 , there exists F̃S ∈ Cm(Rn), satisfying

(34), (35), (36). In other words,

P̃ ∈ Kf (y; k#
1 , C ′′).

From (30), we then have P̃ ∈ K#
f (y; k#

1 , C ′′), completing the proof of Lemma
10.5.

11. A Calderón-Zygmund decomposition

In this section, we are again in the setting of Section 9, and we assume
(SU0, . . . , 6). We fix a cube Q◦ ⊂ Rn, with the following properties:

Q◦ is centered at y0.(1)

(Q◦)��� ⊂ B(y0, a1).(2)

ca1 < δQ◦ < a1.(3)

A subcube Q ⊆ Q◦ is called “dyadic” if either Q = Q◦ or else Q arises from
Q◦ by successive “bisection”. A dyadic cube Q⊂

�=
Q◦ arises by “bisecting” its

dyadic “parent” Q+, which is again a dyadic cube, with δQ+ = 2δQ. A cube Q

not contained in Q◦ is not dyadic, according to our definition.
Two distinct dyadic cubes Q, Q′ are said to “abut” if their closures have

nonempty intersection.
We say that a dyadic cube Q ⊆ Q◦ is “OK” if it satisfies the following

conditions.

(OK) For every y ∈ Q��, there exist Āy < A and polynomials P̄ y
α ∈ P, indexed

by α ∈ Āy, with the following properties:

(OK1) ∂βP̄ y
α(y) = δβα for all β, α ∈ Āy.

(OK2) δ
|β|−|α|
Q |∂β P̄ y

α(y)| ≤ (a1)−(m+1) for all α, β ∈ M with α ∈ Āy and
β ≥ α.

(OK3) Given α ∈ Āy and S ⊂ E with #(S) ≤ k#
old, there exists ϕS,y

α ∈
Cm(Rn), with

(a) δ
m−|α|
Q ‖∂mϕS,y

α ‖C0(Rn) ≤ (a1)−(m+1).
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(b) δ
m−|α|
Q |ϕS,y

α (x)| ≤ (a1)−(m+1) · σ(x) for all x ∈ S.

(c) Jy(ϕ
S,y
α ) = P̄ y

α .

Here, k#
old is as in Lemma 8.1 and Section 9.

We say that a dyadic cube Q ⊆ Q◦ is a “CZ” or “Calderón-Zygmund”
cube, if it is OK, but no dyadic cube properly containing Q is OK.

Given any two dyadic cubes Q, Q′, either Q ∩ Q′ = φ, or Q ⊆ Q′, or
Q′ ⊆ Q. Hence, any two distinct CZ cubes are disjoint.

Lemma 11.1. Any dyadic cube Q with δQ < min
x∈E

σ(x) is OK.

Proof. Let y ∈ Q��, with Q a dyadic cube of diameter less than min
x∈E

σ(x).

We set Āy = M. Note that Āy < A, thanks to (SU0) and Lemma 3.2. For
α ∈ Āy, we set P̄ y

α(x) = 1
α!(x − y)α which yields ∂βP̄ y

α(y) = δβα for α, β ∈ M.
Hence, (OK1) holds, and (OK2) follows from (SU4). It remains to check

(OK3). We fix a function θ ∈ Cm(Rn), with

0 ≤ θ ≤ 1 on Rn, θ = 1 on B(0, 1/2), supp θ ⊂ B(0, 1), ‖θ‖Cm(Rn) ≤ C.

(4)

Given α ∈ Āy and S ⊂ E with #(S) ≤ k#
old, we define

ϕS,y
α (x) =

1
α!

(x − y)αθ(x − y).(5)

From (4), (5) we have ‖∂mϕS,y
α ‖C0(Rn) ≤ C ′.

Also, we have δQ ≤ a1 by (3), since Q ⊆ Q◦. Hence,

δ
m−|α|
Q ‖∂mϕS,y

α ‖C0(Rn) ≤ C ′(a1)m−|α| < (a1)−(m+1) by (SU4).

Thus, (OK3(a)) holds. Also for x ∈ S, we have δ
m−|α|
Q |ϕS,y

α (x)| ≤ C ′ δ
m−|α|
Q

≤ C ′δQ (since δQ ≤ a1 ≤ 1 and |α| ≤ m − 1) < C ′σ(x) (by hypothesis of
Lemma 11.1) < (a1)−(m+1)σ(x) (by (SU4)).

Thus, (OK3(b)) holds.
Also, (OK3(c)) holds, as we see at once by comparing the definitions of

P̄ y
α and ϕS,y

α , and recalling (4).
Thus, (OK1, . . . , 3) are satisfied. The proof of Lemma 11.1 is complete.

Corollary. The CZ cubes form a partition of Q◦ into finitely many
dyadic cubes.

Lemma 11.2. If two CZ cubes Q, Q′ abut, then

1
2
δQ ≤ δQ′ ≤ 2δQ.(6)
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Proof. Assume (6) false. Without loss of generality, we may assume that
δQ ≤ δQ′ . Then

δQ ≤ 1
4
δQ′ .(7)

Note that Q �= Q◦, since Q is assumed to abut another CZ cube Q′. Hence, Q

has a dyadic parent Q+, which also abuts Q′, and satisfies

δQ+ ≤ 1
2
δQ′ .(8)

Consequently,

(Q+)�� ⊂ (Q′)��.(9)

We know that Q′ is OK, since it is a CZ cube. We will show that Q+ is
also OK. For any y ∈ (Q′)��, let Āy < A and P̄ y

α(α ∈ Āy) satisfy (OK1, 2, 3)
for Q′. Then, for any y ∈ (Q+)��, we may use the same Āy and P̄ y

α(α ∈ Āy) for
Q+, thanks to (9). Conditions (OK1, 2, 3) hold for Q+, because they hold for
Q′, and thanks to (8). Here we use (8) to show that (δQ+)m−|α| ≤ (δQ′)m−|α|

for α ∈ M, and that

(δQ+)|β|−|α| ≤ (δQ′)|β|−|α| for β ≥ α. (See Lemma 3.1.)(10)

This proves that Q+ is OK, as claimed. On the other hand, Q+ is a dyadic
cube that properly contains the CZ cube Q. Hence, Q+ cannot be OK, by
the definition of CZ cubes. This contradiction shows that (6) cannot be false,
completing the proof of Lemma 2.

Remark. In proving Lemma 2, we made essential use of the restriction
to the case β ≥ α in (OK2). (See (10).)

12. Controlling auxiliary polynomials I

We again place ourselves in the setting of Section 9, and assume
(SU0, . . . , 6). In this section only, we fix an integer k#

1 , a dyadic cube Q,
a point y ∈ Rn, and a family of polynomials P y

α ∈ P, indexed by α ∈ A; also
we make the following assumptions.

(CAP1) k# ≥ (D + 1)k#
1 and k#

1 ≥ (D + 1) · k#
old.

(CAP2) y ∈ Q���.

(CAP3) Q is properly contained in Q◦.

(CAP4) The P y
α(α ∈ A) satisfy conditions (WL1)y, (WL2)y, (WL3)y. (See

Lemma 10.3.)
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(CAP5) (a1)−m ≤ max
β∈M
α∈A

δ
|β|−|α|
Q |∂βP y

α(y)| ≤ 2m · (a1)−m.

Note that A is nonempty, since the max in (CAP5) cannot be zero. Our
goal in this section is to show that the dyadic cube Q+ is OK.

Let

y′ ∈ (Q+)��(1)

be given. Then y, y′ ∈ Q��� ⊆ (Q◦)��� ⊂ B(y0, a1), by (11.2). Applying
Lemma 10.4, with k#

2 = k#
old, we obtain a family of polynomials P̃ y′

α ∈ P,
indexed by α ∈ A, with the following property.

Given S ⊂ E with #(S) ≤ k#
old, and given α ∈ A, there exists(2)

ϕS
α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ Ca1,

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S,

(c) Jy(ϕS
α) = P y

α ,

(d) Jy′(ϕS
α) = P̃ y′

α .

We fix polynomials P̃ y′

α satisfying (2).

The basic properties of P̃ y′

α are as follows.

Lemma 12.1.

c · (a1)−m ≤max
β∈M
α∈A

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤ C · (a1)−m;(3)

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤C · a1 for α ∈ A, β > α, β ∈ M;(4)

|∂αP̃ y′

α (y′) − 1| ≤C · a1 for α ∈ A;(5)

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤C for α, β ∈ A.(6)

Proof. We apply (2), with S = empty set. Thus, for each α ∈ A we
obtain ϕα ∈ Cm(Rn), with ‖∂mϕα‖C0(Rn) ≤ Ca1, Jy(ϕα) = P y

α , Jy′(ϕα) = P̃ y′

α .
Taylor’s theorem gives∣∣∣∣∣∣∂βP̃ y′

α (y′) −
∑

|γ|≤m−1−|β|

1
γ!

(
∂γ+βP y

α(y)
)
· (y′ − y)γ

∣∣∣∣∣∣(7)

=

∣∣∣∣∣∣∂βϕα(y′) −
∑

|γ|≤m−1−|β|

1
γ!

(∂γ+βϕα(y)) · (y′ − y)γ

∣∣∣∣∣∣
≤ Ca1 · |y − y′|m−|β| for β ∈ M.
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Similarly, ∣∣∣∣∣∣∂βP y
α(y) −

∑
|γ|≤m−1−|β|

1
γ!

(
∂γ+βP̃ y′

α (y′)
)
· (y − y′)γ

∣∣∣∣∣∣(8)

=

∣∣∣∣∣∣∂βϕα(y) −
∑

|γ|≤m−1−|β|

1
γ!

(
∂γ+βϕα(y′)) · (y − y′)γ

∣∣∣∣∣∣
≤ Ca1 · |y − y′|m−|β| for β ∈ M.

In view of (CAP2) and (1), we have

|y − y′| ≤ CδQ ≤ CδQ◦ ≤ Ca1 < 1.(9)

(Here we have used also that Q ⊆ Q◦ since Q is dyadic, as well as (11.3) and
(SU4).) From (CAP5) we have

|∂γ+βP y
α(y)| ≤ 2m · (a1)−m · δ|α|−|β|−|γ|

Q , for all α ∈ A, β ∈ M,

|γ| ≤ m − 1 − |β|.
(10)

Putting (9), (10) into (7), we find that

|∂βP̃ y′

α (y′)| ≤ C · (a1)−m · δ|α|−|β|
Q for all α ∈ A, β ∈ M.(11)

On the other hand, if we put

Ω = max
β∈M
α∈A

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)|,(12)

then

|∂γ+βP̃ y′

α (y′)| ≤ Ωδ
|α|−|β|−|γ|
Q for α ∈ A, β ∈ M, |γ| ≤ m − 1 − |β|.(13)

Putting (9) and (13) into (8), we find that

|∂βP y
α(y)| ≤ CΩδ

|α|−|β|
Q + Ca1δ

m−|β|
Q ≤ (CΩ + 1)δ|α|−|β|

Q for all α ∈ A, β ∈ M.

(14)

Comparing (14) with (CAP5), we see that CΩ + 1 ≥ (a1)−m; hence Ω >

c(a1)−m. Together with (11) and (12) this proves conclusion (3).
Next, suppose α ∈ A and β > α (β ∈ M). From (WL2)y and Lemma 3.1,

we see that |∂γ+βP y
α(y)| ≤ Ca1 for |γ| ≤ m − 1 − |β|. Putting this and (9)

into (7), we obtain the estimate

|∂βP̃ y′

α (y′)| ≤ Ca1 for α ∈ A, β ∈ M, β > α.(15)

For β > α, we have also δ
|β|−|α|
Q ≤ 1; hence, (15) implies conclusion (4).

Next, suppose α ∈ A and β = α. Then we have γ + β > α for γ �= 0, and
hence |∂γ+βP y

α(y)| ≤ Ca1 by (WL2)y. On the other hand, ∂βP y
α(y) = 1 in this
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case, by (WL1)y. These remarks and (9) may be substituted into (7), to show
that |∂αP̃ y′

α (y′) − 1| ≤ Ca1 for all α ∈ A, which is conclusion (5).
Next suppose α, β ∈ A. By (SU0), we have β+γ ∈ A for |γ| ≤ m−1−|β|.

Hence, (WL1)y implies ∂γ+βP y
α(y) = δβ+γ,α. In particular

|∂γ+βP y
α(y)| ≤ δ

|α|−|β|−|γ|
Q for |γ| ≤ m − 1 − |β|.

Putting this and (9) into (7), we find that |∂βP̃ y′

α (y′)| ≤ Cδ
|α|−|β|
Q for α, β ∈ A,

which is conclusion (6).
The proof of the lemma is complete.

Define a matrix M̃ = (M̃βα)β,α∈A by setting

M̃βα = δ
|β|−|α|
Q ∂βP̃ y′

α (y′) for β, α ∈ A.(16)

From (4), (5), (6), we see that

(16a) |M̃βα| ≤ Ca1 for β > α,

|M̃βα − 1| ≤ Ca1 for β = α, and
|M̃βα| ≤ C for all β, α.

That is, M̃ lies within distance Ca1 of a triangular matrix with bounded
entries and 1’s on the main diagonal. It follows that the inverse matrix M =
(Mα′α)α′,α∈A has the same property, i.e.,

|Mα′α| ≤Ca1 for α′ > α (α, α′ ∈ A),(17)

|Mαα − 1| ≤Ca1 for α ∈ A,(18)

|Mα′α| ≤C for all α′, α ∈ A.(19)

By definition, we have∑
α′∈A

M̃βα′Mα′α = δβα for all β, α ∈ A.(20)

That is,

δβα =
∑
α′∈A

δ
|β|−|α′|
Q ∂βP̃ y′

α′ (y′) · Mα′α for all β, α ∈ A.(21)

We define new polynomials

P̌ y′

α = δ
|α|
Q

∑
α′∈A

δ
−|α′|
Q P̃ y′

α′ Mα′α for all α ∈ A.(22)

The basic properties of the P̌ y′

α are as follows:

Lemma 12.2.

∂βP̌ y′

α (y′) = δβα for all β, α ∈ A.(23)
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c · (a1)−m < max
β∈M
α∈A

|∂βP̌ y′

α (y′)| · δ|β|−|α|
Q < C · (a1)−m.(24)

δ
|β|−|α|
Q |∂βP̌ y′

α (y′)| ≤ C · (a1)−(m−1) for all α ∈ A, β ∈ M with β > α.

(25)

Given α ∈ A and S ⊂ E with #(S) ≤ k#
old, there exists ϕ̌S

α ∈ Cm(Rn), with

(a) δ
m−|α|
Q ‖∂mϕ̌S

α‖C0(Rn) ≤ Ca1,(26)

(b) δ
m−|α|
Q |ϕ̌S

α(x)| ≤ Cσ(x) for all x ∈ S,

(c) Jy′(ϕ̌S
α) = P̌ y′

α .

Proof. Conclusion (23) is immediate from (21) and (22). From (22) we
have

[
δ
|β|−|α|
Q ∂βP̌ y′

α (y′)
]

=
∑
α′∈A

[
δ
|β|−|α′|
Q ∂βP̃ y′

α′ (y′)
]
· Mα′α for α ∈ A, β ∈ M.

(27)

Since M and M̃ are inverse matrices, (27) implies[
δ
|β|−|α|
Q ∂βP̃ y′

α (y′)
]

=
∑
α′∈A

[
δ
|β|−|α′|
Q ∂βP̌ y′

α′ (y′)
]
· M̃α′α.(28)

From (16a), (19), (27), (28), we see that

cmax
β∈M
α∈A

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| < max
β∈M
α∈A

δ
|β|−|α|
Q |∂βP̌ y′

α (y′)| < C max
β∈M
α∈A

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)|.

Together with (3), this proves conclusion (24).
Next, suppose β ∈ M, α ∈ A are given, with β > α. Then, for each

α′ ∈ A, we have either β > α′ or α′ > α. If β > α′, then (4) and (19) yield∣∣∣[δ|β|−|α′|
Q ∂βP̃ y′

α′ (y′)
]
· Mα′α

∣∣∣ ≤ Ca1 ≤ C(a1)−(m−1) by (SU4).

If, instead, α′ > α, then (3) and (17) yield∣∣∣[δ|β|−|α′|
Q ∂βP̃ y′

α′ (y′)
]
· Mα′α

∣∣∣ ≤ C · (a1)−m · Ca1 = C ′(a1)−(m−1).

Consequently, (27) implies conclusion (25).
Finally, let S ⊂ E, with #(S) ≤ k#

old, and let ϕS
α(α ∈ A) be as in (2).

Define

ϕ̌S
α = δ

|α|
Q

∑
α′∈A

δ
−|α′|
Q ϕS

α′Mα′α.(29)
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From (2)(a) and (19), we see that, for all α ∈ A,

‖∂mϕ̌S
α‖C0(Rn) ≤ δ

|α|
Q

∑
α′∈A

δ
−|α′|
Q · Ca1 ≤ Ca1 · δ|α|−m

Q (see (9)),

which proves conclusion (26)(a).
Also, from (2)(b), (19), (29), we have for all α ∈ A, x ∈ S, that

|ϕ̌S
α(x)| ≤ δ

|α|
Q

∑
α′∈A

δ
−|α′|
Q · Cσ(x) ≤ C ′δ|α|−m

Q σ(x),

which proves conclusion (26)(b).
For each α ∈ A, we recall (2)(d), (22), and (29). These imply conclusion

(26)(c).
The proof of Lemma 12.2 is complete.

Next, we pick β̄ ∈ M and ᾱ ∈ A to maximize δ
|β̄|−|ᾱ|
Q |∂β̄ P̌ y′

ᾱ (y′)|. By
definition of β̄, ᾱ, and by (24), we have

c · (a1)−m < δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| < C · (a1)−m;(30)

δ
|β|−|α|
Q |∂βP̌ y′

α (y′)| ≤ δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| for all α ∈ A, β ∈ M;(31)

and of course

ᾱ ∈ A, β̄ ∈ M.(32)

If β̄ ∈ A, then δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| = δβ̄ᾱ ≤ 1 (see (23)), which contradicts
(30), thanks to (SU4). Hence,

β̄ /∈ A.(33)

In particular, β̄ �= ᾱ.
Moreover, if β̄ > ᾱ, then (25) contradicts (30), again thanks to (SU4).

Hence,

β̄ < ᾱ.(34)

Now define

Āy′
= (A � {ᾱ}) ∪ {β̄},(35)

+
P

y′

α = P̌ y′

α for all α ∈ A � {ᾱ},(36)
+
P

y′

β̄ = P̌ y′

ᾱ

/(
∂β̄P̌ y′

ᾱ (y′)
)
. (The denominator is nonzero, by (30)).(37)

Thus,
+
P

y′

α is defined for all α ∈ Āy′
.
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In view of (33), (34), (35), the least element of the symmetric difference
A�Āy′

is β̄. Hence, by definition of our ordering < on sets of multi-indices,
we have

Āy′
< A.(38)

The basic properties of the
+
P

y′

α are as follows:

Lemma 12.3.

∂β
+
P

y′

β̄ (y′) = δββ̄ for all β ∈ Āy′
(39)

∂β
+
P

y′

α (y′) = δβα for all β, α ∈ Āy′
� {β̄}.(40)

δ
|β|−|α|
Q

∣∣∂β
+
P

y′

α (y′)
∣∣≤C · (a1)−m for all α ∈ Āy′

, β ∈ M.(41)

δ
|β|−|β̄|
Q

∣∣∂β
+
P

y′

β̄ (y′)
∣∣≤ 1 for all β ∈ M.(41a)

Given α ∈ Āy′
and S ⊂ E with #(S) ≤ k#

old, there exists
+
ϕ

S

α∈ Cm(Rn), with

(a) δ
m−|α|
Q

∥∥∂m +
ϕ

S

α

∥∥
C0(Rn)

≤ Ca1,(42)

(b) δ
m−|α|
Q

∣∣ +
ϕ

S

α (x)
∣∣ ≤ Cσ(x) for all x ∈ S,

(c) Jy′(
+
ϕ

S

α) =
+
P

y′

α .

Proof. To check (39), note that for β ∈ Āy′�{β̄}, ∂β
+
P

y′

β̄ (y′) = ∂βP̌ y′

ᾱ (y′)
/(

∂β̄P̌ y′

ᾱ (y′)
)

= 0, thanks to (37) and (23). (Note that (23) applies; see (32)

and (35).) On the other hand, for β = β̄, we have ∂β
+
P

y′

β̄ (y′) = ∂β̄P̌ y′

ᾱ (y′)
/(

∂β̄P̌ y′

ᾱ (y′)
)

= 1, by (37). This proves conclusion (39).
Conclusion (40) is immediate from (23) and (36), since Āy′ � {β̄} =

A � {ᾱ}.
Similarly, for α ∈ Āy′ � {β̄}, conclusion (41) is immediate from (24) and

(36). On the other hand, for α = β̄, (31) and (37) give

δ
|β|−|β̄|
Q |∂β

+
P

y′

β̄ (y′)| =
[
δ
|β|−|ᾱ|
Q |∂βP̌ y′

ᾱ (y′)|
]/[

δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)|
]
≤ 1

for all β ∈ M. This proves conclusion (41a), and completes the proof of
conclusion (41).

It remains to check conclusion (42). For α ∈ Āy′ � {β̄} = A � {ᾱ},
conclusion (42) is immediate from (26). Suppose α = β̄, and let S ⊂ E, with
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#(S) ≤ kold. Let ϕ̌S
ᾱ be as in (26), and define

+
ϕ

S

β̄= ϕ̌S
ᾱ

/
(∂β̄P̌ y′

ᾱ (y′)).(43)

From (26a) and (30), we have

δ
m−|β̄|
Q ‖∂m +

ϕ
S

β̄ ‖C0(Rn) =
[
δ
m−|ᾱ|
Q ‖∂mϕ̌S

ᾱ‖C0(Rn)

]/[
δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)|
]

≤ [Ca1]/[ca−m
1 ] < Ca1.

This proves conclusion (42(a)) for α = β̄.
Also, (26b), (30), (43) show that, for x ∈ S,

δ
m−|β̄|
Q |

+
ϕ

S

β̄ (x)|=
[
δ
m−|ᾱ|
Q |ϕ̌S

ᾱ(x)|
]/[

δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)|
]

≤ [Cσ(x)]/[ca−m
1 ] < Cσ(x).

This proves conclusion (42(b)) for α = β̄.
Finally, comparing (37) with (43), and applying (26(c)), we obtain con-

clusion (42(c)) for α = β̄. Thus, conclusion (42) holds also for α = β̄. The
proof of Lemma 12.3 is complete.

Next, we define polynomials P̄ y′

α (α ∈ Āy′
), by setting

P̄ y′

β̄
=

+
P

y′

β̄(44)

and

P̄ y′

α =
+
P

y′

α −[∂β̄
+
P

y′

α (y′)]·
+
P

y′

β̄ for all α ∈ A � {ᾱ}.(45)

The basic properties of these polynomials are as follows:

Lemma 12.4.

∂βP̄ y′

α (y′) = δβα for all α, β ∈ Āy′
.(46)

δ
|β|−|α|
Q |∂βP̄ y′

α (y′)| ≤C(a1)−m for all β ∈ M, α ∈ Āy′
.(47)

Given α ∈ Āy′
and S ⊂ E with #(S) ≤ k#

old, there exists ϕ̄S
α ∈ Cm(Rn), with

(a) δ
m−|α|
Q ‖∂mϕ̄S

α‖C0(Rn) ≤ C · (a1)−(m−1),(48)

(b) δ
m−|α|
Q |ϕ̄S

α(x)| ≤ C · (a1)−mσ(x) for all x ∈ S,

(c) Jy′(ϕ̄S
α) = P̄ y′

α .

Proof. For α = β̄, conclusion (46) is immediate from (39) and (44). For
α ∈ Āy′ � {β̄} = A � {ᾱ}, (45) gives

∂βP̄ y′

α (y′) = ∂β
+
P

y′

α (y′) −
[
∂β̄

+
P

y′

α (y′)
]
· ∂β

+
P

y′

β̄ (y′) for all β ∈ M.(49)
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If β ∈ A � {ᾱ}, then ∂β
+
P

y′

α (y′) = δβα (see (40)), and ∂β
+
P

y′

β̄ (y′) = 0
(see (39)). Hence, (49) implies conclusion (46) for the case, α ∈ Āy′ � {β̄},

β ∈ Āy′ � {β̄}. If α ∈ Āy′ � {β̄} and β = β̄, then, since ∂β̄
+
P

y′

β̄ (y′) = 1 by
(39), we see that (49) implies

∂β̄P̄ y′

α (y′) = ∂β̄
+
P

y′

α (y′) − [∂β̄
+
P

y′

α (y′)] · 1 = 0 = δβ̄α.

Hence, conclusion (46) holds also for α ∈ Āy′ � {β̄}, β = β̄.
Thus, we have verified conclusion (46) in all cases.
Next, conclusion (47) holds for α = β̄, thanks to (41) and (44). Suppose

α ∈ Āy′ � {β̄} and β ∈ M. Then (45), together with (41) and (41a), yields

δ
|β|−|α|
Q

∣∣∂βP̄ y′

α (y′)
∣∣≤ δ

|β|−|α|
Q

∣∣∂β
+
P

y′

α (y′)
∣∣

+
[
δ
|β̄|−|α|
Q

∣∣∂β̄
+
P

y′

α (y′)
∣∣] ·

[
δ
|β|−|β̄|
Q

∣∣∂β
+
P

y′

β̄ (y′)
∣∣]

≤C · (a1)−m + [C · (a1)−m] · [1] ≤ C ′ · (a1)−m.

Hence, conclusion (47) holds in all cases.
It remains to check conclusion (48). For α = β̄, conclusion (48) is imme-

diate from (42) and (44), thanks to (SU4). Suppose α ∈ Āy′ � {β̄}, and let
S ⊂ E with #(S) ≤ k#

old. We apply (42), (for the given α, and for β̄), and we
define

ϕ̄S
α =

+
ϕ

S

α −
[
∂β̄

+
P

y′

α (y′)
]
·

+
ϕ

S

β̄ .(50)

From (42(a)) and (41), we find that

δ
m−|α|
Q

∥∥∂mϕ̄S
α

∥∥
C0(Rn)

≤ δ
m−|α|
Q

∥∥∂m +
ϕ

S

α

∥∥
C0(Rn)

+
[
δ
m−|β̄|
Q

∥∥∂m +
ϕ

S

β̄

∥∥
C0(Rn)

]
·
[
δ
|β̄|−|α|
Q

∣∣∂β̄
+
P

y′

α (y′)
∣∣]

≤ (Ca1) + [Ca1] · [C · (a1)−m] ≤ C ′ · (a1)−(m−1),

thanks to (SU4). This proves conclusion (48(a)) for the given α.
Also, for all x ∈ S, we obtain from (41), (42(b)), (50) that

δ
m−|α|
Q |ϕ̄S

α(x)| ≤ δ
m−|α|
Q

∣∣ +
ϕ

S

α (x)
∣∣

+
[
δ
|β̄|−|α|
Q

∣∣∂β̄
+
P

y′

α (y′)
∣∣] ·

[
δ
m−|β̄|
Q

∣∣ +
ϕ

S

β̄ (x)
∣∣]

≤Cσ(x) +
[
C · (a1)−m

]
·
[
Cσ(x)

]
≤ C ′ · (a1)−m · σ(x),

thanks to (SU4). This proves conclusion (48(b)) for the given α.
Finally, comparing (45) with (50), and applying (42(c)), we obtain con-

clusion (48(c)) for the given α.
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Thus, conclusion (48) holds also for α ∈ Āy′ � {β̄}. The proof of Lemma
12.4 is complete.

We are ready to give the main result of this section.

Lemma 12.5. The cube Q+ is OK.

Proof. For every y′ ∈ (Q+)�� (see (1)), we have constructed Āy′
< A (see

(38)), and P̄ y′

α (α ∈ Āy′
) satisfying (46), (47), (48).

We will check that Āy′
and the P̄ y′

α (α ∈ Āy′
) satisfy (OK1, 2, 3) for the

cube Q+.
In fact, (OK1) for Q+ is just (46).
Condition (OK2) for Q+ says that

(2δQ)|β|−|α|∣∣∂βP̄ y′

α (y′)
∣∣ ≤ (a1)−(m+1) for α ∈ Āy′

and β ∈ M with β ≥ α.

This estimate, without the restriction to β ≥ α, is immediate from (47) and
(SU4).

Condition (OK3) for Q+ says that, given α ∈ Āy′
and S ⊂ E with #(S) ≤

k#
old, there exists ϕ̄S

α ∈ Cm(Rn), with

(a) (2δQ)m−|α|‖∂m ϕ̄S
α‖C0(Rn) ≤ (a1)−(m+1),

(b) (2δQ)m−|α||ϕ̄S
α (x)| ≤ (a1)−(m+1) · σ(x) for all x ∈ S,

(c) Jy′(ϕ̄S
α) = P̄ y′

α .

This follows immediately from (48), thanks to (SU4).
We have shown that (OK1, 2, 3) hold for the cube Q+ and arbitrary

y′ ∈ (Q+)��. Thus, Q+ is OK. The proof of Lemma 12.5 is complete.

13. Controlling auxiliary polynomials II

In this section, we are again in the setting of Section 9, and we assume
(SU0, . . . , 6). The result of this section is as follows.

Lemma 13.1. Fix an integer k#
1 , satisfying

k# ≥ (D + 1) · k#
1 , k#

1 ≥ (D + 1) · k#
old.(1)

Let Q be a CZ cube, and let

y ∈ Q���(2)

be given. Let P y
α ∈ P be a family of polynomials, indexed by α ∈ A.

Suppose that

The P y
α(α ∈ A) satisfy conditions (WL1)y, (WL2)y, (WL3)y.(3)

(See Lemma 10.3.)
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Then

δ
|β|−|α|
Q |∂βP y

α(y)| ≤ (a1)−m for all α ∈ A, β ∈ M.(4)

Proof. Suppose (4) to be false. There are finitely many dyadic cubes Q̂

containing Q. (Recall that, by our definition, every dyadic cube is contained
in Q◦.) For each such Q̂, define

Φ(Q̂) = max
β∈M
α∈A

δ
|β|−|α|
Q̂

|∂βP y
α(y)|.(5)

Then Φ(Q) > (a1)−m, since (4) is assumed false. Let Q̄ be the maximal dyadic
cube containing Q, with Φ(Q̄) > (a1)−m.

Thus,

Φ(Q̄)> (a1)−m,(6)

Q⊂ Q̄, and(7)

Either Q̄= Q◦ or else Φ(Q̄+) ≤ (a1)−m.(8)

We can check easily that Q̄ �= Q◦. In fact, (11.3), (WL2)y and (SU4) show
that

δ
|β|−|α|
Q◦ |∂βP y

α(y)| ≤ Cδ
|β|−|α|
Q◦ ≤ Cδ

−(m−1)
Q◦ ≤ C ′(a1)−(m−1) < a−m

1

for all α ∈ A, β ∈ M. (Recall, A ⊂ M, and |γ| ≤ m − 1 for all γ ∈ M.)
Thus, Φ(Q◦) < (a1)−m, and hence Q◦ �= Q̄, by (6). From (8) we now

obtain

Φ(Q̄+) ≤ (a1)−m.(9)

A glance at the definition (5) shows that Φ(Q̄+) and Φ(Q̄) can differ at most
by a factor of 2(m−1). Hence, (9) implies Φ(Q̄) ≤ 2m−1 · (a1)−m. Together with
(5) and (6), this shows that

(a1)−m ≤ max
β∈M
α∈A

δ
|β|−|α|
Q̄

|∂βP y
α(y)| ≤ 2m−1 · (a1)−m.(10)

Note also that

y ∈ Q̄���,(11)

thanks to (2) and (7).
We prepare to apply the results of Section 12 to the cube Q̄. Let us check

that assumptions (CAP1, . . . , 5) of that section are satisfied. In fact, (CAP1)
is merely our present hypothesis (1); (CAP2) is (11); (CAP3) holds since Q̄

is a dyadic cube not equal to Q◦; (CAP4) is our present hypothesis (3); and
(CAP5) is immediate from (10). Hence, the results of Section 12 apply to the
cube Q̄. In particular, Lemma 12.5 tells us that the cube Q̄+ is OK. On the
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other hand, (7) shows that Q̄+ is a dyadic cube properly containing the CZ
cube Q. By the definition of a CZ cube, it follows that Q̄+ cannot be OK. This
contradiction proves that (4) must hold. The proof of Lemma 13.1 is complete.

14. Controlling the main polynomials

In this section, we again place ourselves in the setting of Section 9, and
assume (SU0, . . . , 6). Our goal is to control the polynomials in K#

f (y; k#
1 , M)

in terms of the CZ cubes Q, for suitable k#
1 and M .

Lemma 14.1. Let Q, Q′ be CZ cubes that abut or coincide. Suppose we
are given

y ∈ Q���, y′ ∈ (Q′)���(1)

and

P ∈ K#
f (y; k#

1 , C),(2)

with

k# ≥ (D + 1) · k#
1 , k#

1 ≥ (D + 1) · k#
2 , and k#

2 ≥ k#
old.(3)

Then there exists

P ′ ∈ K#
f (y′; k#

2 , C ′),(4)

with

|∂β(P ′ − P )(y′)| ≤ C ′′ · (a1)−m · δm−|β|
Q for all β ∈ M(5)

Proof. By Lemma 10.2, there exists

P̃ ∈ Kf (y′; k#
2 , C ′),(6)

with

|∂β(P̃ − P )(y′)| ≤ C ′′|y − y′|m−|β| ≤ C
′′

1 δ
m−|β|
Q for all β ∈ M.(7)

(Here we use Lemma 11.2 on the good geometry of the CZ cubes.) In view of
(6) and the definition of Kf , we know the following.

Given S ⊂ E with #(S) ≤ k#
2 , there exists F̃S ∈ Cm(Rn), with(8)

‖F̃S‖Cm(Rn) ≤ C ′, |F̃S(x) − f(x)| ≤ C ′σ(x)on S, and Jy′(F̃S) = P̃ .

In particular, taking S = the empty set in (8), we learn that

|∂βP̃ (y′)| ≤ C ′ for all β ∈ M.(9)
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Also, (2) and the definition of K#
f give ∂βP (y) = 0 for all β ∈ A. Applying

(SU0), we conclude that ∂γ+βP (y) = 0 for all β ∈ A, |γ| ≤ m − 1 − |β|.
On the other hand,

∂βP (y′) =
∑

|γ|≤m−1−|β|

1
γ!

(∂γ+βP (y)) · (y′ − y)γ ,

since P is a polynomial of degree at most (m − 1). Hence, ∂βP (y′) = 0 for all
β ∈ A. Consequently, (7) implies

|∂βP̃ (y′)| ≤ C ′′
1 δ

m−|β|
Q for all β ∈ A.(10)

Next, note that y′ ∈ (Q′)��� ⊂ (Q◦)��� ⊂ B(y0, a1), thanks to (1), the fact
that Q′ is a CZ cube, and (11.2). Hence, Lemma 10.3 applies, with y′ in place
of y. Thus, we obtain polynomials P y′

α (α ∈ A), satisfying (WL1)y′
, (WL2)y′

,
(WL3)y′

. The hypotheses of Lemma 13.1 hold here, with Q′, y′ and P y′

α in
place of Q, y and P y

α . In fact, hypothesis (1) in Section 13 is immediate from
our present assumption (3). Also, hypothesis (2) in Section 13 is contained
in our present assumption (1). Hypothesis (3) in Section 13 merely asserts
that the P y′

α (α ∈ A) satisfy (WL1)y′
, (WL2)y′

, (WL3)y′
, which we have just

noted above. Since also Q′ is a CZ cube, we have shown that the hypotheses
of Lemma 13.1 hold for Q′, y′, P y′

α (α ∈ A). Applying that lemma, we conclude
that

δ
|β|−|α|
Q′ · |∂βP y′

α (y′)| ≤ (a1)−m for all α ∈ A, β ∈ M.(11)

Now define

P ′ = P̃ −
∑
α∈A

[∂αP̃ (y′)] · P y′

α ∈ P.(12)

For all β ∈ A,

∂βP ′(y′) = ∂βP̃ (y′) −
∑
α∈A

[∂αP̃ (y′)] · ∂βP y′

α (y′) = 0(13)

since ∂βP y′

α (y′) = δβα for all β, α ∈ A (see (WL1)y′
).

Note also that, for any α ∈ A and β ∈ M,∣∣∂β{[∂αP̃ (y′)] · P y′

α }(y′)
∣∣ =

∣∣∂αP̃ (y′)
∣∣ · ∣∣∂βP y′

α (y′)
∣∣ ≤ C

′′

1 δ
m−|α|
Q · (a1)−mδ

|α|−|β|
Q′

by (10) and (11). Hence, (12) implies that

|∂β(P ′ − P̃ )(y′)| ≤ C
′′

2 δ
m−|β|
Q · (a1)−m for all β ∈ M.

(Recall that δQ and δQ′ are comparable by Lemma 11.2.) Together with (7)
and (SU4), this yields

|∂β(P ′−P )(y′)| ≤ C
′′

3 · (a1)−m · δm−|β|
Q for all β ∈ M, which is conclusion (5).
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Moreover, let S ⊂ E be given, with #(S) ≤ k#
2 . Let F̃S be as in (8), and,

for each α ∈ A, let ϕS
α be as in (WL3)y′

. (Note that (WL3)y′
applies, since

k#
1 ≥ k#

2 .) Introduce a cutoff function θ on Rn, with

0 ≤ θ ≤ 1 on Rn, θ = 1 on B(y′, 1/2), supp θ ⊂ B(y′, 1), ‖θ‖Cm(Rn) ≤ C ′′′.
(14)

Then define

FS = F̃S −
∑
α∈A

[∂αP̃ (y′)] · ϕS
α · θ.(15)

From (WL2)y′
, (WL3)y′

(a), (WL3)y′
(c), we conclude that |∂βϕS

α| ≤ C
′′

4 on
B(y′, 1), |β| ≤ m.

Hence, (9) and (14) imply ‖[∂αP̃ (y′)]· ϕS
α · θ‖Cm(Rn) ≤ C

′′

5 . Together with
(8) and (15), this yields

‖FS‖Cm(Rn) ≤ C
′′

6 .(16)

Next, suppose x ∈ S. Then (8), (9), (WL3)y
′
(b), (14) and (15) yield

|FS(x) − f(x)| ≤ C ′σ(x) +
∑
α∈A

C ′ · Cσ(x) ≤ C
′′

7 · σ(x).(17)

Also, comparing (12) with (15), recalling (14), and applying (8) and
(WL3)y′

(c), we find that

Jy′(FS) = P̃ −
∑
α∈A

[∂αP̃ (y′)] · P y′

α = P ′.(18)

For every S ⊂ E with #(S) ≤ k#
2 , we have exhibited a function FS ∈ Cm(Rn)

that satisfies (16), (17), (18). Thus, by definition, P ′ belongs to Kf (y′; k#
2 , C

′′

8 ).
Recalling (13), we conclude that P ′ ∈ K#

f (y′; k#
2 , C

′′

8 ), which is conclusion (4).
Thus, conclusions (4) and (5) hold for P ′. The proof of Lemma 14.1 is

complete.

Lemma 14.2. Fix k#
1 , with

k# ≥ (D + 1) · k#
1 , k#

1 ≥ (D + 1) · k#
old.(19)

Suppose Q is a CZ cube, y ∈ Q��, and P1, P2 ∈ K#
f (y; k#

1 , C). Then

|∂β(P1 − P2)(y)| ≤ (a1)−(m+1) · δm−|β|
Q for all β ∈ M.(20)

Proof. Suppose (20) fails. We will show that

Q is a proper subcube of Q◦, and that(21)

Q+ is OK.(22)
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This will lead to a contradiction, since Q+ is a dyadic cube that properly
contains the CZ cube Q; thus Q+ cannot be OK, by the definition of a CZ
cube. Consequently, the proof of Lemma 14.2 reduces to the proof of (21) and
(22) under the assumption that (20) fails.

Since P1, P2 ∈ K#
f (y; k#

1 , C), we know that

Given S ⊂ E with #(S) ≤ k#
1 , there exist FS

i ∈ Cm(Rn)(i = 1, 2),(23)

with ‖FS
i ‖Cm(Rn) ≤ C, |FS

i (x) − f(x)| ≤ Cσ(x) on S, Jy(FS
i ) = Pi.

In particular, taking S = the empty set in (23), we learn that

|∂βPi(y)| ≤ C for |β| ≤ m − 1 and i = 1, 2.(24)

It is now easy to prove (21). Since Q is dyadic, it is enough to show that
Q �= Q◦. Since we are assuming that (20) fails for Q, it is enough to show that
(20) holds for Q◦. However, (24) and (11.3) show that

|∂β(P1 − P2)(y)| ≤ C ′ ≤ (a1)−(m+1)(δQ◦)m−|β|, thanks to (SU4).

Thus, (20) holds for Q◦, which completes the proof of (21).
We start the proof of (22). Let

y′ ∈ (Q+)��(25)

be given. Then y, y′ ∈ Q���, and P1, P2 ∈ K#
f (y; k#

1 , C). Also, k# ≥
(D+1)·k#

1 and k#
1 ≥ (D+1)· k#

old. Hence, Lemma 14.1 applies, with k#
2 = k#

old.
Consequently, there exist

P̃1, P̃2 ∈ K#
f (y′; k#

old, C
′)(26)

with

|∂β(P̃i − Pi)(y′)| ≤ C
′′ · (a1)−m · δm−|β|

Q for all β ∈ M, i = 1, 2.(27)

From (27), we see that

max
β∈M

δ
|β|−m
Q |∂β(P1 − P2)(y′)| ≤ 2C

′′ · (a1)−m + max
β∈M

δ
|β|−m
Q |∂β(P̃1 − P̃2)(y′)|.

(28)

Also, for β ∈ M,

|∂β(P1 − P2)(y)|=

∣∣∣∣∣∣
∑

|γ|≤m−1−|β|

1
γ!

[
∂γ+β(P1 − P2)(y′)

]
· (y − y′)γ

∣∣∣∣∣∣
≤C max

|γ|≤m−1−|β|
|∂γ+β(P1 − P2)(y′)|δ|γ|Q ;

therefore,

max
β∈M

δ
|β|−m
Q |∂β(P1 − P2)(y)| ≤ C max

β∈M
δ
|β|−m
Q |∂β(P1 − P2)(y′)|.(29)
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Moreover, since (20) fails,

a
−(m+1)
1 ≤ max

β∈M
δ
|β|−m
Q |∂β(P1 − P2)(y)|.(30)

Combining (28), (29), (30), we find that

a
−(m+1)
1 ≤ C ′′′a−m

1 + C max
β∈M

δ
|β|−m
Q |∂β(P̃1 − P̃2)(y′)|,

which implies

max
β∈M

δ
|β|−m
Q

∣∣∂β(P̃1 − P̃2)(y′)
∣∣ ≥ c · a−(m+1)

1 ,(31)

thanks to (SU4).
From (26) and the definition of K#

f , we know that

∂βP̃1(y′) = ∂βP̃2(y′) = 0 for all β ∈ A,(32)

and that

Given S ⊂ E with #(S) ≤ k#
old, there exist F̃S

1 , F̃S
2 ∈ Cm(Rn), with(33)

‖F̃S
i ‖Cm(Rn) ≤ C ′, |F̃S

i (x) − f(x)| ≤ C ′σ(x) on S, and Jy′(F̃S
i ) = P̃i

for i = 1, 2.

Immediately from (33), we see that

Given S ∈ E with #(S) ≤ k#
old, there exists F̃S ∈ Cm(Rn), with(34)

‖F̃S‖Cm(Rn) ≤ C ′
1, |F̃S(x)| ≤ C ′

1σ(x) on S, and Jy′(F̃S) = P̃1 − P̃2.

Now, pick β̄ ∈ M to maximize δ
|β̄|−m
Q |∂β̄(P̃1 − P̃2)(y′)|, and define

Ω = ∂β̄(P̃1 − P̃2)(y′).(35)

By (31) and the definitions of β̄,Ω, we have

|∂β(P̃1 − P̃2)(y′)| ≤ |Ω| · δ|β̄|−|β|
Q for all β ∈ M(36)

and

|Ω| ≥ c · (a1)−(m+1) · δm−|β̄|
Q(37)

In particular, Ω �= 0. We define

P̄ = (P̃1 − P̃2)
/
Ω ∈ P.(38)

From (32), we have

∂βP̄ (y′) = 0 for all β ∈ A.(39)

From (35) and (36),

∂β̄P̄ (y′) = 1, and(40)

|∂βP̄ (y′)| ≤ δ
|β̄|−|β|
Q for all β ∈ M.(41)
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Also, from (34), (37), (38) and (SU4), we learn the following:

Given S ⊂ E with #(S) ≤ k#
old, there exists F̄S ∈ Cm(Rn), with(42)

(a) ‖F̄S‖Cm(Rn) ≤ C ′′ · (a1)m+1 · δ|β̄|−m
Q ≤ δ

|β̄|−m
Q ,

(b) |F̄S(x)| ≤ C ′
1σ(x)
|Ω| ≤ C ′′ · (a1)m+1 · δ|β̄|−m

Q · σ(x)

≤ δ
|β̄|−m
Q · σ(x) on S,

(c) Jy′(F̄S) = P̄ .

Note that

β̄ /∈ A,(43)

as we see at once from (39), (40).
Next, recall that y′ ∈ (Q+)�� ⊂ Q��� ⊂ (Q◦)��� ⊂ B(y0, a1) (see (11.2)).

Hence, Lemma 10.3 shows that there exist polynomials P y′

α (α ∈ A), with
properties (WL1)y′

, (WL2)y′
, (WL3)y′

. We now define

Āy′
=A ∪ {β̄},(44)

P̄β̄ = P̄(45)

P̄α = P y′

α − [∂β̄P y′

α (y′)] · P̄ for α ∈ A.(46)

Thus, we have defined P̄β for all β ∈ Āy′
. Note that A is a proper subset

of Āy′
, by (43). Hence, Lemma 3.2 shows that

Āy′
< A.(47)

We will check that

∂βP̄α(y′) = δβα for all β, α ∈ Āy′
.(48)

In fact, (48) holds for α = β̄, thanks to (39), (40), (45).
For α, β ∈ A, we have

∂βP̄α(y′) = ∂βP y′

α (y′) − [∂β̄P y′

α (y′)] · ∂βP̄ (y′) = δβα

by (WL1)y′
and (39); hence again (48) holds. For α ∈ A, β = β̄,

∂β̄P̄α(y′) = ∂β̄P y′

α (y′) − [∂β̄P y′

α (y′)] · ∂β̄P̄ (y′) = 0

by (40); hence again (48) holds. Thus, (48) holds in all cases.
Next, we apply Lemma 13.1, with y′ in place of y. Note that the hy-

potheses of Lemma 13.1 are satisfied, since: y′ ∈ (Q+)�� ⊂ Q���, with Q a CZ
cube; the P y′

α (α ∈ A) satisfy (WL1)y′
, (WL2)y′

, (WL3)y′
; k# ≥ (D + 1)k#

1

and k#
1 ≥ (D + 1) ·k#

old. From Lemma 13.1, we learn that

δ
|β|−|α|
Q |∂βP y′

α (y′)| ≤ (a1)−m for all α ∈ A, β ∈ M.(49)
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Using (49), we can check that

|∂βP̄α(y′)| ≤ C · (a1)−m · δ|α|−|β|
Q for all α ∈ Āy′

and β ∈ M.(50)

In fact, for α = β̄, (50) is immediate from (41), (45) and (SU4). For α ∈ A,
β ∈ M, we have

|∂βP̄α(y′)| ≤ |∂βP y′

α (y′)| + |∂β̄P y′

α (y′)| · |∂βP̄ (y′)|
≤ (a1)−m · [δ|α|−|β|

Q ] + [δ|β̄|−|β|
Q ] · [(a1)−mδ

|α|−|β̄|
Q ]

≤C · (a1)−mδ
|α|−|β|
Q ,

thanks to (41) and (49). Thus, (50) holds in all cases.
Let S ⊂ E be given, with #(S) ≤ k#

old. Let F̄S be as in (42), and let
ϕS

α(α ∈ A) be as in (WL3)y′
. (Note that (WL3)y′

applies, since k#
1 ≥ k#

old.)
We define

ϕ̄S
β̄ = F̄S(51)

and

ϕ̄S
α = ϕS

α − [∂β̄P y′

α (y′)] · F̄S for all α ∈ A.(52)

Thus, ϕS
α ∈ Cm(Rn) for all α ∈ Āy′

. We will check that

‖∂mϕ̄S
α‖C0(Rn) ≤ C · (a1)−m · δ|α|−m

Q for all α ∈ Āy′
.(53)

In fact, for α = β̄, (53) is immediate from (42(a)), (51), and (SU4).
For α ∈ A, we have

‖∂mϕ̄S
α‖C0(Rn) ≤‖∂mϕS

α‖C0(Rn) + |∂β̄P y′

α (y′)| · ‖∂mF̄S‖C0(Rn)

≤Ca1 + [(a1)−m · δ|α|−|β̄|
Q ] · [δ|β̄|−m

Q ] ≤ C · (a1)−m · δ|α|−m
Q ,

thanks to (WL3)y′
(a), (49), (42(a)), (SU4). (Recall that |α| ≤ m − 1 and

δQ ≤ δQ◦ ≤ a1 by (11.3).) Thus, (53) holds in all cases.
Next, we check that

|ϕ̄S
α(x)| ≤ C · (a1)−m · δ|α|−m

Q · σ(x) for all x ∈ S, α ∈ Āy′
.(54)

In fact, for α = β̄, (54) is immediate from (42(b)), (51), and (SU4). For α ∈ A
and x ∈ S, we have

|ϕ̄S
α(x)| ≤ |ϕS

α(x)| + |∂β̄P y′

α (y′)| · |F̄S(x)| (see (52))
≤ Cσ(x) +

[
(a1)−mδ

|α|−|β̄|
Q

]
·
[
δ
|β̄|−m
Q σ(x)

]
(thanks to (WL3)y′

(b),
(49), (42(b))

≤ C · (a1)−mδ
|α|−m
Q σ(x) (thanks to (SU4)).

(Again, recall that |α| ≤ m − 1 and δQ ≤ δQ◦ ≤ a1.) Thus, (54) holds in all
cases.
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We check also that

Jy′(ϕ̄S
α) = P̄α for all α ∈ Āy′

.(55)

In fact, for α = β̄, (55) is immediate from (51), (45), (42(c)). For α ∈ A,
(55) follows from (46), (52), (WL3)y

′
(c), and (42(c)). Thus, (55) holds in all

cases.
Given y′ ∈ (Q+)�� (see (25)), we have constructed Āy′

< A (see (47)) and
P̄α(α ∈ Āy′

) satisfying (48) and (50). Moreover, given S ⊂ E with #(S) ≤ k#
old,

we have constructed ϕ̄S
α(α ∈ Āy′

), satisfying (53), (54), (55). We will check
that Āy′

and the P̄α(α ∈ Āy′
) satisfy conditions (OK1, 2, 3) for the cube Q+

and the point y′.
In fact, (OK1) for Q+, y′ says that ∂βP̄α(y′) = δβα for all β, α ∈ Āy′

.
That’s just (48).

Condition (OK2) for Q+, y′ says that

(2δQ)|β|−|α| · |∂βP̄α(y′)| ≤ (a1)−(m+1) for all α ∈ Āy′
and β ∈ M with β ≥ α.

This follows at once from (50) and (SU4), without the restriction to β ≥ α.
Condition (OK3) for Q+, y′ says that, given α ∈ Āy′

and S ⊂ E with
#(S) ≤ k#

old, there exists ϕ̄S
α ∈ Cm(Rn), with

(2δQ)m−|α|‖∂mϕ̄S
α‖C0(Rn) ≤ (a1)−(m+1),

(2δQ)m−|α||ϕ̄S
α(x)| ≤ (a1)−(m+1) · σ(x) on S,

and
Jy′(ϕ̄S

α) = P̄α.

These assertions follow at once from (53), (54), (55) and (SU4).
Thus, conditions (OK1, 2, 3) hold (with Āy′

< A) for Q+, y′, for arbitrary
y′ ∈ (Q+)��. By definition, this means that Q+ is OK. This completes the proof
of (22), and hence also that of Lemma 14.2.

The main result of this section is as follows.

Lemma 14.3. Let y ∈ Q�� and y′ ∈ (Q′)��, where Q and Q′ are CZ cubes.
Let P ∈ K#

f (y; k#
A , C) and P ′ ∈ K#

f (y′; k#
A , C) be given, where

k# ≥ (D + 1) · k#
A and k#

A ≥ (D + 1)2 · k#
old.(56)

If the cubes Q and Q′ abut, then we have

|∂β(P ′ − P )(y′)| ≤ C ′ · (a1)−(m+1) · δm−|β|
Q for all β ∈ M.(57)

Proof. Let k#
B = (D + 1) · k#

old. Then, by Lemma 14.1, there exists

P̃ ∈ K#
f (y′; k#

B , C ′),(58)
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with

|∂β(P̃ − P )(y′)| ≤ C ′′ · (a1)−m · δm−|β|
Q , for all β ∈ M.(59)

By hypothesis, and by (58), both P ′ and P̃ belong to K#
f (y′; k#

B , C̃). Hence,
Lemma 14.2 applies to Q′, y′, and shows that

|∂β(P ′ − P̃ )(y′)| ≤ (a1)−(m+1) · δm−|β|
Q′ , for all β ∈ M.(60)

Conclusion (57) is immediate from (59), (60), (SU4), and Lemma 11.2.

15. Proof of Lemmas 9.1 and 5.2

In this section, we complete the proof of Lemma 9.1. Thanks to Lemma 9.2,
this will also establish Lemma 5.2. We place ourselves in the setting of Sec-
tion 9, and assume (SU0, . . . , 6). In particular,

E is a given finite subset of Rn,(1)

σ : E → (0,∞) and f : E → R are given, and(2)

A ⊂ M is given.(3)

We use the Calderón-Zygmund decomposition from Section 11. Let Qν

(1 ≤ ν ≤ νmax) be the CZ cubes, and let δν = δQν
= diameter of Qν , yν =

center of Qν . Recall that

δν ≤ a1 ≤ 1 for each ν,(4)

thanks to (11.3).
We take

k# = (D + 1)3 · k#
old.(5)

Lemma 10.5 shows that K#
f (yν ; (D+1)2 ·k#

old, C) is nonempty for each ν, where
C is a large enough controlled constant.

For each ν, fix

Pν ∈ K#
f (yν ; (D + 1)2 · k#

old, C).(6)

Applying Lemma 14.3, we see that, whenever Qµ and Qν abut, we have

|∂β(Pµ − Pν)(yν)| ≤ C ′(a1)−(m+1) · δm−|β|
ν for all β ∈ M.(7)

Since ∂β(Pµ − Pν)(x) =
∑

|γ|≤m−1−|β|
1
γ!(∂

γ+β (Pµ − Pν)(yν)) · (x − yν)γ with

|x − yν | ≤ C1δν for any x ∈ Q�
ν , estimate (7) implies

|∂β(Pµ − Pν)(x)| ≤ C2 · (a1)−(m+1) · δm−|β|
ν for all x ∈ Q�

ν and all β ∈ M.

(8)
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Let θ̃ν(1 ≤ ν ≤ νmax) be a cutoff function, with the following properties.

0 ≤ θ̃ν ≤ 1 on Rn, θ̃ν = 1 on Q�
ν , suppθ̃ν ⊂ Q��

ν ,(9)

|∂β θ̃ν | ≤ C3δ
−|β|
ν for |β| ≤ m.(10)

Fix ν(1 ≤ ν ≤ νmax), and define

f̂ν(x) = θ̃ν(x) · [f(x) − Pν(x)] for all x ∈ E.(11)

Note that

f(x) = f̂ν(x) + Pν(x) for all x ∈ E ∩ Q�
ν .(12)

Our plan is to apply Lemma 8.1 to the function f̂ν and the cube Qν . Recall
that, since Qν is a CZ cube, it is OK. Thus,

For each y ∈ Q��
ν , we are given Āy < A, and(13)

polynomials P̄ y
α(α ∈ Āy), satisfying (OK1, 2, 3).

We will check the following straightforward result.

Lemma 15.1. The hypotheses of Lemma 8.1 hold, with A = (a1)−(m+1),
for the set E, the functions f̂ν and σ on E, the cube Qν , the sets of multi -
indices A, Āy(y ∈ Q��

ν ), and the polynomials P̄ y
α(y ∈ Q��

ν , α ∈ Āy).

Proof. The hypotheses of Lemma 8.1 are as follows:

• The Strong Main Lemma holds for all Ā < A. (That’s just (SU1), which
we are assuming here.)

• E ⊂ Rn is finite, f̂ν : E → R and σ : E → (0,∞).

• For each y ∈ Q��
ν , we are given Āy < A and P̄ y

α(α ∈ Āy) which is
immediate from (13).

• Conditions (G1, 2, 3) hold, with A = a
−(m+1)
1 which is immediate from

(OK1, 2, 3) for Qν ; these conditions hold, thanks to (13).

• Condition (G4) holds, with A = a
−(m+1)
1 .

To check this last hypothesis, we use (6). From (6) and the definitions of
K#

f and Kf , we learn the following:

Given S ⊂ E with #(S) ≤ (D + 1)2 · k#
old, there exists FS

ν ∈ Cm(Rn),(14)

with ‖FS
ν ‖Cm(Rn) ≤ C, |FS

ν (x) − f(x)| ≤ Cσ(x) on S, and Jyν
(FS

ν ) = Pν .

With FS
ν as in (14), and with θ̃ν as in (9), (10), (11), we define

F̂S
ν = θ̃ν · [FS

ν − Pν ].(15)
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Note that

|F̂S
ν (x) − f̂ν(x)| = θ̃ν(x) · |FS

ν (x) − f(x)| ≤ Cσ(x) on S,(16)

thanks to (9), (11), (14), (15).

From (14) and Taylor’s theorem, we have

|∂β(FS
ν − Pν)| ≤ C ′δm−|β|

ν on Q��
ν , for |β| ≤ m.

Together with (9), (10) and (15), this implies

|∂βF̂S
ν | ≤ C ′′δm−|β|

ν on Rn, for |β| ≤ m.

Thus,

Given S ⊂ E with #(S) ≤ (D + 1)2 · k#
old, there exists F̂S

ν ∈ Cm(Rn),(17)

with

(a) |∂βF̂S
ν (x)| ≤ C ′′δm−|β|

ν for all x ∈ Rn, |β| ≤ m; and

(b) |F̂S
ν (x) − f̂ν(x)| ≤ Cσ(x) for all x ∈ S.

Condition (G4) for Qν , f̂ν , etc., with A = (a1)−(m+1), follows at once from
(17), thanks to (SU4).

The proof of Lemma 15.1 is complete.

Applying Lemmas 15.1 and 8.1, we obtain a function Fν ∈ Cm(Rn), for
each ν(1 ≤ ν ≤ νmax), satisfying

|∂βFν(x)| ≤A′δm−|β|
ν for all x ∈ Rn, |β| ≤ m(18)

and

|Fν(x) − f̂ν(x)| ≤A′σ(x) for all x ∈ E ∩ Q�
ν .(19)

Here, A′ is determined by a1, m, n. For the rest of this section, we write
A, A′, A′′, A1, etc., to denote constants determined by a1, m, n.

From (12) and (19), we see that

|f(x) − (Pν(x) + Fν(x))| ≤ A′σ(x) for all x ∈ E ∩ Q�
ν .(20)

Our plan is to patch together the “local solutions” Pν(x) + Fν(x) (ν = 1, . . . ,

νmax), using a partition of unity.
For each ν(1 ≤ ν ≤ νmax), we introduce a cutoff function θ̂ν , satisfying

0 ≤ θ̂ν ≤ 1 on Rn, θ̂ν = 1 on Qν , θ̂ν(x) = 0 for dist (x, Qν) > ĉδν ,(21)

and

|∂β θ̂ν | ≤ Cδ−|β|
ν for |β| ≤ m.(22)

Taking ĉ small enough in (21), and recalling Lemma 11.2, we obtain the
following:

If Qµ contains a point of suppθ̂ν , then Qµ and Qν coincide or abut.(23)
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Define θν = θ̂ν

/
(
∑
µ

θ̂µ) on Q◦. From (21), . . . , (23), the Corollary to

Lemma 11.1, and Lemma 11.2, we obtain:∑
1≤ν≤νmax

θν = 1 on Q◦.(24)

0 ≤ θν ≤ 1 on Q◦.(25)

|∂βθν | ≤Cδ−|β|
ν for |β| ≤ m.(26)

θν = 0 outside Q�
ν .(27)

If x ∈ Qµ, then θν = 0 in a neighborhood of x, unless Qµ(28)

and Qν coincide or abut.

We define

F̃ (x) =
∑

1≤ν≤νmax

θν(x) · (Pν(x) + Fν(x)) for x ∈ Q◦.(29)

Note that θν and F̃ are defined only on Q◦.
Given x ∈ E ∩ Q◦, we see from (20), (25), (27) that |θν(x) · (Pν(x) +

Fν(x)) − θν(x) ·f(x)| ≤ A′σ(x) · θν(x). Summing over ν, and using (24) and
(29), we obtain ∣∣F̃ (x) − f(x)

∣∣ ≤ A′σ(x) for all x ∈ E ∩ Q◦.(30)

We prepare to estimate the derivatives of F̃ . Fix x ∈ Q◦, and let Qµ be a CZ
cube containing x. Differentiating (29), we obtain

∂βF̃ (x) =
∑

β′+β′′=β

c(β′, β′′)
∑

1≤ν≤νmax

(∂β′
θν(x)) · [∂β′′

Pν(x) + ∂β′′
Fν(x)].(31)

We look separately at the cases β′ = 0, β′ �= 0. We will need an estimate for
∂βPν(x). Recalling (14), and taking S = empty set, we find that

∣∣∂βPν(yν)
∣∣

≤ C for |β| ≤ m − 1, 1 ≤ ν ≤ νmax.
For x̃ ∈ Q�

ν , we have |x̃ − yν | ≤ Cδν ≤ C (see(4)); hence

∣∣∂βPν(x̃)
∣∣ =

∣∣∣∣∣∣
∑

|γ|≤m−1−|β|

1
γ!

(
∂γ+βPν(yν)

)
· (x̃ − yν)γ

∣∣∣∣∣∣ ≤ C ′ for |β| ≤ m − 1.

For |β| = m, we have ∂βPν ≡ 0, since Pν is a polynomial of degree at most
m − 1. Thus, ∣∣∂βPν(x̃)

∣∣ ≤ C ′ for all x̃ ∈ Q�
ν , |β| ≤ m.(32)

Now, combining (18), (32) with (25), (27), we see that∣∣θν(x) ·
[
∂βPν(x) + ∂βFν(x)

]∣∣ ≤ A′′θν(x) for 1 ≤ ν ≤ νmax, |β| ≤ m.
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(Here we again use (4).)
Summing over ν, and recalling (24), we obtain the estimate∣∣∣∣∣∑

ν

θν(x) ·
[
∂βPν(x) + ∂βFν(x)

]∣∣∣∣∣ ≤ A′′,(33)

which controls the term β′ = 0 in (31).
For β′ �= 0, we have

∑
ν

∂β′
θν(x) = 0 by (24); hence

∑
ν

(
∂β′

θν(x)
)
·
[
∂β′′

Pν(x) + ∂β′′
Fν(x)

]
(34)

=
∑

ν

(
∂β′

θν(x)
)
·
(
∂β′′

Pν(x) − ∂β′′
Pµ(x)

)
+

∑
ν

(
∂β′

θν(x)
)
· ∂β′′

Fν(x).

Suppose β′ �= 0, |β′| + |β′′| ≤ m. We will check that∣∣(∂β′
θν(x)

)
·
(
∂β′′

Pν(x) − ∂β′′
Pµ(x)

)∣∣ ≤ Ã · δm−|β′|−|β′′|
µ .(35)

In fact, the left-hand side of (35) is equal to zero in the following cases: x /∈ Q�
ν

(see (27)); Qµ and Qν neither coincide nor abut (see (28)); Qµ = Qν (see (35)).
Hence, in checking (35), we may suppose that x ∈ Q�

ν and that Qµ and Qν

abut. In this case (35) follows from (8), (26) and Lemma 11.2. Thus, (35)
holds in all cases.

We sum (35) over all ν and obtain a nonzero term on the left only when
Qµ and Qν abut, which occurs for at most C̃ distinct ν, thanks to Lemma 11.2.
Consequently,∣∣∣∣∣∑

ν

(
∂β′

θν(x)
)
·
(
∂β′′

Pν(x) − ∂β′′
Pµ(x)

)∣∣∣∣∣ ≤ A1δ
m−|β′|−|β′′|
µ ≤ A1,(36)

thanks to (4).
This controls the first term on the right in (34). We turn to the second

term. Estimates (18) and (26) show that∣∣(∂β′
θν(x)

)
·
(
∂β′′

Fν(x)
)∣∣ ≤ A2δ

m−|β′′|−|β′|
ν for |β′| + |β′′| ≤ m.(37)

Moreover, the left-hand side of (37) is nonzero only when Qν and Qµ coincide
or abut. There are at most C̃ distinct ν for which this occurs, since we have
fixed Qµ. Together with Lemma 11.2, these remarks imply the estimate∣∣∣∣∣∑

ν

(
∂β′

θν(x)
)
·
(
∂β′′

Fν(x)
)∣∣∣∣∣ ≤ A3δ

m−|β′|−|β′′|
µ ≤ A3,(38)

thanks to (4).
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Now, from (34), (36), (38), we obtain∣∣∣∣∣∑
ν

(
∂β′

θν(x)
)
·
[
∂β′′

Pν(x) + ∂β′′
Fν(x)

]∣∣∣∣∣ ≤ A4 for |β′| + |β′′| ≤ m, β′ �= 0.

Together with (33) and (31), this shows that∣∣∂βF̃ (x)
∣∣ ≤ A5 for all x ∈ Q◦, |β| ≤ m.(39)

Our function F̃ satisfies the good properties (30) and (39), but it is defined
only on Q◦. Recall that Q◦ is centered at y0, and has diameter ca1 < δQ◦ < a1.
(See (11.1) and (11.3).) Hence, we may find a cutoff function θ0 on Rn, with
θ0 = 1 on B(y0, c′a1), supp θ 0 ⊂ Q◦, 0 ≤ θ0 ≤ 1 on Rn, and

∣∣∂βθ0
∣∣ ≤ Ca

−|β|
1 for |β| ≤ m.

Setting F = F̃ · θ0, we obtain a function on all of Rn. From (30), (39) and the
properties of θ0, we have at once

‖F‖Cm(Rn) ≤ A6(40)

and

|F (x) − f(x)| ≤ A6σ(x) for all x ∈ E ∩ B(y0, c′a1).(41)

Since A6 and c′a1 are both determined by a1, m and n, estimates (40) and
(41) immediately imply the conclusions of Lemma 9.1.

This completes the proofs of Lemma 9.1 and Lemma 5.2.

16. A rescaling lemma

Recall that M+ denotes the set of multi-indices β with |β| ≤ m. The
following result will be used in the next section, to prove Lemma 5.3.

Lemma 16.1. Let A ⊂ M be given, and let C1, ā be positive numbers.
Suppose we are given real numbers Fα,β , indexed by α ∈ A, β ∈ M+. Assume
that the following conditions are satisfied.

Fα,α �= 0 for all α ∈ A.(0)

|Fα,β | ≤C1|Fα,α| for all α ∈ A, β ∈ M+ with β > α.(1)

Fα,β = 0 for all α, β ∈ A with α �= β.(2)
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Then there exist positive numbers λ1, . . . , λn, and a map φ : A → M, with
the following properties:

c < λi ≤ 1 for all i = 1, . . . , n, where c is a positive(3)

constant determined by C1, ā, m, n.

φ(α) ≤ α for all α ∈ A.(4)

For each α ∈ A, either φ(α) = α or φ(α) /∈ A.(5)

Suppose F̂α,β , for α ∈ A, β ∈ M+, is defined by(6)

(a) F̂α,β = λβ1
1 · · ·λβn

n Fα,β (β = (β1, . . . , βn)).

Then

(b) |F̂α,β | ≤ ā · |F̂α,φ(α)| for all α ∈ A, β ∈ M+ with β �= φ(α).

Proof. By possibly making C1 larger, we may assume that

C1 > 1.(7)

By possibly making ā smaller, we may assume that

C1ā < 1.(8)

The main point of our proof is to show that we can pick λ1, . . . , λn sat-
isfying (3), and satisfying also the following conditions, where F̂α,β is defined
by (6(a)):

|F̂α,β

/
F̂α,α| ≤ |Fα,β

/
Fα,α| for all α ∈ A, β ∈ M+ with β > α.(9)

|F̂α,β

/
F̂α,β′ | /∈ [ā, ā−1] whenever α ∈ A, β, β′ ∈ M+, β �= β′, and Fα,β′ �= 0.

(10)

We first show that if λ1, . . . , λn can be picked to satisfy (3), (9) and (10),
then we can find φ so that all the conclusions (3), . . . , (6) of Lemma 16.1
are satisfied. Then we return to the task of finding λ1, . . . , λn satisfying (3),
(9), (10).

Suppose λ1, . . . , λn satisfy (3), (9), (10). Define a map φ : A → M+, by
taking φ(α) to be a value of β that maximizes |F̂α,β | for the given α. Thus,

|F̂α,φ(α)| ≥ |F̂α,β | for all β ∈ M+, α ∈ A.(11)

In particular, taking β = α in (11), and recalling (0) and (6(a)), we see that

F̂α,φ(α) �= 0, for all α ∈ A.(12)

Together with (2), this implies conclusion (5).
Also, (11), (12), and (10) with β′ = φ(α), together imply conclusion (6).
Next, suppose α ∈ A and φ(α) > α. From (9) and (1), we then have∣∣F̂α,φ(α)

/
F̂α,α

∣∣ ≤ C1 < ā−1, by (8).
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Hence, (0) and (10) show that
∣∣F̂α,φ(α)

∣∣ ≤ ā
∣∣ F̂α,α

∣∣, which in turn implies∣∣F̂α,φ(α)

∣∣ <
∣∣F̂α,α

∣∣, thanks to (0), (7), (8).(13)

However, (13) contradicts (11). Therefore, we cannot have φ(α) > α, which
proves conclusion (4). Moreover, since φ(α) ≤ α, we have φ(α) ∈ M for
all α ∈ A. (Recall that we knew at first merely that φ(α) ∈ M+.) Thus,
φ : A → M, and conclusions (3), . . . ,(6) are satisfied by φ, λ1, . . . , λn.

This completes the reduction of Lemma 16.1 to the task of finding
λ1, . . . , λn that satisfy (3), (9), (10).

We take

λk = exp(−[τk + · · · + τn]), k = 1, . . . , n(14)

for τ1, τ2, . . . , τn > 0 to be picked below. Evidently, (3) holds, provided
τ1, . . . , τn are bounded above by a constant determined by C1, ā, m, n. Re-
garding (9) and (10), we note first that, for α ∈ A, β = (β1, . . . , βn) ∈ M+,
β′ = (β′

1, . . . , β
′
n) ∈ M+, with Fα,β′ �= 0,∣∣F̂α,β

/
F̂α,β′

∣∣ =
∣∣Fα,β/Fα,β′

∣∣ · exp(−[p1τ1 + · · · + pnτn]),(15)

with

pk = (β1 + · · · + βk) − (β′
1 + · · · + β′

k).(16)

Formulas (15), (16) are immediate from definitions (6(a)) and (14). Since
β, β′ ∈ M+, each pk is an integer, and

−m ≤ pk ≤ +m, k = 1, . . . , n.(17)

If β �= β′, then the pk are not all zero, thanks to (16). Suppose β > β′. Then,
by definition of the order relation >, there exists k̄, for which pk̄ ≥ 1, and
pk = 0 for k > k̄. Hence, in this case (15) and (17) show that

(17a)
∣∣F̂α,β

/
F̂α,β′

∣∣ =
∣∣Fα,β

/
Fα,β′

∣∣ · exp(−[p1τ1 + · · · + pk̄τk̄])

≤
∣∣Fα,β

/
Fα,β′

∣∣ · exp(−τk̄ + m
∑

1≤k<k̄

τk).

Estimates (17a) hold whenever Fα,β′ �= 0 and β > β′. In particular, taking
β′ = α, and recalling (0), we see that (9) holds, provided

τk̄ > m
∑

1≤k<k̄

τk for all k̄ = 1, . . . , n.(18)

To ensure that (18) holds, we introduce new variables t1, . . . , tn, and define
τ1, . . . , τn inductively by setting

τk̄ = m ·
∑

1≤k<k̄

τk + tk̄ for k̄ = 1, . . . , n.(19)
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If t1, · · · , tn > 0, then (18) holds, hence λ1, . . . , λn satisfy (9). Now, (19)
shows that

(τ1, . . . , τn) = (t1, . . . , tn)M,(20)

where M is a triangular n × n matrix, with integer entries, and with 1’s on
the main diagonal. The matrix M is determined by m and n. Hence, if
t1, . . . , tn are bounded above by a constant determined by C1, ā, m, n, then so
are τ1, . . . , τn, and therefore (3) will hold.

Thus, to complete the proof of Lemma 16.1, it is enough to find t1, . . . ,

tn > 0, bounded above by a constant determined by C1, ā, m, n, for which
λ1, . . . , λn satisfy (10). We return to (15), which we write in the form∣∣F̂αβ

/
F̂α,β′

∣∣ =
∣∣Fα,β/Fα,β′

∣∣ · exp(−�τ�p †) for β �= β′, Fα,β′ �= 0.(21)

Here, �τ = (τ1, . . . , τn) , and �p = (p1, . . . , pn) is a nonzero lattice point
determined by β and β′.

From (20) and (21), we obtain∣∣F̂α,β/F̂α,β′
∣∣ =

∣∣Fα,β

/
Fα,β′

∣∣ · exp(−�t�q †) for β �= β′, Fα,β′ �= 0,(22)

with �t = (t1, . . . , tn), and with �q = (q1, . . . , qn) = (p1, . . . , pn)M † a non-
zero lattice point determined by β, β′, m, n. In particular, (22) shows that
|F̂α,β/F̂α,β′ | /∈ [ā, ā−1], unless we have Fα,β �= 0, and∣∣q1t1 + · · · + qntn − ln |Fα,β/Fα,β′ |

∣∣ ≤ | ln ā|.(23)

Hence, to prove Lemma 16.1, it is enough to show that there exist positive
t1, . . . , tn, bounded by a constant determined by C1, ā, m, n, for which (23)
fails whenever α ∈ A, β and β′ ∈ M+, β �= β′, Fα,β′ �= 0, Fα,β �= 0.

Let T be a large positive number to be fixed later, and let QT =
{(t1, . . . , tn) ∈ Rn: Each ti belongs to (0, T )}

Thus, QT is a cube of volume Tn. On the other hand, suppose we fix
α ∈ A, β, β′ ∈ M+ with β �= β′ and Fα,β , Fα,β′ �= 0. Let (q1, . . . , qn) be the
nonzero lattice point in (23). Say, q� �= 0. Then, for each fixed (t1, . . . , t�−1,
t�+1, . . . , tn), the set of all t� for which (23) holds is an interval of length
2| ln ā|/|q�| ≤ 2| ln ā|. Consequently, the volume of the set of all (t1, . . . , tn)
∈ QT for which (23) holds is at most 2| ln ā| · Tn−1.

It follows that the set ΩT = {(t1, . . . , tn) ∈ QT : (23) holds for some
α ∈ A, β, β′ ∈ M+ with β �= β′, Fα,β �= 0, Fα,β′ �= 0} has volume at most
N ·2| ln ā| ·Tn−1, where N is the number of triples (α, β, β′) ∈ M×M+×M+

with β �= β′. Note that N is determined by m and n.
We now take T to be a constant, determined by ā, m, n, large enough to

satisfy Tn > N · 2| ln ā| · Tn−1.
Then the set QT �ΩT has positive volume. Picking (t1, . . . , tn) ∈ QT �ΩT ,

we see that the ti are positive and bounded above by a constant determined
by ā, m and n, and that (23) fails, whenever α ∈ A, β, β′ ∈ M+, β �= β′,
Fα,β �= 0, Fα,β′ �= 0. The proof of Lemma 16.1 is complete.
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17. Proof of Lemma 5.3

In this section, we give the proof of Lemma 5.3. We fix A ⊂ M, and
assume that the Weak Main Lemma holds for all Ā ≤ A. We must show that
the Strong Main Lemma holds for A. We may assume that the Weak Main
Lemma holds for all Ā ≤ A, with k# and a0 independent of Ā. (Although
each Ā ≤ A gives rise to its own k# and a0 , we may simply use the maximum
of all the k#, and the minimum of all the a0, arising in the Weak Main Lemma
for all Ā ≤ A.) Fix k# and a0 as in the Weak Main Lemma for Ā ≤ A.

If A is empty, then the weak and the strong main lemmas for A are
obviously equivalent. Hence we may assume that A is nonempty.

Let E, f, σ, y0, Pα(α ∈ A) satisfy the hypotheses of the Strong Main
Lemma for A. Without loss of generality, we may suppose

y0 = 0.(1)

We want to show that there exists an F ∈ Cm(Rn), satisfying the conclu-
sions (SL5, 6) of the Strong Main Lemma for A.

In this section, we say that a constant is controlled if it is determined by
C, m, n in the hypotheses (SL1, . . . , 4) of the Strong Main Lemma for A. We
write c, C ′, C ′′, C1, etc., to denote controlled constants. Also, we introduce
a small constant ā to be picked later. Initially, we do not assume that ā

is a controlled constant. We say that a constant is weakly controlled if it is
determined by ā together with C, m, n in (SL1, . . . , 4). We write c(ā), C(ā),
C ′(ā), etc., to denote weakly controlled constants. Note that the constants k#

and a0 are controlled. We assume that

ā is less than a small enough controlled constant.(2)

Our plan is simply to rescale E, f, σ, Pα using the linear map T : Rn → Rn,
defined by

T : (x̂1, . . . , x̂n) → (λ1x̂1, . . . , λnx̂n),(3)

for λ1, . . . , λn > 0 to be picked below. We define

Ê = T−1(E), f̂ = f ◦ T, σ̂ = σ ◦ T, P̂α = Pα ◦ T.(4)

Thus, Ê ⊂ Rn is a finite set, f̂ : Ê → R, σ̂ : Ê → (0,∞), and P̂α ∈ P for each
α ∈ A. Evidently,

(4a) ∂βP̂α(0) = λβ1
1 · · ·λβn

n ∂βPα(0) for α ∈ A, β = (β1, . . . , βn).

To pick λ1, . . . , λn, we appeal to Lemma 16.1, with

Fα,β = ∂βPα(0) for α ∈ A, |β| ≤ m − 1,(5)

and

Fα,β = 1 for α ∈ A, |β| = m.(6)
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Note that the hypotheses (16.0), (16.1), (16.2) of Lemma 16.1 hold, with C1

a controlled constant, thanks to (SL1), (SL2), and (1). Hence, Lemma 16.1
produces numbers λ1, . . . , λn, and a map φ : A → M, with the following
properties:

c(ā) < λi ≤ 1 for all i = 1, . . . , n.(7)

φ(α) ≤ α for each α ∈ A.(8)

For each α ∈ A, either φ(α) = α or φ(α) /∈ A.(9)

For any α ∈ A, β ∈ M with β �= φ(α), we have |∂βP̂α(0)|(10)

≤ ā|∂φ(α)P̂α(0)|.
For any α ∈ A, we have λβ1

1 · · ·λβn
n ≤ ā |∂φ(α)P̂α(0)| for(11)

β1 + · · · + βn = m.

Here, conclusions (10) and (11) follow from (16.6) and (4a), (5), (6). We fix
λ1, . . . , λn and φ, satisfying (7), . . . , (11).

Let Ŝ ⊂ Ê be given, with #(Ŝ) ≤ k#. Set S = T (Ŝ) ⊂ E, and apply
(SL3). Let ϕS

α(α ∈ A) be as in (SL3), and define ϕ̂Ŝ
α = ϕS

α ◦ T . For β =
(β1, . . . , βn) with |β| = m, we learn from (SL3a) and from (11) that

‖∂βϕ̂Ŝ
α‖C0(Rn) = λβ1

1 · · ·λβn
n ‖∂βϕS

α‖C0(Rn) ≤ Cā|∂φ(α)P̂α(0)|.
Also, (SL3)(b) and (c), together with (1) and (4), show that

|ϕ̂Ŝ
α(x̂)| ≤ Cσ̂(x̂) on Ŝ, and J0(ϕ̂Ŝ

α) = P̂α.

Thus:

Given Ŝ ⊂ Ê with #(Ŝ) ≤ k#, and given α ∈ A, there exists(12)

ϕ̂Ŝ
α ∈ Cm(Rn), with

(a) ‖∂mϕ̂Ŝ
α‖C0(Rn) ≤ Cā|∂φ(α)P̂α(0)|,

(b) |ϕ̂Ŝ
α(x̂)| ≤ Cσ̂(x̂) for all x̂ ∈ Ŝ,

and
(c) J0(ϕ̂Ŝ

α) = P̂α.

Similarly, let Ŝ ⊂ Ê be given, with #(Ŝ) ≤ k#. Set S = T (Ŝ) ⊂ E, and let FS

be as in (SL4). Then define F̂ Ŝ = FS ◦ T . For β = (β1, . . . , βn) with |β| ≤ m,

‖∂βF̂ Ŝ‖C0(Rn) = λβ1
1 · · ·λβn

n ‖∂βFS‖C0(Rn) ≤ Cλβ1
1 · · ·λβn

n (by (SL4a))

≤C (since each λj ≤ 1, by (7)).

Also, for x̂ ∈ Ŝ, we have |F̂ Ŝ(x̂) − f̂(x̂)| ≤ Cσ̂(x̂), thanks to (SL4b) and (4).
Thus:

Given Ŝ ⊂ Ê with #(Ŝ) ≤ k#, there exists F̂ Ŝ ∈ Cm(Rn),(13)

with ‖F̂ Ŝ‖Cm(Rn) ≤ C, and |F̂ Ŝ(x̂) − f̂(x̂)| ≤ Cσ̂(x̂) on Ŝ.
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Now define

Ā = φ(A),(14)

and let ψ : Ā → A satisfy

φ(ψ(ᾱ)) = ᾱ for ᾱ ∈ Ā.(15)

Note that

Ā ≤ A,(16)

by (8), (9), (14), and Lemma 3.3. For ᾱ ∈ Ā, define

P̃ᾱ = P̂ψ(ᾱ)

/
(∂ᾱP̂ψ(ᾱ)(0)).(17)

We check that the denominator in (17) is nonzero. In fact, (10) shows that
|∂βP̂α(0)| ≤ |∂φ(α) P̂α(0)| for any α ∈ A, β ∈ M. Taking β = α = ψ(ᾱ), and
recalling that ∂αPα(0) = 1 by (SL1), we see that

|∂ᾱP̂ψ(ᾱ)(0)| = |∂φ(α)P̂α(0)| ≥ |∂αP̂α(0)| = λα1
1 · · ·λαn

n |∂αPα(0)| = λα1
1 · · ·λαn

n .

Hence,

|∂ᾱP̂ψ(ᾱ)(0)| ≥ c′(ā) for all ᾱ ∈ Ā(18)

thanks to (7). In particular, ∂ᾱP̂ψ(ᾱ)(0) �= 0.
We derive the basic properties of the P̃ᾱ. From (10), with α = ψ(ᾱ), we

see that |∂βP̂ψ(ᾱ)(0)| ≤ ā |∂ᾱP̂ψ(ᾱ)(0)| for ᾱ ∈ Ā, β �= ᾱ, β ∈ M. Hence, (17)
gives

|∂βP̃ᾱ(0) − δβᾱ| ≤ ā for all ᾱ ∈ Ā, β ∈ M.(19)

Also, from (12), (17), (18), we see:

Given Ŝ ⊂ Ê with #(Ŝ) ≤ k#, and given ᾱ ∈ Ā, there exists(20)

ϕ̃Ŝ
ᾱ ∈ Cm(Rn), with

(a) ‖∂mϕ̃Ŝ
ᾱ‖C0(Rn) ≤ Cā,

(b) |ϕ̃Ŝ
ᾱ(x̂)| ≤ C(ā)σ̂(x̂) on Ŝ,

and
(c) J0(ϕ̃Ŝ

α̂) = P̃ᾱ.

(In fact, we just apply (12), with α = ψ(ᾱ) ∈ A, and put ϕ̃Ŝ
ᾱ = ϕ̂Ŝ

α /(∂ᾱP̂α(0)).)
Thanks to (19), the matrix (∂βP̃ᾱ(0))β,ᾱ∈Ā has an inverse Mα′ᾱ, with

|Mα′ᾱ − δα′ᾱ| ≤ C ′ā for all α′, ᾱ ∈ Ā.(21)

By definition, we have∑
α′∈Ā

∂βP̃α′(0) · Mα′ᾱ = δβᾱ for all β, ᾱ ∈ Ā.(22)
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Now define

P̄ᾱ =
∑
α′∈Ā

P̃α′Mα′ᾱ for all ᾱ ∈ Ā.(23)

Given Ŝ ⊂ Ê with #(S) ≤ k#, we let ϕ̃Ŝ
ᾱ be as in (20) (for all ᾱ ∈ Ā), and

define

ϕ̄Ŝ
ᾱ =

∑
α′∈Ā

ϕ̃Ŝ
α′Mα′ᾱ for all ᾱ ∈ Ā.(24)

From (22) and (23), we have

∂βP̄ᾱ(0) = δβᾱ for all β, ᾱ ∈ Ā.(25)

Also, (19), (21), (23) and (2) imply

|∂βP̄ᾱ(0) − δβᾱ| ≤ C ′′ā for all ᾱ ∈ Ā, β ∈ M.(26)

Given Ŝ ⊂ Ê with #(Ŝ) ≤ k#, and given ᾱ ∈ Ā, we conclude from (20(a)),
(21), (24), and (2), that

‖∂mϕ̄Ŝ
ᾱ‖C0(Rn) ≤ C ′′′ā.

From (20(b)), (21), (24), and (2), we obtain

|ϕ̄Ŝ
ᾱ(x̂)| ≤ C ′(ā) · σ̂(x̂) on Ŝ.

Comparing (23) with (24), and recalling (20(c)), we obtain

J0(ϕ̄Ŝ
ᾱ) = P̄ᾱ.

Thus:

Given ᾱ ∈ Ā and Ŝ ⊂ Ê with #(Ŝ) ≤ k#, there exists(27)

ϕ̄Ŝ
ᾱ ∈ Cm(Rn), with

(a) ‖∂mϕ̄Ŝ
ᾱ‖C0(Rn) ≤ C ′′′ā,

(b) |ϕ̄Ŝ
ᾱ(x̂)| ≤ C ′(ā) · σ̂(x̂) on Ŝ,

and
(c) J0(ϕ̄Ŝ

α) = P̄ᾱ.

We prepare to apply the Weak Main Lemma for Ā to the set Ê, the
functions f̂ , σ̂, the set Ā of multi-indices, the base point y0 = 0, and the
family of polynomials (P̄ᾱ)ᾱ∈Ā. We will check that the hypotheses of the Weak
Main Lemma hold, and that the constant called C in hypotheses (WL3, 4) is
weakly controlled. In fact, (WL1) is just (25); (WL2) is immediate from (2)
and (26), since a0 is a controlled constant; (WL3) (with a weakly controlled
constant) is immediate from (2) and (27) since a0 is controlled; and (WL4)
(with a controlled constant) is immediate from (13). Thus, the hypotheses of
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the Weak Main Lemma are satisfied. Since we are assuming the Weak Main
Lemma for Ā ≤ A, and since we know that Ā ≤ A (see (16)), we conclude
that there exists F̂ ∈ Cm(Rn), with

‖F̂‖Cm(Rn) ≤C1(ā), and(28)

|F̂ (x̂) − f̂(x̂)| ≤C1(ā) · σ̂(x̂) for all x̂ ∈ Ê ∩ B(0, c1(ā)).(29)

Now define F = F̂ ◦ T−1 on Rn. Since

‖∂βF‖C0(Rn) = λ−β1
1 · · ·λ−βn

n ‖∂βF̂‖C0(Rn) for β = (β1, . . . , βn),

estimates (28) and (7) imply

‖F‖Cm(Rn) ≤ C2(ā).(30)

Also from (7), we learn that x ∈ B(0, c2(ā)) for small enough c2(ā) implies
T−1x ∈ B(0, c1(ā)), with c1(ā) as in (29). Hence, (4) and (29) imply

|F (x) − f(x)| ≤ C2(ā) · σ(x) for all x ∈ E ∩ B(0, c2(ā)).(31)

Finally, let us fix ā to be a controlled constant, small enough to satisfy (2).
Then the constants c2(ā) and C2(ā) are determined entirely by C, m, n in
(SL1, . . . , 4). Hence, (30) and (31) are the conclusions of the Strong Main
Lemma for A.

Thus, the Strong Main Lemma holds for A. The proof of Lemma 5.3 is
complete.

18. Proofs of the theorems

We have now proven Lemmas 5.1, 5.2, and 5.3. As explained in Section 5,
these lemmas imply the Weak and Strong Main Lemma for all A ⊂ M, as
well as Local Theorem 1. In this section, we show that the Local Theorem 1
implies Theorems 1, 2, 3, which in turn trivially imply Theorems A, B, C. The
first step is as follows.

Lemma 18.1. Let m, n ≥ 1 be given. Then there exist constants k#, C1, c0,
depending only on m and n, for which the following holds: Suppose we are given
a finite set E ⊂ Rn, and functions f : E → R and σ : E → [0,∞).

Assume that, for any S ⊂ E with #(S) ≤ k#, there exists FS ∈ Cm(Rn),
with

‖FS‖Cm(Rn) ≤ 1 and |FS(x) − f(x)| ≤ σ(x) on S.

Then, for each y0 ∈ Rn, there exists F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ C1 and |F (x) − f(x)| ≤ C1σ(x) on E ∩ B(y0, c0).
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(This result differs from Local Theorem 1 of Section 5 in that we assume
merely that σ : E → [0,∞), not σ : E → (0,∞).)

Proof. Let k#, A, c′ be as in Local Theorem 1, and let E, f, σ satisfy the
hypotheses of Lemma 18.1. Let y0 ∈ Rn be given. For each ε > 0, set σε(x) =
σ(x) + ε for all x ∈ E. Then σε : E → (0,∞), and one checks trivially that
E, f, σε satisfy the hypotheses of Local Theorem 1. Hence, for each ε > 0, there
exists Fε ∈ Cm(Rn), with ‖Fε‖Cm(Rn) ≤ A, and |Fε(x) − f(x)| ≤ Aσ(x) + Aε

for all x ∈ E ∩ B(y0, c′).
For x ∈ E ∩ B(y0, c′), define

gε(x) =


(Fε(x) − f(x) − Aσ(x)) if Fε(x) > f(x) + Aσ(x)
(Fε(x) − f(x) + Aσ(x)) if Fε(x) < f(x) − Aσ(x)

0 otherwise

 .

For x ∈ E � B(y0, c′) set gε(x) = 0. Then we have |gε(x)| ≤ Aε for all x ∈ E,
and |Fε(x)−f(x)−gε(x)| ≤ Aσ(x) for all x ∈ E∩B(y0, c′). On the other hand,
since E is finite, there exists a constant Γ(E) with the following property:

Given a function g : E → Rn, there exists G ∈ Cm(Rn), with ‖G‖Cm(Rn) ≤
Γ(E) · max

x∈E
|g(x)|, and G = g on E.

Hence, there exists Gε ∈ Cm(Rn), with ‖Gε‖Cm(Rn) ≤ Γ(E) · Aε, and
Gε = gε on E. Taking ε < 1/Γ(E), and setting F = Fε − Gε, we find that
‖F‖Cm(Rn) ≤ A + Γ(E) · Aε ≤ 2A, and

|F (x) − f(x)| = |Fε(x) − f(x) − gε(x)| ≤ Aσ(x) on E ∩ B(y0, c′).

Thus, Lemma 18.1 holds, with C1 = 2A and c0 = c′.

Next, we pass from finite E to arbitrary E, and from Cm to Cm−1,1.

Lemma 18.2. Let m, n ≥ 1 be given. Then there exist constants k#, C2, c2,
depending only on m and n, for which the following holds.

Suppose we are given an arbitrary set E ⊂ Rn and functions f : E → R
and σ : E → [0,∞). Let y0 ∈ Rn. Assume that, for any S ⊂ E with #(S) ≤
k#, there exists FS ∈ Cm−1,1(Rn), with

‖FS‖Cm−1,1(Rn) ≤ 1, and |FS(x) − f(x)| ≤ σ(x) on S.(1)

Then there exists F ∈ Cm−1,1(Rn), with

‖F‖Cm−1,1(Rn) ≤ C2, and |F (x) − f(x)| ≤ C2σ(x) on E ∩ B(y0, c2).

Proof. Let k# be as in Lemma 18.1, and let S ⊂ E be given, with
#(S) ≤ k#. Then there exists a constant Γ(S), for which the following holds:

Given g : S → R, there exists G ∈ Cm(Rn), with ‖G‖Cm(Rn) ≤(2)

Γ(S) · max
x∈S

|g(x)|, and G = g on S.
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Let FS ∈ Cm−1,1(Rn) be as in (1), and let ε = 1/Γ(S). By convolving FS with
an approximate identity, we obtain a function FS

ε ∈ Cm(Rn), with

‖FS
ε ‖Cm(Rn) ≤ C̃‖FS‖Cm−1,1(Rn) and ‖FS

ε − FS‖C0(Rn) < ε.(3)

(Here, C̃ depends only on m and n.) From (1) and (3), we obtain

‖FS
ε ‖Cm(Rn) ≤ C̃ and |FS

ε (x) − f(x)| ≤ σ(x) + ε on S.(4)

Now define gS
ε on S by setting

gS
ε (x) =


FS

ε (x) − f(x) − σ(x) if FS
ε (x) − f(x) > σ(x)

FS
ε (x) − f(x) + σ(x) if FS

ε (x) − f(x) < −σ(x)
0 otherwise

 .

Thus,

max
x∈S

|gS
ε (x)| ≤ ε, and |FS

ε (x) − f(x) − gS
ε (x)| ≤ σ(x) on S,

thanks to (4). Applying (2) to gS
ε , we obtain a function GS

ε , with

‖GS
ε ‖Cm(Rn) ≤ Γ(S) · ε = 1, and |FS

ε − GS
ε − f | ≤ σ on S.

Setting F̃S = FS
ε − GS

ε , we learn the following:

Given S ⊂ E with #(S) ≤ k#, there exists F̃S ∈ Cm(Rn), with(5)

‖F̃S‖Cm(Rn) ≤ C ′, and |F̃S(x) − f(x)| ≤ σ(x) on S.

Here, C ′ depends only on m and n. In view of (5), we may apply Lemma 18.1
to any finite subset E1 ⊂ E. Thus, we obtain the following result.

Let E1 be any finite subset of E. Then there exists FE1 ∈ Cm(Rn), with(6)

‖FE1‖Cm(Rn) ≤ C ′′, and |FE1(x) − f(x)| ≤ C ′′σ(x) on E1 ∩ B(y0, c0).

Here, C ′′ and c0 depend only on m and n. Let B = B(y0, c0), and let

B = {F ∈ Cm−1,1(B) : ‖F‖Cm−1,1(B) ≤ C ′′′}, equipped with(7)

the Cm−1(B)-topology.

In (7), we take C ′′′ to be a large enough constant determined by m and n.
Hence, if we define

B(x) = {F ∈ B : |F (x) − f(x)| ≤ C ′′σ(x)} for each x ∈ E ∩ B,(8)

then (6) shows that
⋂

x∈E1

B(x) is nonempty, for any finite subset E1 ⊂ E ∩ B.

On the other hand, each B(x) is a closed subset of B, and B is compact,
by Ascoli’s theorem. Therefore, the intersection of B(x) over all x ∈ E ∩ B is
nonempty. Thus, there exists F̃ ∈ Cm−1,1(B), with

‖F̃‖Cm−1,1(B) ≤ C ′′′, and |F̃ (x) − f(x)| ≤ C ′′σ(x) for all x ∈ E ∩ B.

(9)
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The function F̃ is defined only on B = B(y0, c0). Therefore, we introduce
a cutoff function θ on Rn, satisfying

‖θ‖Cm(Rn) ≤ C#, 0 ≤ θ ≤ 1 on Rn, θ = 1 on B(y0, 1
2 c0), supp θ ⊂ B,

(10)

with C# determined by m and n. Defining F = θF̃ ∈ Cm−1,1(Rn), we learn
from (9) and (10) that

‖F‖Cm−1,1(Rn) ≤ C2, and |F (x) − f(x)| ≤ C2σ(x) on E ∩ B(y0, 1
2 c0),

(11)

with C2 and c0 depending only on m and n. However, (11) is the conclusion
of Lemma 18.2.

Proof of Theorem 1. Let E, f, σ be as in the hypotheses of Theorem 1,
and let C1, c0 be as in Lemma 18.1. We introduce a partition of unity.

1 =
∑

ν

θν on Rn, with(12)

0 ≤ θν ≤ 1, supp θν ⊂ B(yν , c0), ‖θν‖Cm(Rn) ≤ C,(13)

and with

any given x ∈ Rn belonging to at most C of the balls B(yν , c0).(14)

In (13) and (14), C denotes a constant depending only on m and n. Applying
Lemma 18.1, we obtain, for each ν, a function Fν ∈ Cm(Rn), with

‖Fν‖Cm(Rn) ≤ C1, and |Fν(x) − f(x)| ≤ C1σ(x) on E ∩ B(yν , c0).(15)

Define F =
∑
ν

θνFν . From (12),. . . ,(15), we obtain

‖F‖Cm(Rn) ≤ C ′,(16)

and

|F (x) − f(x)|= |
∑

ν

θν(x)[Fν(x) − f(x)]| ≤
∑

ν

θν(x)|Fν(x) − f(x)|(17)

≤
∑

ν

θν(x) · C1σ(x) = C1σ(x) on E.

(The constant C ′ in (16) depends only on m and n.)
The proof of Theorem 1 is complete.

Proof of Theorem 2. Let E, f, σ be as in the hypotheses of Theorem 2,
and let C2, c2 be as in Lemma 18.2. We introduce a partition of unity

1 =
∑

ν

θν on Rn, with(18)
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0 ≤ θν ≤ 1, supp θν ⊂ B(yν , c2), ‖θν‖Cm(Rn) ≤ C, and with(19)

any given x ∈ Rn belonging to at most C of the balls B(yν , c2).(20)

In (19) and (20), C denotes a constant depending only on m and n. Applying
Lemma 18.2, we obtain, for each ν, a function Fν ∈ Cm−1,1(Rn) with

‖Fν‖Cm−1,1(Rn) ≤ C2, and |Fν(x) − f(x)| ≤ C2σ(x) on E ∩ B(yν , c2).(21)

Define F =
∑
ν

θνFν . From (18), . . . , (21), we obtain

‖F‖Cm−1,1(Rn) ≤ C ′,(22)

and

|F (x) − f(x)|=
∣∣∣∣∣∑

ν

θν(x)[Fν(x) − f(x)]

∣∣∣∣∣ ≤ ∑
ν

θν(x)
∣∣Fν(x) − f(x)

∣∣(23)

≤
∑

ν

θν(x) · C2σ(x) = C2σ(x) on E.

(The constant C ′ in (22) depends only on m and n.)
The proof of Theorem 2 is complete.

Proof of Theorem 3. Suppose we are given E ⊂ Rn and f : E → Rn.
Assume that sup�x ‖f‖Cm(�x) < ∞. Then, for any subset S = {x1, . . . , xk} ⊂ E,
with k ≤ k#, we can assign polynomials PS

1 , . . . , PS
k of degree at most (m−1),

satisfying PS
i (xi) = f(xi),

|∂βPS
j (xj)| ≤ C and |∂β(PS

i − PS
j )(xj)| ≤ C|xi − xj |m−|β|

for |β| ≤ m − 1, i, j = 1, . . . , k, with C independent of the x1, . . . , xk.
Applying the Whitney extension theorem for Cm−1,1 (see [8], [9]) to S,

PS
1 , . . . , PS

k , we conclude that there exists a function FS ∈ Cm−1,1(Rn), with

Jxi
(FS) = PS

i (i = 1, . . . , k), and ‖FS‖Cm−1,1(Rn) ≤ C ′,

with C ′ independent of the x1, . . . , xk. In particular,

FS = f on S, and ‖FS‖Cm−1,1(Rn) ≤ C ′.(24)

We have achieved (24) for all S ⊂ E with #(S) ≤ k#. Hence, Theorem 2,
with σ ≡ 0, implies that there exists F ∈ Cm−1,1(Rn), with F = f on E.

On the other hand, suppose we are given E ⊂ Rn and and f : E → R, and
assume that f extends to a function F ∈ Cm−1,1(Rn). Now, for any subset
S = {x1, . . . , xk} ⊂ E, with k ≤ k#, we may simply set Pi = Jxi

(F ) for
i = 1, . . . , k, and then

Pi(xi) = f(xi), |∂βPi(xi)| ≤ C, |∂β(Pi − Pj)(xi)| ≤ C|xi − xj |m−|β|(25)

for |β| ≤ m − 1, i, j = 1, . . . , k, with C independent of x1, . . . , xk.
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Comparing (25) with the definition of ‖f‖Cm(�x), we conclude that ‖f‖Cm(�x)

≤ C ′, with C ′ independent of �x.
Thus, f extends to a Cm−1,1 function on Rn if and only if sup�x ‖f‖Cm(�x)

< ∞.
The proof of Theorem 3 is complete.

There is an analogue of Theorem 3 without taking σ ≡ 0. Also, Theorems
1, 2, 3 and the standard Whitney extension theorem trivially imply Theorems
A, B, C in the introduction. Details may be left to the reader.

19. A bound for k#

Our proof of Theorems 1, 2, 3 gives an explicit (wasteful) bound for k#.
In fact, when we start the main induction by proving Lemma 5.1, we take
k# = 1. Every time we apply Lemma 5.2 for monotonic A, the constant k#

grows by a factor of (D + 1)3. (See equation (15.5)). When we apply Lemma
5.2 for non-monotonic A, and when we apply Lemma 5.3 for arbitrary A, the
constant k# does not grow. Consequently, Theorems 1, 2, 3 hold, with

k# ≤ [(D + 1)3]N ,

where N is the number of monotonic subsets A ⊂ M. A trivial bound for N

is N ≤ 2D, since D is the number of elements of M. Thus,

k# ≤ (D + 1)3·2
D

.

Recall that D is the number of multi-indices (β1, . . . , βn), with β1 + · · ·+βn ≤
m − 1.

It would be interesting to determine the best possible values of k# in
Theorems 1, 2, 3.

Princeton University, Princeton, NJ
E-mail address: cf@math.princeton.edu
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