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Convergence versus integrability
in Birkhoff normal form

By Nguyen Tien Zung

Abstract

We show that any analytically integrable Hamiltonian system near an
equilibrium point admits a convergent Birkhoff normalization. The proof is
based on a new, geometric approach to the topic.

1. Introduction

Among the fundamental problems concerning analytic (real or complex)
Hamiltonian systems near an equilibrium point, one may mention the following
two:

1) Convergent Birkhoff. In this paper, by “convergent Birkhoff” we mean
a normalization, i.e., a local analytic symplectic system of coordinates in which
the Hamiltonian function will Poisson commute with the semisimple part of
its quadratic part.

2) Analytic integrability. By “analytic integrability” we mean of a com-
plete set of local analytic, functionally independent, first integrals in involution.

These concepts have been studied by many classical and modern math-
ematicians, including Poincaré, Birkhoff, Siegel, Moser, Bruno, etc. In this
paper, we will be concerned with the relations between the two. The starting
point is that, since both the Birkhoff normal form and the first integrals are
ways to simplify and solve Hamiltonian systems, these two must be very closely
related. Indeed, it was known to Birkhoff [2] that, for nonresonant Hamilto-
nian systems, convergent Birkhoff implies analytic integrability. The inverse is
also true, though much more difficult to prove [9]. What has been known to
date concerning “convergent Birkhoff vs. analytic integrability” may be sum-
marized in the following list. Denote by q (q ≥ 0) the degree of resonance (see
Section 2 for a definition) of an analytic Hamiltonian system at an equilibrium
point. Then we have:

a) When q = 0 (i.e. for nonresonant systems), convergent Birkhoff is equiv-
alent to analytic integrability. The implication is straightforward. The inverse
has been a difficult problem. Under an additional nondegeneracy condition
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involving the momentum map, it was first proved by Rüssmann [14] in 1964
for the case with two degrees of freedom, and then by Vey [17] in 1978 for
any number of degrees of freedom. Finally Ito [9] in 1989 solved the problem
without any additional condition on the momentum map.

b) When q = 1 (i.e. for systems with a simple resonance), convergent
Birkhoff is still equivalent to analytic integrability. The part “convergent
Birkhoff implies analytic integrability” is again obvious. The inverse was
proved some years ago by Ito [10] and Kappeler, Kodama and Némethi [11].

c) When q ≥ 2, convergent Birkhoff does not imply analytic integrability.
The reason is that the Birkhoff normal form in this case will give us (n−q +1)
first integrals in involution, where n is the number of degrees of freedom,
but additional first integrals do not exist in general, not even formal ones.
(A counterexample can be found in Duistermaat [6]; see also Verhulst [16] and
references therein.) The question “does analytic integrability imply convergent
Birkhoff?” when q ≥ 2 has remained open until now. The powerful analytical
techniques, which are based on the fast convergent method and used in [9], [10],
[11], could not have been made to work in the case with nonsimple resonances.

The main purpose of this paper is to complete the above list, by giving a
positive answer to the last question.

Theorem 1.1. Any real (resp., complex ) analytically integrable Hamilto-
nian system in a neighborhood of an equilibrium point on a symplectic manifold
admits a real (resp., complex ) convergent Birkhoff normalization at that point.

An important consequence of Theorem 1.1 is that we may classify de-
generate singular points of analytic integrable Hamiltonian systems by their
analytic Birkhoff normal forms (see, e.g., [18] and references therein).

The proof given in this paper of Theorem 1.1 works for any analytically
integrable system, regardless of its degree of resonance. Our proof is based on
a geometrical method involving homological cycles, period integrals, and torus
actions, and it is completely different from the analytical one used in [9], [10],
[11]. In a sense, our approach is close to that of Eliasson [7], who used torus
actions to prove the existence of a smooth Birkhoff normal form for smooth
integrable systems with a nondegenerate elliptic singularity. The role of torus
actions is given by the following proposition (see Proposition 2.3 for a more
precise formulation):

Proposition 1.2. The existence of a convergent Birkhoff normalization
is equivalent to the existence of a local Hamiltonian torus action which pre-
serves the system.

We also have the following result, which implies that it is enough to prove
Theorem 1.1 in the complex analytic case:
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Proposition 1.3. A real analytic Hamiltonian system near an equilib-
rium point admits a real convergent Birkhoff normalization if and only if it
admits a complex convergent Birkhoff normalization.

Both Proposition 1.2 and Proposition 1.3 are very simple and natural.
They are often used implicitly, but they have not been written explicitly any-
where in the literature, to our knowledge.

The rest of this paper is organized as follows: In Section 2 we introduce
some necessary notions, and prove the above two propositions. In Section 3 we
show how to find the required torus action in the case of integrable Hamiltonian
systems, by searching 1-cycles on the local level sets of the momentum map,
using an approximation method based on the existence of a formal Birkhoff
normalization and �Lojasiewicz inequalities. This section contains the proof of
our main theorem, modulo a lemma about analytic extensions. This lemma,
which may be useful in other problems involving the existence of first integrals
of singular foliations (see [18]), is proved in Section 4, the last section.

2. Preliminaries

Let H : U → K, where K = R (resp., K = C) be a real (resp., complex)
analytic function defined on an open neighborhood U of the origin in the
symplectic space (K2n, ω =

∑n
j=1 dxj ∧ dyj). When H is real, we will also

consider it as a complex analytic function with real coefficients. Denote by
XH the symplectic vector field of H:

iXH
ω = −dH.(2.1)

Here the sign convention is taken so that {H, F} = XH(F ) for any function F ,
where

{H, F} =
n∑

j=1

dH

dxj

dF

dyj
− dH

dyj

dF

dxj
(2.2)

denotes the standard Poisson bracket.
Assume that 0 is an equilibrium of H, i.e. dH(0) = 0. We may also put

H(0) = 0. Denote by

H = H2 + H3 + H4 + . . .(2.3)

the Taylor expansion of H, where Hk is a homogeneous polynomial of degree k

for each k ≥ 2. The algebra of quadratic functions on (K2n, ω), under the stan-
dard Poisson bracket, is naturally isomorphic to the simple algebra sp(2n, K)
of infinitesimal linear symplectic transformations in K2n. In particular,

H2 = Hss + Hnil,(2.4)

where Hss (resp., Hnil) denotes the semisimple (resp., nilpotent) part of H2.
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For each natural number k ≥ 3, the Lie algebra of quadratic functions
on K2n acts linearly on the space of homogeneous polynomials of degree k on
K2n via the Poisson bracket. Under this action, H2 corresponds to a linear
operator G �→ {H2, G}, whose semisimple part is G �→ {Hss, G}. In particular,
Hk admits a decomposition

Hk = −{H2, Lk} + H ′
k ,(2.5)

where Lk is some element in the space of homogeneous polynomials of degree
k, and H ′

k is in the kernel of the operator G �→ {Hss, G}, i.e. {Hss, H
′
k} = 0.

Denote by ψk the time-one map of the flow of the Hamiltonian vector field
XLk

. Then (x′, y′) = ψk(x, y) (where (x, y), or also (xj , yj), is shorthand for
(x1, y1, . . . , xn, yn)) is a symplectic transformation of (K2n, ω) whose Taylor
expansion is

x′
j = xj(ψ(x, y)) = xj − ∂Lk/∂yj + O(k),(2.6)

y′j = yj(ψ(x, y)) = yj + ∂Lk/∂xj + O(k),

where O(k) denotes terms of order greater or equal to k. Under the new local
symplectic coordinates (x′

j , y
′
j), we have

H = H2(x, y) + · · · + Hk(x, y) + O(k + 1)

= H2(x′
j + ∂Lk/∂yj , y

′
j − ∂Lk/∂xj) + H3(x′

j , y
′
j) + . . .

· · · + Hk(x′
j , y

′
j) + O(k + 1)

= H2(x′
j , y

′
j) − XLk

(H2) + H3(x′
j , y

′
j) + · · · + Hk(x′

j , y
′
j) + O(k + 1)

= H2(x′
j , y

′
j) + H3(x′

j , y
′
j) + · · · + Hk−1(x′

j , y
′
j) + H ′

k(x
′
j , y

′
j) + O(k + 1).

In other words, the local symplectic coordinate transformation (x′, y′) =
ψk(x, y) of K2n changes the term Hk to the term H ′

k satisfying {Hss, H
′
k} = 0

in the Taylor expansion of H, and it leaves the terms of order smaller than
k unchanged. By induction, one finds a sequence of local analytic symplectic
transformations φk (k ≥ 3) of type

φk(x, y) = (x, y) + terms of order ≥ k − 1(2.7)

such that for each m ≥ 3, the composition

Φm = φm ◦ · · · ◦ φ3(2.8)

is a symplectic coordinate transformation which changes all the terms of order
smaller or equal to k in the Taylor expansion of H to terms that commute
with Hss.

By taking limit m → ∞, we get the following classical result due to
Birkhoff et al. (see, e.g., [2], [3], [15]):

Theorem 2.1 (Birkhoff et al.). For any real (resp., complex ) Hamilto-
nian system H near an equilibrium point with a local real (resp., complex )
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symplectic system of coordinates (x, y), there exists a formal real (resp., com-
plex ) symplectic transformation (x′, y′) = Φ(x, y) such that in the coordinates
(x′, y′),

{H, Hss} = 0,(2.9)

where Hss denotes the semisimple part of the quadratic part of H.

When Equation (2.9) is satisfied, one says that the Hamiltonian H is in
Birkhoff normal form, and the symplectic transformation Φ in Theorem 2.1 is
called a Birkhoff normalization. The Birkhoff normal form is one of the basic
tools in Hamiltonian dynamics, and was already used in the 19th century by
Delaunay [5] and Linstedt [12] for some problems of celestial mechanics.

When a Hamiltonian function H is in normal form, its first integrals are
also normalized simultaneously to some extent. More precisely, one has the
following folklore lemma, whose proof is straightforward (see, e.g., [9], [10],
[11]):

Lemma 2.2. If {Hss, H} = 0, i.e. H is in Birkhoff normal form, and
{H, F} = 0, i.e. F is a first integral of H, then {Hss, F} = 0.

Recall that the simple Lie algebra sp(2n, C) has only one Cartan subalge-
bra up to conjugacy. In terms of quadratic functions, there is a complex linear
canonical system of coordinates (xj , yj) of C2n in which Hss can be written as

Hss =
n∑

i=1

γjxjyj ,(2.10)

where γj are complex coefficients, called frequencies. (The quadratic functions
ν1 = x1y1, . . . , νn = xnyn span a Cartan subalgebra.) The frequencies γj are
complex numbers uniquely determined by Hss up to a sign and a permutation.
The reason why we choose to write xjyj instead of 1

2(x2
j + y2

j ) in Equation
(2.10) is that this way monomial functions will be eigenvectors of Hss under
the Poisson bracket:

{Hss,
n∏

j=1

x
aj

j y
bj

j } = (
n∑

j=1

(bj − aj)γj)
n∏

j=1

x
aj

j y
bj

j .(2.11)

In particular, {H, Hss} = 0 if and only if every monomial term
∏n

j=1 x
aj

j y
bj

j

with a nonzero coefficient in the Taylor expansion of H satisfies the following
relation, called a resonance relation:

n∑
j=1

(bj − aj)γj = 0.(2.12)

In the nonresonant case, when there are no resonance relations except the
trivial ones, the Birkhoff normal condition {H, Hss} = 0 means that H is a
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function of n variables ν1 = x1y1, . . . , νn = xnyn, implying complete integra-
bility. Thus any nonresonant Hamiltonian system is formally integrable [2],
[15].

More generally, denote by R ⊂ Zn the sublattice of Zn consisting of
elements (cj) ∈ Zn such that

∑
cjγj = 0. The dimension of R over Z,

denoted by q, is called the degree of resonance of the Hamiltonian H. Let
µ(n−q+1), . . . , µ(n) be a basis of the resonance lattice R. Let ρ(1), . . . , ρ(n) be a
basis of Zn such that

∑n
j=1 ρ

(k)
j µ

(h)
j = δkh (= 0 if k 	= h and = 1 if k = h), and

set

F (k)(x, y) =
n∑

j=1

ρ
(k)
j xjyj(2.13)

for 1 ≤ k ≤ n. Then we have Hss =
∑n−q

k=1 αkF
(k) with no resonance relation

among α1, . . . , αn−q. The equation {Hss, H} = 0 is now equivalent to

{Fk, H} = 0 for all k = 1, . . . , n − q.(2.14)

What is so good about the quadratic functions F (k) is that each iF (k)

(where i =
√
−1) is a periodic Hamiltonian function; i.e., its holomorphic

Hamiltonian vector field XiF (k) is periodic with a real positive period (which is
2π or a divisor of this number). In other words, if we write XiF (k) = Xk + iYk,
where Xk = JYk is a real vector field called the real part of XiF (k) (i.e. Xk is a
vector field of C2n considered as a real manifold; J denotes the operator of the
complex structure of C2n), then the flow of Xk in C2n is periodic. Of course, if
F is a holomorphic function on a complex symplectic manifold, then the real
part of the holomorphic vector field XF is a real vector field which preserves
the complex symplectic form and the complex structure.

Since the periodic Hamiltonian functions iF (k) commute pairwise (in this
paper, when we say “periodic”, we always mean with a real positive period),
the real parts of their Hamiltonian vector fields generate a Hamiltonian action
of the real torus Tn−q on (C2n, ω). (One may extend it to a complex torus
(C∗)n−q-action, C∗ = C\{0}, but we will only use the compact real part of
this complex torus.) If H is in (analytic) Birkhoff normal form, it will Poisson-
commute with F (k), and hence it will be preserved by this torus action.

Conversely, if there is a Hamiltonian torus action of Tn−q in (C2n, ω) which
preserves H, then the equivariant Darboux theorem (which may be proved by
an equivariant version of the Moser path method; see, e.g., [4]) implies that
there is a local holomorphic canonical transformation of coordinates under
which the action becomes linear (and is generated by iF (1), . . . , iF (n−q)). Since
this action preserves H, it follows that {H, Hss} = 0. Thus we have proved the
following:

Proposition 2.3. With the above notation, the following two conditions
are equivalent :
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i) There exists a holomorphic Birkhoff canonical transformation of coor-
dinates (x′, y′) = Φ(x, y) for H in a neighborhood of 0 in C2n.

ii) There exists an analytic Hamiltonian torus action of Tn−q, in a neigh-
borhood of 0 in C2n, which preserves H, and whose linear part is gener-
ated by the Hamiltonian vector fields of the functions iF (k) = i

∑
ρ
(k)
j xjyj ,

k = 1, . . . , n − q.

Proof of Proposition 1.3. When H is a real analytic Hamiltonian func-
tion which admits a local complex analytic Birkhoff normalization, we will
have to show that H admits a local real analytic Birkhoff normalization. Let
A : Tn−q × (C2n, 0) → (C2n, 0) be a Hamiltonian torus action which preserves
H and which has an appropriate linear part, as provided by Proposition 1.2.
To prove Proposition 1.3, it suffices to linearize this action by a local real
analytic symplectic transformation.

Let F be a holomorphic periodic Hamiltonian function generating a
T1-subaction of A. Denote by F ∗ the function F ∗(z) = F (z̄), where z �→ z̄

is the complex conjugation in C2n. Since H is real and {H, F} = 0, we also
have {H, F ∗} = 0. It follows that, if H is in complex Birkhoff normal form, we
will have {Hss, F

∗} = 0, and hence F ∗ is preserved by the torus Tn−q-action.
Also, F ∗ is a periodic Hamiltonian function by itself (because F is), and due
to the fact that H is real, the quadratic part of F ∗ is a real linear combina-
tion of the quadratic parts of periodic Hamiltonian functions that generate the
torus Tn−q-action. It follows that F ∗ must in fact be also the generator of an
T1-subaction of the torus Tn−q-action. (Otherwise, by combining the action of
XF ∗ with the Tn−q-action, we would have a torus action of higher dimension
than possible.) The involution F �→ F ∗ gives rise to an involution t �→ t̄ in
Tn−q. The torus action is reversible with respect to this involution and to the
complex conjugation:

A(t, z) = A(t̄, z̄).(2.15)

The above equation implies that the local torus Tn−q-action may be lin-
earized locally by a real transformation of variables. Indeed, one may use the
following averaging formula:

z′ = z′(z) =
∫

Tn−q

A1(−t, A(t, z))dµ,(2.16)

where t ∈ Tn−q, z ∈ C2n, A1 is the linear part of A (so A1 is a linear torus
action), and dµ is the standard constant measure on Tn−q. The action A will
be linear with respect to z′: z′(A(t, z)) = A1(t, z′(z)). Due to Equation (2.15),
we have that z′(z) = z′(z), which means that the transformation z �→ z′ is real
analytic.

After the above transformation z �→ z′, the torus action becomes linear;
the symplectic structure ω is no longer constant in general, but one can use the
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equivariant Moser path method to make it back to a constant form (see, e.g.,
[4]). In order to do it, one writes ω − ω0 = dα and considers the flow of the
time-dependent vector field Xt defined by iXt

(tω + (1 − t)ω0) = α, where ω0

is the constant symplectic form which coincides with ω at point 0. One needs
α to be Tn−q-invariant and real. The first property can be achieved, starting
from an arbitrary real analytic α such that dα = ω − ω0, by averaging with
respect to the torus action. The second property then follows from Equation
(2.15). Proposition 1.3 is proved. �

3. Local torus actions for integrable systems

Proof of Theorem 1.1. According to Proposition 1.3, it is enough to prove
Theorem 1.1 in the complex analytic case. In this section, we will do this
by finding local Hamiltonian T1-actions which preserve the momentum map
of an analytically completely integrable system. The Hamiltonian function
generating such an action will be a first integral of the system, called an action
function (as in “action-angle coordinates”). If we find (n− q) such T1-actions,
then they will automatically commute and give rise to a Hamiltonian Tn−q-
action.

To find an action function, we will use the following period integral for-
mula, known as the Mineur-Arnold formula:

P =
∫

γ
β ,

where P denotes an action function, β denotes a primitive 1-form (i.e. ω = dβ

is the symplectic form), and γ denotes a 1-cycle (closed curve) lying on a level
set of the momentum map.

To show the existence of such 1-cycles γ, we will use an approximation
method, based on the existence of a formal Birkhoff normalization.

Denote by G = (G1 = H, G2, . . . , Gn) : (C2n, 0) → (Cn, 0) the holomor-
phic momentum map germ of a given complex analytic integrable Hamiltonian
system. Let ε0 > 0 be a small positive number such that G is defined in the
ball {z = (xj , yj) ∈ C2n, |z| < ε0}. We will restrict our attention to what
happens inside this ball. As in the previous section, we may assume that in
the symplectic coordinate system z = (xj , yj) we have

H = G1 = Hss + Hnil + H3 + H4 + . . .(3.1)

with

Hss =
n−q∑
k=1

αkF
(k), F (k) =

n∑
j=1

ρ
(k)
j xjyj ,(3.2)
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with no resonance relations among α1, . . . , αn−q. We will fix this coordinate
system z = (xj , yj), and all functions will be written in it.

The real and imaginary parts of the Hamiltonian vector fields of G1, . . . , Gn

are in involution and define an associated singular foliation in the ball
{z = (xj , yj) ∈ C2n, |z| < ε0}. Hereafter the norm in Cn is given by the stan-
dard Hermitian metric with respect to the coordinate system (xj , yj). Similarly
to the real case, the leaves of this foliation are called local orbits of the asso-
ciated Poisson action; they are complex isotropic submanifolds, and generic
leaves are Lagrangian and have complex dimension n. For each z we will de-
note the leaf which contains z by Mz. Recall that the momentum map is
constant on the orbits of the associated Poisson action. If z is a point such
that G(z) is a regular value for the momentum map, then Mz is a connected
component of G−1(G(z)).

Denote by

S = {z ∈ C2n, |z| < ε0, dG1 ∧ dG2 ∧ · · · ∧ dGn(z) = 0}(3.3)

the singular locus of the momentum map, which is also the set of singular points
of the associated singular foliation. What we need to know about S is that it
is analytic and of codimension at least 1, though for generic integrable systems
S is in fact of codimension 2. In particular, we have the following �Lojasiewicz
inequality (see [13]): there exist a positive number N and a positive constant
C such that

|dG1 ∧ · · · ∧ dGn(z)| > C(d(z, S))N(3.4)

for any z with |z| < ε0, where the norm applied to dG1 ∧ · · · ∧ dGn(z) is some
norm in the space of n-vectors, and d(z, S) is the distance from z to S with
respect to the Euclidean metric.

We will choose an infinite decreasing sequence of small numbers εm (m =
1, 2, . . . ), as small as needed, with limm→∞ εm = 0, and define the following
open subsets Um of C2n:

Um = {z ∈ C2n, |z| < εm, d(z, S) > |z|m}.(3.5)

We will also choose two infinite increasing sequence of natural numbers
am and bm (m = 1, 2, . . . ), as large as needed, with limm→∞ am = limm→∞ bm

= ∞. It follows from Birkhoff’s Theorem 2.1 and Lemma 2.2 that there is
a sequence of local holomorphic symplectic coordinate transformations Φm,
m ∈ N, such that the following two conditions are satisfied:

a) The differential of Φm at 0 is the identity for each m, and for any two
numbers m, m′ with m′ > m we have

Φm′(z) = Φm(z) + O(|z|am).(3.6)

In particular, there is a formal limit Φ∞ = limm→∞ Φm.
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b) The momentum map is normalized up to order bm by Φm. More pre-
cisely, the functions Gj can be written as

Gj(z) = G(m)j(z) + O(|z|bm), j = 1, . . . , n,(3.7)

with G(m)j such that

{G(m)j , F
(k)
(m)} = 0 ∀j = 1, . . . , n, k = 1, . . . , n − q.(3.8)

Here the functions F
(k)
(m) are quadratic functions

F
(k)
(m)(x, y) =

n∑
j=1

ρ
(k)
j x(m)jy(m)j(3.9)

in local symplectic coordinates

(x(m), y(m)) = Φm(x, y).(3.10)

Notice that F
(k)
(m) is a quadratic function in the coordinate system

(x(m), y(m)). But from now on we will use only the original coordinate sys-

tem (x, y). Then F
(k)
(m) is not a quadratic function in (x, y) in general, and the

quadratic part of F
(k)
(m) is F (k). The norm in C2n, which is used in the estimates

in this section, will be given by the standard Hermitian metric with respect to
the original coordinate system (x, y).

Denote by γ
(k)
m (z) the orbit of the real part of the periodic Hamiltonian

vector field XiF
(k)
(m)

which goes through z. Then for any z′ ∈ γ
(k)
m (z) we have

G(m)j(z′) = G(m)j(z), and |z′| 
 |z|; i.e. limz→0
|z′|
|z| = 1. (The reason is that the

real part of the linear periodic Hamiltonian vector field XiF (k) also preserves
the Hermitian metric of C2n, and the linear part of XiF

(k)
(m)

is XiF (k) .) As a
consequence, we have

|G(z′) − G(z)| = O(|z′|bm).(3.11)

Note that, for each m ∈ N, we can choose the numbers am and bm first, then
choose the radius εm = εm(am, bm) sufficiently small so that the equivalence
O(|z′|bm) 
 O(|z|bm) makes sense for z ∈ Um.

On the other hand, we have

|dG1(z′) ∧ · · · ∧ dGn(z′)|(3.12)

= |dG(m)1(z
′) ∧ · · · ∧ dG(m)n(z′)| + O(|z|bm−1)


 |dG(m)1(z) ∧ · · · ∧ dG(m)n(z)| + O(|z|bm−1)

= |dG1(z) ∧ · · · ∧ dGn(z)| + O(|z|bm−1).
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We can assume that bm − 1 > N . Then for |z| < εm small enough, the
above inequality may be combined with �Lojasiewicz inequality (3.4) to yield

|dG1(z′) ∧ · · · ∧ dGn(z′)| > C1d(z, S)N(3.13)

where C1 = C/2 is a positive constant (which does not depend on m).
If z ∈ Um, and εm is small enough, we have d(z, S) > |z|m, which may be

combined with the last inequality to yield:

|dG1(z′) ∧ · · · ∧ dGn(z′)| > C1|z|mN .(3.14)

Assuming that bm is much larger than mN , we can use the implicit func-
tion theorem to project the curve γ

(k)
m (z) on Mz as follows:

For each point z′ ∈ γ
(k)
m (z), let Dm(z′) be the complex n-dimensional

disk centered at z′, which is orthogonal to the kernel of the differential of the
momentum map G at z′, and which has radius equal to |z′|2mN . Since the
second derivatives of G are locally bounded by a constant near 0, it follows
from the definition of Dm(z′) that we have, for |z| < εm small enough:

|DG(w) − DG(z′)| < |z|3mN/2 ∀w ∈ Dm(z′)(3.15)

where DG(w) denotes the differential of the momentum map at w, considered
as an element of the linear space of 2n × n matrices.

Inequality (3.14) together with Inequality (3.15) imply that the momen-
tum map G, when restricted to Dm(z′), is a diffeomorphism from D(z′) to its
image, and the image of Dm(z′) in Cn under G contains a ball of radius |z|4mN .
(Because we have 4mN > 2mN +mN , where 2mN is the order of the radius of
Dm(z′), and mN is a majorant of the order of the norm of the differential of G.
The differential of G is “nearly constant” on Dm(z′) due to Inequality (3.15).)
Thus, if bm > 5mN for example, then Inequality (3.11) implies that there is
a unique point z′′ on Dm(z′) such that G(z′′) = G(z). The map z′ �→ z′′ is
continuous, and it maps γ

(k)
m (z) to some close curve γ̃

(k)
m (z), which must lie

on Mz because the point z maps to itself under the projection. When bm is
large enough and εm is small enough, then γ̃

(k)
m (z) is a smooth curve with a

natural parametrization inherited from the natural parametrization of γ
(k)
m (z),

it has bounded derivative (we can say that its velocity vectors are uniformly
bounded by 1), and it depends smoothly on z ∈ Um.

Define the following action function P
(k)
m on Um:

P (k)
m (z) =

∫
γ̃

(k)
m (z)

β ,(3.16)

where β =
∑

xjdyj (so that dβ =
∑

dxj ∧ dyj is the standard symplectic
form.) This function has the following properties:
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i) Because the 1-form β =
∑

xjdyj is closed on each leaf of the Lagrangian
foliation of the integrable system in Um, P

(k)
m is a holomorphic first integral of

the foliation. (This fact is well-known in complex geometry: period integrals
of holomorphic k-forms, which are closed on the leaves of a given holomor-
phic foliation, over p-cycles of the leaves, give rise to (local) holomorphic first
integrals of the foliation.) The functions P

(1)
m , . . . , P

(n−q)
m Poisson commute

pairwise, because they commute with the momentum map.

ii) P
(k)
m is uniformly bounded by 1 on Um, because γ̃

(k)
m (z) is small, together

with its first derivative.

iii) Provided that the numbers am are chosen large enough, for any m′ > m

we have that P
(k)
m coincides with P

(k)
m′ in the intersection of Um with Um′ . To

see this important point, recall that

P (k)
m = P

(k)
m′ + O(|z|am)(3.17)

by construction, which implies that the curve γ
(k)
m′ (z) is |z|am−2-close to the

curve γ
(k)
m (z) in C1-norm. If am is large enough with respect to mN (say

am > 5mN), then it follows that the complex n-dimensional cylinder

Vm′(z) = {w ∈ C2n | d(w, γ
(k)
m′ (z)) < |z|2m′N} ∩ Mz(3.18)

lies inside (and near the center of) the complex n-dimensional cylinder

Vm(z) = {w ∈ C2n | d(w, γ(k)
m (z)) < |z|2mN} ∩ Mz.(3.19)

On the other hand, one can check that γ̃
(k)
m (z) is a retract of Vm(z) in Mz, and

the same thing is true for the index m′. It follows easily that γ̃
(k)
m′ (z) must be

homotopic to γ̃
(k)
m (z) in Mz, implying that P

(k)
m (z) coincides with P

(k)
m′ (z).

iv) Since P
(k)
m coincides with P

(k)
m′ in Um

⋂
Um′ , we may glue these func-

tions together to obtain a holomorphic function, denoted by P (k), on the union
U =

⋃∞
m=1 Um. Lemma 4.1 in the following section shows that if we have a

bounded holomorphic function in U = ∪∞
m=1Um then it can be extended to a

holomorphic function in a neighborhood of 0 in C2n. Thus our action functions
P (k) are holomorphic in a neighborhood of 0 in C2n.

v) P (k) is a local periodic Hamiltonian function whose quadratic part is
iF (k) = i

∑
ρ
(k)
j xjyj . To see this, note that

iF (k)
m (z) = i

∑
ρ
(k)
j x(m)jy(m)j =

∫
γ

(k)
m (z)

β ,(3.20)

for z ∈ Um. Since the curve γ̃
(k)
m (z) is |z|3mN -close to the curve γ

(k)
m (z) by

construction (provided that bm > 4mN),

P (k)(z) = iF (k)
m (z) + O(|z|3mN )(3.21)
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for z ∈ Um. Due to the nature of Um (almost every complex line in C2n

which contains the origin 0 intersects with Um in an open subset (of the line)
which surrounds the point 0), it follows from the last estimate that in fact the
coefficients of all the monomial terms of order < 3mN of P (k) coincide with
that of iF

(k)
m ; i.e.,

P (k)(z) = iF (k)
m (z) + O(|z|3mN )(3.22)

in a neighborhood of 0 in C2n. In particular,

P (k) = lim
m→∞

iF (k)
m ,(3.23)

where the limit on the right-hand side of the above equation is understood as
the formal limit of a Taylor series, and the left-hand side is also considered
as a Taylor series. This is enough to imply that P (k) has i

∑
ρ
(k)
j xjyj as its

quadratic part, and that P (k) is a periodic Hamiltonian of period 2π because
each iF

(k)
m is so. (If a local holomorphic Hamiltonian vector field which vanishes

at 0 is formally periodic then it is periodic.)
Now we can apply Proposition 2.3 and Proposition 1.3 to finish the proof

of Theorem 1.1. �

4. Holomorphic extension of action functions

The following lemma shows that the action functions P (k) constructed in
the previous section can be extended holomorphically in a neighborhood of 0.

Lemma 4.1. Let U =
⋃∞

m=1 Um, with

Um = {x ∈ Cn, |x| < εm, d(x, S) > |x|m},

where εm is an arbitrary sequence of positive numbers and S is a local proper
complex analytic subset of Cn (codimCS ≥ 1). Then any bounded holomorphic
function on U has a holomorphic extension in a neighborhood of 0 in Cn.

Proof. Though we suspect that this lemma was known to specialists in
complex analysis, we could not find it in the literature, and so we will provide
a proof here. When n = 1 the lemma is obvious; so we will assume that n ≥ 2.
Without loss of generality, we can assume that S is a singular hypersurface.
We divide the lemma into two steps:

Step 1. The case when S is contained in the union of hyperplanes⋃n
j=1{xj = 0} where (x1, . . . , xn) is a local holomorphic system of coordinates.

Clearly, U contains a product of nonempty annuli ηj < |xj | < η′j , hence f is
defined by a Laurent series in x1, · · · , xn there. We will study the domain of
convergence of this Laurent series, using the well-known fact that the domain
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of convergence of a Laurent series is logarithmically convex. More precisely,
denote by π the map (x1, · · · , xn) �→ (log |x1|, · · · , log |xn|) from (C∗)n to Rn,
where C∗ = C\{0}, and set

E = {r = (r1, . . . , rn) ∈ Rn | π−1(r) ⊂ U}.

Denote by Hull(E) the convex hull of E in Rn. Then since the function f is
analytic and bounded in π−1(E), it can be extended to a bounded analytic
function on π−1(Hull(E)). On the other hand, by definition of U =

⋃∞
m=1 Um,

there is a sequence of positive numbers Km (tending to infinity) such that
E ⊃ (

⋃∞
m=1 Em), where

Em = {(r1, . . . , rn) ∈ Rn | (rj < −Km ∀j) , (rj > mri ∀j 	= i)}.

It is clear that the convex hull of
⋃∞

m=1 Em, with each Em defined as above,
contains a neighborhood of (−∞, . . . ,−∞), i.e. a set of the type

{(r1, . . . , rn) ∈ Rn | rj < −K ∀j}.

This implies that the function f can be extended to a bounded analytic function
in U ∩ (C∗)n, where U is a neighborhood of 0 in Cn. Since f is bounded in
U ∩ (C∗)n, it can be extended analytically on the whole U . Step 1 is finished.

Step 2. Consider now the case with an arbitrary S. Then we can
use Hironaka’s desingularization theorem [8] to make it smooth. The general
desingularization theorem is a very hard theorem, but in the case of a singular
complex hypersurface a relatively simple constructive proof of it can be found
in [1]. In fact, since the exceptional divisor will also have to be taken into
account, after the desingularization process we will have a variety which may
have normal crossings. More precisely, we have the following commutative
diagram

Q ⊂ S′ ⊂ Mn

↓ ↓ ↓ p

0 ∈ S ⊂ (Cn, 0)
,(4.1)

where (Cn, 0) denotes the germ of Cn at 0 presented by a ball which is small
enough; Mn is a complex manifold; the projection p is surjective, and injective
outside the exceptional divisor; S′ denotes the union of the exceptional divisor
with the smooth proper submanifold of Mn which is a desingularization of S

— the only singularities in S′ are normal crossings; Q = p−1(0) is compact.
Now, Mn is obtained from (Cn, 0) by a finite number of blowing-ups along
submanifolds.

Denote by U ′ = p−1(U) the preimage of U under the projection p. One
can pull back f from U to U ′ to get a bounded holomorphic function on U ′,
denoted by f ′. An important observation is that the type of U persists under
blowing-ups along submanifolds. (Or equivalently, the type of its complement,
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which may be called a sharp-horn-neighborhood of S because it is similar to
horn-type neighborhoods of S \ {0} used by singularists but it is sharp of ar-
bitrary order, is persistent under blowing-ups.) More precisely, for each point
x ∈ Q, the complement of U ′ in a small neighborhood of x is a “sharp-horn-
neighborhood” of S′ at x. Since S′ only has normal crossings, the pair (U ′, S′)
satisfies the conditions of Step 1, and therefore we can extend f ′ holomorphi-
cally in a neighborhood of x in Mn. Since Q = p−1(0) is compact, we can
extend f ′ holomorphically in a neighborhood of Q in M ′. One can now project
this extension of f ′ back to (Cn, 0) to get a holomorphic extension of f in a
neighborhood of 0. The lemma is proved. �

Remark. The “sharp-horn” type of the complement of U in the above
lemma is essential. If we replace U by Um (for any given number m) then the
lemma is false.
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