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Nonconventional ergodic averages
and nilmanifolds

By Bernard Host and Bryna Kra

Abstract

We study the L2-convergence of two types of ergodic averages. The first
is the average of a product of functions evaluated at return times along arith-
metic progressions, such as the expressions appearing in Furstenberg’s proof
of Szemerédi’s theorem. The second average is taken along cubes whose sizes
tend to +∞. For each average, we show that it is sufficient to prove the conver-
gence for special systems, the characteristic factors. We build these factors in
a general way, independent of the type of the average. To each of these factors
we associate a natural group of transformations and give them the structure of
a nilmanifold. From the second convergence result we derive a combinatorial
interpretation for the arithmetic structure inside a set of integers of positive
upper density.

1. Introduction

1.1. The averages. A beautiful result in combinatorial number theory is
Szemerédi’s theorem, which states that a set of integers with positive upper
density contains arithmetic progressions of arbitrary length. Furstenberg [F77]
proved Szemerédi’s theorem via an ergodic theorem:

Theorem (Furstenberg). Let (X,X , µ, T ) be a measure-preserving prob-
ability system and let A ∈ X be a set of positive measure. Then for every
integer k ≥ 1,

lim inf
N→∞

1
N

N∑
n=1

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0 .

It is natural to ask about the convergence of these averages, and more gen-
erally about the convergence in L2(µ) of the averages of products of bounded
functions along an arithmetic progression of length k for an arbitrary integer
k ≥ 1. We prove:
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Theorem 1.1. Let (X,X , µ, T ) be an invertible measure-preserving prob-
ability system, k ≥ 1 be an integer, and let fj, 1 ≤ j ≤ k, be k bounded
measurable functions on X. Then

lim
N→∞

1
N

N−1∑
n=0

f1(Tnx)f2(T 2nx) . . . fk(T knx)(1)

exists in L2(X).

The case k = 1 is the standard ergodic theorem of von Neumann. Fursten-
berg [F77] proved this for k = 2 by reducing to the case where X is an ergodic
rotation and using the Fourier transform to prove convergence. The existence
of limits for k = 3 with an added hypothesis that the system is totally ergodic
was shown by Conze and Lesigne in a series of papers ([CL84], [CL87] and
[CL88]) and in the general case by Host and Kra [HK01]. Ziegler [Zie02b] has
shown the existence in a special case when k = 4.

If one assumes that T is weakly mixing, Furstenberg [F77] proved that for
every k the limit (1) exists and is constant. However, without the assumption
of weak mixing one can easily show that the limit need not be constant and
proving convergence becomes much more difficult. Nonconventional averages
are those for which even if the system is ergodic, the limit is not necessarily
constant. This is the case for k ≥ 3 in Equation (1).

Some related convergence problems have also been studied by Bourgain
[Bo89] and Furstenberg and Weiss [FW96].

We also study the related average of the product of 2k −1 functions taken
along combinatorial cubes whose sizes tend to +∞. The general formulation of
the theorem is a bit intricate and so for clarity we begin by stating a particular
case, which was proven in [HK04].

Theorem. Let (X,X , µ, T ) be an invertible measure-preserving probabil-
ity system and let fj , 1 ≤ j ≤ 7, be seven bounded measurable functions on X.
Then the averages over (m, n, p) ∈ [M, M ′] × [N, N ′] × [P, P ′] of

f1(Tmx)f2(Tnx)f3(Tm+nx)f4(T px)f5(Tm+px)f6(Tn+px)f7(Tm+n+px)

converge in L2(µ) as M ′ − M, N ′ − N and P ′ − P tend to +∞.

Notation. For an integer k > 0, let Vk = {0, 1}k. The elements of Vk

are written without commas or parentheses. For ε = ε1ε2 . . . εk ∈ Vk and
n = (n1, n2, . . . , nk) ∈ Zk, we write

ε · n = ε1n1 + ε2n2 + · · · + εknk .

We use 0 to denote the element 00 . . . 0 of Vk and set V ∗
k = Vk \ {0}.

We generalize the above theorem to higher dimensions and show:
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Theorem 1.2. Let (X,X , µ, T ) be an invertible measure-preserving prob-
ability system, k ≥ 1 be an integer, and let fε, ε ∈ V ∗

k , be 2k − 1 bounded
functions on X. Then the averages

k∏
i=1

1

Ni−Mi

·
∑

n∈[M1,N1)×···×[Mk,Nk)

∏
ε∈V ∗

k

fε(T ε·nx)(2)

converge in L2(X) as N1 − M1, N2 − M2, . . . , Nk − Mk tend to +∞.

When restricting Theorem 1.2 to the indicator function of a measurable
set, we have the following lower bound for these averages:

Theorem 1.3. Let (X,X , µ, T ) be an invertible measure-preserving prob-
ability system and let A ∈ X . Then the limit of the averages

k∏
i=1

1

Ni−Mi

·
∑

n∈[M1,N1)×···×[Mk,Nk)

µ
( ⋂
ε∈Vk

T ε·nA
)

exists and is greater than or equal to µ(A)2
k

when N1 − M1, N2 − M2, . . . ,

Nk − Mk tend to +∞.

For k = 1, Khintchine [K34] proved the existence of the limit along with
the associated lower bound, for k = 2 this was proven by Bergelson [Be00],
and for k = 3 by the authors in [HK04].

1.2. Combinatorial interpretation. We recall that the upper density d(A)
of a set A ⊂ N is defined to be

d(A) = lim sup
N→∞

1
N

|A ∩ {1, 2, . . . , N}| .

Furstenberg’s theorem as well as Theorem 1.3 have combinatorial interpreta-
tions for subsets of N with positive upper density. Furstenberg’s theorem is
equivalent to Szemerédi’s theorem. In order to state the combinatorial coun-
terpart of Theorem 1.3 we recall the definition of a syndetic set.

Definition 1.4. Let Γ be an abelian group. A subset E of Γ is syndetic if
there exists a finite subset D of Γ such that E + D = Γ.

When Γ = Zd, this definition becomes: A subset E of Zd is syndetic if
there exist an integer N > 0 such that

E ∩
(
[M1, M1 + N ] × [M2, M2 + N ] × · · · × [Mk, Mk + N ]

)
�= ∅

for every M1, M2, . . . , Mk ∈ Z.

When A is a subset of Z and m is an integer, we let A + m denote the set
{a + m : a ∈ A}. From Theorem 1.3 we have:
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Theorem 1.5. Let A ⊂ Z with d(A) > δ > 0 and let k ≥ 1 be an integer.
The set of n = (n1, n2, . . . , nk) ∈ Zk so that

d
( ⋂
ε∈Vk

(A + ε · n)
)
≥ δ2k

is syndetic.

Both the averages along arithmetic progressions and along cubes are con-
cerned with demonstrating the existence of some arithmetic structure inside
a set of positive upper density. Moreover, an arithmetic progression can be
seen inside a cube with all indices nj equal. However, the end result is rather
different. In Theorem 1.5, we have an explicit lower bound that is optimal, but
it is impossible to have any control over the size of the syndetic constant, as
can be seen with elementary examples such as rotations. This means that this
result does not have a finite version. On the other hand, Szemerédi’s theorem
can be expressed in purely finite terms, but the problem of finding the optimal
lower bound is open.

1.3. Characteristic factors. The method of characteristic factors is classi-
cal since Furstenberg’s work [F77], even though this term only appeared explic-
itly more recently [FW96]. For the problems we consider, this method consists
in finding an appropriate factor of the given system, referred to as the char-
acteristic factor, so that the limit behavior of the averages remains unchanged
when each function is replaced by its conditional expectation on this factor.
Then it suffices to prove the convergence when this factor is substituted for the
original system, which is facilitated when the factor has a “simple” description.

We follow this general strategy, with the difference that we focus more on
the procedure of building characteristic factors than on the particular type of
average currently under study. A standard method for finding characteristic
factors is an iterated use of the van der Corput lemma, with the number of
steps increasing with the complexity of the averages. For each system and
each integer k, we build a factor in a way that reflects k successive uses of the
van der Corput lemma. This factor is almost automatically characteristic for
averages of the same “complexity”. For example, the k-dimensional average
along cubes has the same characteristic factor as the average along arithmetic
progressions of length k−1. Our construction involves the definition of a “cubic
structure” of order k on the system (see Section 3), meaning a measure on its
2kth Cartesian power. Roughly speaking, the factor we build is the smallest
possible factor with this structure (see Section 4).

The bulk of the paper (Sections 5–10), and also the most technical por-
tion, is devoted to the description of these factors. The initial idea is natural:
For each of these factors we associate the group of transformations which pre-
serve the natural cubic structure alluded to above (Section 5). This group is
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nilpotent. We then conclude (Theorems 10.3 and 10.5) that for a sufficiently
large (for our purposes) class of systems, this group is a Lie group and acts
transitively on the space. Therefore, the constructed system is a nilsystem. In
Section 11, we show that the cubic structure alluded to above has a simple
description for these systems.

Given this construction, we return to the original average along arith-
metic progressions in Section 12 and along cubes in Section 13 and show that
the characteristic factors of these averages are exactly those which we have
constructed. A posteriori, the role played by the nilpotent structure is not
surprising: for a k-step nilsystem, the (k + 1)st term T kx of an arithmetic
progression is constrained by the first k terms x, Tx, . . . , T k−1x. A similar
property holds for the combinatorial structure considered in Theorem 1.2.

Convergence then follows easily from general properties of nilmanifolds.
Finally, we derive a combinatorial result from the convergence theorems.

1.4. Open questions. There are at least two possible generalizations of
Theorem 1.1. The first one consists in substituting integer-valued polynomials
p1(n), p2(n), . . . , pk(n) for the linear terms n, 2n, . . . , kn in the averages (1).
With an added hypothesis, either that the system is totally ergodic or that all
the polynomials have degree > 1, we proved convergence of these polynomial
averages in [HK03]. The case that the system is not totally ergodic and at least
one polynomial is of degree one and some other has higher degree remains open.

Another more ambitious generalization is to consider commuting transfor-
mations T1, T2, . . . , Tk instead of T, T 2, . . . , T k. Characteristic factors for this
problem are unknown.

The question of convergence almost everywhere is completely different and
can not be addressed by the methods of this paper.

1.5. About the organization of the paper. We begin (§2) by introduc-
ing the notation relative to 2k-Cartesian powers. We have postponed to four
appendices some definitions and results needed, which do not have a natural
place in the main text. Appendix A deals with properties of Polish groups
and Lie groups, Appendix B with nilsystems, Appendix C with cocycles and
Appendix D with the van der Corput lemma. Most of the results presented in
these Appendices are classical.

2. General notation

2.1. Cubes. Throughout, we use 2k-Cartesian powers of spaces for an
integer k > 0 and need some shorthand notation.

Let X be a set. For an integer k ≥ 0, we write X [k] = X2k

. For k > 0, we
use the sets Vk introduced above to index the coordinates of elements of this
space, which are written x = (xε : ε ∈ Vk).
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When fε, ε ∈ Vk, are 2k real or complex valued functions on the set X,
we define a function

⊗
ε∈Vk

fε on X [k] by⊗
ε∈Vk

fε(x) =
∏
ε∈Vk

fε(xε) .

When φ : X → Y is a map, we write φ[k] : X [k] → Y [k] for the map given
by

(
φ[k](x)

)
ε

= φ(xε) for ε ∈ Vk.
We often identify X [k+1] with X [k] × X [k]. In this case, we write x =

(x′,x′′) for a point of X [k+1], where x′,x′′ ∈ X [k] are defined by

x′
ε = xε0 and x′′

ε = xε1

for ε ∈ Vk and ε0 and ε1 are the elements of Vk+1 given by

(ε0)j = (ε1)j = εj for 1 ≤ j ≤ k ; (ε0)k+1 = 0 and (ε1)k+1 = 1 .

The maps x 
→ x′ and x 
→ x′′ are called the projections on the first and second
side, respectively.

It is convenient to view Vk as indexing the set of vertices of the cube of
dimension k, making the use of the geometric words ‘side’, ‘face’, and ‘edge’
for particular subsets of Vk natural. More precisely, for 0 ≤ � ≤ k, J a subset
of {1, . . . , k} with cardinality k − � and η ∈ {0, 1}J , the subset

α = {ε ∈ Vk : εj = ηj for every j ∈ J}

of Vk is called a face of dimension � of Vk, or more succinctly, an �-face. Thus
Vk has one face of dimension k, namely Vk itself. It has 2k faces of dimension
k − 1, called the sides, and has k2k−1 faces of dimension 1, called edges. It
has 2k sides of dimension 0, each consisting in one element of Vk and called a
vertex. We often identify the vertex {ε} with the element ε of Vk.

Let α be an �-face of Vk. Enumerating the elements of α and of V� in
lexicographic order gives a natural bijection between α and V�. This bijection
maps the faces of Vk included in α to the faces of V�. Moreover, for every set
X, it induces a map from X [k] onto X [�]. We denote this map by ξ

[k]
X,α, or ξ

[k]
α

when there is no ambiguity about the space X. When α is any face, we call it
a face projection and when α is a side, we call it a a side projection. This is a
natural generalization of the projections on the first and second sides.

The symmetries of the cube Vk play an important role in the sequel. We
write Sk for the group of bijections of Vk onto itself which maps every face to a
face (of the same dimension, of course). This group is isomorphic to the group
of the ‘geometric cube’ of dimension k, meaning the group of isometries of Rk

preserving the unit cube. It is spanned by digit permutations and reflections,
which we now define.
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Definition 2.1. Let τ be a permutation of {1, . . . , k}. The permutation σ

of Vk given for ε ∈ Vk by(
σ(ε)

)
j

= ετ(j) for 1 ≤ j ≤ k

is called a digit permutation.
Let i ∈ {1, . . . k}. The permutation σ of Vk given for ε ∈ Vk by(

σ(ε)
)
j

= εj when j �= i and
(
σ(ε)

)
i
= 1 − εi

is called a reflection.

For any set X, the group Sk acts on X [k] by permuting the coordinates:
for σ ∈ Sk, we write σ∗ : X [k] → X [k] for the map given by(

σ∗(x)
)
ε

= xσ(ε) for every ε ∈ Vk .

When σ is a digit permutation (respectively, a reflection) we also call the
associated map σ∗ a digit permutation (respectively, a reflection).

2.2. Probability spaces. In general, we write (X, µ) for a probability
space, omitting the σ-algebra. When needed, the σ-algebra of the probability
space (X, µ) is written X . By a system, we mean a probability space (X, µ)
endowed with an invertible, bi-measurable, measure-preserving transformation
T : X → X and we write the system as (X, µ, T ).

For a system (X, µ, T ), we use the word factor with two different meanings:
it is either a T -invariant sub-σ-algebra Y of X or a system (Y, ν, S) and a
measurable map π : X → Y such that πµ = ν and S ◦ π = π ◦ T . We often
identify the σ-algebra Y of Y with the invariant sub-σ-algebra π−1(Y) of X .

All locally compact groups are implicitly assumed to be metrizable and
endowed with their Borel σ-algebras. Every compact group G is endowed with
its Haar measure, denoted by mG.

We write T = R/Z. We call a compact abelian group isomorphic to Td for
some integer d ≥ 0 a torus, with the convention that T0 is the trivial group.

Let G be a locally compact abelian group. By a character of G we mean
a continuous group homomorphism from G to either the torus T or the circle
group S1. The characters of G form a group Ĝ called the dual group of G. We
use either additive or multiplicative notation for Ĝ.

For a compact abelian group Z and t ∈ Z, we write (Z, t) for the prob-
ability space (Z, mZ), endowed with the transformation given by z 
→ tz. A
system of this kind is called a rotation.

3. Construction of the measures

Throughout this section, (X, µ, T ) denotes an ergodic system.

3.1. Definition of the measures. We define by induction a T [k]-invariant
measure µ[k] on X [k] for every integer k ≥ 0.
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Set X [0] = X, T [0] = T and µ[0] = µ. Assume that µ[k] is defined. Let I [k]

denote the T [k] invariant σ-algebra of (X [k], µ[k], T [k]). Identifying X [k+1] with
X [k] ×X [k] as explained above, we define the system (X [k+1], µ[k+1], T [k+1]) to
be the relatively independent joining of two copies of (X [k], µ[k], T [k]) over I [k].

This means that when fε, ε ∈ Vk+1, are bounded functions on X,∫
X [k+1]

⊗
ε∈Vk+1

fε dµ[k+1] =
∫

X [k]

E
(⊗

η∈Vk

fη0

∣∣I [k]
)
E

(⊗
η∈Vk

fη1

∣∣I [k]
)

dµ[k] .(3)

Since (X, µ, T ) is ergodic, I [1] is the trivial σ-algebra and µ[1] = µ × µ.
If (X, µ, T ) is weakly mixing, then by induction µ[k] is the 2k Cartesian power
µ⊗2k

of µ for k ≥ 1.
We now give an equivalent formulation of the definition of these measures.

Notation. For an integer k ≥ 1, let

µ[k] =
∫

Ωk

µ[k]
ω dPk(ω)(4)

denote the ergodic decomposition of µ[k] under T [k].

Then by definition

µ[k+1] =
∫

Ωk

µ[k]
ω × µ[k]

ω dPk(ω) .(5)

We generalize this formula. For k, � ≥ 1, the concatenation of an element
α of Vk with an element β of V� is the element αβ of Vk+�. This defines a
bijection of Vk × V� onto Vk+� and gives the identification(

X [k]
)[�] = X [k+�] .

Lemma 3.1. Let k, � ≥ 1 be integers and for ω ∈ Ωk, let (µ[k]
ω )[�] be the

measure built from the ergodic system (X [k], µ[k]
ω , T [k]) in the same way that

µ
[k]
ω was built from (X, µ, T ). Then

µ[k+�] =
∫

Ωk

(µ[k]
ω )[�] dPk(ω) .

Proof. By definition, µ
[k]
ω is a measure on X [k] and so (µ[k]

ω )[�] is a mea-
sure on (X [k])[�], which we identify with X [k+�]. For � = 1 the formula is
Equation (5). By induction assume that it holds for some � ≥ 1. Let Jω

denote the invariant σ-algebra of the system
(
(X [k])[�], (µ[k]

ω )[�], (T [k])[�]
)

=
(X [k+�], (µ[k]

ω )[�], T [k+�]).
Let f and g be two bounded functions on X [k+�]. By the Pointwise Ergodic

Theorem, applied for both the system (X [k+�], µ[k+�], T [k+�]) and

(X [k+�], (µ[k]
ω )[�], T [k+�]),
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for almost every ω the conditional expectation of f on I [k+�] (for µ[k+�]) is
equal (µ[k]

ω )[�]-almost everywhere to the conditional expectation of f on Jω (for
(µ[k]

ω )[�]). As the same holds for g, we have∫
f ⊗ g dµ[k+�+1] =

∫
X [k+�]

E(f | I [k+�]) · E(g | I [k+�]) dµ[k+�]

=
∫

Ωk

(∫
X [k+�]

E(f | I [k+�]) · E(g | I [k+�]) d(µ[k]
ω )[�]

)
dPk(ω)

=
∫

Ωk

(∫
X [k+�]

E(f | Jω) · E(g | Jω) d(µ[k]
ω )[�]

)
dPk(ω)

=
∫

Ωk

(∫
X [k+�+1]

f ⊗ g d(µ[k]
ω )[�+1]

)
dPk(ω) ,

where the last identity uses the definition of (µ[k]
ω )[�+1]. This means that

µ[k+�+1] =
∫

Ω
(µ[k]

ω )[�+1] dPk(ω).

3.2. The case k = 1. By using the well known ergodic decomposition of
µ[1] = µ × µ, these formulas can be written more explicitly for k = 1. The
Kronecker factor of the ergodic system (X, µ, T ) is an ergodic rotation and
we denote it by (Z1(X), t1), or more simply (Z1, t1). Let µ1 denote the Haar
measure of Z1, and πX,1 or π1, denote the factor map X → Z1. For s ∈ Z1,
let µ1,s denote the image of the measure µ1 under the map z 
→ (z, sz) from
Z1 to Z2

1 . This measure is invariant under T [1] = T × T and is a self-joining
of the rotation (Z1, t1). Let µs denote the relatively independent joining of µ

over µ1,s. This means that for bounded functions f and g on X,∫
Z×Z

f(x0)g(x1) dµs(x0, x1) =
∫

Z
E(f | Z1)(z) E(g | Z1)(sz) dµ1(z)(6)

where we view the conditional expectations relative to Z1 as functions defined
on Z1.

It is a classical result that the invariant σ-algebra I [1] of (X × X, µ × µ,

T × T ) consists in sets of the form{
(x, y) ∈ X × X : π1(x) − π1(y) ∈ A

}
,

where A ⊂ Z1. From this, it is not difficult to deduce that the ergodic decom-
position of µ × µ under T × T can be written as

µ × µ =
∫

Z1

µs dµ1(s) .(7)

In particular, for µ1-almost every s, the measure µs is ergodic for T × T . By
Lemma 3.1, for an integer � > 0 we have

µ[�+1] =
∫

Z1

(µs)[�] dµ1(s) .(8)
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Formula (5) becomes

µ[2] =
∫

Z1

µs × µs dµ1(s) .

When fε, ε ∈ V2, are four bounded functions on X, writing f̃ε = E(fε | Z1)
and viewing these functions as defined on Z1, by Equation (6) we have

(9)
∫

X4

⊗
ε∈V2

fε dµ[2]

=
∫∫∫

Z3
1

f̃00(z)f̃10(z +s1)f̃01(z +s2)f̃11(z +s1 +s2) dµ1(z) dµ1(s1) dµ1(s2) .

The projection under π
[2]
1 of µ[2] on Z

[2]
1 is the Haar measure µ

[2]
1 of the closed

subgroup
{(z, z + s1, z + s2, z + s1 + s2) : z, s1, s2 ∈ Z1}

of Z
[2]
1 = Z4

1 . We can reinterpret Formula (9): the system (X [2], µ[2], T [2]) is a
joining of four copies of (X, µ, T ), which is relatively independent with respect
to the corresponding 4-joining µ

[2]
1 of Z1.

3.3. The side transformations.

Definition 3.2. If α is a face of Vk with k ≥ 1, let T
[k]
α denote the trans-

formation of X [k] given by

(T [k]
α x)ε =

{
T (xε) for ε ∈ α

xε otherwise

and called a face transformation. When α is a side of Vk, we call T
[k]
α a side

transformation.
The sides are faces of dimension k−1 and we denote the group spanned by

the side transformations by T [k]
k−1. The subgroup spanned by those T

[k]
α where

α is a side not containing 0 is denoted by T [k]
∗ .

We note that T [k]
k−1 contains T [k] and is spanned by T [k] and T [k]

∗ .

Lemma 3.3. For an integer k ≥ 1, the measure µ[k] is invariant under
the group T [k]

k−1 of side transformations.

Proof. We proceed by induction. For k = 1 there are only two transfor-
mations, Id×T and T × Id, and µ[1] = µ × µ is invariant under both.

Assume that the result holds for some k ≥ 1. We consider first the side
α = {ε ∈ Vk+1 : εk+1 = 0}. Identifying X [k+1] with the Cartesian square of
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X [k], we have T
[k+1]
α = T [k] × Id[k]. Since T [k] leaves each set in I [k] invariant,

by the definition (3) of µ[k+1], this measure is invariant under T
[k]
α . The same

method gives the invariance under T
[k]
α′ , where α′ is the side opposite from α.

Any other side β of Vk+1 can be written as γ×{0, 1} for some side γ of Vk.
Under the identification of X [k+1] with X [k]×X [k], we have T

[k+1]
β = T

[k]
γ ×T

[k]
γ .

By the inductive hypothesis, the transformation T
[k]
γ leaves the measure µ[k]

invariant. Furthermore, it commutes with T [k] and so commutes with the
conditional expectation on I [k]. By the definition (3) of µ[k+1], this measure is
invariant under T

[k+1]
β .

Notation. Let J [k](X) = J [k] denote the σ-algebra of sets on X [k] that
are invariant under the group T [k]

∗ .

Proposition 3.4. On (X [k], µ[k]), the σ-algebra J [k] coincides with the
σ-algebra of sets depending only on the coordinate 0.

Proof. If α is a side not containing 0, then (T [k]
α x)0 = x0 for every x ∈ X [k].

Thus a subset of X [k] depending only on the coordinate 0 is obviously invariant
under the group T [k]

∗ and so belongs to J [k].
We prove the converse inclusion by induction. For k = 1, X [1] = X2, the

group T [k]
∗ contains Id×T and the result is obvious.

Assume the result holds for some k ≥ 1. Let F be a bounded function
on X [k+1] that is measurable with respect to the σ-algebra J [k+1]. Write x =
(x′,x′′) for a point of X [k+1], where x′,x′′ ∈ X [k]. Since (X [k+1], µ[k+1], T [k+1])
is a self-joining of (X [k], µ[k], T [k]), the function F (x) = F (x′,x′′) on X [k+1]

can be approximated in L2(µ[k+1]) by finite sums of the form∑
i

Fi(x′)Gi(x′′) ,

where Fi and Gi are bounded functions on X [k]. Since T
[k+1]
k+1 = Id[k] ×T [k] is

one of the side transformations of X [k+1], it leaves F invariant and by passing
to ergodic averages, we can assume that each of the functions Gi is invariant
under T [k]. Thus, by the construction of µ[k+1], for all i, Gi(x′) = Gi(x′′) for
µ[k+1]-almost every (x′,x′′). Therefore the above sum is equal µ[k+1]-almost
everywhere to a function depending only on x′. Passing to the limit, there
exists a bounded function H on X [k] such that F (x) = H(x′) µ[k+1]-almost
everywhere.

Under the natural embedding of Vk in Vk+1 given by the first side, each
side of Vk is the intersection of a side of Vk+1 with Vk. Since F is invariant
under T [k+1]

∗ , H is also invariant under T [k]
∗ and thus is measurable with respect

to J [k]. By the induction hypothesis, H depends only on the 0 coordinate.
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Corollary 3.5. (X [k], µ[k]) is ergodic for the group of side transforma-
tions T [k]

k−1.

Proof. A subset A of X [k] invariant under the group T [k]
k−1 is also invariant

under the group T [k]
∗ . Thus its characteristic function is equal almost every-

where to a function depending only on the 0 coordinate. Since A is invariant
under T [k], this last function is invariant under T and so is constant.

Since the side transformations commute with T [k], they induce measure-
preserving transformations on the probability space (Ωk, Pk) introduced in (4),
which we denote by the same symbols. From the last corollary, this immedi-
ately gives:

Corollary 3.6. (Ωk, Pk) is ergodic under the action of the group T [k]
∗ .

3.4. Symmetries.

Proposition 3.7. The measure µ[k] is invariant under the transforma-
tion σ∗ for every σ ∈ Sk.

We note that σ∗ commutes with T [k] for every σ ∈ Sk.

Proof. First we show by induction that µ[k] is invariant under reflections.
For k = 1 the map (x0, x1) 
→ (x1, x0) is the unique reflection and it leaves

the measure µ[1] = µ × µ invariant.
Assume that for some integer k ≥ 1, the measure µ[k] is invariant under all

reflections. For 1 ≤ j ≤ k + 1, let Rj be the reflection of X [k+1] corresponding
to the digit j. If j < k+1, Rj can be written Sj ×Sj , where Sj is the reflection
of X [k] for the digit j. Since µ[k] is invariant under Sj , by construction µ[k+1]

is invariant under Rj . The reflection Rk+1 simply exchanges the two sides
of X [k+1] and by construction of the measures, it leaves the measure µ[k+1]

invariant.
Next we show that µ[k] is invariant under digit permutations. For k = 1

there is no nontrivial digit permutation and so nothing to prove. For
k = 2, there is one nontrivial digit permutation, the map (x00, x01, x10, x11) 
→
(x00, x10, x01, x11). By Formula (9), µ[2] is invariant under this map.

Assume that for some integer k ≥ 2, the measure µ[k] is invariant under all
digit permutations. The group of permutations of {1, . . . , k, k+1} is spanned by
the permutations leaving k+1 fixed and the transposition (k, k+1) exchanging
k and k + 1.

Consider first the case of a permutation of {1, . . . , k, k + 1} leaving k + 1
fixed. The corresponding transformation R of X [k+1] = X [k] × X [k] can be
written as S × S, where S is a digit permutation of X [k] and so leaves µ[k]

invariant. By construction, µ[k+1] is invariant under R.
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Next consider the case of the transformation R of X [k+1] associated to the
permutation (k, k + 1). By the ergodic decomposition of Formula (4) of µ[k−1]

and Equation (5) for k−1, the measure (µ[k−1]
ω )[2] (as a measure on (X [k−1])[2])

is invariant by the transposition of the two digits. Thus, when we consider the
same measure as a measure on X [k+1], it is invariant under R. The integral,
µ[k+1], is invariant under R and therefore µ[k+1] is invariant under all digit
permutations.

Corollary 3.8. The image of µ[k] under any side projection X [k] →
X [k−1] is µ[k−1].

Proof. By construction of µ[k], the result holds for the side projection
associated to the side {ε ∈ Vk : εk = 0} of Vk. The result for the other side
projections follows immediately from Proposition 3.7.

3.5. Some seminorms. We define and study some seminorms on L∞(µ).
When X is Z/NZ for some integer N > 0 and is endowed with the transfor-
mation n 
→ n + 1 mod N , these seminorms are the same as those used by
Gowers in [G01], although the contexts are very different.

For simplicity, we mostly consider real-valued functions.
Fix k ≥ 1. For a bounded function f on X, by the definition (3) of µ[k]:∫
X [k]

∏
ε∈Vk

f(xε) dµ[k](x) =
∫

X [k−1]

(
E

( ∏
η∈Vk−1

f(xη) | I [k−1]
))2

dµ[k−1] ≥ 0

and so we can define

|||f |||k =
(∫ ⊗

ε∈Vk

f dµ[k]
)1/2k

(10)

=
(∫

X [k−1]

(
E

( ∏
η∈Vk−1

f(xη) | I [k−1]
))2

dµ[k−1]
)1/2k

.

Lemma 3.9. Let k ≥ 1 be an integer.

(1) When fε, ε ∈ Vk, are bounded functions on X,∣∣∣∣∣
∫ ⊗

ε∈Vk

fε dµ[k]

∣∣∣∣∣ ≤ ∏
ε∈Vk

|||fε|||k .

(2) ||| · |||k is a seminorm on L∞(µ).

(3) For a bounded function f , |||f |||k ≤ |||f |||k+1.
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Proof. (1) Using the definition of µ[k], the Cauchy-Schwarz inequality and
again using definition of µ[k],

(∫ ⊗
ε∈Vk

fε dµ[k]
)2

≤
∥∥∥E

( ⊗
η∈Vk−1

fη0|I [k−1]
)∥∥∥2

L2(µ[k−1])
·
∥∥∥E

( ⊗
η∈Vk−1

fη1|I [k−1]
)∥∥∥2

L2(µ[k−1])

=
(∫ ⊗

ε∈Vk

gε dµ[k]
)
·
(∫ ⊗

ε∈Vk

hε dµ[k]
)

where the functions gε and hε are defined for η ∈ Vk−1 by gη0 = gη1 = fη0 and
hη0 = hη1 = fη1. For each of these two integrals, we permute the digits k − 1
and k and then use the same method. Thus

(∫ ⊗
ε∈Vk

fε dµ[k]
)4 is bounded

by the product of 4 integrals. Iterating this procedure k times, we have the
statement.

(2) The only nontrivial property is the subadditivity of ||| · |||k. Let f and
g be bounded functions on X. Expanding |||f + g|||2k

, we get the sum of 2k

integrals. Using part (1) to bound each of them, we have the subadditivity.

(3) For a bounded function f on X,

|||f |||2k+1

k+1 =
∥∥∥E

(⊗
η∈Vk

f | I [k]
)∥∥∥2

L2(µ[k])
≥

(∫ ⊗
η∈Vk

f dµ[k]
)2

= |||f |||2k+1

k .

From part (1) of this lemma, and the definition (3) of µ[k+1], we have:

Corollary 3.10. Let k ≥ 1 be an integer and let fε, ε ∈ Vk, be bounded
functions on X. Then∥∥∥E

(⊗
ε∈Vk

fε | I [k]
)∥∥∥

L2(µ[k])
≤

∏
ε∈Vk

|||fε|||k+1 .

In a few cases we also need the seminorm for a complex-valued function
and so introduce notation for its definition. Write C : C → C for the conjugacy
map z 
→ z̄. Thus Cmz = z for m even and is z̄ for m odd. The definition of
the seminorm becomes

|||f |||k =
(∫ ⊗

ε∈Vk

C |ε|f dµ[k]
)1/2k

.(11)

Similar properties, with obvious modifications, hold for this seminorm.
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4. Construction of factors

4.1. The marginal (X [k]∗ , µ[k]∗). We continue to assume that (X, µ, T ) is
an ergodic system, and let k ≥ 1 be an integer.

We consider the 2k − 1-dimensional marginals of µ[k]. For simplicity, we
consider first the marginal obtained by ‘omitting’ the coordinate 0. The other
cases are similar.

Recall that V ∗
k = Vk \ {0}. Consider a point x ∈ X [k] as a pair (x0, x̃),

with x0 ∈ X and x̃ = (xε ; ε ∈ V ∗
k ) ∈ X [k]∗ . Let µ[k]∗ denote the measure on

X [k]∗ , which is the image of µ[k] under the natural projection x 
→ x̃ from X [k]

onto X [k]∗ .
We recall that (X [k], µ[k]) is endowed with the measure-preserving action

of the groups T [k]
∗ and T [k]

k−1. The first action is spanned by the transformations

T
[k]
α for α a side not containing 0 and the second action is spanned by T [k] and

T [k]
∗ . By Corollary 3.5, µ[k] is ergodic for the action of T [k]

k−1.

All the transformations belonging to T [k]
k−1 factor through the projection

X [k] → X [k]∗ and induce transformations of X [k]∗ preserving µ[k]∗ . This defines
a measure-preserving action of the group T [k]

k−1 and of its subgroup T [k]
∗ on X [k]∗ .

The measure µ[k]∗ is ergodic for the action of T [k]∗

k−1 .

On the other hand, all the transformations belonging to T [k]
k−1 factor through

the projection x 
→ x0 from X [k] to X, and induce measure-preserving trans-
formations of X. The transformation T [k] induces the transformation T on X,
and each transformation belonging to T [k]

∗ induces the trivial transformation
on X. This defines a measure-preserving ergodic action of the group T [k]

k−1 on

X, with a trivial restriction to the subgroup T [k]
∗ .

Thus we can consider (in a second way) µ[k] as a joining between two
systems. The first system is (X [k]∗ , µ[k]∗), and the second (X, µ), both endowed
with the action of the group T [k]

k−1.
Let I [k]∗ denote the σ-algebra of T [k]-invariant sets of (X [k]∗ , µ[k]) and

J [k]∗ denote the σ-algebra of subsets of X [k]∗ which are invariant under the
action of T [k]

∗ .

4.2. The definition of the factors Zk. Let A ⊂ X [k]∗ belong to the
σ-algebra J [k]∗ . A is invariant under the action of the group T [k]

∗ and thus
the subset X × A of X [k] is invariant under T [k]

∗ . By Proposition 3.4, this set
depends only on the first coordinate. This means that there exists a subset
B of X with X × A = B × X [k]∗ , up to a subset of X [k] of µ[k]-measure zero.
That is,

1A(x̃) = 1B(x0) for µ[k]-almost every x = (x0, x̃) ∈ X [k] .(12)
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It is immediate that if a subset A of X [k]∗ satisfies Equation (12) for some
B ⊂ X, then it is invariant under T [k]

∗ and thus measurable with respect
to J [k]∗ . Moreover, the subsets B of X corresponding to a subset A ∈ J [k]∗ in
this way form a sub-σ-algebra of X . We define:

Definition 4.1. For an integer k ≥ 1, Zk−1(X) is the σ-algebra of subsets
B of X for which there exists a subset A of X [k]∗ so that Equation (12) is
satisfied.

In the sequel, we often identify the σ-algebras Zk−1(X) and J [k]∗(X), by
identifying a subset B of X belonging to Zk−1(X) with the corresponding set
A ∈ J [k]∗ .

The σ-algebra Zk−1 is invariant under T and so defines a factor of (X, µ, T )
written (Zk−1(X), µk, T ), or simply (Zk−1, µk, T ) or even Zk−1. The factor map
X 
→ Zk−1(X) is written πX,k−1 or πk−1.

As X [1]∗ = X, the σ-algebra J [1] is trivial and Z0(X) is the trivial factor.
We have already used the notation Z1(X) for the Kronecker factor and

we check now that the two definitions of Z1(X) coincide. For the moment,
let Z denote the Kronecker factor of X and let π : X → Z be the natural
projection. By Formula (9), we have µ[2]∗ = µ×µ×µ and J [2]∗ is the algebra
of sets which are invariant under T × Id×T and Id×T × T . By classical
arguments, J [2]∗ is measurable with respect to Z ×Z ×Z, and more precisely
J [2]∗ = Φ−1(Z), where the map Φ: X [2]∗ → Z is given by Φ(x01, x10, x11) =
π(x01)−π(x10) +π(x11). But µ[2] is concentrated on the set {x : x00 = Φ(x̃)}.
This is exactly the situation described above, with Z1 = Z.

Lemma 4.2. For an integer k ≥ 1, (X [k], µ[k]) is the relatively independent
joining of (X, µ) and (X [k]∗ , µ[k]∗) over Zk−1 when identified with J [k]∗.

Proof. Let f be a bounded function on X and g be a bounded function on
X [k]∗ . Since µ[k] is invariant under the group T [k]

k−1, for integers n1, n2, . . . , nk

we have∫
f(x0)g(x̃) dµ[k](x) =

∫
f(x0)g

(
(T [k]

1 )n1(T [k]
2 )n2 . . . (T [k]

k )nk x̃
)
dµ[k](x) ,

where T
[k]
1 , T

[k]
2 , . . . , T

[k]
k denote the k generators of T [k]

∗ . Thus, by averaging
and taking the limit

∫
f(x0)g(x̃) dµ[k](x) =

∫
f(x0)E(g | J [k]∗)(x̃) dµ[k](x)

(13)

=
∫

E(f | Zk−1)(x0)E(g | J [k]∗)(x̃) dµ[k](x) .
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Lemma 4.3. Let f be a bounded function on X. Then

E(f | Zk−1) = 0 ⇐⇒ |||f |||k = 0 .

Proof. Assume that E(f | Zk−1) = 0. By Equation (13) applied with
g(x̃) =

∏
ε∈V ∗

k

f(xε), we have |||f |||k = 0 by definition (10) of the seminorm.

Conversely, assume that |||f |||k = 0. By Lemma 3.9, for every choice of fε,
ε ∈ V ∗

k , ∫
X [k]

f(x0)
∏

ε∈V ∗
k

fε(xε) dµ[k](x) = 0 .

By density, the function x 
→ f(x0) is orthogonal in L2(µ[k]) to every function
defined on X [k]∗ , and in particular to every function measurable with respect to
J [k]∗ . But this means that f is orthogonal in L2(µ) to every Zk−1-measurable
function and so E(f | Zk−1) = 0.

Corollary 4.4. The factors Zk(X), k ≥ 1, form an increasing sequence
of factors of X.

4.3. Taking factors. Let p : (X,X , µ, T ) → (Y,Y, ν, T ) be a factor map.
We can associate to Y the space Y [k] and the measure ν[k] in the same way
that X [k] and µ[k] are associated to X in Section 3. This induces a natural
map p[k] : X [k] → Y [k], commuting with the transformations T [k] and the group
T [k]

k−1.

Lemma 4.5. Let p : (X, µ, T ) → (Y, ν, T ) be a factor map and let k ≥ 1
be an integer.

(1) The map p[k] : (X [k], µ[k], T [k]) → (Y [k], ν[k], T [k]) is a factor map.

(2) For a bounded function f on Y , |||f |||k = |||f◦p|||k, where the first seminorm
is associated to Y and the second one to X.

Proof. (1) Clearly p[k] commutes with the transformation T [k] and so it
suffices to show that the image of µ[k] under p[k] is ν[k]. We prove this statement
by induction. The result is obvious for k = 0 and so assume it holds for some
k ≥ 0. Let fε, ε ∈ Vk, be bounded functions on Y . Since p[k] is a factor map,
it commutes with the operators of conditional expectation on the invariant
σ-algebras and we have

E
((⊗

ε∈Vk

fε

)
◦ p[k]

∣∣I [k](X)
)

= E
(⊗

ε∈Vk

fε

∣∣I [k](X)
)
◦ p[k] .

The statement for k +1 follows from the definitions of the measures µ[k+1] and
ν[k+1].
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(2) This follows immediately from the first part and the definitions of the
seminorms.

Proposition 4.6. Let p : (X, µ, T ) → (Y, ν, T ) be a factor map and let
k ≥ 1 be an integer. Then p−1(Zk−1(Y )) = Zk−1(X) ∩ p−1(Y).

Using the identification of the σ-algebras Y and p−1(Y), this formula is
then written

Zk−1(Y ) = Zk−1(X) ∩ Y .

Proof. For k = 1 there is nothing to prove. Let k ≥ 2 and let p[k]∗ : X [k]∗ →
Y [k]∗ denote the natural map. By Lemma 4.5, it is a factor map. Let f be
a bounded function on X that is measurable with respect to p−1(Zk−1(Y )).
Then f = g ◦ p for some function g on Y which is measurable with respect
to Zk−1(Y ). There exists a function F on Y [k]∗ , measurable with respect
to J [k]∗ , so that g(y0) = F (ỹ) for ν[k]-almost every y = (y0, ỹ) ∈ Y [k]. Thus
g◦p(x0) = F ◦p[k]∗(x̃) for µ[k]-almost every x = (x0, x̃) ∈ X [k] and the function
f = g ◦ p is measurable with respect to Zk−1(X). We have p−1(Zk−1(Y )) ⊂
Zk−1(X) ∩ p−1(Y).

Conversely, assume that f is a bounded function on X, measurable with re-
spect to Zk−1(X)∩p−1(Y). Then f = g ◦p for some g on Y . Write g = g′+g′′,
where g′ is measurable with respect to Zk−1(Y ) and E(g′′ | Zk−1(Y )) = 0.
By the first part, g′ ◦ p is measurable with respect to Zk−1(X). By Lemma 4.3
and Part (2) of Lemma 4.5, |||g′′|||k = 0 and so |||g′′ ◦ p|||k = 0 and
E(g′′ ◦ p | Zk−1(X)) = 0. Since f = g′ ◦ p + g′′ ◦ p is measurable with re-
spect to Zk−1(X), we have g′′ ◦ p = 0. Thus g′′ = 0 and g is measurable with
respect to Zk−1(Y ).

4.4. The factor Z
[k]
� of X [k]. We apply this to the factors Z� = Z�(X) of X.

For integers k, � ≥ 1, (Z [k]
� , µ

[k]
� , T [k]) is the 2k-dimensional system associated

to (Z�, µ�, T ) in the same way that (X [k], µ[k], T [k]) is associated to (X, µ, T ).
The map π

[k]
� : X [k] → Z

[k]
� is a factor map and Zk(Z�(X)) = Zk(X) ∩ Z�(X).

Since the sequence {Zk} is increasing,

Zk(Z�(X)) =

{
Zk(X) if k ≤ �

Z�(x) otherwise .
(14)

Proposition 4.7. Let k ≥ 1 be an integer.

(1) As a joining of 2k copies of (X, µ), (X [k], µ[k]) is relatively independent
over the joining (Z [k]

k−1, µ
[k]
k−1) of 2k copies of (Zk−1, µk−1).

(2) Zk is the smallest factor Y of X so that the σ-algebra I [k] is measurable
with respect to Y [k].
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Proof. (1) The statement is equivalent to showing, whenever fε, ε ∈ Vk,
are bounded functions on X,∫

X [k]

⊗
ε∈Vk

fε dµ[k] =
∫

Z
[k]
k−1

⊗
ε∈Vk

E(fε | Zk−1) dµ
[k]
k−1 .(15)

It suffices to show that ∫
X [k]

⊗
ε∈Vk

fε dµ[k] = 0(16)

whenever E(fη | Zk−1) = 0 for some η ∈ Vk. By Lemma 4.3, if E(fη | Zk−1)
= 0, we have that |||fη|||k = 0. Lemma 3.9 implies equality (16).

(2) Let fε, ε ∈ Vk, be bounded functions on X. We claim that

E
(⊗

ε∈Vk

fε | I [k]
)

= E
(⊗

ε∈Vk

E(fε | Zk) | I [k]
)

.(17)

As above, it suffices to show this holds when E(fη | Zk) = 0 for some η ∈ Vk.
By Lemma 4.3, this condition implies that |||fη|||k+1 = 0. By Corollary 3.10,
the left hand side of Equation (17) is equal to zero and the claim follows.

Every bounded function on X [k] which is measurable with respect to
I [k] can be approximated in L2(µ[k]) by finite sums of functions of the form
E(

⊗
ε∈Vk

fε | I [k]) where fε, ε ∈ Vk, are bounded functions on X. By Equa-
tion (17), one can assume that these functions are measurable with respect
to Zk. In this case,

⊗
ε∈Vk

fε is measurable with respect to Z [k]
k (recall that

π
[k]
k : X [k] → Z

[k]
k is a factor map by Part (1) of Lemma 4.5). Since this

σ-algebra is invariant under T [k], E(
⊗

ε∈Vk
fε | I [k]) is also measurable with

respect to Z [k]
k . Therefore I [k] is measurable with respect to Z [k]

k .
We use induction to show that Zk is the smallest factor of X with this

property. For k = 0, I [0] and Z0 are both the trivial factor of X and there is
nothing to prove. Let k ≥ 1 and assume that the result holds for k − 1.

Let Y be a factor of X so that I [k] is measurable with respect to Y [k].
For any bounded function f on X with E(f | Y) = 0, we have to show that
E(f | Zk) = 0.

By projecting on the first 2k−1 coordinates, I [k−1] is measurable with
respect to Y [k−1]. By the induction hypothesis, Y ⊃ Zk−1. Since µ[k] is a
relatively independent joining over Z

[k]
k−1, it is a relatively independent joining

over Y [k]. This implies that when fε, ε ∈ Vk, are bounded functions on X,

E(
⊗
ε∈Vk

fε | Y [k]) =
⊗
ε∈Vk

E(fε | Y) .
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We apply this with fε = f for all ε. The function x 
→
∏

ε∈Vk
f(xε) has

zero conditional expectation with respect to Y [k]. By hypothesis, it has zero
conditional expectation with respect to I [k]. By the definition (10) of the
seminorm, |||f |||k+1 = 0 and by Lemma 4.3, E(f | Zk) = 0.

4.5. More about the marginal µ[k]∗. The results of this subsection are used
only in Section 13, in the study of the second kind of averages.

Lemma 4.8. Let k ≥ 2 and fε, ε ∈ Vk, be 2k bounded functions on X. If
there exists η ∈ Vk so that fη is measurable with respect to Zk−2 and if there
exists ζ ∈ Vk so that E(fζ | Zk−2) = 0, then

∫ ⊗
ε∈Vk

fε dµ[k] = 0.

Proof. If η = ζ, then fη = fζ = 0 and the result is obvious.
Consider first the case that (η, ζ) is an edge of Vk. Without loss of gen-

erality, we can assume that for some j, ηj = 0 and ζj = 1 and that ηi = ζi

for i �= j. We proceed as in the proof of Lemma 3.9, but stop the itera-
tion of the Cauchy-Schwarz inequality one step earlier. This gives a bound of
(
∫ ⊗

ε∈Vk
fε dµ[k])2

k−1
by a product of 2k−1 integrals, with one of them being

∫ ∏
ε∈Vk

εj=0

fη(xε) ·
∏
ε∈Vk

εj=1

fζ(xε) dµ[k](x)

=
∫

E(
⊗

ε∈Vk−1

fη | I [k−1]) · E(
⊗

ε∈Vk−1

fζ | I [k−1]) dµ[k−1] .

The conditional expectation with respect to I [k−1] commutes with the condi-
tional expectation with respect to Z [k−1]

k−2 . The function
⊗

ε∈Vk−1
fη is mea-

surable with respect to Z [k−1]
k−2 and thus the first conditional expectation in

the above integral is measurable with respect to this factor. Since µ[k−1] is
relatively independent over Z [k−1]

k−2 , we have E(
⊗

ε∈Vk−1
fζ | Z [k−1]

k−2 ) = 0 and

the conditional expectation with respect to Z [k−1]
k−2 of the second term in the

integral is 0. Therefore the integral is zero.
Now consider the general case. Choose a sequence η = η1, η2, . . . , ηm = ζ

in Vk so that (η�, η�+1) is an edge for each �. Make a series of changes in
the integral

∫ ⊗
ε∈Vk

fε dµ[k], substituting successively E(fη2 | Zk−2) for fη2 ,
E(fη3 | Zk−2) for fη3 , . . . , and E(fηm

| Zk−2) for fηm
= fζ . By the previous

case, each of these substitutions leaves the value of the integral unchanged.
After the last substitution, the integral is obviously 0.

Proposition 4.9. (1) For every integer k ≥ 2, the measure µ[k]∗ is the
relatively independent joining of 2k − 1 copies of µ over Z [k]∗

k−2.
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(2) For every integer k ≥ 1, the σ-algebra I [k]∗ is measurable with respect to
Z [k]∗

k−1.

(3) For every integer k ≥ 1, the σ-algebra J [k]∗ is measurable with respect to
Z [k]∗

k−1.

Proof. (1) Let fε, ε ∈ V ∗
k , be bounded functions on X and assume that

E(fζ | Zk−2) = 0 for some ζ ∈ V ∗
k . Set f0 = 1. By Lemma 4.8,∫ ⊗

ε∈V ∗
k

fε dµ[k]∗ =
∫ ⊗

ε∈Vk

fε dµ[k] = 0 .

(2) Let fε, ε ∈ V ∗
k , be bounded functions on X and assume that

E(fζ | Zk−1) = 0 for some ζ ∈ V ∗
k . Define f0 = 1 and 2k functions on X

by gε0 = gε1 = fε for ε ∈ Vk. Then∫
E(

⊗
ε∈V ∗

k

fε | I [k]∗)2 dµ[k]∗ =
∫

E(
⊗
ε∈Vk

fε | I [k])2 dµ[k]

=
∫ ⊗

η∈Vk+1

gη dµ[k+1] = 0

by Lemma 4.8, and the result follows.

(3) Let fε, ε ∈ V ∗
k , be bounded functions on X and assume that E(fζ |

Zk−1) = 0 for some ζ ∈ V ∗
k . By definition of the factor Zk−1, there exists a

bounded function f0 on X, measurable with respect to Zk−1, with

f0(x0) = E
( ∏
ε∈V ∗

k

fε(xε) | J [k]∗
)
(x̃) for µ[k] almost every x = (x0, x̃) .

As the measure µ[k] is relatively independent with respect to Zk−1 and E(fζ |
Zk−1) = 0,

0 =
∫ ∏

ε∈Vk

fε(xε) dµ[k](x) =
∫

f0(x0)E
( ∏
ε∈V ∗

k

fε(xε) | J [k]∗
)
(x̃) dµ[k](x0, x̃)

=
∫ ∣∣E( ∏

ε∈V ∗
k

fε(xε) | J [k]∗
)
(x̃)

∣∣2 dµ[k]∗(x̃)

and the result follows.

4.6. Systems of order k. By Corollary 4.4, the factors Zk(X) form an
increasing sequence of factors of X.

Definition 4.10. An ergodic system (X, µ, T ) is of order k for an integer
k ≥ 0 if X = Zk(X).
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A system might not be of order k for any integer k ≥ 1, but we show
that any system contains a factor of order k for any integer k ≥ 1. These
factors may all be the trivial system, for example if X is weakly mixing. By
Equation (14), a system of order k is also of order � for any integer � > k.
Moreover, for an ergodic system X and any integer k, the factor Zk(X) is a
system of order k.

Systems of order 1 are ergodic rotations, while systems of order 2 are
ergodic quasi-affine systems (see [HK01]).

Proposition 4.11. (1) A factor of a system of order k is of order k.

(2) Let X be an ergodic system and Y be a factor of X. If Y is a system of
order k, then it is a factor of Zk(X).

(3) An inverse limit of a sequence of systems of order k is of order k.

Properties (1) and (2) make it natural to refer to Zk(X) as the maximal
factor of order k of X.

Proof. The first two assertions follow immediately from Proposition 4.6.
Let X = lim←−Xi be an inverse limit of a family of systems of order k and

let f be a bounded function on X. If f is measurable with respect to Xj for
some j, then (with the same notation as above) by Definition 4.1 there exists
a function F on X [k]∗ such that f(x0) = F (x̃) µ[k]-almost everywhere. By
density, the same result holds for any bounded function on X and the result
follows from Definition 4.1 once again.

Using the characterization of Zk(X) in Lemma 4.3, we have:

Corollary 4.12. An ergodic system (X, µ, T ) is of order k if and only
if |||f |||k+1 �= 0 for every nonzero bounded function f on X.

5. A group associated to each ergodic system

In this section, we associate to each ergodic system X a group G(X) of
measure-preserving transformations of X. The most interesting case will be
when X is of order k for some k. Our ultimate goal is to show that for a large
class of systems of order k, the group G(X) is a nilpotent Lie group and acts
transitively on X (Theorems 10.1 and 10.5).

Definition 5.1. Let (X, µ, T ) be an ergodic system. We write G(X) or
G for the group of measure-preserving transformations x 
→ g · x of X which
satisfy for every integer � > 0 the property:

(P�) The transformation g[�] of X [�] leaves the measure µ[�] invariant and acts
trivially on the invariant σ-algebra I [�](X).
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G(X) is endowed with the topology of convergence in probability. This
means that when {gn} is a sequence in G and g ∈ G, we have gn → g if and
only if µ(gi ·A ∆ g ·A) → 0 for every A ⊂ X. An equivalent condition is that
for every f ∈ L2(µ), f ◦ gn → f ◦ g in L2(µ).

The last condition of P� means that the transformation g[�] leaves each set
in I [�] invariant, up to a µ[�]-null set.

We begin with a few remarks. Let (X, µ, T ) be an ergodic system.

i) The transformation T itself belongs to G(X).

ii) G(X) is a Polish group.

iii) Let p : (X, µ, T ) → (Y, ν, S) be a factor map. Let g ∈ G(X) be such
that g maps Y to itself. In other words, there exists a measure-preserving
transformation h : y 
→ h · y of Y , with h ◦ p = p ◦ g. For every �, the map
p[�] : (X [�], µ[�], T [�]) → (Y [�], ν[�], S[�]) is a factor map by Lemma 4.5, part (1).
Thus the measure ν[�] is invariant under h[�]. As the inverse image of the
σ-algebra I [�](Y ) under p[�] is included in I [�](X), the transformation h[�] acts
trivially on I [�](Y ). Thus h ∈ G(Y ).

iv) Let g be a measure-preserving transformation of X satisfying (P�) for
some � and let k < � be an integer. We choose a k-face f of V�, and write as
usual ξ

[�]
f : X [�] → X [k] for the associated projection. The image of µ[�] by ξ

[�]
f

is µ[k] and T [k] ◦ ξ
[�]
f = ξ

[�]
f ◦ T [�]; thus ξ

[�]
f

−1
(I [k]) ⊂ I [�]. It follows immediately

that g satisfies (Pk). Thus Property (P�) implies Property (Pk) for k < �.

5.1. General properties.

Lemma 5.2. Let (X, µ, T ) be an ergodic system. Then for any k ≥ 0,
every g ∈ G(X) maps the σ-algebra Zk = Zk(X) to itself and thus induces a
measure-preserving transformation of Zk, belonging to G(Zk).

Notation. We write pkg : x 
→ pkg · x for this transformation. The map
pk : G(X) → G(Zk) is clearly a continuous group homomorphism.

Proof. Let g ∈ G and k ≥ 0 be an integer. Let f be a bounded function on
X with E(f | Zk) = 0. By Lemma 4.3 and the definition (10) of the seminorm,

0 = |||f |||2k+1

k+1 =
∫

X [k+1]

⊗
ε∈Vk+1

f dµ[k+1] =
∫

X [k+1]

⊗
ε∈Vk+1

f ◦ g dµ[k+1] .

Since g[k+1] leaves the measure µ[k+1] invariant, we have |||f ◦ g|||k+1 = 0 and
E(f ◦ g | Zk) = 0. By using the same argument with g−1 substituted for
g, we have that E(f ◦ g | Zk) = 0 implies E(f | Zk) = 0. We deduce that
g · Zk = Zk. Thus g induces a transformation of Zk. By Remark iii) above,
this transformation pkg belongs to G(Zk).
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Notation. Let G be a group. Let k ≥ 1 be an integer and let α be a face
of Vk. Analogous to the definition of the side transformations, for g ∈ G we
also write g

[k]
α for the element of G[k] given by(

g[k]
α

)
ε

= g if ε ∈ α ;
(
g[k]
α

)
ε

= 1 otherwise.

When G acts on a space X, we also write g
[k]
α for the transformation of X [k]

associated to this element of G[k]: For x ∈ X [k],(
g[k]
α · x

)
ε

=

{
g · xε if ε ∈ α

xε otherwise.

Lemma 5.3. Let (X, µ, T ) be an ergodic system and let 0 ≤ � < k be
integers. For a measure-preserving transformation g : x 
→ g · x of X, the
following are equivalent :

(1) For any �-face α of Vk, the transformation g
[k]
α of X [k] leaves the measure

µ[k] invariant and maps the σ-algebra I [k] to itself.

(2) For any (�+1)-face β of Vk+1 the transformation g
[k+1]
β leaves the measure

µ[k+1] invariant.

(3) For any (� + 1)-face γ of Vk the transformation g
[k]
γ leaves the measure

µ[k] invariant and acts trivially on the σ-algebra I [k].

Proof . We note first that if any one of these properties holds for a face,
then by permuting the coordinates, it holds for any face of the same dimension.

(1) =⇒ (2). Let α be an �-face of Vk. The transformation g
[k]
α preserves

the measure µ[k] and the σ-algebra I [k], thus commutes with the conditional
expectation on this σ-algebra. For any bounded function F on X [k], we have
E(F | I [k]) ◦ g

[k]
α = E(F ◦ g

[k]
α | I [k]). So, for bounded functions F ′, F ′′ on X [k],∫

X [k+1]

(F ′ ⊗ F ′′) ◦ (g[k]
α × g[k]

α ) dµ[k+1]

=
∫

X [k]

E(F ′ ◦ g[k]
α | I [k]) · E(F ′′ ◦ g[k]

α | I [k]) dµ[k]

=
∫

X [k]

E(F ′ | I [k]) ◦ g[k]
α · E(F ′′ | I [k]) ◦ g[k]

α dµ[k]

=
∫

X [k]

E(F ′ | I [k]) · E(F ′′ | I [k]) dµ[k]

=
∫

X [k+1]

F ′ ⊗ F ′′ dµ[k+1]

and the measure µ[k+1] is invariant under g
[k]
α × g

[k]
α . But this transformation

is g
[k+1]
β for some (� + 1)-face β of Vk+1 and so Property (2) follows.
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(2) =⇒ (3). Let γ be an (�+1)-face of Vk. Under the bijection between Vk

and the first k-face of Vk+1, γ corresponds to an (� + 1)-face β of Vk+1. Under
the usual identification of X [k+1] with X [k] ×X [k], we have g

[k+1]
β = g

[k]
γ × Id[k].

Since the measure µ[k+1] is invariant under g
[k+1]
β and each of its projections

on X [k] is equal to µ[k], this last measure is invariant under g
[k]
γ . For a bounded

function F on X [k], measurable with respect to I [k], we have

‖F‖2
L2(µ[k]) =

∫
F ⊗ F dµ[k+1] =

∫
(F ⊗ F ) ◦ g

[k+1]
β dµ[k+1]

=
∫

(F ◦ g[k]
γ ) ⊗ F dµ[k+1] =

∫
E(F ◦ g[k]

γ | I [k]) · F dµ[k] .

Thus E(F ◦ g
[k]
γ | I [k]) = F and F ◦ g

[k]
γ = F . Property (3) is proved.

(3) =⇒ (1). Let α be an �-face of Vk and let γ be an (�+1)-face of Vk. Since
g
[k]
γ acts trivially on I [k], by using the definition of the conditional expectation

we have E(F ◦g
[k]
γ | I [k]) = E(F | I [k]) for any bounded function F on X [k]. By

the definition of the measure µ[k+1], this measure is invariant under g
[k]
γ × Id[k].

But this transformation is equal to g
[k+1]
β for some (� + 1)-face β of Vk+1. By

permuting coordinates, the measure µ[k+1] is invariant under g
[k+1]
β for every

(� + 1)-face β of Vk+1. As the transformation g
[k]
α × g

[k]
α is a transformation of

this kind, it leaves the measure µ[k+1] invariant. By projection, the measure
µ[k] is invariant under g

[k]
α .

Let F be a bounded function on X [k], measurable with respect to I [k].
Then

‖E(F ◦ g[k]
α | I [k])‖2

L2(µ[k])

=
∫

(F ◦ g[k]
α ) ⊗ (F ◦ g[k]

α ) dµ[k+1] =
∫

(F ⊗ F ) ⊗ (g[k]
α × g[k]

α ) dµ[k+1]

=
∫

F ⊗ F dµ[k+1] = ‖E(F | I [k])‖2
L2(µ[k]) = ‖F‖2

L2(µ[k]) = ‖F ◦ g[k]
α ‖2

L2(µ[k])

and this means that F ◦ g
[k]
α is measurable with respect to I [k].

By applying this lemma with � = k − 1 we get some characterizations of
the group G(X):

Corollary 5.4. Let (X, µ, T ) be an ergodic system and g : x 
→ g · x a
measure-preserving transformation of X. The following are equivalent :

(1) For every integer k > 0 and every side α of Vk the measure µ[k] is in-
variant under g

[k]
α .
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(2) For every integer k > 0 and every side α of Vk, the measure µ[k] is
invariant under g

[k]
α and this transformation maps the σ-algebra I [k] to

itself.

(3) g ∈ G(X).

By an automorphism of the system (X, µ, T ), we mean a measure-pre-
serving transformation of X that commutes with T .

Lemma 5.5. Let (X, µ, T ) be an ergodic system. Then every automor-
phism of X belongs to G(X).

Moreover, if g : x 
→ g · x is an automorphism of X acting trivially on
Z�(X) for some integer � ≥ 0, then for every integer k > 0 the measure µ[�+k]

is invariant under g
[�+k]
α for every (k − 1)-face α of V�+k.

Proof. Let g be an automorphism of X as in the second part of the lemma.
We use the formula (4) for µ[�+1] and the expression given by Lemma 3.1 for
µ[�+k]:

µ[�+1] =
∫

Ω�+1

µ[�+1]
ω dP�+1(ω) and µ[�+k] =

∫
Ω�+1

(
µ[�+1]

ω

)[k−1]
dP�+1(ω) .

As µ[�+1] is relatively independent over Z
[�+1]
� and g acts trivially on Z�, the

measure µ[�+1] is invariant under g
[�+1]
ε for any vertex ε ∈ V�+1. As the trans-

formation g
[�+1]
ε commutes with T [�+1], it induces a measure-preserving trans-

formation h of Ω�+1. Moreover, for P�+1-almost every ω ∈ Ω�+1, the image of
µ

[�+1]
ω under g

[�+1]
ε is µ

[�+1]
h·ω . It follows that the measure µ[�+k] is invariant under

the transformation g
[�+1]
ε × · · · × g

[�+1]
ε (2k−1 times). But this transformation

is g
[�+k]
α , for some (k − 1)-face α of Vk+�.
The second part of the lemma follows by permutation of coordinates.

The first part of the lemma follows from the second part with � = 0 and
Corollary 5.4.

5.2. Faces and commutators. We need some algebraic preliminaries.

Definition 5.6. Let G be a Polish group written with multiplicative nota-
tion. For every integer k ≥ 0, G[k] is endowed with the product topology. For
0 ≤ � ≤ k, we write G

[k]
� for the closed subgroup of G[k] spanned by

{g[k]
α : g ∈ G and α is an �-face of Vk} .(18)

Thus G
[k]
0 = G[k] and G

[k]
k is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}

of G[k]. We call G
[k]
k−1 the side subgroup and G

[k]
1 the edge subgroup of G[k].
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For j ≥ 0, G(j) denotes the closed jth iterated commutator subgroup of
G (see Appendix A). Thus G(0) = G, G(1) = G′ is the closed commutator
subgroup of G, and so on.

Lemma 5.7. Let G be a Polish group. For integers 0 ≤ j < k, the jth

iterated commutator subgroup of G
[k]
k−1 contains (G(j))[k]

k−j−1.

Actually equality holds, but we omit the proof as this fact is not needed.

Proof. For g, h ∈ G and faces α, β of Vk, an immediate computation gives[
g[k]
α ;h[k]

β

]
= [g;h][k]

α∩β .(19)

For j = 0 the statement of the lemma is trivial. For j > 0 the statement is
proved by induction. Every (k − j − 1)-face γ of Vk can be written as the
intersection of a side α and a (k − j)-face β. By using Equation (19) we get
the result.

Corollary 5.8. Let (X, µ, T ) be an ergodic system and G = G(X). Then,
for integers 0 ≤ j < k, any g ∈ G(j) and any (k − j − 1)-face α of Vk, the map
g
[k]
α leaves the measure µ[k] invariant and maps the σ-algebra I [k] to itself.

Proof. Let k ≥ 1 and H be the subgroup of G[k] consisting of the trans-
formations g = (gε : ε ∈ Vk) of X [k] that leave the measure µ[k] invariant and
map the σ-algebra I [k] to itself. By Corollary 5.4, H contains the side group
G[k]

k−1. By Lemma 5.7, H contains (G(j))[k]
k−j−1 for 0 ≤ j < k.

Corollary 5.9. If (X, µ, T ) is a system of order k, then the group G(X)
is k-step nilpotent.

Proof. Let g ∈ G(k). By Corollary 5.8, for any vertex ε ∈ Vk+1, the
measure µ[k+1] is invariant under g

[k+1]
ε . Let f be a bounded function on X.

Then
|||f ◦ g − f |||2k+1

k+1 =
∫ ∏

ε∈Vk+1

(
f(g · xε) − f(xε)

)
dµ[k+1] .

All 2k+1 integrals obtained by expanding the right side of this equality are
equal up to sign and so this expression is zero. By Corollary 4.12, f = f ◦ g so
that g acts trivially on X, thus is the identity element of G. The group G(k) is
trivial.

Corollary 5.10. Let (X, µ, T ) be a system of order k and u an automor-
phism of X inducing the trivial transformation on Zk−1(X). Then u belongs
to the center of G(X).

Proof. By Lemma 5.5, u belongs to G(X). Let g ∈ G. Let ε be a vertex of
Vk+1. We choose an edge α and a side β of Vk+1 with ε = α∩β. By Lemma 5.5,
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µ[k+1] is invariant under u
[k+1]
α . By Corollary 5.4 this measure is invariant under

g
[k+1]
β . Thus this measure is invariant under [u[k+1]

α ; g[k+1]
β ] = [u; g][k+1]

ε . We
conclude as in the proof of the preceding corollary that [u; g] is the identity.

6. Relations between consecutive factors

We study here the relations between the factors Zk−1(X) of a given ergodic
system (X, µ, T ). For each integer k > 1, Zk(X) is an extension of Zk−1(X).
We show first that this extension is isometric, then that it is an extension by
a compact abelian group. We then describe this extension more completely.

6.1. Isometric extensions. We recall (see [FW96]) that an ergodic iso-
metric extension W of a system (Y, µ, S) can be written (Y × G/H, µ × λ, S)
where:

• G is a compact (metrizable) group and H is a closed subgroup.

• λ = mG/H is the Haar measure on G/H. That is, λ is the unique
probability measure on G/H which is invariant under the action of G by
left translations. It is also the image of the Haar measure mG of G under
the natural projection G 
→ G/H.

• ρ = Y → G is a cocycle and S : Y × G/H → Y × G/H is given by
S(y, u) = (Ty, ρ(y)u), where the left action of G on G/H is written
(g, u) 
→ gu.

Without loss, we can reduce to the case that the action of G on G/H is
faithful, meaning that H does not contain any nontrivial normal subgroup of G.
Moreover, we can assume that the the cocycle ρ : Y → G is ergodic, meaning
that the system (Y ×G, µ×mG, Tρ) is ergodic. As usual, Tρ(y, g) = (Ty, ρ(y)g).

To every g ∈ G we associate a measure-preserving transformation x 
→ g ·x
of W by

g · (y, u) = (y, gu) .

We also denote this transformation by g.
Any factor of W = Y × G/H over Y has the form Y × G/L, for some

closed subgroup L of G containing H. In particular, the action of g ∈ G on W

induces a measure-preserving transformation on this factor, written with the
same notation.

Lemma 6.1. Let W = Y × G/H be an ergodic isometric extension of Y

so that the corresponding extension Y × G is ergodic. Then, for every g ∈ G,
g[1] = g × g acts trivially on the invariant σ-algebra I [1](W ) of W × W .
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Proof. Let T denote the transformation on W . Consider the factor K

of W spanned by Y and the Kronecker factor Z1(W ) of W . Then K is an
extension of Y by a compact abelian group. Therefore, K = Y × G/L for
some closed subgroup L of G containing H and containing the commutator
subgroup G′ of G. Thus, for any g ∈ G, the action of g on K commutes with
T and induces an automorphism of the Kronecker factor Z1(K) = Z1(W ).

But an automorphism of an ergodic rotation is itself a rotation. By the
description in Section 3.2 of the invariant sets of W ×W , the result follows.

6.2. Zk is an abelian group extension of Zk−1.

Lemma 6.2. Let (X, µ, T ) be an ergodic system and let k ≥ 2 be an inte-
ger. Then Zk is an isometric extension of Zk−1.

Proof. Let Y be the maximal isometric extension of Zk−1 which is a factor
of X (see [FW96]).

We consider (X [k], µ[k], T [k]) as a joining of (X, µ, T ) and (X [k]∗ , µ[k]∗ , T [k]∗)
and recall that this joining is relatively independent with respect to the com-
mon factor Zk−1 = I [k]∗ of these two systems. It is then classical that the in-
variant σ-algebra I [k] of (X [k], µ[k], T [k]) is measurable with respect to Y⊗X [k]∗ .

Let f be a bounded function on X with E(f | Y) = 0. Write F for
the function x 
→

∏
ε∈Vk

f(xε) on X [k]. Since µ[k] is relatively independent

with respect to Z [k]
k−1 and Y ⊃ Zk−1, F has zero conditional expectation on

the σ-algebra Y ⊗ X [k]∗ and so zero conditional expectation on I [k]. With
the usual identification of X [k+1] with the Cartesian square of X [k], we have∫
X [k+1] F (x′)F (x′′) dµ[k+1](x′,x′′) = 0. That is, |||f |||k+1 = 0 by definition of

this seminorm and E(f | Zk) = 0 by Lemma 4.3. Therefore Zk ⊂ Y.

Proposition 6.3. Let (X, µ, T ) be a system of order k ≥ 2.

(1) X is a compact abelian group extension of Zk−1, written X = Zk−1 ×U ,
where U is a compact abelian group.

(2) For every u ∈ U and every edge α of Vk, the transformation u
[k]
α acts

trivially on I [k].

Proof. By Lemma 6.2, X is an isometric extension of Zk−1 and so we
can write X = Zk−1 × (G/H), where G is a compact group and H a closed
subgroup. As in Section 6.1 we write ρ : Zk−1 → G for the cocycle defining
this extension and let λ denote the Haar measure of G/H.

Since µ[k] is relatively independent with respect to Z
[k]
k−1, this measure is

invariant under the map g
[k]
ε for any g ∈ G and any ε ∈ Vk. A fortiori, it is

invariant under g
[k]
α for any g ∈ G and any edge α of Vk.
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Claim. For any g ∈ G and any edge α of Vk, the transformation g
[k]
α

acts trivially on I [k].

Consider the ergodic decompositions of µ[k−1] and µ
[k−1]
k−1 as in Section 3.1.

Since I [k−1] is measurable with respect to Z [k−1]
k−1 , these decompositions can be

written as

µ[k−1] =
∫

Ωk−1

µ[k−1]
ω dPk−1(ω) and µ

[k−1]
k−1 =

∫
Ωk−1

µ
[k−1]
k−1,ω dPk−1(ω) ,

where µ
[k−1]
k−1,ω is the projection of µ

[k−1]
ω on Z

[k−1]
k−1 .

By Part (1) of Proposition 4.7, (X [k−1], µ[k−1], T [k−1]) is the relatively
independent joining of 2k−1 copies of (X, T, µ) over Z

[k−1]
k−1 . Thus we can iden-

tify X [k−1] with Z
[k−1]
k−1 ×

(
G[k−1]/H [k−1]

)
. The measure µ[k−1] is the prod-

uct of µ
[k−1]
k−1 by the 2k−1-power λ⊗[k−1] of λ, which is the Haar measure of

G[k−1]/H [k−1] and X [k−1] is the isometric extension of Z
[k−1]
k−1 given by the

cocycle ρ[k−1] : Z
[k−1]
k−1 → G[k−1].

So for almost every ω ∈ Ωk−1, the system (X [k−1], µ
[k−1]
ω , T [k−1]) is an

isometric extension of (Z [k−1]
k−1 , µ

[k−1]
k−1,ω, T [k−1]), with fiber G[k−1]/H [k−1].

Let g ∈ G and let ε ∈ Vk−1 be a vertex. Since g
[k−1]
ε belongs to G[k−1],

by Lemma 6.1 the transformation g
[k−1]
ε × g

[k−1]
ε of X [k] = X [k−1] × X [k−1]

acts trivially on the T [k] = T [k−1]×T [k−1] invariant σ-algebra of (X [k], µ
[k−1]
ω ×

µ
[k−1]
ω , T [k]).

We recall (see Formula 5) that

µ[k] =
∫

Ωk−1

µ[k−1]
ω × µ[k−1]

ω dP (ω) .

Thus g
[k−1]
ε × g

[k−1]
ε acts trivially on the invariant σ-algebra I [k]. But g

[k−1]
ε ×

g
[k−1]
ε is equal to g

[k]
α for some edge α of Vk. The claim follows by permuting

the coordinates.

Claim. G is abelian.

Let g, h ∈ G, and let ε be a vertex of Vk+1. Choose two edges α and β of
Vk+1 with α∩ β = ε. By Equation (19),

[
g
[k]
α ;h[k]

β

]
= [g;h][k]

ε . By the first step

and Lemma 5.3, the transformations g
[k+1]
α and h

[k+1]
β preserve the measure

µ[k+1], thus also the transformation [g;h][k+1]
ε . As this holds for every vertex

ε, we conclude as in the proof of Corollary 5.9 that [g;h] acts trivially on X.
This means that [g;h] = 1 and so G is abelian.

By our hypotheses the group H is trivial, and the proof is complete.
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6.3. Description of the extension.

Notation. For k ≥ 1 and ε ∈ Vk, we write

|ε| = ε1 + ε2 + · · · + εk and s(ε) = (−1)|ε| .

Let X be a set, U an abelian group written with additive notation and
f : X → U a map. For every k ≥ 1, we define a map ∆kf : X [k] → U by:

∆kf(x) =
∑
ε∈Vk

s(ε)f(xε) .

In particular, ∆f is the map defined on X2 by ∆f(x′, x′′) = f(x′) −
f(x′′). We have similar notation when the group is written with multiplicative
notation.

Proposition 6.4. Let (X, µ, T ) be a system of order k ≥ 2. By Propo-
sition 6.3, X is an extension of Zk−1 by a compact abelian group U for some
cocycle ρ : Zk−1 → U . Then

(1) ∆kρ : Z
[k]
k−1 → U is a coboundary (see Appendix C.2) of the system

(Z [k]
k−1, µ

[k]
k−1, T

[k]), meaning that there exists F : Z
[k]
k−1 → U with

∆kρ = F ◦ T [k] − F .(20)

(2) The σ-algebra I [k](X) is spanned by the σ-algebra I [k](Zk−1) and the map
Φ: X [k] → U given by

Φ(y,u) = F (y) −
∑
ε∈Vk

s(ε)uε(21)

for y ∈ Z
[k]
k−1 and u ∈ U [k] where X is identified with Zk−1 ×U and X [k]

with Z
[k]
k−1 × U [k].

Proof. Here we consider characters of U as homomorphisms from U to the
circle group S1, written with multiplicative notation.

(1) Let χ ∈ Û . Define the function ψ on X = Zk−1 ×U by ψ(y, u) = χ(u)
and the function Ψ on X [k] = Z

[k]
k−1 × U [k] by

Ψ(y,u) = χ
(∑
ε∈Vk

s(ε)uε

)
for y ∈ Y [k] and u ∈ U [k] .

Since X is of order k, |||ψ|||k+1 �= 0 by Corollary 4.12 and E(Ψ | I [k]) �= 0 by
Lemma 4.3.
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Let J be the linear map from L2(µ[k]
k−1) to L2(µ[k]) given by

Jf(y,u) = f(y)Ψ(y,u) for f ∈ L2(µ[k]
k−1), y ∈ Z

[k]
k−1 and u ∈ U [k] .

J is an isometry and its range Hχ is a closed subspace of L2(µ[k]). Furthermore,
for f ∈ L2(µ[k]

k−1),
J
(
χ(∆kρ) · f ◦ T [k]

)
=

(
Jf

)
◦ T [k]

and so the space Hχ is invariant under T [k]. Since the function Ψ belongs to
Hχ, the function E(Ψ | I [k]) also belongs to this space. We get that there
exists a nonidentically zero function f on Z

[k]
k−1 with

χ(∆kρ) · f ◦ T [k] = f µ
[k]
k−1a.e.(22)

Let A = {y ∈ Z
[k]
k−1 : f(y) �= 0}. Then µk−1(A) �= 0 and A is T [k]-invariant

by Equation (22). We use the ergodic decomposition given by Formula (4),
but for the measure µ

[k]
k−1. Since A is invariant, it corresponds to a subset B

of Ωk, with Pk(B) �= 0.
Define

C =
{
ω ∈ Ωk : χ ◦ ∆kρ is a coboundary of (Z [k]

k−1, µ
[k]
k−1,ω, T [k])

}
.

Then C is measurable in Ωk and it contains B by Equation (22) and the
definition of B. Thus Pk(C) > 0. We show now that C is invariant under
the group T [k]

k−1 of side transformations. Let ω ∈ Ωk and let α be a side of

Vk not containing 0 so that T
[k]
α ω ∈ C. Let φ : Z

[k]
k−1 → T be chosen with

its coboundary for T [k] equal to χ ◦ ∆kρ almost everywhere for the measure
µ

[k]

k−1,T
[k]
α ω

. The coboundary of φ◦T
[k]
α for T [k] is equal to χ◦(∆kρ)◦T

[k]
α almost

everywhere for the measure µ
[k]
k−1,ω. But the map (∆kρ) ◦T

[k]
α −∆kρ from Y [k]

to U is the coboundary for T [k] of the map

y 
→
∑
ε∈α

s(ε)ρ(yε) .

Therefore χ◦∆kρ is a coboundary of the system (Z [k]
k−1, µ

[k]
k−1,ω, T [k]) and ω ∈ C.

Thus the set C is invariant under T
[k]
α . By Corollary 3.6, the action of the group

T [k]
∗ on Ωk is ergodic. As P (C) > 0, we have P (C) = 1.

Therefore, for Pk-almost every ω ∈ Ωk, χ ◦ ∆kρ is a coboundary of the
system (Z [k]

k−1, µ
[k]
k−1,ω, T [k]). By Corollary C.4, χ ◦ ∆kρ is a coboundary of

(Z [k]
k−1, µ

[k]
k−1, T

[k]). As this holds for every χ ∈ Û , ∆kρ is a coboundary of this
system by Lemma C.1 and the first part of the proposition is proved.

(2) We identify the dual group of U [k] with Û [k]. For θθθ = (θε : ε ∈ Vk) ∈
Û [k] and u = (uε : ε ∈ Vk) ∈ U [k],

θθθ(u) =
∏
ε∈Vk

θε(uε) .
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Let H be the subspace of L2(µ[k]) consisting of functions invariant under T [k].
For θθθ ∈ Û [k], we write Lθθθ for the subspace of L2(µ[k]) consisting in functions
of the form

(y,u) 
→ f(y)θθθ(u)(23)

for some f ∈ L2(µ[k]
k−1). As above, Lθθθ is a closed subspace of L2(µ[k]), invariant

under T [k]. Since the measure µ[k] is relatively independent over µ
[k]
k−1, using

the Fourier Transform we see immediately that L2(µ[k]) is the Hilbert sum of
the spaces Lθθθ for θθθ ∈ Û [k]. Therefore, the invariant subspace H of L2(µ[k]) is
the Hilbert sum of the invariant subspaces H ∩ Lθθθ of Lθθθ.

Let θθθ ∈ Û [k] and assume that H∩Lθθθ contains a nonidentically zero func-
tion φ. Let α = (ε, η) be an edge of Vk and let u ∈ U . By Equation (23) we
have φ ◦ u

[k]
α = φ · θε(u)θη(u). But by Part (2) of Proposition 6.3, φ ◦ u

[k]
α = φ

and we get that θε(u)θη(u) = 1. Since this holds for every u ∈ U , θεθη = 1. As
it holds for every edge α = (ε, η), there exists χ ∈ Û with θε = χs(ε) for every
ε ∈ Vk. Finally, φ is a function of the form

φ(y,u) = f(y) · χ
(∑
ε∈Vk

s(ε)uε

)
for some f ∈ L2(µ[k]

k−1), and

φ(y,u) = χ
(
−Φ(y,u)

)
· χ(F (y))f(y)

where Φ is the map defined by Equation (21). Since Φ and φ are invariant
under T [k], the function χ ◦ F · f is also invariant under this transformation
and is measurable with respect to I [k](Zk−1). We conclude that φ is measurable
with respect to the σ-algebra spanned by Φ and I [k](Zk−1).

Since the invariant space H of L2(µ[k]) is the Hilbert sum of the spaces
H ∩ Lθθθ, every function in H is measurable with respect to this σ-algebra and
the second part of the proposition in proved.

6.4. More terms. The next proposition is used only in the proof of Corol-
lary 6.6, which in turn is only used in the proof of Lemma 10.6.

Proposition 6.5. Let (X, µ, T ) be a system of order k. Then for � > k

the invariant σ-algebra I [�] is spanned by the σ-algebras ξ
[�]
α

−1(
I [k]

)
, where α

is a k-face of V�.

Proof. First Step. Let (X, µ, T ) be a system of order k. We use the
notation of Proposition 6.4 and the maps F and Φ defined in Equations (20)
and (21). Let � > k.

We identify X [�] with Z
[�]
k−1 × U [�]. As the projection of µ[�] on Z

[�]
k−1 is

µ
[�]
k−1, for µ

[�]
k−1-almost every y ∈ Z

[�]
k−1 there exists a measure λy on U [�] such
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that
µ[�] =

∫
Z

[�]
k−1

δy × λy dµ
[�]
k−1(y) .

For every u ∈ U , the corresponding vertical rotation (see the definition in
Subsection C.1) is an automorphism of X and acts trivially on Zk−1. By
Lemma 5.5, for every (� − k)-face β of V� the measure µ[�] is invariant under
u

[�]
β . It follows that the measure λy is invariant under this transformation for

µ
[�]
k−1-almost every y. By separability, for almost every y the measure λy is

invariant under the translation by any element of the group U
[�]
�−k.

We identify U [�] with U [�−1] × U [�−1] and we write u = (u′,u′′) for an
element of U [�]; we write also y = (y′,y′′) for a point of Z

[�]
k−1 = Z

[�−1]
k−1 ×Z

[�−1]
k−1 ;

and x = (y′,u′,y′′,u′′) for a point of X [�], with y = (y′,y′′) ∈ Z
[�]
k−1 and

u = (u′,u′′) ∈ U [�].
Let γ be a k-face of V�−1. As the map Φk ◦ξ

[�−1]
γ : X [�−1] → U is invariant,

it follows from the construction of µ[�] that Φk ◦ ξ
[�−1]
γ (x′) = Φk ◦ ξ

[�−1]
γ (x′′) for

µ
[�]
k -almost every x; that is,∑

ε∈γ

s(ε)u′
ε −

∑
ε∈γ

s(ε)u′′
ε = F (ξ[�−1]

γ y′) − F (ξ[�−1]
γ y′′) µ[�]-a.e.

For µ
[�]
k−1-almost every y = (y′,y′′) ∈ Z

[�]
k−1, this identity is true for λy-almost

every u = (u′,u′′) ∈ U [�] and the measure λy is concentrated on a coset of the
group {

(u′,u′′) ∈ U [�] :
∑
ε∈γ

s(ε)u′
ε −

∑
ε∈γ

s(ε)u′′
ε = 0

}
.

We write δ for the (k + 1)-face γ × {0, 1} of V�, and we notice that this group
is equal to {

u ∈ U [�] :
∑
ε∈δ

s(ε)uε = 0
}

= ξ
[�]
δ

−1
(U [k+1]

1 ) .

By permutation of coordinates, the same property holds for any k + 1-face δ

of V�, and λy is concentrated on a coset of the intersection{
u ∈ U [�] :

∑
ε∈δ

s(ε)uε = 0 for every (k + 1)-face δ of V�

}
of the corresponding subgroups of U [�]. By an elementary algebraic computa-
tion, we see that this group is equal to U

[�]
�−k.

Finally, λy is invariant under translation by U
[�]
�−k and is concentrated on

a coset of this group. Thus this measure is the image of the Haar measure
of this group by some translation. Moreover, for almost every y ∈ Z

[�]
k−1, the

measure λT [�]y is the image of the measure λy by the translation by ρ[�](y).
We conclude that:
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The system (X [�], µ[�], T [�]) is an extension of (Z [�]
k−1, µ

[�]
k−1, T

[�]) by the com-

pact abelian group U
[�]
�−k.

Step 2. We keep the notation and hypotheses of the first step. It follows
from the description of µ[�] just above that the Hilbert space L2(µ[�]) can be
decomposed as in the proof of Proposition 6.4: L2(µ[�]) is the Hilbert sum for

θθθ ∈ Û
[�]
�−k of the subspaces

Lθθθ =
{
f(u · x) = θθθ(u)f(x) µ[�]-a.e. for every u ∈ U

[�]
�−k

}
.

(Here we see characters as taking values in the circle group.) Each space Lθθθ

is invariant under T [�] and thus the T [�]-invariant subspace H of L2(µ[�]) is the
Hilbert sum of the spaces Hθθθ = H ∩ Lθθθ.

On the other hand, by Lemmas 5.5 and 5.3, each function in H is invariant
under the map x 
→ u · x for any u ∈ U

[�]
�−k+1. Therefore Hθθθ is trivial except if

θθθ belongs to the annihilator of U
[�]
�−k+1 in the dual group of U

[�]
�−k. By the same

algebraic computation as above, we get that

U
[�]
�−k+1 =

{
u ∈ U [�] :

∑
ε∈α

s(ε)uε = 0 for every k-face α of V�

}
.

It follows that the annihilator of U
[�]
�−k+1 in Û [�] is (Û)[�]k . Therefore, the sub-

space H of L2(µ[�]
k ) is the closed linear span of the family of invariant functions

of the type

φ(y,u) = ψ(y)θθθ(u) where ψ ∈ L2(µ[�]
k−1) and θθθ ∈ Û

[�]
k .

We consider an invariant function φ of this type. As Û
[�]
k is spanned by

the elements of the form χ
[�]
α , where χ ∈ Û and α is a k-face of V�, there exist

k-faces α1, . . . , αm of V� and characters χ1, . . . , χm ∈ Û with

θθθ(u) =
m∏

j=1

∏
ε∈αj

χj(uε)

for u ∈ U [�]. For each j the function χj ◦ Φk ◦ ξ
[�]
αj is invariant, and thus so is

the function

φ ·
m∏

j=1

χj ◦ Φk ◦ ξ[�]
αj

.

But this function factors clearly through Z
[�]
k−1 and is measurable with respect

to I [�](Zk−1). Therefore, the function φ is measurable with respect to the

σ-algebra spanned by I [�](Zk−1) and ξ
[�]
αm

−1
(I [k](X)), 1 ≤ j ≤ m. We get:

The σ-algebra I [�](X) is spanned by the σ-algebras I [�](Zk−1) and the

σ-algebras ξ
[�]
α

−1
(I [k](X)), for α a k-face of V�.
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Last step. We now prove the assertion of Proposition 6.5 by induction on
k ≥ 0. For k = 0 the system X is trivial and there is nothing to prove. We
take k > 0 and assume that the assertion holds for every system of order k−1.
Let X be a system of order k and let � > k. We use the notation of the first
two steps. By the inductive hypothesis I [�](Zk−1) is spanned by the σ-algebras

ξ
[�]
α

−1
(I [k](Zk−1)) for α a k-face of V�. But, for each α, ξ

[�]
α

−1
(I [k](Zk−1)) ⊂

ξ
[�]
α

−1
(I [k](X)) and the result follows from the conclusion of the second step.

Corollary 6.6. Let (X, µ, T ) be a system of order k and let x 
→ g · x
be a measure-preserving transformation of X satisfying the property (Pk) of
Definition 5.1. Then g ∈ G(X).

Proof. We have to show that the property (P�) holds for every �. For
� = k there is nothing to prove. For � < k, (P�) follows immediately from
(Pk) by projection (see the fourth remark after Definition 5.1). For � > k we
proceed by induction. Let � > k and assume that P�−1 holds. By Lemma 5.3,
the measure µ[�] is invariant under g

[�]
β for any (�−1)-face β of V� and it follows

immediately that it is invariant under g[�]. By hypothesis, g[k] acts trivially
on I [k] and it follows that for every k-face α of V� the transformation g[�] acts

trivially on the σ-algebra ξ
[�]
α

−1
(I [k]). By Proposition 6.5, g[�] acts trivially

on I [�].

7. Cocycles of type k and systems of order k

Notation. Let (X, µ) be a probability space and U a compact abelian
group. We write C(X, U) for the group of measurable maps from X to U . We
also write C(X) instead of C(X, T).

C(X, U) is endowed with the topology of convergence in probability and
is a Polish group.

When (X, µ, T ) is a system, an element of C(X, U) is called a U -valued
cocycle (see Appendix C). For the notation ∆kρ see Subsection 6.3.

Definition 7.1. Let k ≥ 1 be an integer, (X, µ, T ) an ergodic system, U a
compact abelian group (written additively) and ρ : X → U a cocycle. We say
that ρ is a cocycle of type k if the cocycle ∆kρ : X [k] → U is a coboundary of
(X [k], µ[k], T [k]).

7.1. First properties. We have shown in the preceding section that for
every ergodic system X and integer k ≥ 1, Zk(X) is an extension of Zk−1(X)
associated to a cocycle of type k.

Remark 7.2. A cocycle cohomologous to a cocycle of type k is also of
type k.
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By Lemma C.1 we get:

Remark 7.3. ρ : X → U is of type k if and only if χ ◦ ρ : X → T is of type
k for every character χ of U . It follows that for any closed subgroup V of U , a
V -valued cocycle is of type k if and only if it is of type k as a U -valued cocycle.

A cocycle ρ : X → U is of type 1 if and only if ρ(x)−ρ(y) is a coboundary
on X2. Equivalently, χ ◦ ρ is a quasi-coboundary for every χ ∈ Û . (See
Appendix C.4 for the definition and properties.) When U is a torus, this
property means simply that ρ itself is a quasi-coboundary (see Lemma C.5).

Cocycles ρ : X → U so that ∆kρ = 0 are obviously of type k. In the sequel
we use some properties of these cocycles.

Notation. Let (X, µ, T ) be an ergodic system, k ≥ 1 be an integer, and
U be a compact abelian group. Let Dk(X, U) denote the family of cocycles
ρ : X → U with ∆kρ = 0.

Lemma 7.4. Let (X, µ, T ) be an ergodic system, k ≥ 1 be an integer, and
U be a compact abelian group. Then Dk(X, U) is a closed subgroup of C(X, U).
Moreover, it admits the group U of constant cocycles as an open subgroup.

Proof. The first assertion is obvious. We prove the second statement by
induction on k. By definition, a cocycle in D1(X) is constant. Assume that
the assertion holds for some k ≥ 1. We use the formula (5) for µ[k+1]. Also, ρ

belongs to Dk+1(X, U) if and only if ∆(∆kρ) = 0, µ
[k]
ω ×µ

[k]
ω -almost everywhere

for Pk-almost ω ∈ Ωk. This condition means that for Pk-almost ω ∈ Ωk, ∆kρ

is equal to some constant, µ
[k]
ω -almost everywhere. Thus ∆kρ is an invariant

map on X [k]. As (∆kρ) ◦ T [k] = ∆k(ρ ◦ T ), this condition is equivalent to
∆k(ρ ◦ T − ρ) = 0. Thus ρ ◦ T − ρ ∈ Dk(X, U).

The coboundary map ∂ : ρ 
→ ρ ◦ T − ρ is a continuous group homomor-
phism from Dk+1(X, U) to Dk(X, U) and the kernel of this homomorphism is
the group U of constant cocycles. There exist only countably many constants
in U which are coboundaries of some cocycle on X and thus ∂(Dk+1(X, U))∩U

is countable. By the induction hypothesis, ∂(Dk+1(X, U)) is countable and so
the compact group U has countable index in the Polish group Dk+1(X, U) and
the result is proved.

In fact, the proof shows that Dk(X, U) consists of those cocycles ρ for
which the k-iterated coboundary ∂kρ is equal to 0.

7.2. Cocycles of type k and automorphisms.

Corollary 7.5. Let (X, µ, T ) be an ergodic system, ρ : X → U a cocycle
and k an integer.
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(1) If ρ is of type k ≥ 1, then for any automorphism S of X the cocycle
ρ ◦ S − ρ is of type k − 1.

(2) If X is of order k ≥ 2 and ρ is of type k, then for any vertical rotation
x 
→ u · x of X over Zk−1 the cocycle ρ ◦ u − ρ is a coboundary.

(3) If X is of order k ≥ 1 and ρ is of type k+1, then for any vertical rotation
x 
→ u · x of X over Zk−1 the cocycle ρ ◦ u − ρ is of type 1.

For the definition of a vertical rotation, see Appendix C.1.

Proof. (1) Let F : X [k] → U be a map with F ◦ T [k] − F = ∆kρ. Let α be
the first side of Vk. By Lemma 5.5, the measure µ[k] is invariant under S

[k]
α .

As this transformation commutes with T [k], by the definition of F we have(
∆k−1(ρ ◦ S − ρ)

)
◦ ξ[k]

α = (F ◦ S[k]
α − F ) ◦ T [k] − (F ◦ S[k]

α − F ) .

By Lemma C.7, ∆k−1(ρ ◦ S − ρ) is a coboundary on X [k−1] and ρ ◦ S − ρ is of
type k − 1.

(2) By Proposition 6.3, X = Zk−1×W for some compact abelian group W .
The measure µ[k] is conditionally independent over Z

[k]
k−1 and thus invariant

under the vertical rotation by w
[k]
ε for every ε ∈ Vk and every w ∈ W . The

same computation as above shows that (ρ ◦ w − ρ) ◦ ξ
[k]
ε is a coboundary on

X [k] and so ρ ◦ w − ρ is a coboundary on X.

(3) Let W be as in Part (2). Let w ∈ W . For any ε ∈ Vk, the measure
µ[k] is invariant under w

[k]
ε . This transformation commutes with T [k] and thus

maps the σ-algebra I [k] to itself. By Lemma 5.5, for any edge α of Vk+1 the
measure µ[k+1] is invariant under w

[k+1]
α . We conclude as in Part (2) .

7.3. Cocycles of type k and group extensions. Let Y be an ergodic ex-
tension of a system X by a compact abelian group U . Then for every u ∈ U

the associated vertical rotation of Y above X is an automorphism of Y and
belongs to G(Y ) by Lemma 5.5. By Lemma 5.2, for every k this transformation
induces a measure-preserving transformation pku of Zk(Y ), which belongs to
G(Zk(Y )) and is actually an automorphism of Zk(Y ). (This follows also from
Proposition 4.6.)

Proposition 7.6. Let (X, µ, T ) be an ergodic system, U a compact abelian
group, ρ : X → U an ergodic cocycle and (Y, ν, S) = (X × U, µ × mU , Tρ) the
extension it defines. (See Appendix C.2 for the definition.) Let k ≥ 1 be an
integer. For u ∈ U , let pku be the automorphism of Zk(Y ) defined just above.
Let W = {u ∈ U : pku = Id}. Then

(1) W is a closed subgroup of U .
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(2) The annihilator W⊥ of W in Û is the subgroup Γ = {χ ∈ Û : χ ◦ ρ is of
type k}.

(3) The cocycle ρ mod W : X → U/W is of type k.

(4) Zk(Y ) is an extension of Zk(X) by the compact abelian group U/W , given
by a cocycle ρ′ : Zk(X) → U/W of type k. Moreover, the cocycle ρ′ ◦πX,k

is cohomologous to ρ mod W : X → U/W .

Proof. (1) is obvious. For every u ∈ U , let u denote its image in U/W .
We view factors as invariant sub-σ-algebras. Then X consists in the sets

in Y which are invariant under the vertical rotation associated to any u ∈ U .
By Proposition 4.6 we have Zk(X) = Zk(Y )∩X . Thus Zk(X) consists in those
sets of the Zk(Y ) which are invariant under pku for every u ∈ U . Therefore,
as an extension of Zk(X), Zk(Y ) is isomorphic to an extension by the compact
abelian group U/W .

We identify Zk(Y ) with Zk(X)× U/W and Y with X × U and study the
factor map πY,k : X×U → Zk(X)×U/W . By construction, for (x, u) ∈ X×U ,
the first coordinate of πY,k(x, u) is equal to πX,k(x). Moreover, for every v ∈ U ,
the transformation pkv is given by pkv(z, u) = (z, v + u). That is, it is the
vertical rotation by v of Zk(Y ) over X. Since πY,k ◦ v = pkv ◦ πY,k, it follows
that there exists φ : X → U/W such that πY,k(x, u) =

(
πX,k(x), u + φ(x)

)
.

Let ρ′ : Zk(X) → U/W be a cocycle defining the extension Zk(X)×U/W

of Zk(X). Since πY,k : X × U → Zk(X) × U/W is a factor map, we get ρ′ ◦
πX,k(x) = ρ(x)+φ(Tx)−φ(x) and ρ′ ◦πX,k is cohomologous to ρ = ρ mod W .

Let χ ∈ Û/W = W⊥. Here we consider χ as taking values in the circle
group S1. We define a map ψ on Zk(Y ) = Zk(X) × U/W by ψ(x, u) = χ(u)
and define a function Ψ on Zk(Y )[k] = Zk(X)[k] × (U/W )[k] by

Ψ(x,u) = χ
(∑
ε∈Vk

s(ε)uε

)
for x ∈ Zk(X)[k] and u ∈ (U/W )[k]

and continue exactly as in the proof of the first part of Proposition 6.4. Then
χ ◦ ρ′ is of type k.

As this holds for every χ ∈ Û/W , the cocycle ρ′ is of type k and Part (4) of
Proposition 7.6 is proved. Part (3) follows immediately, as does the inclusion
W⊥ ⊂ Γ. We now prove the opposite inclusion.

Let χ ∈ Γ. Then χ ◦ ρ is a cocycle of type k. We consider χ as taking
values in T. Let F : X [k] → T be a map with F ◦T [k]−F = ∆k(χ◦ρ) µ[k]-almost
everywhere. We define a map Φ from Y [k] = X [k] × U [k] to T by

Φ(x,u) = F (x) −
∑
ε∈Vk

s(ε)χ(uε) for x ∈ X [k] and u ∈ U [k] .



436 BERNARD HOST AND BRYNA KRA

The projection of ν[k] on X [k] is µ[k] and each of the one-dimensional marginals
of ν[k] is ν. From these remarks and the definition of F we get that Φ◦S[k] = Φ
ν[k]-almost everywhere. The map Φ is measurable with respect to I(Y )[k].

Let w ∈ W and ε ∈ Vk. The measure ν[k] is relatively independent
with respect to Zk−1(Y ) and thus with respect to Zk(Y ). Since the vertical
rotation w acts trivially on Zk(Y ), the measure ν[k] is invariant under w

[k]
ε .

Moreover this transformation acts trivially on Z [k]
k (Y ), thus also on I [k](Y ),

and Φ ◦ w
[k]
ε = Φ ν[k]-almost everywhere. But Φ ◦ w

[k]
ε − Φ is equal to the

constant s(ε)χ(w) and we get that χ(w) = 1. As this holds for every w ∈ W ,
we have χ ∈ W⊥ and so Γ ⊂ W⊥. Combining the two inclusions, we have the
statement of Part (2).

Corollary 7.7. Let k ≥ 1 be an integer, (X, µ, T ) a system of order k,
U a compact abelian group and ρ : X → U an ergodic cocycle. Then the exten-
sion of X associated to ρ is of order k if and only if ρ is of type k.

Proof. We use the notation of Proposition 7.6. If Y is of order k then
Zk(Y ) = Y , W is the trivial subgroup of U and ρ is of type k. If ρ is of type k,
then Γ = Û ; thus W is trivial, and Zk(Y ) = Y .

Corollary 7.8. Assume that (X, µ, T ) and (Y, ν, S) are ergodic systems
and that X is of order k for some integer k ≥ 1. Assume that π : X → Y is a
factor map and ρ : Y → U is a cocycle. Then ρ is of type k on Y if and only
if ρ ◦ π is if type k on X.

Proof. If ρ is of type k, it follows immediately from the definition that
ρ ◦ π is of type k.

Assume that ρ ◦ π is of type k. It suffices to show that χ ◦ π is of type k

for every χ ∈ Û . Since χ ◦ (ρ ◦ π) is of type k, without loss of generality we
can assume that U = T.

The set {c ∈ T : c + ρ is not ergodic } is either empty or is a coset of the
countable subgroup {c ∈ T : nc is an eigenvalue for some n �= 0}. Therefore,
there exists c ∈ T so that ρ + c is ergodic. Substituting ρ + c for ρ, we can
assume that ρ is ergodic.

By Proposition 7.6, the extension of X associated to ρ ◦ π is of order k

because ρ is of type k. Furthermore, the extension of Y associated to ρ is a
factor of this and so is of order k as well. Therefore ρ is of type k.

Corollary 7.9. Let (X, µ, T ) be an ergodic system, U a compact abelian
group, and ρ : X → U a cocycle of type k for some integer k ≥ 1. Then there
exists a cocycle ρ′ : Zk(X) → U of type k so that ρ is cohomologous to ρ′ ◦ πk.

Proof. If ρ is ergodic, the result follows immediately from the preceding
proposition, since by Part (2), the subgroup W is trivial.
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Assume that ρ is not ergodic. There exist a closed subgroup V of U and
an ergodic cocycle σ : X → V so that ρ and σ are cohomologous as U -valued
cocycles (see [Zim76]). Also, σ is of type k as a U -valued cocycle, thus also
as a V -valued cocycle. There exists a cocycle ρ′ : Zk(X) → V of type k so
that σ is cohomologous to ρ′ ◦ πk, as a V -valued cocycle on Zk(X). Thus, as
a U -valued cocycle, ρ′ is of type k and ρ′ ◦ πk is cohomologous to ρ.

Corollary 7.10. Let k ≥ 2 be an integer, (X, µ, T ) be a system of order
k and ρ : X → U a cocycle of type k. Assume that X is an extension of Zk−1 by
a compact connected abelian group. Then there exists a cocycle ρ′ : Zk−1 → U

of type k so that ρ is cohomologous to ρ′ ◦ πk−1.

Proof. Write X = Zk−1 × V and assume that V is connected. By Corol-
lary 7.5, for every v ∈ V the cocycle ρ◦ v−ρ is a coboundary. By Lemma C.9,
there exists a cocycle ρ′ on Zk−1 so that ρ′ ◦ πk−1 is cohomologous to ρ. By
Corollary 7.8, ρ′ is of type k.

8. Initializing the induction: Systems of order 2

In this section we study the systems of order 2. These systems appeared
earlier in the literature (see [CL88], [CL87] and [Ru95]) as ‘Conze-Lesigne al-
gebras’ and were studied with a different point of view (in [HK01] and [HK02])
under the name ‘quasi-affine systems’. Our purpose here is twofold. In the
following sections we establish properties of systems of order k for arbitrary k.
As the proofs are a bit intricate, we hope that the proofs in the easier case
k = 2 aid in understanding the overall plan. Moreover, we prove some tech-
nical results which are useful as the starting points of the inductive proofs for
higher k.

8.1. Systems of order 1. We have shown that for any ergodic system X,
Z1(X) is its Kronecker factor. Thus an ergodic system is of order 1 if and only
if it is an ergodic rotation.

Let (Z, t) be an ergodic rotation. For every s ∈ Z, the rotation z 
→ sz is
an automorphism of Z and thus belongs to G(Z). Conversely, by Corollary 5.9,
G(Z) is abelian. As the rotation T : z 
→ tz lies in G(Z), every element of G(Z)
is a measure-preserving transformation of Z commuting with T and thus is
itself a rotation z 
→ sz for some s. Therefore, the group G(Z) is equal to Z,
acting on itself by translations.

A compact abelian group is a Lie group if and only if its dual group is
finitely generated. Thus every compact abelian group is the inverse limit of a
sequence of compact abelian Lie groups. Therefore, a system of order 1 is the
inverse limit of a sequence of ergodic rotations (Z, t) where each group Z is a
compact abelian Lie group.
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In the rest of this section, we study the systems of order 2. By Proposi-
tion 6.3 and Corollary 7.7, an ergodic system is of order 2 if and only if it is
an extension of an ergodic rotation (Z, t) by a compact abelian group U , given
by an ergodic cocycle σ : Z → U of type 2. By the remark after Definition 7.1,
σ : Z → U is of type 2 if and only if χ ◦σ : Z → T is of type 2 for every χ ∈ Û .

8.2. The Conze-Lesigne Equation and applications.. Throughout this
section, (Z, t) denotes an ergodic rotation: Z is a compact abelian group,
endowed with the Haar measure m = mZ and with the ergodic transformation
T : z 
→ tz, where t is a fixed element of Z.

Lemma 8.1. Let (Z, t) be an ergodic rotation, U be a torus and ρ : Z → U

a cocycle of type 2. For every s ∈ Z, there exist f : Z → U and c ∈ U so that

ρ(sx) − ρ(x) = f(tx) − f(x) + c .(CL)

This functional equation was originally introduced by Conze and Lesigne
in [CL84], and we call it the Conze-Lesigne Equation.

Proof. For every s ∈ Z, the map z 
→ sz is an automorphism of Z. By
Corollary 7.5 the cocycle z 
→ ρ(sz) − ρ(z) is of type 1. Since U is a torus,
the cocycle is a quasi-coboundary by Lemma C.5 and we obtain the functional
equation.

Lemma 8.2. Let (Z, t) be an ergodic rotation and ρ : Z → T be a cocycle
of type 2 and assume that there exists an integer n �= 0 so that nρ is a quasi -
coboundary. Then ρ is a quasi -coboundary.

Proof. Let s, f and c be as in Equation (CL). Since nρ is a quasi-
coboundary, the map z 
→ n(ρ(sz) − ρ(z)) is a coboundary. Substituting into
Equation (CL), we have that the constant nc is a coboundary, i.e. an eigen-
value of (Z, t). So for all s, f and c satisfying Equation (CL), c belongs to the
countable subgroup Γ of T, where

Γ = {c ∈ T : nc is an eigenvalue of (X, µ, T )} .

Define

Z0 = {s ∈ Z : the cocycle x 
→ ρ(sx) − ρ(x) is a coboundary} .

Clearly, Z0 is a Borel subgroup of X. Let (s, f, c) and (s′, f ′, c′) satisfy Equa-
tion (CL). If c = c′, the map x 
→ ρ(s′x) − ρ(sx) is a coboundary. Thus so
is the map x 
→ ρ(s′s−1x) − ρ(x) and s′s−1 ∈ Z0. As Γ is countable, Z0 has
countable index in Z. As Z0 is Borel, Z0 is an open subgroup of Z. But Z0

obviously contains t. By density, Z0 = Z and the cocycle x 
→ ρ(sx) − ρ(x) is
a coboundary for every s ∈ Z.
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In other words, the map (z0, z1) 
→ ρ(z1) − ρ(z0) is a coboundary of the
system (Z × Z, m × m, T × T ). By Lemma C.5, ρ is a quasi-coboundary.

Lemma 8.3. Let (Z, t) be an ergodic rotation, U a torus and ρ : Z → U a
cocycle of type 2. Then there exist a closed subgroup Z0 of Z so that Z/Z0 is
a compact abelian Lie group and a cocycle ρ : Z/Z0 → U of type 2 so that ρ is
cohomologous to ρ′ ◦ π, where π : Z → Z/Z0 is the natural projection.

In this statement, we mean that Z/Z0 is endowed with the rotation by
π(t). (Z/Z0, π(t)) is an ergodic rotation and π is a factor map.

Proof. By Equation (CL), for every s ∈ Z the cocycle z 
→ ρ(sz)− ρ(z) is
a quasi-coboundary. Applying Lemma C.10 with the action of Z on itself by
translations and Corollary 7.8, we get the result.

8.3. Systems of order 2.

Corollary 8.4. For every ergodic system (X, µ, T ), Z2(X) is an exten-
sion of Z1(X) by a compact connected abelian group.

Proof . By Proposition 6.3, Z2 is an extension of Z1 by a compact abelian
group U given by an ergodic cocycle σ : Z1 → U of type 2.

Assume that U is not connected. Then it admits an open subgroup U0 so
that U/U0 is isomorphic to Z/nZ for some integer n > 1. Write σ : Z1 → U/U0

for the reduction of σ modulo U0, meaning the composition of σ with the
quotient map U 
→ U/U0. It is an ergodic cocycle of type 2. Using the
isomorphism from U/U0 to Z/nZ and an embedding of Z/nZ as a finite closed
subgroup of T, we get a (nonergodic) cocycle ρ : Z1 → T of type 2 with nρ = 0.
By Lemma 8.2, ρ is a quasi-coboundary and thus of type 1. Viewed as a cocycle
with values in Z/nZ, ρ is also of type 1 (even if it is not a quasi-coboundary)
and σ is of type 1.

By Corollary 7.7 the extension Tσ associated to σ is a system of order 1,
meaning it is an ergodic rotation. But this extension is obviously a factor of
Z2, which is the extension of Z1 associated to σ and thus also a factor of X.
The maximal property (Proposition 4.11) of Z1 provides a contradiction.

Definition 8.5. A system X of order 2 is toral if its Kronecker factor Z1

is a compact abelian Lie group and X is an extension of Z1 by a torus.

Proposition 8.6. Every system of order 2 is the inverse limit of a se-
quence of toral systems of order 2.

Proof. Let X be a system of order 2. By Corollary 8.4, X is an extension
of its Kronecker factor Z1 by a compact connected abelian group U , given by
a cocycle ρ : Z1 → U . Therefore, U is an inverse limit of a sequence of tori.



440 BERNARD HOST AND BRYNA KRA

This means that there exists a decreasing sequence {Vn} of closed subgroups
of U , with

⋂
n Vn = {0} so that Un = U/Vn is a torus for each n. For each n,

let ρn : Z1 → Un be the reduction of ρ modulo Vn and let Xn be the extension
of Z1 by Un, associated to the cocycle ρn. Then X is clearly the inverse limit
of the sequence {Xn}.

By Lemma 8.3, for each n there exists a subgroup Kn of Z1 such that
Z1/Kn is a compact abelian Lie group, and a cocycle ρ′n : Z1/Kn → Un so
that ρn is cohomologous to ρ′n ◦ πn, where πn = Z1 → Z1/Kn is the natural
projection. Clearly, we can modify the groups Kn, by induction, so that these
properties remain valid and so that the sequence {Kn}n of subgroups is de-
creasing and has trivial intersection. For each n, let Yn be the extension of
Z1/Kn by Un associated to the cocycle ρ′n. Each of these systems is a factor
of X and is toral. This sequence of factors of X is increasing and its inverse
limit is clearly X.

8.4. The group of a system of order 2. In this section, we study the group
G = G(X) associated to a system (X, µ, T ) of order 2. We restrict to the case
that X is an extension of its Kronecker factor (Z1, t) by a torus U and write
ρ : Z1 → U for the cocycle defining this extension. As usual, we identify X

with Z1 × U .
We use the notation of Appendices A and C. C(Z1, U) denotes the group

of measurable maps from Z1 to U , endowed with the topology of convergence
in probability. A map f : Z1 → U is said to be affine if it is the sum of a
constant and a continuous group homomorphism from Z1 to U and we write
A(Z1, U) for the group of affine maps. It is a closed group of C(Z1, U) and is
the direct sum of the compact group U of constants and the discrete group of
continuous group homomorphisms from Z1 to U .

As in Appendix A.1, for each s ∈ Z1 and f ∈ C(Z1, U), let Ss,f denote the
measure-preserving transformation of Z1 × U given by

Ss,f (z, u) = (sz, u + f(z)) .(24)

These transformations form the skew product of Z1 and C(Z1, U). Endowed
with the topology of convergence in probability, it is a Polish group.

Lemma 8.7. The group G consists in the transformations of X of the type
given by Equation (24), for s ∈ Z1 and f : Z1 → U satisfying Equation (CL)
for some constant c.

Proof. Let g ∈ G. By Lemma 5.2, g induces a measure-preserving trans-
formation of Z1 belonging to G(Z1) and thus of the form z 
→ sz for some
s ∈ Z1. Moreover, by Corollary 5.10, the transformation g commutes with all
vertical rotations of X over Z1 and thus is of the form given by Equation (24)
for some map f : Z1 → U . We notice that the the commutator [g;T ] induces
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the trivial transformation of Z1. As G is 2-step nilpotent, [g, T ] belongs to
the center of G and thus commutes with T . It follows that [g, T ] is a vertical
rotation of X over Z1, given by some c ∈ U (see the definition of a vertical
rotation Appendix C.1). By definition of the commutator, s, f and c satisfy
Equation (CL).

Conversely, let s ∈ Z1 and f : Z1 → U be such that Equation (CL) is
satisfied for some c ∈ U . We show that the transformation g = Ss,f belongs
to G. Let α be an edge of V2. The transformation s : z 
→ sz of Z1 induced on
Z1 by g belongs to G(Z1) and thus the transformation s

[2]
α leaves the measure

µ
[2]
1 invariant and maps the σ-algebra I(Z1)[2] to itself. We define a map

F : Z
[2]
1 → U and a map Φ: X [2] → U as in Proposition 6.4. An immediate

computation shows that the map Φ ◦ g
[2]
α − Φ is invariant under T [2] and so

Φ ◦ g
[2]
α is also invariant under this transformation. By Proposition 6.4, the

transformation g
[2]
α maps the σ-algebra I(X)[2] to itself. By Lemma 5.3 and

Corollary 6.6, g ∈ G.

We recall that G is endowed with the topology of convergence in probabil-
ity. The map p : Ss,f 
→ s is a continuous group homomorphism from G to Z1

and is onto by Lemma 8.1. The kernel of this homomorphism is the group of
transformations of the kind S1,f , where f(tz)−f(z) is constant. By ergodicity
of the rotation (Z1, t), a map f ∈ C(Z1, U) satisfies this condition if and only if
it is affine. The map f 
→ S1,f is then an algebraic and topological embedding
of A(Z1, U) in G with range ker(p). In the sequel we identify A(Z1, U) with
ker(p). This identification generalizes the preceding identification of U with
the group of vertical rotations. G is a group of the type which is studied in
Appendix A and by Corollary A.2, G is locally compact.

Lemma 8.8. Every toral system of order 2 is isomorphic to a nilsystem.

(See Appendix B for the meaning of a nilsystem.)

Proof. We keep the same notation as above and assume furthermore that
Z1 is a compact abelian Lie group. The kernel A(Z1, U) of p is the direct
sum of the torus U and a discrete group and thus it is a Lie group also. By
Lemma A.3, G is a Lie group. We recall that G is 2-step nilpotent.

Let Γ be the stabilizer of (1, 0) ∈ X for the action of G on this space. Then
Γ consists in the transformations associated to (1, f), where f is a continuous
group homomorphism from Z1 to U . Thus Γ is discrete. The map g 
→ g ·(1, 0)
induces a bijection j from the nilmanifold G/Γ onto X. For any g ∈ G, the
transformation j−1◦g◦j of G/Γ is the (left) translation by g on the nilmanifold
G/Γ. In particular, j−1 ◦ T ◦ j is the (left) translation x 
→ T · x by T ∈ G.
Moreover, since every g ∈ G is a measure-preserving transformation of X, the
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image of µ under j−1 is invariant under the (left) action of G on G/Γ and thus
is the Haar measure on this space. The map j is the announced isomorphism.

8.5. Countable number of cocycles. We show that the number of T-valued
cocycles of type 2 on an ergodic rotation Z, up to quasi-boundary, is countable.

Proposition 8.9. Let (Z, t) be an ergodic rotation. Up to the addition
of a quasi -coboundary, there are only countably many T-valued cocycles of type
2 on Z.

Proof. We make use of explicit distances on some groups of functions. For
u ∈ T, write

‖u‖ = | exp(2πiu) − 1| .

For f ∈ C(Z) = C(Z, T), write

‖f‖ =
(∫

‖f(z)‖2 dm(z)
)1/2

.

The distance between two cocycles f, g ∈ C(Z) is defined to be ‖f − g‖. As
above, A(Z) = A(Z, T) denotes the closed group of affine cocycles. For c, c′ ∈ T
and γ, γ′ ∈ Ẑ, we have ‖(c + γ) − (c′ + γ′)‖ ≥

√
2 whenever γ �= γ′.

Let Q(Z) denote the quotient group Q(Z) = C(Z)/A(Z) and write q : C(Z)
→ Q(Z) for the quotient map. The quotient distance between Φ ∈ Q and 0 ∈ Q
is written |||Φ|||Q and the quotient distance between two elements Φ,Ψ of this
group is |||Φ − Ψ|||Q. Endowed with this distance, Q(Z) is a Polish group.

We also use the group F of continuous maps from Z to Q, endowed with
the distance of uniform convergence: If s 
→ Φ(s) is an element of F , write

|||Φ|||∞ = sup
s∈Z

|||Φ(s)|||Q .

The distance between two elements Φ and Ψ ∈ F is |||Φ−Ψ|||∞. As Z is compact
and Q is a Polish group, F is also a Polish group.

First Step. Let ρ ∈ C(Z) be a weakly mixing cocycle of type 2. Let X be
the extension of Z associated to this cocycle. X is of order 2 and Z1(X) = Z.
We use the notation of Section 8.4.

Let s 
→ Ss,fs
be an arbitrary cross section of the map p : G → Z. For every

s ∈ Z, fs belongs to C(Z) and satisfies Equation (CL) for some c ∈ T. Define
Φρ(s) ∈ Q(Z) to be the image of fs under q. Since the kernel of p : G → Z is
A(Z), Φρ(s) does not depend on the choice of fs. In fact, the map s 
→ Φρ(s)
from Z to Q(Z) is the reciprocal of the isomorphism G/ ker(p) → Z and thus
it is continuous. In other words, this map is an element of F .

Second Step. We continue assuming that ρ is a weakly mixing cocycle of
type 2. Φρ is defined as above.
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Lemma 8.10. If |||Φρ|||∞ < 1/20, then ρ is cohomologous to an affine map.

Proof. Define a subset K of G by

K = {Ss,f ∈ G : There exists c ∈ T with ‖c + f‖ ≤ 1/10} .

Let s ∈ Z. By hypothesis |||Φρ(s)|||Q < 1/20 and there exists f ∈ C(Z)
with Ss,f ∈ G and ‖f‖ < 1/20, thus Ss,f ∈ K. The restriction p|K of p : G → Z

to K is therefore onto.

Claim. K is a subgroup of G. Let Ss,f and Ss′,f ′ ∈ K. We have
Ss′,f ′ ◦ Ss,f = Ss′s,f ′′ where f ′′(z) = f(s′z) + f ′(z). Choose c, c′ ∈ T with
‖c + f‖ ≤ 1/10 and ‖c′ + f ′‖ ≤ 1/10. Then ‖f ′′ + c + c′‖ ≤ ‖f + c‖+ ‖f ′ + c′‖
≤ 1/5. On the other hand, there exists an element of K with projection on
Z equal to ss′. This means that there exists g ∈ C(Z) with ‖g‖ < 1/20 and
Ss′s,g ∈ G. We get that S1,f ′′−g ∈ G and thus f ′′−g ∈ A(Z) and f ′′−g+c+c′ ∈
A(Z). But ‖f ′′ − g + c + c′‖ ≤ ‖f ′′ + c + c′‖+ ‖g‖ ≤ 1/4 and so f ′′ − g + c + c′

is equal to a constant d ∈ T. Finally, ‖f ′′ + c + c′ − d‖ = ‖g‖ < 1/20 and
Ss′s,f ′′ ∈ K. Clearly, the identity transformation S1,0 belongs to K and the
inverse of an element of K belongs to K. The claim is proved.

K clearly contains the group T of vertical rotations. If f is an affine map
and ‖c + f‖ ≤ 1/10 for some constant c, then f is constant. It follows that
the kernel of the group homomorphism p|K : K → Z is the group T of vertical
rotations. Moreover, K is clearly closed in G and is locally compact. Since the
kernel T and the range Z of p|K are compact, K is a compact group.

Claim. K is abelian. We consider the commutator map (g, h) 
→ [g;h]. It
is continuous and bilinear because K is 2-step nilpotent. But the commutator
group K′ is included in T because K′ is the kernel of the group homomorphism
pK ranging in the abelian group Z. Thus the commutator map has range in
T. Moreover, T is included in the center of K. (This can be seen either by
applying Proposition 6.3 or by checking directly.) Thus the commutator map
is trivial on T×K and K×T. Therefore, it induces a continuous bilinear map
from K/T × K/T → T and finally a continuous bilinear map b : Z × Z → T.
Choose f ∈ C(Z) with St,f ∈ K. For all integers m, n the transformations
Sm

t,f and Sn
t,f commute and by definition of b, b(tm, tn) = 0. Since (Z, t) is an

ergodic rotation, {tn : n ∈ Z} is dense in Z and so the bilinear map b is trivial.
Returning to the definition, the commutator map K × K → K′ is trivial and
the second claim is proved.

The compact abelian group K admits T as a closed subgroup, with quo-
tient Z. Thus it is isomorphic to T ⊕ Z. This means that the group ho-
momorphism p|K : K → Z admits a cross section Z → K, which is a group
homomorphism and is continuous. This cross section has the form s 
→ Ss,fs
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and the map s 
→ fs is continuous from Z to C(Z) satisfies for all s, s′ ∈ Z

fss′(z) = fs′(sz) + fs(z) for almost every z ∈ Z.

By Lemma C.8, there exists f ∈ C(Z) so that fs(z) = f(sz) − f(z) for every
s ∈ Z.

Define ρ′(z) = ρ(z) − f(tz) + f(z). The cocycle ρ′ is cohomologous to ρ.
Moreover, for every s we have Ss,fs

∈ K ⊂ G and this means that s and fs

satisfy Equation (CL) for some constant c. Substituting in the definition of ρ′

we have ρ′(sz)−ρ(z) = c. As this holds for every s ∈ Z, ρ′ is an affine cocycle.
This completes the proof of Lemma 8.10.

End of the proof of Proposition 8.9. Let W be the family of weakly mixing
cocycles of type 2 on Z. To every cocycle ρ ∈ W, we have associated an element
Φρ of F . Since F is separable, there exists a countable family {ρi : i ∈ I} in
W so that for every ρ ∈ W, there exists i ∈ I with |||Φρ − Φρi

||| < 1/20.
Let ρ : Z → T be a cocycle of type 2.
Assume first that ρ is not weakly mixing. There exists an integer n �= 0 so

that nρ is a quasi-coboundary and by Lemma 8.2, ρ itself is a quasi-coboundary.
Assume now that ρ is weakly mixing. Choose i ∈ I so that |||Φρ − Φρi

||| <

1/20. If ρ − ρi is not weakly mixing, by the same argument as above this
cocycle is a quasi-coboundary and ρ is the sum of ρi and a quasi-coboundary.
If ρ − ρi is weakly mixing, then Φρ−ρi

= Φρ − Φρi
. Thus |||Φρ−ρi

||| < 1/20 and
by Lemma 8.10 the cocycle ρ− ρi is cohomologous to some affine map. In this
case, ρ is the sum of ρi, a character γ ∈ Ẑ and a quasi-coboundary.

The proof of Proposition 8.9 is complete.

9. The main induction

We now generalize the results, for systems of order 2, of Section 8 to higher
orders. We start with a more detailed study of the ergodic decomposition of
µ × µ.

9.1. The systems Xs. In this section, we use the following notation.
Let (X, µ, T ) be an ergodic system. For every integer k ≥ 2, Zk = Zk(X)
is an extension of Zk−1 by a compact abelian group Uk, given by a cocycle
ρk : Zk−1 → Uk of type k.

We recall the ergodic decomposition of formula (7)

µ × µ =
∫

Z1

µs dµ1(s)

of µ × µ for T × T .

Notation. For every s ∈ Z1, let Xs denote the system (X ×X, µs, T ×T ).
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We recall that Xs is ergodic for µ1-almost every s ∈ Z1 (see Subsec-
tion 3.2).

Lemma 9.1. Let (X, µ, T ) be an ergodic system, U a compact abelian
group, ρ : X → U a cocycle and k ≥ 0 an integer. Then the subset

A = {s ∈ Z1 : ∆ρ is a cocycle of type k of Xs}

is measurable and µ1(A) = 0 or 1. Furthermore, the cocycle ρ is of type k + 1
if and only if µ1(A) = 1.

Proof. We recall that ∆ρ is defined on X×X by ∆ρ(x′, x′′) = ρ(x′)−ρ(x′′).
Under the identification of X [k+1] with (X × X)[k], we can write ∆k+1ρ =
∆k(∆ρ). Moreover, by Equation (8) we have

∫
(µs)[k] dµ1(s) = µ[k+1]. By the

definition of a cocycle of type k + 1 on X, the definition of a cocycle of type
k on Xs and Corollary C.4, we get immediately that A is a measurable subset
of Z1 and that ρ is of type k + 1 if and only if µ1(A) = 1. It only remains to
show that µ1(A) = 0 or 1.

Let s ∈ Z1 with Ts ∈ A. The map Id×T is an isomorphism of Xs onto
XTs. Thus ∆ρ ◦ (Id×T ) is a cocycle of type k on Xs. But ∆ρ ◦ (Id×T )−∆ρ

is the coboundary of the map (x′, x′′) 
→ −ρ(x′′). Thus, ∆ρ is of type k on Xs

and s ∈ A. Therefore, the subset A of Z1 is measurable and invariant under
T and so has measure 0 or measure 1.

Before stating the next proposition we need some notation. Let p : (X, µ, T )
→ (Y, ν, S) be a factor map which induces a factor map p1 from the Kronecker
factor Z1(X) of X to the Kronecker factor Z1(Y ) of Y . By an abuse of nota-
tion, for s ∈ Z1(X) we often write νs instead of νp1(s) and Ys instead of Yp1(s).
By the ergodic decomposition, for µ1-almost every s ∈ Z1 the measure νs is
the image of µs under p × p. In other words, p × p is a factor map from Xs

to Ys.

Lemma 9.2. Let (X, µ, T ) be an inverse limit of a sequence {Xn}n of
ergodic systems. Then for µ1-almost every s ∈ Z1, Xs = lim←−Xn,s, where Xn,s

is the system associated to Xn in the same way that Xs is associated to X.

Proof. There exists a countable family {fi : i ∈ I} of bounded functions
defined everywhere on X, dense in L2(µ) and so that the linear span of the
family {fi ⊗ fj : i, j ∈ I} is dense in L2(ν) for every probability measure ν on
X × X. For every i and every n, we consider E(fi | Xn) as a function defined
everywhere on X.

For every i ∈ I, E(fi | Xn) converges to fi µ-almost everywhere. There
exists a subset X0 of X, with µ(X0) = 1, so that E(fi | Xn)(x) → fi(x) for all
i ∈ I and all x ∈ X0. For µ1-almost every s ∈ Z1, we have µs(X0 × X0) = 1.
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Fix such an s, and consider X×X as endowed with µs. For every i, j ∈ I,
E(fi | Xn) ⊗ E(fj | Xn) converges to fi ⊗ fj on X0 × X0, thus µs-almost
everywhere. For every n, E(fi | Xn)⊗E(fj | Xn) is measurable with respect to
Xn ⊗ Xn and it follows that fi ⊗ fj is measurable with respect to the inverse
limit lim←−Xn,s of the factors Xn,s of Xs. By density, every function in L2(µs)
is measurable with respect to lim←−Xn,s.

9.2. The factors Zk(Xs). We compute the factors Zk(Xs) of Xs. As above,
for every integer k ≥ 2, Zk is an extension of Zk−1 by a compact abelian group
Uk, given by a cocycle ρk : Zk−1 → Uk of type k. We recall that for every
integer k, the system Zk has the same Kronecker factor Z1 as X.

For every k and µ1-almost every s ∈ Z1, we associate to the system
(Zk, µk, T ) a measure µk,s on Zk ×Zk in the same way that µs is associated to
(X, µ, T ). Let Zk,s denote the system (Zk × Zk, µk,s, T × T ).

The measure µs is a relatively independent joining of µ over the joining
µ1,s of µ1. Thus, for every k, µk,s is a relatively independent joining of µk

over µ1,s and thus over the joining µk−1,s of µk−1. Therefore, the system
(Zk,s, µk,s, T×T ) is an extension of (Zk−1,s, µk−1,s, T×T ) by the group Uk×Uk,
given by the cocycle ρk × ρk : (x′, x′′) 
→ (ρk(x′), ρk(x′′)).

Lemma 9.3. Let k ≥ 1 be an integer. Then:

(1) For µ1-almost every s ∈ Z1, ρk × ρk is a cocycle of type k on Zk−1,s.

(2) For µ1-almost every s ∈ Z1, Zk,s is a system of order k. In particular, if
X is of order k then Xs is of order k for µ1-almost every s ∈ Z1.

Proof. (1) We identify Z
[k]
k−1 × Z

[k]
k−1 with (Z2

k−1)
[k] and with Z

[k+1]
k−1 . We

recall that there exists Fk : Z
[k]
k−1 → Uk with ∆kρk = Fk◦T [k]−Fk, µ

[k]
k−1-almost

everywhere. Define G : Z
[k]
k−1×Z

[k]
k−1 → Uk×Uk by G(x′,x′′) = (Fk(x′), Fk(x′′)).

As each of the two projections of µ
[k+1]
k−1 on Z

[k]
k−1 is equal to µ

[k]
k−1, the equality

∆k(ρk × ρk) = G ◦ T [k+1] − G holds µ
[k+1]
k−1 -almost everywhere. As µ

[k+1]
k−1 =∫

Z1
(µk−1,s)[k] dµ1(s), for µ1-almost every s, the same relation holds (µk−1,s)[k]-

almost everywhere and ρk × ρk is a cocycle of type k of Zk−1,s.

(2) This follows by induction on k, by Proposition 7.7 at each step.

Proposition 9.4. For every integer k ≥ 1 and µ1-almost every s ∈ Z1,
Zk(Xs) is a factor of Zk+1,s; it is an extension of Zk,s by Uk+1, given by the
cocycle ∆ρk+1 : (x′, x′′) 
→ ρk+1(x′) − ρk+1(x′′), when viewed as a cocycle on
Zk(Xs). Furthermore, Zk+1,s is an extension of Zk(Xs) by Uk+1, given by the
cocycle (x′, x′′) 
→ ρk+1(x′′).
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Proof. By Proposition 4.7, the invariant σ-algebra I [k+1](X) of the system
(X [k+1], µ[k+1], T [k+1]) is measurable with respect to Z [k+1]

k+1 . As µ[k+1] =∫
µ

[k]
s dµ1(s), by classical arguments for µ1-almost every s ∈ Z1, the invariant

σ-algebra of X
[k]
s = (X [k+1], µ

[k]
s , T [k+1]) is measurable with respect to the

same σ-algebra, that is, with respect to (Zk+1 × Zk+1)[k]. By the minimality
property of the factor Zk(Xs) (Proposition 4.7 again), the σ-algebra Zk(Xs)
is measurable with respect to Zk+1 ×Zk+1. In other words, Zk(Xs) is a factor
of Zk+1,s.

Let χ′, χ′′ ∈ Ûk+1 and consider here these characters as taking values in T.
Write χ = (χ′, χ′′) ∈ Ûk+1 × Ûk+1, which we identify with the dual group of
Uk+1 × Uk+1. Let σ : Zk × Zk → Uk+1 be the map given by

σ(x′, x′′) = χ′(ρk+1(x′)) + χ′′(ρk+1(x′′)) .

Define
A =

{
s ∈ Z1 : σ is a cocycle of type k of Zk,s

}
.

By the same method as in the proof of Lemma 9.1, we get that A is invariant
under T and µ1(A) = 0 or 1.

Let us assume that µ1(A) = 1. For µ1-almost every s ∈ Z1, ∆kσ is a
coboundary of the system (Z [k+1]

k , µ
[k+1]
k,s , T [k+1]). Thus ∆kσ is a coboundary

of the system (Z [k+1]
k , µ

[k+1]
k , T [k+1]) and there exists a map F : Z

[k+1]
k → Uk+1,

with

F (T [k+1]x) − F (x) =
∑

ε∈Vk+1

s(ε)χε(ρk+1(xε))

where

χε =

{
χ′ if ε1 = 0
−χ′′ if ε1 = 1.

The function Φ, defined on Z
[k+1]
k+1 = Z

[k]
k × U

[k+1]
k+1 by

Φ(x,u) = F (x) −
∑

ε∈Vk+1

s(ε)χε(uε) ,

is invariant under T [k+1]. By Proposition 6.3, it is invariant under u
[k+1]
α for

every edge α = (ε, η) of Vk+1 and every u ∈ Uk+1. This means that s(ε)χε(u)+
s(η)χη(u) = 1 and thus χε(u) = χη(u). As this holds for every u ∈ Uk+1,
χε = χη which holds for every edge α and so χ′′ = −χ′.

In summary, if χ′′ �= −χ′, then µ1(A) �= 1 and so µ1(A) = 0. Then for
µ1-almost every s, the cocycle σ of Zk,s is not of type k. If χ′′ = −χ′, then
σ = χ′ ◦∆ρk+1, which is a cocycle of type k on Zk,s for µ1-almost every s ∈ Z1

by Lemma 9.1.
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We recall that Zk+1,s is the extension of Zk,s associated to the cocycle
ρk+1 × ρk+1 with values in Uk+1 ×Uk+1 and apply Proposition 7.6. The anni-
hilator of the group W appearing in this proposition is {(χ′,−χ′) : χ ∈ Ûk+1}.
Thus W = {(u′, u′) : u′ ∈ Uk+1}. The map (u′, u′′) 
→ (u′ − u′′, u′′) is an
isomorphism of Uk+1 × Uk+1 on itself. It maps W to {0} × Uk+1 and we can
identify (Uk+1 × Uk+1)/W with Uk+1. Under this identification, the cocycle
ρk+1 × ρk+1 mod W is simply ∆ρk+1. We get that Zk(Xs) is the extension of
Zk,s associated to the cocycle ∆ρk+1. Using the identification of the subgroup
W with Uk+1 explained above, we have the last statement of the proposition.

9.3. Connectivity. We generalize the connectivity result established for
systems of order 2 to higher orders in Section 8. We show that for an ergodic
system (X, µ, T ) and integer k ≥ 1, Zk+1(X) is an extension of Zk(X) by a
connected compact abelian group. In fact, we prove simultaneously two results
by induction:

Theorem 9.5. Let k ≥ 1 be an integer.

(1) Let (X, µ, T ) be a system of order k, ρ : X → T a cocycle of type k + 1
and n �= 0 an integer. If nρ is of type k, then ρ itself is of type k.

(2) For every ergodic system (X, µ, T ), Zk+1(X) is an extension of Zk(X)
by a compact connected abelian group.

Proof. For k = 1 these results have been proved in Section 8 (Lemma 8.2
and Corollary 8.4).

Let k > 1 and assume that the two properties hold for k−1. Let X, ρ and
n be as in the first statement of the theorem.

Note that X is an extension of Zk−1 = Zk−1(X) by a compact abelian
group U , which is connected by the inductive hypothesis. As usual, for u ∈ U

we also use u to denote the corresponding vertical rotation of X over Zk−1.
Since nρ is of type k, by Corollary 7.10 there exists a cocycle σ : Zk−1 → T

and a map f : X → T so that

nρ = σ ◦ πk−1 + f ◦ T − f .

Let u ∈ U . By Part (3) of Corollary 7.5, the cocycle ρ ◦ u − ρ is a quasi-
coboundary and so there exist φ : X → T and c ∈ T with

ρ ◦ u − ρ = φ ◦ T − φ + c .

Plugging into the preceding equation, we get that the constant nc is a cobound-
ary of X. That is, nc is an eigenvalue of this system and c belongs to the
countable subgroup

Γ = {c ∈ T : nc is an eigenvalue of X}
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of T. For every c ∈ Γ, define

Uc = {u ∈ U : ρ ◦ u − ρ − c is a coboundary of X} .

Each of these sets is a Borel subset of U and their union is U . Thus there
exists c ∈ Γ such that mU (Uc) > 0, where mU is the Haar measure of U . But
U0 is clearly a subgroup of U and Uc a coset of this subgroup. It follows that
mU (U0) > 0 and that U0 is an open subgroup of U . Since U is connected,
U0 = U . Thus for every u ∈ U the cocycle ρ ◦ u − ρ is a coboundary. By
Lemma C.9, there exists τ : Zk−1 → T and g : X → T with

ρ = τ ◦ πk−1 + g ◦ T − g .

By considering X as a system of order k + 1, we see that τ is a cocycle of type
k + 1 on Zk−1 by Corollary 7.8 and nτ is a cocycle of type k.

We use the notation and results of Section 9.1, applied to the system Zk−1.
By Lemma 9.3, Zk−1,s is a system of order k − 1 for almost every s ∈ Z1. By
Lemma 9.1, for almost every s, the cocycle ∆τ of the system Zk−1,s is of
type k and the cocycle n∆τ of this system is of type k − 1. By the inductive
assumption, ∆τ is a cocycle of type k − 1 of this system. Using Lemma 9.1
again, τ is a cocycle of type k of the system Zk−1 and by Corollary 7.8 ρ is a
cocycle of type k on X.

The first assertion of Theorem 9.5 is proved for k. It remains to show the
second assertion for k.

We deduce it from the first part exactly as in the proof of Corollary 8.4.
Reproducing it here for completeness. Zk+1 is an extension of Zk by a compact
abelian group U , given by a cocycle ρ of type k+1. Assume that U is not con-
nected. This group admits an open subgroup U0 such that U/U0 is isomorphic
to Z/nZ for some integer n > 1. We write ρ : Zk → U/U0 for the reduction of
ρ modulo U0; it is a cocycle of order k + 1. Using the isomorphism from U/U0

onto Z/nZ and the natural embedding of Z/nZ as a subgroup of T, we get a
cocycle τ : Zk → T, of type k + 1, so that nτ = 0. Thus nτ is of type k and by
the first part of Theorem 9.5, τ is of type k.

Therefore ρ is of type k. The extension of Zk associated to this cocycle is
a factor of X and is of type k by Corollary 7.7. Proposition 4.11 provides a
contradiction.

9.4. Countability. The countability result that we have shown for the
cocycles of order 2 (Proposition 8.9) cannot be generalized to higher orders.
However, the weaker result proved in this section suffices for our purposes.

Notation. We let Ck(X) denote the subgroup of C(X) consisting of
cocycles of type k.
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Theorem 9.6. Let k ≥ 2 be an integer, (X, µ, T ) be an ergodic system,
(Ω, P ) a (standard) probability space and ω 
→ ρω a measurable map from
Ω to Ck(X). Then there exists a subset Ω0 of Ω, with P (Ω0) > 0, so that
ρω − ρω′ ∈ C1(X) for every (ω, ω′) ∈ Ω0 × Ω0.

Proof. We proceed by induction on k. By Corollary 7.9, Theorem 9.5 and
Corollary 7.10, for every cocycle ρ of type 2 on X there exists a cocycle ρ′ of
type 2 on Z1 so that ρ is cohomologous to ρ′ ◦ π1. By Proposition 8.9, C1(Z1)
has countable index in C2(Z1) and so C1(X) has countable index in C2(X). The
statement of the theorem follows immediately for k = 2.

Fix an integer k ≥ 2 and assume that the theorem holds for k. Let
(X, µ, T ), (Ω, P ) be as in the statement of the theorem and let ω 
→ ρω be a
measurable map from Ω to Ck+1(X).

We use the usual ergodic decomposition (formula (7)) of µ×µ for T×T and
formula (8) for µ[k+1]. The map ω 
→ ∆ρω from Ω to C(X ×X) is measurable.
By Lemma C.3 the subset

A =
{
(ω, s) ∈ Ω × Z1 : ∆ρω ∈ Ck(Xs)

}
of Ω × Z1 is measurable. In the same way, the subset

B =
{
(ω, ω′, s) ∈ Ω × Ω × Z1 : ∆ρω − ∆ρω′ ∈ C1(Xs)

}
of Ω × Ω × Z1 is measurable. By Lemma 9.1, for all ω, ω′ ∈ Ω the subset

Bω,ω′ = {s ∈ Z1 : (ω, ω′, s) ∈ B}
of Z1 has measure 0 or 1. Moreover, for every ω ∈ Ω the cocycle ρω is of type
k + 1 by hypothesis and so by Lemma 9.1, the cocycle ∆ρ is of type k on Xs

for µ1-almost every s ∈ Z1. Thus (P × µ1)(A) = 1. Therefore, for µ1-almost
every s ∈ Z1, using the inductive hypothesis applied to the system Xs and the
map ω 
→ ∆ρω, we get

(P × P )
{
(ω, ω′) ∈ Ω × Ω : (ω, ω′, s) ∈ B

}
> 0 .

Therefore (P × P × µ1)(B) > 0 and the subset

C =
{

(ω, ω′) ∈ Ω × Ω : µ1(Bω,ω′) > 0
}

=
{

(ω, ω′) ∈ Ω × Ω : µ1(Bω,ω′) = 1
}

of Ω × Ω has positive measure under P × P . By Lemma 9.1 again, for
(ω, ω′) ∈ C, the cocycle ρω − ρω′ belongs to C2(X). By the base step of the
induction, C1(X) has countable index in C2(X) and so there exists ρ ∈ C2(X)
such that the set

D =
{
(ω, ω′) ∈ C : ρω − ρω′ − ρ ∈ C1(X)

}
satisfies (P × P )(D) > 0. Choose ω0 ∈ Ω so that the set

Ω0 = {ω ∈ Ω : (ω0, ω) ∈ D}
has positive measure. Then for ω, ω′ ∈ Ω0, ρω − ρω′ ∈ C1(X).
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Corollary 9.7. Let (X, µ, T ) be an ergodic system and {Su : u ∈ U}
a free action of a compact abelian group U on X by automorphisms. Let
ρ : X → T be a cocycle of type k for some integer k ≥ 2. Then there exist
a closed subgroup U1 of U such that U/U1 is a toral group, and a cocycle ρ′

cohomologous to ρ with ρ′ ◦ Su = ρ′ for every u ∈ U1.

Proof. Define

U0 = {u ∈ U : ρ ◦ Su − ρ is a quasi-coboundary} .

Clearly, U0 is a measurable subgroup of U .
The map u 
→ ρ ◦ Su − ρ is a measurable map from U to Ck(X) (and even

to Ck−1(X) by Corollary 7.5). By Theorem 9.6 there exists a subset U2 of
U , with mU (U2) > 0, so that ρ ◦ Su − ρ ◦ Sv is a quasi-coboundary for every
u, v ∈ U2. We get immediately that U2 − U2 ⊂ U0 and so mU (U0) > 0. Thus
U0 is an open subgroup of U .

By Lemma C.10 applied to the action {Su : u ∈ U0}, there exist a subgroup
U1 of U0 and a cocycle ρ′ on X with the required properties. (Note that U/U1

is toral because U0/U1 is toral and U/U0 is finite).

10. Systems of order k and nilmanifolds

By using the tools developed in the preceding sections, we can now de-
scribe the structure of systems of order k. We show:

Theorem 10.1 (Structure Theorem). Any system of order k ≥ 1 can be
expressed as an inverse limit of a sequence of k-step nilsystems.

The definition of nilsystems and the properties we use are summarized in
Appendix B.

The proof splits into two parts. First we show show that every system
of order k can be expressed as an inverse limit of simpler ones, called toral
systems (Theorem 10.3). Then we show that each toral system of order k is
actually a k-step nilsystem (Theorem 10.5).

10.1. Reduction to toral systems.

Definition 10.2. An ergodic system (X, µ, T ) of order k ≥ 1 is toral if
Z1(X) is a compact abelian Lie group and for 1 ≤ j < k, Zj+1(X) is an
extension of Zj(X) by a torus.

Theorem 10.3. Any system of order k ≥ 1 is an inverse limit of a se-
quence of toral systems of order k.

We begin with a lemma.
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Lemma 10.4. Let (X, µ, T ) be an ergodic system, U a torus and ρ : X

→ U a cocycle of type k +1 for an integer k ≥ 0. Assume that X is an inverse
limit of a sequence {Xi : i ∈ N} of systems. Then ρ is cohomologous to a
cocycle ρ′ : X → U , which is measurable with respect to Xi for some i.

Proof of Lemma 10.4. We show by induction on � that:

(*) For integers 0 ≤ � ≤ k, there exist i� ∈ N and a cocycle ρ� cohomologous
to ρ that is measurable with respect to Zk−�(X) ∨ Xi�

.

By Corollary 7.9, ρ is cohomologous to a cocycle which factors through
Zk+1(X). By Theorem 9.5, Zk+1(X) is an extension of Zk(X) by a connected
compact abelian group. By Corollary 7.10, there exists a cocycle ρ0, cohomol-
ogous to ρ and measurable with respect to Zk(X), and a fortiori with respect
to Zk(X) ∨ X1. The claim (*) holds for � = 0.

Let 0 ≤ � < k and assume that (*) holds for �. Let i� and ρ� be as in the
statement of the claim. By Corollary 7.8, ρ� is of type k + 1.

Let Y be the factor of X corresponding to the σ-algebra Y = Zk−�(X)∨Xi�

and let W be the factor of X corresponding to W = Zk−�−1(X) ∨ Xi�
. As

Zk−�(X) is an extension of Zk−�−1(X) by a compact abelian group, by the
first part of Lemma C.2 (Appendix C), Y is an extension of W by a compact
abelian group V . We identify Y with W × V . As usual, for v ∈ V we also let
v : Y → Y denote the associated vertical rotation of Y above W .

By Corollary 9.7, there exist a closed subgroup V1 of V , so that V/V1 is a
compact abelian Lie group, and a cocycle ρ′, cohomologous to ρ� and thus to
ρ, so that ρ′(v ·y) = ρ′(y) for every v ∈ V1. We consider ρ′ as a cocycle defined
on the factor W × V/V1 of Y .

Since V/V1 is a compact abelian Lie group, its dual group V̂/V1 = V ⊥
1

is finitely generated. Choose a finite generating set {γ1, . . . , γm} for V ⊥
1 . For

1 ≤ j ≤ m, consider γj as taking values in the circle group S1 and define the
function fj on Y = W × V by fj(w, v) = γj(v). Since X is the inverse limit of
the sequence {Xi}, there exists i ≥ i� so that for 1 ≤ j ≤ m, E(fj | Xi) �= 0.
Thus, E(fj | W∨Xi) �= 0. By Lemma C.2 the functions fj are measurable with
respect to W∨Xi. But the functions fj , 1 ≤ j ≤ m, together with the σ-algebra
W, span the σ-algebra of the system W × V/V1. As ρ′ is measurable with
respect to this system, it is measurable with respect to W ∨Xi = Zk−�−1 ∨Xi.
Therefore, (*) holds for � + 1 with i�+1 = i. Property (*) with � = k is the
announced result.

Proof of Theorem 10.3. We proceed by induction. For k = 1 the result
is proved in Section 8.1.

Let k ≥ 1 be an integer and assume that the result holds for k. Let Y be
a system of order k + 1. Write X = Zk(Y ). Then Y is an extension of X by
a compact abelian group U and we let ρ : X → U be the cocycle defining this
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extension. By Theorem 9.5, U is connected and can be written as lim←−Uj , where
each Uj is a torus. Let ρj : X → Uj be the projection of ρ on the quotient Uj

of U .
By the inductive hypothesis, X can be written as an inverse limit lim←−Xi,

where each Xi is toral. By Lemma 10.4, for every j there exist ij and a
Uj-valued cocycle ρ′j , measurable with respect to Xij

, and cohomologous to ρj .
We can clearly assume that the sequence {ij} is increasing. Each system
Xij

×ρ′
j
Uj is toral and Y = X×ρ U is clearly the inverse limit of these systems.

10.2. Building nilmanifolds. Here we show that every toral system can
be given the structure of a k-step nilsystem. This is obtained by showing that
the group G associated to this system as in Section 5 is a Lie group and acts
transitively.

Theorem 10.5. Let (X, µ, T ) be a toral system of order k ≥ 1. Then:

(1) G = G(X) is a Lie group and is k-step nilpotent.

(2) Let G be the subgroup of G spanned by the connected component of the
identity and T . Then G admits a discrete co-compact subgroup Λ so that
the system X is isomorphic to the nilmanifold G/Λ, endowed with Haar
measure and left translation by T .

(See Appendix B for more on nilmanifolds.)
The proof is by induction on the order k of the system. When k = 1, the

system is a rotation on a compact abelian Lie group Z. We have G(X) = Z,
acting on itself by translations and the first statement is obvious. By ergodicity
G = Z and the second statement holds with Λ = {1}.

Let k ≥ 1 be an integer and assume that both statements of Theorem 10.5
hold for every toral system of order k.

10.2.1. Conditions for lifting. Throughout this section, k ≥ 1 is an integer
and (Y, ν, S) is a toral system of order k + 1. We write (X, µ, T ) for Zk(Y ),
where Y is an extension of X by a torus U , given by a cocycle ρ : X → U of
type k + 1. By the inductive hypothesis, G(X) is a Lie group.

By Lemma 5.2, every element g of G(Y ) induces a transformation pkg of
X, which belongs to G(X). We now study the inverse problem. We say that an
element g of G(X) can be lifted to an element of G(Y ) if there exists g ∈ G(Y )
with pkg = g. We now establish conditions for lifting.

We use the maps F : X [k+1] → U and Φ: Y [k+1] → U introduced in Propo-
sition 6.4:

∆k+1ρ = F ◦ T [k+1] − F and Φ(x,u) = F (x) −
∑

ε∈Vk+1

s(ε)uε(25)
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under the identification of Y [k+1] with X [k+1]×U [k+1]. By Proposition 6.4, the
σ-algebra I [k+1](Y ) is spanned by the σ-algebra I [k+1](X) and the map Φ.

Lemma 10.6. Let g ∈ C(X). If g ∈ G(Y ) is a lift of g, then g is given by

g · (x, u) = (g · x, u + φ(x))(26)

where φ : X → U is a map satisfying

F ◦ g[k+1] − F = ∆k+1φ .(27)

Conversely, if φ : X → U satisfies Equation (27), then the transformation
g of Y given by Equation (26) is a lift of g to G(Y ).

Proof. Let g ∈ G(X) and assume that g admits a lift g ∈ G(Y ). By
Corollary 5.10, the vertical rotations of Y over X belong to the center of
G(Y ) and thus commute with g. It follows that g has the form given by
Equation (26) for some φ : X → U . As g ∈ G(Y ), the transformation g[k+1] of
Y [k+1] acts trivially on I [k+1](Y ) and thus leaves the map Φ invariant. This
implies immediately that φ satisfies Equation (27).

Conversely, let g ∈ G(X), φ : X → U be a map satisfying Equation (27)
and let g be the measure-preserving transformation of Y given by Equa-
tion (26). Since ν[k+1] is conditionally independent over µ[k+1] and g[k+1] leaves
the measure µ[k+1] invariant, g[k+1] leaves the measure µ[k+1] invariant. More-
over, Equation (27) means exactly that the map Φ is invariant under g[k+1].
Since g ∈ G(X), g[k+1] acts trivially on I [k+1](X). By Proposition 6.4, g[k+1]

acts trivially on I [k+1](Y ). By Corollary 6.6, g ∈ G(Y ).

Corollary 10.7. The kernel of the group homomorphism pk : G(Y ) →
G(X) consists in the transformations of the form (x, u) 
→ (x, u+φ(x)), where
φ ∈ Dk+1(X, U) (see Section 7.1).

In order to build lifts of elements of G(X), we progress from G(k−1)(X)
to G(X) along the lower central series of G(X). For 1 ≤ j < k, we show
that ‘many’ elements of G(j)(X) satisfy a property stronger than the lifting
condition of Lemma 10.6. We need some notation.

Notation. Let β be an �-face of Vk+1 and φ : X → U a map. We write
∆k+1

β : X [k+1] → U for the map given by

∆k+1
β φ(x) =

∑
ε∈β

s(ε)φ(xε) .

The projection ξ
[k+1]
β : X [k+1] → X [�] is defined in Section 2.1. We have

that
∆k+1

β φ(x) = ±∆�φ
(
ξ
[k+1]
β (x)

)
,

where the sign depends on the face β.
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Lemma 10.8. Let j be an integer with 0 ≤ j < k. For g ∈ G(j)(X) and
φ : X → U , the following are equivalent :

(1) For every (k + 1 − j)-face β of Vk+1, F ◦ g
[k+1]
β − F = ∆k+1

β φ.

(2) For every (k − j)-face α of Vk+1, F ◦ g
[k+1]
α −F −∆k+1

α φ is invariant on
X [k+1].

Notation. We write G(j)
0 for the set of g ∈ G(j)(X) so that there exists

φ : X → U satisfying the properties of Lemma 10.8.

Proof. The proof is similar to the proof of Lemma 10.6. Let g ∈ G(j)(X).
Let φ : X → U and let g be the measure-preserving transformation of Y =
X ×U given by Equation (26). As g ∈ G(j)(X), the measure µ[k+1] is invariant
under g

[k+1]
α whenever α is a (k−j)-face of Vk+1. Also, ν[k+1] is invariant under

g
[k+1]
α because this measure is conditionally independent over µ[k+1]. So for a

(k − j + 1)-face β, ν[k+1] is invariant under g
[k+1]
β .

The first property means that the function Φ (see Proposition 6.4) defined
above is invariant under g

[k+1]
β for every (k+1−j)-face β of Vk+1. Moreover, by

Lemma 5.8, g
[k+1]
β acts trivially on I [k+1](X) because g ∈ G(j)(X). Therefore,

the first property means that g
[k+1]
β acts trivially on I [k+1](Y ) for any (k+1−j)-

face β of Vk+1.
Similarly, the second property means that for every (k−j)-face α of Vk+1,

g
[k+1]
α maps the σ-algebra I [k+1](Y ) to itself.

The equivalence of these properties follows from Lemma 5.3.

Note that for j = 0 the first property of Lemma 10.8 coincides with the
condition given in Lemma 10.6. Therefore, G(0)

0 consists of the elements of
G(X) which can be lifted to an element of G(Y ) and G(0)

0 = pk

(
G(Y )

)
.

More generally, let g ∈ G(j)
0 for some j and φ satisfying the first property of

Lemma 10.8. Then φ obviously satisfies Equation (27), and the transformation
g of Y given by Equation (26) is a lift of g in G(Y ). Therefore, pk maps
p−1

k

(
G(j)

0

)
onto G(j)

0 . Each element g of G(Y ) is given by Equation (26) for
g = pk(g) and some φ, and p−1

k

(
G(j)

0

)
consists in those g for which the map

φ satisfies the conditions of Lemma 10.8. Therefore, p−1
k

(
G(j)

0

)
is a closed

subgroup of G(Y ).

10.2.2. Lifting results. We maintain the same notation as in Section 10.2.1.

Lemma 10.9. Each element of G(k−1)(X) can be lifted to an element of
G(Y ). More precisely, G(k−1)

0 = G(k−1)(X).
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Proof. Let g ∈ G(k−1)(X). We use the results of Section 5. Since G(X)
is k-step nilpotent, g belongs to the center of G(X) and thus commutes with
T and is an automorphism of X. Since G(Zk−1) is (k − 1)-step nilpotent,
g induces the trivial transformation on Zk−1. Thus g is a vertical rotation
of X over Zk−1. For every edge α of Vk+1, the transformation g

[k+1]
α leaves

the measure µ[k+1] invariant and commutes with T [k+1] by Corollary 5.4. By
Equation (25),

∂
(
F ◦ g[k+1]

α − F
)
=

(
∆k+1ρ

)
◦ g[k+1]

α − ∆k+1ρ = ∆k+1
α (ρ ◦ g − ρ)(28)

=±∆(ρ ◦ g − ρ) ◦ ξ[k+1]
α .

By Lemma C.7, ∆(ρ ◦ g − ρ) : X2 → U is a coboundary. As U is a torus, by
Lemma C.5, ρ ◦ g − ρ is a quasi-coboundary. Thus there exists φ : X → U and
c ∈ U with

ρ ◦ g − ρ = φ ◦ T − φ + c .(29)

Using this in Equation (28), we get that for every edge α there exists an
invariant map i : X [k+1] → U , with

F ◦ g[k+1]
α − F = ∆[k+1]

α φ + i .

By Lemma 10.8, g ∈ G(k−1)
0 .

The next proposition is the crucial step in the proof. We recall that G(X)
is a Lie group.

Proposition 10.10. For an integer j with 0 ≤ j < k, G(j)
0 is open in

G(j)(X).

Proof. We proceed by induction downward on j. For j = k − 1, G(j)
0 =

G(j)(X) by Lemma 10.9. Take j with 0 < j ≤ k − 1 and assume that G(j)
0 is

open in G(j)(X). We prove now that G(j−1)
0 is open in G(j−1)(X).

Since G(j)
0 is an open subgroup of G(j)(X), it is also closed and it is locally

compact and Polish (actually it is a Lie group). We have noted that the con-
tinuous group homomorphism pk : p−1

k

(
G(j)

0

)
→ G(j)

0 is onto. By Theorem A.1,
this homomorphism admits a Borel cross section.

Let H = {g ∈ G(j−1)(X) : [g−1;T−1] ∈ G(j)
0 }. By the inductive hypothesis,

H is open in G[j−1](X), and is locally compact. Consider the Borel map κ : H →
G(Y ) obtained by composing the continuous map g 
→ [g−1;T−1] from H to
G(j)

0 with a Borel cross section G(j)
0 → G(Y ). For g ∈ H, κ(g) is given by

Equation (26) for some map ψg : X → U so that the properties of Lemma 10.8
are satisfied with [g−1;T−1]. That is, for every (k + 1 − j)-face β of Vk+1,

F ◦ [g−1;T−1][k+1]
β − F = ∆k+1

β ψg .
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Define θg = ψg ◦ Tg + ρ ◦ g − ρ.
Let β be a (k + 1 − j)-face of Vk+1. Then(

F ◦ g
[k+1]
β − F

)
◦ T [k+1] −

(
F ◦ g

[k+1]
β − F

)
=

(
F ◦ [g−1;T−1][k+1]

β T [k+1]g
[k+1]
β − F ◦ T [k+1]g

[k+1]
β

)
+

(
F ◦ T [k+1]g

[k+1]
β − F ◦ g

[k+1]
β

)
−

(
F ◦ T [k+1] − F

)
= ∆k+1

β ψg ◦ T [k+1]g
[k+1]
β + (∆k+1ρ) ◦ g

[k+1]
β − ∆k+1ρ

= ∆k+1
β θg

= ±∆k+1−jθg ◦ ξ
[k+1]
β .

Thus the cocycle ∆k+1
β θg is a coboundary of the system X [k+1]. As already

noted, the cocycle (∆k+1−jθg) ◦ ξ
[k+1]
β is equal to this coboundary or to its

opposite and thus is a coboundary. By Lemma C.7, ∆k+1−jθg is a coboundary
of the system X [k+1−j] and θg is a cocycle of type k + 1 − j ≤ k on X.

Since the map κ defined above is Borel, the map g 
→ ψg from H to
C(X, U) is Borel, and the map g 
→ θg is a Borel map from H to the group
Ck+1−j(X, U) of U -valued cocycles of type k+1−j on X. Choose a probability
measure λ on H, equivalent to the Haar measure of H and apply Theorem 9.6.
Then there exists a measurable subset A of H, with λ(A) > 0, so that θg − θh

is a quasi-coboundary for every (g, h) ∈ A × A.
Let g, h ∈ A. Let θ : X → U and c ∈ U be such that θg − θh = ∂θ + c. For

any (k + 1 − j)-face β of Vk+1, by the last equation we get that

∂
(
F ◦ g

[k+1]
β − F ◦ h

[k+1]
β

)
= ∂∆k+1

β θ .

Thus F ◦ g
[k+1]
β − F ◦ h

[k+1]
β − ∆k+1

β θ is an invariant function on X [k+1]. As

h ∈ G(j−1)(X), the transformation h
[k+1]
β maps the σ-algebra I [k+1](X) to

itself. Therefore, the function F ◦ (gh−1)[k+1]
β −F −∆k+1

β (θ ◦h−1) is invariant.

The second property of Lemma 10.8 is satisfied and gh−1 ∈ G(j−1)
0 .

Therefore A ·A−1 ⊂ G(j−1)
0 . Since H is open in G(j−1), A has positive Haar

measure in G(j−1) and it follows that G(j−1)
0 also has positive Haar measure in

G(j−1). Since G(j−1)
0 is a Borel subgroup of G(j−1)(X), it is an open subgroup.

10.2.3. End of the proof of Theorem 10.5.

Proof. Recall that k ≥ 1 is an integer and that we assume that the
properties of Theorem 10.5 hold for every toral system of order k. Let (Y, ν, S)
be a toral system of order k+1. We write (X, µ, T ) = Zk(Y ). By the inductive
hypothesis, the conclusions of Theorem 10.5 hold for this system. Let G and
Λ be as in this Theorem and let G(0)

0 be as in the preceding subsection.



458 BERNARD HOST AND BRYNA KRA

(1) By Proposition 10.10 used with j = 0, the group G(0)
0 is open in

G(0)(X) = G(X) and thus is a Lie group. The restriction map pk : G(Y ) →
G(X) is a continuous group homomorphism and maps G(Y ) onto G(0)

0 . Its
kernel is Dk+1(X, U) by Corollary 10.7 and thus is a Lie group. Since G(0)

0 and
Dk+1(X, U) are both Lie groups, G(Y ) is a Lie group by Corollary A.2 and
Lemma A.3 (see Appendix A).

(2) Let H be the subgroup of G(Y ) spanned by the connected component
of the identity and S. The image under pk of the connected component of
the identity of G(Y ) is included in the connected component of the identity of
G(X); moreover pk(S) = T and thus pk(H) ⊂ G. Since pk maps G(Y ) onto
G(0)

0 , it is an open map and pk(H) is an open subgroup of G(0)
0 and thus also

of G(X). Therefore pk(H) contains the connected component of the identity
in G(X) and so it contains G. Now, pk(H) = G.

On the other hand, for every u ∈ U , the corresponding vertical rotation
belongs to G(Y ) and defines an embedding of U in G(Y ). H ∩ U is an open
subgroup of U and since U is connected, U ⊂ H.

By the inductive assumption, X = G/Λ. This means that G acts transi-
tively on X and that Λ is is the stabilizer of the point x1 of X, image of the
identity element of G under the natural projection G → G/Λ = X. Choose
a lift y1 of x1 in Y and consider the map f : H → Y given by f(h) = h · x1.
Since U ⊂ H, the range of this map is invariant under all vertical rotations.
The projection of this range on X is onto. Therefore f is onto.

This defines a bijection of H/Γ onto Y , where Γ is the stabilizer of y1

in H. This bijection commutes with the actions of H on Y and H/Γ. The
measure on H/Γ corresponding to ν through this bijection is invariant under
the action of H and thus is the Haar measure of H/Γ.

Thus we are left only to check that Γ is discrete and cocompact in H.
Clearly, Γ · U = p−1

k (Λ). Since Γ ∩ U is trivial, Γ is discrete. This also implies
that H/ΓU is homeomorphic to G/Λ and thus is compact. Since U is compact,
Γ is cocompact in H.

11. The measures µ[k]

We can prove the converse to Theorem 10.5, showing that every k-step
ergodic nilsystem is a system of order k. Therefore the expressions “toral
system of order k” and “k-step ergodic nilsystem” are actually synonymous.
However, as we have no need for this result, we do not prove it and we continue
using the term “toral system of order k”.

When (X, µ, T ) is a toral system of order � for some integer �, the measures
µ[k], k ≥ 1, have a simple description, which is used in the proof of Theorem 1.2
(convergence for “cubic averages”).
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11.1. Algebraic preliminaries. In this Section G is a nilpotent Lie group.
We study the sequence of groups G

[k]
k−1 for k ≥ 1 and the relations between

two consecutive groups of this form.
Temporarily, we slightly modify the definition of G

[k]
k−1 given by Defini-

tion 18: G
[k]
k−1 is the subgroup of G[k] spanned by

{g[k]
α : g ∈ G and α is an �-face of Vk}.

Therefore the group G
[k]
k−1 with the preceding definition is the closure of the

present group G
[k]
k−1. Below we show that this group is actually closed and

thus the two definitions coincide. Recall that the groups G(j) are equal to the
algebraic iterated groups of commutators (see Lemma B.1).

Let k ≥ 1 be an integer. As usual, we write g = (g′,g′′) for a point of
G[k+1], where g′,g′′ ∈ G[k] are given by

g′ε : gε0 and g′′
ε = gε1 for ε ∈ Vk .

We also identify the element g = (g′,g′′) of G[k+1] with the element (g′ε, g
′′
ε :

ε ∈ Vk) of (G × G)[k] and thus we have G[k+1] = (G × G)[k].

Lemma 11.1. Let

G
[k]
• =

{
g ∈ G[k] : (g, 1[k]) ∈ G

[k+1]
k

}
.

Then G
[k]
• is a normal subgroup of G

[k]
k−1 and

G
[k+1]
k =

{
(g′,g′′) ∈ G

[k]
k−1 × G

[k]
k−1 : g′g′′−1 ∈ G

[k]
•

}
.(30)

Proof. For g′ ∈ G
[k]
k−1, we have (g′,g′) ∈ G

[k+1]
k . For h = (h′,h′′) ∈ G

[k+1]
k ,

we have h′,h′′ ∈ G
[k]
k−1. The result follows.

We also note that g[k] ∈ G
[k]
• for every g ∈ G.

Lemma 11.2. Define

G̃ =
{
(g′, g′′) ∈ G × G : g′′g′−1 ∈ G(1)

}
.

Then G̃
[k]
k−1 is a normal subgroup of G

[k+1]
k .

Moreover, when ζ is the side {ε ∈ Vk+1 : εk+1 = 0},

G
[k+1]
k =

{
h

[k+1]
ζ g : h ∈ G, g ∈ G̃

[k]
k−1

}
.

If h
[k+1]
ζ g = h′[k+1]

ζ g′ for some h, h′ ∈ G and g,g′ ∈ G̃
[k]
k−1, then h′ = hu−1 and

g′ = u
[k+1]
α g for some u ∈ G(1).

(Here we consider G̃
[k]
k−1 as a subgroup of G[k+1].)
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Proof. We claim that, for every g ∈ G and every h ∈ G̃
[k]
k−1,(

g
[k+1]
ζ

)−1 h g
[k+1]
ζ ∈ G̃

[k]
k−1 .(31)

First we consider the case that h = (h, h)[k]
α for some h ∈ G and some side α

of Vk. Then, under the identification of (X × X)[k] with X [k+1], h = h
[k+1]
β

where β is the side α × {0, 1} of Vk+1. We notice that β ∩ ζ = α × {0}. By
Equation (19), [

h; g[k+1]
ζ

]
= [h; g][k+1]

β∩ζ =
(
[h; g], 1

)[k]

α
∈ G̃

[k]
k−1

because [h; g] ∈ G(1) and thus ([h; g], 1) ∈ G̃. The relation (31) holds in this
case.

We consider now the case that h = (1, u)[k]
α for some u ∈ G(1) and some

side α of Vk. We have h = u
[k+1]
γ where γ is the (k − 1)-face α × {1} of Vk+1.

We notice that γ ∩ ζ = ∅. It follows that [h; g[k+1]
ζ ] = 1 and the relation (31)

holds in this case also.
Therefore, when α is a side of Vk, this relation holds whenever h =

(g′, g′′)[k+1]
α for any (g′, g′′) ∈ G̃. This relation holds for every h ∈ G̃

[k]
k−1

by definition of this group. The claim is proved.
By definition, every element of G

[k+1]
k can be expressed as a product of

elements of one of the following three types.

(1) g[k+1] for some g ∈ G,

(2) g
[k]
β for some g ∈ G and some side β of Vk+1 defined by fixing a coordinate

j < k + 1,

(3) g
[k+1]
ζ for some g ∈ G.

Let g ∈ G. Then g[k+1] = (g, g)[k] ∈ G̃
[k]
k−1 because (g, g) ∈ G̃. Let β be

a side of Vk+1 defined by fixing a coordinate j < k + 1. Then β = α × {0, 1}
where α is a side of Vk and g

[k+1]
β = (g, g)[k]

α ∈ G̃
[k]
k−1.

Therefore, every element of the types (1) or (2) above belongs to G̃
[k]
k−1.

The first two assertions of Lemma 11.2 follows immediately from the rela-
tion (31).

If we have h
[k+1]
ζ g = h′[k+1]

ζ g′ as in the third statement of the lemma, then

(hh′−1)[k+1]
ζ ∈ G̃

[k]
k−1. Thus (hh′−1, 1) ∈ G̃ and hh′−1 ∈ G(1).

By induction, the commutator subgroups G̃(j), j ≥ 0, of G̃ are given by

G̃(j) =
{
(g′, g′′) ∈ G(j) × G(j) : g′′g′−1 ∈ G(j+1)

}
.
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Lemma 11.3. Let

G
[k]
∗ = {g ∈ G[k] : (g, 1[k]) ∈ G̃

[k]
k−1} .

Then G
[k]
∗ is a normal subgroup of G

[k]
• and

G
[k]
• = {h[k]g : h ∈ G, g ∈ G

[k]
∗ } .

Proof. We claim that

(G(1)) [k]
k−1 ⊂ G

[k]
∗ ⊂ (G(1)) [k] .

When u ∈ G(1) and α is a side of Vk we have (u[k]
α , 1[k]) = (u, 1)[k]

α ∈ G̃
[k]
k−1

because (1, u) ∈ G̃ and thus u
[k]
α ∈ G

[k]
∗ . The first inclusion follows. Moreover,

when g ∈ G
[k]
∗ , we have (g, 1[k]) ∈ G̃

[k]
k−1; thus for every ε ∈ Vk we have

(gε, 1) ∈ G̃ and thus gε ∈ G(1). The second inclusion follows and the claim is
proved.

Since G̃
[k]
k−1 is a normal subgroup of G

[k+1]
k , it follows from the definitions

of G
[k]
∗ and G

[k]
• that G

[k]
∗ is a normal subgroup of G

[k]
• .

Let q ∈ G
[k]
• . We have (q, 1[k]) ∈ G

[k+1]
k . By Lemma 11.2, there exists

h ∈ G and g ∈ G̃
[k]
k−1 with (q, 1[k]) = h

[k+1]
ζ g. The element g has the form

g = (g′, 1[k]), g′ ∈ G
[k]
∗ by definition and q = h[k]g′.

If for some q ∈ G
[k]
• and some ε ∈ Vk we have qε ∈ G(1), then, when

q = h[k]g as in Lemma 11.3, h ∈ G(1). Thus h[k] ∈ G
[k]
∗ and q ∈ G

[k]
∗ . This

proves:

Lemma 11.4. For every ε ∈ Vk,

G
[k]
∗ = {q ∈ G

[k]
• : qε ∈ G(1)} .

In particular, G
[k]
∗ = G

[k]
• ∩ (G(1))[k].

11.2. Topological results.

Lemma 11.5. Let G be a nilpotent Lie group. For any integer k ≥ 1, the
group G

[k]
k−1 is closed in G[k].

Proof. By induction on k. For k = 1, G
[1]
0 = G[1] = G × G and there is

nothing to prove. Take k ≥ 1 and assume that the result holds for k and any
nilpotent Lie group. We use the notation of the preceding subsection.

Since G̃ is a nilpotent Lie group, by the inductive hypothesis G̃
[k]
k−1 is closed

in G̃[k]. Thus it is complete and closed in G[k+1]. Therefore G
[k]
∗ is closed in

G[k].
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Let {gn} be a sequence in G
[k]
• , converging in G[k] to some element g.

For every integer n, let θn be the image of the first coordinate (gn)0 of gn

in G/G(1). Then θn converges to the projection of g0 in G/G(1). As G/G(1)

is endowed with the quotient topology, the sequence {θn} can be lifted in a
sequence {hn} in G, convergent to some h ∈ G. The sequence {(hn

[k])−1gn}
converges in G[k] to (h[k])−1g. For every n, we have (hn

[k])−1gn ∈ G
[k]
• and

its 0 coordinate is equal to 1. Thus by Lemma 11.4, this element belongs to
G

[k]
∗ . Since this group is closed, (h[k])−1g ∈ G

[k]
∗ and it follows that g ∈ G

[k]
• .

Therefore G
[k]
• is closed in G[k].

The announced result follows now immediately from Lemma 11.1.

Along the way, we have shown that

G
[k]
∗ and G

[k]
• are closed subgroups of G[k].

Recall that if Λ is a discrete cocompact subgroup of a nilpotent Lie
group G, then for every j the group G(j)Λ is closed in G (see Lemma B.1). It
follows that for every j, the group Λ ∩ G(j) is cocompact in G(j).

Lemma 11.6. Let G be a nilpotent Lie group and Λ a discrete cocompact
subgroup of G. For every integer k ≥ 1, the group Λ[k] ∩ G

[k]
k−1 is cocompact in

G
[k]
k−1.

Proof. By induction on k. For k = 1 there is nothing to prove. We take
k ≥ 1 and assume that the result holds for k and for any nilpotent Lie group
G and any discrete cocompact subgroup Λ.

We use the notation of the preceding sections. The group G̃ is a nilpotent
Lie group. We define

Λ̃ := G̃ ∩ (Λ × Λ) =
{
(λ′, λ′′) ∈ Λ × Λ : λ′′λ′−1 ∈ Λ ∩ G(1)

}
and we note that Λ̃ is cocompact in G̃.

Claim. G
[k]
∗ ∩ Λ[k] is cocompact in G

[k]
∗ .

Proof. Let {gn} be a sequence in G
[k]
∗ . Consider the sequence {(gn,1)}

in G̃
[k]
k−1. By the inductive hypothesis, Λ̃[k] ∩ G̃

[k]
k−1 is cocompact in G̃

[k]
k−1.

Therefore, for each integer n, there exists (λλλ′
n,λλλ′′

n) ∈ Λ̃[k]∩G̃
[k]
k−1 and (h′

n,h′′
n) ∈

G̃
[k]
k−1 so that the sequence {(h′

n,h′′
n)} is bounded and for every n,

gn = h′
nλλλ

′
n and 1[k] = h′′

nλλλ
′′
n .

The sequence {λλλ′′
n} is bounded; since Λ is discrete, this sequence takes only

finitely many values. Let λλλ ∈ Λ[k] ∩ G
[k]
k−1 be one of these values and let

E = {n : λλλ′′
n = λλλ}.
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For n ∈ E, we have (λλλ,λλλ) ∈ G̃
[k]
k−1. Thus (h′

nλλλ,1) ∈ G̃
[k]
k−1 and h′

nλλλ ∈ G
[k]
∗ .

We have written the sequence {gn : n ∈ E} as the product of the bounded
sequence {h′

nλλλ : n ∈ E} in G
[k]
∗ with the sequence {λλλ−1λλλ′

n : n ∈ E} in G
[k]
∗ ∩Λ[k].

Since N is a finite union of sets E with this property, it follows that
G

[k]
∗ ∩ Λ[k] is cocompact in G

[k]
∗ .

Claim. G
[k]
• ∩ Λ[k] is cocompact in G

[k]
• .

Proof. Let {qn} be a sequence in G
[k]
• . By using Lemma 11.3 and the

fact that λ is cocompact in G, for every n we can write qn = h
[k]
n λ

[k]
n gn,

where {hn} is a bounded sequence in G, λn ∈ Λ for every n, and gn ∈ G
[k]
∗

for every n. We have that λ
[k]
n gnλ

[k]
n

−1
∈ G

[k]
∗ . Using the first claim, we

write λ
[k]
n gnλ

[k]
n

−1
= vnµµµn, where {vn} is a bounded sequence in G

[k]
∗ and

µµµn ∈ G
[k]
∗ ∩ Λ[k] for every n. The claim follows.

The lemma follows immediately from Equation 30 and the inductive hy-
pothesis.

As a corollary of the two claims we have:

Corollary 11.7. G
[k]
∗ (Λ[k]∩G

[k]
k−1) and G

[k]
• (Λ[k]∩G

[k]
k−1) are closed sub-

groups of G
[k]
k−1.

11.3. The measures µ[k]. Here (X, µ, T ) is a toral system of order � for
some integer �. By Theorem 10.5, this system can be represented as an �-step
nilsystem X = G/Λ, where G is a nilpotent Lie group, Λ is a cocompact sub-
group, µ is the Haar measure of X and the transformation T is left translation
by some fixed element of G which we also write as T . Recall that G is the
subgroup of G(X) spanned by the connected component of the identity and T .

For every integer k, the group Λ[k] ∩ G
[k]
k−1 is cocompact in G

[k]
k−1 by

Lemma 11.6 and we can define the nilmanifold

Xk := G
[k]
k−1/(Λ[k] ∩ G

[k]
k−1)(32)

and let νk denote its Haar measure. The nilmanifold Xk is included in X [k] =
G[k]/Λ[k] in the natural way.

For every g ∈ G we have g[k] ∈ G
[k]
k−1. It follows that, for every x ∈ X, Xk

contains the diagonal point (x, x, . . . , x) of X [k].

Lemma 11.8. For every k ≥ 1, the measure µ[k] is the Haar measure of
the nilmanifold Xk.

Proof. The proof is by induction. The assertion is obvious for k = 1,
because X1 = X × X and G

[1]
0 = G[1] = G × G. We assume that it holds for

some k ≥ 1.
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By Corollary 11.7 G
[k]
• (Λ[k] ∩ G

[k]
k−1) is a closed subgroup of G

[k]
k−1 and we

can define the space

Yk := G
[k]
k−1 / G

[k]
• (Λ[k] ∩ G

[k]
k−1) .

Write φk : Xk → Yk for the the natural continuous surjection.
For x ∈ Xk, the subset G

[k]
• · x := {g · x : g ∈ G

[k]
• } of Xk is the inverse

image of the point φk(x) ∈ Yk under φk and thus it is closed. So the action of
G

[k]
• on Xk by left translations has closed orbits and we can identify Yk with

the quotient of Xk under this action.

Claim. The invariant σ-algebra I [k] of (X [k], µ[k], T [k]) is equal up to
µ[k] null sets to the inverse image under φk of the Borel σ-algebra of Yk.

Proof of the claim. Let B be this inverse image. This σ-algebra consists in
the Borel subsets of Xk which are invariant under translation by any element
of G

[k]
• . Since T ∈ G, T [k] ∈ G

[k]
• and every set belonging to B is invariant

under T [k] and thus belongs to I [k].
On the other hand, as G ⊂ G(X), the measure µ[k+1] is invariant under

g for any g ∈ G
[k+1]
k by Corollary 5.4. In particular µ[k+1] is invariant under

(1[k]
k ,h) for any h ∈ G

[k]
• . Proceeding exactly as for the implication (2) =⇒ (3)

in the proof of Lemma 5.3, we have that every h ∈ G
[k]
• acts trivially on I [k]

and we conclude that I [k] is measurable with respect to φ−1(B). The claim is
proved.

From Equation (30), it follows immediately that Xk+1 consists in the pairs
(x′,x′′) ∈ Xk ×Xk, with φk(x′) = φk(x′′). Using the inductive hypothesis and
the definition of the measure µ[k+1], we get that this measure is concentrated
on the nilmanifold Xk+1. By Lemma 5.2, this measure is invariant under the
translation by any of the generators of G

[k+1]
k and thus by translation by every

element of this group. It is therefore the Haar measure of the nilmanifold Xk+1

and the statement of the lemma is provee for k + 1.

12. Arithmetic progressions

We now use the tools assembled to study convergence along arithmetic
progressions in order to obtain Theorem 1.1.

12.1. The characteristic factor for arithmetic progressions. We first show
that we can modify the original system and replace it by some factor so that
convergence of the factor system implies convergence in the original system.
This is based on the notion of a characteristic factor used by Furstenberg and
Weiss in [FW96].
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We can always assume that the system is ergodic by using, if necessary,
ergodic decomposition.

Theorem 12.1. Let (X, µ, T ) be an ergodic system. Assume that f1, . . . , fk

are bounded functions on X with ‖fj‖∞ ≤ 1 for j = 1, . . . , k. Then

lim sup
N→+∞

∥∥∥ 1
N

N−1∑
n=0

( k∏
j=1

fj ◦ T jn
)∥∥∥

L2(µ)
≤ min

1≤�≤k

(
� · |||f�|||k

)
.(33)

Proof. We proceed by induction. For k = 1, by the Ergodic Theorem,

∥∥∥ 1
N

N−1∑
n=0

f1 ◦ Tn
∥∥∥

L2(µ)
→

∣∣∣∫ f1 dµ
∣∣∣ = |||f1|||1 .

Let k ≥ 1 and assume that the majorization (33) holds for k. Let f1, . . . , fk+1 ∈
L∞(µ) with ‖fj‖∞ ≤ 1 for j = 1, . . . , k + 1. Choose � ∈ {2, . . . , k + 1}. (The
case � = 1 is similar.) Write

ξn =
k+1∏
j=1

fj ◦ T jn .

By the van der Corput lemma (Lemma D.2),

lim sup
N→∞

∥∥∥ 1
N

N∑
n=1

ξn

∥∥∥2

L2(µ)
≤ lim sup

H→∞

1
H

H∑
h=1

(
lim sup
N→∞

∣∣∣ 1
N

N∑
n=1

∫
ξn+h · ξn dµ

∣∣∣) .

Letting M denote the last lim sup, we need to show that M ≤ �2|||f�|||2k+1.
For any integer h ≥ 1,

∣∣∣ 1
N

N∑
n=1

∫
ξn+h · ξn dµ

∣∣∣
=

∣∣∣∫ (f1 · f1 ◦ T h) · 1
N

N∑
n=1

(k+1∏
j=2

(fj · fj ◦ T jh) ◦ T (j−1)n
)

dµ
∣∣∣

≤‖f1 · f1 ◦ T h‖L2(µ) ·
∥∥∥ 1
N

N∑
n=1

(k+1∏
j=2

(fj · fj ◦ T jh) ◦ T (j−1)n
)∥∥∥

L2(µ)

and by the inductive assumption,

lim sup
N→∞

∣∣∣ 1
N

N∑
n=1

∫
ξn+h · ξn dµ

∣∣∣ ≤ � · |||f� · f� ◦ T �h|||k .
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We get

M ≤ � · lim sup
H→∞

1
H

H∑
h=1

|||f� · f� ◦ T �h|||k ≤ �2 · lim sup
H→∞

1
H

H∑
h=1

|||f� · f� ◦ T h|||k

≤ �2 · lim sup
H→∞

( 1
H

H∑
h=1

|||f� · f� ◦ T h|||2k

k

)1/2k

.

Define F (x) =
∏

ε∈Vk
f�(xε). The last average becomes

1
H

H∑
h=1

∫
F ◦ (T [k])h · F dµ[k]

by definition of the seminorm ||| · |||k. When H → +∞, this average converges
to ∫

E(F | I [k])2 dµ[k] =
∫

F ⊗ F dµ[k+1] = |||f�|||2
k+1

k+1

by definition of the seminorm ||| · |||k+1, and the proof is complete.

12.2. Convergence for arithmetic progressions. We prove Theorem 1.1.
Let fj , 1 ≤ j ≤ k, be k bounded functions on X. By Theorem 12.1, the
difference between the average (1) and the same average with fj replaced by
E(fj |Zk) for 1 ≤ j ≤ k tends to 0 in L2(X). Thus it suffices to prove Theo-
rem 1.1 when all functions are measurable with respect to Zk. In particular,
we can assume that the system X = Zk(X), that is, that X is a system of
type k. Such a system is an inverse limit of translations on nilmanifolds by
Theorem 10.3 and so it suffices to prove Theorem 1.1 for a translation x 
→ t ·x
on a nilmanifold X = G/Λ endowed with its Haar measure. By density, it
is also sufficient to prove the convergence when the functions f1, . . . , fk are
continuous.

Several independent proofs already exist for the convergence of the av-
erages (1) in this case (see Appendix A). Leibman [Lb02] uses Theorem B.3
applied to the the translation by s = (t, t2, . . . , tk) on the nilmanifold Xk =
Gk/Λk, and obtains the convergence everywhere. Ziegler ([Zie02a]) builds an
explicit partition of Xk into invariant nilmanifolds and shows that almost ev-
ery nilmanifold is ergodic and thus uniquely ergodic for the translation by s;
the convergence almost everywhere follows.

13. Cubes

We are now ready to complete the proof of Theorem 1.2. As for the
arithmetic progressions, we can assume that the system is ergodic. We first
describe an appropriate characteristic factor.
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Let (X, µ, T ) be an ergodic system. Given an integer k ≥ 1 and 2k bounded
functions fε, ε ∈ Vk, on X, we study the convergence of the sequence of
numerical averages:

k∏
i=1

1
Ni − Mi

∑
n∈[M1,N1)×···×[Mk,Nk)

∫ ∏
ε∈Vk

fε ◦ T ε1n1+···+εknk dµ(Ak)

and the convergence in L2(µ) of the averages

k∏
i=1

1
Ni − Mi

∑
n∈[M1,N1)×···×[Mk,Nk)

∏
ε∈V ∗

k

fε ◦ T ε1n1+···+εknk(Bk)

when N1 − M1, . . . , Nk − Mk tend to +∞. We show:

Theorem 13.1. (1) The averages (Ak) converge to∫
X [k]

∏
ε∈Vk

fε(xε) dµ[k](x) .(34)

(2) The averages (Bk) converge in L2(µ). The limit is the function

x 
→ E
( ⊗
ε∈V ∗

k

fε

∣∣J [k]∗
)
(x)(35)

where the σ-algebra J [k]∗is identified with the factor Zk−1(X) (see Sec-
tion 4.2).

13.1. The case of a toral system.

Lemma 13.2. The results of Theorem 13.1 hold when X is a toral system
of order � for some integer � ≥ 1.

Proof. Let k ≥ 1 be an integer. For this proof we let Ti, 1 ≤ i ≤ k,
denote the transformation T

[k]
αi of X [k], where α1, . . . , αk are the sides of Vk

not containing 0. We recall that the group of transformations T [k]
∗ of X [k]

is spanned by {Ti : 1 ≤ i ≤ k} and that the group T [k]
k−1 is spanned by T [k]

∗
and T [k].

We assume that X is a toral system of order �. By Lemma 11.8, µ[k] is
the Haar measure of the nilmanifold Xk = G

[k]
k−1/(Λ[k] ∩ G

[k]
k−1) introduced in

Subsection 11.3. By Corollary 3.5, µ[k] is ergodic under the group T [k]
k−1. As the

transformations Ti, 1 ≤ i ≤ k, and T [k] of Xk are translations by commuting
elements of G

[k]
k−1, it follows from Theorem B.2 that Xk is uniquely ergodic for

the action of T [k]
k−1.
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Let fε, ε ∈ Vk, be 2k continuous functions on X. For integers n, n1, . . . , nk

the transformation TnTn1
1 . . . Tnk

k is given by(
TnTn1

1 . . . Tnk

k x
)
ε

= Tn+ε1n1+···+εknkxε for every ε ∈ Vk .

Therefore, by unique ergodicity, when N1 − M1, . . . , Nk − Mk and N tend to
+∞, the functions

x 
→
k∏

i=1

1
Ni − Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

1
N

N−1∑
n=0

∏
ε∈Vk

fε(Tn+ε1n1+···+εknkxε)

converge uniformly on Xk to the constant given by the integral∫
Xk

∏
ε∈Vk

fε(xε) dµ[k](x) .(36)

Thus, they converge uniformly to this constant on the ‘diagonal’ subset of
Xk (the subset consisting in points x = (x, x, . . . , x)). This means that the
averages

x 
→
k∏

i=1

1
Ni − Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

1
N

N−1∑
n=0

∏
ε∈Vk

fε(Tn+ε1n1+···+εknkx)

converge uniformly on X to this constant. Taking the integral we get that the
averages (Ak) converge to this constant. Part (1) of Theorem 13.1 holds for
a toral system when the functions fε are continuous. The case of arbitrary
bounded functions follows by density.

Let fε, ε ∈ Vk, be 2k − 1 continuous functions on X. By Theorem B.3 the
averages

k∏
i=1

1
Ni − Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

∏
ε∈V ∗

k

fε(T ε1n1+···+εknkxε)

converge for every x ∈ Xk and in particular for every diagonal point x =
(x, x, . . . , x). Therefore the averages (Bk) converge for every x ∈ X. Let φ(x)
be the limit. By Part (1), for every bounded function f0 on X,∫

X
f0(x)φ(x) dµ(x) =

∫
X [k]

f0(x0)
∏

ε∈V ∗
k

fε(xε) dµ[k](x)

=
∫

X
f0(x)E

( ⊗
ε∈V ∗

k

fε | J [k]∗
)
(x) dµ(x)

by Lemma 4.2, under the identification of the σ-algebras J [k]∗ and Zk−1(X).
It follows that the function φ is equal to the conditional expectation (35). By
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density, the same result holds for arbitrary bounded functions on X. Part (2)
of Theorem 10.3 is proved for a toral system.

Corollary 13.3. The results of Theorem 13.1 hold when X is a system
of level � for some � ≥ 1.

Proof. Let X be a system of order �. By Theorem 10.3, X can be repre-
sented as an inverse limit of a sequence of toral systems of order �. Let Y be
one of these systems and p : X → Y the corresponding factor map.

Let gε, ε ∈ Vk, be bounded functions on Y . By Lemma 4.5, p[k] : X [k] →
Y [k] is a factor map and thus it follows from Lemma 13.2 that Part (1) of
Theorem 13.1 holds for X and the functions fε = gε ◦ p.

By Proposition 4.6, p−1(Zk(Y )) = Zk(X)∩ p−1(Y) and Part (2) of Theo-
rem 13.1 also follows from Lemma 13.2 for the functions fε = gε ◦ p.

By density the same results hold for every bounded functions on X.

13.2. The general case. In the proof, we consider the averages (Ak) with
f0 = 1 separately, that is, the averages

k∏
i=1

1
Ni − Mi

∑
n∈[M1,N1)×···×[Mk,Nk)

∫ ∏
ε∈V ∗

k

fε ◦ T ε1n1+···+εknk dµ .(Ck)

We prove Theorem 13.1 by induction. For k = 1, the averages are

1
N − M

N−1∑
n=M

∫
f0 · f1 ◦ Tn dµ

and
1

N − M

N−1∑
n=M

f1 ◦ Tn dµ

where f0 and f1 are bounded functions on X. Since µ[1] = µ × µ, the results
are obvious.

Henceforth, fix an integer k > 1 and assume that the two statements of
Theorem 13.1 hold for k − 1.

13.2.1. The averages (Ck).

Lemma 13.4. Let gη, η ∈ Vk−1, be bounded functions on X. Then the
lim sup for N1 − M1, . . . , Nk−1 − Mk−1 → +∞ and N − M → +∞ of

k−1∏
i=1

1
(Ni − Mi)

∑
M1≤n1<N1,··· ,

Mk−1≤nk−1<Nk−1

∫ ∣∣∣ 1
N − M

N−1∑
p=M

∏
η∈V ∗

k−1

gη ◦ T η·n−p
∣∣∣2 dµ(37)
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is less than or equal to∫ ∣∣E( ⊗
η∈Vk−1

gη | I [k−1]
)∣∣2 dµ[k−1] .(38)

Proof. Without loss of generality, we can assume that |gη| ≤ 1 for each η ∈
Vk−1. Fix an integer H > 0. By the finite van der Corput lemma (Lemma D.2),
for each n = (n1, . . . , nk−1) the integral in (37) is bounded by

N−M+H−1

(N−M)H
+

N−M+H−1

N−M

H−1∑
h=1

2
H−h

H2

N−h

N

∫ ∏
η∈Vk−1

(gη · gη ◦ T h) ◦ T η·n dµ .

Thus the lim sup of expression (37) is bounded by

1

H
+

H−1∑
h=1

2
H−h

H2
lim sup

N1−M1→∞,
··· ,

Nk−1−Mk−1→∞

k∏
i=1

1

Ni−Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

∫ ∏
η∈Vk−1

(gη ·gη◦T h)◦T η·n dµ .

By the inductive hypothesis Theorem 13.1 holds for k − 1 and this expression
is equal to

1

H
+

H−1∑
h=1

2
H−h

H2

∫
X [k−1]

⊗
η∈Vk−1

(gη · gη ◦ T h) dµ[k−1] .

Taking the limit when H → ∞, we get the result.

Lemma 13.5. The factor Zk−2 is characteristic for the convergence of the
averages (Ck). If for some ε ∈ V ∗

k , in other words, E(fε | Zk−2) = 0, then these
averages converge to 0.

Proof. Without loss of generality, we can assume that |fε| ≤ 1 for every
ε ∈ V ∗

k .
First assume that E(fε | Zk−2) = 0 for some ε ∈ V ∗

k with ε1 = 0. Define
gη, η ∈ V ∗

k , by gη = f0η and g0 = 1 and hη, η ∈ Vk, by hη = f1η. Then the
average (Ck) can be written

k−1∏
i=1

1

Ni−Mi

∑
M1≤n1<N1,... ,Mk−1≤nk−1<Mk−1∫ ( ∏

η∈Vk−1

hη ◦ T η·n+p
)
·
(

1

Nk−Mk

Nk−1∑
p=Mk

∏
η∈Vk−1

gη ◦ T η·n−p
)

dµ .

By the Cauchy-Schwartz inequality, the square of this average is bounded
by (37). By Lemma 13.4, the lim sup of the square of this average is bounded
by (38).
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The measure µ[k−1]∗ is relatively independent with respect to Z [k−1]∗

k−2 and
at least one of the functions gη, η ∈ V ∗

k , has zero conditional expectation
with respect to Zk−2. Therefore E(⊗η∈V ∗

k
gη | Z [k]∗

k−2) = 0. But by Part (2) of

Proposition 4.9, the σ-algebra I [k−1]∗ is measurable with respect to Z [k−1]∗

k−2 .
Thus E(

⊗
η∈V ∗

k
gη | I [k−1]∗) = 0 and also E(

⊗
η∈Vk

gη | I [k−1]) = 0. The
bound (38) is equal to 0 and the averages (Ck) converge to 0.

By permuting the coordinates, we get the same result when E(fε | Zk−2)
= 0 for some ε with εj = 0 for some j, that is, for some ε �= 11 . . . 1.

Finally assume that E(f11...1 | Zk−2) = 0. By the preceding proof, the
lim sup of the absolute value of the averages (Ck) remains unchanged when
we substitute E(fε | Zk−2) for fε, for every ε �= 11 . . . 1. Without loss of
generality, we can therefore assume that for each 11 . . . 1 �= ε ∈ V ∗

k , the function
fε is measurable with respect to Zk−2. But in this case the integral in the
average (Ck) is equal to 0 and the result is obvious.

Corollary 13.6. The averages (Ck) converge to∫
X [k]∗

∏
ε∈V ∗

k

fε(xε) dµ[k]∗(x̃) .(39)

Proof. By Lemma 13.5 the difference between the averages (Ck) and the
same averages, with the functions E(fε | Zk−2) substituted for fε, converges to
zero. As the natural projection X [k]∗ → Z

[k]∗

k−2 is a factor map, the announced
result follows immediately from Corollary 13.3.

13.2.2. The averages (Ak) and (Bk).

Lemma 13.7. The factor Zk−1 of X is characteristic for the convergence
in L2(µ) of the averages (Bk).

Proof. Assume that for some ε ∈ V ∗
k we have E(fε | Zk−1) = 0. By

Proposition 4.9 the measure µ[k]∗ is conditionally independent with respect to
Zk−1 and thus E(

⊗
ε∈V ∗

k
fε | Z [k]∗

k−1) = 0. Moreover by Proposition 4.9 the

σ-algebra J [k]∗ is measurable with respect to Z [k]∗

k−1 and thus

E(
⊗
ε∈V ∗

k

fε | J [k]∗) = 0 .

For n = (n1, . . . , nk) ∈ Zk, set

gn =
∏

ε∈V ∗
k

fε ◦ T ε·n
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and we have to show that
k∏

i=1

1
Ni − Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

gn → 0 in L2(µ)

as N1−M1, . . . , Nk−Mk → +∞. For h = (h1, . . . , hk) ∈ Zk, by Corollary 13.6,

k∏
i=1

1
Ni − Mi

∑
M1≤n1<N1,··· ,
Mk≤nk<Nk

∫
gn+h · gn dµ → γh ,

when N1 − M1, . . . , Nk − Mk tend to +∞, where

γh =
∫

X [k]∗

⊗
ε∈V ∗

k

(fε · fε ◦ T ε·h) dµ[k]∗ .

When H → ∞,

∑
−H≤h1≤H,

...
−H≤hk≤H

k∏
i=1

H−|hi|
H2

γh →
∥∥∥E

( ⊗
ε∈V ∗

k

fε

∣∣J [k]∗)
∥∥∥2

L2(µ[k]∗ )
= 0

and the statement of the lemma follows from the multidimensional van der
Corput lemma (Lemma D.3).

As for arithmetic progressions, we combine the fact that the factors Zk

are characteristic with the proof of convergence for nilsystems to prove Theo-
rem 13.1:

Proof of Theorem 13.1. We study the convergence of the averages (Ak)
and (Bk) for an arbitrary ergodic system.

Recall that the natural projections X [k] → Z
[k]
k−1 and X [k]∗ → Z

[k]∗

k−1 are

factor maps and that the σ-algebra J [k]∗ is measurable with respect to Z [k]∗

k−1

(Proposition 4.9). Then Theorem 13.1 follows immediately from Corollary 13.3
and Lemma 13.7.

13.3. Proof of Theorem 1.3. Using ergodic decomposition, we restrict
to the case where the system X is ergodic. By part (1) of Theorem 13.1,
applied to fε = 1A for every ε ∈ Vk, the averages appearing in the statement
of Theorem 1.3 converge to∫

X [k]

∏
ε∈Vk

1A(xε) dµ[k](x) = |||1A|||2
k

k .
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By part (3) of Lemma 3.9 we have |||1A|||k ≥ |||1A|||1 = µ(A) and the result
follows.

13.4. Proof of Theorem 1.5. Theorem 1.3 has the following corollary:

Corollary 13.8. Let (X,B, µ, T ) be an invertible measure-preserving
probability system, let A ∈ B and let k ≥ 1 be an integer. Then for any
c > 0, the set of n ∈ Zk so that

µ
( ⋂
ε∈Vk

T ε·nA
)
≥ µ(A)2

k − c

is syndetic.

Proof. Let E be the subset of Zk appearing in Theorem 1.3. If E is not
syndetic, there exist intervals [M1i

, N1i
), [M2i

, N2i
), . . . , [Mki

, Nki
) with the

lengths of the intervals tending to +∞ so that

E ∩ ([M1i
, N1i

) × [M2i
, N2i

) × . . . × [Mki
, Nki

)) = ∅ .

Taking averages along these k dimensional cubes in Theorem 1.3, we get a
contradiction.

Theorem 1.5 follows by combining Furstenberg’s correspondence principle
and Corollary 13.8.

Appendix A. Groups

A.1. Polish groups. We summarize the main results needed (see Chapter 1
of [BK96]):

Theorem A.1. Let G and H be Polish groups and let p : G → H be a
group homomorphism that is continuous and onto. Then p is an open map.
Moreover, p admits a Borel cross section, that is, a Borel map s : H → G with
p ◦ s = Id.

Let G, H and p be as above and let the quotient G/ ker(p) be endowed
with the quotient distance. It follows from Theorem A.1 that the natural group
isomorphism G/ ker(p) → H is a homeomorphism.

Corollary A.2. Let H be a closed normal subgroup of the Polish group G.
If H and G/H are locally compact, then G is locally compact. If H and G/H

are compact, then G is compact.

We often build groups by a skew product construction and so present
it here. Let G be a Polish group and let (X, µ) be a probability space. A
measure-preserving action of G on X is a measurable map (g, x) 
→ g · x of
G × X to X so that
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(1) For every g ∈ G, the map x 
→ g · x is a measure-preserving bijection
from X onto itself.

(2) For every g, h ∈ G, gh · x = g · (h · x) almost everywhere.

Let U be a compact abelian group, written additively. We recall that C(X, U)
denotes the additive group of measurable maps from X to U . Endowed with
the topology of convergence in probability, it is an abelian Polish group. For
g ∈ G and f ∈ C(X, U) we write Sg,f for the measure-preserving transformation
of (X × U, µ × mU ) given by

Sg,f (x, u) =
(
g · x, u + f(x)

)
.

These transformations form a group, called the skew product of G and written
G � C(X, U). Endowed with the topology of convergence in probability, it is
a Polish group. A sequence

{
Sgn,fn

}
converges to Sg,f in G � C(X, U) if and

only if gn converges to g in G and fn converges to f in C(X, U).
The map p : Sg,f 
→ g is a continuous group homomorphism from G �

C(X, U) onto G and thus is an open map.

A.2. Lie groups. We call a locally compact group a Lie group when it
can be given the analytic structure of a Lie group, although we never use the
analytic structure. From the characterization of Lie groups in [MZ55], we can
deduce:

Lemma A.3. Let G be a locally compact group and H a closed normal
subgroup. If H and G/H are Lie groups then G is a Lie group.

A.3. Nilpotent Lie groups. Let G be a Polish or locally compact group.
For g, h ∈ G, we write [g;h] for the commutator g−1h−1gh of g and h. If
A, B are subsets of G, we write [A;B] for the closed subgroup of G spanned
by {[a; b] : a ∈ A, b ∈ B}. The subgroups G(j), j ≥ 0, of G are defined by
G(0) = G and G(j+1) = [G;G(j)] for j ≥ 0. We say that G is k-step nilpotent
if G(k) is the trivial subgroup {1} of G.

(This definition of nilpotency is stronger than the purely algebraic defini-
tion, but the two definitions coincide for Lie groups.)

Appendix B. Nilmanifolds

Let G be a k-step nilpotent Lie group and Λ a discrete cocompact sub-
group. The compact manifold X = G/Λ is called a k-step nilmanifold. The
group G acts on X by left translations and we write (g, x) 
→ g · x for this
action. There exists a unique probability measure µ on X invariant under this
action; it is called the Haar measure of X. The fundamental properties of nil-
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manifolds were established by Malcev [Ma51]. We use the following properties
of the commutator:

Lemma B.1. Let G be a nilpotent Lie group and Λ a discrete cocompact
subgroup. Then:

(1) The groups G(j), j ≥ 1, are equal to the algebraic subgroups of iterated
commutators. This means that for j ≥ 1 the group G(j) is algebraically
spanned by {[g;h] : g ∈ G, h ∈ G(j−1)}.

(2) For every j ≥ 1, the subgroup G(j)Λ of G is closed in G.

Let X = G/Λ be a k-step nilmanifold with Haar measure µ, let t ∈ G

and T : X → X be the transformation x 
→ t · x. Then the system (X, µ, T ) is
called a k-step nilsystem.

The dynamical properties of nilsystems were studied by Auslander, Green
and Hahn [AGH63], Parry ([P69], [P70]), Lesigne [L91] and Leibman [Lb02],
among others.

Theorem B.2. Let X = G/Λ be a nilmanifold with Haar measure µ

and let t1, . . . , t� be commuting elements of G. If the group spanned by the
translations t1, . . . , t� acts ergodically on (X, µ), then X is uniquely ergodic for
this group.

This result was shown by Parry [P69] in the case of a single translation,
by using methods of [F61]. A similar proof for the general case can be found
in [Lb02].

Theorem B.3. Let X = G/Λ be a nilmanifold and let t1, . . . , t� be com-
muting elements of G. Then for any continuous function f on X the averages

k∏
i=1

1
Ni − Mi

∑
M1≤n1<N1···
Mk≤nk<Nk

f
(
tn1
1 . . . tnk

k x
)

converge everywhere on X when N1 − M1, . . . , Nk − Mk tend to infinity.

This theorem can be viewed as a special case of the general results of
M. Ratner and N. Shah (see [Ra91] and [Sh96]). A proof of this result is given
in [L91] for a single transformation, under the additional hypothesis that the
group G is connected. The preprint [Lb02] contains a similar proof for the
general case. We do not reproduce it here, but indicate the different steps. By
distality, for every x ∈ X, its closed orbit

Yx = {tn1
1 . . . tnk

k x : (n1, . . . , nk) ∈ Zk}
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is minimal for the the action spanned by the translations by t1, . . . , tk. The
crucial point is that Y can be given the structure of a nilmanifold. By [P69],
a minimal nilmanifold is uniquely ergodic, and the result follows.

We notice that in Theorem B.3 the “cubes” [M1, N1)×· · ·× [Mk, Nk) can
be replaced by an arbitrary Følner sequence of subsets of Zk.

Appendix C. Cocycles

C.1. Cocycles and extensions. Let (X, µ, T ) be a system and U a compact
abelian group. We generally assume here that U is written with additive nota-
tion. (The changes needed when multiplicative notation is used are obvious.)
A cocycle with values in U is a measurable map ρ : X → U . We let C(X, U)
denote the family of U -valued cocycles on X and we write C(X) instead of
C(X, T), where C(X, U) is endowed with pointwise addition and the topology
of convergence in probability. It is a Polish group.

The extension of (X, µ, T ) by U associated to the cocycle ρ ∈ C(X) is the
system (X × U, µ × mU , Tρ), where Tρ : X × U → X × U is given by

Tρ(x, u) =
(
Tx, u + ρ(x)

)
.

If (X × U, µ × mU , Tρ) is ergodic, we say that the cocycle ρ is ergodic. If
moreover (X×U, µ×mU , Tρ) has the same Kronecker factor as X, we say that
ρ is weakly mixing.

The factor map (x, u) 
→ x is called the natural projection. For v ∈ U , we
also let v denote the measure-preserving transformation of X × U given by

v · (x, u) = (x, v + u) .

A transformation of this type is called a vertical rotation or in case of ambi-
guity, a vertical rotation above X. We continuously identify the group U with
the group of vertical rotations. The vertical rotations commute with Tρ and
preserve the natural projection on X. When ρ is ergodic, they are exactly
characterized by these properties.

C.2. Cocycles and coboundaries. For ρ ∈ C(X, U), the coboundary of ρ

is the cocycle ρ ◦ T − ρ and when there is no ambiguity, we write it ∂ρ. Let
∂C(X) denote the subgroup of C(X) consisting of coboundaries.

Assume that X is ergodic. Then a cocycle ρ ∈ C(X, U) is ergodic if
and only if there exists no nontrivial character χ ∈ Û so that the cocycle
χ ◦ ρ ∈ C(X) is a coboundary.

The following result is found in Moore and Schmidt [MS80]:

Lemma C.1. Let (X, µ, T ) be a system, U a compact abelian group and
ρ ∈ C(X, U). Then ρ is a coboundary if and only if for every χ ∈ Û , the cocycle
χ ◦ ρ : X → T is a coboundary.
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Two cocycles ρ, ρ′ ∈ C(X, U) are said to be cohomologous if ρ − ρ′ is a
coboundary. In this case, the extensions they define are isomorphic (i.e., there
is an isomorphism between these two systems which preserves the natural
projections).

Lemma C.2. Let (X, µ, T ) and (Y, ν, S) be ergodic systems, U a compact
abelian group, ρ : X → U an ergodic cocycle and W the extension of X by
U associated to ρ. Assume that W and Y are factors of the same ergodic
system K and let L and M be the factors of K associated to the invariant sub
σ-algebras L = X ∨Y and M = W ∨Y, respectively. Then M is an extension
of L by a closed subgroup V of U .

Let γ ∈ Û and consider γ as taking values in S1. Define a function fγ on
W by fγ(x, u) = γ(u). If E(fγ | L) �= 0, then fγ is measurable with respect to
L and γ ∈ V ⊥.

This lemma is essentially a reformulation of more or less classical re-
sults and similar lemmas can be found, in particular, in Furstenberg and
Weiss [FW96]. We only give an outline of the proof.

Proof. The system L can be represented as an ergodic joining λ of (X, µ, T )
and (Y, ν, S). In the same way, M can be represented as an ergodic joining τ

of W and Y where τ is a measure on W × Y = X × Y ×U and the projection
of τ on X × Y is λ. Moreover, τ is invariant under the transformation of
(X × Y ) × U associated to the cocycle σ : (x, y) 
→ ρ(x) of the ergodic system
(X × Y, λ, T × S).

Therefore τ is an ergodic component of the extension of this system by
U , defined by the cocycle σ. Thus it is an extension of this system by a closed
subgroup V of U , the Mackey group of σ in the terminology of Furstenberg and
Weiss [FW96]. For γ ∈ Û , we have γ ∈ V ⊥ if and only if γ ◦σ is a coboundary
of the system (X × Y, λ, T × S). That is, if and only if γ ◦ ρ is a coboundary
of L.

Let γ ∈ Û and assume that E(fγ | L) �= 0. Then

fγ(Tρ(x, u)) = γ(ρ(x)) · fγ(x, u)

and moreover the map (x, y, u) 
→ γ(ρ(x)) is measurable with respect to L.
Thus

E(fγ | L) ◦ T = E(fγ ◦ Tρ | L) = γ ◦ ρ · E(fγ | L) .

The function E(fγ | L) ·fγ is invariant on M and thus is constant by ergodicity.
Therefore fγ is measurable with respect to L and γ ◦ ρ is a coboundary on L.
By the first part, γ ∈ V ⊥.
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C.3. Measurability properties. Let X be a system and U a compact abelian
group. Then the coboundaries form a subgroup of C(X, U), which is Borel
because it is the range of the continuous group homomorphism ∂ : ρ 
→ ρ◦T −ρ

from the Polish group C(X, U) to itself ([BK96]).

Lemma C.3. Let (X, µ, T ) be a (nonergodic) system, (Y, ν) a (standard)
probability space, and y 
→ µy a weakly measurable map from Y to the space of
probability measures on X. Assume that

• For every y ∈ Y , the measure µy is invariant under T .

• µ =
∫
Y µy dν(y).

Let (Ω, P ) be a (standard) probability space and let ω 
→ ρω be a measurable
map from Ω to C(X,S1). Then:

(1) The set

A =
{
(ω, y) ∈ Ω × Y : ρω is a coboundary of (X, µy, T )

}
is a measurable subset of Ω × Y .

(2) For ω ∈ Ω, ρω is a coboundary of (X, µ, T ) if and only if the set

Aω = {y ∈ Y : (ω, y) ∈ A}

satisfies ν(Aω) = 1.

A cocycle ρ ∈ C(X,S1) is a map from X to S1 which is defined only
µ-almost everywhere. This makes the definition of the set A in the lemma
appear ‘problematic’ and so we begin with an explanation.

We recall that C(X,S1) is endowed with the topology of convergence in
probability and this topology coincides with the topology of L1. By a classical
result (see for example [Va70, p. 65]) there exists a map R : Ω×X → S1, defined
everywhere and measurable, such that for every ω ∈ Ω, ρω(x) = R(ω, x) for
µ-almost every x. In the statement above and in the proof below we write
ρω(x) instead of the more precise but heavier notation R(ω, x).

Proof. (1) For ω ∈ Ω and an integer n ≥ 0, write

ρ(n)
ω (x) = ρω(x)ρω(Tx) . . . ρω(Tn−1x) .

For a bounded function (defined everywhere) on X, we write Bω,f for the set
of points x ∈ X where the averages

1
N

N−1∑
n=0

ρ(n)
ω (x)f(Tnx)(40)
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converge as N → +∞. Define the function ψω,f on Bω,f to be the limit of
these averages. The set Bω,f is clearly invariant under T and the function ψω,f

satisfies

ψω,f (Tx) = ψω,f (x)ρω(x) for x ∈ Bω,f .(41)

Define
Cω,f = {x ∈ Bω,f : ψω,f (x) �= 0} .

Then Cω,f is invariant under T . For every bounded function f on X, the subset

Cf = {(ω, x) ∈ Ω × X : x ∈ Cω,f}

is measurable in Ω × X.
We show now that µ(Bω,f ) = 1. Let X × S1 be endowed with the trans-

formation associated to the cocycle ρω and let φ be the function defined on
X × S1 by φ(x, u) = f(x)u. By applying the ergodic theorem on the system
X × S1 and the function φ, we get that the averages (40) converge almost
everywhere. That is, µ(Bω,f ) = 1. Therefore, the function ψω,f is defined
µ-almost everywhere, and satisfies (41) µ-almost everywhere. By the same
argument, for every y ∈ Y , the same properties hold with µy substituted for µ.

Choose a countable family {fj : j ∈ J} of bounded functions on X that
is dense in L2(µ) and dense in L2(µy) for every y ∈ Y . Define

Cω =
⋃
j∈J

Cω,fj
and C =

⋃
j∈J

Cfj
.

We claim that

A = {(ω, y) ∈ Ω × Y : µy(Cω) = 1} .(42)

Let ω ∈ Ω and y ∈ Y so that (ω, y) ∈ A. There exists f : X → S1 so
that ρω(x) = f(Tx)f(x) for µy-almost every x and by construction, ψω,f = f

µy-a.e. Choose a sequence {jk} in J so that fjk
→ f in L2(µy). The sequence

of functions {ψω,fjk
} converges in L2(µy) to ψω,f = f , which is of modulus 1.

By definition of these sets, µy

(⋃∞
k=1 Cω,fjk

)
= 1 and thus finally µy(Cω) = 1.

Conversely, assume that µy(Cω) = 1. This set is the union for j ∈ J of the
invariant sets Cω,fj

. Thus we can find a sequence {Dj} of measurable subsets
of X, invariant and pairwise disjoint, with

Dj ⊂ Cω,fj
for every j and

⋃
j∈J

Dj = Cω .

Define a function f on Cω by f(x) = fj(x) for x ∈ Dj . As the sets Dj are
invariant, it follows from the construction that for every j and every x ∈ Dj

we have ψω,f (x) = ψω,fj
(x) �= 0. Then ψω,f �= 0 on Cω and so µω-almost

everywhere. By dividing the two sides of Equation (41) by |ψω,f |, we get that
ρω is a coboundary of (X, µω, T ) and that (ω, y) ∈ A.
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Our claim (42) is proved and the first part of Lemma C.3 follows.

(2) If ρω is a coboundary of (X, µ, T ), there exists f ∈ C(X,S1) with
ρω = f ◦ T · f , µ-almost everywhere. As µ =

∫
µy dν(y), for ν-almost every

y the same relation holds µy-almost everywhere and ρω is a coboundary of
(X, µy, T ).

Conversely, assume that for ν-almost every y the cocycle ρω is a cobound-
ary of (X, µ, T ). Define the sets Cω,fj

and Cω as above. For ν-almost every
y we have (ω, y) ∈ A and thus µy(Cω) = 1. It follows that µ(Cω) = 1. Use
the sets Dj and the function f defined above, with the measure µ substituted
for µy. The function ψω,f is defined and nonzero µ-almost everywhere and
satisfies Equation (41) µ-almost everywhere. Therefore, ρ is a coboundary of
(X, µ, T ).

For simplicity, we stated and proved the preceding lemma only for cocycles
with values in the circle group S1. But it follows immediately from Lemma C.1
that a similar result holds for cocycles with values in any compact abelian
group. (We assume implicitly that all compacts abelian groups are metrizable.)

On the other hand, the full form of Lemma C.3 is used only in the proof
of Theorem 9.6. Several times we use a weaker form with a single cocycle,
corresponding to a constant map ω 
→ ρω:

Corollary C.4. Let (X, µ, T ), (Y, ν) and µω be as in Lemma C.3. Let
U be a compact abelian group and ρ : X → U a cocycle. Then the subset

Aρ = {y ∈ Y : ρ is a coboundary of (X, µy, T )}

of Y is measurable. The cocycle ρ is a coboundary of (X, µ, T ) if and only if
ν(Aρ) = 1.

C.4. Quasi-coboundaries and cocycles on squares. Let (X, µ, T ) be an
ergodic system, U a torus and ρ : X → U a cocycle. Note that ρ is a quasi-
coboundary if it is the sum of a coboundary and a constant.

We recall that ρ is weakly mixing if and only if there exists no nontrivial
character γ of U so that γ ◦ ρ : X → T is a quasi-coboundary.

A proof of the following result can be found in Moore and Schmidt [MS80]:

Lemma C.5. Let (X, µ, T ) be an ergodic system, U a torus and ρ : X → U

a cocycle. If the map (x, x′) 
→ ρ(x) − ρ(x′) : X × X → U is a coboundary of
(X × X, µ × µ, T × T ), then ρ is a quasi -coboundary.

We note that the analogous result does not hold for a cocycle with values
in an arbitrary compact abelian group.
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Lemma C.6. Let (X, µ, T ) be an ergodic system, U a compact abelian
group and ρ ∈ C(X, U) a cocycle. Assume that the map (x, x′) 
→ ρ(x) : X ×
X → T is a coboundary on (X × X, µ × µ, T × T ). Then ρ is a coboundary.

Proof. By Lemma C.1, we can reduce to the case where U is the circle
group S1. Write (Z, t) for the Kronecker factor of X and π : X → Z for the
natural projection.

By hypothesis, there exists a function f : X × X → S1 with

f(Tx, Tx′)f(x, x′) = ρ(x) .

The function defined on X×X×X by (x, x′, x′′) 
→ f(x, x′)f(x, x′′) is invariant
under T ×T ×T and thus is measurable with respect to Z ×Z ×Z. It follows
that the function f is measurable with respect to X × Z. Taking the Fourier
transform of f with respect to the second variable, we can write

f(x, x′) =
∑
γ∈Ẑ

gγ(x)γ(π(x′)) .(43)

Then
f(x, x′) f(x, x′′) =

∑
γ,θ∈Ẑ

gγ(x) gθ(x) γ(π(x′)) θ(π(x′′)) .

As this function is invariant under T×T×T , by unicity of the Fourier transform
we get that for every γ, θ ∈ Ẑ,

gγ(Tx) gθ(Tx) gγ(x) gθ(x) = γ(t)θ(t) .

The function x 
→ gγ(x) gθ(x) is an eigenfunction of X for the eigenvalue
γ(t)θ(t) and so there exists a constant cγ,θ with

gγ(x) gθ(x) = cγ,θ γ(π(x)) θ(π(x)) .

Finally, there exists a function φ on X and for every γ ∈ Û there exists a
constant cγ so that

gγ(x) = cγ φ(x) γ(π(x)) .

Using the values of the functions gγ in Equation (43), we see that there exists
a function g on Z with f(x, x′) = φ(x)g(π(x) − π(x′)). As f is of modulus
1, the functions g and φ have constant modulus and so we can assume that
|φ| = 1. Now, ρ(x) = φ(Tx)φ(x)).

The next Lemma uses the definition and properties of the measures µ[k]

introduced in Section 3. The notation ξ
[k]
α was introduced in Section 2.1.

Lemma C.7. Let (X, µ, T ) be an ergodic system, 1 ≤ � ≤ k integers and
let α be an �-face of Vk. Let U be a compact abelian group and ρ : X [�] → U a
cocycle. If the cocycle ρ ◦ ξ

[k]
α = X [k] → U is a coboundary of (X [k], µ[k], T [k]),

then ρ is a coboundary of (X [�], µ[�], T [�]).
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Proof. We begin by the case � = 0. Here ρ is a cocycle on X. Assuming
that for some vertex ε of Vk the cocycle x 
→ ρ(xε) is a coboundary of X [k], we
have to show that ρ is a coboundary on X. By permuting coordinates, we can
restrict to the case that ε is the vertex 0.

We proceed by induction on k. For k = 1, the result is exactly Lemma C.6.
Take k ≥ 1 and assume that the result holds for k. Assume that the cocy-
cle x 
→ ρ(x0) is a coboundary of X [k+1]. We use the ergodic decomposi-
tion (4) of µ[k] and the formula (5) for µ[k+1]. By Corollary C.4, for almost
every ω the cocycle x 
→ ρ(x0) is a coboundary on the Cartesian square of
(X [k], µ

[k]
ω , T [k]). This cocycle depends only on the first coordinate of this

square and by Lemma C.6 we get that the map x′ 
→ ρ(x′
0) is a cobound-

ary of the system (X [k], µ
[k]
ω , T [k]). As this holds for almost every ω, the map

x′ 
→ ρ(x′
0) is a coboundary of the system (X [k], µ[k], T [k]) by Corollary C.4.

By the induction hypothesis, ρ is a coboundary of X. This completes the proof
when � = 0.

Consider the case that � > 0. We use the ergodic decomposition given by
Formula (5) for µ[�] and by Lemma 3.1 we get

µ[k] =
∫

Ω�

(
µ[�]

ω

)[k−l]
dP�(ω) .

We use Corollary C.4 and the first part of the proof with k − � substituted for
k and (X [�], µ

[�]
ω , T [�]) substituted for (X, µ, T ). The result follows.

C.5. Cocycles and groups of automorphisms. Let (X, µ) be a probability
space, G a compact abelian group and (g, x) 
→ g · x an action of G on X

by measure-preserving transformations. This action is said to be free if there
exists a probability space (Y, ν) and a measurable bijection j : Y × G → X,
mapping ν × mG to µ, with j(y, gh) = g · j(h) for y ∈ Y and g, h ∈ G.

The vertical rotations introduced in Appendix C.1 are free actions. The
action of a compact abelian group on itself by translations is free. The restric-
tion of a free action to a closed subgroup is free.

The next lemma says that a free action of a compact abelian group G

is ‘cohomologically’ free. It is a classical result, but we give a proof for
completeness.

Lemma C.8. Let {Sg : g ∈ G} be a free action of the compact abelian
group G on the probability space (X, µ) and let g 
→ φg be a measurable map
from G to C(X,S1) so that

φgh = φg · (φh ◦ g) for every g, h ∈ G .(44)

Then there exists φ ∈ C(X,S1) so that φg = (φ ◦ Sg) · φ for every g ∈ G.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 483

Proof. For g ∈ G, let Sg be the unitary operator on L2(µ) given by
Sgf(x) = φg(x)f(g · x). The hypothesis (44) means that {Sg : g ∈ G} is a
unitary representation of the compact abelian group G in L2(µ). Therefore,
L2(µ) is the Hilbert sum of the spaces Hγ , γ ∈ Ĝ, where

Hγ = {f ∈ L2(µ) : Sgf = γ(g) f for every g ∈ G} .

If f ∈ Hγ , the function |f | is invariant under the action of G and thus so is
the set {x ∈ X : f(x) �= 0}. Therefore, there exists a partition X =

⋃
n Xn

of X into invariant sets and there exists for every n a character γn ∈ Ĝ and a
function fn ∈ Hγn

with fn(x) �= 0 for x ∈ Xn. As the action of G is free, for
every n there exists a function hn : X → S1 with hn ◦ g = γn(g)hn for every
g ∈ G. The function φ defined on X by

φ(x) = hn(x)
fn(x)
|fn(x)| for x ∈ Xn

satisfies the announced property.

Lemma C.9. Let (X, µ, T ) be an ergodic system, U a compact abelian
group and let (u, x) 
→ u · x be a free action of U on X by automorphisms.
Let ρ ∈ C(X) be a cocycle so that ρ ◦ Su − ρ is a coboundary for every u ∈ U .
Then there exists an open subgroup U0 of U and a cocycle ρ′, cohomologous
to ρ, with ρ′ ◦ Su = ρ′ for every u ∈ U0.

Proof. By hypothesis, for every u ∈ U there exists f ∈ C(X) with

ρ ◦ Su − ρ = f ◦ T − f .(45)

As in Appendix A, for f ∈ C(X) and u ∈ U we write Su,f for the measure-
preserving transformation of X × T given by Su,f (x, t) = (Sux, t + f(x)). The
skew product group U � C(X) consists of all transformations of this kind. Let
K be the subset of U � C(X) consisting of the transformations Su,f , where
u, f satisfy Equation (45). Clearly, K is a closed subgroup of U � C(X).
By hypothesis, the natural projection p : K → U is onto and its kernel is
{S1,c : c ∈ T}, which is a group homeomorphically isomorphic to T. By
Corollary A.2, K is compact. We identify ker(p) with T.

As p is a homomorphism to an abelian group, its kernel T contains the
commutator subgroup K′ of K. But T is obviously included in the center of K.
Thus K is a ≤ 2-step nilpotent group, and the commutator map K × K → T
is bilinear. This map is also continuous and is trivial on K× T and on T ×K.
Thus it induces a continuous bilinear map K/T × K/T → T. As K/T can be
identified with U , this map can be viewed as a bilinear map from U × U to T
and by duality we see it as a continuous group homomorphism from U to Û .
As Û is discrete, the kernel of this last homomorphism is an open subgroup U0

of U . Following these identifications back, we get that p−1(U0) is abelian.
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The compact abelian group p−1(U0) admits T as a closed subgroup, with
quotient equal to U0. Thus it is isomorphic to U0 ⊕ T. This means that the
restriction of p to p−1(U0) admits a cross section which is a continuous group
homomorphism. This cross section has the form u 
→ Su,fu

and u 
→ fu is a
continuous map from U0 → C(X), with

ρ ◦ u − ρ = fu ◦ T − fu for all u ∈ U0,(46)

fuv(x) = fu(x) + fv(Sux) for all u, v ∈ U0, .(47)

Since the action of U on X is free, by Equation (47) and Lemma C.8, there
exists f ∈ C(X) so that fu = f ◦u−f for every u ∈ U0. Write ρ′ = ρ−f ◦T +f .
This cocycle is cohomologous to ρ and by Equation (46), ρ′ ◦u = ρ′ for u ∈ U0.

Lemma C.10. Let (X, µ, T ) be an ergodic system, U a compact abelian
group and (u, x) 
→ u · x a free action of U on X by automorphisms. Let
ρ ∈ C(X) be a cocycle, so that ρ ◦u− ρ is a quasi -coboundary for every u ∈ U .
Then there exists a closed subgroup U1 of U so that U/U1 is toral and there
exists a cocycle ρ′, cohomologous to ρ, with ρ′ ◦ Su = ρ′ for every u ∈ U1.

Proof. The beginning of the proof is similar to the proof of Lemma C.9.
For every u ∈ U , there exists f ∈ C(X) and a constant c ∈ T so that

ρ ◦ u − ρ = f ◦ T − f + c .(48)

Let H be the subset of U�C(X) consisting of transformations Su,f so that u and
f satisfy Equation (48) for some c. Clearly, H is a closed subgroup of U �C(X).
By hypothesis, the projection p : H → U is onto and its kernel is {S1,f :
f is an eigenfunction of X}. Thus ker(p) is homeomorphically isomorphic to
the group A(Z) of affine functions on the Kronecker factor Z of X (for this
notation see Section 8.4). This group can be identified with T ⊕ Ẑ and in
particular, it is locally compact. By Corollary A.2, H is locally compact.

A direct computation shows that the commutator subgroup K′ of K is
included in the subgroup T of H. Thus K = H/T is a locally compact abelian
group. We write q : K → U for the continuous group homomorphism induced
by p.

For Su,f ∈ H, the constant c appearing in Equation (48) is well defined
and the map ψ : Su,f 
→ c induces a continuous group homomorphism from
H to T. This homomorphism is trivial on T and it induces a character φ of
K = H/T.

By the Structure Theorem of Locally compact Abelian Groups, K admits
an open subgroup L isomorphic to K⊕Rd, where K is a compact abelian group
and d ≥ 0 is an integer. We identify L with K⊕Rd and write K0 = K∩ker(φ)
and U0 for the closed subgroup q(K0) of U .
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For u ∈ U0, there exists by definition f ∈ C(X) so that Su,f ∈ H and
ψ(Su,f ) = 0. In other words, u and f satisfy Equation (48) with c = 0,
meaning, they satisfy Equation (45). By Lemma C.9, there exist an open
subgroup U1 of U0 and a cocycle ρ′, cohomologous to ρ, with ρ′ ◦ u = ρ′ for
every u ∈ U1.

It remains to show that U/U1 is a toral group. As L is open in K and q is
an open map, q(L) is an open subgroup of U and thus U/q(L) is finite. Now,
q(L)/q(K) is a quotient of L/K = Rd and is compact and thus is a torus. Also,
K/K0 is isomorphic to φ(K), which is a closed subgroup of T and so is equal
to T or is finite, and q(K)/U0 is a quotient of K/K0 and so is either finite or
isomorphic to T. Finally, U0/U1 is open and the proof is complete.

Appendix D. The van der Corput lemma

We use several extensions of the classical van der Corput inequality, as
found for example in [KN74]. They deal with sequences in a Hilbert space H,
with norm ‖·‖ and inner product 〈· | ·〉. Let Re(z) denote the real part of the
complex number z.

Lemma D.1 ([Be87]). Let {xn} be a sequence in H. For integers N and
H with 1 ≤ H ≤ N ,

H2
∥∥∥ N∑

n=1

xn

∥∥∥2

≤ H(N + H − 1)
N∑

n=1

‖xn‖2 + 2(N + H − 1)
H−1∑
h=1

(H − h)
N−h∑
n=1

Re〈xn | xn+h〉 .

Taking limits in this inequality, we get:

Lemma D.2. Let {xn} be a bounded sequence in H. Then

lim sup
N→∞

∥∥∥ 1

N

N∑
n=1

xn

∥∥∥2
≤ lim sup

H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣ 1

N

N∑
n=1

〈xn | xn+h〉
∣∣ .

We need also a similar result for multidimensional sequences. The follow-
ing lemma can be found in the proof of Lemma A6 of [BMC00]. Here we write
n = (n1, . . . , nk) for a point in Zk.

Lemma D.3. Let {xn : n ∈ Zk} be a bounded sequence in H. Assume that
for every h = (h1, . . . , hk) ∈ Zk

k∏
i=1

1

Ni−Mi

∑
M1≤n1<N1,

... ,
Mk≤nk<Nk

Re〈xn+h | xn〉 → γh
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as M1 − N1, . . . , Nk − Mk → +∞, and that

∑
−H≤h1≤H,

... ,
−H≤hk≤H

k∏
i=1

H−|hi|
H2

· γh −→ 0

as H → +∞. Then ∥∥∥ k∏
i=1

1

Ni−Mi

∑
M1≤n1<N1,

... ,
Mk≤nk<Nk

xn

∥∥∥ −→ 0

as N1 − M1, . . . , Nk − Mk → +∞.
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