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The blow-up dynamic and upper bound

on the blow-up rate for critical
nonlinear Schrödinger equation

By Frank Merle and Pierre Raphael

Abstract

We consider the critical nonlinear Schrödinger equation iut = −∆u−|u| 4
N u

with initial condition u(0, x) = u0 in dimension N = 1. For u0 ∈ H1, local
existence in the time of solutions on an interval [0, T ) is known, and there exist
finite time blow-up solutions, that is, u0 such that limt↑T<+∞ |ux(t)|L2 = +∞.
This is the smallest power in the nonlinearity for which blow-up occurs, and
is critical in this sense. The question we address is to understand the blow-up
dynamic. Even though there exists an explicit example of blow-up solution and
a class of initial data known to lead to blow-up, no general understanding of the
blow-up dynamic is known. At first, we propose in this paper a general setting
to study and understand small, in a certain sense, blow-up solutions. Blow-up
in finite time follows for the whole class of initial data in H1 with strictly
negative energy, and one is able to prove a control from above of the blow-up
rate below the one of the known explicit explosive solution which has strictly
positive energy. Under some positivity condition on an explicit quadratic form,
the proof of these results adapts in dimension N > 1.

1. Introduction

1.1. Setting of the problem. In this paper, we consider the critical nonlin-
ear Schrödinger equation

(NLS)
{

iut = −∆u − |u| 4
N u, (t, x) ∈ [0, T ) × RN

u(0, x) = u0(x), u0 : RN → C
(1)

with u0 ∈ H1 = H1(RN ) in dimension N ≥ 1. The problem we address is the
one of formation of singularities for solutions to (1). Note that this equation
is Hamiltonian and in this context few results are known.

It is a special case of the following equation

iut = −∆u − |u|p−1u(2)

where 1 < p < N+2
N−2 and the initial condition u0 ∈ H1. From a result of

Ginibre and Velo [8], (2) is locally well-posed in H1. In addition, (1) is locally
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well-posed in L2 = L2(RN ) from Cazenave and Weissler [5]. See also [3], [2]
for the periodic case and global well posedness results. Thus, for u0 ∈ H1,
there exists 0 < T ≤ +∞ such that u(t) ∈ C([0, T ), H1) and either T = +∞,
where the solution is global, or T < +∞ and then lim supt↑T |∇u(t)|L2 = +∞.

We first recall the main known facts about (1), (2). For 1 < p < N+2
N−2 , (2)

admits a number of symmetries in the energy space H1, explicitly:

• Space-time translation invariance: If u(t, x) solves (2), then so does
u(t + t0, x + x0), t0, x0 ∈ R.

• Phase invariance: If u(t, x) solves (2), then so does u(t, x)eiγ , γ ∈ R.

• Scaling invariance: If u(t, x) solves (2), then so does λ
2

p−1 u(λ2t, λx),
λ > 0.

• Galilean invariance: If u(t, x) solves (2), then so does u(t, x−βt)ei β

2
(x− β

2
t),

β ∈ R.

From Ehrenfest’s law or direct computation, these symmetries induce invari-
ances in the energy space H1, respectively:

• L2-norm: ∫
|u(t, x)|2 =

∫
|u0(x)|2;(3)

• Energy:

E(u(t, x)) =
1
2

∫
|∇u(t, x)|2 − 1

p + 1

∫
|u(t, x)|p+1 = E(u0);(4)

• Momentum:

Im
(∫

∇uu(t, x)
)

= Im
(∫

∇u0u0(x)
)

.(5)

The conservation of energy expresses the Hamiltonian structure of (2) in H1.
For p < 1 + 4

N , (3), (4) and the Gagliardo-Nirenberg inequality imply

|∇u(t)|2L2 ≤ C(u0)
(
|∇u(t)|2α

L2 + 1
)

for some α < 1,

so that (2) is globally well posed in H1:

∀t ∈ [0, T [, |∇u(t)|L2 ≤ C(u0) and T = +∞.

The situation is quite different for p ≥ 1 + 4
N . Let an initial condition u0 ∈

Σ = H1 ∩ {xu ∈ L2} and assume E(u0) < 0, then T < +∞ follows from
the so-called virial Identity. Indeed, the quantity y(t) =

∫
|x|2|u|2(t, x) is well

defined for t ∈ [0, T ) and satisfies

y′′(t) ≤ C(p)E(u0)

with C(p) > 0. The positivity of y(t) yields the conclusion.



THE BLOW-UP DYNAMIC 159

The critical power in this problem is p = 1 + 4
N . From now on, we focus

on it. First, note that the scaling invariance now can be written:

• Scaling invariance: If u(t, x) solves (1), then so does

uλ(t, x) = λ
N

2 u(λx, λ2t), λ > 0,

and by direct computation

|uλ|L2 = |u|L2 .

Moreover, (1) admits another symmetry which is not in the energy space H1,
the so-called pseudoconformal transformation:

• Pseudoconformal transformation: If u(t, x) solves (1), then so does

v(t, x) =
1

|t|N

2

u

(
1
t
,
x

t

)
ei |x|2

4t .

This additional symmetry yields the conservation of the pseudoconformal en-
ergy for initial datum u0 ∈ Σ which is most frequently expressed as (see [30]):

d2

dt2

∫
|x|2|u(t, x)|2 = 4

d

dt
Im

(∫
x∇uu

)
(t, x) = 16E(u0).(6)

At the critical power, special regular solutions play an important role. They
are the so-called solitary waves and are of the form u(t, x) = eiωtWω(x), ω > 0,
where Wω solves

∆Wω + Wω|Wω|
4
N = ωWω.(7)

Equation (7) is a standard nonlinear elliptic equation. In dimension N = 1,
there exists a unique solution up to translation to (7) and infinitely many with
growing L2-norm for N ≥ 2. Nevertheless, from [1], [7] and [11], there is a
unique positive solution up to translation Qω(x). In addition Qω is radially
symmetric. When Q = Qω=1, then Qω(x) = ω

N

4 Q(ω
1
2 x) from the scaling

property. Therefore, one computes

|Qω|L2 = |Q|L2 .

Moreover, the Pohozaev identity yields E(Q) = 0, so that

E(Qω) = ωE(Q) = 0.

In particular, none of the three conservation laws in H1 (3), (4), (5) of (1) sees
the variation of size of the Wω stationary solutions. These two facts are deeply
related to the criticality of the problem, that is the value p = 1+ 4

N . Note that
in dimension N = 1, Q can be written explicitly

Q(x) =
(

3
ch2(2x)

) 1
4

.(8)
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Weinstein in [29] used the variational characterization of the ground state
solution Q to (7) to derive the explicit constant in the Gagliardo-Nirenberg
inequality

∀u ∈ H1 ,
1

2 + 4
N

∫
|u| 4

N
+2 ≤ 1

2

(∫
|∇u|2

) (∫
|u|2∫
Q2

) 2
N

,(9)

so that for |u0|L2 < |Q|L2 , for all t ≥ 0, |∇u(t)|L2 ≤ C(u0) and T = +∞,
the solution is global in H1. In addition, blow-up in H1 has been proved to
be equivalent to “blow-up” for the L2 theory from the following concentration
result: If a solution blows up at T < +∞ in H1, then there exists x(t) such
that

∀R > 0, lim inf
t↑T

∫
|x−x(t)|≤R

|u(t, x)|2 ≥ |Q|2L2 .

See for example [18].
On the other hand, for |u0|L2 ≥ |Q|L2 , blow-up may occur. Indeed, since

E(Q) = 0 and ∇E(Q) = −Q, there exists u0ε ∈ Σ with |u0ε|L2 = |Q|L2 + ε

and E(u0ε) < 0, and the corresponding solution must blow-up from the virial
identity (6).

The case of critical mass |u0|L2 = |Q|L2 has been studied in [19]. The pseu-
doconformal transformation applied to the stationary solution eitQ(x) yields
an explicit solution

S(t, x) =
1

|t|N

2

Q(
x

t
)ei |x|2

4t
− i

t(10)

which blows up at T = 0. Note that

|S(t)|L2 = |Q|L2 and |∇S(t)|L2 ∼ 1
|t| .

It turns out that S(t) is the unique minimal mass blow-up solution in H1 in
the following sense: Let u(−1) ∈ H1 with |u(−1)|L2 = |Q|L2 and assume that
u(t) blows up at T = 0; then u(t) = S(t) up to the symmetries of the equation.

In the case of super critical mass
∫
|u0|2 >

∫
Q2, the situation is more

complicated:

- There still exist in dimension N = 2 from a result by Bourgain and Wang,
[4], solutions of type S(t), that is, with blow-up rate |∇u(t)|L2 ∼ 1

T−t .

- Another fact suggested by numerical simulations, see Landman, Papan-
icolaou, Sulem, Sulem, [12], is the existence of solutions blowing up as

|∇u(t)|L2 ∼
√

ln(|ln|t||)
|t| .(11)
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These appear to be stable with respect to perturbation of the initial data.
In this frame, for N = 1, Perelman in [23] proves the existence of one
solution which blows up according to (11) and its stability in some space
E ∩ H1.

Results in [4] and [23] are obtained by a fixed-point-type arguments and
linear estimates, our approach will be different. Note that solutions satisfying
(11) are stable with respect to perturbation of the initial data from numerics,
but are known to be structurally unstable. Indeed, in dimension N = 2, if we
consider the next term in the physical approximation leading to (NLS), we get
the Zakharov equation

{
iut = −∆u + nu
1
c2
0
ntt = ∆n + ∆|u|2(12)

for some large constant c0. Then for all c0 > 0, finite time blow-up solutions
to (12) satisfy

|∇u(t)|L2 ≥ C

|T − t| .(13)

Note that this blow-up rate is the one of S(t) given by (10). Using a bifurca-
tion argument from (10), we can construct blow-up solutions to (12) with the
rate of blow-up (13), and these appear to be numerically stable; see [9] and [22].

Our approach in this paper to study blow-up solutions to (1) is based
on a qualitative description of the solution. We focus on the case where the
nonlinear dynamic plays a role and interacts with the dispersive part of the
solution. This last part will be proved to be small in L2 for initial conditions
which satisfy ∫

Q2 <

∫
|u0|2 <

∫
Q2 + α0 and E(u0) < 0(14)

where α0 is small. Indeed, under assumption (14), from the conservation laws
and the variational characterization of the ground state Q, the solution u(t, x)
remains close to Q in H1 up to scaling and phase parameters, and also transla-
tion in the nonradial case. We then are able to define a regular decomposition
of the solution of the type

u(t, x) =
1

λ(t)
N

2

(Q + ε)(t,
x − x(t)

λ(t)
)eiγ(t)

where |ε(t)|H1 ≤ δ(α0) with δ(α0) → 0 as α0 → 0 , λ(t) > 0 is a priori of
order 1

|∇u(t)|L2
, γ(t) ∈ R, x(t) ∈ RN . Here we use first the scaling invariance

of (1), and second the fact that the Qω are not separated by the invariance of
the equation; that is, E(Qω) = 0 and |Qω|L2 = |Q|L2 .
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The problem is to understand the blow-up phenomenon under a dynam-
ical point of view by using this decomposition, and the fact that the scaling
parameter λ(t) is such that 1

λ(t) is of size |∇u(t)|L2 . This approach has been
successfully applied in a different context for the critical generalized KdV equa-
tion

(KdV)
{

ut + (uxx + u5)x = 0, (t, x) ∈ [0, T ) × R
u(0, x) = u0(x), u0 : R → R .

(15)

This equation has indeed a similar structure, except for the lack of conformal
transformation which gives explicit blow-up solutions to (1). It has been proved
in the papers [13], [14], [15], [16], [17] that for α0 small enough, if E(u0) < 0
and

∫
|u0|2 <

∫
Q2 + α0, then one has:

(i) Blow-up occurence in finite or infinite time, i.e λ(t) → 0 as t → T ,
where 0 < T ≤ +∞.

(ii) Universality of the blow-up profile:
∫

ε2e−
|y|
10 → 0 as t → T .

(iii) Finite time blow-up under the additional condition
∫
x>0 x6|u0|2 <

+∞; i.e., T < +∞, and moreover |ux(t)|L2 ≤ C
T−t in a certain sense.

From the proof of these results, blow-up appeared in this setting as a
consequence of qualitative and dynamical properties of solutions to (15).

1.2. Statement of the theorem. In this paper, our goal is to derive some
dynamical properties of solutions to (1) such that

∫
|u0|2 ≤

∫
|Q|2 + α0 for

some small α0, and E(u0) < 0. In particular, we derive a control from above
of the blow rate for such solutions. More precisely, we claim the following:

Theorem 1 (Blow-up in finite time and dynamics of blow-up solutions
for N = 1). Let N = 1. There exists α∗ > 0 and a universal constant C∗ > 0
such that the following is true. Let u0 ∈ H1 be such that

0 < α0 = α(u0) =
∫

|u0|2 −
∫

Q2 < α∗

and

E(u0) <
1
2

(
Im(

∫
(u0)xu0)

|u0|L2

)2

.(16)

Let u(t) be the corresponding solution to (1), then:
(i) u(t) blows up in finite time, i.e. there exists 0 < T < +∞ such that

lim
t↑T

|ux(t)|L2 = +∞.

(ii) Moreover, for t close to T ,

|ux(t)|L2 ≤ C∗
(
|ln(T − t)| 12

T − t

) 1
2

.(17)
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In fact, from Galilean invariance, we view this result as a consequence of
the following:

Theorem 2. Let N = 1. There exists α∗ > 0 and a universal constant
C∗ > 0 such that the following is true. Let u0 ∈ H1 such that

0 < α0 = α(u0) =
∫

|u0|2 −
∫

Q2 < α∗,(18)

E0 = E(u0) < 0,

Im
(∫

(u0)xu0

)
= 0,

and u(t) be the corresponding solution to (1), then conclusions of Theorem 1
hold.

Proof of Theorem 1 assuming Theorem 2. Let N = 1 and u0 be as in the
hypothesis of Theorem 1. We prove that up to one fixed Galilean invariance,
we satisfy the hypothesis of Theorem 2. The following is well known: let u(t, x)
be a solution of (NLS) on some interval [0, t0] with initial condition u0 ∈ H1;
then for all β ∈ R, uβ(t, x) = u(t, x − βt)ei β

2
(x− β

2
t) is also an H1 solution on

[0, t0]. Moreover,

∀t ∈ [0, t0], Im
(∫

uxu

)
(t) = Im

(∫
uxu

)
(0).(19)

We denote uβ
0 = uβ(0, x) = u0(x)ei β

2
x and compute invariant (19)

Im
(∫

(uβ
0 )xuβ

0

)
= Im

∫ (
(u0)x + i

β

2
u0

)
u0 =

β

2

∫
|u0|2 + Im

∫
(u0)xu0.

We then choose β = −2 Im(
∫

(u0)xu0)∫
|u0|2 so that for this value of β

Im
(∫

(uβ
0 )xuβ

0

)
= 0.

We now compute the energy of the new initial condition uβ
0 and easily evaluate

from the explicit value of β and condition (16):

E(uβ
0 ) =

1
2

∫ ∣∣∣∣(u0)x + i
β

2
u0

∣∣∣∣2 − 1
6

∫
|uβ

0 |6 = E(u0) +
β

4
Im

∫
(u0)xu0 < 0.

Therefore, uβ
0 satisfies the hypothesis of Theorem 2. To conclude, we need only

note that∫
|ux(t, x)|2 =

∫
|uβ

x(t, x)|2 +
β2

4

∫
|u0|2 + β Im

∫
(u0)xu0

so that the explosive behaviors of u(t, x) and uβ(t, x) are the same. This
concludes the proof of Theorem 1 assuming Theorem 2.
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Let us now consider the higher dimensional case N ≥ 2. The proof of
Theorem 1 can indeed be carried out in higher dimension assuming positivity
properties of a quadratic form. See Section 4.4 for more details and comments
for the case N ≥ 2. Consider the following property:

Spectral Property. Let N ≥ 2. Set Q1 = N
2 Q + y · ∇Q and Q2 =

N
2 Q1 + y · ∇Q1. Consider the two real Schrödinger operators

L1 = −∆ +
2
N

(
4
N

+ 1
)

Q
4
N
−1y · ∇Q , L2 = −∆ +

2
N

Q
4
N
−1y · ∇Q,(20)

and the quadratic form for ε = ε1 + iε2 ∈ H1:

H(ε, ε) = (L1ε1, ε1) + (L2ε2, ε2).

Then there exists a universal constant δ̃1 > 0 such that for all ε ∈ H1, if
(ε1, Q) = (ε1, Q1) = (ε1, yQ) = (ε2, Q1) = (ε2, Q2) = (ε2,∇Q) = 0, then

(i) for N = 2,

H(ε, ε) ≥ δ̃1(
∫

|∇ε|2 +
∫

|ε|2e−2−|y|)

for some universal constant 2− < 2;

(ii) for N ≥ 3,

H(ε, ε) ≥ δ̃1

∫
|∇ε|2.

We then claim:

Theorem 3 (Higher dimensional case). Let N ≥ 2 and assume the Spec-
tral Property holds true; then there exists α∗ > 0 and a universal constant
C∗ > 0 such that the following is true. Let u0 ∈ H1 such that

0 < α0 = α(u0) =
∫

|u0|2 −
∫

Q2 < α∗, E0 <
1
2

( |Im(
∫
∇u0u0)|

|u0|L2

)2

.

Let u(t) be the corresponding solution to (1); then u(t) blows up in finite time
0 < T < +∞ and for t close to T :

|∇u(t)|L2 ≤ C∗
(
|ln(T − t)|N

2

T − t

) 1
2

.

Comments on the result.
1. Spectral conjecture: For N = 1, the explicit value of the ground state

Q allows us to compare the quadratic form H involved in the Spectral Prop-
erty with classical known Schrödinger operators. The problem reduces then
to checking the sign of some scalar products, what is done numerically. We
conjecture that the Spectral Property holds true at least for low dimension.



THE BLOW-UP DYNAMIC 165

2. Blow-up rate: Assume that u blows up in finite time. By scaling
properties, a known lower bound on the blow-up rate is

|∇u(t)|L2 ≥ C∗
√

T − t
.(21)

Indeed, consider for fixed t ∈ [0, T )

vt(τ, z) = |∇u(t)|−
N

2
L2 u

(
t + |∇u(t)|−2

L2 τ, |∇u(t)|−1
L2 z

)
.

By scaling invariance, vt is a solution to (1). We have |∇vt|L2 + |vt|L2 ≤ C,
and so by the resolution of the Cauchy problem locally in time by a fixed point
argument (see [10]), there exists τ0 > 0 independent of t such that vt is defined
on [0, τ0]. Therefore, t + |∇u(t)|−2

L2 τ0 ≤ T which is the desired result.

The problem here is to control the blow-up rate from above. Our result is
the first of this type for critical NLS. No upper bound on the blow-up rate was
known, not even of exponential type. Note indeed that there is no Lyapounov
functional involved in the proof of this result, and that it is purely a dynamical
one.

We exhibit a first upper bound on the blow-up rate as

|∇u(t)|L2 ≤ C∗√
|E0|(T − t)

(22)

for some universal constant C∗ > 0. This bound is optimal for NLS in the
sense that there exist blow-up solutions with this blow-up rate. Indeed, apply
the pseudoconformal transformation to the stationary solutions eiω2tω

N

2 Q(ωx)
to get explicit blow-up solutions

Sω(t, x) =
(

ω2

|t|

)N

2

e−i ω

t
+i x2

4t Q
(ωx

t

)
.

Then one easily computes

|Sω|L2 = |Q|L2 , E(Sω) =
C

ω2
, |∇Sω(t)|L2 =

ωC

|t| ,

so that

|∇Sω(t)|L2 ∼
√

C√
|E0| |t|

as t → 0.

Note nevertheless that these solutions have strictly positive energy and α0 = 0.

In our setting of strictly negative energy initial conditions, no solutions
of this type is known, and we indeed are able to improve the upper bound by
excluding any polynomial growth between the pseudoconformal blow-up (22)
and the scaling estimate (21) by

|∇u(t)|L2 ≤ C∗
(
|ln(T − t)| 12

T − t

) 1
2

.
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It says in particular that the blow-up rate is the one of the scaling up to
a logarithmic correction. Nevertheless, we do not expect this control to be
optimal in the logarithmic scale according to the expected double logarithm
behavior (11). Note that the fact that the whole open set of strictly negative
energy solutions shares the same dynamical behavior and in particular never
sees the rate of explicit blow-up solution S(t) is new and noteworthy.

We would like to point out that the improvement of blow-up rate control
from estimate (22) to (17) heavily relies on algebraic cancellations deeply re-
lated to the degeneracy of the linear operator around Q which are unstable
with respect to “critical” perturbations of the equation. Indeed, recall for ex-
ample that all strictly negative energy solutions to the Zakharov equation (12)
satisfy the lower bound (13). On the other hand, we expect the first argument
to be structurally stable in a certain sense.

3. About the exact lnln rate of blow-up: We expect from the result that
strictly negative energy solutions blow-up with the exact lnln law: |∇u(t)|L2 ∼
C∗

(
ln|ln(T−t)|

T−t

) 1
2
. There exist different formal approaches to derive this law,

see [25] and references therein, all somehow based on an asymptotic expansion
of the solution at very high order near blow-up time. Perelman in [23] has
succeeded in dimension N = 1 for a very specific symmetric initial data close
at a very high order to these formal types of solutions in building, using a
fixed point argument, an exact solution satisfying this law. Our approach is
different: we consider the large set of initial data with strictly negative energy,
in any dimension where formal asymptotic developments fail, and then prove
a priori some rigidity properties of the dynamics in H1 which yield finite
time blow-up and an upper bound only on the blow-up rate. From the works
on critical KdV by Martel and Merle, [14], lower bounds on the blow-up rate
involve a different analysis of dispersion in L2 which is not yet available for (1).

4. Blow-up result : In the situation
∫
|u0|2 ≤

∫
|Q|2 + α0, we show that

blow-up is related to local in space information, and we do not need the addi-
tional assumption u0 ∈ Σ = H1 ∩ {xu ∈ L2}. Previous results were known in
the symmetric case (and N = 1) when the singularity forms at 0 (see [21]), and
in the nonradial case, Nawa in [20] proved for strictly negative energy solutions
the existence of a sequence of times tn such that limn→+∞ |∇u(tn)|L2 = +∞.
In fact, our result decomposes into two stages:

(i) First, the solution blows up in H1 in finite or infinite time T .

(ii) Second, a refined study of the nonlinear dynamic ensures T < +∞. Note
that for E(u0) < 0, this last fact is unknown for critical KdV (and it is
unclear whether it would be true). Note moreover that the result holds
for t < 0 with u(−t, x) which also is a solution to (1) satisfying the
hypothesis of Theorem 2.
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5. Comparison with critical KdV: In the context of Hamiltonian systems
in infinite dimension with infinite speed of propagation, the only known re-
sults of this type are for the critical generalized KdV equation, for which the
proofs were delicate. The situation here is quite different. On the one hand,
the existence of symmetries related to the Galilean and the pseudoconformal
transformation induces more localized properties of (1) viewed in the ε vari-
able, and we do not need to focus on exponential decay properties of the limit
problem which was the key to all proofs in the study of (15).

On the other hand, from these invariances, additional degeneracies related
to the underlying structure of (1) arise and tend to make the analysis of the
interactions more complicated.

1.3. Strategy of the proof. We briefly sketch in this subsection the proof
of Theorem 2. We consider equation (1) in dimension N = 1 for an initial
datum close to Q in L2, with strictly negative energy and zero momentum.
See Section 4.4 for the higher dimensional case.

First, from the assumption of closeness to Q in L2 and the strictly negative
energy condition, variational estimates allow us to write

u(x, t) =
eiγ(t)

λ
1
2 (t)

(Q + ε)
(

x − x(t)
λ(t)

, t

)
for some functions λ(t) > 0, γ(t) ∈ R, x(t) ∈ R such that

1
λ(t)

∼ |ux(t)|L2(23)

and ε a priori small in H1.
The ε equation inherited from (1) can be written after a change of time

scale ds
dt = 1

λ
2
(t)

:

i∂sε + Lε = i
λs

λ

(
Q

2
+ yQy

)
+ γsQ + i

xs

λ
Qy + R(ε)

with R(ε) quadratic in ε = ε1 + iε2. Using modulation theory from scaling,
phase and translation invariance, we slightly modify λ(t), γ(t), x(t) so that ε

satisfies suitable orthogonality conditions

(
ε1,

Q

2
+ yQy

)
= (ε1, yQ) =

(
ε2,

1
2

(
Q

2
+ yQy

)
+ y

(
Q

2
+ yQy

)
y

)
= 0.

(24)

Note that we do not use modulation theory with parameters related to the
pseudoconformal transformation or to Galilean invariance, this last symmetry
being used only to ensure (18).

Two noteworthy facts hold for this decomposition:



168 FRANK MERLE AND PIERRE RAPHAEL

(i) Orthogonality conditions (24) are adapted to the dispersive structure
of (1) for ε ∈ H1 inherited from the virial relation (6) for u ∈ Σ, as they allow
cancellations of some oscillatory integrals in time. Indeed, we get control of
second order terms in ε of the form∫

|εy|2 +
∫

|ε|2e−2−|y| ≤ C(ε2,
Q

2
+ yQy)2(25)

in a time-averaging sense, and for some fixed universal constant 2− < 2.

(ii) This decomposition is also adapted to the study of variations of size
of u, or equivalently the equation governing the scaling parameter λ(s) from
(23), as we will prove

−λs

λ
∼ (ε2,

Q

2
+ yQy)(26)

in a time-averaging sense, up to quadratic terms.
Note that the same scalar product (ε2,

Q
2 + yQy) is involved, and in fact

governs the whole dynamic, and that the ε decomposition we introduce is
adapted to both (i) and (ii), while two different decompositions had to be
considered in the proof of [15]. From these two facts, we exhibit the sign
structure of (ε2,

Q
2 + yQy), which is the main key to our analysis, by showing

∃s0 ∈ R such that ∀s > s0,

(
ε2,

Q

2
+ yQy

)
(s) > 0.

Together with (23), (25) and (26), the almost monotonicity result of the scaling
parameter λ(t) follows:

∃t0 ∈ R such that ∀t′ ≥ t ≥ t0 , |ux(t′)|L2 ≥ 1
2
|ux(t)|L2 .

This property removes the difficult problem of oscillations in time of the size
of the solution which had to be taken into account in the study of (15).

The proof of Theorem 2 now follows in two steps:

(i) First, we prove a finite or infinite time blow-up result; i.e., there exists
0 < T ≤ +∞ such that

lim
t↑T

|ux(t)|L2 = +∞ or equivalently lim
s→+∞

λ(s) = 0.

(ii) To prove blow-up in finite time and the desired upper-bound on
|ux(t)|L2 , we study as in [15] dispersion onto intervals of slow variations of
the scaling parameter. The existence of such intervals heavily relies on the
first step. More precisely, we consider a sequence tn such that

|ux(tn)|L2 = 2n or equivalently λ(tn) ∼ 2−n.

To prove an upper bound on the blow-up rate, the strategy is to exhibit two
different links between the key scalar product (ε2,

Q
2 + yQy) and the scaling
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parameter λ, which formally leads according to (26) to a differential inequality
for λ. We then rigorously work out this differential inequality by working on
the slow variations intervals [tn, tn+1].

Now, we exhibit two different ways to get pointwise control of λ by
(ε2,

1
2Q + yQy), which lead to two different controls on the blow-up rate:

1. A first estimate heavily relies on monotonicity results inherited from
the basic dispersive structure of (1) in the ε variable and further dynamical
arguments, and can be written for s large enough

|E0|λ2(s) ≤ B

(
ε2,

Q

2
+ yQy

)2

(s),(27)

for some universal constant B > 0. Putting together (26) and (27), we prove
the integral form of the differential inequality

−λs

λ
≥ C

√
|E0|λ or equivalently − λt ≥ C

√
|E0|

from ds
dt = 1

λ2 ; that is, explicitly

tn+1 − tn ≤ C√
|E0|

λ(tn) ≤ C√
|E0|

2−n.

This allows us to conclude the finitness of the blow-up time, and the bound

|ux(t)|L2 ≤ C∗√
|E0|(T − t)

.

2. Using a degeneracy property of the linearized operator close to Q

which is unstable with respect to perturbation, we exhibit a refined dispersive
structure in the ε variable and much better control: for s large enough

λ2(s) ≤ exp

(
− B̃

(ε2,
Q
2 + yQy)2(s)

)
,(28)

for some universal constant B̃. Putting (26) and (28) together again, we prove
the integral form of the differential inequality

−λs

λ
≥ C√

|ln(λ(s))|
,

or more precisely,

tn+1 − tn ≤ Cλ2(tn)|ln(λ(tn)| 12 ≤ C2−2n√n,

which leads to the bound

|ux(t)|L2 ≤ C∗
(
|ln(T − t)| 12

T − t

) 1
2

.



170 FRANK MERLE AND PIERRE RAPHAEL

This paper is organized as follows. In Section 2, we build the regular ε de-
composition adapted to dispersion with the suitable orthogonality conditions
on ε. In Section 3, we exhibit the local dispersive inequality in L2

loc inherited
from the virial structure of (1) in Σ. The almost monotonicity of the scaling
parameter then follows. In Section 4, we prove Theorem 2, and focus in Sec-
tion 4.4 on the higher dimensional case. Except in Section 4.4, we shall always
work with (1) in dimension N = 1.

2. Regular decomposition of negative energy solutions

In this section and the following, we build a general setting to study
negative energy solutions to (NLS) whose L2-norm is close enough to the one
of the soliton. Here, we derive from variational estimates and conservation
laws a sharp decomposition of such solutions and its basic properties.

From now on, we consider u0 ∈ H1 such that

α0 = α(u0) =
∫

|u0|2 −
∫

Q2 < α∗, E0 = E(u0) < 0, Im
(∫

(u0)xu0

)
= 0

for some 0 < α∗ small enough, to be chosen later.

2.1. Decomposition of the solution and related variational structure. Let
us start with a classical lemma of proximity of the solution up to scaling, phase
and translation factors to the function Q related to the variational structure
of Q and the energy condition. For u ∈ H1, we note α(u) =

∫
|u|2 −

∫
Q2.

Lemma 1. There exists a α1 > 0 such that the following property is true.
For all 0 < α′ ≤ α1, there exists δ(α′) with δ(α′) → 0 as α′ → 0 such that for
all u ∈ H1, if

0 < α(u) < α′ and E(u) ≤ α′
∫

|ux|2,(29)

then there exist parameters γ0 ∈ R and x0 ∈ R such that

|Q − eiγ0λ
1/2
0 u(λ0(x + x0))|H1 < δ(α′)(30)

with λ0 = |Qx|L2

|ux|L2
.

Proof of Lemma 1. It is a classical result. See for example [14]. Let us
recall the main steps. The proof is based on the variational characterization
of the ground state in H1(C). Recall from the variational characterization of
the function Q (following from the Gagliardo-Nirenberg inequality) that for
u ∈ H1(R),

E(u) = 0,

∫
|u|2 =

∫
Q2,

∫
|ux|2 =

∫
Qx

2, u ≥ 0
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is equivalent to
u = Q(. + x0) for some x0 ∈ R.

Now let u ∈ H1(C) be such that E(u) = 0 and
∫
|u|2 =

∫
Q2. Then

|u| ∈ H1(R) satisfies
∫

(|u|x)2 ≤
∫
|ux|2, so that E(|u|) ≤ E(u) = 0. But

from Gagliardo-Nirenberg,
∫
|u|2 =

∫
Q2 implies E(|u|) ≥ 0, so that E(|u|) =

E(u) = 0, and |u| = λ
1
2
0 Q(λ0(·+ x0)) for some parameters λ0 > 0 and x0 ∈ R.

Consequently, u does not vanish on R and one may write u = |u|eiθ so that∫
|ux|2 =

∫
(|u|)2x +

∫
|u|2(θx)2. From E(|u|) = E(u), we conclude θ(x) is a

constant. In other words, if u ∈ H1(C) is such that

E(u) = 0 and
∫

|u|2 =
∫

Q2,

then

u = eiγ0λ
1
2
0 Q(λ0(· + x0)) for some parameters λ0 > 0, γ0 ∈ R and x0 ∈ R.

We now prove Lemma 1 and argue by contradiction. Assume that there
is a sequence un ∈ H1(C) such that

lim
n→+∞

∫
|un|2 =

∫
Q2 and lim

n→∞
E(un)∫
|unx|2

≤ 0.

Consider now vn = λ
1/2
n un(λnx), where λn = |Qx|L2

|unx|L2
. We have the following

properties for vn,∫
|vn|2 →

∫
Q2 ,

∫
|vnx|2 = 1 and lim

n→+∞
E(vn) ≤ 0.

From Gagliardo-Nirenberg inequality E(vn) ≥ 1
2

(∫
|vnx|2

) (
1 −

(
|vn|L2

|Q|L2

)4
)

,

we conclude E(vn) → 0. Using classical concentration compactness procedure,
we are able to show that there is xn ∈ R and γn ∈ R such that eiγnvn(x+xn) →
Q in H1. See for example [27], [28]. This concludes the proof of Lemma 1.

It is now natural to modulate the solution u to (1) according to the three
fundamental symmetries, scaling, phase and translation, by setting

ε(t, y) = eiγ(t)λ1/2(t)u(t, λ(t)y + x(t)) − Q(y)

and to study the remainder term ε, which will be proved to be small.
Let us formally compute the equation verified by ε after the change of

time scale ds
dt = 1

λ2(t) :

iεs + Lε = i
λs

λ

(
Q

2
+ yQy

)
+ γsQ + i

xs

λ
Qy + R(ε).(31)

R(ε) is formally quadratic in ε, and L is the linear operator close to the ground
state. A first strategy to understand equation (31) is to neglect the nonlinear
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terms R(ε) which should be small according to (30), and to study the linear
equation

iεs + Lε = F

for some fixed function F . This operator and the properties of the propagator
eitL have been extensively studied in [27], [28], [4].

When considering the linear equation underlying (31), the situation is as
follows. The operator L, which is a matrix operator L = (L+, L−), has a so-
called generalized null space reproducing all the symmetries of (1) in H1. This
leads to the following algebraic identities:

L+

(
Q
2 + yQy

)
= −2Q (scaling invariance),

L+(Qy) = 0 (translation invariance),

L−(Q) = 0 (phase invariance),

L−(yQ) = −2Qy (Galilean invariance).

An additional relation induced by the pseudoconformal transformation holds
in the critical case

L−(y2Q) = −4
(

Q

2
+ yQy

)
and leads to the existence of an additional mode in the generalized null space
of L not generated by a symmetry usually denoted ρ. This solves

L+ρ = −y2Q.

These directions lead to the existence of growing solutions in H1 to the lin-
ear equation. More precisely, Weinstein proved on the basis of the spectral
structure of L the existence of a decomposition H1 = M ⊕S, where S is finite-
dimensional, with |eitLε|H1 ≤ C for ε ∈ M and |eitLε|H1 ∼ t3 for ε ∈ S. The
linear kind of strategies developed were then as follows: as each symmetry is at
the heart of a growing direction in time for the solutions to the linear problem,
one uses modulation theory, modulating on all the symmetries of (1), that is
also Galilean invariance and pseudoconformal transformation, to a priori get
rid of these directions. Note nevertheless that as the pseudoconformal trans-
formation is not in the energy space and induces the additional degenerated
direction ρ, the analysis is here usually very difficult. Indeed, this linear ap-
proach has been successfully applied only in [23] to build one stable blow-up
solution. See [24] for other applications, and also Fibich, Papanicolaou [6] and
Sulem, Sulem [25], for a more heuristic and numerical study.

Our approach is here quite different and more nonlinear. We shall use
modulation theory only for the three fundamental symmetries which are scal-
ing, phase and translation in the nonradial case. Galilean invariance is used
directly on the initial data u0 to get extra cancellation (18) which is preserved
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in time. Moreover, we shall make no explicit use of the pseudoconformal trans-
formation as this symmetry is not in the energy space. In particular, we do
not cover the two degenerate directions of the linearized operator induced by
the pseudoconformal invariance. And when using modulation theory, the direc-
tions we should a priori decide to avoid are not related to the spectral structure
of the linearized operator L, but to the dispersive structure in the ε variable
underlying (1). This structure is not inherent to the energetic structure, that
is, the study of L, but to the virial type structure related to dispersion, as was
the case for the KdV equation; see the third section for more details.

2.2. Sharp decomposition of the solution. We now are able to have the
following decomposition of the solution u(t, x) for α(u0) small enough. The
choice of orthogonality conditions will be clear from the next section. We fix
the following notation:

Q1 =
1
2
Q + yQy and Q2 =

1
2
Q1 + y(Q1)y.

Lemma 2 (Modulation of the solution). There exists α2 > 0 such that
for α0 < α2, there exist some continuous functions λ : [0, T ) → (0,+∞),
γ : [0, T ) → R and x : [0, T ) → R such that

∀t ∈ [0, T ) , ε(t, y) = eiγ(t)λ1/2(t)u(t, λ(t)y + x(t)) − Q(y)(32)

satisfies the following properties:

(i)

(ε1(t), Q1) = 0 and (ε1(t), yQ) = 0(33)

and

(ε2(t), Q2) = 0,(34)

where ε = ε1 + iε2 in terms of real and imaginary parts.

(ii)

|1 − λ(t)
|ux(t)|L2

|Qx|L2
| + |ε(t)|H1 ≤ δ(α0) , where δ(α0) → 0 as α0 → 0.

(35)

Proof of Lemma 2. The proof is similar to that of Lemma 1 in [14]. Let
us briefly recall it. By conservation of the energy, we have for all t ∈ [0, T ),
E(u(t)) = E0 < 0 and condition (29) is fulfilled. Therefore, by Lemma 1, for all
t ∈ [0, T ), there exists γ0(t) ∈ R and x0(t) ∈ R such that, with λ0(t) = |Qx|L2

|ux(t)|L2
,∣∣∣Q − eiγ0(t)λ0(t)1/2u (λ0(t)(x + x0(t)))

∣∣∣
H1

< δ(α0).
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Now we sharpen the decomposition as in Lemma 2 in [14]; i.e., we choose
λ(t) > 0, γ(t) ∈ R and x(t) ∈ R close to λ0(t), γ0(t) and x0(t) such that
ε(t, y) = eiγ(t)λ1/2(t)u(t, λ(t)y+x(t))−Q(y) is small in H1 and satisfies suitable
orthogonality conditions

(ε1(t), Q1) = (ε1(t), yQ) = 0 and (ε2(t), Q2) = 0.(36)

The existence of such a decomposition is a consequence of the implicit function
theorem (see [14] for more details). For α > 0, let

Uα = {u ∈ H1(C); |u − Q|H1 ≤ α},

and for u ∈ H1(C), λ1 > 0, γ1 ∈ R, x1 ∈ R, define

ελ1,γ1,x1(y) = eiγ1λ
1/2
1 u(λ1y + x1) − Q.(37)

We claim that there exist α > 0 and a unique C1 map : Uα → (1− λ, 1 + λ)×
(−γ, γ) × (−x, x) such that if u ∈ Uα, there is a unique (λ1, γ1, x1) such that
ελ1,γ1,x1 , defined as in (37), is such that

(ελ1,γ1,x1)1 ⊥ Q1, (ελ1,γ1,x1)1 ⊥ yQ and (ελ1,γ1,x1)2 ⊥ Q2(38)

where ελ1,γ1,x1 = (ελ1,γ1,x1)1 + i(ελ1,γ1,x1)2. Moreover, there exist a constant
C1 > 0 such that if u ∈ Uα, then

|ελ1,γ1,x1 |H1 + |λ1 − 1| + |γ1| + |x1| ≤ C1α.

Indeed, we define the following functionals of (λ1, γ1, x1):

ρ1(u) =
∫

(ελ1,γ1,x1)1Q1, ρ
2(u) =

∫
(ελ1,γ1,x1)1yQ, ρ3(u) =

∫
(ελ1,γ1,x1)2Q2.

We compute at (λ1, γ1, x1) = (1, 0, 0):

∂ελ1,γ1,x1

∂x1
= ux,

∂ελ1,γ1,x1

∂λ1
=

u

2
+ yux,

∂ελ1,γ1,x1

∂γ1
= iu,

and obtain at the point (λ1, γ1, x1, u) = (1, 0, 0, Q),

∂ρ1

∂λ1
=

∫
Q2

1,
∂ρ1

∂γ1
= 0,

∂ρ1

∂x1
= 0,

∂ρ2

∂λ1
= 0,

∂ρ2

∂γ1
= 0,

∂ρ2

∂x1
= −1

2

∫
Q2,

∂ρ3

∂λ1
= 0,

∂ρ3

∂γ1
= −

∫
Q2

1,
∂ρ3

∂x1
= 0.

The Jacobian of the above functional is 1
2 |Q1|4L2 |Q|2L2 , so that by the im-

plicit function theorem, there exist α > 0, a neighborhood V1,0,0 of (1, 0, 0) in
R3 and a unique C1 map (λ1, γ1, x1) : {u ∈ H1; |u−Q|H1 < α} → V1,0,0, such
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that (38) holds. Now consider α2 > 0 such that δ(α2) < α. For all time, there
are parameters x0(t) ∈ R, γ0(t) ∈ R, λ0(t) > 0 such that∣∣∣Q − eiγ0(t)λ0(t)1/2u (λ0(t)(x + x0(t)))

∣∣∣
H1(C)

< α.

Now existence and local uniqueness follow from the previous result applied to
the function eiγ0(t)λ0(t)1/2u(λ0(t)(x+x0(t))). Smallness estimates follow from
direct calculations. Note also that for fixed t, γ0(t) and x0(t) are continuous
functions of u from (33) and (34), so that the continuity of u with respect to
t yields the continuity in time of γ0(t) and x0(t). This concludes the proof of
Lemma 2.

2.3. Smallness estimate on ε. In this section, we prove a smallness result
on the remainder term ε of the above regular decomposition. The argument
relies only on the conservation of the two first invariants in H1, namely the
L2-norm and energy. The third invariant, momentum, will be used in the next
subsection. We claim:

Lemma 3 (Smallness property on ε). There exists α3 > 0 and a univer-
sal constant C > 0 such that for α0 < α3,

∀t, |ε(t)|H1 ≤ C
√

α0.(39)

Remark 1. Note that we have already proved a smallness estimate on
ε (35): |ε|H1 ≤ δ(α0). This estimate was a consequence of the variational
characterization of the ground state Q. In this sense, (39) is a refinement
of (35) and is obtained by exhibiting coercive properties of L, that is of the
linearized structure of the energy close to Q. Nevertheless, we could carry out
the whole proof of Theorem 2 with (35) only.

Proof of Lemma 3. Let us recall that L is a matrix operator, L =
(L+, L−):

L+ = −∆ + 1 − 5Q4 , L− = −∆ + 1 − Q4.(40)

Now the conservation of the L2-norm can be written∫
ε2
1 + ε2

2 + 2
∫

ε1Q = α0(41)

and the conservation of energy yields for E0 < 0,

∫
|ε1y|2 − 5

∫
Q4ε2

1 − 2
∫

ε1Q +
∫

|ε2y|2 −
∫

Q4ε2
2 = −2λ2|E0| +

1
3

∫
F (ε)

(42)
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with

F (ε) = |ε + Q|6 − Q6 − 6Q5ε1 − 15Q4ε2
1 − 3Q4ε2

2.(43)

We use the notation (Lε, ε) = (L+ε1, ε1) + (L−ε2, ε2). Combining (41) and
(42), we get

(Lε, ε) ≤ α0 + F (ε) ≤ α0 + C|ε|H1 |ε|2L2 .(44)

Let us now recall the following spectral properties of L. The following lemma
combines results from [27] and [14].

Lemma 4 (Spectral structure of L). (i) Algebraic relations:

L+(Q3) = −8Q3, L+(Q1) = −2Q, L+(Qy) = 0

and
L−(Q) = 0, L−(xQ) = −2Qy.

(ii) Coercivity of L:

∀ε1 ∈ H1, if (ε1, Q
3) = 0 and (ε1, Qy) = 0 then (L+ε1, ε1) ≥ (ε1, ε1),

(45)

∀ε2 ∈ H1, if (ε2, Q) = 0 then (L−ε2, ε2) ≥ (ε2, ε2).(46)

Note that orthogonality conditions (33) and (34) are not sufficient a priori
to ensure the coerciveness of L. Nevertheless, we argue as follows.

Let an auxiliary function

ε̃ = ε − aQ1 − bQy − icQ.

On the real part, we have (ε̃1, Q
3) = (ε̃1, Qy) = 0 with a = 4 (ε1,Q3)∫

Q4 (note

that
∫

Q1Q
3 =

∫
Q4) and b = (ε1,Qy)∫

Q2
y

. Now using the orthogonality conditions

on ε1 (33), we also have a = − (ε̃1,Q1)∫
Q2

1
and b = 2 (ε̃1,xQ)∫

Q2 (note that
∫

yQQy =

−1
2

∫
Q2). On the imaginary part, (ε̃2, Q) = 0 with c = (ε2,Q)∫

Q2 . Moreover,

(Q, Q2) = −
∫

Q2
1 so that by the orthogonality condition on ε2, c = (ε̃2,Q2)∫

Q2
1

.
Therefore, we have for some constant K > 0

1
K

(ε, ε) ≤ (ε̃, ε̃) ≤ K(ε, ε).

Moreover, two noteworthy facts are

(ε̃1, Q) = (ε1, Q) , (L+ε̃1, ε̃1) = (L+ε1, ε1) + 4a(ε1, Q)

and
(L−ε̃2, ε̃2) = (L−ε2, ε2).
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Thus, from (44), (45) and (46),

1
K

(ε, ε) ≤ (ε̃, ε̃) ≤ (Lε̃, ε̃) ≤ α0 + 4|a||(ε1, Q)| + C|ε|2L2 |ε|H1 .

Now |a| ≤ C|ε|H1 from its expression, and from the conservation of the L2

mass (41), 2|(ε1, Q)| ≤ α0 + |ε|2L2 , so that

1
K

(ε, ε) ≤ 2α0 + C|ε|H1 |ε|2L2 .

Now recall a priori estimate (35): |ε|H1 ≤ δ(α0); then for α0 < α3 small
enough

1
K

(ε, ε) ≤ 2α0 +
1

2K
(ε, ε) so that (ε, ε) ≤ 4Kα0.

We conclude from (44)

|ε|2H1 ≤ (Lε, ε) + 5
∫

Q4ε2
1 +

∫
Q4ε2

2 ≤ Cα0 + Cα0|ε|H1

so that
|ε|H1 ≤ C

√
α0.

This concludes the proof of Lemma 3.

2.4. Properties of the decomposition. We now are in position to prove
additional properties of the regular decomposition in ε and estimates on the
modulated parameters λ(t), γ(t) and x(t). These estimates rely on the equa-
tion verified by ε, which is inherited from (1), and on smallness estimate (39).
Moreover, using Galilean invariance (18), we will prove an additional degener-
acy which will be the heart of the proof when showing the effect of nonradial
symmetries in the energy space, that is, translation and Galilean invariances.

We first introduce a new time scale

s =
∫ t

0

dt′

λ2(t′)
, or equivalently

ds

dt
=

1
λ2

.

Now ε, λ, γ and x are functions of s. Let (T1, T2) ∈ (0,+∞]2 be respec-
tively the negative and positive blow-up times of u(t). Let us check that when
t ∈ (−T1, T2), {s(t)} = (−∞,+∞). On the one hand, the strictly negative
energy condition together with Gagliardo-Nirenberg inequality imply that λ is
bounded from above and if u is defined for t > 0 then the conclusion follows. If
u blows up in finite time T2, the scaling estimate (21) implies λ(t) ≥ C(T2 − t)

1
2

and again s(t) > 0 is defined. We argue in the same way for t < 0. From now
on, we let T ∈ (0,+∞] the positive blow-up time.

We first fix once and for all for the rest of this paper in dimension N = 1
a constant 2− = 9

5 . As will be clear from further analysis, we shall not need
the exact value of 2−, only the fact that

2− < 2.
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We now claim:

Lemma 5 (Properties of the decomposition). There exists α4 > 0 such
that for α0 < α4, {λ(s), γ(s), x(s)} are C1 functions of s on R, with the fol-
lowing properties:

(i) Equations of ε(s): ε(s) satisfies for s ∈ R, y ∈ R the following system
of coupled partial differential equations:

∂sε1 − L−ε2 =
λs

λ
Q1 +

xs

λ
Qy +

λs

λ

(ε1

2
+ y(ε1)y

)
+

xs

λ
(ε1)y + γ̃sε2 − R2(ε)

(47)

∂sε2 + L+ε1 = −γ̃sQ − γ̃sε1 +
λs

λ

(ε2

2
+ y(ε2)y

)
+

xs

λ
(ε2)y + R1(ε)(48)

where γ̃(s) = −s − γ(s) and the functionals R1 and R2 are given by

R1(ε) = (ε1 + Q)|ε + Q|4 − Q5 − 5Q4ε1(49)

= 10Q3ε2
1 + 2ε2

2Q
3 + 10Q2ε3

1 + 5Qε4
1 + ε5

1

+ε4
2(ε1 + Q) + 2ε2

2(ε
3
1 + 3Q2ε1 + 3Qε2

1),

R2(ε) = ε2|ε + Q|4 − ε2Q
4(50)

= ε2(4Q3ε1 + 6Q2ε2
1 + 4Qε3

1 + ε4
1 + ε4

2 + 2ε2
2(ε1 + Q)2).

(ii) Invariance induced estimates: for all s ∈ R,∣∣λ2(s)E0 + (ε1, Q)
∣∣≤C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
,(51)

|(ε2, Qy)|(s)≤C
√

α0

(∫
|εy|2

) 1
2

.(52)

(iii) A priori estimates on the modulation parameters:

|λs

λ
| + |γ̃s| ≤C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

) 1
2

,(53)

|xs

λ
| ≤C

√
α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

) 1
2

.(54)

Remark 2. Let us draw attention to the two last estimates above. Com-
paring (53) and (54), one sees that the order size of the parameter xs

λ induced
by translation invariance is of smaller order by a factor

√
α0 than one of the

parameters λs

λ and γ̃s induced by scaling and phase invariance, radial symme-
tries. This fact will be both related to our choice of orthogonality condition
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(ε1, yQ) = 0 and to our use of Galilean invariance, relation (18). Such a de-
coupling of the effect of radial versus nonradial symmetries is known for other
types of equations like the nonlinear heat equation, but is exhibited for the
first time in the setting of (1).

Before stating the proof, we need to draw attention to estimates which
we will use in the paper without explicitly mentioning them. We let R(ε) =
R1(ε) + iR2(ε) given by (49), (50), F (ε) given by (43) and R̃1(ε) = R1(ε) −
10Q3ε2

1 − 2Q3ε2
2 the formally cubic part of R1(ε). We claim:

Lemma 6 (Control of nonlinear interactions). Let P (y) be a polynomial
with an integer 0 ≤ k ≤ 3, then:

(i) Control of linear terms:∣∣∣∣(ε1,2, P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ CP,k

(∫
|ε|2e−2−|y|

) 1
2

.

(ii) Control of second order terms:∣∣∣∣(R(ε), P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

(iii) Control of higher order terms:∫
|F (ε)|+

∣∣∣∣(R̃1(ε), P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ C
√

α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

Proof of Lemma 6. (i) follows from Cauchy-Schwarz and the uniform
estimate |P (y) dk

dyk Q(y)| ≤ CP,ke
−1−|y| for any number 1− < 1.

(ii) follows from
|R(ε)| ≤ C(|ε|2Q3 + |ε|5),

so that∣∣∣∣(R(ε), P (y)
dk

dyk
Q(y)

)∣∣∣∣≤C

(∫
|ε|2e−2−|y|

)
+ C

∫
|ε|5e1−|y|

≤C

(∫
|ε|2e−2−|y|

)
+ C

(∫
|ε|8

) 1
2
(∫

|ε|2e−2−|y|
) 1

2

≤C

(∫
|ε|2e−2−|y| + |ε|3L∞ |ε|L2

(∫
|ε|2e−2−|y|

) 1
2

)

which implies the desired result from |ε|L∞ ≤ C|εy|
1
2
L2 |ε|

1
2
L2 .
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(iii) follows from
|F (ε)| ≤ C(|ε|3Q3 + |ε|6)

and the Gagliardo-Nirenberg inequality. |
(
R̃1(ε), P (y) dk

dyk Q(y)
)
| is controlled

similarly, and Lemma 6 is proved.

Proof of Lemma 5. (i) We compute the equation of ε by simply injecting
(32) into (1) and write the result as a coupled system of partial differential
equations on the real and imaginary part of ε as stated. Note that if Q(x)
is the ground state, then Q(x)eit is a solution to (1). This is why we set
γ̃(s) = −s − γ(s).

(ii) This is an easy consequence of smallness estimate (39) and of the
conservation of energy and the momentum. Let us first recall the conservation
of the energy (42):∫

|ε1y|2 − 5
∫

Q4ε2
1 − 2

∫
ε1Q +

∫
|ε2y|2 −

∫
Q4ε2

2 = −2λ2|E0| +
1
3

∫
F (ε)

with ∫
|F (ε)| ≤ C

√
α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

This yields (51).

We rewrite (18) in the ε variable:

0 = Im(
∫

uxu) =
1
λ

Im

(∫
(ε + Q)y(ε + Q)

)
=

1
λ

{
Im(

∫
εyε) − 2(ε2, Qy)

}(55)

so that with (39), (52) follows.

(iii) We prove (iii) thanks to the orthogonality conditions verified by ε

and the conservation law (18) for the nonradial term induced by Galilean
invariance.

Indeed, we take the inner product of (47) with the well-localized function
Q1 and integrate by parts. From the first relation of (33), we get

λs

λ
(|Q1|2L2−(ε1, Q2)) = −(ε2, L−(Q1))+

xs

λ
(ε1, (Q1)y)−γ̃s(ε2, Q1)+(R2(ε), Q1).

We now take the inner product of (48) with Q2 and use (34) to get

γ̃s(|Q1|2L2 − (ε1, Q2)) = (ε1, L+(Q2)) −
λs

λ
(ε2,

1
2
Q2 + y(Q2)y)(56)

+
xs

λ
(ε2, (Q2)y) − (R1(ε), Q2).
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Note that in the above expression, one term formally involves a fourth order
derivative of Q, that is, in the term (ε1, L+(Q2)). We shall estimate for this
term

|(∆ε1, Q2)| = |(ε1)y, (Q2)y)| ≤ C

(∫
|εy|2

) 1
2

.

Last, using L−(yQ) = −2Qy and the second relation of (33), take the inner
product of (47) with yQ,

xs

λ

(
1
2
|Q|2L2 + (ε1, (yQ)y)

)
=−2(ε2, Qy) −

λs

λ

(
ε1,

1
2
yQ + y(yQ)y

)
(57)

+γ̃s(ε2, yQ) − (R2(ε), yQ).

Summing the three equalities above, we get

|λs

λ
| + |γ̃s| + |xs

λ
| ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

) 1
2

and (53) is proved. We now inject (52) and (53) into (57) to get (54) and
Lemma 5 is proved.

3. L2
loc dispersion and almost monotonicity properties

Our aim in this section is to exhibit the dispersive structure underlying
(NLS) in the vicinity of the ground state Q. So far indeed, variational estimates
and the conservation of both energy and the L2-norm have allowed us to build
a regular decomposition of solutions close to the ground state up to some
invariances of the equation and to estimate the smallness of the remainder
term ε in H1 and the size of the modulation parameters λ(s), γ(s), x(s). We
now shall make heavy use of the symmetries of the equation and of its dispersive
properties.

In the two first subsections, we rewrite the virial relation (6) in terms of
ε and use all the symmetries of (NLS) in the energy space H1 to deduce from
the obtained relation a dispersive structure in the ε variable. This strategy
is similar to the one used for the study of the KdV equation. Then in the
last subsection, using this inequality and the equation governing the scaling
parameter, we eventually prove a result of almost monotonicity of the scaling
parameter for negative energy solutions, which is the heart of the proof of the
main theorem.

3.1. Dispersion in variable u and virial identity. At this point, we have
fully used the ε-version of the three fundamental conservation laws, that is
L2-norm, energy and momentum. In this section, we derive the ε-version in
H1 of the virial relation on u in Σ

d2

dt2

∫
|x|2|u(t, x)|2 = 16E(u0),
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or equivalently the dispersive effect of equation (1) in the u variable. The virial
relation we obtain makes heavy use of the structure underlying the (NLS) equa-
tion and is the main key to our analysis, in particular, to obtain monotonicity
results around Q as was the case for the KdV equation. Note that the mono-
tonicity result we obtain is of a different nature from the one exhibited in the
study of KdV.

Before stating the result, let us first make a formal computation to exhibit
the natural quantities to investigate. Indeed, if

∫
|x|2|u0(x)|2 < +∞, then the

virial relation can be written

d2

dt2

∫
|x|2|u(t, x)|2 = 4

d

dt
Im

(∫
xuxu

)
= 16E(u0)

or equivalently

d

dt

∫
|x|2|u(t, x)|2 = 4 Im

(∫
xuxu

)
= −16|E(u0)|t + c0 .

Therefore, it is natural to look for a virial-type relation in ε by formally com-
puting the time derivative in s of the quantity Ψ(ε)(s) = Im(

∫
yεyε)(s). This

approach is indeed successful provided this quantity is a priori defined, which
it is not in the hypothesis of our theorem. A fundamental way to avoid this
difficulty is to observe that the quantity Ψ(u)(t) = Im(

∫
xuxu)(t) is scaling

and phase invariant. In addition, it is also translation invariant thanks to (18)

Im
(∫

uxu

)
= 0.

In other words,

Ψ(u)(t) = Im
(∫

y(ε + Q)y(ε + Q)
)

(s),

or by expanding the last term we see that

Ψ(ε)(s) − 2(ε2, Q1)(s) = −4|E(u0)|t +
c0

4
.

Taking the derivative of the above relation in time s and using dt
ds = λ2(s), we

get
(Ψ(ε))s (s) = 2(ε2, Q1)s(s) − 4λ2(s)|E(u0)|.

In other words, the expected virial type relation in ε on the nonlocal term Ψ(ε)
may be replaced by a similar relation on the well localized term (ε2, Q1). This
simple but fundamental fact explains why we shall never need more for the
proof of the theorem than u0 ∈ H1.

According to the above formal heuristic, we are led to compute (ε2, Q1)s.
The result is the following:
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Lemma 7 (Local virial identity). Under the assumptions of Theorem 2,

(ε2, Q1)s = H(ε, ε) + 2λ2|E0| − γ̃s(ε1, Q1) −
λs

λ
(ε2, Q2) −

xs

λ
(ε2, (Q1)y) + G(ε)

(58)

with

G(ε) = −1
3

∫
F (ε) + (R̃1(ε), Q1)(59)

where R̃1(ε) = R1(ε)−10Q3ε2
1−2Q3ε2

2 and R1(ε) is given by (49), and where the
quadratic form H(ε, ε) is decoupled in the variables ε1, ε2. Explicitly, H(ε, ε) =
(L1ε1, ε1) + (L2ε2, ε2), where (Li)i=1,2 are linear real Schrödinger operators
given by

L1 = −∆ + 10yQ3Qy and L2 = −∆ + 2yQ3Qy.(60)

Proof of Lemma 7. We take the inner product of (48) with Q1 and use
L+(Q1) = −2Q and the critical relation (Q, Q1) = 0. We get, after integration
by parts,

(ε2, Q1)s = 2(ε1, Q) − λs

λ
(ε2, Q2) − γ̃s(ε1, Q1) −

xs

λ
(ε2, (Q1)y) + (R1(ε), Q1).

(61)

We now recall the conservation of energy (42) to expand the term 2(ε1, Q) in
(61),

2(ε1, Q) =
∫

|εy|2 − 5
∫

Q4ε2
1 −

∫
Q4ε2

2 + 2λ2|E0| −
1
3

∫
F (ε)

and F (ε) given by (43). We get

(ε2, Q1)s =
∫

|ε1y|2 − 5
∫

Q4ε2
1 +

∫
|ε2y|2 −

∫
Q4ε2

2 + (R1(ε), Q1)

+2λ2|E0| − γ̃s(ε1, Q1) −
λs

λ
(ε2, Q2) −

xs

λ
(ε2, (Q1)y) −

1
3

∫
F (ε).

We now focus on the second order terms in ε on the right-hand side of the
above relation. To do so, we use the explicit form of R1(ε) given by (49):
R1(ε) = 10Q3ε2

1 + 2Q3ε2
2 + R̃1(ε), R̃1 cubic in ε. Note that F (ε) given by

(43) is also cubic in ε, and G(ε) = −1
3

∫
F (ε) + (R̃1(ε), Q1). An elementary

computation yields (58) and concludes the proof of Lemma 7.

3.2. Symmetries and modulation theory. In this subsection, we explain
how to use the whole system of symmetries to extract a dispersive type infor-
mation from (58):

(ε2, Q1)s = H(ε, ε) + 2λ2|E0| − γ̃s(ε1, Q1) −
λs

λ
(ε2, Q2)

−xs

λ
(ε2, (Q1)y) + (G(ε), Q1).
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Different kinds of terms appear in this expression:

(i) The Schrödinger operator H: Note that the quadratic form H is decou-
pled in the variables ε1, ε2. On each coordinate, a classical elliptic Schrödinger
operator with an exponentially decreasing potential underlies the quadratic
form. There is then a classical theorem that such a quadratic form has only a
finite number of negative directions.

(ii) The Energy term: Note that the term λ2|E0| appears with the + sign
in (58). This heavily relies on our assumption E0 < 0.

(iii) Scalar product terms: three a priori second order in ε scalar product
terms appear in (58), and each of them is related to our choice of modulation
parameters on the initial solution u, namely scaling, phase and translation.

(iv) The last term G(ε) is formally cubic in ε, and then of smaller order
size and controlled according to Lemma 6.

We now precisely detail how to use the symmetries and conservation laws
in the energy space H1 to exhibit from (58) the dispersive structure in the ε

variable. This approach is completely different from the linear kind of approach
previously studied and was based on the linearized structure of the energy.
On the contrary, we develop a more nonlinear approach by focusing on the
dispersive relations inherited from the virial structure. This will make clear
the choice of orthogonality conditions (33) and (34), which indeed allows us to
cancel in equality (58) some oscillatory integrals in time. We now claim:

Proposition 1 (Dispersive structure in the ε variable). There exist a
universal constant δ1 > 0 and α5 > 0 such that for α0 < α5, for all s:

(ε2, Q1)s ≥
δ1

2

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
(62)

+2λ2|E0| −
2
δ1

(
(ε1, Q)2 + (ε2, Q1)2

)
.

Proof of Proposition 1. A) Modulation theory for phase and scaling.
From the symmetry of (NLS) with respect to scaling and phase, we have been
able through modulation theory to build a regular decomposition of the initial
solution u and the corresponding ε. Working out the implicit function theorem,
we have seen that one may assume that two scalar products are zero for all time,
provided the corresponding matrix has an inverse. The choice of orthogonality
conditions (33) and (34) has been made to cancel the two first second order
scalar products in (58). This somehow treats the case of radial symmetries in
the energy space.

B) Modulation theory for translation invariance. We now focus on nonra-
dial symmetries. On the one hand, Galilean invariance has been used directly



THE BLOW-UP DYNAMIC 185

on the initial solution u to ensure (18). This led to crucial estimate (52)

|(ε2, Qy)|(s) ≤ C
√

α0(
∫

|εy|2)
1
2 .

On the other hand, we applied modulation theory to the translation parameter.
The choice of orthogonality condition

(ε1, yQ) = 0

has been made to ensure a relation of the type xs

λ ∼ −(ε2, Qy), and this
together with (52) yields (54). Therefore, we are in position to estimate the
term xs

λ (ε2, (Q1)y) in (58) as∣∣∣xs

λ
(ε2, (Q1)y)

∣∣∣ ≤ C
√

α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.(63)

C) Control of the negative directions of the quadratic form H. The spec-
tral structure of the quadratic form H is proved in dimension N = 1 only and
conjectured in higher dimension. Note that this study is precisely the only part
of the proof where we use the low dimension hypothesis. See Section 4.4. It
turns out that the Schrödinger linear operators L1 and L2 given by (60) have
the following spectral structure:

(i) L1 has two strictly negative eigenvalues. In one dimension, this corre-
sponds to one negative direction for even functions, and one for odd. It turns
out that for even functions, the choice (ε1, Q1) = 0 does not suffice to ensure
the positivity of H1 and a negative direction along Q has to be taken into
account. On the contrary, for odd functions, a miracle happens, which is that
the choice (ε1, yQ) = 0 suffices to ensure the positivity of H1.

(ii) L2 has one strictly negative eigenvalue. Once again, the choice (ε2, Q2)
= 0 does not suffice to ensure its positivity, and a negative direction along Q1

has to be taken into account.

Nevertheless, a key to our analysis is that the negative directions of H

which we cannot control a priori from modulation theory appear to correspond
to two key scalar products, (ε1, Q) and (ε2, Q1), related to the Hamiltonian
structure of (1) and its dynamical properties.

More precisely, we prove in Appendix A the following:

Proposition 2 (Spectral structure of the linear virial operator). Let
2− = 9

5 . There exists a universal constant δ̃1 > 0 such that for all ε ∈ H1, if

(ε1, Q) = (ε1, yQ) = 0 and (ε2, Q1) = (ε2, Q2) = 0,

then

H(ε, ε) ≥ δ̃1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.
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Now let ε ∈ H1 with (ε1, Q1) = (ε1, yQ) = (ε2, Q2) = 0, and set

ε = ε̃ + aQ + ibQ1.

Note that (ε̃1, Q1) = (ε̃1, yQ) = (ε̃2, Q2) = 0, and (ε̃1, Q) = 0 with a = (ε1,Q)∫
Q2

and (ε̃2, Q1) = 0 with b = (ε2,Q1)∫
Q2

1
. We heavily used both critical relations

(Q, Q1) = (Q1, Q2) = 0. Therefore, ε̃ satisfies the hypothesis of Proposition 2
and one easily evaluates:

(64)

H(ε, ε) =H(ε̃, ε̃) + 2a(ε̃1,L1Q) + 2b(ε̃2,L2Q1) + a2H1(Q, Q) + b2H2(Q1, Q1)

≥ δ̃1

2

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
− C(a2 + b2)

≥ δ1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
− 1

δ1

(
(ε1, Q)2 + (ε2, Q1)2

)
for some fixed universal constant δ1 > 0 small enough.

D) Conclusion. Using orthogonality conditions (33) and (34), estimate
(63), estimate (64) and estimating directly G(ε) from (59) and Lemma 6, we
get

(ε2, Q1)s ≥H(ε, ε) + 2λ2|E0| − C
√

α0(
∫

|εy|2 +
∫

|ε|2e−2−|y|)

≥ δ1(
∫

|εy|2 +
∫

|ε|2e−2−|y|) + 2λ2|E0|

−C
√

α0(
∫

|εy|2 +
∫

|ε|2e−2−|y|) − 1
δ1

(
(ε1, Q)2 + (ε2, Q1)2

)
and (62) is proved for α0 < α5 small enough. This concludes the proof of
Proposition 1.

3.3. Transformation of the dispersive relation. We are now in position to
prove the dispersive result for solutions to (NLS) in the ε variable in order to
prove Theorem 2. One can see from (62) that two quantities play an important
role, i.e. (ε1, Q) and (ε2, Q1). It turns out that the first one may be removed
using dynamical properties of equation (1), and we are left with only one
leading order term to understand, namely (ε2, Q1). We claim

Proposition 3 (Local virial estimate in ε). There exists a universal con-
stant δ0 > 0 and α6 > 0 such that for α0 < α6,

(i) for all s ∈ R,{(
1 +

1
4δ0

(ε1, Q)
)

(ε2, Q1)
}

s

≥ δ0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
(65)

+2λ2|E0| −
1
δ0

(ε2, Q1)2.
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(ii) for all s2 ≥ s1,

(66)[(
1 +

1
4δ0

(ε1, Q)(s)
)

(ε2, Q1)(s)
]s2

s1

≥ δ0

∫ s2

s1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
+2

∫ s2

s1

λ2|E0| −
1
δ0

∫ s2

s1

(ε2, Q1)2.

Proof of Proposition 3. (i) Recall (62),

(ε2, Q1)s ≥
1
2
δ1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
+2λ2|E0| −

2
δ1

(
(ε1, Q)2 + (ε2, Q1)2

)
.

We now note that the term (ε1, Q)2 is the derivative in time of a well localized
scalar product up to small quadratic terms.

Indeed, take the inner product of (47) with Q. From L−(Q) = 0 and
(Q, Q1) = 0, we get

(ε1, Q)s = −λs

λ
(ε1, Q1) −

xs

λ
(ε1, Qy) + γ̃s(ε2, Q) − (R2(ε), Q).

We then recall (61),

(ε2, Q1)s = 2(ε1, Q) − λs

λ
(ε2, Q2) − γ̃s(ε1, Q1) −

xs

λ
(ε2, (Q1)y) + (R1(ε), Q1)

and estimate from (39), (53) and (63)

|(ε1, Q)s| + |(ε2, Q1)s − 2(ε1, Q)| ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

It follows,

| {(ε1, Q)(ε2, Q1)}s − 2(ε1, Q)2| ≤ C
√

α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

Injecting this relation into (62) yields

(ε2, Q1)s +
4
δ1

{(ε1, Q)(ε2, Q1)}s

≥ 1
2
δ1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
+ 2λ2|E0|

− 1
δ1

(ε2, Q1)2 − C
√

α0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
and (65) is proved for α0 < α6 small enough and δ0 = δ1

4 . This concludes the
proof of (i).
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(ii) We simply integrate (65) on the time interval [s1, s2]. This concludes
the proof of Proposition 3.

We draw attention to the strength of estimate (66).

- On the one hand, we get dispersive control of
∫
|εy|2, and by Gagliardo-

Nirenberg on
∫
|ε|6.

- On the other hand, we do not control the global L2 norm of ε, which any-
way cannot tend to 0 from conservation laws, but only a local
L2-norm of the form

∫
|ε|2e−2−|y| which allows us to control all the sec-

ond order and higher terms which correspond to scalar products with
well-localized functions; see Lemma 6.

Remark 3. Let us summarize the strategy we have used to derive the virial
dispersive estimate (65). We start with the exact dispersive relation (6) in the
variable u thus a nonlinear conservation law. We then inject geometrical de-
composition (32) into this conservation law and note that it is in some sense
invariant through this transformation. Let us focus on the fact that this prop-
erty is destroyed when approximating the ε equation by the purely linear one.
This relation links a linear term and a quadratic term. We then use linear
types of estimates on the quadratic terms to derive an estimate for the first
order term.

3.4. Almost monotonicity of the scaling parameter. In this section, we
prove a result of almost monotonicity of the scaling parameter for negative
energy solutions to (NLS). The proof heavily relies on the local virial estimates
of Proposition 3 proved in the previous subsection. We first exhibit from (65)
and energy condition E0 < 0 the sign structure of

(ε2, Q1).

In a certain sense, this inner product has thus parabolic behavior and satisfies
the typical maximum principle property.

From dispersive inequality (66), (ε2, Q1) also governs the size of ε in L2-
loc in a time-averaging sense. On the other hand, we will see that the scaling
parameter λ is governed by an equation of the form

λs

λ
∼ −(ε2, Q1)

in a time-averaging sense in L2-loc again. On the basis of these two facts, we
prove a surprising result of almost monotonicity of the scaling parameter.

Proposition 4 (Almost monotonicity of the scaling parameter). There
exists α7 > 0 such that for α0 < α7, there exists a unique s0 ∈ R such that :
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(i)

∀s < s0 , (ε2, Q1)(s) < 0,(67)

(ε2, Q1)(s0) = 0,

∀s > s0 , (ε2, Q1)(s) > 0.

(ii) Moreover, for all s2 ≥ s1 ≥ s0,

3
∫ s2

s1

(ε2, Q1) − C(δ0)
√

α0 ≤−|yQ|2L2 ln
(

λ(s2)
λ(s1)

)
(68)

≤ 5
∫ s2

s1

(ε2, Q1) + C(δ0)
√

α0

and

λ(s2) < 2λ(s1).(69)

Proof of Proposition 4.

Step 1. Integral form of the equation for the scaling parameter. First, we
assume α0 < α7 small enough so that

1
2
≤ 1 +

1
4δ0

(ε1, Q) ≤ 3
2
.(70)

We then claim: for all s2 ≥ s1,∣∣∣∣4 ∫ s2

s1

(ε2, Q1) + |yQ|2L2 ln(
λ(s2)
λ(s1)

)
∣∣∣∣ ≤ C(δ0)

√
α0 +

∫ s2

s1

|(ε2, Q1)|.(71)

This relation follows from the equation governing the scaling parameter λ

and the dispersive inequality (66). This equation is found by taking the inner
product of (47) with the well-localized function y2Q. Recall L−(y2Q) = −4Q1.
We get

4(ε2, Q1) + |yQ|2L2

λs

λ
+ (ε1, y

2Q)s =−λs

λ

(
ε1,

1
2
y2Q + y(y2Q)y

)
+ γ̃s(ε2, y

2Q)

−xs

λ
(ε1, (y2Q)y) − (R2(ε), y2Q).

Using again estimates (39), (53) and (54), we easily conclude that for some
universal constant C∣∣∣∣4(ε2, Q1) + |yQ|2L2

λs

λ
+ (ε1, y

2Q)s

∣∣∣∣ ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.

We integrate the above inequality between s1 and s2 ≥ s1:

(72)
∣∣∣∣4 ∫ s2

s1

(ε2, Q1) + |yQ|2L2 ln
(

λ(s2)
λ(s1)

)∣∣∣∣
≤ C

√
α0 + C

∫ s2

s1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
.
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We now use (66)

δ0

∫ s2

s1

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
≤ 1

δ0

∫ s2

s1

(ε2, Q1)2 +
3
2
|(ε2, Q1)|(s2)

+
3
2
|(ε2, Q1)|(s1) − 2

∫ s2

s1

λ2|E0|

≤ 1
δ0

∫ s2

s1

(ε2, Q1)2 + C
√

α0

and estimate, for α0 < α7 small enough, from (72)∣∣∣∣4 ∫ s2

s1

(ε2, Q1) + |yQ|2L2 ln
(

λ(s2)
λ(s1)

)∣∣∣∣≤C(δ0)
√

α0 + C(δ0)
∫ s2

s1

(ε2, Q1)2

≤C(δ0)
√

α0 +
∫ s2

s1

|(ε2, Q1)|,

and (71) is proved.

Step 2. Proof of (i). We now claim as a consequence of (65) the following
property: assume that for some s2 ∈ R, (ε2, Q1)(s2) = 0, then (ε2, Q1)s(s2)
> 0. We argue by contradiction assuming that for some s2 ∈ R, (ε2, Q1)(s2) =
0 and (ε2, Q1)s(s2) ≤ 0. Then{(

1 +
1

4δ0
(ε1, Q)

)
(ε2, Q1)

}
s

(s2) ≤ 0.

Injecting this into (65) yields (
∫
|εy|2 +

∫
|ε|2e−2−|y|)(s2) ≤ 0, that is ε(s2) = 0.

A contradiction follows from (51), the strictly negative energy condition and
the fact that λ(s) > 0,∀s.

Consequently, the C1 function of time (ε2, Q1) may vanish at most once in
R at some point s0, and then is strictly negative at the left of this point, and
positive at its right. We want to prove that such a time s0 must indeed exist.

Assume for example for the sake of contradiction that

∀s ∈ R, (ε2, Q1)(s) < 0.(73)

We look for a contradiction to (73) by looking at asymptotic properties of the
solution as s → +∞. Inject the sign condition (73) into (71): for all s ≥ 0,

−|yQ|2L2 ln
(

λ(s)
λ(0)

)
≤ 3

∫ s

0
(ε2, Q1) + C(δ0)

√
α0.

Suppose now
∫ +∞
0 (ε2, Q1) = −∞; then the above relation implies lims→+∞ λ(s)

= +∞, so that with (35), we get limt→T |ux(t)|L2 = 0. This contradicts by
Gagliardo-Nirenberg the energy constraint E0 < 0 on u0. We thus have proved∣∣∣∣∫ +∞

0
(ε2, Q1)

∣∣∣∣ < +∞.(74)
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By (71) again,

∀s ≥ 0, 0 < λ1 ≤ λ(s) ≤ λ2.(75)

Consider now the C1 function of time (ε2, Q1)(s). Then from (61), for some
constant C, |(ε2, Q1)s| < C uniformly in s. Recall (ε2, Q1)(s) < 0 from (73).
These two facts together with (74) yield

(ε2, Q1)(s) → 0 as s → +∞.(76)

Consider now the pointwise virial relation (65) to compare (ε2, Q1) and the
local norm of ε:{(

1 +
1

4δ0
(ε1, Q)

)
(ε2, Q1)

}
s

≥ δ0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
− 1

δ0
(ε2, Q1)2.

The left-hand side of this relation is the time derivative of a uniformly bounded
function in time s, so that from (76), for some sequence s̃n → +∞,

lim
n→+∞

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
(s̃n) = 0.(77)

This contradicts the energy constraint E0 < 0. Indeed, from (51),

λ2(s)|E0| ≤C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
+ 2|(ε1, Q)|

≤C

(∫
|εy|2 + (

∫
|ε|2e−2−|y|)

1
2

)
,

so that λ(s̃n) → 0, which contradicts (75). By looking at asymptotic properties
of u as s → −∞, we prove in the same way that for all s ∈ R, (ε2, Q1)(s) > 0
leads to a contradiction. This concludes the proof of (i).

Step 3. Proof of (ii). Once (ε2, Q1) is known to be strictly positive for
s > s0, estimate (68) follows from (71).

It remains to prove (69). For the sake of contradiction, assume, for some
times s0 ≤ s1 < s2, that λ(s2) > 2λ(s1). Then from (68), we estimate

|yQ|2L2 ln
(

λ(s2)
λ(s1)

)
− C(δ0)

√
α0 ≤ −3

∫ s2

s1

(ε2, Q1) < 0

so that for α0 < α7 small enough, we get 1
2‖yQ‖2

2ln(2) < 0, a contradiction.
This ends the proof of Proposition 4.

Now note that using the invariance of the ε equation by translation in
time, we may always assume that s0, as defined as in Proposition 4, is such
that

s0 = 0.
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4. Finite time blow-up and control of the blow-up rate

This section is devoted to the proof of Theorem 2. We consider u0 ∈ H1

such that

0 < α0 =
∫

|u|2 −
∫

Q2 , E(u0) < 0 , Im
(∫

(u0)xu0

)
= 0,

assuming α0 small enough so that the results of the two previous sections apply.
The proof is in two steps:

(i) We first prove in Section 4.1, as a consequence of both the almost
monotonicity of the scaling parameter and the energetic constraint E0 < 0, a
result of finite or infinite time blow-up, or equivalently

lim
s→+∞

λ(s) = 0.

(ii) We then prove two different ways of exhibiting a differential inequality
for the scaling parameter: the first one in Section 4.2 based on a refined version
of the almost monotonicity of the scaling parameter which will imply through
dynamical properties blow-up in finite time and a first upper-bound on the
rate of growth

|ux(t)|L2 ≤ C∗√
|E0|(T − t)

,

the second one in Section 4.3 based on a refined version of virial inequality
(65) which leads to the announced bound

|ux(t)|L2 ≤ C∗
(
|ln(T − t)| 12

T − t

) 1
2

.

We then focus in Section 4.4 on the N th dimensional case.

4.1. Finite or infinite time blow-up. We claim limt↑T |ux(t)|L2 = +∞ for
some 0 < T ≤ +∞, or equivalently

lim
s→+∞

λ(s) = 0.(78)

We argue by contradiction assuming that for some sequence sn → +∞
∀n > 0, λ(sn) ≥ λ0 > 0.

We apply the almost monotonicity of the scaling parameter: let s > 0 and n

be such that sn > s; then (69) reads: λ(s) > 1
2λ(sn), so that

∀s > 0 , λ(s) >
1
2
λ0 > 0.(79)

From (68), we conclude

0 <

∫ +∞

0
(ε2, Q1) < +∞.(80)
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The proof now is similar to the one of Step 3 in the proof of Proposition 4.
Let us recall the argument. Consider first the C1 function of time (ε2, Q1)(s);
then from (61) and (67), for some constant C and all s > 0,

|(ε2, Q1)s| < C and (ε2, Q1)(s) > 0.

These two facts together with (80) yield

(ε2, Q1)(s) → 0 as s → +∞.(81)

Consider then the pointwise virial relation (65):{(
1 +

1
4δ0

(ε1, Q)
)

(ε2, Q1)
}

s

≥ δ0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
− 1

δ0
(ε2, Q1)2.

The left-hand side of this relation is the time derivative of a uniformly bounded
function in time s, so that from (81), for some sequence s̃n → +∞,

lim
n→+∞

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
(s̃n) = 0.

This contradicts the energy constraint E0 < 0. Indeed, from (51)

λ2(s)|E0| ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

) 1
2

,

so that λ(s̃n) → 0, which contradicts (79). This concludes the proof of finite
or infinite time blow-up.

4.2. Finite time blow-up and first upper bound on the blow-up rate. In
this subsection, we prove a weaker but more structurally stable version of
Theorem 2:

Proposition 5. Let N = 1. There exist α∗ > 0 and a universal constant
C∗ > 0 such that the following is true. Let u0 ∈ H1 with

0 < α0 = α(u0) =
∫

|u0|2 −
∫

Q2 < α∗,

E0 = E(u0) < 0, Im
(∫

(u0)xu0(x)
)

= 0.

Let u(t) be the corresponding solution to (1); then u(t) blows up in finite time
0 < T < +∞ and for t close to T :

|ux(t)|L2 ≤ C∗√
|E0|(T − t)

.
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Three facts are at the heart of the proof of this result:

(i) First, recall the virial relation (65):{(
1 +

4
δ0

(ε1, Q)
)

(ε2, Q1)
}

s

≥ δ0

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
+ 2λ2(s)|E0| −

1
δ0

(ε2, Q1)2.

This pointwise estimate gives control of the oscillatory function of time
(
∫
|εy|2+

∫
|ε|2e−2−|y|)(s) by the quantity (ε2, Q1)2(s) in a time-averaging sense.

Now the problem is to relate the two key parameters λ(s) and (ε2, Q1).

(ii) Second, the equation governing the scaling parameter has been proved
to give

λs

λ
∼ −(ε2, Q1)

up to oscillatory integrals controlled by
∫
|ε|2e−2−|y|.

(iii) Third, on the basis of these two facts, we are able to prove a refined
version of the almost monotonicity property of the scaling parameter. This
result allows us to prove a new link between the two quantities (ε2, Q1) and
λ(s). More precisely, we claim the following pointwise uniform estimate

Proposition 6 (Uniform control of the scaling parameter by (ε2, Q1)).
There exists a universal constant B and α8 > 0 such that for α0 < α8, there
exists s̃0 ≥ 0 such that

∀s ≥ s̃0, |E0|λ2(s) ≤ B(ε2, Q1)2(s).(82)

A key fact in our analysis is that the ε decomposition, i.e. the choice of
orthogonality conditions

(ε1, Q1) = (ε1, yQ) = 0 and (ε2, Q2) = 0

adapted to (i), study of dispersion, and to (ii), evolution of the scaling param-
eter, turn out to be the same. This is a noteworthy fact for the study of the
dynamic of (1). Recall for example that in the study of (15), two different
decompositions had to be taken into account.

Let us now finish the proof of Proposition 5 which is a fairly easy conse-
quence of the three above facts.

Proof of Proposition 5 assuming Proposition 6. As for the proof of [15], we
first use the finite or infinite time blow-up result (78) and consider a sequence
of times tn be such that

λ(tn) = 2−n(83)
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and sn = s(tn) the corresponding sequence. Let t̃0 be such that s(t̃0) = s̃0

given by Proposition 6. Note that we may assume n ≥ n0 such that tn ≥ t̃0.
Note that 0 < tn < tn+1 from (69), and so 0 < sn < sn+1. Moreover, tn → T ,
and from (69),

∀s ∈ [sn, sn+1], 2−n−1 ≤ λ(s) ≤ 2−(n−1).

We now claim that blow-up in finite time follows from a control from above of
the size of the intervals [tn, tn+1].
First write (82) using (67) for n large enough

∀sn ≤ s ≤ sn+1, 0 < λ(s) ≤
√

B√
|E0|

(ε2, Q1)(s)

and integrate this relation between sn and sn+1∫ sn+1

sn

λ(s)ds ≤
√

B√
|E0|

∫ sn+1

sn

(ε2, Q1)(s)ds.

Moreover, from informations of type (i) and (ii), we have derived (68) which
implies for α0 < α∗ small enough

3
∫ sn+1

sn

(ε2, Q1) ≤ C(δ0)
√

α0 + |yQ|2L2 ln(2) ≤ 3|yQ|2L2 ln(2).

Therefore ∫ sn+1

sn

λ(s)ds ≤
√

B√
|E0|

|yQ|2L2 ln(2).

Now we change variables in the integral at the left of the above inequality
according to ds

dt = 1
λ2(s) and estimate with the use of (69) and (83)

√
B√
|E0|

|yQ|2L2 ln(2)≥
∫ sn+1

sn

1
λ(s)

λ2(s)ds

≥ 2n−1

∫ sn+1

sn

λ2(s)ds = 2n−1(tn+1 − tn)

so that for n ≥ n0

tn+1 − tn ≤ C√
|E0|

2−(n+1).

Summing this inequality in n yields T = limn→+∞ tn < +∞ and blow-up in
finite time is proved. Moreover, the summation also gives the estimate for n

large

T − tn ≤ C√
|E0|

2−(n+1) ≤ C√
|E0|

λ(tn+1).

Now let T > t > tn0 , then tn ≤ t < tn+1 for some n and the above inequality
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together with (69) ensures

T − t ≤ T − tn ≤ C√
|E0|

λ(tn+1) ≤ 2
C√
|E0|

λ(t),(84)

which together with estimate (35), which concludes the proof of Theorem 2.

Let us now prove Proposition 6.

Proof of Proposition 6. We use here an idea which was first introduced for
the study of the KdV equation in [14], and which is that the study of dispersion
has to be made on time intervals of slow variations of the scaling parameter.
Again, the existence of such intervals heavily relies on the finite or infinite time
blow-up result. On such intervals, we are able to prove a monotonicity kind of
result on the key quantity (ε2, Q1). Together with the dispersive effect of (1)
in the ε variable, this last result will allow us to exhibit a lower bound on the
size of the slow variations intervals constructed. Note that such a lower bound
is unknown for the KdV equation, and will yield the result in our setting.

Let δ0 be as in (65) and C(δ0) be the fixed constant of estimate (66). We
first fix a constant k0 > 1 such that

0 < ln(k0) <
δ0

10|yQ|2L2

,(85)

and assume that α8 in Proposition 6 is small enough so that
2

|yQ|2L2

C(δ0)
√

α8 ≤ ln(k0).(86)

(81) holds with B = 2
(

60
‖yQ‖2

2ln(k0)
+ 16

δ0

)
.

Step 1. Construction and properties of slow variations time intervals. Let
us recall the finite or infinite time blow-up result:

λ(s) → 0 as s → +∞.

This result easily implies the following : there exists s̃0 ≥ 0 such that for all
s2 ≥ s̃0, there exists s1(s2) ∈ (0, s2) such that

λ(s1) = k0λ(s2) and ∀s ∈ [s1, s2], λ(s) ≤ k0λ(s2).

We note I(s2) = [s1, s2] such an interval. A first key to our analysis is the
following lemma:

Lemma 8 (Control of the parameters on I(s2)). Let s2 ≥ s̃0 and s ∈
I(s2), then

(i)
λ(s2)

2
≤λ(s) ≤ k0λ(s2),(87)

(ii) (ε2, Q1)(s)≤ 4(ε2, Q1)(s2).(88)
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Proof. Let s2 ≥ s̃0 and I(s2) = [s1, s2]. (i) follows from the definition of
I(s2) and the almost monotonicity of the scaling parameter (69)

∀s ≤ s2 , λ(s2) ≤ 2λ(s).

(ii) Let K = K(s2) = sups∈[s1,s2]
(ε2,Q1)(s)
(ε2,Q1)(s2)

> 0. We fix s ∈ I(s2) and
apply the L2

loc dispersive inequality (66) with (70) on the time interval [s, s2]:

1
2
(ε2, Q1)(s) ≤

3
2
(ε2, Q1)(s2) +

1
δ0

∫ s2

s1

(ε2, Q1)2.

From the definition of K and (67), we get: for all s ∈ I(s2),

(ε2, Q1)(s) ≤ (ε2, Q1)(s2)
(

3 +
2K

δ0

∫ s2

s1

(ε2, Q1)
)

.

Taking the sup in s ∈ I(s2) in the above inequality, we conclude

K ≤ 3 +
2K

δ0

∫ s2

s1

(ε2, Q1).

We now apply (68), (86) and (87) on the interval [s1, s2] to get

3
∫ s2

s1

(ε2, Q1)≤C(δ0)
√

α0 − |yQ|2L2 ln
(

λ(s2)
λ(s1)

)
≤ 1

2
|yQ|2L2 ln(k0) + |yQ|2L2 ln(k0) =

3
2
|yQ|2L2 ln(k0)

so that K(s2) = 3+ K
δ0
|yQ|2L2 ln(k0) ≤ 3+ 1

10K, and K ≤ 4. This concludes the
proof of Lemma 8.

Step 2. Conclusion. The conclusion follows from the differential in-
equality satisfied by (ε2, Q1) on I(s2) and the sign condition (ε2, Q1) > 0. Let
s2 ≥ s̃0, I(s2) = [s1, s2] with a constant B such that

λ2(s2)|E0| ≥ B(ε2, Q1)2(s2).(89)

First express (65){(
1 +

1
4δ0

(ε1, Q)
)

(ε2, Q1)
}

s

(s) ≥ 2λ2(s)|E0| −
1
δ0

(ε2, Q1)(s)2.

From Lemma 8 and (89), we estimate for s ∈ I(s2):

2λ2(s)|E0| −
1
δ0

(ε2, Q1)2(s)≥
2|E0|

4
λ2(s2) −

16
δ0

(ε2, Q1)2(s2)

≥
(

B

2
− 16

δ0

)
(ε2, Q1)2(s2).
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If B
2 − 16

δ0
≤ 0 then the proof is finished. If not, integrating (65) with the help

of the above inequality on the time interval [s1, s2], we get

3
2
(ε2, Q1)(s2) −

(
B

2
− 16

δ0

)
(s2 − s1)(ε2, Q1)2(s2) ≥

1
2
(ε2, Q1)(s1) > 0

so that

3
2

>

(
B

2
− 16

δ0

)
(s2 − s1)(ε2, Q1)(s2).(90)

To conclude, we therefore need a lower-bound for the size of I(s2). This lower
bound is a consequence of the uniform backward control of (ε2, Q1) on I(s2),
Lemma 8, and of the equation governing the scaling parameter.

First, we recall estimate (68) together with (87)

|yQ|2L2 ln(k0) =−|yQ|2L2 ln
(

λ(s2)
λ(s1)

)
≤ 5

∫ s2

s1

(ε2, Q1) + C(δ0)
√

α0 ≤ 5
∫ s2

s1

(ε2, Q1) +
1
2
|yQ|2L2 ln(k0),

the last estimate following from (86). This last inequality together with (88)
yields

|yQ|2L2 ln(k0) ≤ 10
∫ s2

s1

(ε2, Q1) ≤ 40(s2 − s1)(ε2, Q1)(s2).

It suffices now to inject this last estimate into (90) to get

3
2
≥ |yQ|2L2

40
ln(k0)

(
B

2
− 16

δ0

)
and B ≤ 2

(
60

|yQ|2L2 ln(k0)
+

16
δ0

)
which concludes the proof of Proposition 6.

4.3. Refined upper bound on the blow-up rate.. In this section, we finish
the proof of Theorem 2 by proving the announced upper bound on the blow-up
rate

|ux(t)|L2 ≤ C

(
|ln(T − t)| 12

T − t

) 1
2

.

We assume that blow-up in finite or infinite time is already proved (see
Section 4.1); i.e., λ(s) → 0 as s → +∞. This further estimate is derived on
the basis of a refinement of dispersive inequality (65) and is related to the
very specific algebraic structure of the virial linearized operator L around Q of
Lemma 7. Indeed, let us make the following formal computation. In the limit
α0 → 0, ε satisfies the linear limit equation{

∂sε1 − L−ε2 = l(s)Q1 + X(s)Qy

∂sε2 + L+ε1 = g(s)Q
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for some parameters l(s), X(s), g(s). In the spirit of the linear Liouville The-
orem, Theorem 3 of [13], one can prove from (65) that the space of uniformly
bounded solutions in time in H1 ∩ Σ of this linear equation which satisfy or-
thogonality conditions (33) and (34) is in fact one dimensional and generated
by the stationary solution

ε = iW with W = y2Q + µQ

where µ is such that

(W, Q2) = 0 i.e. µ =
2

|yQ|2L2

(y2Q, Q2).(91)

The existence of such a solution corresponds to an additional degeneracy of
the linear operator close to the ground state L, and is very specific to the
Schrödinger equation.

The idea to refine dispersive estimate (65) is therefore to express it in
terms of a new variable

ε̃ = ε + ib(s)W

for some function b(s) to be chosen, that is, to introduce the first term in the
asymptotic formal expansion of ε as s → +∞.

We note
W1 =

1
2
W + yWy

and claim the following refined dispersive inequality:

Proposition 7 (Refined local virial estimate in ε).Let ε̃ = ε+i (ε2,Q1)
|yQ|2

L2
W .

There exist universal constants δ̃0, C > 0 and α9 > 0 such that for α0 < α9,
there exists s̃1 such that : for all s ≥ s̃1,

(92)
{(

1 +
1

|yQ|2L2

(ε1, W1)
)

(ε2, Q1)
}

s

+ C(ε2, Q1)4

≥ δ̃0

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
+ λ2|E0|.

Remark 4. Compare (65) and (92). The first one says that in a time-
averaging sense and with the suitable norm, ε2 is of order (ε2, Q1)2, whereas
the second one says that ε̃2 is of order (ε2, Q1)4, so that ε = −i (ε2,Q1)

|yQ|2
L2

W + ε̃

with ε̃ of smaller order is a formal asymptotic development of ε as s → +∞.

Let us assume Proposition 7. We now are in position to considerably refine
estimate (82) of Proposition 6 by showing:

Proposition 8 (Refined uniform control of the scaling parameter by
(ε2, Q1)). There exists a universal constant B̃ and α10 > 0 such that for
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α0 < α10, there exists s̃4 such that for all s ≥ s̃4,

λ2(s) ≤ exp

(
− B̃

(ε2, Q1)2(s)

)
or equivalently (ε2, Q1)(s) ≥

B̃

|ln(λ(s))| 12
.

(93)

Proof of Proposition 8. The proof is simply derived from (92) and the
almost monotonicity of the scaling parameter (68). First recall from Proposi-
tion 4 that (ε2, Q1)(s) > 0 for s > 0. Therefore, for α0 < α10 small enough,
the function f(s) =

(
1 + 1

|yQ|2
L2

(ε1, W1)
)

(ε2, Q1) satisfies

1
2
(ε2, Q1) ≤ f(s) ≤ 2(ε2, Q1)(94)

and so does not vanish for s > 0, and estimate (92) may be viewed as a
differential inequality

fs + Cf4 ≥ 0.

We integrate this inequality from the nonvanishing property of f and get for
s ≥ s̃1 of Proposition 7:

1
f3(s)

≤ C(s − s̃1) +
1

f3(s̃1)
≤ 2Cs

for s ≥ s̃2. From (94), we get for some universal constant

∀s ≥ s̃2, (ε2, Q1)(s) ≥
C

s
1
3

.(95)

We now recall (68) on the time interval [s̃2, s],

3
∫ s

s̃2

(ε2, Q1) ≤ −|yQ|2L2 ln
(

λ(s)
λ(s̃2)

)
+ C(δ0)

√
α0 ≤ −1

2
|yQ|2L2 ln

(
λ(s)
λ(s̃2)

)
for s ≥ s̃3 large enough, from the fact that λ(s) → 0 as s → +∞. We now
inject (95) into the above inequality and get for s ≥ s̃3,

C(s
2
3 − s̃

2
3
2 ) ≤ −ln

(
λ(s)
λ(s̃2)

)
i.e.

C

2
s

2
3 ≤ −ln(λ(s)) = |ln(λ(s))|

for some universal constant C > 0 and s ≥ s̃4. Injecting (95) into the above
inequality, we conclude for s ≥ s̃4,

|ln(λ(s))| ≥ Cs
2
3 ≥ C

(ε2, Q1)2(s)
i.e. (ε2, Q1)(s) ≥

C

|ln(λ(s))| 12

and Proposition 8 is proved.
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We now easily conclude the proof of Theorem 2 as in Section 4.2.

Proof of Theorem 2. The proof is very similar to the one of finite time
blow-up and we briefly sketch the argument.

Again let tn be a sequence of times such that λ(tn) = 2−n, sn = s(tn) be
the corresponding sequence, and t̃4 such that s(t̃4) = s̃4 of Proposition 8. We
may assume n ≥ n0 so that tn ≥ t̃4. Note that tn → T , the blow-up time.
Recall also from (68) that for all s ∈ [sn, sn+1], 2−(n+1) ≤ λ(s) ≤ 2−(n−1). We
then get, from (68), the definition of the sequence tn, the relation ds

dt = 1
λ2 and

estimate (93), the following: for all n ≥ n0,

C ≥
∫ sn+1

sn

(ε2, Q1)ds ≥
∫ sn+1

sn

Cds

|ln(λ(s))| 12
≥

∫ tn+1

tn

Cdt

λ2(t)|ln(λ(t))| 12
so that

∀n ≥ n0, Cλ2(tn)|ln(λ(tn))| 12 ≥ tn+1 − tn.

From λ(tn) = 2−n, and by summing the above inequality in n, we get

C(T − tn)≤
∑
k≥n

2−2k
√

k =
∑

n≤k≤2n

2−2k
√

k +
∑
k≥2n

2−2k
√

k

≤C2−2n√n + 2−4n√n
∑
k≥0

2−2k

√
2 +

k

n

≤C2−2n√n + C2−4n√n ≤ C2−2n√n ≤ Cλ2(tn)|ln(λ(tn))| 12 .
Now since t ≥ t̃4, for some n ≥ n0, t ∈ [tn, tn+1], and from 1

4λ(tn) = 1
2λ(tn+1) ≤

λ(t) ≤ 2λ(tn), we conclude

λ2(t)|ln(λ(t))| 12 ≥ Cλ2(tn)|ln(λ(tn))| 12 ≥ C(T − tn) ≥ C(T − t).

Now note that the function f(x) = x2|ln(x)| 12 is nondecreasing in a neighbor-
hood of x = 0, and moreover

f

(
C
√

T − t

|ln(T − t)| 14

)
= C(T − t)

(
1 − C

ln(|ln(T − t)|)
|ln(T − t)| 12

)
≤ C(T − t)

for t close enough to T , so that we get for some universal constant C∗:

f(λ(t)) ≥ f

(
C∗√T − t

|ln(T − t)| 14

)
i.e. λ(t) ≥ C∗

√
T − t

|ln(T − t)| 14
and Theorem 2 is proved.

It now remains to prove Proposition 7.

Proof of Proposition 7. We proceed in several steps.

Step 1. Structure of the virial linearized operator L2. We use here some
noteworthy cancellation of oscillatory integrals in (58). Let L− as in (40) and
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L2 be the linear operator introduced in Lemma 7. For any function f , we
denote f1 = 1

2f + yfy and f2 = (f1)1. Note again (f, g1) = −(f1, g). From
direct verification,

L2(f) =
1
2
{L−(f1) − (L−(f))1}

and

H2(ε2, ε2) = (L2ε2, ε2) =
(

L−ε2,
1
2
ε2 + yε2y

)
.

Let
W = y2Q + µQ

with µ such that (W, Q2) = 0. We claim

L2(W ) =
1
2
L−(W1) + 2Q2 and H2(W, W ) = 0.

Indeed, from L−(Q) = 0 and L−(y2Q) = −4Q1, we compute L−W = −4Q1 so
that L2(W ) = 1

2 {L−(W1) − (L−(W ))1)} = 1
2L−(W1) + 2Q2. Now

H2(W, W ) = (L−W, W1) = (−4Q1, W1) = 4(W, Q2) = 0

from (91).
We now consider

ε̃2 = ε2 + bW with b =
(ε2, Q1)
|yQ|2L2

so that

(ε̃2, Q2) = 0 and (ε̃2, Q1) = 0.(96)

Indeed, the first relation holds from (34) and (91), the second one directly
follows from the definition of ε̃ and (y2Q, Q1) = −|yQ|2L2 . We now compute

H2(ε̃2, ε̃2) =H2

(
ε2 +

(ε2, Q1)
|yQ|2L2

W, ε2 +
(ε2, Q1)
|yQ|2L2

W

)
= H2(ε2, ε2) + 2

(ε2, Q1)
|yQ|2L2

(ε2,L2W )

= H2(ε2, ε2) +
2

|yQ|2L2

(ε2, Q1)
(

ε2,
1
2
L−W1 + 2Q2

)
= H2(ε2, ε2) +

1
|yQ|2L2

(ε2, Q1)(ε2, L−W1)

where in the last step we used the orthogonality condition (ε2, Q2) = 0 from (34).

Step 2. The first estimate on cubic terms. We now rewrite virial equality
(58) with (33) and (34) as

(ε2, Q1)s = 2λ2|E0| + H1(ε1, ε1) + H2(ε̃2, ε̃2)

−xs

λ
(ε2, Q1y) −

1
|yQ|2L2

(ε2, Q1)(ε2, L−W1) + G(ε)
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with G(ε) as given in (59). From (96) and Proposition 2, we then estimate

(ε2, Q1)s ≥ 2λ2|E0| +
δ1

2

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
− 1
|yQ|2L2

(ε2, Q1)(ε2, L−W1)
xs

λ
(ε2, Q1y) −

2
δ1

(ε1, Q)2 + G(ε).

We directly estimate the three formally cubic terms in the above expression:

• We can write G(ε) = G(ε̃ − ibW ) and easily estimate from (59)

|G(ε)| ≤ 16
δ1

b4 +
δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
.

• Recall (51)∣∣λ2(s)|E0| + 2(ε1, Q)
∣∣ ≤ C

(∫
|εy|2 +

∫
|ε|2e−2−|y|

)
,

then from λ(s) → 0 as s → +∞, we get

(ε1, Q)2 ≤ 16
δ1

b4 +
δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y| + λ2|E0|

)
(97)

for some s̃1 > 0 and s ≥ s̃1.

• We treat the nonradial term xs

λ (ε2, Q1y). To do so, we first recall (55)

(ε2, Qy) =
1
2
Im

(∫
εyε

)
=

1
2

{
Im

(∫
ε̃y ε̃

)
+

2
|yQ|2L2

(ε2, Q1)(ε1, Wy)
}

.

(98)

We now recall (57):

|Q|2L2

2
xs

λ
=−2(ε2, Qy) −

xs

λ
(ε1, (yQ)y)

−λs

λ

(
ε1,

1
2
yQ + y(yQ)y

)
+ γ̃s(ε2, yQ) − (R2(ε), yQ),

and then compute from (W, Q1y) = 0

|Q|2L2

2
xs

λ
(ε2, Q1y) = −Im

(∫
ε̃y ε̃

)
(ε̃2, Q1y) + G(1)(ε)

with

G(1)(ε) =− 2
|yQ|2L2

(ε2, Q1)(ε1, Wy)(ε2, Q1y)

+(ε2, Q1y)
{
−xs

λ
(ε1, (yQ)y) −

λs

λ

(
ε1,

1
12

yQ + y(yQ)y

)}
+(ε2, Q1y) {γ̃s(ε2, yQ) − (R2(ε), yQ)}
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cubic in ε. Now express G(1)(ε) = G(1)(ε̃− bW ) and note from (56) that(
|yQ|22

2 γ̃s − (ε1, L+Q2)
)

is quadratic in ε, so that each cubic term in

G(1)(ε) of the form of three scalar products contains at least one term
(ε1, V ) for some well localized function V . Therefore the estimate

|G(1)(ε)| ≤ 16
δ1

b4 +
δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
easily follows. Moreover,∣∣∣∣Im (∫

ε̃y ε̃

)
(ε̃2, Q1y)

∣∣∣∣≤C|ε̃|L2

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
≤ δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
for α0 < α9 small enough.

Putting together the three estimates above, we have so far proved

(ε2, Q1)s + Cb4 ≥ 3
2
λ2|E0| +

5δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
(99)

− 1
|yQ|2L2

(ε2, Q1)(ε2, L−W1).

Step 3. Transformation of the dispersive inequality. We now inject
dynamical information to handle the term (ε2, Q1)(ε2, L−W1) in (99). To do
so, we take the inner product of (47) with W1. Note that (W1, Q1) = −(W, Q2)
= 0, so that

(ε2, L−W1) = ∂s(ε1, W1) +
λs

λ

(
ε1,

1
2
W1 + yW1y

)
+

xs

λ
(ε1, W1y) − γ̃s(ε2, W1) + (R2(ε), W1).

Injecting this into (99) and integrating by parts in time, we get{(
1 +

1
|yQ|2L2

(ε1, W1)
)

(ε2, Q1)
}

s

+ Cb4 ≥ 3
2
λ2|E0|

+
5δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
+

1
|yQ|2L2

(ε1, W1)∂s(ε2, Q1) + G(2)(ε)

where G(2)(ε) is formally cubic in ε and explicitly is

G(2)(ε) =− 1
|yQ|2L2

(ε2, Q1)
{
− λs

λ
(ε1, W2) +

xs

λ
(ε1y, W1)

− γ̃s(ε2, W1) + (R2(ε), W1)
}

.
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We now inject (61) into the above inequality to get{(
1 +

1
|yQ|2L2

(ε1, W1)
)

(ε2, Q1)
}

s

≥ 3
2
λ2|E0| +

5δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
+

2
|yQ|2L2

(ε1, W1)(ε1, Q) + G(3)(ε)

with

G(3)(ε) = G(2)(ε) +
1

|yQ|2L2

(ε1, W1)
(
−xs

λ
(ε2, Q1y) + (R1(ε), Q1)

)
still cubic in ε. We now estimate:

• Similarly as for G(1)(ε),

|G(3)(ε)| ≤ 16
δ1

b4 +
δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y|

)
.

• Using (97), we estimate

|(ε1, W1)(ε1, Q)| ≤ 16
δ1

b4 +
δ1

16

(∫
|ε̃y|2 +

∫
|ε̃|2e−2−|y| + 2λ2|E0|

)
for s ≥ s̃1.

Putting together these two estimates yields (92) and Proposition 7 is proved.

4.4. The higher dimensional case. In this section, we explain how to adapt
the proof of Theorem 2 in higher dimension N ≥ 2 to get Theorem 3. It turns
out that provided some slight modifications explicitly detailed here, the whole
proof adapts except the positivity property of the linear virial operator H,
Proposition 2, which we can prove only in dimension N = 1.

Let us now briefly explain what modifications have to be taken into ac-
count, and how to handle them. We consider in this section a solution to (1)
in dimension N ≥ 2,{

iut = −∆u − |u| 4
N u, (t, x) ∈ [0, T ) × RN

u(0, x) = u0(x), u0 : RN → C ,

for an initial condition u0 which satisfies

0 < α0 =
∫

|u0|2 −
∫

Q2 < α∗, E0 = E(u0) < 0, Im(
∫

∇u0u0) = 0,

for some α∗ small enough.

A) Sharp decomposition of the solution. In dimension N , (1) admits
2N + 2 symmetries in the energy space H1, that is 2 for scaling and phase,
N for translation and N for Galilean invariance which have been directly used
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to ensure Im(
∫
∇u0u0) = 0. We therefore use modulation theory to build a

regular decomposition

ε(t, y) = eiγ(t)λ
N

2 (t)u(t, λ(t)y + x(t)) − Q(y)

where x(t) is an N -dimensional vector x(t) = (xi(t))1≤i≤N . From the varia-
tional characterization of the ground state Q, the energy condition and the
implicit function theorem, we build ε such that:

(i)
∣∣∣∣1 − λ(t)

|∇u(t)|L2

|∇Q|L2

∣∣∣∣ + |ε(t)|H1 ≤ δ(α0), where δ(α0) → 0 as α0 → 0;

(100)

(ii) the following orthogonality conditions hold:

(ε1, Q1) = (ε2, Q2) = 0 and ∀1 ≤ i ≤ N, (ε1, yiQ) = 0,

where Q1 = N
2 Q + y · ∇Q and Q2 = N

2 Q1 + y · ∇Q1.

B) Algebraic relations for the linearized operator L. From Weinstein [28],
the linearized operator L close to the ground state is L = (L+, L−) with

L+ = −∆ + 1 −
(

4
N

+ 1
)

Q
4
N and L− = −∆ + 1 − Q

4
N ,

and the following algebraic relations hold:

L+(Q1) = −2Q , L+(∇Q) = 0,

L−(Q) = 0 , L−(yQ) = −2∇Q , L−(|y|2Q) = −4Q1.

From [28] and Lemma 2 in [16] with Q3 replaced by the first vector of L+, one
could also prove a coercive result on L similar to Lemma 4. Nevertheless, from
Remark 1, a smallness estimate on ε (100) suffices for our analysis.

C) Control of nonlinear interactions. The ε equation inherited from (1)
can now be written:

∂sε1 − L−ε2 =
λs

λ
Q1 +

xs

λ
· ∇Q +

λs

λ

(
N

2
ε1 + y · ∇ε1

)
(101)

+
xs

λ
· ∇ε1 + γ̃sε2 − R2(ε),

∂sε2 + L + ε1 = −γ̃sQ − γ̃sε1 +
λs

λ

(
N

2
ε2 + y · ∇ε2

)
+

xs

λ
· ∇ε2 + R1(ε),

(102)

with R1(ε) = (ε1 + Q)|ε + Q| 4
N − Q

4
N

+1 −
(

4
N + 1

)
Q

4
N ε1 and R2(ε) =

ε2(|ε + Q| 4
N − Q

4
N ).
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All along the proof of Theorem 2, we need to estimate nonlinear interaction
terms with respect to some local L2-norm and |∇ε|L2 . First note that elliptic
estimates easily imply:

∀0 ≤ k ≤ 3,

∣∣∣∣ dk

drk
Q(r)

∣∣∣∣ ≤ Ce−1−r

for any number 1− < 1. Three different order sizes appear from its very proof,
all of them involving derivatives of Q of order k, 0 ≤ k ≤ 3:

• First order terms are scalar products, terms of the form(
ε1,2, P (y)

dk

dyk
Q(y)

)
for some integer k and polymonial P . We need an estimate∣∣∣∣(ε1,2, P (y)

dk

dyk
Q(y)

)∣∣∣∣ ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

) 1
2

.

• Second order terms are either products of first order terms, and are
estimated so, or of the form

(
R(ε), P (y) dk

dyk Q(y)
)

with

R(ε) = R1(ε) + iR2(ε).

• Third order terms are either products of second by first order terms, and
then are easily estimated, or of two other forms, one term being inherited
from the conservation of the energy

F (ε) = |ε + Q| 4
N

+2 − Q
4
N

+2 −
(

4
N

+ 2
)

Q
4
N

+1ε1

−
(

1 +
2
N

) (
4
N

+ 1
)

Q
4
N ε2

1 −
(

1 +
2
N

)
Q

4
N ε2

2,

and the other one corresponding to the introduction of the virial linear
operator in the computation of (ε2, Q1)s as in Lemma 7 and so to the
formally cubic order term of the real part of R(ε), i.e.,

R̃1(ε) = (ε1 + Q)|ε1 + Q| 4
N − Q

4
N

+1 −
(

4
N

+ 1
)

Q
4
N ε1

− 2
N

(
4
N

+ 1
)

Q
4
N
−1ε2

1 −
2
N

Q
4
N
−1ε2

2.

We need an estimate

|F (ε)| +
∣∣∣∣(R̃1(ε), P (y)

dk

dyk
Q(y)

)∣∣∣∣ ≤ δ(α0)
(∫

|∇ε|2 +
∫

|ε|2e−2−|y|
)

with δ(α0) → 0 as α0 → 0.
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We recall the Gagliardo-Nirenberg estimate in dimension N∫
|ε| 4

N
+2 ≤ C

(∫
|∇ε|2

) (∫
|ε|2

) 2
N

.

Let us also recall an estimate |ε|H1 ≤ δ(α0) from Step A. In what follows, k

denotes any positive integer, and P (y) a polynomial in y = (yi)1≤i≤N .
Moreover, note that the ground state Q is no longer explicit in dimension

N ≥ 2, but the uniform asymptotic estimate |Q(y)| ≤ Ce−1−|y| for any number
1− < 1 is easily derived from the equation of Q, so that |P (y) dk

dyk Q(y)| ≤
CP,ke

−1−|y|. We now consider three different cases depending on N :

N = 2: Let 2− be any strictly positive number 2− < 2.

• First order terms: from Cauchy-Schwarz,∣∣∣∣(ε1,2, P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ CP,k

(∫
|ε|2e−2−|y|

) 1
2

.

• Second order terms:

∀z ∈ C, |(1 + z1)|1 + z|2 − 1 − 3z1 + iz2(|1 + z|2 − 1)| ≤ C(|z|3 + |z|2),

so that
∀ε ∈ H1 |R(ε)| ≤ C(|ε|3 + Q|ε|2).

Now using Gagliardo-Nirenberg, we estimate∫
|R(ε)e−1−|y|| ≤C

(∫
|ε|3e−1−|y| +

∫
|ε|2Qe−1−|y|

)
≤C

(∫
|ε|4

) 1
2
(∫ ∫

|ε|2e−2−|y|
) 1

2

+ C

∫
|ε|2e−2−|y|

≤C

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

)
.

• Third order terms: for all z ∈ C, ||1 + z|4 − 1 − 4z1 − 10z2
1 − 2z2

2 | ≤
C(|z|4 + |z|3) so that |F (ε)| ≤ C(|ε|4 + Q|ε|3) and∫

|F (ε)| ≤C

(∫
|ε|4 +

∫
|ε|3Q

)
≤C

(∫
|∇ε|2

) (∫
|ε|2

)
+ C

(∫
|ε|4

) 1
2
(∫

|ε|2Q2

) 1
2

≤C|ε|H1

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

)
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where we implicitly used an a priori smallness estimate on ε (100). More-
over, for all z ∈ C, |(1+ z1)|1+ z|2 − 1− 3z1 − 3z2

1 − z2
2 | ≤ C|z|3 so that

|R̃1(ε)| ≤ CQ|ε|3, and∫
|R̃1(ε)e1−|y|| ≤C

(∫
|ε|3e−1−|y|

)
≤C

(∫
|ε|4

) 1
2
(∫

|ε|2Q2

) 1
2

≤C|ε|H1

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

)
.

N = 3: We recall Sobolev injection |ε|L6 ≤ C|∇ε|L2 .

• First order terms are estimated according to∣∣∣∣(ε1,2, P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ CP,k|ε|L6 ≤ CP,k|∇ε|L2 .

• Second order terms:

∀z ∈ C, |(1+ z1)|1+ z| 43 − 1− 7
3
z1 + iz2(|1+ z| 43 − 1) ≤ C(|z| 43+1 + |z|2),

so that
∀ε ∈ H1 |R(ε)| ≤ C(|ε| 43+1 + Q

1
3 |ε|2),

and ∫
|R(ε)e−1−|y|| ≤C

(∫
|ε| 73 e−1−|y| +

∫
|ε|2e−( 4

3
)−|y|

)
≤C(|ε|L6)

7
3 + C(|ε|L6)2 ≤ C

(∫
|∇ε|2

)
.

• Third order terms: for all z ∈ C, ||1 + z| 43+2 − 1− 10
3 z1 − 35

9 z2
1 − 5

3z2
2 | ≤

C(|z| 43+2 + |z|3) so that∫
|F (ε)| ≤C

(∫
|ε| 43+2

)
+

∫
|ε|3Q 1

3

≤C

(∫
|ε|2

) 2
3
(∫

|∇ε|2
)

+ |ε|3L6 ≤ C|ε|H1

(∫
|∇ε|2

)
,

where we implicitly used (100).

Moreover, for all z ∈ C, |(1 + z1)|1 + z| 43 − 1− 7
3z1 − 14

9 z2
1 − 2

3z2
2 | ≤ C|z|3,

so that∫
|R̃1(ε)e−1−|y|| ≤ C

∫
|ε|3e− 2

3
−|y| ≤ C|ε|3L6 ≤ C

(∫
|∇ε|2

) 3
2

.
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N ≥ 4: Let 2∗ = 2N
N−2 the critical Sobolev exponent; then |ε|L2∗ ≤

C|∇ε|L2 .

• First order terms are estimated as for N = 3,∣∣∣∣(ε1,2, P (y)
dk

dyk
Q(y)

)∣∣∣∣ ≤ CP,k|ε|L2∗ ≤ CP,k|∇ε|L2 .

• Second order terms from 4
N ≤ 1:

∀z ∈ C,

∣∣∣∣(1 + z1)|1 + z| 4
N − 1 −

(
4
N

+ 1
)

z1 + iz2(|1 + z| 4
N − 1)

∣∣∣∣ ≤ C|z|2

so that
∀ε ∈ H1 |R(ε)| ≤ C|ε|2Q 4

N
−1,

and∫
|R(ε)e−1−|y|| ≤ C

∫
|R(ε)e−1− 4

N
|y|| ≤ C|ε|

2
2∗
L2∗ ≤ C

(∫
|∇ε|2

)
.

• Third order terms: for all z ∈ C,∣∣∣∣∣|1 + z| 4
N

+2 − 1 −
(

4
N

+ 2
)

z1

−
(

2
N

+ 1
) (

4
N

+ 1
)

z2
1 −

(
2
N

+ 1
)

z2
2

∣∣∣∣∣ ≤ C|z| 4
N

+2

still from 4
N ≤ 1, and then |F (ε)| ≤ C|ε| 4

N
+2 so that∫

|F (ε)| ≤ C

∫
|ε| 4

N
+2 ≤ |ε|

4
N

H1

(∫
|∇ε|2

)
.

Moreover, for all z ∈ C,

|(1+ z1)|1+ z| 4
N −1−

(
4
N

+ 1
)

z1 −
2
N

(
4
N

+ 1
)

z2
1 −

2
N

z2
2 | ≤ C|z|2+ 2

N ,

and so we estimate∫
|R̃1(ε)e−1−|y|| ≤C

(∫
|ε|2+ 2

N
Q

4
N

+1

Q2+ 2
N

e−1−|y|
)

≤ C

(∫
|ε|2+ 2

N e−
2−
N

|y|
)

≤C|ε|2+
2
N

L2∗ ≤ C

(∫
|∇ε|2

)1+ 1
N

from 2 + 2
N < 2∗ = 2 + 4

N−2 .
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D) The local virial estimate. Arguing as in Section 3 and using equations
(101), (102), we then exhibit the following local virial inequality

(ε2, Q1)s ≥ H(ε, ε) + 2λ2|E0| − δ(α0)
(∫

|∇ε|2 +
∫

|ε|2e−2−|y|
)

,(103)

with H(ε, ε) = (L1ε1, ε1) + (L2ε2, ε2) and

L1 = −∆ +
2
N

(
4
N

+ 1
)

Q
4
N
−1y · ∇Q , L2 = −∆ +

2
N

Q
4
N
−1y · ∇Q.(104)

We now conjecture that the same spectral properties of H as in Proposition 2
hold true, at least for low dimension; that is, we assume the Spectral Property
announced in Section 1.2 holds true:

Spectral property. Let N ≥ 2. There exists a universal constant
δ̃1 > 0 such that for all ε ∈ H1, if (ε1, Q) = (ε1, Q1) = (ε1, yQ) = (ε2, Q1) =
(ε2, Q2) = (ε2,∇Q) = 0, then

(i) for N = 2,

H(ε, ε) ≥ δ̃1

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

)
for some universal constant 2− < 2;

(ii) for N ≥ 3,

H(ε, ε) ≥ δ̃1

∫
|∇ε|2.

Let us say a word about the structure of H(ε, ε). For ε ∈ H1 and λ > 0,
set ελ = λ

N

2 ε(λy). From direct computation, we have

H(ε, ε) =
(

L+ε1,
N

2
ε1 + y · ∇ε1

)
+

(
L−ε2,

N

2
ε2 + y · ∇ε2

)
=

1
2

d

dλ
(Lελ, ελ)|λ=1.

Now recall that none of the three conservation laws in H1 sees the variation of
size of the ground states Qλ,γ,x(y) = λ

N

2 eiγQ(λ(y−x)) where λ > 0, γ ∈ R and

x ∈ RN . Note, from [28], that the functional JN (u) = (
∫
|∇u|2)(

∫
|u|2) 2

N∫
|u|2+ 4

N
attains

its infimum in H1 at the points Qλ,γ,x, and the Hessian of this functional is

d2

dη2
J(Q + ηε)|η=0 = (Lε, ε) + S(ε)

where S(ε) is a sum of terms of the form (ε1,2, V1)(ε1,2, V2) for some well lo-
calized functions V1, V2.

From this point of view, to exhibit a positivity property on H is equivalent
to comparing the Hessian matrices of JN at the points Qλ,γ,x, and thus to



212 FRANK MERLE AND PIERRE RAPHAEL

separate these functions. Unfortunately, the analysis of the operator H is
more complicated in dimension N ≥ 2 because the function Q is no longer
explicit.

E) Refined blow-up rate. We now claim the following proposition which
implies Theorem 3 from Galilean invariance:

Proposition 9. Let N ≥ 2 and assume the Spectral Property holds true;
then there exists α∗ > 0 and a universal constant C∗ such that the following is
true. Let u0 ∈ H1 such that

α0 = α(u0) =
∫

|u0|2−
∫

Q2 < α∗, E0 = E(u0) < 0, Im
(∫

∇u0u0(x)
)

= 0.

Let u(t) be the corresponding solution to (1); then u(t) blows up in finite time
0 < T < +∞ and for t close to T :

|∇u(t)|L2 ≤ C∗
(
|ln(T − t)|N

2

T − t

) 1
2

.

As for the one dimensional case, the heart of the proof of Proposition 9
is the local virial inequality. From (103) and the Spectral Property, we indeed
first get (65){(

1 +
1

4δ0
(ε1, Q)

)
(ε2, Q1)

}
s

≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−2−|y|

)
+ 2λ2|E0| −

1
δ0

(ε2, Q1)2.

Now the whole proof of the refinement of the blow-up rate adapts in dimension
N ≥ 2. For a given function f , set f1 = N

2 f + y · ∇f ; then one easily checks
that L2 given by (20) satisfies

L2(f) =
1
2
{L−(f1) − (L−(f))1}

and

H2(ε2, ε2) = (L2ε2, ε2) =
(

L−ε2,
N

2
ε2 + y · ∇ε2

)
.

Set then W = |y|2Q + µQ with µ so that (W, Q2) = 0; then H2(W, W ) = 0,
(W, Q1) = −|yQ|2L2 and the whole algebra of the proof follows. The only point
to check is which refinement of the blow-up rate is attained. The answer to
this question depends on the control we are able to prove on formally cubic
terms in dimension N . This is the point we now investigate.

More precisely, letting ε̃ = ε + i (ε2,Q1)
|yQ|2

L2
W and b = (ε2,Q1)

|yQ|2
L2

, we express{(
1 +

1
|yQ|2L2

(ε1, W1)
)

(ε2, Q1)
}

s

≥ H(ε̃, ε̃) + G(4)(ε)
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with G(4)(ε) formally cubic in ε, and we claim

|G(4)(ε)| = |G(4)(ε̃ − bW )| ≤ δ(α0)
(∫

|∇ε̃|2 +
∫

|ε̃|2e−2−|y|
)

+ Cb2+ 2
N .

From the fact that |G(4)(ε)| is formally cubic in ε, it is composed with three
kind of terms in the terminology of Step C: products of three scalar products,
products of a scalar product with a second order term, third order term F (ε)
and R̃1(ε). The first two kinds are directly estimated we focus on the last
kind, and argue differently depending on the dimension, and implicitly recall
the corresponding estimates of Step C:

N = 2:∫
|F (ε̃ − bW )| ≤C

(∫
|ε̃ − bW |4 +

∫
|ε̃ − bW |3Q

)
≤C

(∫
|ε̃|4 +

∫
|ε̃|3Q

)
+ Cb3

≤C|ε̃|H1

(∫
|∇ε̃|2 +

∫
|ε̃|2e−2−|y|

)
+ Cb3,

and similarly,∫
|R̃1(ε̃ − bW )e1−|y|| ≤C

(∫
|ε̃ − bW |3e−1−|y|

)
≤ C

(∫
|ε̃|3e−1−|y|

)
+ Cb3

≤C|ε̃|H1

(∫
|∇ε̃|2 +

∫
|ε̃|2e−2−|y|

)
+ Cb3.

N = 3:∫
|F (ε̃ − bW )| ≤C

(∫
|ε̃ − bW | 43+2 +

∫
|ε̃ − bW |3Q 1

3

)
≤C

(∫
|ε̃| 43+2 +

∫
|ε̃|3Q 1

3

)
+ Cb3

≤C|ε̃|H1

(∫
|∇ε̃|2

)
+ Cb3

and similarly,∫
|R̃1(ε̃ − bW )e1−|y|| ≤ C

(∫
|∇ε̃ − bW |2

) 3
2

≤ C

(∫
|∇ε̃|2

) 3
2

+ Cb3.

N ≥ 4:∫
|F (ε̃ − bW )| ≤C

∫
|ε̃ − bW | 4

N
+2 ≤ C

∫
|ε̃| 4

N
+2 + Cb2+ 4

N

≤ |ε̃|
4
N

H1

(∫
|∇ε̃|2

)
+ Cb2+ 4

N
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and similarly,∫
|R̃1(ε̃ − bW )e1−|y|| ≤C

∫
|ε̃ − bW |2+ 2

N e−
2−
N

|y|(105)

≤C

∫
|ε̃|2+ 2

N e−
2−
N

|y| + Cb2+ 2
N

≤C

(∫
|∇ε̃|2

)1+ 1
N

+ Cb2+ 2
N .

Therefore, the N th dimensional version of Proposition 7 can be written:

Proposition 10. Let ε̃ = ε + i (ε2,Q1)
|yQ|2

L2
W . There exist universal con-

stants δ̃0, C > 0 and α11 > 0 such that for α0 < α11, there exists s̃6 such
that for all s ≥ s̃6,{(

1 +
1

|yQ|2L2

(ε1, W1)
)

(ε2, Q1)
}

s

+ C(ε2, Q1)2+
2
N

≥ δ̃0

(∫
|∇ε̃|2 +

∫
|ε̃|2e−2−|y|

)
+ λ2|E0|.

Integrating the obtained differential inequality easily leads to the an-
nounced control

λ(t) ≥ C

(
T − t

|ln(T − t)|N

2

) 1
2

and the proofs of Proposition 9 and Theorem 3 are complete.

Appendix A: Proof of Proposition 2

We prove Proposition 2 with 2− = 9
5 and δ̃1 = 1

10 . The proof is similar to
the one of Appendix C in [13].

We note H(ε, ε) = H1(ε1, ε1) + H2(ε2, ε2) with

H1(ε1, ε1) =
∫

ε2
1y + 10

∫
yQ3Qyε

2
1 and H2(ε2, ε2) =

∫
ε2
2y + 2

∫
yQ3Qyε

2
2.

We recall that from direct computation

H1(ε1, ε1) =
(
L+ε1,

ε1

2
+ yε1y

)
(106)

and
H2(ε2, ε2) =

(
L−ε2,

ε2

2
+ yε2y

)
.

Next we set

H1(ε1, ε1) = (L1ε1, ε1) =
∫

ε2
1y +

10
9

(∫
10yQ3Qyε

2
1 −

1
10

∫
ε2
1

ch2( 9
10y)

)
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and

H2(ε2, ε2) = (L2ε2, ε2) =
∫

ε2
2y +

10
9

(∫
2yQ3Qyε

2
2 −

1
10

∫
ε2
2

ch2( 9
10y)

)
so that

H(ε, ε) − 1
10

(∫
|εy|2 +

∫
1

ch2
(

9
10y

) |ε|2) =
9
10

(
H1(ε1, ε1) + H2(ε2, ε2)

)
.

(107)

We prove that under orthogonality conditions (33) and (34), H1 and H2 are
positive, which concludes the proof of Proposition 2.

We give a definition of the index of a bilinear form. Let B a bilinear form
on a vector space V . Let us define the index of B on V as:

indV (B) = max{k ∈ N/ there exists a subspace P of codimension k

such that B|P is positive}.

Let H1
e (respectively H1

0 ) denote the subspace of even (respectively odd) H1

functions. Assume that H1
e is B-orthogonal to H1

0 . We say that B defined on
H1 has index i + j if indH1

e
= i and indH1

o
= j.

The proof proceeds in several steps:

Step 1. H1 has index 1 + 1, H2 has index 1 + 0. This is achieved by
comparing H1 and H2 by a simpler quadratic form of classical type. Here we
use the dimension N = 1 hypothesis.

Lemma 9 (Lower bound on H). (i) For all ε1 ∈ H1,

H1(ε1, ε1) ≥ (L̃1ε1, ε1) + 2
∫

1
ch2( 9

10y)
ε2
1(108)

where L̃1 = −∆ − 243
25

1
ch2( 9

10
y)

.

(ii) For all ε2 ∈ H1,

H2(ε2, ε2) ≥ (L̃2ε2, ε2) +
1
30

∫
1

ch2( 9
10y)

ε2
2(109)

where L̃2 = −∆ − 81
50

1
ch2( 9

10
y)

.

Proof of Lemma 9. (i) and (ii) are both a consequence of the following
inequality: for all y ∈ R,

10yQ3Qy ≥ −13
2

1
ch2( 9

10y)
.(110)
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From the explicit value of Q (8), this is implied by the following inequality

∀y ≥ 0,
60
13

y
ch2(y)
ch2(2y)

th(2y) ≤ 1,

which can be checked similarly as in [13].
We then collect

H1(ε1, ε1)≥
∫

ε2
1y −

10
9

(
13
2

+
1
10

) ∫
1

ch2
(

9
10y

)ε2
1

≥ 2
∫

1
ch2( 9

10y)
ε2
1 + (L̃1ε1, ε1),

H2(ε2, ε2)≥
∫

ε2
2y −

10
9

(
13
10

+
1
10

) ∫
1

ch2( 9
10y)

ε2
2

≥ 1
30

∫
1

ch2
(

9
10y

)ε2
2 + (L̃2ε2, ε2).

This ends the proof of Lemma 9.

From the fact that operators L̃1, L̃2 introduced in Lemma 9 have a known
explicit spectral structure, we claim

Lemma 10. H1 has index 1 + 1, H2 has index 1 + 0.

Remark 5. Consequently, the operator L1 has exactly two strictly nega-
tive eigenvalues λ1, λ2 associated to the respectively even and odd eigenfunc-
tions ψ1, ψ2 and continuous spectrum on [0,+∞). Moreover, H1 is positive on
[span(ψ1, ψ2)]⊥. Similarly, the operator L2 has exactly one strictly negative
eigenvalue λ3 associated to the even eigenfunction ψ3 and continuous spectrum
on [0,+∞). Moreover, H2 is positive on [span(ψ3)]⊥.

Proof of Lemma 10. From [26], the operator Ln = −∆ − n(n+1)
4ch2( y

2
) has ex-

actly
[

n
2

]
+1 strictly negative eigenvalues, and continuous spectrum on [0,+∞).

Now we note that when ε(y) = ε̃(9
5y),

L̃1(ε1)(y) =
81
25

(L3ε̃1)
(

9
5
y

)
and L̃2(ε2)(y) =

81
25

(L1ε̃2)
(

9
5
y

)
.

Therefore, H1 has index at most 1+1, and H2 has index at most 1+0. More-
over,

H1(Qy, Qy) < 0 , H1(Q, Q) < 0 , H2(Q, Q) < 0,

which allows us to conclude the proof of Lemma 10. Indeed, H1(Qy, Qy) = 0
follows from (106) and L+(Qy) = 0. Now compute

H1(Q, Q) =
(

L+Q,
Q

2
+ yQy

)
=

(
−4Q5,

Q

2
+ yQy

)
= −4

3

∫
Q6 < 0.
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H2(Q, Q) = 0 follows from (106) and L−Q = 0. From (107), H < H and
Lemma 10 is proved.

Step 2. The positivity property on H1. We show that if ε1 ∈ H1 is such
that (ε1, Q) = (ε1, yQ) = 0, then H1(ε1, ε1) ≥ 0, and that if ε2 ∈ H1 is such
that (ε2, Q1) = (ε2, Q2) = 0, then H2(ε2, ε2) ≥ 0.

Lemma 11 (Numerical estimates). (i) There exists a unique regular even
function φ1 ∈ L∞ such that L1φ1 = Q. Moreover,∫

(φ1y)2 < +∞(111)

and

−(φ1, Q)
(

1 − H1(Q, Q)
(φ1, Q)
(Q, Q)2

)
> 0.(112)

(ii) There exists a unique regular odd function φ2 ∈ L∞ such that L1φ2 =
yQ. Moreover,∫

(φ2y)2 < +∞ and − (φ2, yQ)
(

1 − H1(Qy, Qy)
(φ2, yQ)
(Qy, yQ)2

)
> 0.(113)

(iii) Let Q3 = Q1 + 1
2Q2. There exists a unique regular even function

φ3 ∈ L∞ such that L2φ3 = Q3. Moreover,∫
(φ3y)2 < +∞ and − (φ3, Q3)

(
1 − H2(Q, Q)

(φ3, Q3)
(Q, Q3)2

)
> 0.(114)

Remark 6. Note that (112), (113) and (114) are checked numerically.

Proof of Lemma 11. Note that existence and uniqueness of φ1, φ2, φ3 are
not given by the Lax-Milgram theorem and these functions are not in H1. We
prove the existence and uniqueness of φ1. The proof is similar for φ2 and φ3.

A) Uniqueness. This follows from

Lemma 12 (Coercivity of L1). Let u ∈ L∞ be a regular even function
such that L1u = 0. Then u = 0.

Proof. The proof is based on estimate (108). Let u be as in Lemma 12;
we want to prove u = 0, and argue by contradiction assuming u �= 0. First,
note that ∫

(uy)2 < ∞.(115)
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Indeed, u satisfies u′′ + V (y)u = 0 for some well localized positive potential
V (y). Integrating this equation using u ∈ L∞ yields |u′(y)| ≤ C. Then
multiplying the equation by u and integrating by parts ensure

∫
(uy)2 < ∞.

Now assume u is not zero. Let ψ1 ∈ H1
e be the eigenvector associated to

the strictly negative eigenvalue λ1 of L1 in H1
e . Then (L1u, ψ1) = λ1(u, ψ1) = 0

from assumption L1u = 0, and therefore

(u, ψ1) = 0.(116)

Let now χ be a regular even cutoff function χ(y) = 1 for |y| ≤ 1 and χ(y) =
0 for |y| ≥ 2, and for A > 0, χA(y) = χ( y

A). We set uA = χAu ∈ H1
e .

Consider then V = span(ψ1, u) and VA = span(ψ1, uA) ⊂ H1
e . Consider now

the quadratic form H̃1(u, u) = (L̃1u, u) and the two by two symmetric matrices
M = matV (H̃1) and MA = matVA

(H̃1). Then from (116) and (108), M is
diagonal, definite, negative. Moreover, from (115), it is a trivial task to verify
MA → M as A → +∞, so that MA and M have the same signature for A

large enough. From Lemma 10, indH1
e
H̃1 = 1, so that for A large enough,

dimVA = 1 and uA = λAψ1. Now, from uA → u in L∞
loc and (116), we conclude

λA → 0, so that u = 0, and a contradiction follows. This concludes the proof
of Lemma 12, and the uniqueness part of the proof of Lemma 11.

B) Existence. We now prove the existence of φ1 as in Lemma 11. Note
that L1 = −∆− V (y) for some regular well localized even potential V (y). We
want to prove the existence of a regular even solution u ∈ L∞ to L1u = f for
some regular even and well localized function f with exponential decay. This
is a classical result. We recall its proof using a fixed point argument.

First let ρ be a regular solution to L1ρ = 0. We claim

∀y ∈ R , |ρ(y)| ≤ C|y|.(117)

Indeed, note from the decay properties of V that it is a trivial task to build ρ1

and ρ2 solutions to the integral equation

ρ1(y) = y +
∫ +∞

y

∫ +∞

s
V (τ)ρ1(τ)dτds

and

ρ2(y) = 1 +
∫ +∞

y

∫ +∞

s
V (τ)ρ2(τ)dτds.

Now, ρ1, ρ2 are solutions to the homogeneous linear equation (L1ρi)i=1,2 =
0 locally on (A,+∞) for some A large enough, and can be extended to R
from linear theory. Moreover, from their behavior at +∞, they are linearly
independent. Therefore, any solution ρ to Lρ = 0 belongs to span(ρ1, ρ2), and
consequently |ρ(y)| ≤ C|y| as y → +∞. We argue similarly for y → −∞, and
(117) is proved.
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Again using a fixed point argument, we consider ρ̃1, ρ̃2 solutions to the
integral equations

ρ̃1(y) = 1 +
∫ y

−∞

∫ s

−∞
V (τ)ρ̃1(τ)dτds

and

ρ̃2(y) = 1 +
∫ +∞

y

∫ +∞

s
V (τ)ρ̃2(τ)dτds.

Note again that (L1ρi)i=1,2 = 0. Then ρ̃1, ρ̃2 are linearly independent of
Lemma 12. Therefore, their Wronskian D = ρ̃1ρ̃2y − ρ̃2ρ̃1y is a nonzero con-
stant. The method of variation of the constant gives an explicit regular solution
u to L1u = f with

u(y) = −
{

ρ̃1(y)
∫ +∞

y

f(τ)ρ̃2(τ)
D

dτ + ρ̃2(y)
∫ y

−∞

f(τ)ρ̃1(τ)
D

dτ

}
.

Now we may change u to 1
2 (u(y) + u(−y)) to get an even solution. Note that

u ∈ L∞ follows from the asymptotic behavior of f and ρ̃1, ρ̃2 at respectively
−∞ and +∞, together with (117).

It remains to prove (111), which follows from direct verification. Also, u

satisfies −u′′ − V (y)u = f(y) and u ∈ L∞. By integration of the equation, we
get |uy| ≤ C for all y ∈ R. Then multiplying the equation by u and integrating
by parts yields the result. This ends the proof of existence and uniqueness of
φ1, φ2, φ3 of Lemma 11.

C) Numerical estimates. It remains to prove estimates (112), (113) and
(114). These are checked numerically. We compute

−(φ1, Q)
(

1 − H1(Q, Q)
(φ1, Q)
(Q, Q)2

)
∼ 0.2,

−(φ2, yQ)
(

1 − H1(Qy, Qy)
(φ2, yQ)
(Qy, yQ)2

)
∼ 0.8,

−(φ3, Q3)
(

1 − H2(Q, Q)
(φ3, Q3)
(Q, Q3)2

)
∼ 0.2,

and Lemma 11 is proved.

Remark 7. These calcululations were made with the software MAPLE.

Lemma 13 (The positivity property of H in H1). (i) If ε1 ∈ H1 satis-
fies (ε1, Q) = (ε1, yQ) = 0, then H1(ε1, ε1) ≥ 0.

(ii) If ε2 ∈ H1 satisfies (ε2, Q3) = 0, then H2(ε2, ε2) ≥ 0

Remark 8. Note that orthogonality condition (ε2, Q1) = 0 does not suffice
to ensure the positivity of H2. Indeed, H2(Q, Q) < H2(Q, Q) = 0.
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Proof of Lemma 13. We prove (i) for ε1 ∈ H1
e . The proof is similar for

the two other directions, with the help of Lemma 10.
The proof is also similar to the one of Lemma 27 in [13] with a regularizing

argument on the function φ1. We indeed consider a regular even cutoff function
χA(y) = χ( y

A), χ(y) = 1 for 0 ≤ y ≤ 1, χ(y) = 0 for y ≥ 2. We set (φ1)A =
χAφ1. Let ‖f‖ = (

∫
|fy|2 +

∫
|V ||f |2) 1

2 where L1 = −∆ + V . One easily
estimates

|H1(f, g)| ≤ ‖f‖‖g‖ and ‖(φ1)A − φ1‖ → 0 as A → +∞.(118)

First, we consider the plane (P1)A spanned by Q and (φ1)A in H1
e , and show

that H1 restricted to (P1)A is not degenerate for A large enough.
Next, we define (P1)⊥A the orthogonal of (P1)A in H1

e for the quadratic
form H1. By an index argument, we show that H1 is nonnegative on (P1)⊥A.

Finally, we show that for ε1 ∈ H1
e nonzero and (ε1, Q) = 0, one has

H1(ε1, ε1) ≥ 0.

(α) Let (P1)A = span(Q, (φ1)A); then∣∣∣∣ H1(Q, Q) H1(Q, (φ1)A)
H1(Q, (φ1)A) H1((φ1)A, (φ1)A)

∣∣∣∣
= −(Q, Q)2

(
1 − H1(Q, Q)

(φ1, Q)
(Q, Q)2

)
+ o(1) �= 0

for A large enough by (112) and (118). We conclude that H1 restricted to
(P1)A is not degenerate. It follows that H1

e = (P1)A ⊕ (P1)⊥A.

(β) Since the index of H1 in H1
e is 1 and H1(Q, Q) < 0, we conclude that

H1 ≥ 0 on (P1)⊥A.

(γ) There exists A0 > 0 such that for all A ≥ A0, ∀ε1 ∈ (P1)A nonzero
with (ε1, Q) = 0, then H1(ε1, ε1) > 0. Indeed, when ε1 = αQ + β(φ1)A, then
from (ε1, Q) = 0, we have β �= 0 and α

β = − (Q,(φ1)A)
(Q,Q) . Then

H1(ε1, ε1)
β2

=
(

α

β

)2

H1(Q, Q) + 2
(

α

β

)
((φ1)A, Q) + H1((φ1)A, (φ1)A)

=−(Q, φ1)
(

1 − H1(Q, Q)
(Q, φ1)
(Q, Q)2

)
+ o(1) as A → +∞.

From (112), we conclude H1(ε1, ε1) > 0 for A large enough. Moreover, arguing
similarly, one has: when a sequence An → +∞ and εAn

∈ (P1)An
such that

(εAn
, Q) → 0 as n → +∞, then lim inf H(εAn

, εAn
) ≥ 0.

(δ) Now let ε1 ∈ H1
e be nonzero such that (ε1, Q) = 0 and A ≥ A0;

then ε1 = ε
(1)
A + ε

(2)
A , where ε

(1)
A ∈ (P1)A and ε

(2)
A ∈ (P1)⊥A. By definition, we
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have H1(ε1, ε1) = H1(ε
(1)
A , ε

(1)
A ) + H1(ε

(2)
A , ε

(2)
A ) ≥ H1(ε

(1)
A , ε

(1)
A ) from (β). The

conclusion will then follow from (γ) and

(ε(1)
A , Q) → 0 as A → +∞.(119)

We now prove (119). Indeed, from (ε1, Q) = 0, we compute (ε(1)
A , Q) =

−(ε(2)
A , Q). Now by definition, 0 = H1(ε

(2)
A , (φ1)A) = (ε(2)

A ,L1(φ1)A), so that
|(ε(2)

A , Q)| = |(ε(2)
A ,L1φ1)| = |(ε(2)

A ,L1(φ1 − (φ1)A))| ≤ ‖ε(2)
A ‖‖φ1 − (φ1)A‖

from (118). The conclusion follows from ‖ε(2)
A ‖ ≤ C|ε1|H1 . Indeed, writing

ε1 = αAQ + βA(φ1)A + ε
(2)
A and using the nondegeneracy of H1 on (P1)A, step

(α), one easily evaluates |αA| + |βA| ≤ C|ε1|H1 , and this concludes the proof
of Lemma 13, and of Proposition 2.
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