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Nonconventional ergodic averages
and nilmanifolds

By BERNARD HOST and BRYNA KRA

Abstract

We study the L2-convergence of two types of ergodic averages. The first
is the average of a product of functions evaluated at return times along arith-
metic progressions, such as the expressions appearing in Furstenberg’s proof
of Szemerédi’s theorem. The second average is taken along cubes whose sizes
tend to +o00. For each average, we show that it is sufficient to prove the conver-
gence for special systems, the characteristic factors. We build these factors in
a general way, independent of the type of the average. To each of these factors
we associate a natural group of transformations and give them the structure of
a nilmanifold. From the second convergence result we derive a combinatorial
interpretation for the arithmetic structure inside a set of integers of positive
upper density.

1. Introduction

1.1. The averages. A beautiful result in combinatorial number theory is
Szemerédi’s theorem, which states that a set of integers with positive upper
density contains arithmetic progressions of arbitrary length. Furstenberg [F77]
proved Szemerédi’s theorem via an ergodic theorem:

THEOREM (Furstenberg). Let (X, X,u,T) be a measure-preserving prob-
ability system and let A € X be a set of positive measure. Then for every
integer k > 1,

S 1 Y —n —2n —kn
1$1£fNZM(AmT ANT™AN-.nT™A) >0.
n=1

It is natural to ask about the convergence of these averages, and more gen-
erally about the convergence in L?(y) of the averages of products of bounded
functions along an arithmetic progression of length k for an arbitrary integer
k > 1. We prove:
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THEOREM 1.1. Let (X, X, u,T) be an invertible measure-preserving prob-
ability system, k > 1 be an integer, and let f;, 1 < j < k, be k bounded
measurable functions on X. Then

N-1
(1) lim = Y A(T"2) fo(T™x) ... fi(T"x)
n=0

exists in L?(X).

The case k = 1 is the standard ergodic theorem of von Neumann. Fursten-
berg [F77] proved this for £ = 2 by reducing to the case where X is an ergodic
rotation and using the Fourier transform to prove convergence. The existence
of limits for £k = 3 with an added hypothesis that the system is totally ergodic
was shown by Conze and Lesigne in a series of papers ([CL84], [CL87] and
[CL88]) and in the general case by Host and Kra [HKO01]. Ziegler [Zie02b] has
shown the existence in a special case when k = 4.

If one assumes that T is weakly mixing, Furstenberg [F77] proved that for
every k the limit (1) exists and is constant. However, without the assumption
of weak mixing one can easily show that the limit need not be constant and
proving convergence becomes much more difficult. Nonconventional averages
are those for which even if the system is ergodic, the limit is not necessarily
constant. This is the case for k£ > 3 in Equation (1).

Some related convergence problems have also been studied by Bourgain
[Bo89] and Furstenberg and Weiss [FW96].

We also study the related average of the product of 2¥ — 1 functions taken
along combinatorial cubes whose sizes tend to +o0o. The general formulation of
the theorem is a bit intricate and so for clarity we begin by stating a particular
case, which was proven in [HK04].

THEOREM. Let (X, X, u,T) be an invertible measure-preserving probabil-
ity system and let f;, 1 < j <7, be seven bounded measurable functions on X.
Then the averages over (m,n,p) € [M,M'] x [N,N']| x [P, P'] of

[ (T™2) fo(T") f3(T™ " x) f4(TPx) f5 (T Px) fo (TP ) f (T P)
converge in L*(u) as M' — M, N' — N and P' — P tend to +oc.

Notation. For an integer k > 0, let V; = {0,1}*. The elements of V}
are written without commas or parentheses. For ¢ = e1eo9...6; € V3 and
n = (n1,na,...,n;) € Z*, we write

E-nm=¢€ny +exng+ -+ epng .

We use 0 to denote the element 00...0 of Vj and set V;* =V}, \ {0}.

We generalize the above theorem to higher dimensions and show:
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THEOREM 1.2. Let (X, X, u,T) be an invertible measure-preserving prob-
ability system, k > 1 be an integer, and let f., € € V', be 2F — 1 bounded
functions on X. Then the averages

L en
[ > I[ f(T="2)

=1 nE[Ml,Nl)X"'X[MkJVk) &‘EV;

(2)

k

converge in L?(X) as N1 — My, No — My, ... , Ny — M, tend to +oc.

When restricting Theorem 1.2 to the indicator function of a measurable
set, we have the following lower bound for these averages:

THEOREM 1.3. Let (X, X, u,T) be an invertible measure-preserving prob-
ability system and let A € X. Then the limit of the averages

k

I > p() 757 4)

=1 TLG[Ml,Nl)XX[Mk,Nk) eeVi

exists and is greater than or equal to ,u(A)2k when Ny — My,Ny — Mo, ...,
N — M. tend to +oo.

For k = 1, Khintchine [K34] proved the existence of the limit along with
the associated lower bound, for & = 2 this was proven by Bergelson [Be00],
and for £ = 3 by the authors in [HK04].

1.2. Combinatorial interpretation. We recall that the upper density d(A)
of a set A C N is defined to be

d(A) = limsup —[AN{1,2,... ,N}| .
N—oo N

Furstenberg’s theorem as well as Theorem 1.3 have combinatorial interpreta-

tions for subsets of N with positive upper density. Furstenberg’s theorem is

equivalent to Szemerédi’s theorem. In order to state the combinatorial coun-

terpart of Theorem 1.3 we recall the definition of a syndetic set.

Definition 1.4. Let I' be an abelian group. A subset E of I' is syndetic if
there exists a finite subset D of I' such that £+ D =T.

When I' = Z%, this definition becomes: A subset E of Z¢ is syndetic if
there exist an integer N > 0 such that

Eﬂ([Ml,Ml—i-N] X [MQ,MQ—FN] X oo X [Mk,Mk—I—N]) 7'&@
for every My, Mo, ..., My € Z.

When A is a subset of Z and m is an integer, we let A 4+ m denote the set
{a+m:a € A}. From Theorem 1.3 we have:
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THEOREM 1.5. Let A C Z with d(A) > &§ > 0 and let k > 1 be an integer.
The set of n = (n1,na,...,n;) € ZF so that

d(()A+e-n) >

€€V)€

s syndetic.

Both the averages along arithmetic progressions and along cubes are con-
cerned with demonstrating the existence of some arithmetic structure inside
a set of positive upper density. Moreover, an arithmetic progression can be
seen inside a cube with all indices n; equal. However, the end result is rather
different. In Theorem 1.5, we have an explicit lower bound that is optimal, but
it is impossible to have any control over the size of the syndetic constant, as
can be seen with elementary examples such as rotations. This means that this
result does not have a finite version. On the other hand, Szemerédi’s theorem
can be expressed in purely finite terms, but the problem of finding the optimal
lower bound is open.

1.3. Characteristic factors. The method of characteristic factors is classi-
cal since Furstenberg’s work [F77], even though this term only appeared explic-
itly more recently [FW96]. For the problems we consider, this method consists
in finding an appropriate factor of the given system, referred to as the char-
acteristic factor, so that the limit behavior of the averages remains unchanged
when each function is replaced by its conditional expectation on this factor.
Then it suffices to prove the convergence when this factor is substituted for the
original system, which is facilitated when the factor has a “simple” description.

We follow this general strategy, with the difference that we focus more on
the procedure of building characteristic factors than on the particular type of
average currently under study. A standard method for finding characteristic
factors is an iterated use of the van der Corput lemma, with the number of
steps increasing with the complexity of the averages. For each system and
each integer k, we build a factor in a way that reflects k successive uses of the
van der Corput lemma. This factor is almost automatically characteristic for
averages of the same “complexity”. For example, the k-dimensional average
along cubes has the same characteristic factor as the average along arithmetic
progressions of length £—1. Our construction involves the definition of a “cubic
structure” of order k on the system (see Section 3), meaning a measure on its
2Fth Cartesian power. Roughly speaking, the factor we build is the smallest
possible factor with this structure (see Section 4).

The bulk of the paper (Sections 5-10), and also the most technical por-
tion, is devoted to the description of these factors. The initial idea is natural:
For each of these factors we associate the group of transformations which pre-
serve the natural cubic structure alluded to above (Section 5). This group is



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 401

nilpotent. We then conclude (Theorems 10.3 and 10.5) that for a sufficiently
large (for our purposes) class of systems, this group is a Lie group and acts
transitively on the space. Therefore, the constructed system is a nilsystem. In
Section 11, we show that the cubic structure alluded to above has a simple
description for these systems.

Given this construction, we return to the original average along arith-
metic progressions in Section 12 and along cubes in Section 13 and show that
the characteristic factors of these averages are exactly those which we have
constructed. A posteriori, the role played by the nilpotent structure is not
surprising: for a k-step nilsystem, the (k + 1)st term 7%z of an arithmetic
progression is constrained by the first k terms x,Tz,...,T* 'z. A similar
property holds for the combinatorial structure considered in Theorem 1.2.

Convergence then follows easily from general properties of nilmanifolds.
Finally, we derive a combinatorial result from the convergence theorems.

1.4. Open questions. There are at least two possible generalizations of
Theorem 1.1. The first one consists in substituting integer-valued polynomials
p1(n), pa(n),...,pr(n) for the linear terms n,2n,...,kn in the averages (1).
With an added hypothesis, either that the system is totally ergodic or that all
the polynomials have degree > 1, we proved convergence of these polynomial
averages in [HK03]. The case that the system is not totally ergodic and at least
one polynomial is of degree one and some other has higher degree remains open.

Another more ambitious generalization is to consider commuting transfor-
mations Ty, Ts, ..., T} instead of T,T2,...,T%. Characteristic factors for this
problem are unknown.

The question of convergence almost everywhere is completely different and
can not be addressed by the methods of this paper.

1.5. About the organization of the paper. We begin (§2) by introduc-
ing the notation relative to 2*-Cartesian powers. We have postponed to four
appendices some definitions and results needed, which do not have a natural
place in the main text. Appendix A deals with properties of Polish groups
and Lie groups, Appendix B with nilsystems, Appendix C with cocycles and
Appendix D with the van der Corput lemma. Most of the results presented in
these Appendices are classical.

2. General notation

2.1. Cubes. Throughout, we use 2F-Cartesian powers of spaces for an
integer k£ > 0 and need some shorthand notation.

Let X be a set. For an integer k > 0, we write X ¥ = X?" For k > 0, we
use the sets V. introduced above to index the coordinates of elements of this
space, which are written x = (x. : € € Vj).
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When f., e € Vj, are 2F real or complex valued functions on the set X,
we define a function &)y, fe on X K] by

Q) fo(x) =[] flao) -

eeVy e€Vy

When ¢: X — Y is a map, we write ¢ : X* — YI¥ for the map given
by ((b[k] (X))g = ¢(xc) for € € V.

We often identify X+ with X x X In this case, we write x =
(x',x") for a point of X1 where x’,x” € X" are defined by

33/5 = 2.0 and :z’E’ = T
for € € V}, and €0 and €1 are the elements of Vi1, given by
(50)]' = (61)]' =& for 1 < ] < k 3 (€O)k+1 =0 and (61)k+1 =1.

The maps x — x’ and x — x” are called the projections on the first and second
side, respectively.

It is convenient to view Vj as indexing the set of vertices of the cube of
dimension k, making the use of the geometric words ‘side’, ‘face’, and ‘edge’
for particular subsets of Vi natural. More precisely, for 0 < ¢ < k, J a subset
of {1,...,k} with cardinality k — ¢ and € {0,1}”, the subset

a={e€V:e; =n; for every j € J}

of V}, is called a face of dimension £ of Vi, or more succinctly, an ¢-face. Thus
Vi has one face of dimension k, namely V} itself. It has 2k faces of dimension
k — 1, called the sides, and has k2*~! faces of dimension 1, called edges. It
has 2F sides of dimension 0, each consisting in one element of V}, and called a
vertex. We often identify the vertex {e} with the element € of V.

Let a be an f-face of V;. Enumerating the elements of a and of V; in
lexicographic order gives a natural bijection between o and V. This bijection
maps the faces of Vj included in « to the faces of V;. Moreover, for every set
X, it induces a map from X* onto X¥. We denote this map by §[Xk] o OF §&k]
when there is no ambiguity about the space X. When « is any face, we call it
a face projection and when « is a side, we call it a a side projection. This is a
natural generalization of the projections on the first and second sides.

The symmetries of the cube Vj, play an important role in the sequel. We
write S for the group of bijections of V}, onto itself which maps every face to a
face (of the same dimension, of course). This group is isomorphic to the group
of the ‘geometric cube’ of dimension k, meaning the group of isometries of R*
preserving the unit cube. It is spanned by digit permutations and reflections,
which we now define.
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Definition 2.1. Let 7 be a permutation of {1,...,k}. The permutation o
of Vi, given for € € V}, by

(a(s))j =éery for 1<j<k

is called a digit permutation.
Let i € {1,...k}. The permutation o of Vj given for € € Vj, by

(O‘(E))j =¢ejwhen j#i and (o(¢)), =1—¢;
is called a reflection.

For any set X, the group S acts on X* by permuting the coordinates:
for o € Sy, we write o, : Xl — X for the map given by

(0s (1:))5 = Z,(c) for every e € Vj .

When o is a digit permutation (respectively, a reflection) we also call the
associated map o, a digit permutation (respectively, a reflection).

2.2.  Probability spaces. In general, we write (X,u) for a probability
space, omitting the o-algebra. When needed, the o-algebra of the probability
space (X, p) is written X. By a system, we mean a probability space (X, p)
endowed with an invertible, bi-measurable, measure-preserving transformation
T: X — X and we write the system as (X, u, T).

For a system (X, u, T"), we use the word factor with two different meanings:
it is either a T-invariant sub-c-algebra ) of X or a system (Y,7,5) and a
measurable map 7: X — Y such that 7y = v and Sonw = woT. We often
identify the o-algebra ) of Y with the invariant sub-c-algebra 7=1()) of X.

All locally compact groups are implicitly assumed to be metrizable and
endowed with their Borel o-algebras. Every compact group G is endowed with
its Haar measure, denoted by mg.

We write T = R/Z. We call a compact abelian group isomorphic to T¢ for
some integer d > 0 a torus, with the convention that T? is the trivial group.

Let G be a locally compact abelian group. By a character of G we mean
a continuous group homomorphism from G to either the torus T or the circle
group S'. The characters of G form a group G called the dual group of G. We
use either additive or multiplicative notation for G.

For a compact abelian group Z and t € Z, we write (Z,t) for the prob-
ability space (Z,myz), endowed with the transformation given by z +— tz. A
system of this kind is called a rotation.

3. Construction of the measures

Throughout this section, (X, u,T') denotes an ergodic system.

[]

3.1. Definition of the measures. We define by induction a T'"-invariant

measure /ﬂk} on X¥ for every integer k > 0.
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Set X% = X, Tl = T and ;% = ;. Assume that pl¥ is defined. Let Z[¥!
denote the T™! invariant o-algebra of (X!, ul#! T) Identifying X ¥+ with
X 5 XIH as explained above, we define the system (X*+1 yle+1] plE+1]) £
be the relatively independent joining of two copies of (X ¥, ulFl, Ty over ¥,

This means that when f., € € V41, are bounded functions on X,

[k+1] _ (%] (%] (<]
(3) /XM R f-du /XME(gfmz JE(Q) fin|71) dul

e€Vit1 neVy
Since (X, p,T) is ergodic, Z!! is the trivial o-algebra and pll = p x p.
If (X, p, T) is weakly mixing, then by induction u*! is the 2% Cartesian power
u®2" of u for k> 1.
We now give an equivalent formulation of the definition of these measures.

Notation. For an integer k > 1, let
(4) M = / pM dpy(w)
Q
denote the ergodic decomposition of ¥l under T,

Then by definition

(5) 1] :/Q ul s pl® apy(w)

We generalize this formula. For k, ¢ > 1, the concatenation of an element
a of Vi, with an element 8 of V; is the element af of Vjiip. This defines a
bijection of Vi x Vp onto Vi1, and gives the identification

(X[k])[ll — xlk+a

LEMMA 3.1. Let k,¢ > 1 be integers and for w € Q, let (#Uﬂ)[ﬂ] be the

w
measure built from the ergodic system (X[k],uyf},T[k}) in the same way that

,uyf] was built from (X, p, T). Then

i / (14 4Py (w) |

k

Proof. By definition, ,uyf l'is a measure on X® and so (ub[f})[g] is a mea-

sure on (X)) which we identify with X[ +4. For ¢ = 1 the formula is
Equation (5). By induction assume that it holds for some ¢ > 1. Let 7,
denote the invariant c-algebra of the system ((X (kY1 (uyf])[e], (T [k])m) =
(X[k—i-é]’ (m[f] ) 4 T[k-&-ﬁ})_

Let f and ¢ be two bounded functions on X*+4. By the Pointwise Ergodic
Theorem, applied for both the system (XF+4 yk+d Tlk+) and

(X, () i),
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for almost every w the conditional expectation of f on ZW+4 (for plh+4) is
equal (ug€ })m—almost everywhere to the conditional expectation of f on J,, (for
(le])[fl). As the same holds for g, we have

/f ®gdu[k+g+1} :/ E(f | I[k+f]) . E(g ’ I[k+f})du[k+f}
X k4]
= [ ([ B 12 Bl | 24 ) ) aPe)
Q, NJ X0
= [ ([ B2 B ] ) ) dpie)
QN X+

[ ([, seaduH)arw)
Q. N X e+

where the last identity uses the definition of (pb[f])[“l]. This means that
plee) /Q(Mgc])[zﬂ} APy (w). 0

3.2. The case k = 1. By using the well known ergodic decomposition of
pll = 4 x i, these formulas can be written more explicitly for k = 1. The
Kronecker factor of the ergodic system (X, u,T) is an ergodic rotation and
we denote it by (Z1(X),t1), or more simply (Z1,%1). Let puy denote the Haar
measure of Z1, and 7x 1 or 7, denote the factor map X — Z;. For s € Zy,
let f11,s denote the image of the measure ;11 under the map z — (z,sz) from
71 to Z%. This measure is invariant under T = T x T and is a self-joining
of the rotation (Z1,t1). Let us denote the relatively independent joining of p
over pu1s. This means that for bounded functions f and g on X,

(6) F(x0)g(@1) dpus (0, 71) = / E(f | 21)(2)E(g | Z1)(s2) dpa(2)
ZX7Z Z

where we view the conditional expectations relative to Z; as functions defined
on Zl.

It is a classical result that the invariant o-algebra Z of (X x X, X p,
T x T') consists in sets of the form

{(z,y) e X x X :m(z) —mi(y) € A},

where A C Z;. From this, it is not difficult to deduce that the ergodic decom-
position of p x p under T' x T' can be written as

(7) MXMZ/Z prs dp (s) -

In particular, for ui-almost every s, the measure g is ergodic for T' x T. By
Lemma 3.1, for an integer ¢ > 0 we have

(8) 1) = /Z (1) dpis (s)
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Formula (5) becomes

pl? :/z ps X prs dpa(s) .

When f., € € Vs, are four bounded functions on X, writing f. = E(f: | 21)
and viewing these functions as defined on Z;, by Equation (6) we have

0 [ & s

4
6€V2

- // 7 foo(2) fro(z+s1) for (2 +s2) fur (2 + 51+ s2) dpaa (2) dpa (1) dpua (52) -

The projection under 77?1 of 2 on Zlm is the Haar measure ,u[f] of the closed

subgroup
{(z,2+ 81,2+ 82,2+ 51+ 52) : 2,851,852 € Z1}

of ZF] — Z}. We can reinterpret Formula (9): the system (X[, u& 712 is a

joining of four copies of (X, p, T'), which is relatively independent with respect
i 2]

to the corresponding 4-joining ;" of Zj.

3.3. The side transformations.

Definition 3.2. If « is a face of Vi, with k£ > 1, let Tc[yk] denote the trans-
formation of X¥ given by
(). — T(z.) foreeca

Te otherwise

and called a face transformation. When « is a side of Vi, we call Tgﬂ a side
transformation.

The sides are faces of dimension k—1 and we denote the group spanned by
the side transformations by 7;4:[5]1 The subgroup spanned by those To[ék} where

« is a side not containing 0 is denoted by ﬂ[k].

K]

We note that %[—1 contains T and is spanned by T and 'Z;[k].
LEMMA 3.3. For an integer k > 1, the measure plF! is invariant under

the group Tk,[ﬁ]l of side transformations.

Proof. We proceed by induction. For k = 1 there are only two transfor-
mations, Id x T and T x Id, and plYl = p x p is invariant under both.

Assume that the result holds for some k& > 1. We consider first the side
o = {e € Viy1 : €xp1 = 0}. Identifying X¥+1 with the Cartesian square of
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Xk we have To[lkﬂ] = T x 1d¥. Since T™™ leaves each set in ZI¥ invariant,
by the definition (3) of ul*+1, this measure is invariant under T The same
method gives the invariance under To[ff], where o’ is the side opposite from «.

Any other side 3 of Vj41 can be written as v x {0, 1} for some side ~ of V.
Under the identification of X ¥+ with X x X ¥ we have Tﬂ[kﬂ] = Tv[k] X Tw[k}.
]

invariant. Furthermore, it commutes with T and so commutes with the

conditional expectation on Z!¥. By the definition (3) of p/**1, this measure is

invariant under Tﬂ[k—m . O

By the inductive hypothesis, the transformation T«yC leaves the measure ¥

[]

Notation. Let J¥ (X)=J (] denote the o-algebra of sets on X (%] that
are invariant under the group ﬂ[k].

PROPOSITION 3.4. On (X k) the o-algebra T coincides with the
o-algebra of sets depending only on the coordinate 0.

Proof. If o is a side not containing 0, then (T(Lk]X)O = xg for every x € X ¥,
Thus a subset of X ¥ depending only on the coordinate 0 is obviously invariant
under the group ’Z;[k} and so belongs to J (K],

We prove the converse inclusion by induction. For k =1, X!l = X2, the
group ’];[k] contains Id x T" and the result is obvious.

Assume the result holds for some &k > 1. Let F' be a bounded function
on X 1 that is measurable with respect to the o-algebra JF+1. Write x =
(x/,x") for a point of X1 where x’,x"” € X¥. Since (XW+1, k41 Tlk+1])
is a self-joining of (X, ul*l T) the function F(x) = F(x/,x") on XK+l
can be approximated in L?(ul**1]) by finite sums of the form

Z Fi(x)Gi(x")

where F; and G; are bounded functions on X, Since T ,L’f;l] = 1K x T g
one of the side transformations of X*+1 it leaves F invariant and by passing
to ergodic averages, we can assume that each of the functions G; is invariant
under 7%, Thus, by the construction of p*+t1) for all i, G;(x') = G;(x") for
plFt-almost every (x/,x”). Therefore the above sum is equal p*+-almost
everywhere to a function depending only on x’. Passing to the limit, there
exists a bounded function H on X such that F(x) = H(x') p*+"-almost
everywhere.

Under the natural embedding of Vi in Vi1 given by the first side, each
side of Vj is the intersection of a side of Vj1q with Vi. Since F' is invariant
under ﬂ[k+1], H is also invariant under ’];[k} and thus is measurable with respect
to J¥. By the induction hypothesis, H depends only on the 0 coordinate. O
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COROLLARY 3.5. (X[k],u[k}) is ergodic for the group of side transforma-
tions ’Z;C[ﬁ]l

Proof. A subset A of X* invariant under the group ’Z;C[ﬁ]l is also invariant

under the group ’];[k]. Thus its characteristic function is equal almost every-
where to a function depending only on the 0 coordinate. Since A is invariant
under T¥ this last function is invariant under 7" and so is constant. O

Since the side transformations commute with T/, they induce measure-
preserving transformations on the probability space (€, Py) introduced in (4),
which we denote by the same symbols. From the last corollary, this immedi-
ately gives:

COROLLARY 3.6. (Qy, Py) is ergodic under the action of the group ’];[k].

3.4. Symmetries.

PROPOSITION 3.7. The measure p¥ is invariant under the transforma-
tion oy for every o € S.

We note that o, commutes with T’ (%] for every g € Sg.

(%] is invariant under reflections.

Proof. First we show by induction that u

For k = 1 the map (zg, z1) — (x1, o) is the unique reflection and it leaves
the measure ,u[l] = i X p invariant.

Assume that for some integer k > 1, the measure p*! is invariant under all
reflections. For 1 < j <k +1, let R; be the reflection of X [k+1] corresponding
to the digit j. If j < k+1, R; can be written S; x S;, where S; is the reflection
of X*! for the digit j. Since p*! is invariant under S;, by construction plkt1]
is invariant under R;. The reflection Rjy; simply exchanges the two sides
of X1 and by construction of the measures, it leaves the measure plF+1
invariant.

Next we show that pl#! is invariant under digit permutations. For k = 1
there is no nontrivial digit permutation and so nothing to prove. For
k = 2, there is one nontrivial digit permutation, the map (xgo, Zo1, 10, Z11) —
(00, 10, o1, x11). By Formula (9), p is invariant under this map.

Assume that for some integer k > 2, the measure p!¥ is invariant under all
digit permutations. The group of permutations of {1, ..., k, k+1} is spanned by
the permutations leaving k+1 fixed and the transposition (k, k+1) exchanging
k and k + 1.

Consider first the case of a permutation of {1,...,k,k + 1} leaving k + 1
fixed. The corresponding transformation R of X1 = X x X can be
written as S x S, where S is a digit permutation of X and so leaves ul¥!
invariant. By construction, ,u[k‘H] is invariant under R.
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Next consider the case of the transformation R of X+ associated to the
permutation (k,k + 1). By the ergodic decomposition of Formula (4) of ul*~1
and Equation (5) for £ —1, the measure (,uL[L, ])[2] (as a measure on (X [F—1)R2])
is invariant by the transposition of the two digits. Thus, when we consider the
same measure as a measure on X "1 it is invariant under R. The integral,
pl+1 s invariant under R and therefore p*t1) is invariant under all digit

permutations. O

COROLLARY 3.8. The image of u[k} under any side projection X —
X1 g k=11,

Proof. By construction of ul¥!, the result holds for the side projection
associated to the side {¢ € V} : e = 0} of Vj. The result for the other side
projections follows immediately from Proposition 3.7. O

3.5. Some seminorms. We define and study some seminorms on L°(u).
When X is Z/NZ for some integer N > 0 and is endowed with the transfor-
mation n — n + 1 mod N, these seminorms are the same as those used by
Gowers in [GO1], although the contexts are very different.

For simplicity, we mostly consider real-valued functions.

Fix k > 1. For a bounded function f on X, by the definition (3) of pul*:

2 —
/X[k] El;[/kf(:ng)du[k}(x):/[k 1]( ( 1_;[ f(z ]Ik 1])) d,u[k 1>
and so we can define

(10)  Iflk= / & f dpl¥

EGV;C

=(fo B IT 12 )™

NEVi_1

1/2k

LEMMA 3.9. Let k > 1 be an integer.

(1) When f., € € Vi, are bounded functions on X,

| [ @ seau] < TT1A

eeVy eeVy

(2) I lx is a seminorm on L ().

(3) For a bounded function f, ||fllx < I/ lk+1-
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Proof. (1) Using the definition of u[¥!, the Cauchy-Schwarz inequality and
again using definition of pl*,

[ @)

eeVy
<= @ iz

L2 (k1) H Q) Tt 1])‘

nEVk 1 T]GVk 1 L2( " 1)
(f @) (] @ean)
eeVy €V

where the functions g. and h. are defined for n € Vi1 by g0 = g1 = fy0 and
hyo = hyp = fy1. For each of these two integrals, we permute the digits k¥ — 1
and k£ and then use the same method. Thus (f ®€€Vk fe du[k})4 is bounded
by the product of 4 integrals. Iterating this procedure k times, we have the
statement.

(2) The only nontrivial property is the subadditivity of || - ||x. Let f and
g be bounded functions on X. Expanding ||f + g]|*", we get the sum of 2%
integrals. Using part (1) to bound each of them, we have the subadditivity.

(3) For a bounded function f on X,

125 = [ 117, 2 / ® 1 aut) ) =i o

ner

From part (1) of this lemma, and the definition (3) of p*+1, we have:

COROLLARY 3.10. Let k > 1 be an integer and let f., € € Vi, be bounded
functions on X. Then

[B(Q 12|, < TT el

eeVy e€eVy

In a few cases we also need the seminorm for a complex-valued function
and so introduce notation for its definition. Write C: C — C for the conjugacy
map z +— z. Thus C™z = z for m even and is z for m odd. The definition of
the seminorm becomes

(11) 1= ([ @ rau)

EEVk

Similar properties, with obvious modifications, hold for this seminorm.
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4. Construction of factors

4.1. The marginal (X®", uF"). We continue to assume that (X, p,T) is
an ergodic system, and let k¥ > 1 be an integer.

We consider the 2¥ — 1-dimensional marginals of ,u[k]. For simplicity, we
consider first the marginal obtained by ‘omitting’ the coordinate 0. The other
cases are similar.

Recall that V;* = V4 \ {0}. Consider a point x € X*| as a pair (z9, ),
with 29 € X and & = (2. ;¢ € V") € X", Let ul*" denote the measure on
X[K" which is the image of x/¥) under the natural projection x — & from X !
onto X",

We recall that (X!, ul¥]) is endowed with the measure-preserving action
of the groups ’Z;[k] and ’]}El The first action is spanned by the transformations

(]

T o[zk] for « a side not containing 0 and the second action is spanned by 7" and

’Zk[k]. By Corollary 3.5, ulFl is ergodic for the action of 7k

k—1-
All the transformations belonging to T[ﬁ}l factor through the projection
X[ — XxF" and induce transformations of X¥" preserving ,u[k]*. This defines

a measure-preserving action of the group 7;&]1 and of its subgroup ’];[k] on X",
The measure pfl” is ergodic for the action of ’Z;c[ﬁ]l

On the other hand, all the transformations belonging to ’Z;[ﬁ]l factor through
the projection x — zg from X to X, and induce measure-preserving trans-
formations of X. The transformation T induces the transformation 7 on X,
and each transformation belonging to ’];[k] induces the trivial transformation

on X. This defines a measure-preserving ergodic action of the group ’Z;[ﬁ]l on
X, with a trivial restriction to the subgroup ’Z;[k].

Thus we can consider (in a second way) plFl as a joining between two
systems. The first system is (X¥1", uF1"), and the second (X, 1), both endowed
with the action of the group ’27{@1

Let ZIH" denote the o-algebra of T!F-invariant sets of (X", ul¥) and
J (k]" denote the o-algebra of subsets of X [k]" which are invariant under the
action of ’];[k}.

4.2. The definition of the factors Z,. Let A X" belong to the
o-algebra JF" . A is invariant under the action of the group Ik[k] and thus
the subset X x A of X*I is invariant under ’Z;[k]. By Proposition 3.4, this set
depends only on the first coordinate. This means that there exists a subset
B of X with X x A = B x X¥" up to a subset of X¥ of plfl-measure zero.
That is,

(12) 14(2) = 15(zo) for pulFl-almost every x = (z9,%) € X .
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It is immediate that if a subset A of X" satisfies Equation (12) for some
B C X, then it is invariant under ’];[k] and thus measurable with respect
to J [k, Moreover, the subsets B of X corresponding to a subset A € J (K" in
this way form a sub-o-algebra of X. We define:

Definition 4.1. For an integer k > 1, Z;_1(X) is the o-algebra of subsets
B of X for which there exists a subset A of X*" so that Equation (12) is
satisfied.

In the sequel, we often identify the o-algebras Z;_1(X) and JW" (X), by
identifying a subset B of X belonging to Z;_1(X) with the corresponding set
Ae gk

The o-algebra 21 is invariant under 7" and so defines a factor of (X, p, T')
written (Zx_1(X), p, T), or simply (Zx—1, ug, T') or even Zj,_1. The factor map
X = Zp_1(X) is written mx 1 or T_1.

As X" = X, the o-algebra J! is trivial and Zy(X) is the trivial factor.

We have already used the notation Z;(X) for the Kronecker factor and
we check now that the two definitions of Z;(X) coincide. For the moment,
let Z denote the Kronecker factor of X and let m: X — Z be the natural
projection. By Formula (9), we have " = s px pand J@7 is the algebra
of sets which are invariant under 7' x Id x T and Id x T" x T. By classical
arguments, J!2" is measurable with respect to Z x Z x Z, and more precisely
JB = ®=1(2), where the map ®: X" — Z is given by ®(zo1, 10, 211) =
m(zo1) — m(z10) + w(211). But pll is concentrated on the set {x : zgo = ®(Z)}.
This is exactly the situation described above, with Z; = Z.

LEMMA 4.2. For an integerk > 1, (X, ulk]) is the relatively independent
joining of (X, ) and (X", ul¥)) over Zj._y when identified with J*".

Proof. Let f be a bounded function on X and g be a bounded function on
X" Since ,u[k] is invariant under the group 7;:[5]17 for integers ni,ns,...,nk
we have

/ f(x0)9(&) dulF (x) = / Flao)g (@ (rye () au (x) |

where Tl[k},TQ[k}, ces ,T,Lk} denote the k generators of ’Z;[k]. Thus, by averaging

and taking the limit

(13)
/ f(20)g(#) dulM (x) = / F(zo)E(g | TM")(&) dp™ (x)

B /E(f | Z5-1)(z0)E(g | T (@) duM(x) . O
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LEMMA 4.3. Let f be a bounded function on X. Then
E(f ] Zk—1)=0<=|fllx =0

Proof. Assume that E(f | Zx_1) = 0. By Equation (13) applied with
9(Z) = H f(ze), we have || f|lx = 0 by definition (10) of the seminorm.
eeVy
Conversely, assume that || f]|x = 0. By Lemma 3.9, for every choice of f,
ee Vi,

[ o) TT et dul) =0

eeVyr

By density, the function x — f(z¢) is orthogonal in L?(u[*) to every function
defined on X¥" and in particular to every function measurable with respect to
JH " But this means that f is orthogonal in L2 (1) to every Zj_j-measurable
function and so E(f | Zx_1) = 0. O

COROLLARY 4.4. The factors Zy(X), k > 1, form an increasing sequence
of factors of X.

4.3. Taking factors. Let p: (X, X, u,T) — (Y,V,v,T) be a factor map.
We can associate to Y the space Y¥ and the measure v*! in the same way
that X[* and pl¥ are associated to X in Section 3. This induces a natural
m[al]) plkl: XK — yF| commuting with the transformations 7% and the group
gt

LEMMA 4.5. Let p: (X, 1, T) — (Y,v,T) be a factor map and let k > 1
be an integer.

(1) The map p - (X, ul) T — (v WIB TR s o factor map.

(2) For a bounded function f on'Y, ||fllx = | fop|k, where the first seminorm
15 associated to Y and the second one to X.

Proof. (1) Clearly pl¥l commutes with the transformation T¥ and so it
suffices to show that the image of p¥ under pl*! is ¥l We prove this statement
by induction. The result is obvious for £ = 0 and so assume it holds for some
k > 0. Let f., € € Vi, be bounded functions on Y. Since p[k} is a factor map,
it commutes with the operators of conditional expectation on the invariant

o-algebras and we have
E(( £) op[z¥(x)) = B( @) £:|7H(X)) 0 p*].
eeVi eeVy

The statement for k + 1 follows from the definitions of the measures p*+1 and
[k+1]
v .
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(2) This follows immediately from the first part and the definitions of the
seminorms. O

PROPOSITION 4.6. Let p: (X, u,T) — (Y,v,T) be a factor map and let
k > 1 be an integer. Then p~1(Zp_1(Y)) = Z_1(X) Np~1(Y).

Using the identification of the o-algebras ) and p~!())), this formula is
then written
Zk_l(Y) = Zk_l(X) ny.

Proof. For k = 1 there is nothing to prove. Let k > 2 and let pl¥™: X k" —
YI¥" denote the natural map. By Lemma 4.5, it is a factor map. Let f be
a bounded function on X that is measurable with respect to p~(Z_1(Y)).
Then f = g o p for some function g on Y which is measurable with respect
to Z,_1(Y). There exists a function F' on Y[¥" measurable with respect
to J¥", so that g(yo) = F(§) for vIFl-almost every y = (yo,%) € Y*I. Thus
gop(xo) = Fop (%) for uM-almost every x = (z9,%) € X" and the function
f = g op is measurable with respect to Z;_1(X). We have p~1(Z;,_1(Y)) C
21 (X) Np ().

Conversely, assume that f is a bounded function on X, measurable with re-
spect to Z,_1(X)Np~1(Y). Then f = gop for some g on Y. Write g = ¢’ +¢”,
where ¢’ is measurable with respect to Z;_1(Y) and E(¢” | Zx_1(Y)) = 0.
By the first part, ¢’ o p is measurable with respect to Z;_1(X). By Lemma 4.3
and Part (2) of Lemma 4.5, [¢”|kx = 0 and so ||¢" o p|kx = 0 and
E(¢" op | Zx_1(X)) = 0. Since f = ¢’ op + ¢” o p is measurable with re-
spect to Zx_1(X), we have g’ o p = 0. Thus ¢’ = 0 and g is measurable with
respect to Z,_1(Y). O

4.4. The factor Z\) of X¥. We apply this to the factors Z; = Z(X) of X.
For integers k,¢ > 1, (le, ,ugk],T[k]) is the 2*-dimensional system associated
to (Zy, jue, T) in the same way that (X ] T is associated to (X, u, T).
The map TrLk]: X Zgﬂ is a factor map and Zi(Zy(X)) = Z,(X) N Z(X).
Since the sequence {Z}} is increasing,

(14 2(Z4(X)) = {Z’“(X) e

Zy(x)  otherwise .
PROPOSITION 4.7. Let k > 1 be an integer.

(1) As a joining of 2% copies of (X, ), (X, ul*)) is relatively independent

over the joining (Z,[f_]l, Mgﬁl) of 2% copies of (Zy_1, pup—1).

(2) Zy is the smallest factor'Y of X so that the o-algebra T is measurable
with respect to Y.
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Proof. (1) The statement is equivalent to showing, whenever f., ¢ € Vj,
are bounded functions on X,

R N - L L ST

eeVy -1e€Vy

It suffices to show that

(16) /X[k] ® fodu™ =

e€Vy

whenever E(f, | Z,—1) = 0 for some 1 € Vj,. By Lemma 4.3, if E(f, | Zx_1)
= 0, we have that | f,[|x = 0. Lemma 3.9 implies equality (16).

(2) Let f., € € Vi, be bounded functions on X. We claim that

(17) E(Q £ 17H) =E(QE(S. | 2) | TV) .

eeVi eeVi

As above, it suffices to show this holds when E(f;, | Z;) = 0 for some 7 € V.
By Lemma 4.3, this condition implies that || f,|lz+1 = 0. By Corollary 3.10,
the left hand side of Equation (17) is equal to zero and the claim follows.

Every bounded function on X[* which is measurable with respect to
T can be approximated in L?(ul¥) by finite sums of functions of the form
E(@.cv, fe | Ty where f., ¢ € Vj, are bounded functions on X. By Equa-
tion (17), one can assume that these functions are measurable with respect
to Zi. In this case, ®5€Vk fe is measurable with respect to Z,Ek} (recall that
w][f}: XMW - Z,Ek} is a factor map by Part (1) of Lemma 4.5). Since this
o-algebra is invariant under T E(@.cy, fo | T k) is also measurable with
respect to Z,[Ck]. Therefore Z!¥ is measurable with respect to Z,Ek}.

We use induction to show that Z; is the smallest factor of X with this
property. For k =0, 7 O] and Z are both the trivial factor of X and there is
nothing to prove. Let k > 1 and assume that the result holds for k£ — 1.

Let Y be a factor of X so that Z!¥ is measurable with respect to Y.
For any bounded function f on X with E(f | J) = 0, we have to show that
E(f | Z) = 0.

By projecting on the first 2°=! coordinates, Z
respect to Y*~1. By the induction hypothesis, Y D Zj,_;. Since W

relatively independent joining over Z,[gk_]l, it is a relatively independent joining

[k=1] is measurable with

% is a

over Y!¥I. This implies that when f., e € V}, are bounded functions on X,

E(Q) f- | VM) = Q) E(f 1Y) .

eeVy €€V}
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We apply this with f. = f for all e. The function x — [[.cy, f(z:) has
zero conditional expectation with respect to YI¥1. By hypothesis, it has zero

conditional expectation with respect to ZI¥/. By the definition (10) of the
seminorm, ||f|lx+1 = 0 and by Lemma 4.3, E(f | Z;) = 0. O

4.5. More about the marginal ulF1". The results of this subsection are used
only in Section 13, in the study of the second kind of averages.

LEMMA 4.8. Let k > 2 and f., € € V}, be 2% bounded functions on X. If
there exists n € Vi so that f, is measurable with respect to Zi_o and if there
exists ¢ € Vi, so that E(f¢ | Zx—2) =0, then f®aevk fedpll = 0.

Proof. If n = (, then f;, = fr = 0 and the result is obvious.

Consider first the case that (7,() is an edge of Vi. Without loss of gen-
erality, we can assume that for some j, n; = 0 and ¢; = 1 and that n; = ¢;
for i # j. We proceed as in the proof of Lemma 3.9, but stop the itera-
tion of the Cauchy-Schwarz inequality one step earlier. This gives a bound of
(f Q.cv, f- alu[k’})yk1 by a product of 2°~! integrals, with one of them being

J T 5w T felae) )

e€Vy e€Vy
;=0 g;=1

~ [B(® 128 B(Q fol T M)aut.

e€eVi 1 e€Vi_1

The conditional expectation with respect to Z*~ commutes with the condi-
tional expectation with respect to Z,[gk_;H. The function )

J

e€Vi_1 f77 1S mea-

surable with respect to Z,L’i;l and thus the first conditional expectation in
the above integral is measurable with respect to this factor. Since plF—1 is
relatively independent over Z,[;SH, we have E(Q.cy, , f¢ | Zgi_;]) = 0 and

]

the conditional expectation with respect to Z}f_;l of the second term in the
integral is 0. Therefore the integral is zero.

Now consider the general case. Choose a sequence n = 11,12,...,0m = (
in Vi so that (ns,ns41) is an edge for each ¢. Make a series of changes in

the integral [ R.cv, fe dul¥!| substituting successively E( fns | Zi—2) for fp,,

E(fy, | Zr—2) for fy,, ..., and E(f,,, | Zk—2) for f,, = fc. By the previous
case, each of these substitutions leaves the value of the integral unchanged.
After the last substitution, the integral is obviously 0. O

PROPOSITION 4.9. (1) For every integer k > 2, the measure pF" is the

relatively independent joining of 28 — 1 copies of p over ZIE:@Q
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(2) For every integer k > 1, the o-algebra T s measurable with respect to
[k]*
Z" .
(3) For every integer k > 1, the o-algebra TH" is measurable with respect to
zH .
k—1

Proof. (1) Let f., € € V}¥, be bounded functions on X and assume that
E(f¢ | Zr—2) = 0 for some ¢ € V}*. Set fo = 1. By Lemma 4.8,

/ Q) fdu” = / Q) fedul =0
eeVyr eeVy

(2) Let f., € € V¥, be bounded functions on X and assume that
E(fc | 2Zk-1) = 0 for some ¢ € V;*. Define fo = 1 and 2* functions on X
by ge0 = g-1 = fe for € € Vi. Then

/E(® AR RUTE /E(® fo | ZH)2 gy

% e€Vy
:/ Q) gndul™ =0
NEVii1
by Lemma 4.8, and the result follows.

(3) Let fz, € € V}¥, be bounded functions on X and assume that E(f; |
Zj—1) = 0 for some ¢ € V}*. By definition of the factor Zj_;, there exists a
bounded function fg on X, measurable with respect to Z;_1, with

fo(zo) = E( H fe(ze) | j[k]*)(:i') for pl¥l almost every x = (g, &) .
eeVy

As the measure pl¥ is relatively independent with respect to Z,_; and E(fe |
Zp-1) =0,

0= / [T fe(e) dp(x) = / fo(wo)E( [T felwe) | TM) (@) du™) (0, 2)

eeVy eeVy
N |2 .,
= [IB(T] #1797 @) da @
ecVy
and the result follows. O

4.6. Systems of order k. By Corollary 4.4, the factors Z(X) form an
increasing sequence of factors of X.

Definition 4.10. An ergodic system (X, u,T) is of order k for an integer
k>0if X = Zx(X).
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A system might not be of order k for any integer k£ > 1, but we show
that any system contains a factor of order k for any integer k£ > 1. These
factors may all be the trivial system, for example if X is weakly mixing. By
Equation (14), a system of order k is also of order ¢ for any integer ¢ > k.
Moreover, for an ergodic system X and any integer k, the factor Zx(X) is a
system of order k.

Systems of order 1 are ergodic rotations, while systems of order 2 are
ergodic quasi-affine systems (see [HKO01]).

PROPOSITION 4.11. (1) A factor of a system of order k is of order k.

(2) Let X be an ergodic system and Y be a factor of X. If Y is a system of
order k, then it is a factor of Zi(X).

(3) An inverse limit of a sequence of systems of order k is of order k.

Properties (1) and (2) make it natural to refer to Z;(X) as the mazimal
factor of order k of X.

Proof. The first two assertions follow immediately from Proposition 4.6.

Let X = lim X; be an inverse limit of a family of systems of order k and
let f be a bounded function on X. If f is measurable with respect to & for
some 7, then (with the same notation as above) by Definition 4.1 there exists
a function F' on X" such that f(z¢) = F(&) pu-almost everywhere. By
density, the same result holds for any bounded function on X and the result
follows from Definition 4.1 once again. O

Using the characterization of Z;(X) in Lemma 4.3, we have:

COROLLARY 4.12. An ergodic system (X, u,T) is of order k if and only
if I fllk+1 # O for every nonzero bounded function f on X.

5. A group associated to each ergodic system

In this section, we associate to each ergodic system X a group G(X) of
measure-preserving transformations of X. The most interesting case will be
when X is of order k for some k. Our ultimate goal is to show that for a large
class of systems of order k, the group G(X) is a nilpotent Lie group and acts
transitively on X (Theorems 10.1 and 10.5).

Definition 5.1. Let (X, u,T) be an ergodic system. We write G(X) or
G for the group of measure-preserving transformations x — ¢ - x of X which
satisfy for every integer ¢ > 0 the property:

(P¢) The transformation gl¥ of X[ leaves the measure p!¥ invariant and acts
trivially on the invariant o-algebra Z19(X).
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G(X) is endowed with the topology of convergence in probability. This
means that when {g,} is a sequence in G and g € G, we have g, — ¢ if and
only if u(g;- A A g-A) — 0 for every A C X. An equivalent condition is that
for every f € L2(11), f o gn — f o g in L2(n).

The last condition of P, means that the transformation ¢! leaves each set
in 79 invariant, up to a plf-null set.

We begin with a few remarks. Let (X, u, T') be an ergodic system.

i) The transformation 7" itself belongs to G(X).
ii) G(X) is a Polish group.

iii) Let p: (X, 1, T) — (Y,v,S) be a factor map. Let g € G(X) be such
that ¢ maps ) to itself. In other words, there exists a measure-preserving
transformation h : y — h -y of Y, with hop = pog. For every ¢, the map
plfd: (x1a, pld, iy — (vl pl8 Sl is a factor map by Lemma 4.5, part (1).
Thus the measure vl is invariant under hlY. As the inverse image of the
o-algebra TY(Y) under pl¥ is included in ZW¥(X), the transformation hl acts

trivially on ZI(Y"). Thus h € G(Y).

iv) Let g be a measure-preserving transformation of X satisfying (Py) for
some ¢ and let k < £ be an integer. We choose a k-face f of V;, and write as

usual 5}6]: X — XMW for the associated projection. The image of ulf by fj[f]

~1
is plk and T o fj[f] = §J[f] o T thus §£ﬂ (Z [k]) c 7. Tt follows immediately
that g satisfies (Py). Thus Property (P,) implies Property (Py) for k < £.

5.1. General properties.

LEMMA 5.2. Let (X, u,T) be an ergodic system. Then for any k > 0,
every g € G(X) maps the o-algebra 2, = Z,(X) to itself and thus induces a
measure-preserving transformation of Zy, belonging to G(Zy,).

Notation. We write prg : © +— pgg - « for this transformation. The map
pr: G(X) — G(Zg) is clearly a continuous group homomorphism.

Proof. Let g € G and k > 0 be an integer. Let f be a bounded function on
X with E(f | Z¢) = 0. By Lemma 4.3 and the definition (10) of the seminorm,

O__2k+1_/ dwm_/ o gdp*ty |
I = @ rat= | @ fogds

e€Viy1 e€Vit1

Since gl**+1 leaves the measure pl*t1 invariant, we have ||f o g[lx+1 = 0 and
E(fog | Z) = 0. By using the same argument with g~! substituted for
g, we have that E(f og | Z) = 0 implies E(f | Z;) = 0. We deduce that
g+ Zr = Zi. Thus g induces a transformation of Z;. By Remark iii) above,
this transformation pyg belongs to G(Zy). O
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Notation. Let G be a group. Let k > 1 be an integer and let a be a face
of Vi. Analogous to the definition of the side transformations, for g € G we

also write g([f ! for the element of GI¥ given by

(g([)if])6 =gifeca; (gg“])€ = 1 otherwise.

When G acts on a space X, we also write ggC I for the transformation of X ¥
associated to this element of GI¥l: For x € X*],

(ggg]-x)t_:{g'ma ifeeca

Te otherwise.

LEMMA 5.3. Let (X,u,T) be an ergodic system and let 0 < £ < k be
integers. For a measure-preserving transformation g : x — g-x of X, the
following are equivalent:

(1) For any l-face o of Vi, the transformation g([f] of XK leques the measure
,u[k] invariant and maps the o-algebra T to itself.

(2) For any (¢41)-face B of Vi1 the transformation g,[BkH} leaves the measure

,u[k‘H] mvariant.

(3) For any (£ + 1)-face v of Vi the transformation g[vk} leaves the measure

,u[k] invariant and acts trivially on the o-algebra T,

Proof . We note first that if any one of these properties holds for a face,
then by permuting the coordinates, it holds for any face of the same dimension.

(1) = (2). Let « be an ¢-face of Vj. The transformation g,[f ] preserves

the measure p¥l and the o-algebra ZI¥, thus commutes with the conditional
expectation on this o-algebra. For any bounded function F on X* we have
E(F | TH)o gﬁf] =E(Fo ggﬂ | Z¥1). So, for bounded functions F’, F” on X,
/ (F' @ F")o (gl x glf) dult+1
X [k+1]
E(F' o gl | TH) - B(F" o g | T) dyu¥
E(F' | M) o gl - B(F" | M) 0 gl dpl)

E(F' | ) - E(F" | ) dp¥)

[ TR

:/ F' o F" d'u[kJrl]
X [k+1]

k] (K]

and the measure x**t1 is invariant under g4’ x go’. But this transformation

is g%ﬂﬂ] for some (¢ + 1)-face 8 of V41 and so Property (2) follows.
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(2) = (3). Let y be an (£+1)-face of Vj. Under the bijection between Vj,
and the first k-face of Vi1, v corresponds to an (¢ + 1)-face 8 of Viy1. Under
the usual identification of X 1 with X x X[¥ we have g[ﬁkﬂ} = g[ﬁ x Id[¥.
Since the measure ,u[kH] is invariant under gg{:H] and each of its projections
on X* is equal to u!¥, this last measure is invariant under g[yk]. For a bounded

function F on X [k], measurable with respect to I[k’}, we have
k+1
HFH%Q(H[M) :/F® Fd,u[]”l] = /(F@ F) 09[5+ }dlu[kJrl]

- / (Foglf) @ Fdul+1] = / E(F o gl | 70 . F du¥

Thus E(F o g,[yk] | 7Ky = F and F o g,[yk] = F. Property (3) is proved.

(3) = (1). Let a be an ¢-face of Vj, and let v be an (¢+1)-face of Vj. Since

g[vk] acts trivially on Z*| by using the definition of the conditional expectation

we have E(Fog[yk} | ZI¥) = E(F | Z[¥]) for any bounded function F on X[, By

[k+1] this measure is invariant under g[wk] x IdM¥.

But this transformation is equal to ggH” for some (¢ + 1)-face 8 of Viy1. By

permuting coordinates, the measure ,u[k‘H] is invariant under g[ﬂk+1] for every

(¢ + 1)-face 8 of Viy1. As the transformation g,[f I % g[oif Jis a transformation of

the definition of the measure

this kind, it leaves the measure ,u[k“] invariant. By projection, the measure
p!¥ is invariant under g,[f !
Let F be a bounded function on X*| measurable with respect to Z!*.

Then
IE(F o gi | TH) |32
= /(F o gith) @ (Foglfl) dul* 1 = /(F® F) @ (g x gl) dul+1
= /FQ@FCZM[HH = |EE | ZM) 122y = 1F 172 sy = I1F 0 g5 3 umy

and this means that F' o gg€ I is measurable with respect to Z1¥. O

By applying this lemma with £ = k — 1 we get some characterizations of
the group G(X):

COROLLARY 5.4. Let (X,u,T) be an ergodic system and g : x — g-x a
measure-preserving transformation of X. The following are equivalent:

(1) For every integer k > 0 and every side « of Vi the measure pll s in-

variant under g([f] .
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(2) For every integer k > 0 and every side « of Vi, the measure ,u[k] 18

mvariant under g,[f I and this transformation maps the o-algebra T to
itself.
(3) g€ G(X).

By an automorphism of the system (X, pu,7T), we mean a measure-pre-
serving transformation of X that commutes with 7.

LEMMA 5.5. Let (X,u,T) be an ergodic system. Then every automor-
phism of X belongs to G(X).
Moreover, if g : © +— g - x is an automorphism of X acting trivially on

Zo(X) for some integer £ > 0, then for every integer k > 0 the measure u[“‘k]

is invariant under g([erk] for every (k — 1)-face o of Vpig.

Proof. Let g be an automorphism of X as in the second part of the lemma.

We use the formula (4) for plt1) and the expression given by Lemma 3.1 for
[6+K].
ptEEL:

W = [ AP ) and 5 = [ R P ).
241

241

s

As plf1 s relatively independent over and g acts trivially on Zy, the

measure ,u[”l] is invariant under gyﬂ] for any vertex € € Vyy1. As the trans-
formation ggﬂ] commutes with T+ it induces a measure-preserving trans-

formation h of Q1. Moreover, for Pyyi-almost every w € 11, the image of

ugﬂ} under ggH] is M%.Z”- It follows that the measure p+*! is invariant under
the transformation ggﬂ] X e X gyﬂ} (25! times). But this transformation

is g([erk], for some (k — 1)-face a of Vj4y.

The second part of the lemma follows by permutation of coordinates.
The first part of the lemma follows from the second part with ¢ = 0 and
Corollary 5.4. O

5.2. Faces and commutators. We need some algebraic preliminaries.

Definition 5.6. Let G be a Polish group written with multiplicative nota-
tion. For every integer k > 0, GI*! is endowed with the product topology. For

0 </l <k, we write Gék} for the closed subgroup of G*! spanned by

(18) {g¥: g € G and a is an ¢-face of V;,} .

Thus Ggﬁ] = G and GL’C] is the diagonal subgroup {(g,9,...,9) : g € G}

of GF. We call Ggfll the side subgroup and G[lk] the edge subgroup of GI¥,
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For j > 0, GY) denotes the closed j™ iterated commutator subgroup of
G (see Appendix A). Thus GO = @G, GM = @ is the closed commutator
subgroup of G, and so on.

LEMMA 5.7. Let G be a Polish group. For integers 0 < j < k, the j*™®

iterated commutator subgroup of G,[ﬁl contains (G(j))gfl i1

Actually equality holds, but we omit the proof as this fact is not needed.
Proof. For g, h € G and faces «, 3 of Vi, an immediate computation gives

(19) 98 h3] = (g )25

For j = 0 the statement of the lemma is trivial. For j > 0 the statement is
proved by induction. Every (k — j — 1)-face 7 of Vi can be written as the
intersection of a side o and a (k — j)-face 5. By using Equation (19) we get
the result. O

COROLLARY 5.8. Let (X, u,T) be an ergodic system and G = G(X). Then,
for integers 0 < j < k, any g € GY) and any (k — j — 1)-face o of Vj,, the map
g,[f] leaves the measure p¥ invariant and maps the o-algebra T to itself.

Proof. Let k > 1 and ‘H be the subgroup of GI¥ consisting of the trans-
formations g = (g. : € € Vi) of X[¥ that leave the measure ul¥ invariant and

map the o-algebra 7 K] to itself. By Corollary 5.4, H contains the side group
g}ﬂl. By Lemma 5.7, ‘H contains (g(j))gﬁjfl for 0 <j<k. O

COROLLARY 5.9. If (X, u,T) is a system of order k, then the group G(X)
1s k-step nilpotent.

Proof. Let g € G By Corollary 5.8, for any vertex ¢ € V41, the

measure p*t1 is invariant under gyfﬂ}. Let f be a bounded function on X.

Then
1Fog- 1125 = [ TT (o) = flan)) dul

€€Vt
All 25+1 integrals obtained by expanding the right side of this equality are
equal up to sign and so this expression is zero. By Corollary 4.12, f = fog so
that g acts trivially on X, thus is the identity element of G. The group G is
trivial. O

COROLLARY 5.10. Let (X, u, T) be a system of order k and u an automor-

phism of X inducing the trivial transformation on Zi_1(X). Then u belongs
to the center of G(X).

Proof. By Lemma 5.5, u belongs to G(X). Let g € G. Let € be a vertex of
Vi+1. We choose an edge o and a side 3 of V41 with e = ang. By Lemma 5.5,
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,u[kﬂ} is invariant under ulf I By Corollary 5.4 this measure is invariant under

g[ﬁkﬂ]. Thus this measure is invariant under [u[ciC H}; g[ﬁkﬂ]] = [u; g][gkﬂ]. We
conclude as in the proof of the preceding corollary that [u;g] is the identity.

O

6. Relations between consecutive factors

We study here the relations between the factors Z_1 (X) of a given ergodic
system (X, u,T). For each integer k > 1, Z;(X) is an extension of Z;_;(X).
We show first that this extension is isometric, then that it is an extension by
a compact abelian group. We then describe this extension more completely.

6.1. Isometric extensions. We recall (see [FW96]) that an ergodic iso-
metric extension W of a system (Y, i, S) can be written (Y x G/H, pu x \,.S)
where:

e G is a compact (metrizable) group and H is a closed subgroup.

e A\ = mg g is the Haar measure on G/H. That is, A is the unique
probability measure on G/H which is invariant under the action of G by
left translations. It is also the image of the Haar measure mg of G under
the natural projection G — G/H.

e p =Y — G isacocycle and S: Y x G/H — Y x G/H is given by
S(y,u) = (Ty, p(y)u), where the left action of G on G/H is written
(9, u) = gu.

Without loss, we can reduce to the case that the action of G on G/H is
faithful, meaning that H does not contain any nontrivial normal subgroup of G.
Moreover, we can assume that the the cocycle p: Y — G is ergodic, meaning
that the system (Y x G, pxmg, T)) is ergodic. Asusual, T,,(y, g) = (Ty, p(y)g).

To every g € GG we associate a measure-preserving transformation z +— g-x

of W by
g (y,u) = (y,gqu) .

We also denote this transformation by g.

Any factor of W =Y x G/H over Y has the form Y x G/L, for some
closed subgroup L of GG containing H. In particular, the action of g € G on W
induces a measure-preserving transformation on this factor, written with the
same notation.

LEMMA 6.1. Let W =Y x G/H be an ergodic isometric extension of Y
so that the corresponding extension Y x G is ergodic. Then, for every g € G,
gl = g x g acts trivially on the invariant o-algebra IM(W) of W x W.
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Proof. Let T denote the transformation on W. Consider the factor K
of W spanned by Y and the Kronecker factor Z;(W) of W. Then K is an
extension of Y by a compact abelian group. Therefore, K = Y x G/L for
some closed subgroup L of G containing H and containing the commutator
subgroup G’ of G. Thus, for any g € G, the action of g on K commutes with
T and induces an automorphism of the Kronecker factor Z;(K) = Z;(W).

But an automorphism of an ergodic rotation is itself a rotation. By the
description in Section 3.2 of the invariant sets of W x W the result follows. O

6.2. Zy is an abelian group extension of Zj_1.

LEMMA 6.2. Let (X, pn,T) be an ergodic system and let k > 2 be an inte-
ger. Then Zy, is an isometric extension of Zp_1.

Proof. Let Y be the maximal isometric extension of Z;_1 which is a factor
of X (see [FW96]).

We consider (X, ul¥ Tk} as a joining of (X, u, T) and (X, plF" 1K)
and recall that this joining is relatively independent with respect to the com-
mon factor Z,_1 =71 (K" of these two systems. It is then classical that the in-
variant o-algebra T of (X¥ u[kl T} is measurable with respect to Y@ X"

Let f be a bounded function on X with E(f | Y) = 0. Write F for
the function x — [[ oy, f(7e) on X k], Since plfl is relatively independent

with respect to Z,[Ck}

L and Y D Zp_1, F has zero conditional expectation on
the o-algebra ¥ @ X" and so zero conditional expectation on ZI¥l. With
the usual identification of X ¥ 1 with the Cartesian square of X*, we have
Jxiwrn F(x)F(x") dplP 1 (x',x") = 0. That is, ||f[ls+1 = 0 by definition of
this seminorm and E(f | Z;) = 0 by Lemma 4.3. Therefore Z, C Y. O

PROPOSITION 6.3. Let (X, pu,T) be a system of order k > 2.

(1) X is a compact abelian group extension of Zy_1, written X = Zy_1 x U,
where U is a compact abelian group.

(2) For every u € U and every edge o of Vi, the transformation ugf] acts
trivially on T,

Proof. By Lemma 6.2, X is an isometric extension of Z;_1 and so we
can write X = Z;_1 x (G/H), where G is a compact group and H a closed
subgroup. As in Section 6.1 we write p: Zx_1 — G for the cocycle defining
this extension and let A denote the Haar measure of G/H.

Since p[k} is relatively independent with respect to Z]L]ﬂl, this measure is
invariant under the map ggd for any ¢ € G and any € € V.. A fortiori, it is

invariant under g([lk] for any g € G and any edge « of Vj.
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CrLamM. For any g € G and any edge o of Vi, the transformation g[ ]
acts trivially on T,

[k—1]

Consider the ergodic decompositions of x*~1 and [

[k—1]

Since Z*—1I is measurable with respect to Z;" |, these decompositions can be

as in Section 3.1.

written as

= [ apc ) and W = [ LR @),

where /,LLk:llL is the projection of ufd U on n 7,

By Part (1) of Proposition 4.7, (X*- 1],,u[k*1],T[k*1]) is the relatively
independent joining of 2~! copies of (X, T, i) over Z,E:lfll]. Thus we can iden-

tify X1 with Zgﬁ:ll} X (G[k_l}/H[k_l]). The measure p[k_” is the prod-

[k— 1]

uct of ugf:ll] by the 28~ 1-power A\®F—1] of X\, which is the Haar measure of
GWF-1/Hk1] and X1 is the isometric extension of Zy— [k~ ] given by the

cocycle plh—1: Z[k_l] — Gl
So for almost every w € Q4_1, the system (X1 ,u[k 1 , 71 s an

isometric extension of (Z ,E 1 ,ugf 11] Tk with fiber G~ 1]/H k=11,

1
Let g € G and let € € Vi1 be a vertex. Since g!“‘” belongs to GF—1I,

by Lemma 6.1 the transformation g!“*” X gi-k*l] of X = xk=1]  xlk-1]
acts trivially on the T = Tk-1] 5 71 jnvariant o-algebra of (X[k],,uyf*l] X
(k=1] k]
:uw ) )
We recall (see Formula 5) that

pl¥ —/ pli s pli 1 dpP(w)

[k—1]

Thus g[k U [k_ Vacts trivially on the invariant o-algebra Z*. But g X

gL s equal to gy for some edge a of Vi. The claim follows by permuting

the coordinates.
CLAIM. G is abelian.

Let g,h € G, and let € be a vertex of V1. Choose two edges o and (3 of
Vi+1 with N 8 = e. By Equation (19), [gg];hgf]] = [g; h]‘[gk}. By the first step

and Lemma 5.3, the transformations gg€ 1 and hgﬁl] preserve the measure

plE1] thus also the transformation [g; Al k11 As this holds for every vertex
e, we conclude as in the proof of Corollary 5.9 that [g; h] acts trivially on X.

This means that [g; h] = 1 and so G is abelian.

By our hypotheses the group H is trivial, and the proof is complete. [
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6.3. Description of the extension.
Notation. For k> 1 and ¢ € V, we write
el =e1+e2+-- +ep and s(e) = (1),

Let X be a set, U an abelian group written with additive notation and
f: X — U amap. For every k > 1, we define a map AFf: XK — U by:

AFf(x) =) s(e)f(ae) -

eeVi

In particular, Af is the map defined on X? by Af(z,2") = f(z') —
f(2"). We have similar notation when the group is written with multiplicative
notation.

PROPOSITION 6.4. Let (X,u,T) be a system of order k > 2. By Propo-
sition 6.3, X is an extension of Zx_1 by a compact abelian group U for some
cocycle p: Zy,_1 — U. Then

(1) AFp: Zl[ﬁl — U is a coboundary (see Appendiz C.2) of the system
(Z,[clﬂl,ugfll,T[k]), meaning that there exists F': Zl[i]l — U with

(20) Afp=FoTH _F

(2) The o-algebra I (X) is spanned by the o-algebra T (Z;,_,) and the map
o: XK - U given by

(21) O(y,u)=F(y)— Y s(e)us
e€eVy
fory € Z/,[Ck_]1 and u € UM where X is identified with Z,_1 x U and X¥!
with ZM | x UM

Proof. Here we consider characters of U as homomorphisms from U to the
circle group S!, written with multiplicative notation.

(1) Let y € U. Define the function ¢ on X = Z,_1 x U by ¥(y, u) = x(v)
and the function ¥ on X* = Z,[ﬂl x UK by

U(y,u) = X(Z s(e)ue) for y € Y and u e UM
e€Vy

Since X is of order k, |41 # 0 by Corollary 4.12 and E(¥ | ZI¥) £ 0 by
Lemma 4.3.
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Let J be the linear map from LQ(,ugfll) to L2(u*) given by

Jf(y.u) = f(y)¥(y,u) for f € (), y € 20, and ue UM
J is an isometry and its range H,, is a closed subspace of L? (u!¥)). Furthermore,
for f € L() ),
J(x(AFp) - foTW) = (7f) oM
and so the space H, is invariant under T, Since the function ¥ belongs to
H,, the function E(¥ | ZI¥]) also belongs to this space. We get that there

exists a nonidentically zero function f on Z ,[f_]l with

(22) X(Akp) -fo T — f ,uggklla.e.

Let A={y € Z,Eﬂlz f(y) # 0}. Then g1 (A) # 0 and A is TH-invariant
by Equation (22). We use the ergodic decomposition given by Formula (4),

but for the measure p,[ﬂl. Since A is invariant, it corresponds to a subset B

of Q., with Pk(B) #0.
Define
C={weQ: xo AFp is a coboundary of (Z,L]ﬂl, u,[ﬁl w,T[k])} .

Then C' is measurable in Qj and it contains B by Equation (22) and the
definition of B. Thus P,(C) > 0. We show now that C is invariant under
the group ’Z;f[ﬁ]l of side transformations. Let w € 0 and let o be a side of
Vi not containing 0 so that T(yg]w € C. Let ¢: Z,[Ck_]l — T be chosen with
its coboundary for T equal to y o A¥p almost everywhere for the measure

/‘Eﬁl Tl The coboundary of qSoT(Lk] for T is equal to y o (AFp) oTo[ék] almost
- [

everywhere for the measure y;,° , . But the map (A*p)o T AFp from YIH
to U is the coboundary for T!¥ of the map
y =Y se)p(ye) -
eca

Therefore yoAFp is a coboundary of the system (Zgﬂl, ugﬂl " THFY and w € C.
Thus the set C' is invariant under 7, (Lk]. By Corollary 3.6, the action of the group
7™ on Q is ergodic. As P(C') > 0, we have P(C) = 1.

Therefore, for Py-almost every w € Q, x o AFp is a coboundary of the

system (Z,[ﬁk_]l,ﬂgﬂlw,T[k]). By Corollary C.4, x o A¥p is a coboundary of

(Z,[f_]l, F‘Eﬂla T¥). As this holds for every x € U, AFp is a coboundary of this
system by Lemma C.1 and the first part of the proposition is proved.
_(2) We identify the dual group of UM with UK. For @ = (6. : e € V) €
UM and u = (u. : e € V) € U,

O(u) = [ 0-(ue) .

EEVk
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Let H be the subspace of L?(u*) consisting of functions invariant under 7%,
For @ € U¥, we write Ly for the subspace of LQ(M[k]) consisting in functions
of the form

(23) (y,u) = f(y)6(u)

for some f € L? (,uggll) As above, Lg is a closed subspace of L?(ul*), invariant

under T, Since the measure u[k] is relatively independent over Mgﬂp using
the Fourier Transform we see immediately that L? (/ﬂk]) is the Hilbert sum of
the spaces Lg for 0 € Ukl Therefore, the invariant subspace H of L?(ul*)) is
the Hilbert sum of the invariant subspaces H N Ly of Ly.

Let @ € U*) and assume that H N Ly contains a nonidentically zero func-
tion ¢. Let o = (&,m) be an edge of V; and let u € U. By Equation (23) we
have ¢ o Wt = ¢ - 0 (u)0y,(u). But by Part (2) of Proposition 6.3, ¢ o ult = o)
and we get that 6.(u)6,(u) = 1. Since this holds for every u € U, 0.6, = 1. As
it holds for every edge oo = (g, 1), there exists x € U with 6. = x*©) for every
€ € V. Finally, ¢ is a function of the form

dy,u) = f(y) - x(D_ s(e)uc)

€EV)€

for some f € L2(,uLkll), and

o(y,u) = x(—@(y,u)) - x(F(y))f(y)

where ® is the map defined by Equation (21). Since ® and ¢ are invariant
under T, the function y o F - f is also invariant under this transformation
and is measurable with respect to ZI*(Z;_1). We conclude that ¢ is measurable
with respect to the o-algebra spanned by ® and 7 W(Zk,l).

Since the invariant space H of L?(ul¥l) is the Hilbert sum of the spaces
H N Ly, every function in H is measurable with respect to this o-algebra and
the second part of the proposition in proved. O

6.4. More terms. The next proposition is used only in the proof of Corol-
lary 6.6, which in turn is only used in the proof of Lemma 10.6.

PROPOSITION 6.5. Let (X, u,T) be a system of order k. Then for £ > k

-1
the invariant o-algebra T is spanned by the o-algebras glf] (Iw), where «
s a k-face of V,.

Proof. First Step. Let (X,u,T) be a system of order k. We use the
notation of Proposition 6.4 and the maps F' and ® defined in Equations (20)
and (21). Let ¢ > k.

We identify X with Z,[f]_l x U, As the projection of ulf on Z,Ef]_l is

,ugf}_l, for pgf]_l—almost every y € Z,[f]_l there exists a measure Ay on U (€ such
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that
¢
M[e] :/ oy X Ay d#l[c}_l(y) .
z,
For every u € U, the corresponding vertical rotation (see the definition in
Subsection C.1) is an automorphism of X and acts trivially on Zp_;. By
Lemma 5.5, for every (¢ — k)-face 8 of V; the measure pul¥ is invariant under

u[ﬁz]. It follows that the measure )y is invariant under this transformation for

(€]

iy q-almost every y. By separability, for almost every y the measure Ay is

invariant under the translation by any element of the group U yj ot
We identify U with U1 x U1 and we write u = (u’,u”) for an
element of U we write also y = (y’,y”) for a point of Z][C] L= Z[E 1] X Z][f 11],

1 with y = (v,y") € Z“

and x = (y’,u,y”,u”) for a point of X!
u=(u,u) Ul

Let v be a k-face of Vy;_1. As the map &y, og[e U, xle-1 L s invariant,
1t[ f}’ollows from the construction of ul that @y o ﬁ[é 1 (x') = f[g 1 (x) for

y, -almost every x; that is,

Y s(e)ul =Y se)ul = F(EYy') = F(EFy") ul-ae.

eey eey

", and

(4] 4

For p,;' ,-almost every y = (y',y") € Z ,E_l, this identity is true for Ay-almost

every u = (u’,u”) € U and the measure )y is concentrated on a coset of the

group
{(u,u") € uth . Zs(a)u’s - Zs(a)u;’ =0} .
ey €€y
We write ¢ for the (k + 1)-face v x {0,1} of V, and we notice that this group
is equal to
-1
{ue Ut . Zs(e)us =0} = 5([52} (Ul[kﬂ]) .
€€d

By permutation of coordinates, the same property holds for any k£ + 1-face §
of Vp, and )y is concentrated on a coset of the intersection

{ue utt . Zs(e)us = 0 for every (k + 1)-face § of V;}
e€d
of the corresponding subgroups of U, By an elementary algebraic computa-
tion, we see that this group is equal to Uy_] &
Finally, Ay is invariant under translation by U, yj . and is concentrated on
a coset of this group. Thus this measure is the image of the Haar measure
of this group by some translation. Moreover, for almost every y € Z,[f] |, the

measure Aruy is the image of the measure Ay by the translation by ol (y).
We conclude that:
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The system (X 8 T is an extension of(Zliéll, ,ugf]_l, T by the com-
pact abelian group ijk.

Step 2. We keep the notation and hypotheses of the first step. It follows
from the description of ul just above that the Hilbert space L?(ul) can be
decomposed as in the proof of Proposition 6.4: L?(ul?) is the Hilbert sum for

0cU, y_] i of the subspaces

Lo={f(u-x)=0(u)f(x) pl-ae. for every u € Ue[ﬁ]k} :

(Here we see characters as taking values in the circle group.) Each space Ly
is invariant under T and thus the T1-invariant subspace H of L?(ul¥) is the
Hilbert sum of the spaces Hg = H N Ly.

On the other hand, by Lemmas 5.5 and 5.3, each function in H is invariant
under the map x — u-x for any u € U, Z[Elk 41+ Therefore Hy is trivial except if
K_} g+1 i the dual group of U, y_] - By the same
algebraic computation as above, we get that

0 belongs to the annihilator of U£

UZ[Z_],CJrl ={uce Ul Zs(e)u6 = 0 for every k-face v of V} .

EEQ

It follows that the annihilator of Uy_]k 41 in Ul is (ﬁ )Ef]. Therefore, the sub-
space H of L2(u/[,f}) is the closed linear span of the family of invariant functions
of the type

é(y,u) = ¢(y)@(u) where ¢ € LQ(,uEf]_l) and 6 € ﬁg] .

We consider an invariant function ¢ of this type. As Ug] is spanned by

the elements of the form X[of], where x € U and « is a k-face of Vy, there exist
k-faces ay, ..., qmy of Vp and characters xi,..., Xm € U with
m
() = [T IT xj(we)
j=lecaq;

for u € U, For each j the function X;j 0 Py o 55; is invariant, and thus so is
the function
m
¢ [ x50 ®eogl.
j=1

(€]
k

But this function factors clearly through Z,°; and is measurable with respect

to I[K](Zk_l). Therefore, the function ¢ is measurable with respect to the
-1
o-algebra spanned by Z1(Z;_1) and éf}n (ZH(X)), 1 < j < m. We get:
The o-algebra T¥(X) is spanned by the o-algebras T (Zx_1) and the
~1
o-algebras glf] (ZF(X)), for o a k-face of Vj.
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Last step. We now prove the assertion of Proposition 6.5 by induction on
k > 0. For k£ = 0 the system X is trivial and there is nothing to prove. We
take k > 0 and assume that the assertion holds for every system of order k — 1.
Let X be a system of order k£ and let £ > k. We use the notation of the first
two steps. By the inductive hypothesis Z1(Z;,_;) is spanned by the o-algebras

-1 -1
551 (¥)(Z;,_1)) for o a k-face of V,. But, for each a, gif] (I Z,_1)) C

-1
5([3{] (ZI¥1(X)) and the result follows from the conclusion of the second step.
O

COROLLARY 6.6. Let (X, u,T) be a system of order k and let x — g - x

be a measure-preserving transformation of X satisfying the property (Py) of
Definition 5.1. Then g € G(X).

Proof. We have to show that the property (Py) holds for every ¢. For
¢ = k there is nothing to prove. For ¢ < k, (P;) follows immediately from
(Px) by projection (see the fourth remark after Definition 5.1). For £ > k we
proceed by induction. Let £ > k and assume that Py_; holds. By Lemma 5.3,

the measure pl? is invariant under g[ﬁg] for any (£ —1)-face 3 of V; and it follows

immediately that it is invariant under ¢gl¥. By hypothesis, g¥ acts trivially

on Z¥ and it follows that for every k-face o of V; the transformation gl acts
-1

trivially on the o-algebra gif] (z!¥)). By Proposition 6.5, gl acts trivially

on 714, O

7. Cocycles of type k£ and systems of order k

Notation. Let (X, u) be a probability space and U a compact abelian
group. We write C(X,U) for the group of measurable maps from X to U. We
also write C(X) instead of C(X,T).

C(X,U) is endowed with the topology of convergence in probability and
is a Polish group.

When (X, u,T) is a system, an element of C(X,U) is called a U-valued
cocycle (see Appendix C). For the notation A¥p see Subsection 6.3.

Definition 7.1. Let k > 1 be an integer, (X, u,T') an ergodic system, U a
compact abelian group (written additively) and p: X — U a cocycle. We say
that p is a cocycle of type k if the cocycle AFp: X[ — U is a coboundary of
(X k]l Tk,

7.1. First properties. We have shown in the preceding section that for
every ergodic system X and integer k > 1, Z;(X) is an extension of Z;_1(X)
associated to a cocycle of type k.

Remark 7.2. A cocycle cohomologous to a cocycle of type k is also of
type k.
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By Lemma C.1 we get:

Remark 7.3. p: X — U is of type k if and only if xop: X — T is of type
k for every character y of U. It follows that for any closed subgroup V of U, a
V-valued cocycle is of type k if and only if it is of type k as a U-valued cocycle.

A cocycle p: X — U is of type 1 if and only if p(z) — p(y) is a coboundary
on X2. Equivalently, x o p is a quasi-coboundary for every x € U. (See
Appendix C.4 for the definition and properties.) When U is a torus, this
property means simply that p itself is a quasi-coboundary (see Lemma C.5).

Cocycles p: X — U so that A¥p = 0 are obviously of type k. In the sequel
we use some properties of these cocycles.

Notation. Let (X, pu,T) be an ergodic system, k > 1 be an integer, and
U be a compact abelian group. Let Dy(X,U) denote the family of cocycles
p: X — U with AFp=0.

LEMMA 7.4. Let (X, u,T) be an ergodic system, k > 1 be an integer, and
U be a compact abelian group. Then Dy(X,U) is a closed subgroup of C(X,U).
Moreover, it admits the group U of constant cocycles as an open subgroup.

Proof. The first assertion is obvious. We prove the second statement by
induction on k. By definition, a cocycle in Dy(X) is constant. Assume that
the assertion holds for some k > 1. We use the formula (5) for pl*+1. Also, p
belongs to Dy41(X, U) if and only if A(A*p) = 0, ,ut[f] X ,uc[f]—almost everywhere
for P-almost w € . This condition means that for Py-almost w € Qy,, AFp
is equal to some constant, ,uyf |_almost everywhere. Thus A¥p is an invariant
map on XM, As (AFp) o T = A¥(p o T), this condition is equivalent to
AF(poT —p)=0. Thus poT — p € Di(X,U).

The coboundary map 0: p — poT — p is a continuous group homomor-
phism from Dy11(X,U) to Di(X,U) and the kernel of this homomorphism is
the group U of constant cocycles. There exist only countably many constants
in U which are coboundaries of some cocycle on X and thus 9(Dy41(X,U))NU
is countable. By the induction hypothesis, O(Di4+1(X,U)) is countable and so
the compact group U has countable index in the Polish group Dy 1 (X, U) and

the result is proved. O

In fact, the proof shows that Dy(X,U) consists of those cocycles p for
which the k-iterated coboundary 0% p is equal to 0.

7.2. Cocycles of type k and automorphisms.

COROLLARY 7.5. Let (X, u,T) be an ergodic system, p: X — U a cocycle
and k an integer.
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(1) If p is of type k > 1, then for any automorphism S of X the cocycle
poS —pisof type k — 1.

(2) If X is of order k > 2 and p is of type k, then for any vertical rotation
x—u-x of X over Zy_1 the cocycle pou — p is a coboundary.

(3) If X is of order k > 1 and p is of type k+1, then for any vertical rotation
x—u-x of X over Zy_1 the cocycle pou — p is of type 1.

For the definition of a vertical rotation, see Appendix C.1.

Proof. (1) Let F: X!¥ — U be a map with Fo T — F = AFp. Let a be

k] (%]

the first side of V;. By Lemma 5.5, the measure p!” is invariant under Sg".

As this transformation commutes with TW, by the definition of F' we have
(AF Y poS—p)) ol = (Fosl —F)ort — (Fosk —F).

By Lemma C.7, A¥=!(po S — p) is a coboundary on X1 and po S — pis of
type k — 1.

(2) By Proposition 6.3, X = Zj_1 x W for some compact abelian group W.
The measure ¥l is conditionally independent over Z,[Clﬂl and thus invariant
under the vertical rotation by wL’“] for every ¢ € Vi and every w € W. The
same computation as above shows that (pow — p) o 5!“} is a coboundary on

X and so pow — p is a coboundary on X.

(3) Let W be as in Part (2). Let w € W. For any € € Vj, the measure
pl¥! is invariant under w!“]. This transformation commutes with 7 and thus
maps the o-algebra I to itself. By Lemma 5.5, for any edge a of Vi+1 the
measure p*t1) is invariant under wl™ . We conclude as in Part (2) . O

7.3. Cocycles of type k and group extensions. Let Y be an ergodic ex-
tension of a system X by a compact abelian group U. Then for every u € U
the associated vertical rotation of Y above X is an automorphism of Y and
belongs to G(Y) by Lemma 5.5. By Lemma 5.2, for every k this transformation
induces a measure-preserving transformation prpu of Zx(Y'), which belongs to
G(Zr(Y)) and is actually an automorphism of Z;(Y'). (This follows also from
Proposition 4.6.)

PROPOSITION 7.6. Let (X, u,T) be an ergodic system, U a compact abelian
group, p: X — U an ergodic cocycle and (Y,v,S) = (X x U,pu x my,T,) the
extension it defines. (See Appendiz C.2 for the definition.) Let k > 1 be an
integer. For u € U, let pyu be the automorphism of Zi(Y) defined just above.
Let W ={u € U : ppu =1d}. Then

(1) W is a closed subgroup of U.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 435

(2) The annihilator W=+ of W in U is the subgroup T' = {x € U: X o p is of
type k}.

(3) The cocycle p mod W: X — U/W s of type k.

(4) Zk(Y) is an extension of Zy(X) by the compact abelian group U/W , given
by a cocycle p': Zy(X) — U/W of type k. Moreover, the cocycle p'omx i
is cohomologous to p mod W: X — U/W.

Proof. (1) is obvious. For every u € U, let w denote its image in U/W.

We view factors as invariant sub-g-algebras. Then X consists in the sets
in Y which are invariant under the vertical rotation associated to any u € U.
By Proposition 4.6 we have Zi(X) = Z(Y)NX. Thus Z;(X) consists in those
sets of the Z(Y') which are invariant under piu for every u € U. Therefore,
as an extension of Zx(X), Z(Y') is isomorphic to an extension by the compact
abelian group U/W.

We identify Z;(Y) with Z;(X) x U/W and Y with X x U and study the
factor map my : X xU — Z(X)xU/W. By construction, for (z,u) € X x U,
the first coordinate of 7y i (x, u) is equal to mx i (x). Moreover, for every v € U,
the transformation pgv is given by prv(z,u) = (2,0 + uw). That is, it is the
vertical rotation by T of Z,(Y) over X. Since 7y 0 v = pyv o Ty, it follows
that there exists ¢: X — U/W such that my(z,u) = (mxk(2), 7+ ¢(z)).

Let p': Zp(X) — U/W be a cocycle defining the extension Z;(X) x U/W
of Zp(X). Since my: X x U — Zi(X) x U/W is a factor map, we get p' o

mx k() = p(z) +¢(Tx) — ¢(z) and p' oy j is cohomologous to p = p mod W.

Let x € U//ﬁ/ = W+, Here we consider y as taking values in the circle
group S'. We define a map ¢ on Zp(Y) = Z,(X) x U/W by ¥(x,u) = x(u)
and define a function ¥ on Z (V) = Z,(X)F x (U/W)¥ by

U(x,u) = X(Z s(e)u.) for x € Z(X)M and w e (U/W)¥
eeVy

and continue exactly as in the proof of the first part of Proposition 6.4. Then
x o p is of type k.

As this holds for every y € U//ﬁ/ , the cocycle p' is of type k and Part (4) of
Proposition 7.6 is proved. Part (3) follows immediately, as does the inclusion
W+ c T. We now prove the opposite inclusion.

Let x € I'. Then x o p is a cocycle of type k. We consider y as taking
values in T. Let F: X¥ — T be a map with FoT*] — F = AF(yop) p*-almost
everywhere. We define a map ® from Y* = X x U] to T by

d(x,u) = F(x) — Z s(e)x(ug) for x € X and u e U |
eeVy
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The projection of v* on X ig p[k} and each of the one-dimensional marginals
of v1¥ is v. From these remarks and the definition of F' we get that ®o Sk = &
vFl_almost everywhere. The map ® is measurable with respect to Z(Y)¥.
Let w € W and e € Vi,. The measure v* is relatively independent
with respect to Z;_1(Y) and thus with respect to Z;(Y). Since the vertical
rotation w acts trivially on Zj(Y), the measure v* is invariant under wgd.
Moreover this transformation acts trivially on Z,[f}(Y), thus also on ZIF(Y),

and ® o wL’“] = & ylFl_almost everywhere. But ® o wyﬁ] — ® is equal to the
constant s(e)x(w) and we get that x(w) = 1. As this holds for every w € W,
we have Y € W+ and so I' € W+. Combining the two inclusions, we have the
statement of Part (2). O

COROLLARY 7.7. Let k > 1 be an integer, (X, u,T) a system of order k,
U a compact abelian group and p: X — U an ergodic cocycle. Then the exten-
sion of X associated to p is of order k if and only if p is of type k.

Proof. We use the notation of Proposition 7.6. If Y is of order k then
Z(Y) =Y, W is the trivial subgroup of U and p is of type k. If p is of type k,
then I' = U; thus W is trivial, and Zx(Y) =Y. O

COROLLARY 7.8. Assume that (X, u,T) and (Y,v,S) are ergodic systems
and that X is of order k for some integer k > 1. Assume that m: X —Y is a
factor map and p: Y — U is a cocycle. Then p is of type k on Y if and only
if pom s if type k on X.

Proof. 1If p is of type k, it follows immediately from the definition that
pomis of type k.

Assume that p o 7 is of type k. It suffices to show that x o 7 is of type k
for every x € U. Since y o (p o) is of type k, without loss of generality we
can assume that U = T.

The set {c € T : ¢+ p is not ergodic } is either empty or is a coset of the
countable subgroup {c € T : nc is an eigenvalue for some n # 0}. Therefore,
there exists ¢ € T so that p + ¢ is ergodic. Substituting p + ¢ for p, we can
assume that p is ergodic.

By Proposition 7.6, the extension of X associated to p o 7 is of order k
because p is of type k. Furthermore, the extension of Y associated to p is a
factor of this and so is of order k£ as well. Therefore p is of type k. O

COROLLARY 7.9. Let (X, u,T) be an ergodic system, U a compact abelian
group, and p: X — U a cocycle of type k for some integer k > 1. Then there
exists a cocycle p': Z(X) — U of type k so that p is cohomologous to p' o 7.

Proof. 1If p is ergodic, the result follows immediately from the preceding
proposition, since by Part (2), the subgroup W is trivial.
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Assume that p is not ergodic. There exist a closed subgroup V of U and
an ergodic cocycle o: X — V so that p and o are cohomologous as U-valued
cocycles (see [Zim76]). Also, o is of type k as a U-valued cocycle, thus also
as a V-valued cocycle. There exists a cocycle p': Zp(X) — V of type k so
that o is cohomologous to p’ o 7y, as a V-valued cocycle on Z;(X). Thus, as
a U-valued cocycle, p’ is of type k and p’ o m is cohomologous to p. O

COROLLARY 7.10. Let k > 2 be an integer, (X, u,T) be a system of order
k and p: X — U a cocycle of type k. Assume that X is an extension of Zi_1 by
a compact connected abelian group. Then there exists a cocycle p': Zy_1 — U
of type k so that p is cohomologous to p’ o my_1.

Proof. Write X = Z;_1 x V and assume that V is connected. By Corol-
lary 7.5, for every v € V the cocycle pov — p is a coboundary. By Lemma C.9,
there exists a cocycle p’ on Zy_1 so that p’ o m,_1 is cohomologous to p. By
Corollary 7.8, p’ is of type k. O

8. Initializing the induction: Systems of order 2

In this section we study the systems of order 2. These systems appeared
earlier in the literature (see [CL88|, [CL87] and [Ru95]) as ‘Conze-Lesigne al-
gebras’ and were studied with a different point of view (in [HKO01] and [HK02])
under the name ‘quasi-affine systems’. Our purpose here is twofold. In the
following sections we establish properties of systems of order k for arbitrary k.
As the proofs are a bit intricate, we hope that the proofs in the easier case
k = 2 aid in understanding the overall plan. Moreover, we prove some tech-
nical results which are useful as the starting points of the inductive proofs for
higher k.

8.1. Systems of order 1. We have shown that for any ergodic system X,
Z1(X) is its Kronecker factor. Thus an ergodic system is of order 1 if and only
if it is an ergodic rotation.

Let (Z,t) be an ergodic rotation. For every s € Z, the rotation z — sz is
an automorphism of Z and thus belongs to G(Z). Conversely, by Corollary 5.9,
G(Z) is abelian. As the rotation T': z — tz lies in G(Z), every element of G(Z)
is a measure-preserving transformation of Z commuting with 7" and thus is
itself a rotation z — sz for some s. Therefore, the group G(Z) is equal to Z,
acting on itself by translations.

A compact abelian group is a Lie group if and only if its dual group is
finitely generated. Thus every compact abelian group is the inverse limit of a
sequence of compact abelian Lie groups. Therefore, a system of order 1 is the
inverse limit of a sequence of ergodic rotations (Z,t) where each group 7 is a
compact abelian Lie group.
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In the rest of this section, we study the systems of order 2. By Proposi-
tion 6.3 and Corollary 7.7, an ergodic system is of order 2 if and only if it is
an extension of an ergodic rotation (Z,t) by a compact abelian group U, given
by an ergodic cocycle o: Z — U of type 2. By the remark after Definition 7.1,
o:Z — Uisof type 2 if and only if yoo: Z — T is of type 2 for every x € U.

8.2. The Conze-Lesigne Equation and applications.. Throughout this
section, (Z,t) denotes an ergodic rotation: Z is a compact abelian group,
endowed with the Haar measure m = myz and with the ergodic transformation
T: z+ tz, where t is a fixed element of Z.

LEMMA 8.1. Let (Z,t) be an ergodic rotation, U be a torus and p: Z — U
a cocycle of type 2. For every s € Z, there exist f: Z — U and c € U so that

(CL) plsw) — pla) = f(tx) = f(x) +c .

This functional equation was originally introduced by Conze and Lesigne
in [CL84], and we call it the Conze-Lesigne Equation.

Proof. For every s € Z, the map z — sz is an automorphism of Z. By
Corollary 7.5 the cocycle z — p(sz) — p(z) is of type 1. Since U is a torus,
the cocycle is a quasi-coboundary by Lemma C.5 and we obtain the functional
equation. O

LEMMA 8.2. Let (Z,t) be an ergodic rotation and p: Z — T be a cocycle
of type 2 and assume that there exists an integer n # 0 so that np is a quasi-
coboundary. Then p is a quasi-coboundary.

Proof. Let s, f and ¢ be as in Equation (CL). Since mp is a quasi-
coboundary, the map z — n(p(sz) — p(z)) is a coboundary. Substituting into
Equation (CL), we have that the constant nc is a coboundary, i.e. an eigen-
value of (Z,t). So for all s, f and ¢ satisfying Equation (CL), ¢ belongs to the
countable subgroup I' of T, where

I'={c e T:ncis an eigenvalue of (X, u,T)} .
Define
Zy = {s € Z : the cocycle x — p(sx) — p(z) is a coboundary} .

Clearly, Zj is a Borel subgroup of X. Let (s, f,¢) and (¢, f/, ) satisfy Equa-
tion (CL). If ¢ = ¢/, the map = — p(s'z) — p(sz) is a coboundary. Thus so
is the map z +— p(s's~tx) — p(x) and s's™! € Zy. As T is countable, Zy has
countable index in Z. As Zj is Borel, Z; is an open subgroup of Z. But Zj
obviously contains ¢. By density, Zy = Z and the cocycle z — p(sz) — p(z) is
a coboundary for every s € Z.
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In other words, the map (2o, 21) — p(21) — p(20) is a coboundary of the
system (Z x Z,m x m,T x T). By Lemma C.5, p is a quasi-coboundary. O

LEMMA 8.3. Let (Z,t) be an ergodic rotation, U a torus and p: Z — U a
cocycle of type 2. Then there exist a closed subgroup Zy of Z so that Z/Zy is
a compact abelian Lie group and a cocycle p: Z/Zy — U of type 2 so that p is
cohomologous to p' o, where w: Z — Z/Zy is the natural projection.

In this statement, we mean that Z/Zj is endowed with the rotation by
mw(t). (Z/Zy,m(t)) is an ergodic rotation and 7 is a factor map.

Proof. By Equation (CL), for every s € Z the cocycle z — p(sz) — p(z) is
a quasi-coboundary. Applying Lemma C.10 with the action of Z on itself by
translations and Corollary 7.8, we get the result. O

8.3. Systems of order 2.

COROLLARY 8.4. For every ergodic system (X, p,T), Z2(X) is an exten-
sion of Z1(X) by a compact connected abelian group.

Proof . By Proposition 6.3, Z5 is an extension of Z; by a compact abelian
group U given by an ergodic cocycle o: Z7 — U of type 2.

Assume that U is not connected. Then it admits an open subgroup Uy so
that U/Uy is isomorphic to Z/nZ for some integer n > 1. Write a: Z; — U/Uy
for the reduction of ¢ modulo Uy, meaning the composition of o with the
quotient map U +— U/Uy. It is an ergodic cocycle of type 2. Using the
isomorphism from U/Uj to Z/nZ and an embedding of Z/nZ as a finite closed
subgroup of T, we get a (nonergodic) cocycle p: Z; — T of type 2 with np = 0.
By Lemma 8.2, p is a quasi-coboundary and thus of type 1. Viewed as a cocycle
with values in Z/nZ, p is also of type 1 (even if it is not a quasi-coboundary)
and @ is of type 1.

By Corollary 7.7 the extension T# associated to & is a system of order 1,
meaning it is an ergodic rotation. But this extension is obviously a factor of
Zo, which is the extension of Z; associated to ¢ and thus also a factor of X.
The maximal property (Proposition 4.11) of Z; provides a contradiction. [

Definition 8.5. A system X of order 2 is toral if its Kronecker factor 2
is a compact abelian Lie group and X is an extension of Z; by a torus.

PROPOSITION 8.6. Fvery system of order 2 is the inverse limit of a se-
quence of toral systems of order 2.

Proof. Let X be a system of order 2. By Corollary 8.4, X is an extension
of its Kronecker factor Z; by a compact connected abelian group U, given by
a cocycle p: Z1 — U. Therefore, U is an inverse limit of a sequence of tori.
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This means that there exists a decreasing sequence {V,,} of closed subgroups
of U, with (N, Vs, = {0} so that U, = U/V,, is a torus for each n. For each n,
let pn: Z1 — U, be the reduction of p modulo V,, and let X,, be the extension
of Zy by U, associated to the cocycle p,. Then X is clearly the inverse limit
of the sequence {X,,}.

By Lemma 8.3, for each n there exists a subgroup K, of Z; such that
Z1/K,, is a compact abelian Lie group, and a cocycle pl,: Z1/K, — U, so
that p, is cohomologous to pl, o m,, where 7, = Z; — Z; /K, is the natural
projection. Clearly, we can modify the groups K, by induction, so that these
properties remain valid and so that the sequence {K,}, of subgroups is de-
creasing and has trivial intersection. For each n, let Y,, be the extension of
Z1/ K, by U, associated to the cocycle pl,. Each of these systems is a factor
of X and is toral. This sequence of factors of X is increasing and its inverse
limit is clearly X. O

8.4. The group of a system of order 2. In this section, we study the group
G = G(X) associated to a system (X, u,T’) of order 2. We restrict to the case
that X is an extension of its Kronecker factor (Z1,t) by a torus U and write
p: Z1 — U for the cocycle defining this extension. As usual, we identify X
with Zl x U.

We use the notation of Appendices A and C. C(Z;,U) denotes the group
of measurable maps from Z; to U, endowed with the topology of convergence
in probability. A map f: Z; — U is said to be affine if it is the sum of a
constant and a continuous group homomorphism from Z; to U and we write
A(Z,,U) for the group of affine maps. It is a closed group of C(Z1,U) and is
the direct sum of the compact group U of constants and the discrete group of
continuous group homomorphisms from Z; to U.

As in Appendix A.1, for each s € Z; and f € C(Z1,U), let S, ¢ denote the
measure-preserving transformation of Z; x U given by

(24) S f(z,u) = (sz,u+ f(z)) .

These transformations form the skew product of Z; and C(Z;,U). Endowed
with the topology of convergence in probability, it is a Polish group.

LEMMA 8.7. The group G consists in the transformations of X of the type
given by Equation (24), for s € Zy and f: Z1 — U satisfying Equation (CL)
for some constant c.

Proof. Let g € G. By Lemma 5.2, g induces a measure-preserving trans-
formation of Z; belonging to G(Z1) and thus of the form z +— sz for some
s € Z1. Moreover, by Corollary 5.10, the transformation g commutes with all
vertical rotations of X over Z; and thus is of the form given by Equation (24)
for some map f: Z; — U. We notice that the the commutator [g; T'] induces
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the trivial transformation of Z;. As G is 2-step nilpotent, [g,7] belongs to
the center of G and thus commutes with T'. It follows that [g,7T] is a vertical
rotation of X over Zj, given by some ¢ € U (see the definition of a vertical
rotation Appendix C.1). By definition of the commutator, s, f and c¢ satisfy
Equation (CL).

Conversely, let s € Z; and f: Z; — U be such that Equation (CL) is
satisfied for some ¢ € U. We show that the transformation g = S,y belongs
to G. Let a be an edge of V5. The transformation s: z — sz of Z; induced on

Z1 by g belongs to G(Z;) and thus the transformation 3[5} leaves the measure

,u[12] invariant and maps the o-algebra Z(Z;)P to itself. We define a map

F: ZF] — U and a map ®: X[@ — U as in Proposition 6.4. An immediate

computation shows that the map ® o gg] — ® is invariant under T and so

do gE] is also invariant under this transformation. By Proposition 6.4, the
transformation gg ] maps the o-algebra Z(X)[ to itself. By Lemma 5.3 and

Corollary 6.6, g € G. O

We recall that G is endowed with the topology of convergence in probabil-
ity. The map p: S, ¢ + s is a continuous group homomorphism from G to Z;
and is onto by Lemma 8.1. The kernel of this homomorphism is the group of
transformations of the kind S ¢, where f(tz) — f(2) is constant. By ergodicity
of the rotation (Z1,t), amap f € C(Z;,U) satisfies this condition if and only if
it is affine. The map f + S s is then an algebraic and topological embedding
of A(Z1,U) in G with range ker(p). In the sequel we identify A(Z;,U) with
ker(p). This identification generalizes the preceding identification of U with
the group of vertical rotations. G is a group of the type which is studied in
Appendix A and by Corollary A.2, G is locally compact.

LEMMA 8.8. FEvery toral system of order 2 is isomorphic to a nilsystem.

(See Appendix B for the meaning of a nilsystem.)

Proof. We keep the same notation as above and assume furthermore that
Zy is a compact abelian Lie group. The kernel A(Z;,U) of p is the direct
sum of the torus U and a discrete group and thus it is a Lie group also. By
Lemma A.3, G is a Lie group. We recall that G is 2-step nilpotent.

Let I be the stabilizer of (1,0) € X for the action of G on this space. Then
" consists in the transformations associated to (1, f), where f is a continuous
group homomorphism from Z; to U. Thus T is discrete. The map g — g-(1,0)
induces a bijection j from the nilmanifold G/T" onto X. For any g € G, the
transformation j~!ogoj of G/T is the (left) translation by g on the nilmanifold
G/T. In particular, 7! o T o j is the (left) translation z +— T -z by T € G.
Moreover, since every g € G is a measure-preserving transformation of X, the
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image of 4 under j~! is invariant under the (left) action of G on G/I" and thus
is the Haar measure on this space. The map j is the announced isomorphism.
O

8.5. Countable number of cocycles. We show that the number of T-valued
cocycles of type 2 on an ergodic rotation Z, up to quasi-boundary, is countable.

PROPOSITION 8.9. Let (Z,t) be an ergodic rotation. Up to the addition

of a quasi-coboundary, there are only countably many T-valued cocycles of type
2 on Z.

Proof. We make use of explicit distances on some groups of functions. For
u € T, write
lu|| = | exp(2miu) — 1] .

For f € C(Z) =C(Z,T), write

191 = ([ 1£GIP dm(z)) 2

The distance between two cocycles f,g € C(Z) is defined to be ||f — g||. As
above, A(Z) = A(Z,T) denotes the closed group of affine cocycles. For ¢,/ € T
and 7,7 € Z, we have ||[(c+7) = (¢ ++/)|| > V2 whenever v # 7.

Let Q(Z) denote the quotient group Q(Z) = C(Z)/A(Z) and write q: C(Z)
— Q(Z) for the quotient map. The quotient distance between ® € Q and 0 € Q
is written ||®|o and the quotient distance between two elements ®, ¥ of this
group is ||® — ¥||o. Endowed with this distance, Q(Z) is a Polish group.

We also use the group F of continuous maps from Z to Q, endowed with
the distance of uniform convergence: If s — ®(s) is an element of F, write

I®flc = sup[|®(s)llo -
sEZ

The distance between two elements ® and ¥ € Fis || ®— V| . As Z is compact
and @ is a Polish group, F is also a Polish group.

First Step. Let p € C(Z) be a weakly mixing cocycle of type 2. Let X be
the extension of Z associated to this cocycle. X is of order 2 and Z;(X) = Z.
We use the notation of Section 8.4.

Let s — S, . be an arbitrary cross section of the map p: G — Z. For every
s € Z, fs belongs to C(Z) and satisfies Equation (CL) for some ¢ € T. Define
P,(s) € Q(Z) to be the image of fs under ¢. Since the kernel of p: G — Z is
A(Z), ®,(s) does not depend on the choice of f;. In fact, the map s — ®,(s)
from Z to Q(Z) is the reciprocal of the isomorphism G/ ker(p) — Z and thus
it is continuous. In other words, this map is an element of F.

Second Step. We continue assuming that p is a weakly mixing cocycle of
type 2. ®, is defined as above.
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LEMMA 8.10. If||®,|lc < 1/20, then p is cohomologous to an affine map.

Proof. Define a subset K of G by
K ={Ss5€G: There exists ¢c € T with [|c+ f|| < 1/10} .

Let s € Z. By hypothesis |[®,(s)[lo < 1/20 and there exists f € C(2)
with Ss r € G and || f|| < 1/20, thus S, ¢ € K. The restriction p|x of p: G — Z
to K is therefore onto.

Claim. K is a subgroup of G. Let S5y and Sy p € K. We have
Se,pr 0 Ssf = Sgs,pr where f"(z) = f(s'z) + f'(z). Choose ¢, € T with
e £Il < 1/10 and ¢+ £']| < 1/10. Then |f"+ c+¢|| < [If +ell + 1/ + |
< 1/5. On the other hand, there exists an element of K with projection on
Z equal to ss’. This means that there exists g € C(Z) with ||g|| < 1/20 and
Sssg €G. We get that Sy g4 € G and thus [ —g € A(Z) and f"—g+c+c €
A(Z). But || —g+ et < I +c+| + gl < /4 and so f'— g+c+¢
is equal to a constant d € T. Finally, ||f”" +c+ ¢ —d| = |lg|| < 1/20 and
Sgs, € K. Clearly, the identity transformation S7 belongs to K and the

inverse of an element of I belongs to K. The claim is proved.

K clearly contains the group T of vertical rotations. If f is an affine map
and |lc + f]| < 1/10 for some constant ¢, then f is constant. It follows that
the kernel of the group homomorphism p|i: K — Z is the group T of vertical
rotations. Moreover, K is clearly closed in G and is locally compact. Since the
kernel T and the range Z of p|x are compact, K is a compact group.

Claim. K is abelian. We consider the commutator map (g, h) — [g; h]. It
is continuous and bilinear because K is 2-step nilpotent. But the commutator
group K’ is included in T because K’ is the kernel of the group homomorphism
px ranging in the abelian group Z. Thus the commutator map has range in
T. Moreover, T is included in the center of K. (This can be seen either by
applying Proposition 6.3 or by checking directly.) Thus the commutator map
is trivial on T x K and IC x T. Therefore, it induces a continuous bilinear map
from /T x K/T — T and finally a continuous bilinear map b: Z x Z — T.
Choose f € C(Z) with S;y € K. For all integers m,n the transformations
Sy and Sp', commute and by definition of b, b(t™,¢") = 0. Since (Z,1) is an
ergodic rotation, {t" : n € Z} is dense in Z and so the bilinear map b is trivial.
Returning to the definition, the commutator map K x K — K’ is trivial and
the second claim is proved.

The compact abelian group K admits T as a closed subgroup, with quo-
tient Z. Thus it is isomorphic to T & Z. This means that the group ho-
momorphism p|x: K — Z admits a cross section Z — K, which is a group
homomorphism and is continuous. This cross section has the form s +— S r,
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and the map s +— f5 is continuous from Z to C(Z) satisfies for all s,s' € Z
fss(2) = fo(s2) + fs(2) for almost every z € Z.

By Lemma C.8, there exists f € C(Z) so that fs(z) = f(sz) — f(z) for every
s€EZ.

Define p/(z) = p(z) — f(tz) + f(2). The cocycle p’ is cohomologous to p.
Moreover, for every s we have S, € K C G and this means that s and f
satisfy Equation (CL) for some constant ¢. Substituting in the definition of p’
we have p/(sz) — p(z) = c. As this holds for every s € Z, p' is an affine cocycle.
This completes the proof of Lemma 8.10. O

End of the proof of Proposition 8.9. Let W be the family of weakly mixing
cocycles of type 2 on Z. To every cocycle p € W, we have associated an element
®, of F. Since F is separable, there exists a countable family {p; : i € I} in
W so that for every p € W, there exists ¢ € I with ||®, — ®,, | < 1/20.

Let p: Z — T be a cocycle of type 2.

Assume first that p is not weakly mixing. There exists an integer n # 0 so
that np is a quasi-coboundary and by Lemma 8.2, p itself is a quasi-coboundary.

Assume now that p is weakly mixing. Choose i € I so that ||®, — @, || <
1/20. If p — p; is not weakly mixing, by the same argument as above this
cocycle is a quasi-coboundary and p is the sum of p; and a quasi-coboundary.
If p — p; is weakly mixing, then ®,_, = ®, — ®,.. Thus ||®,—,,| < 1/20 and
by Lemma 8.10 the cocycle p — p; is cohomologous to some affine map. In this
case, p is the sum of p;, a character v € Z and a quasi-coboundary.

The proof of Proposition 8.9 is complete. O

9. The main induction

We now generalize the results, for systems of order 2, of Section 8 to higher
orders. We start with a more detailed study of the ergodic decomposition of

X [

9.1. The systems Xs. In this section, we use the following notation.
Let (X, u,T) be an ergodic system. For every integer k > 2, Z; = Zp(X)
is an extension of Z;_ 1 by a compact abelian group Uy, given by a cocycle
Pk Zi—1 — Uy of type k.

We recall the ergodic decomposition of formula (7)

qu=/ fis dpa (s)
A
of px pfor T'xT.

Notation. For every s € Z7, let X denote the system (X x X, us, T x T).
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We recall that X is ergodic for pj-almost every s € Z; (see Subsec-
tion 3.2).

LEMMA 9.1. Let (X,u,T) be an ergodic system, U a compact abelian
group, p: X — U a cocycle and k > 0 an integer. Then the subset

A={s€ Zy:Apis a cocycle of type k of X}

is measurable and p1(A) =0 or 1. Furthermore, the cocycle p is of type k + 1
if and only if pi1(A) = 1.

Proof. We recall that Ap is defined on X x X by Ap(z/, 2") = p(z")—p(z").
Under the identification of X*+1 with (X x X)) we can write AFt1p =
A*(Ap). Moreover, by Equation (8) we have [(s)* dui(s) = ul*+1. By the
definition of a cocycle of type k + 1 on X, the definition of a cocycle of type
k on X and Corollary C.4, we get immediately that A is a measurable subset
of Z; and that p is of type k + 1 if and only if u(A) = 1. It only remains to
show that p1(A) =0 or 1.

Let s € Z; with T's € A. The map Id x T is an isomorphism of X onto
Xrs. Thus Apo (Id x T) is a cocycle of type k on Xs. But Apo(Id xT) — Ap
is the coboundary of the map (2, 2") — —p(2”). Thus, Ap is of type k on X
and s € A. Therefore, the subset A of Z; is measurable and invariant under
T and so has measure 0 or measure 1. O

Before stating the next proposition we need some notation. Let p: (X, u, T')
— (Y, v, S) be a factor map which induces a factor map p; from the Kronecker
factor Z1(X) of X to the Kronecker factor Z;1(Y') of Y. By an abuse of nota-
tion, for s € Z1(X) we often write v, instead of Vp. (s) and Y instead of Yo, ()
By the ergodic decomposition, for pi-almost every s € Z; the measure vy is
the image of pus under p x p. In other words, p x p is a factor map from X
to Y.

LEMMA 9.2. Let (X,u,T) be an inverse limit of a sequence {X,}n of
ergodic systems. Then for pi-almost every s € Z1, Xs = lim X, 5, where Xy, 5
1s the system associated to X, in the same way that X s associated to X.

Proof. There exists a countable family {f; : i« € I} of bounded functions
defined everywhere on X, dense in L?(x) and so that the linear span of the
family {f; ® f; :4,j € I} is dense in L?*(v) for every probability measure v on
X x X. For every i and every n, we consider E(f; | &X,,) as a function defined
everywhere on X.

For every i € I, E(f; | X,,) converges to f; u-almost everywhere. There
exists a subset X of X, with u(Xo) = 1, so that E(f; | X,,)(z) — fi(x) for all
i € I and all x € Xj. For pi-almost every s € Z7, we have us(Xo x Xp) = 1.
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Fix such an s, and consider X x X as endowed with us. For every ¢,j € I,
E(fi | &) @ E(f; | &) converges to f; ® f; on Xg x X, thus pg-almost
everywhere. For every n, E(f; | X,) ® E(f; | &) is measurable with respect to
&, ® &), and it follows that f; ® f; is measurable with respect to the inverse
limit lim X, s of the factors X, s of X;. By density, every function in L?(us)
is measurable with respect to lim X, ;. O

9.2. The factors Zy(Xs). We compute the factors Z(Xs) of X5. As above,
for every integer k > 2, Z}, is an extension of Z;_1 by a compact abelian group
Uk, given by a cocycle pg: Zp_1 — U of type k. We recall that for every
integer k, the system Z; has the same Kronecker factor Z; as X.

For every k and pp-almost every s € Z;, we associate to the system
(Zg, pe, T') @ measure py s on Zy X Zj, in the same way that f, is associated to
(X, 1, T). Let Zj, s denote the system (Zy x Zy, pg,s, T x T).

The measure g is a relatively independent joining of p over the joining
p1,s of p1. Thus, for every k, s is a relatively independent joining of
over pis and thus over the joining pp—1s of pup—1. Therefore, the system
(Z,ss Pote,s, T’ x T') is an extension of (Zy_1 s, pk—1,5, T T') by the group Uy x Uy,
given by the cocycle pg x pr: (2/,2") — (pr(2’), pp(z”)).

LEMMA 9.3. Let k > 1 be an integer. Then:
(1) For p-almost every s € Zy, p X pi is a cocycle of type k on Zj_1 5.

(2) For pi-almost every s € Zy, Zy s is a system of order k. In particular, if
X is of order k then X is of order k for pi-almost every s € Z.

Proof. (1) We identify Z", x Z". with (22_)* and with Z"!. We

recall that there exists F},: Z,Ek_]1 — U, with AFp, = F, oTH — Fy, ugfll—almost
everywhere. Define G: Z][ﬂl le[ﬁl — UpxUg by G(X',x") = (Fj(x'), Fr(x")).

As each of the two projections of ugfjll] on Z,[i]l is equal to ugf] 1> the equality

AF(pp x pp) = G o T+ — G holds uLk_Jrlu—almost everywhere. As ugf_ﬁl] =

fZl (1tr—1.6)™ dps (s), for py-almost every s, the same relation holds (1 )l
almost everywhere and pj, x py is a cocycle of type k of Zj_1 ;.

(2) This follows by induction on k, by Proposition 7.7 at each step. O

PROPOSITION 9.4. For every integer k > 1 and pi-almost every s € Z1,
ZK(Xs) is a factor of Zyi1s; it is an extension of Zy s by Ugtq, given by the
cocycle Apgyy1: (2, 2") — pra1(2') — pre1(2”), when viewed as a cocycle on
Zi(Xs). Furthermore, Zyy1 s is an extension of Zy(Xs) by Uy, given by the
cocycle (', 2") — pry1(2”).
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Proof. By Proposition 4.7, the invariant o-algebra Z+t1(X) of the system
(x W1l k1] plk+1]) s measurable with respect to Z,[ﬁ:rll]. As plitll =
i ,u[sk] dui(s), by classical arguments for pj-almost every s € Zp, the invariant
o-algebra of XM = (X [kJrl},uLk],T[k*l]) is measurable with respect to the
same o-algebra, that is, with respect to (211 X ZkH)[k]. By the minimality
property of the factor Zi(X;) (Proposition 4.7 again), the o-algebra Z(X5)
is measurable with respect to Zx11 X Zg11. In other words, Zx(X5) is a factor
of Zpi1s-

Let X', x" € lfk:l and consider here these characters as taking values in T.
Write x = (X, x”) € U/k; X @:, which we identify with the dual group of
Ugy1 X Ugy1. Let 01 Z X Z, — Ug41 be the map given by

o(2’,2") = X (pr+1(2") + X" (pr41(2")) -

Define
A= {s € Zy : 0 is a cocycle of type k of Zk,s} .

By the same method as in the proof of Lemma 9.1, we get that A is invariant
under 7" and p1(A) =0 or 1.

Let us assume that p;(A) = 1. For uj-almost every s € Zi, Ao is a
coboundary of the system (Z][fﬂ], “Ej:l]vT[Hl])' Thus AFo is a coboundary

of the system (Z,Ekﬂ},ugf“], T 1) and there exists a map F': Z,[Ckﬂ} — U1,
with

F(T™ %) = F(x) = ) s(e)xe(prs(a2))

€€Vk+1

where

X ifeg =0
Xe —x" ifer=1.

The function ®, defined on Z,[ﬁrll] = Z,[f] x U, ][lell} by

Dlx,u) = Fx)— 3 s(e)xe(ue) .

e€Vit1

is invariant under T¥+1. By Proposition 6.3, it is invariant under u[f U for

every edge a = (e,7) of V41 and every u € Ugy1. This means that s(e)x.(u)+
s(n)xn(u) = 1 and thus x.(u) = xp(u). As this holds for every u € Uy,
Xe = Xn which holds for every edge a and so x” = —x/.

In summary, if x” # —yx/, then p1(A) # 1 and so pu1(A) = 0. Then for
pi-almost every s, the cocycle o of Z s is not of type k. If x” = —x/, then
o = x" o Apg41, which is a cocycle of type k on Zj, 5 for p11-almost every s € Z;

by Lemma 9.1.
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We recall that Zj; s is the extension of Zj , associated to the cocycle
Pk+1 X pr+1 with values in Ugyq X Uy and apply Proposition 7.6. The anni-
hilator of the group W appearing in this proposition is {(x’,—x’) : x € (sz}
Thus W = {(v/,u) : v € Ugs1}. The map (v/,u”) — (v — ", u") is an
isomorphism of Uy X Uy on itself. It maps W to {0} x Uyy; and we can
identify (Ugt1 X Uky1)/W with Ug4q. Under this identification, the cocycle
Pt1 X pr+1 mod W is simply Apgi1. We get that Zi(X5) is the extension of
Zy, s associated to the cocycle Apy 1. Using the identification of the subgroup
W with Uy explained above, we have the last statement of the proposition.

O

9.3. Connectivity. We generalize the connectivity result established for
systems of order 2 to higher orders in Section 8. We show that for an ergodic
system (X, u,T') and integer k > 1, Z1(X) is an extension of Zx(X) by a
connected compact abelian group. In fact, we prove simultaneously two results
by induction:

THEOREM 9.5. Let k > 1 be an integer.

(1) Let (X,u,T) be a system of order k, p: X — T a cocycle of type k + 1
and n # 0 an integer. If np is of type k, then p itself is of type k.

(2) For every ergodic system (X,u,T), Zi+1(X) is an extension of Zi(X)
by a compact connected abelian group.

Proof. For k = 1 these results have been proved in Section 8 (Lemma 8.2
and Corollary 8.4).

Let k£ > 1 and assume that the two properties hold for k —1. Let X, p and
n be as in the first statement of the theorem.

Note that X is an extension of Zy_1 = Z;_1(X) by a compact abelian
group U, which is connected by the inductive hypothesis. As usual, for u € U
we also use u to denote the corresponding vertical rotation of X over Z_;.

Since np is of type k, by Corollary 7.10 there exists a cocycle o: Zx_1 — T
and a map f: X — T so that

np=comg_1+ folT —f.

Let w € U. By Part (3) of Corollary 7.5, the cocycle p ou — p is a quasi-
coboundary and so there exist ¢: X — T and ¢ € T with

pou—p=¢oT —¢+c.

Plugging into the preceding equation, we get that the constant nc is a cobound-
ary of X. That is, nc is an eigenvalue of this system and ¢ belongs to the
countable subgroup

I'={c € T : ncis an eigenvalue of X}
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of T. For every c € I, define
U.={ueU:pou—p—cisa coboundary of X} .

Each of these sets is a Borel subset of U and their union is U. Thus there
exists ¢ € I such that my(U;) > 0, where my is the Haar measure of U. But
Uy is clearly a subgroup of U and U, a coset of this subgroup. It follows that
my(Up) > 0 and that Uy is an open subgroup of U. Since U is connected,
Up = U. Thus for every u € U the cocycle p o u — p is a coboundary. By
Lemma C.9, there exists 7: Z;_1 — T and ¢g: X — T with

p=T1omp_1+goT —g.

By considering X as a system of order k + 1, we see that 7 is a cocycle of type
k+ 1 on Z_1 by Corollary 7.8 and nr is a cocycle of type k.

We use the notation and results of Section 9.1, applied to the system Zj_.
By Lemma 9.3, Z_1 , is a system of order k — 1 for almost every s € Z;. By
Lemma 9.1, for almost every s, the cocycle At of the system Zj_;, is of
type k and the cocycle nA7 of this system is of type k£ — 1. By the inductive
assumption, A7 is a cocycle of type k — 1 of this system. Using Lemma 9.1
again, 7 is a cocycle of type k of the system Z,_; and by Corollary 7.8 p is a
cocycle of type k£ on X.

The first assertion of Theorem 9.5 is proved for k. It remains to show the
second assertion for k.

We deduce it from the first part exactly as in the proof of Corollary 8.4.
Reproducing it here for completeness. Zj; is an extension of Zj, by a compact
abelian group U, given by a cocycle p of type k+ 1. Assume that U is not con-
nected. This group admits an open subgroup Uy such that U /Uy is isomorphic
to Z/nZ for some integer n > 1. We write p: Z — U/Uy for the reduction of
p modulo Up; it is a cocycle of order k + 1. Using the isomorphism from U/Uj
onto Z/nZ and the natural embedding of Z/nZ as a subgroup of T, we get a
cocycle 7: Zp — T, of type k+ 1, so that n7 = 0. Thus n7 is of type k and by
the first part of Theorem 9.5, 7 is of type k.

Therefore p is of type k. The extension of Z; associated to this cocycle is
a factor of X and is of type k by Corollary 7.7. Proposition 4.11 provides a
contradiction. O

9.4. Countability. The countability result that we have shown for the
cocycles of order 2 (Proposition 8.9) cannot be generalized to higher orders.
However, the weaker result proved in this section suffices for our purposes.

Notation. ~ We let Ci(X) denote the subgroup of C(X) consisting of
cocycles of type k.
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THEOREM 9.6. Let k > 2 be an integer, (X,u,T) be an ergodic system,
(Q, P) a (standard) probability space and w — p, a measurable map from
Q to Ci(X). Then there exists a subset Qo of Q, with P(Qg) > 0, so that
Pw — pur € C1(X) for every (w,w’) € Qo x Q.

Proof. We proceed by induction on k. By Corollary 7.9, Theorem 9.5 and
Corollary 7.10, for every cocycle p of type 2 on X there exists a cocycle p’ of
type 2 on Zj so that p is cohomologous to p’ o 1. By Proposition 8.9, C1(Z1)
has countable index in C2(Z;) and so C;(X) has countable index in Co(X). The
statement of the theorem follows immediately for k = 2.

Fix an integer k£ > 2 and assume that the theorem holds for k. Let
(X, pu, T), (2, P) be as in the statement of the theorem and let w — p,, be a
measurable map from € to Cp11(X).

We use the usual ergodic decomposition (formula (7)) of px p for TxT and
formula (8) for ¥+, The map w — Ap,, from Q to C(X x X) is measurable.
By Lemma C.3 the subset

A={(w,s) €Q X Z1:Ap, € Ci(Xs)}
of Q) x Z7 is measurable. In the same way, the subset
B={(w,uw,s) €QxQxZ1:Ap, — Ap.y € C1(Xs)}
of Q x Q x Z; is measurable. By Lemma 9.1, for all w,w’ € Q the subset
Bow ={s€ Z;: (w,u', s) € B}

of Z1 has measure 0 or 1. Moreover, for every w € €2 the cocycle p,, is of type
k + 1 by hypothesis and so by Lemma 9.1, the cocycle Ap is of type k on X
for pi-almost every s € Z;. Thus (P x p1)(A) = 1. Therefore, for p;-almost
every s € Z1, using the inductive hypothesis applied to the system X, and the
map w — Ap,, we get

(P x P){(w,0') €QxQ:(w,u',5) € B} >0.
Therefore (P x P x u1)(B) > 0 and the subset
C= {(w,w') €N xQ:p(Bow) > 0} = {(w,w’) €N X Q:pu(Byw) = 1}

of © x Q has positive measure under P x P. By Lemma 9.1 again, for
(w,w") € C, the cocycle p, — po belongs to Co(X). By the base step of the
induction, C;(X) has countable index in C2(X) and so there exists p € Ca(X)
such that the set

D= {(w,w’) €C:ipy,—po—pE Cl(X)}
satisfies (P x P)(D) > 0. Choose wq € 2 so that the set
Qo ={weN: (w,w) € D}

has positive measure. Then for w,w’ € Qp, p, — pu € C1(X). O
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COROLLARY 9.7. Let (X, u,T) be an ergodic system and {S, : v € U}
a free action of a compact abelian group U on X by automorphisms. Let
p: X — T be a cocycle of type k for some integer k > 2. Then there exist
a closed subgroup Uy of U such that U/Uy is a toral group, and a cocycle p'
cohomologous to p with p' o Sy, = p' for every u € Uy.

Proof. Define
Up={u€U:poS, — pisa quasi-coboundary} .

Clearly, Uy is a measurable subgroup of U.

The map u +— po .S, — p is a measurable map from U to Ci(X) (and even
to Cr_1(X) by Corollary 7.5). By Theorem 9.6 there exists a subset Us of
U, with my(Us) > 0, so that po S, — po S, is a quasi-coboundary for every
u,v € Uy. We get immediately that Uy — Uy C Uy and so my(Up) > 0. Thus
Up is an open subgroup of U.

By Lemma C.10 applied to the action {S,, : u € Uy}, there exist a subgroup
Uy of Up and a cocycle p’ on X with the required properties. (Note that U/U;
is toral because Uy/U; is toral and U/Uj is finite). O

10. Systems of order k£ and nilmanifolds

By using the tools developed in the preceding sections, we can now de-
scribe the structure of systems of order k. We show:

THEOREM 10.1 (Structure Theorem). Any system of order k > 1 can be
expressed as an inverse limit of a sequence of k-step nilsystems.

The definition of nilsystems and the properties we use are summarized in
Appendix B.

The proof splits into two parts. First we show show that every system
of order k can be expressed as an inverse limit of simpler ones, called toral
systems (Theorem 10.3). Then we show that each toral system of order k is
actually a k-step nilsystem (Theorem 10.5).

10.1. Reduction to toral systems.

Definition 10.2. An ergodic system (X, u,T) of order k > 1 is toral if
Z1(X) is a compact abelian Lie group and for 1 < j < k, Z;11(X) is an
extension of Z;(X) by a torus.

THEOREM 10.3. Any system of order k > 1 is an inverse limit of a se-
quence of toral systems of order k.

We begin with a lemma.
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LEMMA 10.4. Let (X, u,T) be an ergodic system, U a torus and p: X
— U a cocycle of type k+1 for an integer k > 0. Assume that X is an inverse
limit of a sequence {X; : i € N} of systems. Then p is cohomologous to a
cocycle p': X — U, which is measurable with respect to X; for some 1.

Proof of Lemma 10.4. We show by induction on ¢ that:

(*) For integers 0 < £ < k, there exist iy € N and a cocycle p; cohomologous
to p that is measurable with respect to Z,_¢(X) V X, .

By Corollary 7.9, p is cohomologous to a cocycle which factors through
Z+1(X). By Theorem 9.5, Zj,11(X) is an extension of Z;(X) by a connected
compact abelian group. By Corollary 7.10, there exists a cocycle pg, cohomol-
ogous to p and measurable with respect to Z;(X), and a fortiori with respect
to Z,(X) V &;. The claim (*) holds for ¢ = 0.

Let 0 < ¢ < k and assume that (*) holds for ¢. Let iy and p,; be as in the
statement of the claim. By Corollary 7.8, py is of type k + 1.

Let Y be the factor of X corresponding to the o-algebra Y = Z;_,(X)VA;,
and let W be the factor of X corresponding to W = Z_,_1(X) V &;,. As
Zy—¢(X) is an extension of Z;_,_1(X) by a compact abelian group, by the
first part of Lemma C.2 (Appendix C), Y is an extension of W by a compact
abelian group V. We identify Y with W x V. As usual, for v € V we also let
v: Y — Y denote the associated vertical rotation of Y above W.

By Corollary 9.7, there exist a closed subgroup V; of V', so that V/V; is a
compact abelian Lie group, and a cocycle p/, cohomologous to p; and thus to
p, so that p/(v-y) = p'(y) for every v € V4. We consider p’ as a cocycle defined
on the factor W x V/V; of Y.

Since V/V; is a compact abelian Lie group, its dual group W = VlL
is finitely generated. Choose a finite generating set {71, ...,Vm} for Vi. For
1 < j < m, consider v; as taking values in the circle group § 1and define the
function f; on Y = W x V by fj(w,v) = v;(v). Since X is the inverse limit of
the sequence {X;}, there exists i > i, so that for 1 < j < m, E(f; | &;) # 0.
Thus, E(f; | WV ;) # 0. By Lemma C.2 the functions f; are measurable with
respect to WV AX;. But the functions f;, 1 < j < m, together with the o-algebra
W, span the o-algebra of the system W x V/V;. As p' is measurable with
respect to this system, it is measurable with respect to WV X; = Z,_p 1 V X;.
Therefore, (*) holds for £ + 1 with iy, = i. Property (*) with £ = k is the
announced result. O

Proof of Theorem 10.3.  We proceed by induction. For & = 1 the result
is proved in Section 8.1.

Let k£ > 1 be an integer and assume that the result holds for k. Let Y be
a system of order k + 1. Write X = Z;(Y). Then Y is an extension of X by
a compact abelian group U and we let p: X — U be the cocycle defining this
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extension. By Theorem 9.5, U is connected and can be written as lim U, where
each Uj is a torus. Let p;: X — U; be the projection of p on the quotient U;
of U.

By the inductive hypothesis, X can be written as an inverse limit lim X,
where each X; is toral. By Lemma 10.4, for every j there exist i; and a
Uj-valued cocycle p;-, measurable with respect to &, and cohomologous to p;.
We can clearly assume that the sequence {i;} is increasing. Each system
Xi, Xp Uj is toral and Y = X x,U is clearly the inverse limit of these systems.

O

10.2. Building nilmanifolds. Here we show that every toral system can
be given the structure of a k-step nilsystem. This is obtained by showing that
the group G associated to this system as in Section 5 is a Lie group and acts
transitively.

THEOREM 10.5. Let (X, u,T) be a toral system of order k > 1. Then:
(1) G =G(X) is a Lie group and is k-step nilpotent.

(2) Let G be the subgroup of G spanned by the connected component of the
identity and T'. Then G admits a discrete co-compact subgroup A so that
the system X is isomorphic to the nilmanifold G/A, endowed with Haar
measure and left translation by T.

(See Appendix B for more on nilmanifolds.)

The proof is by induction on the order k of the system. When k = 1, the
system is a rotation on a compact abelian Lie group Z. We have G(X) = Z,
acting on itself by translations and the first statement is obvious. By ergodicity
G = Z and the second statement holds with A = {1}.

Let k£ > 1 be an integer and assume that both statements of Theorem 10.5
hold for every toral system of order k.

10.2.1. Conditions for lifting. Throughout this section, k£ > 1 is an integer
and (Y,v,S) is a toral system of order k + 1. We write (X, u,T') for Zx(Y),
where Y is an extension of X by a torus U, given by a cocycle p: X — U of
type k + 1. By the inductive hypothesis, G(X) is a Lie group.

By Lemma 5.2, every element g of G(Y') induces a transformation pig of
X, which belongs to G(X). We now study the inverse problem. We say that an
element g of G(X) can be lifted to an element of G(Y') if there exists g € G(Y)
with prg = g. We now establish conditions for lifting.

We use the maps F': X* 1 — U7 and ®: Y*+U — U introduced in Propo-
sition 6.4:

(25) Ay = FoTlFH — Fand &(x,u) = F(x) — Z s(e)ue

e€Vit1



454 BERNARD HOST AND BRYNA KRA

under the identification of Y1 with X ¥+ x ylk+1 By Proposition 6.4, the
o-algebra Z¥+1(Y) is spanned by the o-algebra Z¥+1(X) and the map ®.

LEMMA 10.6. Let g € C(X). If g€ G(Y) is a lift of g, then G is given by

where ¢: X — U is a map satisfying
(27) Fogktll — p = Akl

Conversely, if $: X — U satisfies Equation (27), then the transformation
g of Y given by Equation (26) is a lift of g to G(Y').

Proof. Let g € G(X) and assume that g admits a lift g € G(Y). By
Corollary 5.10, the vertical rotations of ¥ over X belong to the center of
G(Y) and thus commute with g. It follows that g has the form given by
Equation (26) for some ¢: X — U. As g € G(Y), the transformation gl*t1] of
Y+ acts trivially on ZW+H(Y) and thus leaves the map ® invariant. This
implies immediately that ¢ satisfies Equation (27).

Conversely, let g € G(X), ¢: X — U be a map satisfying Equation (27)
and let g be the measure-preserving transformation of Y given by Equa-
tion (26). Since v*t1 is conditionally independent over p*1 and glk+1
the measure pl* 1 invariant, gl*+1 leaves the measure p#+1 invariant. More-
over, Equation (27) means exactly that the map ® is invariant under gi*+1).
Since g € G(X), g**t1 acts trivially on ZI*+1(X). By Proposition 6.4, glk+!
acts trivially on Z#+1(Y"). By Corollary 6.6, § € G(Y). O

leaves

COROLLARY 10.7. The kernel of the group homomorphism pi: G(Y) —
G(X) consists in the transformations of the form (z,u) — (x,u+ ¢(x)), where

¢ € Dip+1(X,U) (see Section 7.1).

In order to build lifts of elements of G(X), we progress from G*~1(X)
to G(X) along the lower central series of G(X). For 1 < j < k, we show
that ‘many’ elements of G\ (X) satisfy a property stronger than the lifting
condition of Lemma 10.6. We need some notation.

Notation. Let 8 be an (-face of Vi1 and ¢: X — U a map. We write
AZH: X[+ U for the map given by

AFT(x) =D s(e)pla) -

eep

The projection 5[;“]: X[+ X1 is defined in Section 2.1. We have
that
k+1
AL (x) = £A%(¢) ()

where the sign depends on the face .
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LEMMA 10.8. Let j be an integer with 0 < j < k. For g € g(j)(X) and
¢: X — U, the following are equivalent:

(1) For every (k+ 1 — j)-face B of Vii1, F 09[;“] —_F= Ag—*—lqb.

(2) For every (k — j)-face o of Vi1, F ogg“r” — F — AF1¢ s invariant on
X [k+1]

Notation. We write géj) for the set of g € g(j)(X) so that there exists
¢: X — U satisfying the properties of Lemma 10.8.

Proof. The proof is similar to the proof of Lemma 10.6. Let g € g(j)(X).
Let ¢: X — U and let g be the measure-preserving transformation of ¥ =
X x U given by Equation (26). As g € GU)(X), the measure u*+1 is invariant
under gL{“ ™ whenever a is a (k—j)-face of Viy1. Also, vI**1 is invariant under
E[f U hecause this measure is conditionally independent over ,u[k’H]. So for a
(k — j + 1)-face B, vI*+1 is invariant under §g€+1].

The first property means that the function ® (see Proposition 6.4) defined

above is invariant under §gf+1] for every (k+1—j)-face 3 of Vi1. Moreover, by

Lemma 5.8, g[kH] acts trivially on ZW+1(X) because g € GU)(X). Therefore,

B
the first property means that gg,““] acts trivially on ZFt1(Y) for any (k+1—j)-
face B of Vi41.

Similarly, the second property means that for every (k — j)-face a of Vj41,
5 maps the o-algebra ZWH1(Y) to itself.

The equivalence of these properties follows from Lemma 5.3. O

Note that for j = 0 the first property of Lemma 10.8 coincides with the
condition given in Lemma 10.6. Therefore, g(go) consists of the elements of
G(X) which can be lifted to an element of G(Y') and Q(()O) = pe(G(Y)).

More generally, let g € Qéj ) for some j and ¢ satisfying the first property of
Lemma 10.8. Then ¢ obviously satisfies Equation (27), and the transformation
g of Y given by Equation (26) is a lift of g in G(Y). Therefore, p; maps
p,?l (géj )) onto géj ). Each element g of G(Y) is given by Equation (26) for
g = pr(g9) and some ¢, and pgl (géj )) consists in those § for which the map
¢ satisfies the conditions of Lemma 10.8. Therefore, p,gl(géj )) is a closed
subgroup of G(Y).

10.2.2. Lifting results. We maintain the same notation as in Section 10.2.1.

LEMMA 10.9. Each element of G¥~D(X) can be lifted to an element of
G(Y). More precisely, g((]’H) = gk=1(X).
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Proof. Let g € GF~D(X). We use the results of Section 5. Since G(X)
is k-step nilpotent, g belongs to the center of G(X) and thus commutes with
T and is an automorphism of X. Since G(Z;_1) is (k — 1)-step nilpotent,
g induces the trivial transformation on Z;_ ;. Thus g is a vertical rotation
of X over Z;_,. For every edge o of Vi1, the transformation g([f U Jeaves
the measure pl**t1) invariant and commutes with T+1 by Corollary 5.4. By

Equation (25),
(28)  O(F o gt — F) = (AFH1p) o glitl — ARF1p = ARFL(po g — p)
=+A(pog—p)ocltil.

By Lemma C.7, A(pog — p): X? — U is a coboundary. As U is a torus, by
Lemma C.5, po g — p is a quasi-coboundary. Thus there exists ¢: X — U and
c € U with

(29) pog—p=o¢oT —op+c.

Using this in Equation (28), we get that for every edge a there exists an
invariant map i: X+ — U, with

Fogltll — p— Alktllg 4 g
(k—1)
By Lemma 10.8, g € G, . O

The next proposition is the crucial step in the proof. We recall that G(X)
is a Lie group.

ProrosiTioN 10.10. For an integer j with 0 < j < k, g(()j) 18 open in
G (X).

Proof. We proceed by induction downward on j. For j = k — 1, géj ) =
GY)(X) by Lemma 10.9. Take j with 0 < j < k — 1 and assume that Q(()j) is
open in Q(j)(X). We prove now that Q(()j_l) is open in Q(jfl)(X).

Since Qéj ) is an open subgroup of GU )(X ), it is also closed and it is locally
compact and Polish (actually it is a Lie group). We have noted that the con-
tinuous group homomorphism py : p];l (géj )) — géj ) is onto. By Theorem A.1,
this homomorphism admits a Borel cross section.

Let H={g € GU-(X) : g5 T71 e Qéj)}. By the inductive hypothesis,
H is open in GV~1(X), and is locally compact. Consider the Borel map x: H —
G(Y) obtained by composing the continuous map g + [¢g~; T~ }] from H to
g((]j) with a Borel cross section géj) — G(Y). For g € H, k(g) is given by
Equation (26) for some map 1,: X — U so that the properties of Lemma 10.8
are satisfied with [g71; T~!]. That is, for every (k + 1 — j)-face 8 of Vi1,

Folg 5T — F = Al .
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Define 64 = y0Tg+pog—p.
Let 3 be a (k+ 1 — j)-face of Vj41. Then

(Fo ggcﬂ} ~F)o ple+1] _ (Fo g[ﬂkJrﬂ —F)

=(Fo [971§T*1]§+1]T[’“+ﬂgg“+1] _Fo T[k+1]g[ﬁk+1])
+(Fo T[k-i-l]ggc-&-l] —Fo g[ﬂkﬂ]) — (FoTW+1 _ F)

= NZ&“% o T[k+1]g[ﬁk+1} +(AM ) o g[ﬁkJrH AR,

— Ak,

= £AMHIIg o fgﬁ-l] ‘

Thus the cocycle Agﬂeg is a coboundary of the system X 1. Ag already

noted, the cocycle (Ak“_jeg) o 5[;+1] is equal to this coboundary or to its
opposite and thus is a coboundary. By Lemma C.7, AF+1—J 64 is a coboundary
of the system X[+l and 04 is a cocycle of type k +1 —j <k on X.

Since the map ~ defined above is Borel, the map g — v, from H to
C(X,U) is Borel, and the map g — 6, is a Borel map from H to the group
Cit1—(X, U) of U-valued cocycles of type k41— j on X. Choose a probability
measure A on H, equivalent to the Haar measure of H and apply Theorem 9.6.
Then there exists a measurable subset A of H, with A(A) > 0, so that 6, — ),
is a quasi-coboundary for every (g,h) € A x A.

Let g,h € A. Let 0: X — U and c € U be such that 6, — 0, = 90 + c. For
any (k + 1 — j)-face 8 of Vi1, by the last equation we get that

O(Fogy ™ — Fonlity =aakty .

Thus F' o gggH] —Fo h%ﬁ” — AZHH is an invariant function on X*+1. Ag
h € GU=D(X), the transformation hgﬁ” maps the o-algebra ZF+1(X) to
itself. Therefore, the function F o (gh_l)gﬁu —F— AEH(Q oh~1) is invariant.
The second property of Lemma 10.8 is satisfied and gh™! € géj’”.

Therefore A-A™! C g(()j‘l). Since H is open in GU~—1), A has positive Haar
measure in GU~1 and it follows that g(()j -U
GU-1 . Since g(()j‘l) is a Borel subgroup of g(j_l)(X), it is an open subgroup.

O

also has positive Haar measure in

10.2.3. End of the proof of Theorem 10.5.

Proof. Recall that kK > 1 is an integer and that we assume that the
properties of Theorem 10.5 hold for every toral system of order k. Let (Y, v, .5)
be a toral system of order k+1. We write (X, u,T) = Z;(Y'). By the inductive
hypothesis, the conclusions of Theorem 10.5 hold for this system. Let G and
A be as in this Theorem and let Q((]O) be as in the preceding subsection.



458 BERNARD HOST AND BRYNA KRA

(1) By Proposition 10.10 used with 7 = 0, the group g((]o) is open in
GO (X) = G(X) and thus is a Lie group. The restriction map py: G(Y) —
G(X) is a continuous group homomorphism and maps G(Y') onto géo). Its

kernel is D41 (X, U) by Corollary 10.7 and thus is a Lie group. Since QSO) and
Di+1(X,U) are both Lie groups, G(Y) is a Lie group by Corollary A.2 and
Lemma A.3 (see Appendix A).

(2) Let H be the subgroup of G(Y') spanned by the connected component
of the identity and S. The image under p; of the connected component of
the identity of G(Y') is included in the connected component of the identity of
G(X); moreover pi(S) = T and thus py(H) C G. Since p; maps G(Y) onto
géo), it is an open map and pi(H) is an open subgroup of géo) and thus also
of G(X). Therefore pi(H) contains the connected component of the identity
in G(X) and so it contains G. Now, px(H) = G.

On the other hand, for every u € U, the corresponding vertical rotation
belongs to G(Y') and defines an embedding of U in G(Y). HNU is an open
subgroup of U and since U is connected, U C H.

By the inductive assumption, X = G/A. This means that G acts transi-
tively on X and that A is is the stabilizer of the point z; of X, image of the
identity element of G under the natural projection G — G/A = X. Choose
a lift y; of 1 in Y and consider the map f: H — Y given by f(h) = h - x1.
Since U C H, the range of this map is invariant under all vertical rotations.
The projection of this range on X is onto. Therefore f is onto.

This defines a bijection of H/T' onto Y, where T" is the stabilizer of y;
in H. This bijection commutes with the actions of H on Y and H/T". The
measure on H/I' corresponding to v through this bijection is invariant under
the action of H and thus is the Haar measure of H/T".

Thus we are left only to check that I' is discrete and cocompact in H.
Clearly, I' - U = pgl(A). Since I' N U is trivial, ' is discrete. This also implies
that H/T'U is homeomorphic to G/A and thus is compact. Since U is compact,
I" is cocompact in H. O

11. The measures ,u[k]

We can prove the converse to Theorem 10.5, showing that every k-step
ergodic nilsystem is a system of order k. Therefore the expressions “toral
system of order k” and “k-step ergodic nilsystem” are actually synonymous.
However, as we have no need for this result, we do not prove it and we continue
using the term “toral system of order k”.

When (X, u, T') is a toral system of order ¢ for some integer ¢, the measures
,u[k], k > 1, have a simple description, which is used in the proof of Theorem 1.2
(convergence for “cubic averages”).
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11.1. Algebraic preliminaries. In this Section G is a nilpotent Lie group.
We study the sequence of groups chll for £ > 1 and the relations between
two consecutive groups of this form.

[]

Temporarily, we slightly modify the definition of G).”; given by Defini-

tion 18: G,[fll is the subgroup of GI¥ spanned by
{9 : g € G and « is an (-face of V}.
Therefore the group G,[fll with the preceding definition is the closure of the

present group Ggfll. Below we show that this group is actually closed and
thus the two definitions coincide. Recall that the groups G\) are equal to the
algebraic iterated groups of commutators (see Lemma B.1).

Let k > 1 be an integer. As usual, we write g = (g’,g") for a point of
G where g/, g” € GI* are given by

geigoand gl =g fore eV .

We also identify the element g = (g, g”) of GI**+1 with the element (g., g :
e € Vi) of (G x G)¥ and thus we have G+ = (G x G)IM,

LEMMA 11.1. Let
G — {ge G (g, 117 € G[k-l—l}} _

Then G[.k] is a normal subgroup of G/,f_1 and

(30) G = (g g edM xaM gg" e}

Proof. For g’ € Ggﬂl, we have (g’,g’) € G’Efﬂ]. For h = (h/,h") € G,[fH],
we have h', h” € Ggﬂl. The result follows. O

We also note that gl e G[.k] for every g € G.

LEMMA 11.2. Define
G={(d,d")eGxG:g¢"¢ " eaW}.
Then C?Efll is a normal subgroup of GL’HH,
Moreover, when ( is the side {e € Vi1 : epr1 = 0},

Gt =g nea, gedl )y .

If h[kﬂ] = h'[CkH]g’ for some h,h' € G and g, g’ € CN;Lkll, then h! = hu™" and

g = uEer ] g for some u € GW.

(Here we consider égfll as a subgroup of GI*+1)
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Proof. We claim that, for every g € G and every h € é;ﬂl,
k -1 k ~lk
(31) (@) gt e Gl

First we consider the case that h = (h, h)gf ! for some h € G and some side
of V. Then, under the identification of (X x X)) with X1 h = pf*!
where (3 is the side a x {0,1} of Vi41. We notice that N ¢ = o x {0}. By
Equation (19),

s g = [hs g3 = (gl ) e G,

because [h;g] € G and thus ([h;g],1) € G. The relation (31) holds in this
case.

We consider now the case that h = (1, u)([f] for some u € G and some
side a of Vj,. We have h = uLjch | where «v is the (k — 1)-face a x {1} of Vj41.
We notice that v N ¢ = (. It follows that [h; ggﬂﬂ}] = 1 and the relation (31)
holds in this case also.

Therefore, when « is a side of Vi, this relation holds whenever h =
(g’,g”)([fﬂ] for any (¢',¢") € G. This relation holds for every h € G[ ]
by definition of this group. The claim is proved.

By definition, every element of GLH” can be expressed as a product of
elements of one of the following three types.

(1) g1 for some g € G,

(2) g[ﬁk] for some g € G and some side 3 of Vi1 defined by fixing a coordinate
J<k+1,

(3) ggcﬂ] for some g € G.

Let g € G. Then gkt = (g,g)[k} € Ggﬂll because (g,9) € G. Let 8 be
a side of Vj41 defined by fixing a coordinate j < k4 1. Then § = a x {0,1}

where « is a side of Vj and g[[fﬂ] = (g, )[k] € G[k]

Therefore, every element of the types (1) or ( ) above belongs to G[k]
The first two assertions of Lemma 11.2 follows immediately from the rela—

tion (31).
If we have hékﬂ] g=~hn [Ckﬂ]g’ as in the third statement of the lemma, then
(hh' ™ HE € G L Thus (hh'™'1) € G and hR/ T € GO, O

By induction, the commutator subgroups é(j), j >0, of G are given by

GU) = {(d,d") € GW x G . g"g 1t e GJ+1)}
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LEMMA 11.3. Let
M ={geclh:(g1l)eal y.
Then GLk] 1s a normal subgroup of G[.k} and
GH = (Mg . hea, gecly.
Proof. We claim that

(G el c @k,

When v € GM) and « is a side of Vj, we have (u[f],l[k]) = (u,l),[f} € é;ﬂl

because (1,u) € G and thus uyf ] c Gik}. The first inclusion follows. Moreover,
when g € GLk], we have (g, 1F) ¢ ég‘il; thus for every ¢ € Vi we have
(9=, 1) € G and thus g. € GM). The second inclusion follows and the claim is
proved.

Since égﬂl is a normal subgroup of GECHI], it follows from the definitions
of GLH and G[.k] that GLk] is a normal subgroup of G[.k].

Let q € M We have (q,1) € GEfH]. By Lemma 11.2, there exists
h € G and g € égﬂl with (q, 1F) = h[ck—i_l}g. The element g has the form

g = (g, ﬂk}), g e GLk] by definition and q = hl¥lg’. 0

If for some q € G[.k] and some ¢ € Vj, we have ¢. € G, then, when

q = hl¥lg as in Lemma 11.3, h € G, Thus hl¥ ¢ GLk] and q € GL’C]. This
proves:

LEMMA 11.4. For every e € Vg,
oM — {q e el ¢ € G} .
In particular, G =cl¥n (GM)IH,
11.2. Topological results.

LEMMA 11.5. Let G be a nilpotent Lie group. For any integer k > 1, the

group G,[ﬁl is closed in GI¥!.

Proof. By induction on k. For k = 1, Gg” = G = @ x G and there is
nothing to prove. Take k > 1 and assume that the result holds for k and any
nilpotent Lie group. We use the notation of the preceding subsection.

[K]
k

Since G is a nilpotent Lie group, by the inductive hypothesis G ~ is closed

in G*]. Thus it is complete and closed in G+, Therefore GL’C] is closed in
G,
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Let {g,} be a sequence in G[.k}, converging in G*! to some element g.
For every integer n, let 6, be the image of the first coordinate (g,)o of g,
in G/GW. Then 6, converges to the projection of go in G/GWM. As G/GM)
is endowed with the quotient topology, the sequence {6,,} can be lifted in a
sequence {h,} in G, convergent to some h € G. The sequence {(h,*)1g,}
converges in G* to (hl¥l)~'g. For every n, we have (hn[k])_lgn € G[.k] and
its 0 coordinate is equal to 1. Thus by Lemma 11.4, this element belongs to
GLk]. Since this group is closed, (R¥))~1g € GLk] and it follows that g € G[.k}.
Therefore G[.k] is closed in GI¥.

The announced result follows now immediately from Lemma 11.1. O

Along the way, we have shown that

GLk] and G[.k] are closed subgroups of G¥!.
Recall that if A is a discrete cocompact subgroup of a nilpotent Lie
group G, then for every j the group GA is closed in G (see Lemma B.1). Tt
follows that for every j, the group A N GU) is cocompact in G\,

LEMMA 11.6. Let G be a nilpotent Lie group and A a discrete cocompact
subgroup of G. For every integer k > 1, the group AFI N Ggfll 18 cocompact in
(k]
G,
Proof. By induction on k. For k = 1 there is nothing to prove. We take
k > 1 and assume that the result holds for k£ and for any nilpotent Lie group
G and any discrete cocompact subgroup A.

We use the notation of the preceding sections. The group Gisa nilpotent
Lie group. We define

A=Gn(AxA)={\N,\)eAxA: XN eAnaD}

and we note that A is cocompact in G.

CLAIM. Gik] N A s cocompact in GLk].
Proof. Let {g,} be a sequence in G, Consider the sequence {(gn,1)}

in ég‘il By the inductive hypothesis, AR A égﬂl is cocompact in égﬁll
Therefore, for each integer n, there exists (A, A”) € Al¥] ﬂé,[ﬁl and (h),,h!) €

éLkL so that the sequence {(h],,h!)} is bounded and for every n,
g, = h X and 1l = /A"

The sequence {\'} is bounded; since A is discrete, this sequence takes only

finitely many values. Let A € Al N Ggﬁll be one of these values and let
E={n:\ =}
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For n € E, we have (A,A) € égfll Thus (h)A,1) € égﬁl and h) X € G,
We have written the sequence {g, : n € E} as the product of the bounded
sequence {h/,A:n € E}in G with the sequence {A"*X, :n € E}in GHIAAK,
Since N is a finite union of sets E with this property, it follows that
GLk] N AR g cocompact in GLk]. O

CLAIM. G[.k} N A s cocompact in G[.k}.

Proof. Let {q,} be a sequence in el By using Lemma 11.3 and the
fact that A is cocompact in G, for every n we can write q, = hgf})\[f ]gn,

where {h,} is a bounded sequence in G, A, € A for every n, and g, € GLk]

—1
for every n. We have that /\E{“ ]gn)\q[iC ] c GLH. Using the first claim, we

Al i

write )\g€ ]gn = Vplt,,, where {v,} is a bounded sequence in G;" and

W, € G A A for every n. The claim follows. O

The lemma follows immediately from Equation 30 and the inductive hy-
pothesis. 0

As a corollary of the two claims we have:

CoroLLARY 11.7. GI (AL¥] ﬁGLkll) and G (A¥] ﬁGEﬂl) are closed sub-
groups of G,[ﬁl.

11.3. The measures p¥l. Here (X,p,T) is a toral system of order ¢ for
some integer £. By Theorem 10.5, this system can be represented as an ¢-step
nilsystem X = G/A, where G is a nilpotent Lie group, A is a cocompact sub-
group, w is the Haar measure of X and the transformation 7' is left translation
by some fixed element of G which we also write as 7. Recall that G is the
subgroup of G(X) spanned by the connected component of the identity and 7.

For every integer k, the group A N Ggﬂ , is cocompact in G;ﬂl by
Lemma 11.6 and we can define the nilmanifold
(32) Xy = chkll/(A[k} N chkll)
and let v denote its Haar measure. The nilmanifold X, is included in X =
G /AK in the natural way.

For every g € G we have gl € Ggfll. It follows that, for every x € X, X},
contains the diagonal point (z,x,...,x) of X[k

LEMMA 11.8. For every k > 1, the measure ul¥ is the Haar measure of
the nilmanifold Xy.

Proof. The proof is by induction. The assertion is obvious for k = 1,
because X7 = X x X and G([)H = Gl = G x G. We assume that it holds for
some k > 1.
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(%] ¢ A K] (k] y s (%]
By Corollary 11.7 G4 (A" NG}~ ) is a closed subgroup of G, and we
can define the space

Y =GH /M ngt ).

Write ¢ : X — Y for the the natural continuous surjection.

For x € X}, the subset G[.k] x:={g-x:g¢€ G[.k}} of X} is the inverse
image of the point ¢ (x) € Y under ¢ and thus it is closed. So the action of
G[.k] on Xj by left translations has closed orbits and we can identify Y; with
the quotient of X} under this action.

CLamM.  The invariant o-algebra T of (XK ulk] TWY Gs equal up to
,u[k] null sets to the inverse image under ¢y of the Borel o-algebra of Y.

Proof of the claim. Let B be this inverse image. This o-algebra consists in
the Borel subsets of X}, which are invariant under translation by any element
of G[.k}. Since T € G, THH ¢ G[.k] and every set belonging to B is invariant
under 7% and thus belongs to Z¥.

On the other hand, as G C G(X), the measure p**+1 is invariant under

[k+1]
k

g forany g € G by Corollary 5.4. In particular x*+t1 is invariant under

(1@, h) for any h € Gl Proceeding exactly as for the implication (2) = (3)
in the proof of Lemma 5.3, we have that every h € G[.k} acts trivially on Z[¥!
and we conclude that Z!¥! is measurable with respect to ¢~ (B). The claim is

proved. O

From Equation (30), it follows immediately that X} consists in the pairs
(x',x") € X x Xj, with ¢r(x') = ¢r(x”). Using the inductive hypothesis and
the definition of the measure ¥t we get that this measure is concentrated
on the nilmanifold X;,. By Lemma 5.2, this measure is invariant under the
translation by any of the generators of Ggfﬂ] and thus by translation by every
element of this group. It is therefore the Haar measure of the nilmanifold X4

and the statement of the lemma is provee for k + 1. O

12. Arithmetic progressions

We now use the tools assembled to study convergence along arithmetic
progressions in order to obtain Theorem 1.1.

12.1. The characteristic factor for arithmetic progressions. We first show
that we can modify the original system and replace it by some factor so that
convergence of the factor system implies convergence in the original system.
This is based on the notion of a characteristic factor used by Furstenberg and
Weiss in  [FW96].
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We can always assume that the system is ergodic by using, if necessary,
ergodic decomposition.

THEOREM 12.1. Let (X, u,T) be an ergodic system. Assume that f1,..., fx
are bounded functions on X with || fj|leoc <1 forj=1,... k. Then

S (f1ner)

33 lim su H
( ) N~>+OIO) N

< min (¢-[lfell) -

L2 (p 1<t<k

Proof. We proceed by induction. For k = 1, by the Ergodic Theorem,

1 N—-1
|5 2 o
n=0

Let & > 1 and assume that the majorization (33) holds for k. Let fi,..., fx41 €
L>(p) with || fjllec < 1for j =1,...,k+1. Choose ¢ € {2,...,k+1}. (The
case { =1 is similar.) Write

| [ frau = 1s0n

k+1 ‘
=[] tieT.

Jj=1

By the van der Corput lemma (Lemma D.2),

LN 5 H | N
lim supH ~ Z &n w < limsup — Z (lim sup| /§n+h “€n d,uD
n=1 n=1

N—o0 L2 H—oo N—oo

Letting M denote the last lim sup, we need to show that M < £2|| fy||7_; .
For any integer h > 1,

‘%ﬁ/fwh-fndu‘

_‘/ fi-fioTh % (ﬁ (f; - f; 0TIy o T~ 1>”)dﬂ‘

Mz

N

SHfl'flOThHLz(u)'Hiz<ﬁ (fj- fjoTM o T=1n )

N L2 ()

and by the inductive assumption,

i sup| +- / nen - ndu| <L 1o foo T

N—oo
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We get

H H

1 1

M <L ligljélop I7i S e feo T < 22 liIr{Iljilop H > e feo Tk
h=1 h=1

2 1. 1 np2e\ Y
< @ limsup( 2 e feo THE)
h=1

H—oo

Define F(x) = [[.cy, fe(we). The last average becomes

H

1
5> [Foay Fa
h=1
by definition of the seminorm | - ||x. When H — +oo, this average converges
to
[T = [ e rade) = 11
by definition of the seminorm || - ||x+1, and the proof is complete. O

12.2. Convergence for arithmetic progressions. We prove Theorem 1.1.
Let f;, 1 < j < k, be k bounded functions on X. By Theorem 12.1, the
difference between the average (1) and the same average with f; replaced by
E(fj|Zk) for 1 < j < k tends to 0 in L?(X). Thus it suffices to prove Theo-
rem 1.1 when all functions are measurable with respect to Z;. In particular,
we can assume that the system X = Z;(X), that is, that X is a system of
type k. Such a system is an inverse limit of translations on nilmanifolds by
Theorem 10.3 and so it suffices to prove Theorem 1.1 for a translation x — t-z
on a nilmanifold X = G/A endowed with its Haar measure. By density, it
is also sufficient to prove the convergence when the functions fi,..., fi are
continuous.

Several independent proofs already exist for the convergence of the av-
erages (1) in this case (see Appendix A). Leibman [Lb02] uses Theorem B.3
applied to the the translation by s = (¢,t2,...,t*) on the nilmanifold X* =
G¥/A¥, and obtains the convergence everywhere. Ziegler ([Zie02a]) builds an
explicit partition of X* into invariant nilmanifolds and shows that almost ev-
ery nilmanifold is ergodic and thus uniquely ergodic for the translation by s;
the convergence almost everywhere follows.

13. Cubes

We are now ready to complete the proof of Theorem 1.2. As for the
arithmetic progressions, we can assume that the system is ergodic. We first
describe an appropriate characteristic factor.
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Let (X, u, T) be an ergodic system. Given an integer & > 1 and 2* bounded
functions f., ¢ € Vi, on X, we study the convergence of the sequence of
numerical averages:

k

(Ak) H ﬁ Z / H fa o T81n1+"~+8knk du
i=1

! U nE[My Ny ) XX [M,Ny) Y e€Vi

and the convergence in L?(u1) of the averages

1 e1ny1+-+exn
(Br) || Sy > I feor o
i=1 n€[My,N1) X x[My,Ni) e€Vy;

when Ny — My, ..., N — Mj, tend to +00. We show:

THEOREM 13.1. (1) The averages (Ax) converge to

(34) /X . I f-(ae) dux) .

sGVk

(2) The averages (Bg) converge in L?(u). The limit is the function
(3) 7 B(Q f|TH) @)

ecVyr

where the o-algebra T is identified with the factor Zj,_1(X) (see Sec-
tion 4.2).

13.1. The case of a toral system.

LEMMA 13.2. The results of Theorem 13.1 hold when X is a toral system
of order ¢ for some integer £ > 1.

Proof. Let k£ > 1 be an integer. For this proof we let T;, 1 < i < k,

denote the transformation To[f} of X where ay, .. .,ap are the sides of Vj

not containing 0. We recall that the group of transformations ’];[k] of X
is spanned by {7; : 1 < i < k} and that the group ’];[ﬁ]l is spanned by ’Z;[k]
and T,

We assume that X is a toral system of order . By Lemma 11.8, ul*! is

the Haar measure of the nilmanifold X, = Ggfll (AFl N0 Ggﬂl) introduced in
Subsection 11.3. By Corollary 3.5, ul¥l is ergodic under the group ’Z;ﬁ[ﬁ]l As the
transformations T, 1 < i < k, and T¥ of X}, are translations by commuting

elements of Ggfll, it follows from Theorem B.2 that X}, is uniquely ergodic for
the action of 7;:[5]1
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Let f., € € V}, be 2F continuous functions on X . For integers n,ny, ..., ng
the transformation 717" ... T}™ is given by

(T . .T,?’“x)E = pramtetenig  for every € € Vj, .

Therefore, by unique ergodicity, when N; — M, ..., Ny — My and N tend to
400, the functions

X — H N M Z Z H Fo(Trremat ek g,

]\41<7’711<J\717 n= OEEVk
Mkﬁnk<Nk

converge uniformly on X} to the constant given by the integral
(36) / I f-(ae) dulx) .
Xk EGVk

Thus, they converge uniformly to this constant on the ‘diagonal’ subset of

X}, (the subset consisting in points x = (z,z,...,z)). This means that the
averages
xHﬁ 1 Z Z H £ Tn—i-slnl—i- AeRng, z)
i Vi = M M1<n1<N1, n=0 €V}
MkSnk<Nk

converge uniformly on X to this constant. Taking the integral we get that the
averages (Ay) converge to this constant. Part (1) of Theorem 13.1 holds for
a toral system when the functions f. are continuous. The case of arbitrary
bounded functions follows by density.

Let f., € € Vj, be 28 — 1 continuous functions on X. By Theorem B.3 the
averages

T817l1+ +5knk
H N M > I s« ‘)
M1<TL1<N178€V*
Mkﬁnk<Nk

converge for every x € X and in particular for every diagonal point x =
(x,z,...,x). Therefore the averages (By) converge for every z € X. Let ¢(x)
be the limit. By Part (1), for every bounded function fo on X,

| ot@ota)duta) = [ gofao) T] f.twe) i)

ecVy
= [ So@E(@ £ 17 ) @) duto)
eeVy

by Lemma 4.2, under the identification of the o-algebras J*" and Z,_;(X).
It follows that the function ¢ is equal to the conditional expectation (35). By
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density, the same result holds for arbitrary bounded functions on X. Part (2)
of Theorem 10.3 is proved for a toral system. O

COROLLARY 13.3. The results of Theorem 13.1 hold when X is a system
of level £ for some £ > 1.

Proof. Let X be a system of order /. By Theorem 10.3, X can be repre-
sented as an inverse limit of a sequence of toral systems of order £. Let Y be
one of these systems and p: X — Y the corresponding factor map.

Let g., € € Vi, be bounded functions on Y. By Lemma 4.5, pl¥l: Xk —
Y* is a factor map and thus it follows from Lemma 13.2 that Part (1) of
Theorem 13.1 holds for X and the functions f. = g. o p.

By Proposition 4.6, p~1(Z,(Y)) = Zx(X) Np~(Y) and Part (2) of Theo-
rem 13.1 also follows from Lemma 13.2 for the functions f. = g. o p.

By density the same results hold for every bounded functions on X. O

13.2. The general case. In the proof, we consider the averages (Ay) with
fo = 1 separately, that is, the averages

k

() Hﬁ > / [T feoremttemdy,
=1

v t n€[Mi,N1) XX [My,Ny) eeVy

We prove Theorem 13.1 by induction. For k£ = 1, the averages are

1 N-1
N —M Z /fO‘flOTndM
n=M

and
N-1

1
> froT"dp
N—Mn:M

where fy and f; are bounded functions on X. Since plll = p x p, the results
are obvious.

Henceforth, fix an integer £ > 1 and assume that the two statements of
Theorem 13.1 hold for k£ — 1.

13.2.1. The averages (Cy).

LEMMA 13.4. Let g,, n € Vi—1, be bounded functions on X. Then the
limsup for Ny — M1,...,Ny_1— Mp_1 — 400 and N — M — +o0o of

k—1 1 1 N-1 2
37 —_— ( ™ d
(37) H(Nz—Mz) Z /N—MZ H gn © H
=1 M;<n;<Ny, p=MneVvy_,

Tty
My 1<ni_1<Np_
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1s less than or equal to

) JIEC® a1 ) a1

neVi_1

Proof. Without loss of generality, we can assume that |g,| < 1 for each n €
Vi—1. Fix an integer H > 0. By the finite van der Corput lemma (Lemma D.2),
for each n = (ny,...,nk_1) the integral in (37) is bounded by

H-1
N—M+H-1 N—M+H-1 H—h N—h h )
2 || : T o T dy .
(N-M)H * N—M Z 7 N / (97] gn © )o m

h=1 NEVi—_1

Thus the lim sup of expression (37) is bounded by

Ry ey i 1
——I—Z 2—  limsup H Z / H (gn-gnoTh)oT”'"du.
a h=1 a Nl_].\{l_)oQ =1 Ni= M M;<n; <Ny, neVi_1

N}C71—M;€,1HOO Mk§n1c7<Nk

By the inductive hypothesis Theorem 13.1 holds for £ — 1 and this expression
is equal to

H-1
1 H—h
- 2 : T dpk=1
PR ILE = B - UL

h=1 neVi_1

Taking the limit when H — oo, we get the result. O

LEMMA 13.5. The factor Zy_o is characteristic for the convergence of the
averages (Ci). If for some e € Vi, in other words, E(fe | Zi—2) = 0, then these
averages converge to 0.

Proof. Without loss of generality, we can assume that |f:| < 1 for every
ee V.

First assume that E(f. | Z;_2) = 0 for some € € V;* with ¢; = 0. Define
gn, m € Vi, by gy = fo, and go = 1 and hyy, n € Vi, by hyy = fi,;. Then the
average (Ci) can be written

k—1

1 >
-~ N;—M;
=1 Mi<ni<Ni,... Mp_1<n,_1<Mj;_1
( H hnoTn'”ﬂ’) : ( E H gnoTW'"_p> du .
Ny—My,
neEVi_1 p=M n€Vi_1

By the Cauchy-Schwartz inequality, the square of this average is bounded
by (37). By Lemma 13.4, the lim sup of the square of this average is bounded
by (38).
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[k=1" ig relatively independent with respect to Z,[f_;l]*

at least one of the functions g,, n € V{7, has zero conditional expectation
with respect to Z_5. Therefore E(®;,cv-g, | Z,[flg) = 0. But by Part (2) of
[k—1]"

The measure p and

Proposition 4.9, the o-algebra 7 is measurable with respect to Z,L]Sl]*.
Thus E(®,cv- 9n | =11y = 0 and also E(®,ecv, 91 | 71y = 0. The
bound (38) is equal to 0 and the averages (Cj) converge to 0.

By permuting the coordinates, we get the same result when E(f; | Z;_2)
= 0 for some € with €; = 0 for some j, that is, for some € # 11...1.

Finally assume that E(f11.1 | Zx—2) = 0. By the preceding proof, the
limsup of the absolute value of the averages (Cy) remains unchanged when
we substitute E(f: | Zx_2) for f., for every ¢ # 11...1. Without loss of
generality, we can therefore assume that for each 11...1 # € € V}*, the function
fe is measurable with respect to Z;_o. But in this case the integral in the
average (C) is equal to 0 and the result is obvious. O

COROLLARY 13.6. The averages (Cy) converge to

(39) /X[k]»« H fa(l’g) d:u[k]*(j) .

eeVy

Proof. By Lemma 13.5 the difference between the averages (Cj) and the

same averages, with the functions E(f. | Zx_2) substituted for f., converges to

zero. As the natural projection X L g‘g is a factor map, the announced

result follows immediately from Corollary 13.3. O

13.2.2. The averages (Ax) and (Bg).

LEMMA 13.7. The factor Z,_1 of X is characteristic for the convergence
in L2(p) of the averages (By).

Proof. Assume that for some ¢ € V;* we have E(f. | Z,_1) = 0. By
Proposition 4.9 the measure ,u[’“]* is conditionally independent with respect to
Z—1 and thus E<®56V; fe | Z,Ek_}l) = 0. Moreover by Proposition 4.9 the

o-algebra J*!" is measurable with respect to Z,[f}

*1 and thus

ecVy

For n = (ny,...,n;) € ZF, set

9n = H faOTE.n

ecVy
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and we have to show that

Oty S w0t

=1 M1<n1<N1,
ngnk<Nk

as N\—Mj,... ,N,— My — +oo. For h = (hq,...,h) € ZF, by Corollary 13.6,

k

HNlM Z /gn+h Gn i — Yp

=1 M1<711<N11
ngnk<Nk

when Ny — My, ..., Ny — M}, tend to +o0, where

’Yh—/ ® faoTsh)d/ﬁH

%
When H — oo,
H— |h| k
> H n = |[E(® £17H) \W =0
—H<h,<H, i=1 eeVy
—HS:hkSH

and the statement of the lemma follows from the multidimensional van der
Corput lemma (Lemma D.3). O

As for arithmetic progressions, we combine the fact that the factors Z
are characteristic with the proof of convergence for nilsystems to prove Theo-
rem 13.1:

Proof of Theorem 13.1. We study the convergence of the averages (Ayg)
and (By) for an arbitrary ergodic system.
Recall that the natural projections X — Zy, [k] ; and X L[ Zy, [k ]1 are

factor maps and that the o-algebra J*" is measurable with respect to Z [k }
(Proposition 4.9). Then Theorem 13.1 follows immediately from Corollary 13 3
and Lemma 13.7. O

13.3. Proof of Theorem 1.3. Using ergodic decomposition, we restrict
to the case where the system X is ergodic. By part (1) of Theorem 13.1,
applied to f. = 14 for every € € V}, the averages appearing in the statement
of Theorem 1.3 converge to

/ [T tate) dux) = Jally” -
X [¥]

EGVk
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By part (3) of Lemma 3.9 we have |[14]lx > [|[1a]li = p(A) and the result

follows. O
13.4. Proof of Theorem 1.5. Theorem 1.3 has the following corollary:

COROLLARY 13.8. Let (X,B,u,T) be an invertible measure-preserving
probability system, let A € B and let k > 1 be an integer. Then for any
c> 0, the set of n € Z* so that

1( ﬂ T°"A) > (A —c
e€eVy
18 syndetic.

Proof. Let E be the subset of Z* appearing in Theorem 1.3. If E is not
syndetic, there exist intervals [Mj,, Ni,),[Ma,, Na,), ..., [Mg,, Ng,) with the
lengths of the intervals tending to +o0o so that

EN ([Mluqu) X [MQi,NQi) X ... X [Mk,_aNkl)) =0.

Taking averages along these k& dimensional cubes in Theorem 1.3, we get a
contradiction. O

Theorem 1.5 follows by combining Furstenberg’s correspondence principle
and Corollary 13.8.

Appendix A. Groups

A.1. Polish groups. We summarize the main results needed (see Chapter 1
of [BK96]):

THEOREM A.l. Let G and H be Polish groups and let p: G — H be a
group homomorphism that is continuous and onto. Then p is an open map.
Moreover, p admits a Borel cross section, that is, a Borel map s: H — G with
pos=1Id.

Let G, H and p be as above and let the quotient G/ ker(p) be endowed
with the quotient distance. It follows from Theorem A.1 that the natural group
isomorphism G/ ker(p) — H is a homeomorphism.

COROLLARY A.2. Let H be a closed normal subgroup of the Polish group G.
If H and G/H are locally compact, then G is locally compact. If H and G/H
are compact, then G is compact.

We often build groups by a skew product construction and so present
it here. Let G be a Polish group and let (X, u) be a probability space. A
measure-preserving action of G on X is a measurable map (g,x) — g -z of
G x X to X so that
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(1) For every g € G, the map x +— g -z is a measure-preserving bijection
from X onto itself.

(2) For every g,h € G, gh-x =g - (h-z) almost everywhere.

Let U be a compact abelian group, written additively. We recall that C(X, U)
denotes the additive group of measurable maps from X to U. Endowed with
the topology of convergence in probability, it is an abelian Polish group. For
g € Gand f € C(X,U) we write Sy s for the measure-preserving transformation
of (X x U, u x my) given by

Sg.r(@,u) = (9~ z,u+ f(2)) .

These transformations form a group, called the skew product of G and written
G x C(X,U). Endowed with the topology of convergence in probability, it is
a Polish group. A sequence {S n,fn} converges to Sy r in G x C(X,U) if and
only if g, converges to ¢g in G and f, converges to f in C(X,U).

The map p: Sy + g is a continuous group homomorphism from G x
C(X,U) onto G and thus is an open map.

A.2. Lie groups. We call a locally compact group a Lie group when it
can be given the analytic structure of a Lie group, although we never use the
analytic structure. From the characterization of Lie groups in [MZ55], we can
deduce:

LEMMA A.3. Let G be a locally compact group and H a closed normal
subgroup. If H and G/H are Lie groups then G is a Lie group.

A.3. Nilpotent Lie groups. Let G be a Polish or locally compact group.
For g,h € G, we write [g;h] for the commutator g~ 'h~'gh of g and h. If
A, B are subsets of G, we write [A; B] for the closed subgroup of G spanned
by {[a;b] : a € A,b € B}. The subgroups G, j > 0, of G are defined by
GO = G and GUHY = [G;GV)] for j > 0. We say that G is k-step nilpotent
if G is the trivial subgroup {1} of G.

(This definition of nilpotency is stronger than the purely algebraic defini-
tion, but the two definitions coincide for Lie groups.)

Appendix B. Nilmanifolds

Let G be a k-step nilpotent Lie group and A a discrete cocompact sub-
group. The compact manifold X = G/A is called a k-step nilmanifold. The
group G acts on X by left translations and we write (g,z) — g -« for this
action. There exists a unique probability measure p on X invariant under this
action; it is called the Haar measure of X. The fundamental properties of nil-
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manifolds were established by Malcev [Ma51]. We use the following properties
of the commutator:

LEMMA B.1. Let G be a nilpotent Lie group and A a discrete cocompact
subgroup. Then:

(1) The groups G, j > 1, are equal to the algebraic subgroups of iterated
commutators. This means that for j > 1 the group G s algebraically
spanned by {[g;h] : g € G, h € GU=D},

(2) For every j > 1, the subgroup GUA of G is closed in G.

Let X = G/A be a k-step nilmanifold with Haar measure u, let t € G
and T: X — X be the transformation = + t - z. Then the system (X, u,T) is
called a k-step nilsystem.

The dynamical properties of nilsystems were studied by Auslander, Green
and Hahn [AGH63|, Parry ([P69], [P70]), Lesigne [L91] and Leibman [Lb02],
among others.

THEOREM B.2. Let X = G/A be a nilmanifold with Haar measure p
and let t1,...,ty be commuting elements of G. If the group spanned by the
translations ty, ..., ty acts ergodically on (X, ), then X is uniquely ergodic for
this group.

This result was shown by Parry [P69] in the case of a single translation,
by using methods of [F61]. A similar proof for the general case can be found
in [Lb02)].

THEOREM B.3. Let X = G/A be a nilmanifold and let ty,...,ty be com-
muting elements of G. Then for any continuous function f on X the averages

k
1
H N, L Z fE )
i=1

b Mi<ni<N;
M <np <Ny

converge everywhere on X when N1 — My, ..., N, — My tend to infinity.

This theorem can be viewed as a special case of the general results of
M. Ratner and N. Shah (see [Ra91] and [Sh96]). A proof of this result is given
in [L91] for a single transformation, under the additional hypothesis that the
group G is connected. The preprint [Lb02] contains a similar proof for the
general case. We do not reproduce it here, but indicate the different steps. By
distality, for every x € X, its closed orbit

Y, ={t1" ...t (n,...,ng) € ZF}
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is minimal for the the action spanned by the translations by ¢1,...,t;. The
crucial point is that ¥ can be given the structure of a nilmanifold. By [P69],
a minimal nilmanifold is uniquely ergodic, and the result follows.

We notice that in Theorem B.3 the “cubes” [My, N1) x - -+ x [M}, Ni) can
be replaced by an arbitrary Fglner sequence of subsets of ZF.

Appendix C. Cocycles

C.1. Cocycles and extensions. Let (X, u,T) be a system and U a compact
abelian group. We generally assume here that U is written with additive nota-
tion. (The changes needed when multiplicative notation is used are obvious.)
A cocycle with values in U is a measurable map p: X — U. We let C(X,U)
denote the family of U-valued cocycles on X and we write C(X) instead of
C(X,T), where C(X,U) is endowed with pointwise addition and the topology
of convergence in probability. It is a Polish group.

The extension of (X, u,T) by U associated to the cocycle p € C(X) is the
system (X x U, u x my,T),), where T,: X x U — X x U is given by

Ty(z,u) = (Tz,u+ p(x)) .

If (X xU,pxmy,T,) is ergodic, we say that the cocycle p is ergodic. If
moreover (X x U, uxmy,T),) has the same Kronecker factor as X, we say that
p is weakly mizing.

The factor map (x,u) — z is called the natural projection. For v € U, we
also let v denote the measure-preserving transformation of X x U given by

v (z,u) = (z,v+u) .

A transformation of this type is called a wvertical rotation or in case of ambi-
guity, a vertical rotation above X. We continuously identify the group U with
the group of vertical rotations. The vertical rotations commute with 7, and
preserve the natural projection on X. When p is ergodic, they are exactly
characterized by these properties.

C.2. Cocycles and coboundaries. For p € C(X,U), the coboundary of p
is the cocycle p o T'— p and when there is no ambiguity, we write it dp. Let
OJC(X) denote the subgroup of C(X) consisting of coboundaries.

Assume that X is ergodic. Then a cocycle p € C(X,U) is ergodic if
and only if there exists no nontrivial character y € U so that the cocycle
x o p € C(X) is a coboundary.

The following result is found in Moore and Schmidt [MSS80]:
LeEMMA C.1. Let (X,pu,T) be a system, U a compact abelz’g\n group and

p € C(X,U). Then p is a coboundary if and only if for every x € U, the cocycle
xop: X — T is a coboundary.
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Two cocycles p,p’ € C(X,U) are said to be cohomologous if p — p' is a
coboundary. In this case, the extensions they define are isomorphic (i.e., there
is an isomorphism between these two systems which preserves the natural
projections).

LEmMMA C.2. Let (X,pu,T) and (Y,v,S) be ergodic systems, U a compact
abelian group, p: X — U an ergodic cocycle and W the extension of X by
U associated to p. Assume that W and Y are factors of the same ergodic
system K and let L and M be the factors of K associated to the invariant sub
o-algebras L =X VY and M =WV Y, respectively. Then M is an extension
of L by a closed subgroup V of U.

Let v € U and consider v as taking values in S'. Define a function Iy on
W by fy(z,u) =~y(u). IfE(f, | £) # 0, then fy is measurable with respect to
L andy e V>t,

This lemma is essentially a reformulation of more or less classical re-
sults and similar lemmas can be found, in particular, in Furstenberg and
Weiss [FW96]. We only give an outline of the proof.

Proof. The system L can be represented as an ergodic joining A of (X, u, T')
and (Y,r,5). In the same way, M can be represented as an ergodic joining 7
of W and Y where 7 is a measure on W x Y = X x Y x U and the projection
of T on X xY is A\. Moreover, 7 is invariant under the transformation of
(X xY) x U associated to the cocycle o: (z,y) — p(x) of the ergodic system
(X xY,\,T x8S).

Therefore 7 is an ergodic component of the extension of this system by
U, defined by the cocycle o. Thus it is an extension of this system by a closed
subgroup V of U, the Mackey group of o in the terminology of Furstenberg and
Weiss [FW96]. For v € U, we have v € V=+ if and only if y oo is a coboundary
of the system (X x Y, A\, T x S). That is, if and only if y o p is a coboundary
of L.

Let v € U and assume that E(fy | £) #0. Then

o (Tp(x,u)) = y(p(x)) - fr(2,u)
and moreover the map (z,y,u) — 7v(p(x)) is measurable with respect to L.
Thus
E(f, | £)o T =E(f,0T, | £) = yop-E(f, | £) .
The function E(f, | £)- f; is invariant on M and thus is constant by ergodicity.

Therefore f, is measurable with respect to £ and 7 o p is a coboundary on L.
By the first part, v € V1. O
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C.3. Measurability properties. Let X be a system and U a compact abelian
group. Then the coboundaries form a subgroup of C(X,U), which is Borel
because it is the range of the continuous group homomorphism 0: p — poT —p
from the Polish group C(X,U) to itself ([BK96]).

LEmMA C.3. Let (X,u,T) be a (nonergodic) system, (Y,v) a (standard)
probability space, and y — i, a weakly measurable map from'Y to the space of
probability measures on X. Assume that

o [For every y € Y, the measure ji, 1s invariant under T'.

o 1= [y pydv(y).

Let (2, P) be a (standard) probability space and let w +— p, be a measurable
map from Q to C(X,SY). Then:

(1) The set
A={(w,y) €AXY :p, is a coboundary of (X, pu,,T)}

is a measurable subset of 1 X Y.

(2) Forw € Q, p, is a coboundary of (X, p,T) if and only if the set
Av={yeY :(w,y) € A}
satisfies v(Ay) = 1.

A cocycle p € C(X,S') is a map from X to S' which is defined only
u-almost everywhere. This makes the definition of the set A in the lemma
appear ‘problematic’ and so we begin with an explanation.

We recall that C(X,S') is endowed with the topology of convergence in
probability and this topology coincides with the topology of L'. By a classical
result (see for example [Va70, p. 65]) there exists a map R: Qx X — S!, defined
everywhere and measurable, such that for every w € Q, p,(z) = R(w,z) for
p-almost every z. In the statement above and in the proof below we write
pw(z) instead of the more precise but heavier notation R(w, ).

Proof. (1) For w € 2 and an integer n > 0, write

Pl (@) = po(@)pu(Ta) ... pu(T" ') .

For a bounded function (defined everywhere) on X, we write B,, ¢ for the set
of points z € X where the averages

1 N-1
(40) 3 0@ f (1)
n=0
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converge as N — +oo. Define the function ¢,y on B, s to be the limit of
these averages. The set B, s is clearly invariant under 7" and the function 1, ¢
satisfies

(41) VYo f(Tx) =y f(x)pu(x) for z € B, 5 .

Define
Cu&f = {33 S Bw7f : ww,f($) 75 O} .

Then C,, ¢ is invariant under T'. For every bounded function f on X, the subset
Cr={(w,z) e AxX:2eC,y}

is measurable in Q x X.

We show now that u(B, ;) = 1. Let X x S be endowed with the trans-
formation associated to the cocycle p, and let ¢ be the function defined on
X x 8 by ¢(x,u) = f(z)u. By applying the ergodic theorem on the system
X x S! and the function ¢, we get that the averages (40) converge almost
everywhere. That is, u(B, ) = 1. Therefore, the function v, s is defined
p-almost everywhere, and satisfies (41) p-almost everywhere. By the same
argument, for every y € Y, the same properties hold with 1, substituted for p.

Choose a countable family {f; : j € J} of bounded functions on X that
is dense in L?(u) and dense in L?(p,) for every y € Y. Define

Co=|JCuyandC={]Cy .

jeJ JjeJ
We claim that
(42) A={(w,y) QXY : 1, (CL) =1} .

Let w € Q and y € Y so that (w,y) € A. There exists f: X — S! so
that p,(z) = f(Tz)f(x) for py-almost every x and by construction, v, r = f
py-a.e. Choose a sequence {ji} in J so that fj, — f in L?(p,). The sequence
of functions {1, } converges in L%(uy) to by, 5 = f, which is of modulus 1.
By definition of these sets, 1, (UEQZ1 Cw,fjk) =1 and thus finally p,(C,) = 1.

Conversely, assume that s, (C,,) = 1. This set is the union for j € J of the

invariant sets Cy, y,. Thus we can find a sequence {D;} of measurable subsets
of X, invariant and pairwise disjoint, with
D; c C,y, for every j and U D;=0C, .
JjeJ
Define a function f on C, by f(z) = fj(z) for x € D;. As the sets D; are
invariant, it follows from the construction that for every j and every x € D,
we have 9y, f(x) = () # 0. Then 1),y # 0 on C, and so p,-almost

everywhere. By dividing the two sides of Equation (41) by [v,, ¢|, we get that
pw is a coboundary of (X, uy,T) and that (w,y) € A.
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Our claim (42) is proved and the first part of Lemma C.3 follows.

(2) If p, is a coboundary of (X, pu,T), there exists f € C(X,S!) with
pw = foT - f, u-almost everywhere. As pu = [, dv(y), for v-almost every
y the same relation holds p,-almost everywhere and p,, is a coboundary of
(X7 :U’ZHT)‘

Conversely, assume that for v-almost every y the cocycle p,, is a cobound-
ary of (X,u,T). Define the sets C, y, and C, as above. For v-almost every
y we have (w,y) € A and thus p,(C,) = 1. It follows that u(C,) = 1. Use
the sets D; and the function f defined above, with the measure ;1 substituted
for p,. The function 1, ; is defined and nonzero p-almost everywhere and
satisfies Equation (41) u-almost everywhere. Therefore, p is a coboundary of
(X, u,T). O

For simplicity, we stated and proved the preceding lemma only for cocycles
with values in the circle group S'. But it follows immediately from Lemma C.1
that a similar result holds for cocycles with values in any compact abelian
group. (We assume implicitly that all compacts abelian groups are metrizable.)

On the other hand, the full form of Lemma C.3 is used only in the proof
of Theorem 9.6. Several times we use a weaker form with a single cocycle,
corresponding to a constant map w — pg:

COROLLARY C.4. Let (X,u,T), (Y,v) and p, be as in Lemma C.3. Let
U be a compact abelian group and p: X — U a cocycle. Then the subset

A, ={y €Y :pisacoboundary of (X, py,T)}

of Y is measurable. The cocycle p is a coboundary of (X, u,T) if and only if
v(Ap) =1.

C.4. Quasi-coboundaries and cocycles on squares. Let (X, u,T) be an
ergodic system, U a torus and p: X — U a cocycle. Note that p is a quasi-
coboundary if it is the sum of a coboundary and a constant.

We recall that p is weakly mixing if and only if there exists no nontrivial
character v of U so that yo p: X — T is a quasi-coboundary.

A proof of the following result can be found in Moore and Schmidt [MS80]:

LEMMA C.5. Let (X, u,T) be an ergodic system, U a torus and p: X — U
a cocycle. If the map (z,2') — p(x) — p(a’): X x X — U is a coboundary of
(X x X,puxp,TxT), then p is a quasi-coboundary.

We note that the analogous result does not hold for a cocycle with values
in an arbitrary compact abelian group.
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LEMMA C.6. Let (X,u,T) be an ergodic system, U a compact abelian
group and p € C(X,U) a cocycle. Assume that the map (z,2") — p(z): X x
X — T is a coboundary on (X X X, pux u,T xT). Then p is a coboundary.

Proof. By Lemma C.1, we can reduce to the case where U is the circle
group S'. Write (Z,t) for the Kronecker factor of X and 7: X — Z for the
natural projection.

By hypothesis, there exists a function f: X x X — S with

F(Ta, T2\ (@, 2) = plx) .
The function defined on X x X x X by (z,2’,2") — f(x,2') f(z,2") is invariant
under T'x T' x T and thus is measurable with respect to Z x Z x Z. It follows
that the function f is measurable with respect to X x Z. Taking the Fourier
transform of f with respect to the second variable, we can write

(43) fla, ) = gy(@)y(n(z)) .
veZ
Then

fla,a) fla,2") = Y gy(x) go() y( () O(m(a")) .
7,962
As this function is invariant under T'xT'xT', by unicity of the Fourier transform
we get that for every v,0 € Z,
94(T) go(T'x) gy () go() = (1)) -

The function = +— g,(x)ge(x) is an eigenfunction of X for the eigenvalue
7(t)0(t) and so there exists a constant c, ¢ with

9v(x) go(x) = ¢y 9 v (7(2)) O(m(2)) -

Finally, there exists a function ¢ on X and for every ~ € U there exists a
constant ¢, so that

gy () = cy P(x) y(m(z)) .
Using the values of the functions g, in Equation (43), we see that there exists
a function g on Z with f(z,2") = ¢(x)g(w(z) — w(2’)). As f is of modulus
1, the functions g and ¢ have constant modulus and so we can assume that

6] = 1. Now, p(z) = 6(T'x)(2)). O

The next Lemma uses the definition and properties of the measures ,u[k]
introduced in Section 3. The notation §Lk] was introduced in Section 2.1.

LEmMMA C.7. Let (X, u,T) be an ergodic system, 1 < £ < k integers and
let o be an (-face of Vi,. Let U be a compact abelian group and p: X — U a
cocycle. If the cocycle p o §g€] = XM - U is a coboundary of (X! plFl T,
then p is a coboundary of (X, 8 Tl
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Proof. We begin by the case £ = 0. Here p is a cocycle on X. Assuming
that for some vertex e of Vj, the cocycle x — p(x.) is a coboundary of X ] we
have to show that p is a coboundary on X. By permuting coordinates, we can
restrict to the case that € is the vertex 0.

We proceed by induction on k. For k = 1, the result is exactly Lemma C.6.
Take k > 1 and assume that the result holds for k. Assume that the cocy-
cle x — p(zg) is a coboundary of X[+, We use the ergodic decomposi-
tion (4) of pl¥! and the formula (5) for ul*+1. By Corollary C.4, for almost
every w the cocycle x — p(z¢) is a coboundary on the Cartesian square of
(X [k],ug},T[k}). This cocycle depends only on the first coordinate of this
square and by Lemma C.6 we get that the map x’ — p(xp) is a cobound-
ary of the system (X, Mﬁ“ },TW). As this holds for almost every w, the map
x' - p(x}) is a coboundary of the system (X, ulFl T by Corollary C.4.
By the induction hypothesis, p is a coboundary of X. This completes the proof
when ¢ = 0.

Consider the case that £ > 0. We use the ergodic decomposition given by
Formula (5) for ul¥ and by Lemma 3.1 we get

= /Q (™ apy(w) .

We use Corollary C.4 and the first part of the proof with k& — ¢ substituted for
k and (X W,ME],TW) substituted for (X, u, T'). The result follows. O

C.5. Cocycles and groups of automorphisms. Let (X, 1) be a probability
space, G a compact abelian group and (g,z) — g -« an action of G on X
by measure-preserving transformations. This action is said to be free if there
exists a probability space (Y,r) and a measurable bijection j: Y x G — X,
mapping v X mg to u, with j(y,gh) =g -j(h) fory € Y and g,h € G.

The vertical rotations introduced in Appendix C.1 are free actions. The
action of a compact abelian group on itself by translations is free. The restric-
tion of a free action to a closed subgroup is free.

The next lemma says that a free action of a compact abelian group G
is ‘cohomologically’ free. It is a classical result, but we give a proof for
completeness.

LEMMA C.8. Let {S; : g € G} be a free action of the compact abelian
group G on the probability space (X, ) and let g — ¢4 be a measurable map

from G to C(X,8') so that

(44) Ggn = b - (90 0 g) for every g,h € G .

Then there exists ¢ € C(X,S') so that ¢y = (¢ 0 Sy) - ¢ for every g € G.
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Proof. For g € G, let S, be the unitary operator on L?(u) given by
Sgf(z) = ¢¢(x)f(g - ). The hypothesis (44) means that {S; : g € G} is a
unitary representation of the compact abelian group G in L?(i). Therefore,
L%(u) is the Hilbert sum of the spaces H, vy € G, where

H,={f € L*u):Syf =~(g) f for every g € G} .

If f € H,, the function |f| is invariant under the action of G and thus so is
the set {x € X : f(x) # 0}. Therefore, there exists a partition X = J,, X,
of X into invariant sets and there exists for every n a character -, € G and a
function f, € H,, with f,(z) # 0 for € X,,. As the action of G is free, for
every n there exists a function h,: X — S with h, 0 g = 7,,(9)hy for every
g € G. The function ¢ defined on X by

| fn(2)]

satisfies the announced property. O

d(x) = hp(x) for x € X,

LEmMMA C.9. Let (X,u,T) be an ergodic system, U a compact abelian
group and let (u,z) — u-x be a free action of U on X by automorphisms.
Let p € C(X) be a cocycle so that po S, — p is a coboundary for every u € U.
Then there exists an open subgroup Uy of U and a cocycle p’, cohomologous
to p, with p' 0 Sy, = p’ for every u € Uy.

Proof. By hypothesis, for every u € U there exists f € C(X) with
(45) poSy—p=foT—f.

As in Appendix A, for f € C(X) and v € U we write S, ¢ for the measure-
preserving transformation of X x T given by S, f(z,t) = (Sux,t + f(x)). The
skew product group U x C(X) consists of all transformations of this kind. Let
IC be the subset of U x C(X) consisting of the transformations S, ¢, where
u, [ satisfy Equation (45). Clearly, K is a closed subgroup of U x C(X).
By hypothesis, the natural projection p: X — U is onto and its kernel is
{S1,c : ¢ € T}, which is a group homeomorphically isomorphic to T. By
Corollary A.2, K is compact. We identify ker(p) with T.

As p is a homomorphism to an abelian group, its kernel T contains the
commutator subgroup K’ of K. But T is obviously included in the center of K.
Thus K is a < 2-step nilpotent group, and the commutator map K x L — T
is bilinear. This map is also continuous and is trivial on X x T and on T x K.
Thus it induces a continuous bilinear map /T x /T — T. As K/T can be
identified with U, this map can be viewed as a bilinear map from U x U to T
and by duality we see it as a continuous group homomorphism from U to U.
As U is discrete, the kernel of this last homomorphism is an open subgroup Uy
of U. Following these identifications back, we get that p~!(Up) is abelian.
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The compact abelian group p~!(Up) admits T as a closed subgroup, with
quotient equal to Uy. Thus it is isomorphic to Uy @ T. This means that the
restriction of p to p~!(Up) admits a cross section which is a continuous group
homomorphism. This cross section has the form u +— S,y and u — f, is a
continuous map from Uy — C(X), with

(46) pou—p=f,oT — f, for all u € Uy,
(47) fuv(®) = fu(x) + fu(Syx) for all u,v € Up, .

Since the action of U on X is free, by Equation (47) and Lemma C.8, there
exists f € C(X) so that f, = fou— f for every u € Uy. Write p’ = p— foT + f.
This cocycle is cohomologous to p and by Equation (46), p'ou = p’ for u € U.

O

LEMMA C.10. Let (X, u,T) be an ergodic system, U a compact abelian
group and (u,x) — u -z a free action of U on X by automorphisms. Let
p € C(X) be a cocycle, so that pou— p is a quasi-coboundary for every u € U.
Then there exists a closed subgroup Uy of U so that U/U; is toral and there
exists a cocycle p', cohomologous to p, with p' o S, = p' for every u € Uj.

Proof. The beginning of the proof is similar to the proof of Lemma C.9.
For every u € U, there exists f € C(X) and a constant ¢ € T so that

(48) pou—p=fol—f+c.

Let H be the subset of UxC(X) consisting of transformations .S,  so that u and
f satisfy Equation (48) for some c. Clearly, H is a closed subgroup of U x C(X).
By hypothesis, the projection p: H — U is onto and its kernel is {Si ¢ :
f is an eigenfunction of X'}. Thus ker(p) is homeomorphically isomorphic to
the group A(Z) of affine functions on the Kronecker factor Z of X (for this
notation see Section 8.4). This group can be identified with T @& Z and in
particular, it is locally compact. By Corollary A.2, H is locally compact.

A direct computation shows that the commutator subgroup K’ of K is
included in the subgroup T of H. Thus K = H/T is a locally compact abelian
group. We write q: K — U for the continuous group homomorphism induced
by p.

For S, s € H, the constant ¢ appearing in Equation (48) is well defined
and the map : S, ¢ + c induces a continuous group homomorphism from
‘H to T. This homomorphism is trivial on T and it induces a character ¢ of
K =H/T.

By the Structure Theorem of Locally compact Abelian Groups, K admits
an open subgroup £ isomorphic to K @R?, where K is a compact abelian group
and d > 0 is an integer. We identify £ with K @R and write Ko = K Nker(¢)
and Uy for the closed subgroup ¢(Kj) of U.
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For u € Up, there exists by definition f € C(X) so that S, ; € H and
P(Su,r) = 0. In other words, v and f satisfy Equation (48) with ¢ = 0,
meaning, they satisfy Equation (45). By Lemma C.9, there exist an open
subgroup U; of Uy and a cocycle p/, cohomologous to p, with p' ou = p’ for
every u € Uj.

It remains to show that U/Uj is a toral group. As L is open in K and ¢ is
an open map, ¢(£) is an open subgroup of U and thus U/q(L) is finite. Now,
q(£)/q(K) is a quotient of £L/K = R and is compact and thus is a torus. Also,
K/K) is isomorphic to ¢(K), which is a closed subgroup of T and so is equal
to T or is finite, and ¢(K)/Uy is a quotient of K /Ky and so is either finite or
isomorphic to T. Finally, Uy/U; is open and the proof is complete. O

Appendix D. The van der Corput lemma

We use several extensions of the classical van der Corput inequality, as
found for example in [KN74]. They deal with sequences in a Hilbert space H,
with norm |- and inner product (- | -). Let Re(z) denote the real part of the
complex number z.

LEMMA D.1 ([Be87]). Let {z,} be a sequence in H. For integers N and
H with1 < H < N,

N 2
e

H-1 N—h
<H(N+H-1) Z||xn||2+2 (N+H—=1)Y (H=h)>_ Re(zn | Tnn) -
n=1 h=1 n=1

Taking limits in this inequality, we get:

LEMMA D.2. Let {z,} be a bounded sequence in H. Then

N
hj{fnjg@pH%;mn < hmsup ths:op’ ; Tn | mn+h>} .

We need also a similar result for multidimensional sequences. The follow-
ing lemma can be found in the proof of Lemma A6 of [BMCO00]. Here we write
n = (ni,...,n;) for a point in Z*.

LEMMA D.3. Let {x, : n € ZF} be a bounded sequence in H. Assume that
for every h = (hy,...  hy) € ZF

k
H N_j v Z Re(@nin | 2n) =

; i—M;
i=1 M;<n; <Ny,
Mké.ﬁ.l;<Nk
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as My — Ni,...,Np — My — +oo, and that

as H

as Nq

k
Z HH;zhil"Yh —0

—H<h,<H, i=1

—H<hy,<H

— +00. Then
k
1

11 >, | —0

= N;—M;

i=1 M;<n; <Ny,

M, <nn<Ni

—M1,...,Nk—Mk—>+OO.
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